Sample records for facilitate water transport

  1. SUPERFUND GROUNDWATER ISSUE - FACILITATED TRANSPORT

    EPA Science Inventory

    The Regional Superfund Ground Water Forum is a group of ground-water scientists representing EPA's Regional Superfund Offices, organized to exchange up to date information related to ground-water remediation at Superfund sites. Facilitated transport is an issue identified by the ...

  2. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand

    USDA-ARS?s Scientific Manuscript database

    Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...

  4. Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Mumford, K. G.; Soucy, N. C.

    2017-12-01

    Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to

  5. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    PubMed

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  6. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air-water

  7. Facilitated transport of small molecules and ions for energy-efficient membranes.

    PubMed

    Li, Yifan; Wang, Shaofei; He, Guangwei; Wu, Hong; Pan, Fusheng; Jiang, Zhongyi

    2015-01-07

    In nature, the biological membrane can selectively transport essential small molecules/ions through facilitated diffusion via carrier proteins. Intrigued by this phenomenon and principle, membrane researchers have successfully employed synthetic carriers and carrier-mediated reversible reactions to enhance the separation performance of synthetic membranes. However, the existing facilitated transport membranes as well as the relevant facilitated transport theories have scarcely been comprehensively reviewed in the literature. This tutorial review primarily covers the two aspects of facilitated transport theories: carrier-mediated transport mechanisms and facilitated transport chemistries, including the design and fabrication of facilitated transport membranes. The applications of facilitated transport membranes in energy-intensive membrane processes (gas separation, pervaporation, and proton exchange membrane fuel cells) have also been discussed. Hopefully, this review will provide guidelines for the future research and development of facilitated transport membranes with high energy efficiency.

  8. Plant–Water Relations (1): Uptake and Transport

    PubMed Central

    2014-01-01

    Summary Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow tracheary elements are just one of many adaptations that enable plants to cope with a very dry atmosphere. This lecture examines the physical laws that govern water uptake and transport, the biological properties of cells and plant tissues that facilitate it, and the strategies that enable plants to survive in diverse environments

  9. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    NASA Astrophysics Data System (ADS)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  10. Colloid-facilitated transport of cesium in variably saturated Hanford sediments.

    PubMed

    Chen, Gang; Flury, Markus; Harsh, James B; Lichtner, Peter C

    2005-05-15

    Radioactive 137Cs has leaked from underground waste tanks into the vadose zone at the Hanford Reservation in south-central Washington State. There is concern that 137Cs, currently located in the vadose zone, can reach the groundwater. In this study, we investigated whether, and to what extent, colloidal particles can facilitate the transport of 137Cs at Hanford. We used colloidal materials isolated from Hanford sediments. Transport experiments were conducted under variably saturated, steady-state flow conditions in repacked, 20 cm long Hanford sediment columns, with effective water saturations ranging from 0.2 to 1.0. Cesium, pre-associated with colloids, was stripped off during transport through the sediments. The higher the flow rates, the less Cs was stripped off, indicating in part that Cs desorption from carrying colloids was a residence-time-dependent process. Depending on the flow rate, up to 70% of the initially sorbed Cs desorbed from colloidal carriers and was captured in the stationary sediments. Less Cs was stripped off colloids under unsaturated than under saturated flow conditions at similar flow rates. This phenomenon was likely due to the reduced availability of sorption sites for Cs on the sediments as the water content decreased and water flow was divided between mobile and immobile regions.

  11. Computation Of Facilitated Transport of O2 In Hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1991-01-01

    Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.

  12. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    PubMed

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  13. The Ca2+-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum.

    PubMed

    Espinoza-Fonseca, L Michel

    2017-03-28

    Ca 2+ transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca 2+ homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca 2+ uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca 2+ and other ions across the SR. During Ca 2+ uptake by the SR Ca 2+ -ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca 2+ transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca 2+ release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca 2+ transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.

  14. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flury, Markus

    2003-09-14

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring duringmore » leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The

  15. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4.

    PubMed

    Noor, Sina Ibne; Pouyssegur, Jacques; Deitmer, Joachim W; Becker, Holger M

    2017-01-01

    Monocarboxylate transporters (MCTs) mediate the proton-coupled transport of high-energy metabolites like lactate and pyruvate and are expressed in nearly every mammalian tissue. We have shown previously that transport activity of MCT4 is enhanced by carbonic anhydrase II (CAII), which has been suggested to function as a 'proton antenna' for the transporter. In the present study, we tested whether creation of an endogenous proton antenna by introduction of a cluster of histidine residues into the C-terminal tail of MCT4 (MCT4-6xHis) could facilitate MCT4 transport activity when heterologously expressed in Xenopus oocytes. Our results show that integration of six histidines into the C-terminal tail does indeed increase transport activity of MCT4 to the same extent as did coexpression of MCT4-WT with CAII. Transport activity of MCT4-6xHis could be further enhanced by coexpression with extracellular CAIV, but not with intracellular CAII. Injection of an antibody against the histidine cluster into MCT4-expressing oocytes decreased transport activity of MCT4-6xHis, while leaving activity of MCT4-WT unaltered. Taken together, these findings suggest that transport activity of the proton-coupled monocarboxylate transporter MCT4 can be facilitated by integration of an endogenous proton antenna into the transporter's C-terminal tail. © 2016 Federation of European Biochemical Societies.

  16. "Facilitated" amino acid transport is upregulated in brain tumors.

    PubMed

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  17. Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins.

    PubMed

    Palmgren, Madelene; Hernebring, Malin; Eriksson, Stefanie; Elbing, Karin; Geijer, Cecilia; Lasič, Samo; Dahl, Peter; Hansen, Jesper S; Topgaard, Daniel; Lindkvist-Petersson, Karin

    2017-12-01

    Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.

  18. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    USDA-ARS?s Scientific Manuscript database

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  19. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  20. Does water content or flow rate control colloid transport in unsaturated porous media?

    PubMed

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  1. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana.

    PubMed

    Kaldenhoff, R; Grote, K; Zhu, J J; Zimmermann, U

    1998-04-01

    The plant plasma membrane intrinsic protein, PIP1b, facilitates water transport. These features were characterized in Xenopus oocytes and it has asked whether aquaporins are relevant for water transport in plants. In order to elucidate this uncertainty Arabidopsis thaliana was transformed with an anti-sense construct targeted to the PIP1b gene. Molecular analysis revealed that the anti-sense lines have reduced steady-state levels of PIP1b and the highly homologous PIP1a mRNA. The cell membrane water permeability was analyzed by swelling of protoplasts, which had been transferred into hypotonic conditions. The results indicate that the reduced expression of the specific aquaporins decreases the cellular osmotic water permeability coefficient approximately three times. The morphology and development of the anti-sense lines resembles that of control plants, with the exception of the root system, which is five times as abundant as that of control plants. Xylem pressure measurement suggests that the increase of root mass compensates the reduced cellular water permeability in order to ensure a sufficient water supply to the plant. The results obtained by this study, therefore, clearly demonstrate that aquaporins are important for plant water transport.

  2. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    PubMed

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  3. Sugar transporter genes of the brown planthopper, Nilaparvata lugens: A facilitated glucose/fructose transporter.

    PubMed

    Kikuta, Shingo; Kikawada, Takahiro; Hagiwara-Komoda, Yuka; Nakashima, Nobuhiko; Noda, Hiroaki

    2010-11-01

    The brown planthopper (BPH), Nilaparvata lugens, attacks rice plants and feeds on their phloem sap, which contains large amounts of sugars. The main sugar component of phloem sap is sucrose, a disaccharide composed of glucose and fructose. Sugars appear to be incorporated into the planthopper body by sugar transporters in the midgut. A total of 93 expressed sequence tags (ESTs) for putative sugar transporters were obtained from a BPH EST database, and 18 putative sugar transporter genes (Nlst1-18) were identified. The most abundantly expressed of these genes was Nlst1. This gene has previously been identified in the BPH as the glucose transporter gene NlHT1, which belongs to the major facilitator superfamily. Nlst1, 4, 6, 9, 12, 16, and 18 were highly expressed in the midgut, and Nlst2, 7, 8, 10, 15, 17, and 18 were highly expressed during the embryonic stages. Functional analyses were performed using Xenopus oocytes expressing NlST1 or 6. This showed that NlST6 is a facilitative glucose/fructose transporter that mediates sugar uptake from rice phloem sap in the BPH midgut in a manner similar to NlST1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of

  5. Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter.

    PubMed Central

    Zeng, H; Parthasarathy, R; Rampal, A L; Jung, C Y

    1996-01-01

    A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:8770183

  6. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.

    PubMed

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malvacio, Ivana; Malloci, Giuliano; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2018-04-01

    Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    PubMed

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  8. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  9. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE

    PubMed Central

    Wisedchaisri, Goragot; Park, Min-Sun; Iadanza, Matthew G.; Zheng, Hongjin; Gonen, Tamir

    2014-01-01

    The major facilitator superfamily (MFS) is the largest collection of structurally related membrane proteins that transport a wide array of substrates. The proton-coupled sugar transporter XylE is the first member of the MFS that has been structurally characterized in multiple transporting conformations, including both the outward and inward-facing states. Here we report the crystal structure of XylE in a new inward-facing open conformation, allowing us to visualize the rocker-switch movement of the N-domain against the C-domain during the transport cycle. Using molecular dynamics simulation, and functional transport assays, we describe the movement of XylE that facilitates sugar translocation across a lipid membrane and identify the likely candidate proton-coupling residues as the conserved Asp27 and Arg133. This study addresses the structural basis for proton-coupled substrate transport and release mechanism for the sugar porter family of proteins. PMID:25088546

  10. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection

  11. Water transport and energy.

    PubMed

    Fricke, Wieland

    2017-06-01

    Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.

  12. The role of silica colloids on facilitated cesium transport through glass bead columns and modeling

    NASA Astrophysics Data System (ADS)

    Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.

    1998-05-01

    Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient

  13. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator.

    PubMed

    Heckwolf, Marlies; Pater, Dianne; Hanson, David T; Kaldenhoff, Ralf

    2011-09-01

    Cellular exchange of carbon dioxide (CO₂) is of extraordinary importance for life. Despite this significance, its molecular mechanisms are still unclear and a matter of controversy. In contrast to other living organisms, plants are physiologically limited by the availability of CO₂. In most plants, net photosynthesis is directly dependent on CO₂ diffusion from the atmosphere to the chloroplast. Thus, it is important to analyze CO₂ transport with regards to its effect on photosynthesis. A mutation of the Arabidopsis thaliana AtPIP1;2 gene, which was characterized as a non-water transporting but CO₂ transport-facilitating aquaporin in heterologous expression systems, correlated with a reduction in photosynthesis under a wide range of atmospheric CO₂ concentrations. Here, we could demonstrate that the effect was caused by reduced CO₂ conductivity in leaf tissue. It is concluded that the AtPIP1;2 gene product limits CO₂ diffusion and photosynthesis in leaves. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. The Mechanism of Isotonic Water Transport

    PubMed Central

    Diamond, Jared M.

    1964-01-01

    The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified. PMID:14212146

  15. MACROMOLECULES FACILITATE THE TRANSPORT OF TRACE ORGANICS

    EPA Science Inventory

    Macromolecules in the pore fluid of a soil may influence the mobility of hydrophobic compounds by their partitioning to the macromolecule, which moves with, or even faster than, the water. The mobility is described mathematically by a chemical transport model. The significance of...

  16. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  17. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examplesmore » of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.« less

  18. Water transport, free volume, and polymer dynamics in crosslinked polymer networks

    NASA Astrophysics Data System (ADS)

    Frieberg, Bradley; Soles, Christopher

    Many technologies rely on amorphous polymer membranes that selectively transport small molecules or ions, which has led to a significant scientific interest in elucidating the mechanisms of transport. A recurring theme among several different materials systems is that free volume and polymer chain dynamics facilitate transport. In order to understand the interplay between free volume, transport and polymer dynamics we quantify these properties for a model epoxy network. The epoxy chemistry allows for systematically varying both the structural rigidity of the network as well as the cross-link density. We performed positron annihilation lifetime spectroscopy measurements to characterize the unoccupied volume and correlated the unoccupied volume to the equilibrium moisture uptake and effective diffusion coefficient. We have recently extended this work to include polymer dynamics measured by quasi-elastic neutron scattering on the NIST High Flux Backscatter Spectrometer. These measurements reveal a strong correlation between the MSD and the transport kinetics, which was even stronger than the correlation previously observed between free volume and water diffusion. These observations challenge previous theories that suggest free volume governs transport.

  19. Golgi Localized Barley MTP8 Proteins Facilitate Mn Transport

    PubMed Central

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species. PMID:25486417

  20. A Major Facilitator Superfamily Transporter Plays a Dual Role in Polar Auxin Transport and Drought Stress Tolerance in Arabidopsis[W

    PubMed Central

    Remy, Estelle; Cabrito, Tânia R.; Baster, Pawel; Batista, Rita A.; Teixeira, Miguel C.; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-01-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H+-coupled K+ transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells. PMID:23524662

  1. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water.

    PubMed

    Ge, Zhongfu; Whitman, Richard L; Nevers, Meredith B; Phanikumar, Mantha S

    2012-02-21

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s(-1)). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731-6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  2. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    USGS Publications Warehouse

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  3. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer

    PubMed Central

    1976-01-01

    We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619

  4. Fluctuation theorem for channel-facilitated membrane transport of interacting and noninteracting solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2008-05-15

    In this paper, we discuss the fluctuation theorem for channel-facilitated transport of solutes through a membrane separating two reservoirs. The transport is characterized by the probability, P(n)(t), that n solute particles have been transported from one reservoir to the other in time t. The fluctuation theorem establishes a relation between P(n)(t) and P-(n)(t): The ratio P(n)(t)/P-(n)(t) is independent of time and equal to exp(nbetaA), where betaA is the affinity measured in the thermal energy units. We show that the same fluctuation theorem is true for both single- and multichannel transport of noninteracting particles and particles which strongly repel each other.

  5. Glycosylation facilitates transdermal transport of macromolecules

    PubMed Central

    Pino, Christopher J.; Gutterman, Jordan U.; Vonwil, Daniel; Mitragotri, Samir; Shastri, V. Prasad

    2012-01-01

    Stratum corneum, the outermost layer of skin, allows transport of only low-molecular weight (<500) lipophilic solutes. Here, we report a surprising finding that avicins (Avs), a family of naturally occurring glycosylated triterpenes with a molecular weight > 2,000, exhibit skin permeabilities comparable to those of small hydrophobic molecules, such as estradiol. Systematic fragmentation of the Av molecule shows that deletion of the outer monoterpene results in a 62% reduction in permeability, suggesting an important role for this motif in skin permeation. Further removal of the tetrasaccharide residue results in a further reduction of permeability by 79%. These results, taken in sum, imply that synergistic effects involving both hydrophobic and hydrophilic residues may hold the key in facilitating translocation of Avs across skin lipids. In addition to exhibiting high permeability, Avs provided moderate enhancements of skin permeability of estradiol and polysaccharides, including dextran and inulin but not polyethylene glycol. PMID:23236155

  6. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less

  7. Molecular Tools for Facilitative Carbohydrate Transporters (Gluts).

    PubMed

    Tanasova, Marina; Fedie, Joseph R

    2017-09-19

    Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Water and solute transport across the peritoneal membrane.

    PubMed

    Morelle, Johann; Devuyst, Olivier

    2015-09-01

    We review the molecular mechanisms of peritoneal transport and discuss how a better understanding of these mechanisms is relevant for dialysis therapy. Peritoneal dialysis involves diffusion and osmosis through the highly vascularized peritoneal membrane. Computer simulations, expression studies and functional analyses in Aqp1 knockout mice demonstrated the critical role of the water channel aquaporin-1 (AQP1) in water removal during peritoneal dialysis. Pharmacologic regulation of AQP1, either through increased expression or gating, is associated with increased water transport in rodent models of peritoneal dialysis. Water transport is impaired during acute peritonitis, despite unchanged expression of AQP1, resulting from the increased microvascular area that dissipates the osmotic gradient across the membrane. In long-term peritoneal dialysis patients, the fibrotic interstitium also impairs water transport, resulting in ultrafiltration failure. Recent data suggest that stroke and drug intoxications might benefit from peritoneal dialysis and could represent novel applications of peritoneal transport in the future. A better understanding of the regulation of osmotic water transport across the peritoneum offers novel insights into the role of water channels in microvascular endothelia, the functional importance of structural changes in the peritoneal interstitium and the transport of water and solutes across biological membranes in general.

  9. Colloid-facilitated metal transport in peat filters.

    PubMed

    Kalmykova, Yuliya; Rauch, Sebastien; Strömvall, Ann-Margret; Morrison, Greg; Stolpe, Björn; Hasselliöv, Martin

    2010-06-01

    The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.

  10. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  11. Water transport across biological membranes: Overton, water channels, and peritoneal dialysis.

    PubMed

    Devuyst, O

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haplo-insufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.

  12. Water footprint of U.S. transportation fuels.

    PubMed

    Scown, Corinne D; Horvath, Arpad; McKone, Thomas E

    2011-04-01

    In the modern global economy, water and energy are fundamentally connected. Water already plays a major role in electricity generation and, with biofuels and electricity poised to gain a significant share of the transportation fuel market, water will become significantly more important for transportation energy as well. This research provides insight into the potential changes in water use resulting from increased biofuel or electricity production for transportation energy, as well as the greenhouse gas and freshwater implications. It is shown that when characterizing the water impact of transportation energy, incorporating indirect water use and defensible allocation techniques have a major impact on the final results, with anywhere between an 82% increase and a 250% decrease in the water footprint if evaporative losses from hydroelectric power are excluded. The greenhouse gas impact results indicate that placing cellulosic biorefineries in areas where water must be supplied using alternative means, such as desalination, wastewater recycling, or importation can increase the fuel's total greenhouse gas footprint by up to 47%. The results also show that the production of ethanol and petroleum fuels burden already overpumped aquifers, whereas electricity production is far less dependent on groundwater.

  13. Two mechanisms of H+/OH- transport across phospholipid vesicular membrane facilitated by gramicidin A.

    PubMed Central

    Prabhananda, B S; Kombrabail, M H

    1996-01-01

    Two rate-limiting mechanisms have been proposed to explain the gramicidin channel facilitated decay of the pH difference across vesicular membrane (delta pH) in the pH region 6-8 and salt (MCI, M+ = K+, Na+) concentration range 50-300 mM. 1) At low pH conditions (approximately 6), H+ transport through the gramicidin channel predominantly limits the delta pH decay rate. 2) At higher pH conditions (approximately 7.5), transport of a deprotonated species (but not through the channel) predominantly limits the rate. The second mechanism has been suggested to be the hydroxyl ion propogation through water chains across the bilayer by hydrogen bond exchange. In both mechanisms alkali metal ion transport providing the compensating flux takes place through the gramicidin channels. Such an identification has been made from a detailed study of the delta pH decay rate as a function of 1) gramicidin concentration, 2) alkali metal ion concentration, 3) pH, 4) temperature, and 5) changes in the membrane order (by adding small amounts of chloroform to vesicle solutions). The apparent activation energy associated with the second mechanism (approximately 3.2 kcal/mol) is smaller than that associated with the first mechanism (approximately 12 kcal/mol). In these experiments, delta pH was created by temperature jump, and vesicles were prepared using soybean phospholipid or a mixture of 94% egg phosphatidylcholine and 6% phosphatidic acid. PMID:8968580

  14. Students' Conceptions of Water Transport

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.

    2010-01-01

    Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…

  15. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    NASA Astrophysics Data System (ADS)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  16. Fuel cell water transport

    DOEpatents

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  17. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    PubMed

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  18. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    PubMed

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  19. Water transport dynamics in trees and stands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallardy, S.G.; Cermak, J.; Ewers, F.W.

    1995-07-01

    Water transport dynamics in trees and stands of conifers have certain features that are characteristic of this group and are at least rare among angiosperms. Among these features is the xylem transport system that is dependent on tracheids for long-distance water transport. Tracheid-containing xylem is relatively inefficient, a property that can reduce submaximum allowable rates of gas exchange, but tracheids also offer substantial capacity for water storage and high resistance to freezing-induced dysfunction. Thus, they are quite compatible with the typical evergreen habit and long transpiration season of conifers. At the stand level, canopy transpiration in conifers is primarily controlledmore » by stomatal conductance. In contrast, in dense canopies of angio-sperms, particularly those of tropical forests with limited air mixing, stand transpiration is limited by radiation input rather than by stomatal control. Because of their evergreen habit a greater proportion of evapotranspiration in conifer forests is associated with evaporation of water intercepted by the tree crowns. Other features of transport dynamics are characteristic of most conifers, but are not unique to this group. Among these features are typically shallow root systems that often must supply water in winter to replace transpiration needs of evergreen species, common occurrence of mycorrhizae that enhance mineral and water uptake, and drought tolerance adaptations that include elements of both dehydration avoidance (e.g., stomatal closure under water stress, shifts in allocation of dry matter to below-ground sinks) and dehydration tolerance (e.g., capacity for acclimation of photosynthetic apparatus to drought, osmotic adjustment). Transpiration rates from conifer foliage often are lower than those of deciduous angiosperms, probably because of the lower maximum capacity of tracheid-bearing xylem to transport water.« less

  20. 49 CFR 38.2 - Equivalent facilitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Equivalent facilitation. 38.2 Section 38.2 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES General § 38.2 Equivalent facilitation. Departures from particular...

  1. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    PubMed

    Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve

    2009-01-01

    Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  2. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.

    PubMed

    Lemieux, M Joanne

    2007-01-01

    The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.

  3. Nitrate transporter genes in apple and the effect of water deficit on their expression

    USDA-ARS?s Scientific Manuscript database

    Nitrogen transporters are members of a large superfamily, the Major Facilitator Superfamily (MFS). This family is ubiquitous and diverse, and includes proteins that facilitate the transport of a wide range of substrates across the cytoplasmic or intracellular membranes. Among the proteins encoded ...

  4. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds.

    PubMed

    Ohba, Tomonori; Kaneko, Katsumi; Endo, Morinobu; Hata, Kenji; Kanoh, Hirofumi

    2013-01-29

    Water plays an important role in controlling chemical reactions and bioactivities. For example, water transportation through water channels in a biomembrane is a key factor in bioactivities. However, molecular-level mechanisms of water transportation are as yet unknown. Here, we investigate water transportation through narrow and wide one-dimensional (1D) channels on the basis of water-vapor adsorption rates and those determined by molecular dynamics simulations. We observed that water in narrow 1D channels was transported 3-5 times faster than that in wide 1D channels, although the narrow 1D channels provide fewer free nanospaces for water transportation. This rapid transportation is attributed to the formation of fewer hydrogen bonds between water molecules adsorbed in narrow 1D channels. The water-transportation mechanism provides the possibility of rapid communication through 1D channels and will be useful in controlling reactions and activities in water systems.

  5. Temperature influence on water transport in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouet, Emeline; Poyet, Stéphane, E-mail: stephane.poyet@cea.fr; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  6. Development of innovative computer software to facilitate the setup and computation of water quality index.

    PubMed

    Nabizadeh, Ramin; Valadi Amin, Maryam; Alimohammadi, Mahmood; Naddafi, Kazem; Mahvi, Amir Hossein; Yousefzadeh, Samira

    2013-04-26

    Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases.

  7. Water induced sediment levitation enhances downslope transport on Mars.

    PubMed

    Raack, Jan; Conway, Susan J; Herny, Clémence; Balme, Matthew R; Carpy, Sabrina; Patel, Manish R

    2017-10-27

    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: "levitation" of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought.

  8. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    PubMed Central

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument. PMID:26593699

  9. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    NASA Astrophysics Data System (ADS)

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-11-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  10. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester.

    PubMed

    Tang, K P M; Chau, K H; Kan, C W; Fan, J T

    2015-11-23

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  11. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  12. Generic reactive transport codes as flexible tools to integrate soil organic matter degradation models with water, transport and geochemistry in soils

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand

    2016-04-01

    A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter

  13. Cirrus and Water Vapor Transport in the Tropical Tropopause Layer

    NASA Astrophysics Data System (ADS)

    Dinh, Tra Phuong

    Simulations of tropical-tropopause-layer (TTL) cirrus under the influence of a large-scale equatorial Kelvin wave have been performed in two dimensions. These simulations show that, even under the influence of the large-scale wave, radiatively induced dynamics in TTL cirrus plays an important role in the transport of water vapor in the vertical direction. In a typical TTL cirrus, the heating that results from absorption of radiation by ice crystals induces a mesoscale circulation. Advection of ice and water vapor by the radiatively induced circulation leads to the persistence of the cloud and upward advection of the cloudy air. Upward advection of the cloudy air is equivalent to upward transport of water vapor when the air above the cloud is drier than the cloudy air, and downward transport otherwise. In TTL cirrus, microphysical processes also contribute to transport of water vapor in the vertical direction. Ice nucleation and growth, followed by sedimentation and sublimation, always lead to downward transport of water vapor. The magnitude of the downward transport by microphysical processes increases with the relative humidity of the air surrounding the cloud. Moisture in the surrounding environment is important because there is continuous interactions between the cloudy and environmental air throughout the cloud boundary. In our simulations, when the air surrounding the cloud is subsaturated, hence drier than the cloudy air, the magnitude of the downward transport due to microphysical processes is smaller than that of the upward transport due to the radiatively induced advection of water vapor. The net result is upward transport of water vapor, and equivalently hydration of the lower stratosphere. On the other hand, when the surrounding air is supersaturated, hence moister than the cloudy air, microphysical and radiatively induced dynamical processes work in concert to induce downward transport of water vapor, that is dehydration of the lower stratosphere. TTL

  14. Development of innovative computer software to facilitate the setup and computation of water quality index

    PubMed Central

    2013-01-01

    Background Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. Findings In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. Conclusion A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases. PMID:24499556

  15. Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break

    NASA Astrophysics Data System (ADS)

    Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon

    2017-04-01

    The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a

  16. Measurements and simulations of water transport in maize plants

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  17. COLLOIDAL-FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUND WATER: PART I. SAMPLING CONSIDERATIONS

    EPA Science Inventory

    Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen,...

  18. Osmotic water transport in aquaporins: evidence for a stochastic mechanism

    PubMed Central

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna

    2013-01-01

    We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676

  19. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells.more » This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.« less

  20. Root pressure and beyond: energetically uphill water transport into xylem vessels?

    PubMed

    Wegner, Lars H

    2014-02-01

    The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects.

  1. Nano and Mesoscale Ion and Water Transport in Perfluorosulfonic AcidMembranes

    DTIC Science & Technology

    2017-10-01

    Nano- and Mesoscale Ion and Water Transport in Perfluorosulfonic-Acid Membranes A. R. Crothers a,b , C. J. Radke a,b , A. Z. Weber a a...Berkeley, CA 94720, USA Water and aqueous cations transport along multiple length scales in perfluorosulfonic-acid membranes. Molecular interactions...as a function of hydration. A resistor network upscales the nanoscale properties to predict effective membrane ion and water transport and their

  2. Active water transport in unicellular algae: where, why, and how.

    PubMed

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Sling, Scoop, and Squirter: Anatomical Features Facilitating Prey Transport, Processing, and Swallowing in Rorqual Whales (Mammalia: Balaenopteridae).

    PubMed

    Werth, Alexander J; Ito, Haruka

    2017-11-01

    Much is known about lunge feeding in balaenopterid whales, but many key aspects of structure, function, and behavior have not yet been explained in detail, especially with regard to concentrating, positioning, and swallowing large aggregations of prey. We describe a novel system of three integrated structural components, all of which are involved in sequential feeding activities (intraoral transport, filtration, and swallowing of prey) that follow lunge-feeding engulfment of prey-laden water in rorquals: (1) a hammock-like muscular sling comprising extrinsic lingual musculature along the midline of the ventral pouch; (2) the flattened scoop-like arrangement of caudal-most baleen plates converging in the oropharynx adjacent to the esophageal opening; and (3) a flow-diverting flange at the posterior dorsum of the lip, by a flow channel at the angle of the mouth. Subsequent to contraction of the ventral pouch and concomitant expulsion of the mouthful of ingested water, these three structures together, we contend, aid in (1) channeling prey posteriorly toward the esophageal opening; (2) concentrating prey as excess water is squeezed from (what is presumed to be) the slurry-like mixture of nektonic and/or planktonic prey and water; and (3) guiding prey into the isthmus of the fauces while simultaneously (4) facilitating expulsion of water. These related functions occur along with, and are in part achieved by, elevation and retraction of the tongue and oral floor. Given their presumed functional role, these systems are best described as a suite of integrated structural adaptations. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2070-2086, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Concerted orientation induced unidirectional water transport through nanochannels.

    PubMed

    Wan, Rongzheng; Lu, Hangjun; Li, Jinyuan; Bao, Jingdong; Hu, Jun; Fang, Haiping

    2009-11-14

    The dynamics of water inside nanochannels is of great importance for biological activities as well as for the design of molecular sensors, devices, and machines, particularly for sea water desalination. When confined in specially sized nanochannels, water molecules form a single-file structure with concerted dipole orientations, which collectively flip between the directions along and against the nanotube axis. In this paper, by using molecular dynamics simulations, we observed a net flux along the dipole-orientation without any application of an external electric field or external pressure difference during the time period of the particular concerted dipole orientations of the molecules along or against the nanotube axis. We found that this unique special-directional water transportation resulted from the asymmetric potential of water-water interaction along the nanochannel, which originated from the concerted dipole orientation of the water molecules that breaks the symmetry of water orientation distribution along the channel within a finite time period. This finding suggests a new mechanism for achieving high-flux water transportation, which may be useful for nanotechnology and biological applications.

  5. Risk assessment of pesticide transport with water erosion: A conceptual model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaomei; Van Der Zee, Sjoerd E. A. T. M.; Gai, Lingtong; Wesseling, Jan G.; Ritsema, Coen J.; Geissen, Violette

    2017-04-01

    Pesticides are widely used in agriculture, horticulture, and forestry, and pesticide pollution has become an important issue worldwide. Entraining in runoff and being attached to eroded soil particles, posing a risk to water and soil quality and human health. In order to assess the risk of pesticide during water erosion processes, a simple integrative model of pesticide transport by runoff and erosion was developed. Taking soil hydrological and pesticide behaviour into account, such as water infiltration, erosion, runoff, and pesticide transport and degradation in soil, the conceptual framework was based on the known assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. A sensitivity analysis was conducted and the results indicated that the total amount of pesticide related to soil eroded by water washing increased with slope gradient, rainfall intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became obviously and the time from pesticide sprayed to erosion occurring associated with pesticide degradation negatively influenced the total amount of transported pesticide. The mechanisms involved in pesticide transport, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, thus can be well accounted for pesticide risk assessment especially in the region with intensive pesticide use and soil water erosion events.

  6. Water and sediment transport modeling of a large temporary river basin in Greece.

    PubMed

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the

  7. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  8. Arctic water tracks retain phosphorus and transport ammonium

    NASA Astrophysics Data System (ADS)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  9. Facilitated transport of titanium dioxide nanoparticles via hydrochars in the presence of ammonium in saturated sands: Effects of pH, ionic strength, and ionic composition.

    PubMed

    Xu, Nan; Cheng, Xueying; Zhou, Kairong; Xu, Xiaoting; Li, Zuling; Chen, Jianping; Wang, Dongtian; Li, Duo

    2018-01-15

    The widespread use of nanoparticles (NPs) has led to their inevitable introduction into environmental systems. How the existence of hydrochars in crop soils will affect the mobility of nanoparticle titanium dioxide (nTiO 2 ), especially in the presence of ammonium (NH 4 + ), remains unknown. Research is needed to study the effects of hydrochars on the transport and retention of nTiO 2 and to uncover the mechanisms of these effects on nTiO 2 transport. Column experiments with nTiO 2 and hydrochars were performed in various electrolyte (NaCl, NH 4 Cl, and CaCl 2 ) solutions under a controlled pH (6.0 and 8.0). Additionally, the size distributions and scanning electron microscope (SEM) and transmission electron microscope (TEM) images of the NPs were observed. The experimental results suggested that the mobility of the hydrochars was much better than that of nTiO 2 . Thus, the mobility of nTiO 2 was improved upon their attachment to the hydrochars. The facilitated transport of nTiO 2 in the presence of hydrochars was stronger at pH8.0 than at pH6.0, and facilitated transport was nearly independent of the electrolyte cation at pH8.0. However, at pH6.0, the facilitated transport in various electrolytes had the following order: NaCl>NH 4 Cl>CaCl 2 . The conversion from a completely reversible to a partially irreversible deposition of nTiO 2 in sand was induced by the partially irreversible retention of hydrochars, and this phenomenon was more pronounced in the presence of NH 4 + than in the presence of Na + . In particular, the irreversible deposition of nTiO 2 -hydrochars was enhanced as the cation concentration increased. The increased irreversible retention of nTiO 2 was related to the greater k 2 value (irreversible attachment coefficients) on site 2 for hydrochars based on two-site kinetic retention modeling. Thus, there is a potential risk of contaminating crops, soil, and underground water when nTiO 2 exists in a hydrochar-amended environment, especially when

  10. Kinetic Theory and Simulation of Single-Channel Water Transport

    NASA Astrophysics Data System (ADS)

    Tajkhorshid, Emad; Zhu, Fangqiang; Schulten, Klaus

    Water translocation between various compartments of a system is a fundamental process in biology of all living cells and in a wide variety of technological problems. The process is of interest in different fields of physiology, physical chemistry, and physics, and many scientists have tried to describe the process through physical models. Owing to advances in computer simulation of molecular processes at an atomic level, water transport has been studied in a variety of molecular systems ranging from biological water channels to artificial nanotubes. While simulations have successfully described various kinetic aspects of water transport, offering a simple, unified model to describe trans-channel translocation of water turned out to be a nontrivial task.

  11. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    PubMed

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  12. Channel morphology effect on water transport through graphene bilayers

    PubMed Central

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-01-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology. PMID:27929106

  13. Channel morphology effect on water transport through graphene bilayers.

    PubMed

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-12-08

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  14. More than just water channels: unexpected cellular roles of aquaporins.

    PubMed

    Verkman, A S

    2005-08-01

    Aquaporins (AQPs) are membrane proteins that transport water and, in some cases, also small solutes such as glycerol. AQPs are expressed in many fluid-transporting tissues, such as kidney tubules and glandular epithelia, as well as in non-fluid-transporting tissues, such as epidermis, adipose tissue and astroglia. Their classical role in facilitating trans-epithelial fluid transport is well understood, as in the urinary concentrating mechanism and gland fluid secretion. AQPs are also involved in swelling of tissues under stress, as in the injured cornea and the brain in stroke, tumor and infection. Recent analysis of AQP-knockout mice has revealed unexpected cellular roles of AQPs. AQPs facilitate cell migration, as manifested by reduced tumor angiogenesis in AQP1-knockout mice, by a mechanism that might involve facilitated water transport in lamellipodia of migrating cells. AQPs that transport both glycerol and water regulate glycerol content in epidermis and fat, and consequently skin hydration/biosynthesis and fat metabolism. AQPs might also be involved in neural signal transduction, cell volume regulation and organellar physiology. The many roles of AQPs could be exploited for clinical benefit; for example, treatments that modulate AQP expression/function could be used as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer.

  15. Design of Nano Screw Pump for Water Transport and its Mechanisms

    PubMed Central

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-01-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898

  16. Facilitated ion transport in all-solid-state flexible supercapacitors.

    PubMed

    Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok

    2011-09-27

    The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society

  17. Water transport in human aquaporin-4: molecular dynamics (MD) simulations.

    PubMed

    Cui, Yubao; Bastien, David A

    2011-09-09

    Aquaporin-4 (AQP4) is the predominant water channel in the central nervous system, where it has been reported to be involved in many pathophysiological roles including water transport. In this paper, the AQP4 tetramer was modeled from its PDB structure file, embedded in a palmitoyl-oleoyl-phosphatidyl-choline (POPC) lipid bilayer, solvated in water, then minimized and equilibrated by means of molecular dynamics simulations. Analysis of the equilibrated structure showed that the central pore along the fourfold axis of the tetramers is formed with hydrophobic amino acid residues. In particular, Phe-195, Leu-191 and Leu-75, form the narrowest part of the pore. Therefore water molecules are not expected to transport through the central pore, which was confirmed by MD simulations. Each monomer of the AQP4 tetramers forms a channel whose walls consist mostly of hydrophilic residues. There are eight water molecules in single file observed in each of the four channels, transporting through the selectivity filter containing Arg-216, His-201, Phe-77, Ala-210, and the two conserved Asn-Pro-Ala (NPA) motifs containing Asn-213 and Asn-97. By using Brownian dynamics fluctuation-dissipation-theorem (BD-FDT), the overall free-energy profile was obtained for water transporting through AQP4 for the first time, which gives a complete map of the entire channel of water permeation. Copyright © 2011. Published by Elsevier Inc.

  18. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015

  19. Proceedings of the regional technical workshop on transportation and transit facilitation : regional initiative on transport integration, South Asia region, Bangkok, April 19-21, 1999, volume 1 : summary

    DOT National Transportation Integrated Search

    1999-01-01

    The World Bank in partnership with United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) sponsored the Regional Technical Workshop on Transport and Transit Facilitation under the Initiative. Participants included public and p...

  20. Facilitated glucose transporters play a crucial role throughout mouse preimplantation embryo development.

    PubMed

    Leppens-Luisier, G; Urner, F; Sakkas, D

    2001-06-01

    The role of glucose fluctuates during preimplantation mouse embryo development, indicating that a specific interplay exists between glucose metabolism and uptake. In this study, attempts were made to characterize the role of the Na(+)-coupled active and the facilitated glucose transporters (GLUT) during preimplantation development by using specific glucose analogues and transport inhibitors and by examining the expression of GLUT1. One-cell outbred mouse embryos were cultured in medium M16 (5.5 mmol/l glucose), M16 without glucose (M16-G), M16-G + 2-deoxyglucose, M16-G + 3-O-methylglucose, M16 + phlorizin and M16 + phloretin and development to the blastocyst stage assessed. The absence of glucose, or the presence of 3-O-methylglucose, which is taken up but not metabolized, did not inhibit blastocyst development. 2-Deoxyglucose, which is phosphorylated but not metabolized, inhibited blastocyst development. Culture in M16 supplemented with phlorizin, an inhibitor of Na(+)-coupled active glucose transport did not inhibit blastocyst formation. Phloretin had no effect on the cleavage of two-cell embryos to the four-cell stage, but inhibited the morula/blastocyst transition. Both phloretin and phlorizin inhibited glucose uptake in two-cell embryos. Finally, GLUT1 expression was 10-fold less in blastocysts cultured in M16 compared to in-vivo blastocysts and those cultured in M16-G. The results show that both types of glucose transporters influence preimplantation embryo development and that the embryo has an innate ability to control the uptake of glucose by regulating the expression of GLUT1.

  1. Eolian transport of geogenic hexavalent chromium to ground water

    USGS Publications Warehouse

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  2. Scaling behaviour for the water transport in nanoconfined geometries

    PubMed Central

    Chiavazzo, Eliodoro; Fasano, Matteo; Asinari, Pietro; Decuzzi, Paolo

    2014-01-01

    The transport of water in nanoconfined geometries is different from bulk phase and has tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is used to compute the self-diffusion coefficient D of water within nanopores, around nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to scale linearly with the sole parameter θ as D(θ)=DB[1+(DC/DB−1)θ], with DB and DC the bulk and totally confined diffusion of water, respectively. The parameter θ is primarily influenced by geometry and represents the ratio between the confined and total water volumes. The D(θ) relationship is interpreted within the thermodynamics of supercooled water. As an example, such relationship is shown to accurately predict the relaxometric response of contrast agents for magnetic resonance imaging. The D(θ) relationship can help in interpreting the transport of water molecules under nanoconfined conditions and tailoring nanostructures with precise modulation of water mobility. PMID:24699509

  3. Investigating water transport through the xylem network in vascular plants.

    PubMed

    Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo

    2014-04-01

    Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

  4. Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane.

    PubMed

    Bath, B D; White, H S; Scott, E R

    2000-02-01

    Electrically facilitated molecular transport in an ion-exchange membrane (Nafion, 1100 equiv wt) has been studied using a scanning electrochemical microscope. The transport rates of ferrocenylmethyltrimethylammonium (a cation), acetaminophen (a neutral molecule), and ascorbate (an anion) through approximately 120-micron-thick membranes were measured as a function of the iontophoretic current passed across the membrane (-1.0 to +1.0 A/cm2). Transport rates were analyzed by employing the Nernst-Planck equation, modified to account for electric field-driven convective transport. Excellent agreement between experimental and theoretical values of the molecular flux was obtained using a single fitting parameter for each molecule (electroosmotic drag coefficient). The electroosmotic velocity of the neutral molecule, acetaminophen, was shown to be a factor of approximately 500 larger than that of the cation ferrocenylmethyltrimethylammonium, a consequence of the electrostatic interaction of the cation with the negatively charged pore walls of the ion-exchange membrane. Electroosmotic transport of ascorbate occurred at a negligible rate due to repulsion of the anion by the cation-selective membrane. These results suggest that electroosmotic velocities of solute molecules are determined by specific chemical interactions of the permeant and membrane and may be very different from the average solution velocity. The efficiency of electroosmotic transport was also shown to be a function of the membrane thickness, in addition to membrane/solute interactions.

  5. [Water regulation in the cochlea : Do molecular water channels facilitate potassium-dependent sound transduction?].

    PubMed

    Eckhard, A; Löwenheim, H

    2014-06-01

    Sound transduction in the cochlea critically depends on the circulation of potassium ions (K(+)) along so-called "K(+) recycling routes" between the endolymph and perilymph. These K(+) currents generate high ionic and osmotic gradients, which potentially impair the excitability of sensory hair cells and threaten cell survival in the entire cochlear duct. Molecular water channels-aquaporins (AQP)-are expressed in all cochlear supporting cells along the K(+) recycling routes; however, their significance for osmotic equilibration in cochlear duct cells is unknown. The diffusive and osmotic water permeabilies of Reissner's membrane, the organ of Corti and the entire cochlear duct epithelium were determined. Expression of the potassium channel Kir4.1 and the water channel AQP4 in the cochlear duct was investigated by immunohistochemistry. The calculated water permeability values indicate the extent of AQP-facilitated water flux across the cochlear duct epithelium. Immunohistochemically, Kir4.1 and AQP4 were found to colocalize in distinct membrane domains of supporting cells along the K(+)-recycling routes. These observations suggest the presence of a rapid AQP-mediated water exchange between the endolymph, the cells of the cochlear duct and the perilymph. The subcellular colocalization of Kir4.1 and AQP4 in epithelial supporting cells indicates functional coupling of potassium and water flow in the cochlea. Finally, this offers an explanation for the hearing impairment observed in individuals with mutations in the AQP4 gene.

  6. The shift from plant-plant facilitation to competition under severe water deficit is spatially explicit.

    PubMed

    O'Brien, Michael J; Pugnaire, Francisco I; Armas, Cristina; Rodríguez-Echeverría, Susana; Schöb, Christian

    2017-04-01

    The stress-gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta-analysis to compare temporal differences of species diversity and productivity under a nurse plant ( Retama sphaerocarpa ) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below-average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.

  7. Water intensity of transportation.

    PubMed

    King, Carey W; Webber, Michael E

    2008-11-01

    As the need for alternative transportation fuels increases, it is important to understand the many effects of introducing fuels based upon feedstocks other than petroleum. Water intensity in "gallons of water per mile traveled" is one method to measure these effects on the consumer level. In this paper we investigate the water intensity for light duty vehicle (LDV) travel using selected fuels based upon petroleum, natural gas, unconventional fossil fuels, hydrogen, electricity, and two biofuels (ethanol from corn and biodiesel from soy). Fuels more directly derived from fossil fuels are less water intensive than those derived either indirectly from fossil fuels (e.g., through electricity generation) or directly from biomass. The lowest water consumptive (<0.15 gal H20/mile) and withdrawal (<1 gal H2O/mile) rates are for LDVs using conventional petroleum-based gasoline and diesel, nonirrigated biofuels, hydrogen derived from methane or electrolysis via nonthermal renewable electricity, and electricity derived from nonthermal renewable sources. LDVs running on electricity and hydrogen derived from the aggregate U.S. grid (heavily based upon fossil fuel and nuclear steam-electric power generation) withdraw 5-20 times and consume nearly 2-5 times more water than by using petroleum gasoline. The water intensities (gal H20/mile) of LDVs operating on biofuels derived from crops irrigated in the United States at average rates is 28 and 36 for corn ethanol (E85) for consumption and withdrawal, respectively. For soy-derived biodiesel the average consumption and withdrawal rates are 8 and 10 gal H2O/mile.

  8. Transport of oxaliplatin species in water-saturated natural soil.

    PubMed

    Goykhman, Natalia; Dror, Ishai; Berkowitz, Brian

    2018-06-05

    This study reports the transport characteristics of the organometallic anticancer compound oxaliplatin and its derivatives in natural soil-water environments. Although pharmaceuticals and their derivatives have for many years been detected in water resources, and linked to toxicological impacts on ecological systems, their transport in soil and groundwater is not fully understood. Specifically, studies that describe transport of organometallic pharmaceuticals in porous media are rare, and the transport characteristics of platinum complexes have received little attention. Oxaliplatin transport was studied in sand, as a function of two added natural chelators (citrate and humic acid), and in soil, under four continuously monitored, environmentally-relevant redox conditions: oxic, nitrate reducing, iron reducing and methanogenic. In sand, oxaliplatin species retention was about 7%, and affected only mildly by added citrate, and by humic acid under buffered pH. Transport with unbuffered humic acid was affected significantly by pH variations, and exhibited strong retention at pH < 8. In soil, unexpectedly similar breakthrough patterns of oxaliplatin species were found for all redox conditions, exhibiting linear, reversible retention of 79-87%. The strongest retention was observed under iron reducing conditions, whereas the weakest retention was under oxic conditions. Increased cation activity appears to promote weaker sorption. The results indicate that soil composition is the leading factor affecting oxaliplatin species mobility and fate in the soil-water environment, followed by the weaker factors of redox conditions and cation activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. 41 CFR 302-10.5 - May I transport a mobile home over water?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May I transport a mobile home over water? 302-10.5 Section 302-10.5 Public Contracts and Property Management Federal Travel... transport a mobile home over water? Yes, you may transport a mobile home over water when both the points of...

  10. 41 CFR 302-10.5 - May I transport a mobile home over water?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false May I transport a mobile home over water? 302-10.5 Section 302-10.5 Public Contracts and Property Management Federal Travel... transport a mobile home over water? Yes, you may transport a mobile home over water when both the points of...

  11. Two Major Facilitator Superfamily Sugar Transporters from Trichoderma reesei and Their Roles in Induction of Cellulase Biosynthesis*

    PubMed Central

    Zhang, Weixin; Kou, Yanbo; Xu, Jintao; Cao, Yanli; Zhao, Guolei; Shao, Jing; Wang, Hai; Wang, Zhixing; Bao, Xiaoming; Chen, Guanjun; Liu, Weifeng

    2013-01-01

    Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the Δstp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement. PMID:24085297

  12. Visualizing the kinetic power stroke that drives proton-coupled Zn(II) transport

    PubMed Central

    Gupta, Sayan; Chai, Jin; Cheng, Jie; D'Mello, Rhijuta; Chance, Mark R.; Fu, Dax

    2014-01-01

    The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of E. coli, and the transport-site of YiiP receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux1,2. This membrane protein is a well characterized member3-7 of the protein family of cation diffusion facilitators (CDFs) that occurs at all phylogenetic levels8-10. X-ray mediated hydroxyl radical labeling of YiiP and mass spectrometric analysis showed that Zn(II) binding triggered a highly localized, all-or-none change of water accessibility to the transport-site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics revealed a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical reorientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport-site enables a stationary proton gradient to facilitate the conversion of zinc binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active transport reaction. PMID:25043033

  13. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    NASA Astrophysics Data System (ADS)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  14. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  15. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  16. Modeling Nitrogen Fate and Transport at the Sediment-Water ...

    EPA Pesticide Factsheets

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of various environmental pollutants such as nutrients, pesticides, metals, PCBs, PAHs, etc. Environmental problems caused by excessive use of agricultural chemicals (e.g., pesticides and fertilizers) and improper discharge of industrial waste and fuel leaks are all influenced by the diffusive nature of pollutants in the environment. Eutrophication is one such environmental problem where the sediment-water interface exerts a significant physical and geochemical control on the eutrophic condition of the stressed water body. Exposure of streams and lakes to contaminated sediment is another common environmental problem whereby transport of the contaminant (PCBs, PAHs, and other organic contaminants) across the sediment water can increase the risk for exposure to the chemicals and pose a significant health hazard to aquatic life and human beings. This chapter presents analytical and numerical models describing fate and transport phenomena at the sediment-water interface in freshwater ecosystems, with the primary focus on nitrogen cycling and the applicability of the models to real-world environmental problems and challenges faced in their applications. The first model deals with nitrogen cycling

  17. Continuous directional water transport on the peristome surface of Nepenthes alata

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

  18. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trendsmore » for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.« less

  19. Does water transport scale universally with tree size?

    Treesearch

    F.C. Meinzer; B.J. Bond; J.M. Warren; D.R. Woodruff

    2005-01-01

    1. We employed standardized measurement techniques and protocols to describe the size dependence of whole-tree water use and cross-sectional area of conducting xylem (sapwood) among several species of angiosperms and conifers. 2. The results were not inconsistent with previously proposed 314-power scaling of water transport with estimated above-...

  20. Electron transporting water-gated thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Naim, Abdullah; Grell, Martin

    2012-10-01

    We demonstrate an electron-transporting water-gated thin film transistor, using thermally converted precursor-route zinc-oxide (ZnO) intrinsic semiconductors with hexamethyldisilazene (HMDS) hydrophobic surface modification. Water gated HMDS-ZnO thin film transistors (TFT) display low threshold and high electron mobility. ZnO films constitute an attractive alternative to organic semiconductors for TFT transducers in sensor applications for waterborne analytes. Despite the use of an electrolyte as gate medium, the gate geometry (shape of gate electrode and distance between gate electrode and TFT channel) is relevant for optimum performance of water-gated TFTs.

  1. Photoacoustic monitoring of water transport process in calcareous stone coated with biopolymers

    NASA Astrophysics Data System (ADS)

    May-Crespo, J.; Ortega-Morales, B. O.; Camacho-Chab, J. C.; Quintana, P.; Alvarado-Gil, J. J.; Gonzalez-García, G.; Reyes-Estebanez, M.; Chan-Bacab, M. J.

    2016-12-01

    Moisture is a critical control of chemical and physical processes leading to stone deterioration. These processes can be enhanced by microbial biofilms and associated exopolymers (EPS). There is limited current understanding of the water transport process across rocks covered by EPS. In the present work, we employed the photoacoustic technique to study the influence of three biopolymers (xanthan, microbactan and arabic gum) in the water transport process of two types of limestone rock of similar mineralogy but contrasting porosity. Both controls of RL (low porosity) and RP (high porosity) presented the higher values of water diffusion coefficient ( D) than biopolymer-coated samples, indicating that biopolymer layers slowed down the transport of water. This trend was steeper for RP samples as water was transported seven times faster than in the more porous rock. Important differences of D values were observed among samples coated by different biopolymers. Scanning electron microscopy and optical microscopy showed that surface topography was different between both types of rocks; adherence of coatings was seen predominantly in the less porous rocks samples. FTIR and NMR analysis showed the presence of pyruvate and acetate in microbactan and xanthan gum, suggesting their participation on adherence to the calcareous surfaces, sealing surface pores. These results indicate that water transport at rock interfaces is dependent on the chemistry of biopolymer and surface porosity. The implications for reduced water transport in stone conservation under the influence of biopolymers include both enhanced and lower deterioration rates along with altered efficiency of biocide treatment of epilithic biofilms.

  2. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    NASA Astrophysics Data System (ADS)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith

    2018-06-01

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.

  3. Neural control of renal tubular solute and water transport.

    PubMed

    DiBona, G F

    1989-01-01

    The neural control of renal tubular solute and water transport is recognized as an important physiological mechanism in the overall regulation of solute and water homeostasis by the mammalian organism. Recent studies have expanded the understanding of this mechanism concerning the transport of diverse solutes with beginning insight into the precise nature of the cellular transport processes involved. The modulatory roles of both circulating and intrarenal hormonal systems on the responses to alterations in the magnitude of efferent renal sympathetic nerve activity are being understood from the nerve terminal release of neurotransmitter to influences on cellular transport processes which determine the overall effect. When dietary sodium intake is normal or only modestly reduced, intact renal innervation is not essential for normal renal sodium conservation. However, when dietary sodium intake is severely restricted, there is maximum engagement of all mechanisms known to participate in renal sodium conservation and, under these conditions, intact renal innervation is essential for normal renal sodium conservation.

  4. Intrinsic and Carrier Colloid-facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.

    2015-12-01

    Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.

  5. Water permeability of the mammalian cochlea: functional features of an aquaporin-facilitated water shunt at the perilymph-endolymph barrier.

    PubMed

    Eckhard, A; Müller, M; Salt, A; Smolders, J; Rask-Andersen, H; Löwenheim, H

    2014-10-01

    The cochlear duct epithelium (CDE) constitutes a tight barrier that effectively separates the inner ear fluids, endolymph and perilymph, thereby maintaining distinct ionic and osmotic gradients that are essential for auditory function. However, in vivo experiments have demonstrated that the CDE allows for rapid water exchange between fluid compartments. The molecular mechanism governing water permeation across the CDE remains elusive. We computationally determined the diffusional (PD) and osmotic (Pf) water permeability coefficients for the mammalian CDE based on in silico simulations of cochlear water dynamics integrating previously derived in vivo experimental data on fluid flow with expression sites of molecular water channels (aquaporins, AQPs). The PD of the entire CDE (PD = 8.18 × 10(-5) cm s(-1)) and its individual partitions including Reissner's membrane (PD = 12.06 × 10(-5) cm s(-1)) and the organ of Corti (PD = 10.2 × 10(-5) cm s(-1)) were similar to other epithelia with AQP-facilitated water permeation. The Pf of the CDE (Pf = 6.15 × 10(-4) cm s(-1)) was also in the range of other epithelia while an exceptionally high Pf was determined for an epithelial subdomain of outer sulcus cells in the cochlear apex co-expressing AQP4 and AQP5 (OSCs; Pf = 156.90 × 10(-3) cm s(-1)). The Pf/PD ratios of the CDE (Pf/PD = 7.52) and OSCs (Pf/PD = 242.02) indicate an aqueous pore-facilitated water exchange and reveal a high-transfer region or "water shunt" in the cochlear apex. This "water shunt" explains experimentally determined phenomena of endolymphatic longitudinal flow towards the cochlear apex. The water permeability coefficients of the CDE emphasise the physiological and pathophysiological relevance of water dynamics in the cochlea in particular for endolymphatic hydrops and Ménière's disease.

  6. Arrayed water-in-oil droplet bilayers for membrane transport analysis.

    PubMed

    Watanabe, R; Soga, N; Hara, M; Noji, H

    2016-08-02

    The water-in-oil droplet bilayer is a simple and useful lipid bilayer system for membrane transport analysis. The droplet interface bilayer is readily formed by the contact of two water-in-oil droplets enwrapped by a phospholipid monolayer. However, the size of individual droplets with femtoliter volumes in a high-throughput manner is difficult to control, resulting in low sensitivity and throughput of membrane transport analysis. To overcome this drawback, in this study, we developed a novel micro-device in which a large number of droplet interface bilayers (>500) are formed at a time by using femtoliter-sized droplet arrays immobilized on a hydrophobic/hydrophilic substrate. The droplet volume was controllable from 3.5 to 350 fL by changing the hydrophobic/hydrophilic pattern on the device, allowing high-throughput analysis of membrane transport mechanisms including membrane permeability to solutes (e.g., ions or small molecules) with or without the aid of transport proteins. Thus, this novel platform broadens the versatility of water-in-oil droplet bilayers and will pave the way for novel analytical and pharmacological applications such as drug screening.

  7. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.

  8. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  9. Effect of Provision of Feed and Water during Transport on the Welfare of Weaned Pigs

    PubMed Central

    Garcia, Arlene; Pirner, Glenna; Picinin, Guilherme; May, Matthew; Guay, Kimberly; Backus, Brittany; Sutherland, Mhairi; McGlone, John

    2015-01-01

    Simple Summary Transportation is a complex stressor, which has the potential to negatively impact the health and welfare of weaned pigs. Transport duration and withdrawal from feed and water are two factors that could potentially adversely affect the welfare of pigs transported at weaning. In this study, the effect of a 32 h transport period and the provision of feed and water on the welfare of weaned pigs was investigated using a multi-disciplinary approach. Body weight decreased in weaned pigs over time and this response was exacerbated by exposing pigs to a 32 h transport period and withdrawing feed and water. The greatest changes in body weight loss were observed after 8 h of transport or weaning. Furthermore, the neutrophil to lymphocyte ratio (N:L) stress measure was elevated in pigs in response to an 8 h transport period or 8 h after weaning alone. With the exception of weaned pigs provided with feed and water, transported and weaned pigs continued to be different from control pigs until 16 h after weaning or exposure to a 16 h transport period. These findings suggest that pigs experience an acute stress response due to transport and weaning, but these two stressors do not appear to be additive. Overall, transportation had a negative effect on performance, physiology and behavior of weaned and transported pigs, especially if not provided with feed and water for more than 24 h. Abstract Transportation is a complex stressor made up of factors including weaning itself and withdrawal from feed and water. Therefore, transportation has the potential to negatively impact the health and welfare of weaned pigs. Pigs were transported for 32 h and measures of performance, physiology, and behavior were taken to assess piglet welfare. Treatment groups included pigs not weaned or transported (CON), weaned pigs provided with feed and water (WEAN+), weaned pigs not provided with feed and water (WEAN−), weaned and transported pigs provided with feed and water (TRANS+), and

  10. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    PubMed Central

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  11. Bidirectional transepithelial water transport: measurement and governing mechanisms.

    PubMed

    Phillips, J E; Wong, L B; Yeates, D B

    1999-02-01

    In the search for the mechanisms whereby water is transported across biological membranes, we hypothesized that in the airways, the hydration of the periciliary fluid layer is regulated by luminal-to-basolateral water transport coupled to active transepithelial sodium transport. The luminal-to-basolateral (JWL-->B) and the basolateral-to-luminal (JWB-->L) transepithelial water fluxes across ovine tracheal epithelia were measured simultaneously. The JWL-->B (6.1 microliter/min/cm2) was larger than JWB-->L (4.5 microliter/min/cm2, p < 0.05, n = 30). The corresponding water diffusional permeabilities were PdL-->B = 1.0 x 10(-4) cm/s and PdB-->L = 7.5 x 10(-5) cm/s. The activation energy (Ea) of JWL-->B (11.6 kcal/mol) was larger than the Ea of JWB-->L (6.5 kcal/mol, p < 0.05, n = 5). Acetylstrophanthidin (100 microM basolateral) reduced JWL-->B from 6.1 to 4.4 microliter/min/cm2 (p < 0. 05, n = 5) and abolished the PD. Amiloride (10 microM luminal) reduced JWL-->B from 5.7 to 3.7 microliter/min/cm2 (p < 0.05, n = 5) and reduced PD by 44%. Neither of these agents significantly changed JWB-->L. These data indicate that in tracheal epithelia under homeostatic conditions, JWB-->L was dominated by diffusion (Ea = 4.6 kcal/mol), whereas approximately 30% of JWL-->B was coupled to the active Na+,K+-ATPase pump (Ea = 27 kcal/mol).

  12. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.

    PubMed

    Ma, Ming; Grey, François; Shen, Luming; Urbakh, Michael; Wu, Shuai; Liu, Jefferson Zhe; Liu, Yilun; Zheng, Quanshui

    2015-08-01

    The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

  13. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    PubMed

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  14. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO2 transport.

    PubMed

    Hsu, Kate; Lee, Ting-Ying; Periasamy, Ammasi; Kao, Fu-Jen; Li, Li-Tzu; Lin, Chuang-Yu; Lin, Hui-Ju; Lin, Marie

    2017-10-01

    Human CO 2 respiration requires rapid conversion between CO 2 and HCO 3 - Carbonic anhydrase II facilitates this reversible reaction inside red blood cells, and band 3 [anion exchanger 1 (AE1)] provides a passage for HCO 3 - flux across the cell membrane. These 2 proteins are core components of the CO 2 transport metabolon. Intracellular H 2 O is necessary for CO 2 /HCO 3 - conversion. However, abundantly expressed aquaporin 1 (AQP1) in erythrocytes is thought not to be part of band 3 complexes or the CO 2 transport metabolon. To solve this conundrum, we used Förster resonance energy transfer (FRET) measured by fluorescence lifetime imaging (FLIM-FRET) and identified interaction between aquaporin-1 and band 3 at a distance of 8 nm, within the range of dipole-dipole interaction. Notably, their interaction was adaptable to membrane tonicity changes. This suggests that the function of AQP1 in tonicity response could be coupled or correlated to its function in band 3-mediated CO 2 /HCO 3 - exchange. By demonstrating AQP1 as a mobile component of the CO 2 transport metabolon, our results uncover a potential role of water channel in blood CO 2 transport and respiration.-Hsu, K., Lee, T.-Y., Periasamy, A., Kao, F.-J., Li, L.-T., Lin, C.-Y., Lin, H.-J., Lin, M. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO 2 transport. © FASEB.

  15. Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.

    2016-12-01

    The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.

  16. Aquarius, a reusable water-based interplanetary human spaceflight transport

    NASA Astrophysics Data System (ADS)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  17. Pore Water PAH Transport in Amended Sediment Caps

    NASA Astrophysics Data System (ADS)

    Gidley, P. T.; Kwon, S.; Ghosh, U.

    2009-05-01

    Capping is a common remediation strategy for contaminated sediments that creates a physical barrier between contaminated sediments and the water column. Diffusive flux of contaminants through a sediment cap is small. However, under certain hydrodynamic conditions such as groundwater potential and tidal pumping, groundwater advection can accelerate contaminant transport. Hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) could be transported through the cap under advective conditions. To better understand PAH migration under these conditions, physical models of sediment caps were evaluated in the laboratory through direct measurement of pore water using solid phase micro-extraction with gas chromatography and mass spectrometry. Contaminated sediment and capping material was obtained from an existing Superfund site that was capped at Eagle Harbor, Washington. A PAH dissolution model linked to an advection-dispersion equation with retardation using published organic carbon-water partitioning coefficients (Koc) was compared to measured PAHs in the sediment and cap porewater of the physical model.

  18. Structure-function relationships in sapwood water transport and storage.

    Treesearch

    Barbara L. Gartner; Frederick C. Meinzer

    2005-01-01

    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  19. Two-dimensional advective transport in ground-water flow parameter estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of

  20. Negative effect of nanoconfinement on water transport across nanotube membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Kuiwen; Wu, Huiying; Han, Baosan

    2017-10-01

    Nanoconfinement environments are commonly considered advantageous for ultrafast water flow across nanotube membranes. This study illustrates that nanoconfinement has a negative effect on water transport across nanotube membranes based on molecular dynamics simulations. Although water viscosity and the friction coefficient evidently decrease because of nanoconfinement, water molecular flux and flow velocity across carbon nanotubes decrease sharply with the pore size of nanotubes. The enhancement of water flow across nanotubes induced by the decreased friction coefficient and water viscosity is markedly less prominent than the negative effect induced by the increased flow barrier as the nanotube size decreases. The decrease in water flow velocity with the pore size of nanotubes indicates that nanoconfinement is not essential for the ultrafast flow phenomenon. In addition, the relationship between flow velocity and water viscosity at different temperatures is investigated at different temperatures. The results indicate that flow velocity is inversely proportional to viscosity for nanotubes with a pore diameter above 1 nm, thereby indicating that viscosity is still an effective parameter for describing the effect of temperature on the fluid transport at the nanoscale.

  1. Effect of nanoscale morphology on selective ethanol transport through block copolymer membranes

    USDA-ARS?s Scientific Manuscript database

    We report on the effect of block copolymer domain size on transport of liquid mixtures through the membranes by presenting pervaporation data of an 8 wt% ethanol/water mixture through A-B-A and B-A-B triblock copolymer membranes. The A-block was chosen to facilitate ethanol transport while the B-blo...

  2. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  3. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variab

  4. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    DOE PAGES

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...

    2018-03-31

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less

  5. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less

  6. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester

    PubMed Central

    Tang, K. P. M.; Wu, Y. S.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties. PMID:25875329

  7. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe2O3) colloids and Suwannee River fulvic acid.

    PubMed

    Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A

    2016-12-01

    Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  9. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Zhaosheng; Harden, Jennifer W.; Winston, G.C.; O'Donnell, Jonathan A.; Neff, Jason C.; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, C.I.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2–4 °C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.

  10. Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, Timothy M.; Reimus, Paul William

    2015-10-29

    In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less

  11. Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas

    NASA Astrophysics Data System (ADS)

    Anawar, Hossain Md.

    Disposal of untreated and treated mining wastes and tailings exerts a significant threat and hazard for environmental contamination including groundwater, surface water, wetlands, land, food chain and animals. In order to facilitate remediation techniques, it is important to understand the oxidation of sulfidic minerals, and the hydrolysis of the oxidation products that result in production of acid mine drainage (AMD), toxic metals, low pH, SO42- and Fe. This review has summarized the impacts of climate change on geochemical reactions, AMD generation, and water quality in semi-arid/arid mining environments. Besides this, the study included the effects of hydrological, seasonal and climate change on composition of AMD, contaminant transport in watersheds and restoration of mining sites. Different models have different types of limitations and benefits that control their adaptability and suitability of application in various mining environments. This review has made a comparative discussion of a few most potential and widely used reactive transport models that can be applied to simulate the effect of climate change on sulfide oxidation and AMD production from mining waste, and contaminant transport in surface and groundwater systems.

  12. The emerging physiological roles of the SLC14A family of urea transporters

    PubMed Central

    Stewart, Gavin

    2011-01-01

    In mammals, urea is the main nitrogenous breakdown product of protein catabolism and is produced in the liver. In certain tissues, the movement of urea across cell membranes is specifically mediated by a group of proteins known as the SLC14A family of facilitative urea transporters. These proteins are derived from two distinct genes, UT-A (SLC14A2) and UT-B (SLC14A1). Facilitative urea transporters play an important role in two major physiological processes – urinary concentration and urea nitrogen salvaging. Although UT-A and UT-B transporters both have a similar basic structure and mediate the transport of urea in a facilitative manner, there are a number of significant differences between them. UT-A transporters are mainly found in the kidney, are highly specific for urea, have relatively lower transport rates and are highly regulated at both gene expression and cellular localization levels. In contrast, UT-B transporters are more widespread in their tissue location, transport both urea and water, have a relatively high transport rate, are inhibited by mercurial compounds and currently appear to be less acutely regulated. This review details the fundamental research that has so far been performed to investigate the function and physiological significance of these two types of urea transporters. PMID:21449978

  13. Using SRμCT to define water transport capacity in Picea abies

    NASA Astrophysics Data System (ADS)

    Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix

    2017-10-01

    Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.

  14. Climatic Analysis of Oceanic Water Vapor Transports Based on Satellite E-P Datasets

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Sohn, Byung-Ju; Mehta, Vikram

    2004-01-01

    Understanding the climatically varying properties of water vapor transports from a robust observational perspective is an essential step in calibrating climate models. This is tantamount to measuring year-to-year changes of monthly- or seasonally-averaged, divergent water vapor transport distributions. This cannot be done effectively with conventional radiosonde data over ocean regions where sounding data are generally sparse. This talk describes how a methodology designed to derive atmospheric water vapor transports over the world oceans from satellite-retrieved precipitation (P) and evaporation (E) datasets circumvents the problem of inadequate sampling. Ultimately, the method is intended to take advantage of the relatively complete and consistent coverage, as well as continuity in sampling, associated with E and P datasets obtained from satellite measurements. Independent P and E retrievals from Special Sensor Microwave Imager (SSM/I) measurements, along with P retrievals from Tropical Rainfall Measuring Mission (TRMM) measurements, are used to obtain transports by solving a potential function for the divergence of water vapor transport as balanced by large scale E - P conditions.

  15. Quantification of Water Flux in Vesicular Systems.

    PubMed

    Hannesschläger, Christof; Barta, Thomas; Siligan, Christine; Horner, Andreas

    2018-06-04

    Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities P f . A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring P f from scattered light intensities exists, approximations potentially misjudging P f by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability p f depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.

  16. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years Results/ConclusionsOur results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitatio

  17. Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms

    PubMed Central

    Sano, Yuzou; Morris, Hugh; Shimada, Hiroshi; Ronse De Craene, Louis P.; Jansen, Steven

    2011-01-01

    Background and Aims Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the conductive vs. non-conductive nature of ITEs. Methods Visualization of water transport was studied in 15 angiosperm species by dye injection and cryo-scanning electron microscopy. Structural features of ITEs were examined using light and electron microscopy. Key Results ITEs connected to each other by pit pairs with complete pit membranes contributed to water transport, while cells showing pit membranes with perforations up to 2 µm were hydraulically not functional. A close relationship was found between pit diameter and pit density, with both characters significantly higher in conductive than in non-conductive cells. In species with both conductive and non-conductive ITEs, a larger diameter was characteristic of the conductive cells. Water transport showed no apparent relationship with the length of ITEs and vessel grouping. Conclusions The structure and density of pits between ITEs represent the main anatomical characters determining water transport. The pit membrane structure of ITEs provides a reliable, but practically challenging, criterion to determine their conductive status. It is suggested that the term tracheids should strictly be used for conductive ITEs, while fibre-tracheids and libriform fibres are non-conductive. PMID:21385773

  18. Theoretical monochromatic-wave-induced currents in intermediate water with viscosity and nonzero mass transport

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.

  19. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    PubMed Central

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2–4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241–251), computations predict that 60–80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model

  20. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    DOE PAGES

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  1. Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins.

    PubMed

    Barz, W P; Walter, P

    1999-04-01

    Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for "delayed GPI-anchored protein transport"), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Delta dgt1Delta cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non-GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Delta dgt1Delta cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Delta dgt1Delta cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.

  2. Transport for abciximab facilitated primary angioplasty versus on-site thrombolysis with a liberal rescue policy: the randomised Holland Infarction Study (HIS).

    PubMed

    Dieker, Hendrik-Jan; van Horssen, Elvira V; Hersbach, Ferry M R J; Brouwer, Marc A; van Boven, Ad J; van 't Hof, Arnoud W J; Aengevaeren, Wim R M; Verheugt, Freek W A; Bär, Frits W H M

    2006-08-01

    As of to date, the only large transportation trial comparing on-site fibrin-specific thrombolysis with transfer for primary angioplasty in patients presenting in a referral centre is the DANAMI-2 trial, with only 3% rescue angioplasty. The Holland Infarction Study (HIS) compared abciximab facilitated primary angioplasty (FP) with on-site fibrin-specific thrombolytic therapy (TT) with a liberal protocol-driven rescue angioplasty (transport to intervention centre in case < 50% ST resolution at 60 min). Patients in a referral centre without shock and < 4.5 h of chest pain presenting with ST-elevation having > or = 12 mm ST-segment shift were randomised to either strategy. Of the originally planned 900 patients only 48 were included due to suspension of financial funding. Death, recurrent MI and stroke at one year was 8% for the FP-group and 22% for the TT-group (p = 0.2). Two hours after randomisation the rates of complete ST-segment resolution (> or =70%) were 52% and 35%, respectively (p = 0.2). This prematurely discontinued randomised transportation trial shows favorable trends with respect to long-term clinical outcome and early ST-resolution for abciximab facilitated primary angioplasty. In view of the real world delays associated with interhospital transport for primary angioplasty, treatment strategies focusing on early fibrin-specific lysis with a liberal selective rescue policy are warranted.

  3. Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery.

    PubMed

    Engelke, Laura; Winter, Gerhard; Engert, Julia

    2018-07-01

    The intradermal delivery of biologics has long been recognized as attractive approach for cutaneous immunotherapy, particularly vaccination. Although intradermal (i.d.) or subcutaneous (s.c.) injection provide reproducible dosing and good cost- and delivery efficiency, the major objective to avoid sharps and the need for enhanced storage stability have renewed the interest in alternative needle-free delivery strategies. This study presents a new concept for the delivery of macromolecules and nanoparticles to viable skin layers with a high density of professional antigen-presenting cells (APCs). Stable polyvinyl alcohol (PVA) polymer films as well as PVA blends with carboxymethyl cellulose (CMC) or cross-linked carbomer were prepared using an easily-scalable film casting technique. Fluorescein isothiocyanate (FITC) and rhodamine B-labeled dextrane 70 kDa (RD70), used as small and macromolecular model substances, or polystyrene (PS)-nano- and microparticles with diameters of 0.5 µm and 5 µm were directly incorporated into the polymer formulations at varying concentrations. The assembly of the polymer films with an occlusive backing tape created a film patch that provided a fast drug release upon dissolution of the water-soluble film and facilitated an intradermal drug delivery on laser microporated skin. The minimally-invasive P.L.E.A.S.E.® laser poration system (Pantec Biosolutions, Ruggell, Liechtenstein) provided access to viable skin layers by thermally ablating the superficial tissue with a pulsed Er:YAG laser (λ = 2.94 µm). In our in vitro study using excised pig skin, laser microporation induced a 4- to 5-fold increase of water transport (TEWL) through excised skin in a Franz diffusion cell compared to intact skin. The TEWL values detected were comparable to in vivo human skin. The increased water transport facilitated the dissolution of all topically applied dry PVA-based film formulations within 6 h. No dissolution of the films was seen on

  4. The Transport of Salt and Water across Isolated Rat Ileum

    PubMed Central

    Clarkson, T. W.

    1967-01-01

    The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854

  5. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution.

    PubMed

    de Boer, Hugo Jan; Eppinga, Maarten B; Wassen, Martin J; Dekker, Stefan C

    2012-01-01

    The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid angiosperm evolution initiated after the leaf interior (post venous) transport path length for water was reduced beyond the leaf interior transport path length for CO2 at a critical leaf vein density of 2.5-5 mm mm(-2). Data and our modelling approaches indicate that surpassing this critical vein density was a pivotal moment in leaf evolution that enabled evolving angiosperms to profit from developing leaves with more and smaller stomata in terms of higher carbon returns from equal water loss. Surpassing the critical vein density may therefore have facilitated evolving angiosperms to develop leaves with higher gas exchange capacities required to adapt to the Cretaceous CO2 decline and outcompete previously dominant coniferous species in the upper canopy.

  6. Computational insights of water droplet transport on graphene sheet with chemical density

    NASA Astrophysics Data System (ADS)

    Zhang, Liuyang; Wang, Xianqiao

    2014-05-01

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  7. Role of co-occurring competition and facilitation in plant spacing hydrodynamics in water-limited environments

    PubMed Central

    2017-01-01

    Plant performance (i.e., fecundity, growth, survival) depends on an individual’s access to space and resources. At the community level, plant performance is reflected in observable vegetation patterning (i.e., spacing distance, density) often controlled by limiting resources. Resource availability is, in turn, strongly dependent on plant patterning mediated by competitive and facilitative plant–plant interactions. Co-occurring competition and facilitation has never been specifically investigated from a hydrodynamic perspective. To address this knowledge gap, and to overcome limitations of field studies, three intermediate-scale laboratory experiments were conducted using a climate-controlled wind tunnel–porous media test facility to simulate the soil–plant–atmosphere continuum. The spacing between two synthetic plants, a design consideration introduced by the authors in a recent publication, was varied between experiments; edaphic and mean atmospheric conditions were held constant. The strength of the above- and belowground plant–plant interactions changed with spacing distance, allowing the creation of a hydrodynamic conceptual model based on established ecological theories. Greatest soil water loss was observed for the experiment with the smallest spacing where competition dominated. Facilitation dominated at the intermediate spacing; little to no interactions were observed for the largest plant spacing. Results suggest that there exists an optimal spacing distance range that lowers plant environmental stress, thus improving plant performance through reduced atmospheric demand and conservation of available soil water. These findings may provide a foundation for improving our understanding of many climatological, ecohydrological, and hydrological problems pertaining to the hydrodynamics of water-limited environments where plant–plant interactions and community self-organization are important. PMID:28807999

  8. Role of co-occurring competition and facilitation in plant spacing hydrodynamics in water-limited environments.

    PubMed

    Trautz, Andrew C; Illangasekare, Tissa H; Rodriguez-Iturbe, Ignacio

    2017-08-29

    Plant performance (i.e., fecundity, growth, survival) depends on an individual's access to space and resources. At the community level, plant performance is reflected in observable vegetation patterning (i.e., spacing distance, density) often controlled by limiting resources. Resource availability is, in turn, strongly dependent on plant patterning mediated by competitive and facilitative plant-plant interactions. Co-occurring competition and facilitation has never been specifically investigated from a hydrodynamic perspective. To address this knowledge gap, and to overcome limitations of field studies, three intermediate-scale laboratory experiments were conducted using a climate-controlled wind tunnel-porous media test facility to simulate the soil-plant-atmosphere continuum. The spacing between two synthetic plants, a design consideration introduced by the authors in a recent publication, was varied between experiments; edaphic and mean atmospheric conditions were held constant. The strength of the above- and belowground plant-plant interactions changed with spacing distance, allowing the creation of a hydrodynamic conceptual model based on established ecological theories. Greatest soil water loss was observed for the experiment with the smallest spacing where competition dominated. Facilitation dominated at the intermediate spacing; little to no interactions were observed for the largest plant spacing. Results suggest that there exists an optimal spacing distance range that lowers plant environmental stress, thus improving plant performance through reduced atmospheric demand and conservation of available soil water. These findings may provide a foundation for improving our understanding of many climatological, ecohydrological, and hydrological problems pertaining to the hydrodynamics of water-limited environments where plant-plant interactions and community self-organization are important.

  9. Graphene oxide-facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media.

    PubMed

    Sun, Kaixuan; Dong, Shunan; Sun, Yuanyuan; Gao, Bin; Du, Wenchao; Xu, Hongxia; Wu, Jichun

    2018-04-15

    In this work, effects of graphene oxide (GO) on the co-transport of the two typical Fluoroquinolones (FQs) - levofloxacin (LEV) and ciprofloxacin (CIP) in saturated and unsaturated quartz sand media were studied. The adsorption isotherms showed that GO had much larger sorption capacities to LEV and CIP than sand with the largest Langmuir adsorption capacity of 409 mg g -1 (CIP-GO); while the sorption affinity of the two FQs onto the two adsorbents might follow the order of CIP-sand > LEV-sand > LEV-GO > CIP-GO. GO promoted the mobility of the two FQs in both saturated and unsaturated porous media due to its strong mobility and sorption capacity. The GO-bound LEV/CIP was responsible for the LEV/CIP transport in the porous media, and transport of GO-bound FQs increased with the increasing of initial GO concentration. Under unsaturated conditions, moisture showed little effect on the transport of GO-bound CIP; however, the mobility of GO-bound LEV reduced with the decreasing of moisture content, suggesting the transport of adsorbed LEV from GO to air-water interface. GO sorption reduced the antibacterial ability of the two FQs, but they were still effective in inhibiting E. coli growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Treesearch

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  11. An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity

    PubMed Central

    Choudhary, Vineet

    2017-01-01

    Ceramides are key intermediates in sphingolipid biosynthesis and potent signaling molecules. However, excess ceramide is toxic, causing growth arrest and apoptosis. In this study, we identify a novel mechanism by which cells prevent the toxic accumulation of ceramides; they facilitate nonvesicular ceramide transfer from the endoplasmic reticulum (ER) to the Golgi complex, where ceramides are converted to complex sphingolipids. We find that the yeast protein Nvj2p promotes the nonvesicular transfer of ceramides from the ER to the Golgi complex. The protein is a tether that generates close contacts between these compartments and may directly transport ceramide. Nvj2p normally resides at contacts between the ER and other organelles, but during ER stress, it relocalizes to and increases ER–Golgi contacts. ER–Golgi contacts fail to form during ER stress in cells lacking Nvj2p. Our findings demonstrate that cells regulate ER–Golgi contacts in response to stress and reveal that nonvesicular ceramide transfer out of the ER prevents the buildup of toxic amounts of ceramides. PMID:28011845

  12. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  13. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  14. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff

    PubMed Central

    Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684

  15. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    PubMed

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  16. Transport and fate of nitrate at the ground-water/surface-water interface

    USGS Publications Warehouse

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  17. Lagrangian study of transport of subarctic water across the Subpolar Front in the Japan Sea

    NASA Astrophysics Data System (ADS)

    Prants, Sergey V.; Uleysky, Michael Yu.; Budyansky, Maxim V.

    2018-06-01

    The southward near-surface transport of transformed subarctic water across the Subpolar Front in the Japan Sea is simulated and analyzed based on altimeter data from January 1, 1993 to December 31, 2017. Computing Lagrangian indicators for a large number of synthetic particles, advected by the AVISO velocity field, we find preferred transport pathways across the Subpolar Front. The southward transport occurs mainly in the central part of the frontal zone due to suitable dispositions of mesoscale eddies promoting propagation of subarctic water to the south. It is documented with the help of Lagrangian origin and L-maps and verified by the tracks of available drifters. The transport of transformed subarctic water to the south is compared with the transport of transformed subtropical water to the north simulated by Prants et al. (Nonlinear Process Geophys 24(1):89-99, 2017c).

  18. Lagrangian study of transport of subarctic water across the Subpolar Front in the Japan Sea

    NASA Astrophysics Data System (ADS)

    Prants, Sergey V.; Uleysky, Michael Yu.; Budyansky, Maxim V.

    2018-05-01

    The southward near-surface transport of transformed subarctic water across the Subpolar Front in the Japan Sea is simulated and analyzed based on altimeter data from January 1, 1993 to December 31, 2017. Computing Lagrangian indicators for a large number of synthetic particles, advected by the AVISO velocity field, we find preferred transport pathways across the Subpolar Front. The southward transport occurs mainly in the central part of the frontal zone due to suitable dispositions of mesoscale eddies promoting propagation of subarctic water to the south. It is documented with the help of Lagrangian origin and L-maps and verified by the tracks of available drifters. The transport of transformed subarctic water to the south is compared with the transport of transformed subtropical water to the north simulated by Prants et al. (Nonlinear Process Geophys 24(1):89-99, 2017c).

  19. On the water transport of animals with special reference to Denmark.

    PubMed

    Katić, Ivan; Bajt, Vesna Vucevac

    2009-01-01

    Transport of animals by water is a very old way of transport because it is relatively cheap and safe, with a minimum loss of animals. Waterways have been used for the transport of living animals and various goods from ancient times, for example in Ancient Egypt and the Roman Empire. Later, Vikings were so successful in their conquests because they always had trained horses aboard. It is believed that the colonization of America was possible because Spaniards were also bringing many horses with them. Danish possessions in the Caribbean owe much of their economic success in the period between 1820 and 1920 to permanent supply of cheap mules and other equides from South America. Mules were used for agricultural purposes and for work in sugar-cane mills. In the 20th century, a significant number of animals was transported to German and British colonies in South Africa. During the First and the Second World War, animals were also transported by water; measures were taken to meet the fundamental physiological requirements, and a veterinarian accompanied animals on long voyages. These precautions resulted in minimum transport losses.

  20. Pupils' Response to a Model for Water Transport.

    ERIC Educational Resources Information Center

    Johnstone, A. H.; Mahmoud, N. A.

    1981-01-01

    Described is a model, based on the physical sciences, designed to teach secondary students about water transport through the use of an animated film. Pupils (N=440) taught by this method developed a self-consistent, although reduced, picture and understanding of osmosis. (Author/DC)

  1. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    EPA Science Inventory

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  2. Facilitative glucose transporter Glut1 is actively excluded from rod outer segments.

    PubMed

    Gospe, Sidney M; Baker, Sheila A; Arshavsky, Vadim Y

    2010-11-01

    Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.

  3. Influence of transport conditions and pre-slaughter water shower spray during summer on protein characteristics and water distribution of broiler breast meat.

    PubMed

    Xing, Tong; Li, Yun Han; Li, Ming; Jiang, Nan Nan; Xu, Xing Lian; Zhou, Guang Hong

    2016-11-01

    This study investigated the effects of pre-slaughter transport during summer and subsequent water shower spray on broiler meat quality and protein characteristics. Arbor Acres broiler chickens (n = 126, 42 days old, mixed sex, 2.5-3 kg) were randomly categorized into three treatments: (i) control group without transport (C); (ii) 30 min transport (T); and (iii) 30 min transport followed by 10 min water shower spray and 20 min lairage (T/W). Each treatment consisted of six replicates with seven birds each. Ambient temperature was 32-35°C during transportation. Results indicated that transport during high ambient temperature denatured myosin and sarcoplasmic proteins, led to decreased protein solubility and resulted in glycogen phosphorylase precipitated to the myofibrillar fraction. Furthermore, meat quality in the transport group showed a pale, soft and exudative (PSE)-like syndrome. Water shower spray during lairage after transport reduced the degree of protein denaturation and lessened the deterioration of meat quality. © 2016 Japanese Society of Animal Science.

  4. Models of Fate and Transport of Pollutants in Surface Waters

    ERIC Educational Resources Information Center

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  5. Rat hepatocytes transport water mainly via a non-channel-mediated pathway.

    PubMed

    Yano, M; Marinelli, R A; Roberts, S K; Balan, V; Pham, L; Tarara, J E; de Groen, P C; LaRusso, N F

    1996-03-22

    During bile formation by the liver, large volumes of water are transported across two epithelial barriers consisting of hepatocytes and cholangiocytes (i.e. intrahepatic bile duct epithelial cells). We recently reported that a water channel, aquaporin-channel-forming integral protein of 28 kDa, is present in cholangiocytes and suggested that it plays a major role in water transport by these cells. Since the mechanisms of water transport across hepatocytes remain obscure, we performed physiological, molecular, and biochemical studies on hepatocytes to determine if they also contain water channels. Water permeability was studied by exposing isolated rat hepatocytes to buffers of different osmolarity and measuring cell volume by quantitative phase contrast, fluorescence and laser scanning confocal microscopy. Using this method, hepatocytes exposed to hypotonic buffers at 23 degrees C increased their cell volume in a time and osmolarity-dependent manner with an osmotic water permeability coefficient of 66.4 x 10(-4) cm/s. In studies done at 10 degrees C, the osmotic water permeability coefficient decreased by 55% (p < 0.001, at 23 degrees C; t test). The derived activation energy from these studies was 12.8 kcal/mol. After incubation of hepatocytes with amphotericin B at 10 degrees C, the osmotic water permeability coefficient increased by 198% (p < 0.001) and the activation energy value decreased to 3.6 kcal/mol, consistent with the insertion of artificial water channels into the hepatocyte plasma membrane. Reverse transcriptase polymerase chain reaction with hepatocyte RNA as template did not produce cDNAs for three of the known water channels. Both the cholesterol content and the cholesterol/phospholipid ratio of hepatocyte plasma membranes were significantly (p < 0.005) less than those of cholangiocytes; membrane fluidity of hepatocytes estimated by measuring steady-state anisotropy was higher than that of cholangiocytes. Our data suggests that the osmotic flow of

  6. Two Endoplasmic Reticulum (ER) Membrane Proteins That Facilitate ER-to-Golgi Transport of Glycosylphosphatidylinositol-anchored Proteins

    PubMed Central

    Barz, Wolfgang P.; Walter, Peter

    1999-01-01

    Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for “delayed GPI-anchored protein transport”), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Δ dgt1Δ cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non–GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Δ dgt1Δ cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Δ dgt1Δ cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins. PMID:10198056

  7. Monthly Variation of Taiwan Strait Through-flow Transports and Associated Water Masses

    NASA Astrophysics Data System (ADS)

    Jan, S.; Sheu, D.; Kuo, H.

    2005-05-01

    Through-flow transports and associated water masses are analyzed using current data measured by bottom-mounted and ship-board ADCP (1999-2001) across the central Taiwan Strait and strait-wide hydrographic data acquired from 79 CTD survey cruises (1986-2003). The East Asian monsoon, from southwest in July to August and northeast in October to March, controls the transport fluctuation which peaks in August (2.34 Sv northward), is hampered by the northeast monsoon after September and diminishes to the minimum (0.26 Sv southward) in December. The standard deviation of the calculated transport ranges from 0.56 to 1.05 Sv during northeast monsoon months and is relatively small in other months. A cluster analysis together with conventional T-S diagrams identifies the saline and warm Kuroshio Branch Water (KBW), the less saline South China Sea Surface Water (SCSSW), the brackish and cold China Coastal Water (CCW), the saline Subsurface Water (SW) (depth > 100 m) and the Diluted Coastal Water (DCW). The majority of the northward transport in summer carries the SCSSW to the East China Sea. Meanwhile, the DCW appears off the northwest bank of the strait and the SW resides in the bottom layer of a deep trench in the southeastern strait. The onset of the northeast monsoon in September drives the CCW from the Yangtze river mouth to the northern strait. In the southern strait, the northward-moving KBW replaces the SCSSW and meets the southward-intruding CCW in the middle strait during November to April.

  8. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    PubMed

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  9. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    PubMed Central

    Fuentes, Hector R.

    2018-01-01

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335

  10. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.

    PubMed

    Sackin, H; Boulpaep, E L

    1975-12-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport.

  11. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney

    PubMed Central

    Sackin, H; Boulpaep, EL

    1975-01-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport. PMID:1104761

  12. Molecular Dynamics Investigation of Cl− and Water Transport through a Eukaryotic CLC Transporter

    PubMed Central

    Cheng, Mary Hongying; Coalson, Rob D.

    2012-01-01

    Early crystal structures of prokaryotic CLC proteins identified three Cl– binding sites: internal (Sint), central (Scen), and external (Sext). A conserved external GLU (GLUex) residue acts as a gate competing for Sext. Recently, the first crystal structure of a eukaryotic transporter, CmCLC, revealed that in this transporter GLUex competes instead for Scen. Here, we use molecular dynamics simulations to investigate Cl– transport through CmCLC. The gating and Cl–/H+ transport cycle are inferred through comparative molecular dynamics simulations with protonated and deprotonated GLUex in the presence/absence of external potentials. Adaptive biasing force calculations are employed to estimate the potential of mean force profiles associated with transport of a Cl– ion from Sext to Sint, depending on the Cl– occupancy of other sites. Our simulations demonstrate that protonation of GLUex is essential for Cl– transport from Sext to Scen. The Scen site may be occupied by two Cl– ions simultaneously due to a high energy barrier (∼8 Kcal/mol) for a single Cl– ion to translocate from Scen to Sint. Binding two Cl– ions to Scen induces a continuous water wire from Scen to the extracellular solution through the side chain of the GLUex gate. This may initiate deprotonation of GLUex, which then drives the two Cl– ions out of Scen toward the intracellular side via two putative Cl– transport paths. Finally, a conformational cycle is proposed that would account for the exchange stoichiometry. PMID:22455919

  13. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  14. Tidally averaged water and salt transport velocities and their distributions in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Shouxian; Sheng, Jinyu; Ji, Xiaomei

    2016-09-01

    Tidally averaged transports of water and substance are important physical quantities over estuarine, coastal, and shelf waters, but they have been indistinguishably expressed in terms of the Eulerian residual current (ERC) or Lagrangian residual current (LRC) in many previous studies. In this study, the tidally averaged transport velocities for water (TA-WTV) and substance (TA-STV) are considered based on residual fluxes. The main advantage of these newly defined transport velocities is that they can be used to quantify differences in amplitude and direction between the tidally averaged water and substance transports. The two-dimensional TA-STV is interpreted as the transport due to the residual flow of water, tidal pumping, and vertical shear. The three-dimensional TA-STV includes transports from the residual flow of water and tidal pumping. Numerical results of sea surface elevations, currents, and salinity produced by a triply nested coastal ocean model for the Pearl River Estuary (PRE) are used to calculate the TA-WTV and TA-STV for salt (TA-STVsa). The general features of the TA-WTV and TA-STVsa are similar over the most part of the PRE but differ significantly in amplitude and direction over the salinity frontal zone. The ERC and LRC calculated from model results are also significantly different from the TA-STVsa over the salinity frontal zone.

  15. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Treesearch

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  16. A Microfluidic Study of Megakaryocytes Membrane Transport Properties to Water and Dimethyl Sulfoxide at Suprazero and Subzero Temperatures

    PubMed Central

    Sun, Sijie; Shu, Zhiquan; Ding, Weiping; Reems, Jo-Anna

    2011-01-01

    Megakaryocytes (MKs) are the precursor cells of platelets. Cryopreservation of MKs is critical for facilitating research investigations about the biology of this important cell and may help for scaling-up ex-vivo production of platelets from MKs for clinical transfusion. Determining membrane transport properties of MKs to water and cryoprotectant agents (CPAs) is essential for developing optimal conditions for cryopreserving MKs. To obtain these unknown parameters, membrane transport properties of the human UT-7/TPO megakaryocytic cell line were investigated using a microfluidic perfusion system. UT-7/TPO cells were immobilized in a microfluidic system on poly-D-lysine-coated glass substrate and perfused with various hyper-osmotic salt and CPA solutions at suprazero and subzero temperatures. The kinetics of cell volume changes under various extracellular conditions were monitored by a video camera and the information was processed and analyzed using the Kedem–Katchalsky model to determine the membrane transport properties. The osmotically inactive cell volume (Vb=0.15), the permeability coefficient to water (Lp) at 37°C, 22°C, 12°C, 0°C, −5°C, −10°C, and −20°C, and dimethyl sulfoxide (DMSO; Ps) at 22, 12, 0, −10, −20, as well as associated activation energies of water and DMSO at different temperature regions were obtained. We found that MKs have relatively higher membrane permeability to water (Lp=2.62 μm/min/atm at 22°C) and DMSO (Ps=1.8×10−3 cm/min at 22°C) than most other common mammalian cell types, such as lymphocytes (Lp=0.46 μm/min/atm at 25°C). This information could suggest a higher optimal cooling rate for MKs cryopreservation. The discontinuity effect was also found on activation energy at 0°C–12°C in the Arrhenius plots of membrane permeability by evaluating the slope of linear regression at each temperature region. This phenomenon may imply the occurrence of cell membrane lipid phase transition. PMID:22232706

  17. Regulated traffic of anion transporters in mammalian Brunner's glands: a role for water and fluid transport.

    PubMed

    Collaco, Anne M; Jakab, Robert L; Hoekstra, Nadia E; Mitchell, Kisha A; Brooks, Amos; Ameen, Nadia A

    2013-08-01

    The Brunner's glands of the proximal duodenum exert barrier functions through secretion of glycoproteins and antimicrobial peptides. However, ion transporter localization, function, and regulation in the glands are less clear. Mapping the subcellular distribution of transporters is an important step toward elucidating trafficking mechanisms of fluid transport in the gland. The present study examined 1) changes in the distribution of intestinal anion transporters and the aquaporin 5 (AQP5) water channel in rat Brunner's glands following second messenger activation and 2) anion transporter distribution in Brunner's glands from healthy and disease-affected human tissues. Cystic fibrosis transmembrane conductance regulator (CFTR), AQP5, sodium-potassium-coupled chloride cotransporter 1 (NKCC1), sodium-bicarbonate cotransporter (NBCe1), and the proton pump vacuolar ATPase (V-ATPase) were localized to distinct membrane domains and in endosomes at steady state. Carbachol and cAMP redistributed CFTR to the apical membrane. cAMP-dependent recruitment of CFTR to the apical membrane was accompanied by recruitment of AQP5 that was reversed by a PKA inhibitor. cAMP also induced apical trafficking of V-ATPase and redistribution of NKCC1 and NBCe1 to the basolateral membranes. The steady-state distribution of AQP5, CFTR, NBCe1, NKCC1, and V-ATPase in human Brunner's glands from healthy controls, cystic fibrosis, and celiac disease resembled that of rat; however, the distribution profiles were markedly attenuated in the disease-affected duodenum. These data support functional transport of chloride, bicarbonate, water, and protons by second messenger-regulated traffic in mammalian Brunner's glands under physiological and pathophysiological conditions.

  18. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  19. Water transport in limestone by X-ray CAT scanning

    USGS Publications Warehouse

    Mossoti, Victor G.; Castanier, Louis M.

    1989-01-01

    The transport of water through the interior of Salem limestone test briquettes can be dynamically monitored by computer aided tomography (commonly called CAT scanning in medical diagnostics). Most significantly, unless evaporation from a particular face of the briquette is accelerated by forced air flow (wind simulation), the distribution of water in the interior of the briquette remains more or less uniform throughout the complete drying cycle. Moreover, simulated solar illumination of the test briquette does not result in the production of significant water gradients in the briquette under steady-state drying conditions.

  20. Field-scale water transport in unsaturated crystalline rock

    NASA Astrophysics Data System (ADS)

    Gimmi, T.; Schneebeli, M.; Flühler, H.; Wydler, H.; Baer, T.

    1997-04-01

    Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas. Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation. Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials ψ and water contents θ were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation. The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers. The TDR measurements indicated that water contents changed close to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics ψ(θ) determined in the laboratory. A depth-invariant saturated hydraulic conductivity ks = 3.0 × 10-11m s-1 was estimated from the ψ(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS [Vogel et al., 1996]. For individual measurement depths, the estimated ks varied between 9.8 × 10-12 and 6.1 × 10-11 m s-1. The fitted ks values fell within the range of previously estimated s for this location and led to a satisfactory

  1. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic

    NASA Astrophysics Data System (ADS)

    García-Ibáñez, Maribel I.; Pérez, Fiz F.; Lherminier, Pascale; Zunino, Patricia; Mercier, Herlé; Tréguer, Paul

    2018-04-01

    We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland-Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002-2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002-2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002-2010, with the increase being consistent with other estimates of ISOW transports along 58-59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002-2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in

  2. Water Transport in Trees--An Artificial Laboratory Tree

    ERIC Educational Resources Information Center

    Susman, K.; Razpet, N.; Cepic, M.

    2011-01-01

    Water transport in tall trees is an everyday phenomenon, seldom noticed and not completely understood even by scientists. As a topic of current research in plant physiology it has several advantages for presentation within school physics lectures: it is interdisciplinary and clearly shows the connection between physics and biology; the…

  3. Negotiation Support Systems for Facilitating International Water Conflicts

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Madani, K.; Rouhani, O. M.

    2011-12-01

    Two decades after the collapse of the Soviet Union, Caspian Sea -the largest inland body of water on earth- continues to be the subject of one of the world's most insurmountable disputes, involving Iran, Russia, and the new sovereign states of Azerbaijan, Kazakhstan, and Turkmenistan. The conflict is over the legal status of this multinational water body, which supplies almost all of the world's black caviar, and holds about 10% and 4% of the world's oil and gas reserves, respectively. Typically, proposed division methods for sharing the Caspian Sea and its valuable resources focus either on the areal shares or on the oil and gas shares of the parties. As such, total gains of littoral states under different division methods have remained unclear. In this study, we have developed the Caspian Sea Negotiation Support System (NSS) to delineate optimal boundaries for sharing the sea. The Caspian Sea NSS facilitates simultaneous consideration of the countries' areal and resource shares from the sea under different sharing methods. The developed model is run under different division scenarios to provide insights into the sensitivity of the countries' gains and locations of nautical boundaries to the proposed division rules and the economic values of the Caspian Sea resources. The results are highly sensitive to the proposed division rules, and there is an indirect relationship between the allocated area and resource shares. The main policy implication of the study is that explicit quantification of the countries' resource and areal gains under any suggested legal regime for governing the Caspian Sea is a precursor the success of the negotiations.

  4. ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli

    PubMed Central

    Grass, Gregor; Fan, Bin; Rosen, Barry P.; Franke, Sylvia; Nies, Dietrich H.; Rensing, Christopher

    2001-01-01

    The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of 65Zn, suggesting ZitB-mediated efflux of zinc. PMID:11443104

  5. SutraPrep, a pre-processor for SUTRA, a model for ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Provost, Alden M.

    2002-01-01

    SutraPrep facilitates the creation of three-dimensional (3D) input datasets for the USGS ground-water flow and transport model SUTRA Version 2D3D.1. It is most useful for applications in which the geometry of the 3D model domain and the spatial distribution of physical properties and boundary conditions is relatively simple. SutraPrep can be used to create a SUTRA main input (?.inp?) file, an initial conditions (?.ics?) file, and a 3D plot of the finite-element mesh in Virtual Reality Modeling Language (VRML) format. Input and output are text-based. The code can be run on any platform that has a standard FORTRAN-90 compiler. Executable code is available for Microsoft Windows.

  6. STAND, A DYNAMIC MODEL FOR SEDIMENT TRANSPORT AND WATER QUALITY. (R825758)

    EPA Science Inventory

    We introduce a new model–STAND (Sediment-Transport-Associated Nutrient Dynamics)–for simulating stream flow, sediment transport, and the interactions of sediment with other attributes of water quality. In contrast to other models, STAND employs a fully dynamic ba...

  7. Unstirred Water Layers and the Kinetics of Organic Cation Transport

    PubMed Central

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.

    2015-01-01

    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  8. Cellular water distribution, transport, and its investigation methods for plant-based food material.

    PubMed

    Khan, Md Imran H; Karim, M A

    2017-09-01

    Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water

  9. A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Hazel, J.; Stewart, A.

    2016-12-01

    The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.

  10. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola.

    PubMed

    Deng, Huaxiang; Gao, Ruijie; Liao, Xiangru; Cai, Yujie

    2017-09-01

    Reactive oxygen species (ROS) generated by photo-activated hypocrellin from Shiraia bambusicola are detrimental to cellular macromolecules. However, S. bambusicola can still maintain excellent morphology during continuous hypocrellin production, indicating an extraordinary autoresistance system that protects against the harmful ROS. In this study, a major facilitator superfamily transporter (MFS) was isolated from S. bambusicola and deleted using the clustered regularly interspaced short palindromic repeat sequences (CRISPR)/Cas9 system. The ΔMFS mutant abolished hypocrellin production and was slightly sensitive to 40-μM hypocrellin, while the ΔMFS compliment strain restored hypocrellin production and resistance. Hypocrellin treatment also enhanced the relative expression of MFS in wild-type S. bambusicola. Subsequent pathogenicity assays showed that MFS deletion reduced damage to bamboo leaves. By contrast, restoration of hypocrellin production in the MFS compliment strain generated similar necrotic lesions on bamboo leaves to those observed with the wild-type strain. These results revealed that the identified MFS is involved in efflux of hypocrellin from cells, which reduces the hypocrellin toxicity. Furthermore, hypocrellin contributed to the virulence of S. bambusicola on bamboo leaves. These findings could help to reduce plant loss by disrupting hypocrellin biosynthesis in S. bambusicola, or overexpressing the associated resistance gene in transgenic plants. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Crowding-facilitated macromolecular transport in attractive micropost arrays.

    PubMed

    Chien, Fan-Tso; Lin, Po-Keng; Chien, Wei; Hung, Cheng-Hsiang; Yu, Ming-Hung; Chou, Chia-Fu; Chen, Yeng-Long

    2017-05-02

    Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.

  12. Classroom Techniques to Illustrate Water Transport in Plants

    ERIC Educational Resources Information Center

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  13. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    DOT National Transportation Integrated Search

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  14. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  15. Isolation and functional analysis of Thmfs1, the first major facilitator superfamily transporter from the biocontrol fungus Trichoderma harzianum.

    PubMed

    Liu, Mu; Liu, Jun; Wang, Wei Min

    2012-10-01

    A novel major facilitator superfamily (MFS) transporter gene, Thmfs1, was isolated from Trichoderma harzianum (T. harzianum). A Thmfs1 over-expressing mutant displayed enhanced antifungal activity and fungicide tolerance, while the Thmfs1 disruption mutant showed the opposite trend. Trichodermin production in Thmfs1 disruption group (185 mg l(-1)) was decreased by less than 17 % compared to the parental strain, suggesting that Thmfs1 is not mainly responsible for trichodermin secretion. Real-time PCR showed that Thmfs1 transcript level could be induced by a certain range of trichodermin concentrations, while expression of Tri5, encoding a trichodiene synthase, was strongly inhibited under these conditions. To our knowledge, Thmfs1 is the first MFS transporter gene identified in T. harzianum.

  16. Superconductivity and fast proton transport in nanoconfined water

    NASA Astrophysics Data System (ADS)

    Johnson, K. H.

    2018-04-01

    A real-space molecular-orbital density-wave description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc ≅ 230 K (-43 °C).

  17. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    USDA-ARS?s Scientific Manuscript database

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  18. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface

  19. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes.

    PubMed

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-08-01

    Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines. © 2015 Marine Biological Laboratory.

  20. Models of Fate and Transport of Pollutants in Surface Waters

    NASA Astrophysics Data System (ADS)

    Okome, Gloria Eloho

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states. These measurements are used with the known scientific principles to identify processes and to estimate the future environmental conditions. Conceptual and computational models are needed to analyze environmental processes by applying the knowledge gained from experimentation and theory. Usually, a computational framework includes the mathematics and the physics of the phenomenon, and the measured characteristics to model pollutants interactions and transport in surface water. However, under certain conditions, the complexity of the situation in the actual environment precludes the utilization of these techniques. Pollutants in several forms: Nitrogen (Nitrate, Nitrite, Kjeldhal Nitrogen and Ammonia), Phosphorus (orthophosphate and total phosphorus), bacteria (E-coli and Fecal coliform), Salts (Chloride and Sulfate) are chosen to follow for this research. The objective of this research is to model the fate and transport of these pollutants in non-ideal conditions of surface water measurements and to develop computational methods to forecast their fate and transport. In an environment of extreme drought such as in the Brazos River basin, where small streams flow intermittently, there is added complexity due to the absence of regularly sampled data. The usual modeling techniques are no longer applicable because of sparse measurements in space and time. Still, there is a need to estimate the conditions of the environment from the information that is present. Alternative methods for this estimation must be devised and applied to this situation, which is the task of this dissertation. This research devices a forecasting technique that is

  1. Pore characteristics and their emergent effect on water adsorption and transport in clays using small-angle neutron scattering with contrast variation

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2013-12-01

    In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for

  2. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  3. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  4. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires.

    PubMed

    Xu, Ting; Lin, Yucai; Zhang, Miaoxin; Shi, Weiwei; Zheng, Yongmei

    2016-12-27

    An artificial periodic roughness-gradient conical copper wire (PCCW) can be fabricated by inspiration from cactus spines and wet spider silks. PCCW can harvest fog on periodic points of the conical surface from air and transports the drops for a long distance without external force, which is attributed to dynamic as-released energy generated from drop deformation in drop coalescence, in addition to both gradients of geometric curve (inducing Laplace pressure) and periodic roughness (inducing surface energy difference). It is found that the ability of fog collection can be related to various tilt-angle wires, thus a fog collector with an array system of PCCWs is further designed to achieve a continuous process of efficient water collection. As a result, the effect of water collection on PCCWs is better than previous results. These findings are significant to develop and design materials with water collection and water transport for promising application in fogwater systems to ease the water crisis.

  5. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  6. Colloidal-facilitated transport of inorganic contaminants in ground water: part 1, sampling considerations

    USGS Publications Warehouse

    Puls, Robert W.; Eychaner, James H.; Powell, Robert M.

    1996-01-01

    Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen, and filter pore diameter. During well purging and sample collection, suspended particle size and number as well as dissolved oxygen, temperature, specific conductance, pH, and redox potential were monitored. Laboratory analyses of both unfiltered samples and the filtrates were performed by inductively coupled argon plasma, atomic absorption with graphite furnace, and ion chromatography. Scanning electron microscopy with Energy Dispersive X-ray was also used for analysis of filter particulates. Suspended particle counts consistently required approximately twice as long as the other field-monitored indicators to stabilize. High-flow-rate pumps entrained normally nonmobile particles. Difference in elemental concentrations using different filter-pore sizes were generally not large with only two wells having differences greater than 10 percent in most wells. Similar differences (>10%) were observed for some wells when samples were collected under nitrogen rather than in air. Fe2+/Fe3+ ratios for air-collected samples were smaller than for samples collected under a nitrogen atmosphere, reflecting sampling-induced oxidation.

  7. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.

    PubMed

    Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W

    2010-02-01

    A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES

    EPA Science Inventory

    The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...

  9. Electricity resonance-induced fast transport of water through nanochannels.

    PubMed

    Kou, Jianlong; Lu, Hangjun; Wu, Fengmin; Fan, Jintu; Yao, Jun

    2014-09-10

    We performed molecular dynamics simulations to study water permeation through a single-walled carbon nanotube with electrical interference. It was found that the water net flux across the nanochannel is greatly affected by the external electrical interference, with the maximal net flux occurred at an electrical interference frequency of 16670 GHz being about nine times as high as the net flux at the low or high frequency range of (<1000 GHz or >80,000 GHz). The above phenomena can be attributed to the breakage of hydrogen bonds as the electrical interference frequency approaches to the inherent resonant frequency of hydrogen bonds. The new mechanism of regulating water flux across nanochannels revealed in this study provides an insight into the water transportation through biological water channels and has tremendous potential in the design of high-flux nanofluidic systems.

  10. Protist-facilitated transport of soil bacteria in an artificial soil micromodel

    NASA Astrophysics Data System (ADS)

    Rubinstein, R. L.; Cousens, V.; Gage, D. J.; Shor, L. M.

    2013-12-01

    Soil bacteria within the rhizosphere benefit plants by protecting roots from pathogens, producing growth factors, and improving nutrient availability. These effects can greatly improve overall plant health and increase crop yield, but as roots grow out from the tips they quickly outpace their bacterial partners. Some soil bacteria are motile and can chemotact towards root tips, but bacterial mobility in unsaturated soils is limited to interconnected hydrated pores. Mobility is further reduced by the tendency of soil bacteria to form biofilms. The introduction of protists to the rhizosphere has been shown to benefit plants, purportedly by selective grazing on harmful bacteria or release of nutrients otherwise sequestered in bacteria. We propose that an additional benefit to the presence of protists is the facilitated transport of beneficial bacteria along root systems. Using microfluidic devices designed to imitate narrow, fluid-filled channels in soil, we have shown that the distribution of bacteria through micro-channels is accelerated in the presence of protists. Furthermore, we have observed that even with predation effects, the bacteria remain viable and continue to reproduce for the duration of our experiments. These results expand upon our understanding of complex bio-physical interactions in the rhizosphere system, and may have important implications for agricultural practices.

  11. Water Permeation through the Sodium-Dependent Galactose Cotransporter vSGLT

    PubMed Central

    Choe, Seungho; Rosenberg, John M.; Abramson, Jeff; Wright, Ernest M.; Grabe, Michael

    2010-01-01

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70–80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. PMID:20923633

  12. The impacts of water stress on phloem transport in Douglas-fir trees

    Treesearch

    David Woodruff

    2014-01-01

    Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water...

  13. PCR detection of groundwater bacteria associated with colloidal transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineralmore » transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.« less

  14. FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT

    EPA Science Inventory

    This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...

  15. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, F.; Wang, K.; Zhang, R.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared withmore » the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.« less

  16. Aquaporin-1 Facilitates Angiogenic Invasion in the Pathologic Neovasculature that Accompanies Cirrhosis

    PubMed Central

    Huebert, Robert C.; Vasdev, Meher M.; Shergill, Uday; Das, Amitava; Huang, Bing Q.; Charlton MR, Michael R.; LaRusso, Nicholas F.; Shah, Vijay H.

    2010-01-01

    Increasing evidence suggests that hepatic fibrosis and pathologic angiogenesis are inter-dependent processes that occur in parallel. Endothelial cell invasion is requisite for angiogenesis and thus studies of the mechanisms governing liver endothelial cell (LEC) invasion during cirrhosis are of great importance. Emerging research implicates amoeboid-type motility and membrane blebbing as features that may facilitate invasion through matrix-rich microenvironments. Aquaporins (AQPs) are integral membrane water channels, recognized for their importance in epithelial secretion and absorption. However, recent studies also suggest links between water transport and cell motility / invasion. Therefore, the purpose of this study was to test the hypothesis that AQP-1 is involved in amoeboid motility and angiogenic invasion during cirrhosis. AQP-1 expression and localization was examined in normal and cirrhotic liver tissues derived from human and mouse. AQP-1 levels were modulated in LEC using retroviral overexpression or siRNA knockdown and functional effects on invasion, membrane blebbing dynamics, and osmotic water permeability were assayed. Results demonstrate that AQP-1 is up-regulated in the small, angiogenic, neo-vasculature within the fibrotic septa of cirrhotic liver. AQP-1 overexpression promotes FGF-induced dynamic membrane blebbing in LEC which is sufficient to augment invasion through extracellular matrix. Additionally, AQP-1 localizes to plasma membrane blebs where it increases osmotic water permeability and locally facilitates the rapid, trans-membrane flux of water. CONCLUSION AQP-1 enhances osmotic water permeability and FGF-induced dynamic membrane blebbing in LEC and thereby drives invasion and pathologic angiogenesis during cirrhosis PMID:20578142

  17. VIRAL TRANSPORT AND FATE MODELS FOR GROUND WATER VULNERABILITY

    EPA Science Inventory

    The purpose of this project is to develop a model to assess the vulnerability of public water systems to pathogens. It is focused on the sources, fate and transport of viruses in aquifer systems in specific hydrologic settings. It's intended to be used by resource managers or r...

  18. Effect of Natural Abiotic Colloids on the Transport of Lindane (gamma-hexachlorocyclohexane) through Saturated Porous Media: Laboratory Experiments and Model-Based Analysis

    NASA Astrophysics Data System (ADS)

    Ngueleu Kamangou, S.; Cirpka, O. A.; Grathwohl, P.

    2012-04-01

    In many developing countries, the hygienic situation has improved by changing from surface-water bodies to groundwater as drinking water resource. However, failures have frequently been reported, presumably caused by wrong design of groundwater extraction (e.g., wells too close to open-water bodies, landfill leachates or agricultural areas). Moreover threat to groundwater pollution is enhanced when colloidal particles in the subsurface can act as carriers for adsorbing contaminants such as hydrophobic chlorinated organic contaminants. In this study, the main objective was to investigate the influence of particles in the size range of colloids on the subsurface transport of pesticides which are known to cause severe health problems. The model pesticide was gamma-hexachlorocyclohexane, a representative hydrophobic insecticide which is still used mainly in tropical countries. Colloid-facilitated transport was carried out by considering a first case where the adsorption of the contaminant to the particles is at equilibrium before getting simultaneously transported, and a second case where this equilibrium was not reached before their transport. Another focus besides colloid-facilitated transport was placed on the release of the contaminant from trapped colloids. Data analysis was done with the help of numerical modeling and the minimum model complexity needed to simulate such transports was examined.

  19. Improvement of water transport mechanisms during potato drying by applying ultrasound.

    PubMed

    Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio

    2011-11-01

    The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P < 0.05) influence of the applied ultrasonic power on the identified kinetic parameters: effective moisture diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.

  20. Can Free Water Transport Be Used as a Clinical Parameter for Peritoneal Fibrosis in Long-Term PD Patients?

    PubMed Central

    Krediet, Raymond T.; Barreto, Deirisa Lopes; Struijk, Dirk G.

    2016-01-01

    Sodium sieving in peritoneal dialysis (PD) occurs in a situation with high osmotically-driven ultrafiltration rates. This dilutional phenomenon is caused by free water transport through the water channel aquaporin-1. It has recently been described that encapsulating peritoneal fibrosis is associated with impaired free water transport, despite normal expression of aquaporin-1. In this review, it will be argued that free water transport can be used for assessment of fibrotic peritoneal alterations, due to the water-binding capacity of collagen. Finally, the consequences for clinical practice will be discussed. PMID:26475849

  1. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.

    PubMed

    Banuprasad, Theneyur Narayanaswamy; Vinay, Thamarasseril Vijayan; Subash, Cherumannil Karumuthil; Varghese, Soney; George, Sajan D; Varanakkottu, Subramanyan Namboodiri

    2017-08-23

    In spite of the reported temperature dependent tunability in wettability of poly(N-isopropylacrylamide) (PNIPAAm) surfaces for below and above lower critical solution temperature (32 °C), the transport of water droplets is inhibited by the large contact angle hysteresis. Herein, for the first time, we report on-demand, fast, and reconfigurable droplet manipulation over a PNIPAAm grafted structured polymer surface using temperature-induced wettability gradient. Our study reveals that the PNIPAAm grafted on intrinsically superhydrophobic surfaces exhibit hydrophilic nature with high contact angle hysteresis below 30 °C and superhydrophobic nature with ultralow contact angle hysteresis above 36 °C. The transition region between 30 and 36 °C is characterized by a large change in water contact angle (∼100°) with a concomitant change in contact angle hysteresis. By utilizing this "transport zone" wherein driving forces overcome the frictional forces, we demonstrate macroscopic transport of water drops with a maximum transport velocity of approximately 40 cm/s. The theoretical calculations on the force measurements concur with dominating behavior of driving forces across the transport zone. The tunability in transport velocity by varying the temperature gradient along the surface or the inclination angle of the surface (maximum angle of 15° with a reduced velocity 0.4 mm/s) is also elucidated. In addition, as a practical application, coalescence of water droplets is demonstrated by using the temperature controlled wettability gradient. The presented results are expected to provide new insights on the design and fabrication of smart multifunctional surfaces for applications such as biochemical analysis, self-cleaning, and microfluidics.

  2. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    NASA Astrophysics Data System (ADS)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  3. Proton movement and coupling in the POT family of peptide transporters

    PubMed Central

    Parker, Joanne L.; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M. J.; Caffrey, Martin; Voth, Gregory A.

    2017-01-01

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. PMID:29180426

  4. Proton movement and coupling in the POT family of peptide transporters.

    PubMed

    Parker, Joanne L; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M J; Caffrey, Martin; Voth, Gregory A; Newstead, Simon

    2017-12-12

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. Copyright © 2017 the Author(s). Published by PNAS.

  5. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flowmore » humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.« less

  6. Liquid Water Saturation and Oxygen Transport Resistance in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Muirhead, Daniel

    In this thesis, the relative humidity (RH) of the cathode reactant gas was investigated as a factor which influences gas diffusion layer (GDL) liquid water accumulation and mass transport-related efficiency losses over a range of operating current densities in a polymer electrolyte membrane (PEM) fuel cell. Limiting current measurements were used to characterize fuel cell oxygen transport resistance while simultaneous measurements of liquid water accumulation were conducted using synchrotron X-ray radiography. GDL porosity distributions were characterized with micro-computed tomography (microCT). The work presented here can be used by researchers to develop improved numerical models to predict GDL liquid water accumulation and to inform the design of next-generation GDL materials to mitigate mass transport-related efficiency losses. This work also contributes an extensive set of concurrent performance and liquid water visualization data to the PEM fuel cell field that can be used for validating multiphase transport models.

  7. Modeling studies of water consumption for transportation fuel options: Hawaii, US-48

    NASA Astrophysics Data System (ADS)

    King, C. W.; Webber, M. E.

    2011-12-01

    There are now major drivers to move from petroleum transportation: moving to low-carbon transport life cycles for climate change mitigation, fuel diversity to reduce reliance on imported oil, and economic concerns regarding the relatively high price of oil ( $100/barrel) and the resulting impact on discretionary income. Unfortunately many transportation fuel alternatives also have some environmental impacts, particularly with regard to water consumption and biodiversity. In this presentation we will discuss the water and energy sustainability struggle ongoing in Hawai'i on the island of Maui with a brief history and discussion of energy and water modeling scenarios. The vast majority of surface water on Maui is diverted via man-made ditches for irrigation on sugar cane plantations. Maui currently allocates between 250 and 300 million gallons per day (Mgal/d) of irrigation water for sugarcane cultivation each day, and it is likely that the island could support a biofuel-focused sugarcane plantation by shifting production focus from raw sugar to ethanol. However, future water availability is likely to be less than existing water availability because Maui is growing, more water is being reserved for environmental purposes, and precipitation levels are on decline for the past two decades and some expect this trend to continue. While Maui residents cannot control precipitation patterns, they can control the levels of increased requirements for instream flow in Maui's streams. The Hawaii State Commission on Water Resource Management (CWRM) sets instream flow standards, and choosing not to restore instream flow could have what many locals consider negative environmental and cultural impacts that must be weighed against the effects of reducing surface water availability for agriculture. Instream flow standards that reduce legal withdrawals for streams that supply irrigation water would reduce the amount of surface water available for biofuel crop irrigation. Environmental

  8. Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media

    NASA Astrophysics Data System (ADS)

    Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie

    2016-10-01

    Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30-40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.

  9. Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media

    PubMed Central

    Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie

    2016-01-01

    Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks. PMID:27734948

  10. Fast water transport in graphene nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Alibakhshi, Mohammad Amin; Jiao, Shuping; Xu, Zhiping; Hempel, Marek; Kong, Jing; Park, Hyung Gyu; Duan, Chuanhua

    2018-01-01

    Superfast water transport discovered in graphitic nanoconduits, including carbon nanotubes and graphene nanochannels, implicates crucial applications in separation processes and energy conversion. Yet lack of complete understanding at the single-conduit level limits development of new carbon nanofluidic structures and devices with desired transport properties for practical applications. Here, we show that the hydraulic resistance and slippage of single graphene nanochannels can be accurately determined using capillary flow and a novel hybrid nanochannel design without estimating the capillary pressure. Our results reveal that the slip length of graphene in the graphene nanochannels is around 16 nm, albeit with a large variation from 0 to 200 nm regardless of the channel height. We corroborate this finding with molecular dynamics simulation results, which indicate that this wide distribution of the slip length is due to the surface charge of graphene as well as the interaction between graphene and its silica substrate.

  11. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Treesearch

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  12. Large scale reactive transport of nitrate across the surface water divide

    NASA Astrophysics Data System (ADS)

    Kortunov, E.; Lu, C.; Amos, R.; Grathwohl, P.

    2016-12-01

    Groundwater pollution caused by agricultural and atmospheric inputs is a pressing issue in environmental management worldwide. Various researchers have studied different aspects of nitrate contamination since the substantial increase of the agriculture pollution in the second half of the 20th century. This study addresses large scale reactive solute transport in a typical Germany hilly landscapes in a transect crossing 2 valleys: River Neckar and Ammer. The numerical model was constructed compromising a 2-D cross-section accounting for typical fractured mudstones and unconsolidated sediments. Flow modelling showed that the groundwater divide significantly deviates from the surface water divide providing conditions for inter-valley flow and transport. Reactive transport modelling of redox-sensitive solutes (e.g. agriculture nitrate and natural sulfate, DOC, ammonium) with MIN3P was used to elucidate source of nitrate in aquifers and rivers. Since both floodplains, in the Ammer and Neckar valley contain Holocene sediments relatively high in organic carbon, agricultural nitrate is reduced therein and does not reach the groundwater. However, nitrate applied in the hillslopes underlain by fractured oxidized mudrock is transported to the high yield sand and gravel aquifer in the Neckar valley. Therefore, the model predicts that nitrate in the Neckar valley comes, to a large extent, from the neighboring Ammer valley. Moreover, nitrate observed in the rivers and drains in the Ammer valley is very likely geogenic since frequent peat layers there release ammonium which is oxidized as it enters the surface water. Such findings are relevant for land and water quality management.

  13. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species.

    PubMed

    De Guzman, Mark E; Santiago, Louis S; Schnitzer, Stefan A; Álvarez-Cansino, Leonor

    2017-10-01

    In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Water Vapor Transport Over the Tropical Oceans During ENSO as Diagnosed from TRMM and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Smith, Eric A.; Sohn, Byung-Ju

    2000-01-01

    Traditionally, large-scale water vapor transport [div Q] has been derived directly from circulation statistics in which transport processes are often depicted by mean and eddy motions. Thus detailed and accurate calculations of moisture transport terms over the globe are required. Notably, the lack of systematically spaced conventional measurements of meteorological variables over oceans has hindered understanding of the distribution and transport of water vapor. This motivates the use of indirect calculation methods in which horizontal divergence of water vapor is balanced by the evaporation minus precipitation, assuming the rate of changes of precipitable water and condensates is small over a sufficiently long time period. In order to obtain the water vapor transport, we need evaporation rate minus precipitation (E-P). Focussing on the differences in water vapor transport between El Nino and La Nina periods and their influences on atmospheric circulations, we study January, February, and March of 1998 and 1999 periods which represent El Nino and La Nina respectively. SSM/I-derived precipitation and evaporation rate from SSM/I wind and total precipitable water, in conjunction with NCEP SST and surface air temperature, are used for the calculation of the transport potential function. For the retrieval of evaporation we use a stability-dependent aerodynamic bulk scheme developed by Chou (1993). It was tested against aircraft covariance fluxes measured during cold air outbreaks over the North Atlantic Ocean. Chou et al. (1997) reported that the SSM/I retrieved latent heat flux over the western Pacific warm pool area were found to be comparable with daily mean fluxes of a ship measurements during TOGA/COARE.

  15. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  16. CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2013-01-01

    The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.

  17. Insect glycerol transporters evolved by functional co-option and gene replacement

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Stavang, Jon Anders; Belles, Xavier; Cerdà, Joan

    2015-01-01

    Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects. PMID:26183829

  18. Role of Aquaporins in a Composite Model of Water Transport in the Leaf.

    PubMed

    Yaaran, Adi; Moshelion, Menachem

    2016-06-30

    Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.

  19. Passive water collection with the integument: mechanisms and their biomimetic potential.

    PubMed

    Comanns, Philipp

    2018-05-22

    Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals - in excess of 39 species from 24 genera - have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced. © 2018. Published by The Company of Biologists Ltd.

  20. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    PubMed

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  1. Studying Drinking Water Quality and its Change During Transportation through Samara Water-Supply Facilities

    NASA Astrophysics Data System (ADS)

    Kichigin, V. I.; Egorova, Y. A.; Nesterenko, O. I.

    2017-11-01

    The paper investigates changes in water physico-chemical composition and its physical indicators through ζ-potential in residential buildings in eight administrative districts of Samara. The results are processed by the methods of mathematical statistics and presented at the 0.05 level of importance. The sampling points for water in the city districts were chosen with the aid of random numbers tables. It was determined that the quality of drinking water was stable and consistent with the existing standards in Zheleznodorozhniy, Samarskiy, Leninskiy, Octyabrskiy, Kirovsliy, Sovetskiy and Promyshlenniy districts of Samara. The following indicators were taken into account: pH, colour, turbidity, alkalinity, general rigidity, content of ions Ca2 +, Mg2 +. It was also established that drinking water in Kuibyshevskiy district (with all other excellent indicators) had increased mineralization due to the natural hydrological conditions of the water inlet. Some change in the size of zeta-potential of the water was detected during its transportation through the existing water-supplying networks of the city. It was shown that the link between zeta-potential and various kinds of contamination in drinking water is underexplored and requires further detailed study.

  2. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, T.C.; Blanc, R.; Zeid, J.

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in themore » presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A

  3. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport.

    PubMed

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad D

    2017-04-18

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.

  4. Control of the Water Transport Activity of Barley HvTIP3;1 Specifically Expressed in Seeds.

    PubMed

    Utsugi, Shigeko; Shibasaka, Mineo; Maekawa, Masahiko; Katsuhara, Maki

    2015-09-01

    Tonoplast intrinsic proteins (TIPs) are involved in the transport and storage of water, and control intracellular osmotic pressure by transporting material related to the water potential of cells. In the present study, we focused on HvTIP3;1 during the periods of seed development and desiccation in barley. HvTIP3;1 was specifically expressed in seeds. An immunochemical analysis showed that HvTIP3;1 strongly accumulated in the aleurone layers and outer layers of barley seeds. The water transport activities of HvTIP3;1 and HvTIP1;2, which also accumulated in seeds, were measured in the heterologous expression system of Xenopus oocytes. When they were expressed individually, HvTIP1;2 transported water, whereas HvTIP3;1 did not. However, HvTIP3;1 exhibited water transport activity when co-expressed with HvTIP1;2 in oocytes, and this activity was higher than when HvTIP1;2 was expressed alone. This is the first report to demonstrate that the water permeability of a TIP aquaporin was activated when co-expressed with another TIP. The split-yellow fluorescent protein (YFP) system in onion cells revealed that HvTIP3;1 interacted with HvTIP1;2 to form a heterotetramer in plants. These results suggest that HvTIP3;1 functions as an active water channel to regulate water movement through tissues during the periods of seed development and desiccation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Transport Mechanism of Guest Methane in Water-Filled Nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bui, Tai; Phan, Anh; Cole, David R.

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less

  6. Transport Mechanism of Guest Methane in Water-Filled Nanopores

    DOE PAGES

    Bui, Tai; Phan, Anh; Cole, David R.; ...

    2017-05-11

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less

  7. Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow

    NASA Astrophysics Data System (ADS)

    Kelleners, T.

    2015-12-01

    A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Both liquid water flow and water vapor flow are included. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from a high-elevation rangeland soil that is subject to significant soil freezing and a mountainous forest soil that is snow-covered for about 8 months of the year. Soil hydraulic parameters are mostly based on measurements and only vegetation parameters are fine-tuned to match measured and calculated soil water content, soil & snow temperature, and snow height. Modeling statistics for both systems show good performance for temperature, intermediate performance for snow height, and relatively low performance for soil water content, in accordance with earlier results with an older version of the model.

  8. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    EPA Science Inventory

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  9. The Fate and Transport of Glyphosate and its Degradation Product, Aminomethylphosphonic Acid (AMPA), in Water

    NASA Astrophysics Data System (ADS)

    Scribner, E.; Meyer, M. T.

    2006-05-01

    Since 2001, the U.S. Geological Survey (USGS) has investigated the fate and transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), in surface water, and more recently in tile-drain flow, soil, and wet deposition. According to U.S. Environmental Protection Agency sources, glyphosate is among the world's most widely used herbicides. In 2004, glyphosate usage estimates indicated that between 103 and 113 million pounds were applied annually to crops in the United States. The use of glyphosate over a wide geographic area suggests that this herbicide might be a potential concern for air, water, and soil quality as well as measured in high concentrations in streams; therefore, it is important to monitor its fate and transport in ground-water/surface-water systems. National, regional, and field-scale studies conducted by the USGS National Water-Quality Assessment and Toxic Substance Hydrology Programs have studied the fate and transport of glyphosate in overland flow, tile- drain flow, surface water, soil, and wet-deposition samples. The samples were analyzed for glyphosate and AMPA by using derivatization and online solid-phase extraction with liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS methods developed by the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas. During spring, summer, and fall 2002 runoff periods in 50 Midwestern streams, glyphosate was detected at or above the 0.10 micrograms per liter detection limit in 35, 41, and 31 percent of samples, respectively. AMPA was detected in 53, 82, and 75 percent of samples, respectively. Results of 128 samples from a field study showed that glyphosate was transported as a narrow high- concentration pulse during the first period of runoff after application and that the concentration of glyphosate in runoff was greater than the concentration of AMPA. In tile-drain flow, glyphosate and AMPA were transported in a broad low-concentration pulse during these same

  10. Surface water-ground water interaction: Herbicide transport into municipal collector wells

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Carr, J.D.; Steele, G.V.; Thurman, E.M.; Bastian, K.C.; Dormedy, D.F.

    1999-01-01

    During spring runoff events, herbicides in the Platte River are transported through an alluvial aquifer into collector wells located on an island in the river in 6 to 7 d. During two spring runoff events in 1995 and 1996, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] concentrations in water from these wells reached approximately 7 ??g/L, 70 times more than the background concentration in ground water. Concentrations of herbicides and metabolites in the collector wells generally were one-half to one-fifth the concentrations of herbicides in the river for atrazine, alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)-acetanilide], alachlor ethane-sulfonic acid (ESA) [2-((2,6-diethylphenyl) (methoxymethyl)amino)-2- oxoethane-sulfonic acid], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide], cyanazine [2-((4-chloro-6-(ethyl-amino)- 1,3,5 triazin-2-yl)-amino)-2-methylpropionitrile], and acetochlor [2-chloro- N-(ethoxymethyl)-N-(2-ethyl-6methyl-phenyl) acetamide], suggesting that 20 to 50% river water could be present in the water from the collector wells, assuming no degradation. The effect of the river on the quality of water from the collector wells can be reduced through selective management of horizontal laterals of the collector wells. The quality of the water from the collector wells is dependent on the (i) selection of the collector well used, (ii) number and selection of laterals used, (iii) chemical characteristics of the contaminant, and (iv) relative mixing of the Platte River and a major upstream tributary.

  11. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  12. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  13. Fast water transport in graphene nanofluidic channels.

    PubMed

    Xie, Quan; Alibakhshi, Mohammad Amin; Jiao, Shuping; Xu, Zhiping; Hempel, Marek; Kong, Jing; Park, Hyung Gyu; Duan, Chuanhua

    2018-03-01

    Superfast water transport discovered in graphitic nanoconduits, including carbon nanotubes and graphene nanochannels, implicates crucial applications in separation processes and energy conversion. Yet lack of complete understanding at the single-conduit level limits development of new carbon nanofluidic structures and devices with desired transport properties for practical applications. Here, we show that the hydraulic resistance and slippage of single graphene nanochannels can be accurately determined using capillary flow and a novel hybrid nanochannel design without estimating the capillary pressure. Our results reveal that the slip length of graphene in the graphene nanochannels is around 16 nm, albeit with a large variation from 0 to 200 nm regardless of the channel height. We corroborate this finding with molecular dynamics simulation results, which indicate that this wide distribution of the slip length is due to the surface charge of graphene as well as the interaction between graphene and its silica substrate.

  14. Water permeation through the sodium-dependent galactose cotransporter vSGLT.

    PubMed

    Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael

    2010-10-06

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions.

    PubMed

    Bahtz, Jana; Gunes, Deniz Z; Hughes, Eric; Pokorny, Lea; Riesch, Francesca; Syrbe, Axel; Fischer, Peter; Windhab, Erich J

    2015-05-19

    This contribution reports on the mass transport kinetics of osmotically imbalanced water-in-oil-in-water (W1/O/W2) emulsions. Although frequently studied, the control of mass transport in W1/O/W2 emulsions is still challenging. We describe a microfluidics-based method to systematically investigate the impact of various parameters, such as osmotic pressure gradient, oil phase viscosity, and temperature, on the mass transport. Combined with optical microscopy analyses, we are able to identify and decouple the various mechanisms, which control the dynamic droplet size of osmotically imbalanced W1/O/W2 emulsions. So, swelling kinetics curves with a very high accuracy are generated, giving a basis for quantifying the kinetic aspects of transport. Two sequential swelling stages, i.e., a lag stage and an osmotically dominated stage, with different mass transport mechanisms are identified. The determination and interpretation of the different stages are the prerequisite to control and trigger the swelling process. We show evidence that both mass transport mechanisms can be decoupled from each other. Rapid osmotically driven mass transport only takes place in a second stage induced by structural changes of the oil phase in a lag stage, which allow an osmotic exchange between both water phases. Such structural changes are strongly facilitated by spontaneous water-in-oil emulsification. The duration of the lag stage is pressure-independent but significantly influenced by the oil phase viscosity and temperature.

  16. The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.

    PubMed

    Smith, D J; Schulte, M; Bischof, J C

    1998-10-01

    Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled

  17. Modeling particle transport and discoloration risk in drinking water distribution networks

    NASA Astrophysics Data System (ADS)

    van Summeren, Joost; Blokker, Mirjam

    2017-10-01

    Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs). It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  18. Total Water Vapor Transport Observed in Twelve Atmospheric Rivers over the Northeastern Pacific Ocean Using Dropsondes

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.; Iacobellis, S.; Neiman, P. J.; Cordeira, J. M.; Spackman, J. R.; Waliser, D. E.; Wick, G. A.; White, A. B.; Fairall, C. W.

    2014-12-01

    Demory et al (2013) recently showed that the global water cycle in climate models, including the magnitude of water vapor transport, is strongly influenced by the model's spatial resolution. The lack of offshore observations is noted as a serious limitation in determining the correct amount of transport. Due to the key role of atmospheric rivers (ARs) in determining the global distribution of water vapor, quantifying transport from ARs is a high priority. This forms a foundation of the CalWater-2 experiment aimed at sampling many ARs during 2014-2018. In February 2014, an "early-start" deployment of the NOAA G-IV research aircraft sampled 10 ARs over the northeast Pacific Ocean. On six of these flights, dropsondes were deployed in a line crossing the AR so as to robustly sample the total water vapor transport (TVT). The TVT is defined here as the sum of the vertically integrated horizontal water vapor transport (IVT) in the AR using a baseline that stretches from its warm southern (or eastern) edge to its cool northern (or western) edge. TVT includes both AR-parallel and AR-perpendicular transport. These data double the overall number of such cross-AR airborne samples suitable for calculating TVT. Analysis of TVT for these six new samples, in combination with the six previous samples from the preceding 16 years (from CalJet, WISPAR, and a Hawaii-based campaign), will be shown. A comparison will be made of the AR width and TVT determined using the well-established integrated water vapor (IWV) threshold of 2 cm, versus an IVT threshold of 250 kg m-1 s-1. Finally, the data from a well sampled case on 13 February 2014 (23 sondes with 75-100 km spacing) will be used to assess the sensitivity of TVT to dropsonde horizontal spacing and vertical resolution. This sensitivity analysis is of practical importance for the upcoming CalWater-2 field campaign where the G-IV will be used to sample many additional AR events, due to the relatively high cost of the dropsondes.

  19. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2017-08-28

    Ligand- or voltage-driven stochastic gating-the structural rearrangements by which the channel switches between its open and closed states-is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  20. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Bezrukov, Sergey M.

    2017-08-01

    Ligand- or voltage-driven stochastic gating—the structural rearrangements by which the channel switches between its open and closed states—is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  1. Presence of Trifolium repens Promotes Complementarity of Water Use and N Facilitation in Diverse Grass Mixtures.

    PubMed

    Hernandez, Pauline; Picon-Cochard, Catherine

    2016-01-01

    Legume species promote productivity and increase the digestibility of herbage in grasslands. Considerable experimental data also indicate that communities with legumes produce more above-ground biomass than is expected from monocultures. While it has been attributed to N facilitation, evidence to identify the mechanisms involved is still lacking and the role of complementarity in soil water acquisition by vertical root differentiation remains unclear. We used a 20-months mesocosm experiment to investigate the effects of species richness (single species, two- and five-species mixtures) and functional diversity (presence of the legume Trifolium repens) on a set of traits related to light, N and water use and measured at community level. We found a positive effect of Trifolium presence and abundance on biomass production and complementarity effects in the two-species mixtures from the second year. In addition the community traits related to water and N acquisition and use (leaf area, N, water-use efficiency, and deep root growth) were higher in the presence of Trifolium. With a multiple regression approach, we showed that the traits related to water acquisition and use were with N the main determinants of biomass production and complementarity effects in diverse mixtures. At shallow soil layers, lower root mass of Trifolium and higher soil moisture should increase soil water availability for the associated grass species. Conversely at deep soil layer, higher root growth and lower soil moisture mirror soil resource use increase of mixtures. Altogether, these results highlight N facilitation but almost soil vertical differentiation and thus complementarity for water acquisition and use in mixtures with Trifolium. Contrary to grass-Trifolium mixtures, no significant over-yielding was measured for grass mixtures even those having complementary traits (short and shallow vs. tall and deep). Thus, vertical complementarity for soil resources uptake in mixtures was not only

  2. Claudin-2-mediated cation and water transport share a common pore

    PubMed Central

    Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M.; Schulzke, Jörg-Dieter; Fromm, Michael; Yu, Alan S.L.

    2016-01-01

    Aim Claudin-2 is a tight junction protein typically located in “leaky” epithelia exhibiting large paracellular permeabilities like small intestine and proximal kidney tubule. Former studies revealed that claudin-2 forms paracellular channels for small cations like sodium and potassium and also paracellular channels for water. This study analyzes whether the diffusive transport of sodium and water occurs through a common pore of the claudin-2 channel. Methods Wild-type claudin-2 and different claudin-2 mutants were expressed in MDCK I kidney tubule cells using an inducible system. Ion and water permeability and the effect of blocking reagents on both were investigated on different clones of the mutants. Results Neutralization of a negatively charged cation interaction site in the pore with the mutation, D65N, decreased both, sodium permeability and water permeability. Claudin-2 mutants (I66C and S68C) with substitution of the pore-lining amino acids with cysteine were used to test the effect of steric blocking of the claudin-2 pore by thiol-reactive reagents. Addition of thiol-reactive reagents to these mutants simultaneously decreased conductance and water permeability. Remarkably, all experimental perturbations caused parallel changes in ion conductance and water permeability, disproving different or independent passage pathways. Conclusion Our results indicate that claudin-2-mediated cation and water transport are frictionally coupled and share a common pore. This pore is lined and determined in permeability by amino acid residues of the first extracellular loop of claudin-2. PMID:27359349

  3. Virus fate and transport during artificial recharge with recycled water

    USGS Publications Warehouse

    Anders, Robert; Chrysikopoulos, C.V.

    2005-01-01

    A field‐scale experiment was conducted at a research site using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human viruses, bromide as a conservative tracer, and tertiary‐treated municipal wastewater (recycled water) to investigate the fate and transport of viruses during artificial recharge. Observed virus concentrations were fitted using a mathematical model that simulates virus transport in one‐dimensional, homogeneous, water‐saturated porous media accounting for virus sorption (or filtration), virus inactivation, and time‐dependent source concentration. The fitted time‐dependent clogging rate constants were used to estimate the collision efficiencies for bacteriophage MS2 and PRD1 during vertical fully saturated flow. Furthermore, the corresponding time‐dependent collision efficiencies for both bacteriophage asymptotically reached similar values at the various sampling locations. These results can be used to develop an optimal management scenario to maximize the amount of recycled water that can be applied to the spreading grounds while still maintaining favorable attachment conditions for virus removal.

  4. Optimum design for effective water transport through a double-layered porous hydrogel inspired by plant leaves

    NASA Astrophysics Data System (ADS)

    Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon

    2014-11-01

    Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.

  5. Interface-facilitated energy transport in coupled Frenkel-Kontorova chains

    NASA Astrophysics Data System (ADS)

    Su, Rui-Xia; Yuan, Zong-Qiang; Wang, Jun; Zheng, Zhi-Gang

    2016-04-01

    The role of interface couplings on the energy transport of two coupled Frenkel-Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon-phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon-phonon scattering results in the suppressed energy transport.

  6. A genetic fuzzy analytical hierarchy process based projection pursuit method for selecting schemes of water transportation projects

    NASA Astrophysics Data System (ADS)

    Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming

    2006-10-01

    The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix A it produces is relatively small, and the result obtained is both stable and accurate; therefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.

  7. Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis

    PubMed Central

    Morelle, Johann; Sow, Amadou; Hautem, Nicolas; Bouzin, Caroline; Crott, Ralph

    2015-01-01

    Encapsulating peritoneal sclerosis (EPS) is a rare but severe complication of peritoneal dialysis (PD) characterized by extensive fibrosis of the peritoneum. Changes in peritoneal water transport may precede EPS, but the mechanisms and potential predictive value of that transport defect are unknown. Among 234 patients with ESRD who initiated PD at our institution over a 20-year period, 7 subsequently developed EPS. We evaluated changes in peritoneal transport over time on PD in these 7 patients and in 28 matched controls using 3.86% glucose peritoneal equilibration tests. Compared with long-term PD controls, patients with EPS showed early loss of ultrafiltration capacity and sodium sieving before the onset of overt EPS. Multivariate analysis revealed that loss of sodium sieving was the most powerful predictor of EPS. Compared with long-term PD control and uremic peritoneum, EPS peritoneum showed thicker submesothelial fibrosis, with increased collagen density and a greater amount of thick collagen fibers. Reduced osmotic conductance strongly correlated with the degree of peritoneal fibrosis, but not with vasculopathy. Peritoneal fibrosis was paralleled by an excessive upregulation of vascular endothelial growth factor and endothelial nitric oxide synthase, but the expression of endothelial aquaporin-1 water channels was unaltered. Our findings suggest that an early and disproportionate reduction in osmotic conductance during the course of PD is an independent predictor of EPS. This functional change is linked to specific alterations of the collagen matrix in the peritoneal membrane of patients with EPS, thereby validating the serial three-pore membrane/fiber matrix and distributed models of peritoneal transport. PMID:25636412

  8. Using the Image Analysis Method for Describing Soil Detachment by a Single Water Drop Impact

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej

    2012-01-01

    The aim of the present work was to develop a method based on image analysis for describing soil detachment caused by the impact of a single water drop. The method consisted of recording tracks made by splashed particles on blotting paper under an optical microscope. The analysis facilitated division of the recorded particle tracks on the paper into drops, “comets” and single particles. Additionally, the following relationships were determined: (i) the distances of splash; (ii) the surface areas of splash tracks into relation to distance; (iii) the surface areas of the solid phase transported over a given distance; and (iv) the ratio of the solid phase to the splash track area in relation to distance. Furthermore, the proposed method allowed estimation of the weight of soil transported by a single water drop splash in relation to the distance of the water drop impact. It was concluded that the method of image analysis of splashed particles facilitated analysing the results at very low water drop energy and generated by single water drops.

  9. Applications of the compensating pressure theory of water transport.

    PubMed

    Canny, M

    1998-07-01

    Some predictions of the recently proposed theory of long-distance water transport in plants (the Compensating Pressure Theory) have been verified experimentally in sunflower leaves. The xylem sap cavitates early in the day under quite small water stress, and the compensating pressure P (applied as the tissue pressure of turgid cells) pushes water into embolized vessels, refilling them during active transpiration. The water potential, as measured by the pressure chamber or psychrometer, is not a measure of the pressure in the xylem, but (as predicted by the theory) a measure of the compensating pressure P. As transpiration increases, P is increased to provide more rapid embolism repair. In many leaf petioles this increase in P is achieved by the hydrolysis of starch in the starch sheath to soluble sugars. At night P falls as starch is reformed. A hypothesis is proposed to explain these observations by pressure-driven reverse osmosis of water from the ground parenchyma of the petiole. Similar processes occur in roots and are manifested as root pressure. The theory requires a pump to transfer water from the soil into the root xylem. A mechanism is proposed by which this pump may function, in which the endodermis acts as a one-way valve and a pressure-confining barrier. Rays and xylem parenchyma of wood act like the xylem parenchyma of petioles and roots to repair embolisms in trees. The postulated root pump permits a re-appraisal of the work done by evaporation during transpiration, leading to the proposal that in tall trees there is no hydrostatic gradient to be overcome in lifting water. Some published observations are re-interpreted in terms of the theory: doubt is cast on the validity of measurements of hydraulic conductance of wood; vulnerability curves are found not to measure the cavitation threshold of water in the xylem, but the osmotic pressure of the xylem parenchyma; if measures of xylem pressure and of hydraulic conductance are both suspect, the accepted

  10. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    NASA Astrophysics Data System (ADS)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  11. A novel major facilitator superfamily transporter in Penicillium digitatum (PdMFS2) is required for prochloraz resistance, conidiation and full virulence.

    PubMed

    Wu, Zhi; Wang, Shengqiang; Yuan, Yongze; Zhang, Tingfu; Liu, Jing; Liu, Deli

    2016-08-01

    To clone a novel major facilitator superfamily (MFS, a large protein family with diverse physiological functions in all kingdoms) transporter gene, Pdmfs2, and characterize its function in Penicillium digitatum. A novel MFS transporter gene, Pdmfs2, was isolated from P. digitatum. The full-length DNA of Pdmfs2 had a 1590 bp ORF encoding a full-size MFS transporter with 529 amino acids. In a prochloraz-resistant strain (PdHS-F6), Pdmfs2 transcript level was up-regulated compared with the prochloraz-sensitive strain (PdHS-E3) and could be induced by 7 μg prochloraz/ml. The deletion of Pdmfs2 (ΔPdmfs2) in PdHS-F6 led to increased susceptibility to prochloraz and lower EC50 value (the concentration of prochloraz producing 50 % growth inhibition) compared with the PdHS-F6 or complementation strain (COPdmfs2). The ΔPdmfs2 strain was defective in conidia yield and virulence towards citrus fruits, while the complementation of Pdmfs2 could restore the phenotypic features to a large extent. Pdmfs2 is the second MFS transporter gene in P. digitatum and is required for prochloraz resistance, conidiation and full virulence.

  12. The application of electrical resistance measurements to water transport in lime-masonry systems

    NASA Astrophysics Data System (ADS)

    Ball, R. J.; Allen, G. C.; Carter, M. A.; Wilson, M. A.; Ince, C.; El-Turki, A.

    2012-03-01

    The paper describes an experimental determination of impedance spectroscopy derived resistance measurements to record water transport in lime-masonry systems. It strongly supports the use of Sharp Front theory and Boltzmann's distribution law of statistical thermodynamics to corroborate the data obtained. A novel approach is presented for the application of impedance measurements to the water transport between freshly mixed mortars and clay brick substrates. Once placed, fresh mortar is dewatered by brick and during this time the volume fraction water content of the mortar is reduced. An equation is derived relating this change in water content to the bulk resistance of the mortar. Experimental measurements on hydraulic lime mortars placed in contact with brick prisms confirm the theoretical predictions. Further, the results indicate the time at which dewatering of a mortar bed of given depth is completed. The technique has then potential to be applied for in situ monitoring of dewatering as a means of giving insight into the associated changes in mechanical and chemical properties.

  13. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1.

    PubMed

    Bodoy, Susanna; Fotiadis, Dimitrios; Stoeger, Claudia; Kanai, Yoshikatsu; Palacín, Manuel

    2013-01-01

    The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  15. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    PubMed

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  16. "Sticky"-Ends-Guided Creation of Functional Hollow Nanopores for Guest Encapsulation and Water Transport.

    PubMed

    Huo, Yanping; Zeng, Huaqiang

    2016-05-17

    Commercial uses of water-transporting aquaporins for seawater desalination and wastewater reclamation/reuse are being investigated in both academia and the industry. Presently, structural complexity, stability, scalability, and activity reconstitution of these costly channel proteins still present substantial challenges to scientists and engineers. An attractive strategy is to develop robust synthetic water channels able to mimic the water-transporting function of aquaporins for utility in the making of next generation of water channel-based biomimetic porous membranes for various water purification applications. In sharp contrast to burgeoning development in constructing synthetic ion channels over the past four decades, very limited progress has been made in the area of synthetic water channels. A handful of such examples include the first report by Percec in 2007 (Percec et al. J. Am. Chem. Soc. 2007, 129, 11698-11699), which was followed by Barboiu in 2011 (Barboiu et al. Angew. Chem., Int. Ed. 2011, 50, 11366-11372), Gong and Hou in 2012 (Gong et al. Nat. Commun. 2012, 3, 949; Hou et al. J. Am. Chem. Soc. 2012, 134, 8384-8387), and Zeng in 2014 (Zeng et al. J. Am. Chem. Soc. 2014, 136, 14270-14276). Radically deviating from the fact that the discovery of novel synthetic channel systems with desired transport selectivity is most often empirical and very often serendipitous, we have instead adopted a more rational designer approach whereby molecular building blocks have been carefully designed from scratch to perform their intended built-in functions. Our designer journey started in 2008, two years after I started leading a group at the National University of Singapore. Since then, we have been actively investigating the use of designed water-binding "aquafoldamers" to construct synthetic water channels for the rapid and selective transport of water molecules ideally with the exclusion of all other nonproton molecular species. Toward this goal, we designed and

  17. Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4.

    PubMed

    Kraft, Thomas E; Hresko, Richard C; Hruz, Paul W

    2015-12-01

    The insulin-responsive facilitative glucose transporter GLUT4 is of fundamental importance for maintenance of glucose homeostasis. Despite intensive effort, the ability to express and purify sufficient quantities of structurally and functionally intact protein for biophysical analysis has previously been exceedingly difficult. We report here the development of novel methods to express, purify, and functionally reconstitute GLUT4 into detergent micelles and proteoliposomes. Rat GLUT4 containing FLAG and His tags at the amino and carboxy termini, respectively, was engineered and stably transfected into HEK-293 cells. Overexpression in suspension culture yielded over 1.5 mg of protein per liter of culture. Systematic screening of detergent solubilized GLUT4-GFP fusion protein via fluorescent-detection size exclusion chromatography identified lauryl maltose neopentyl glycol (LMNG) as highly effective for isolating monomeric GLUT4 micelles. Preservation of structural integrity and ligand binding was demonstrated via quenching of tryptophan fluorescence and competition of ATB-BMPA photolabeling by cytochalasin B. GLUT4 was reconstituted into lipid nanodiscs and proper folding was confirmed. Reconstitution of purified GLUT4 with amphipol A8-35 stabilized the transporter at elevated temperatures for extended periods of time. Functional activity of purified GLUT4 was confirmed by reconstitution of LMNG-purified GLUT4 into proteoliposomes and measurement of saturable uptake of D-glucose over L-glucose. Taken together, these data validate the development of an efficient means to generate milligram quantities of stable and functionally intact GLUT4 that is suitable for a wide array of biochemical and biophysical analyses. © 2015 The Protein Society.

  18. Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA

    USGS Publications Warehouse

    Noble, Marlene A.; Burt Jones,; Peter Hamilton,; Xu, Jingping; George Robertson,; Rosenfeld, Leslie; John Largier,

    2009-01-01

    In the summer of 2001, a coastal ocean measurement program in the southeastern portion of San Pedro Bay, CA, was designed and carried out. One aim of the program was to determine the strength and effectiveness of local cross-shelf transport processes. A particular objective was to assess the ability of semidiurnal internal tidal currents to move suspended material a net distance across the shelf. Hence, a dense array of moorings was deployed across the shelf to monitor the transport patterns associated with fluctuations in currents, temperature and salinity. An associated hydrographic program periodically monitored synoptic changes in the spatial patterns of temperature, salinity, nutrients and bacteria. This set of measurements show that a series of energetic internal tides can, but do not always, transport subthermocline water, dissolved and suspended material from the middle of the shelf into the surfzone. Effective cross-shelf transport occurs only when (1) internal tides at the shelf break are strong and (2) subtidal currents flow strongly downcoast. The subtidal downcoast flow causes isotherms to tilt upward toward the coast, which allows energetic, nonlinear internal tidal currents to carry subthermocline waters into the surfzone. During these events, which may last for several days, the transported water remains in the surfzone until the internal tidal current pulses and/or the downcoast subtidal currents disappear. This nonlinear internal tide cross-shelf transport process was capable of carrying water and the associated suspended or dissolved material from the mid-shelf into the surfzone, but there were no observation of transport from the shelf break into the surfzone. Dissolved nutrients and suspended particulates (such as phytoplankton) transported from the mid-shelf into the nearshore region by nonlinear internal tides may contribute to nearshore algal blooms, including harmful algal blooms that occur off local beaches.

  19. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Aleksey; Mao, Runfang; Lee, Ming-Tsung; Neimark, Alexander V.

    2018-01-01

    We present a coarse-grained model of the acid form of Nafion membrane that explicitly includes proton transport. This model is based on a soft-core bead representation of the polymer implemented into the dissipative particle dynamics (DPD) simulation framework. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with water beads. Morse bond formation and breakup artificially mimics the Grotthuss hopping mechanism of proton transport. The proposed DPD model is parameterized to account for the specifics of the conformations and flexibility of the Nafion backbone and sidechains; it treats electrostatic interactions in the smeared charge approximation. The simulation results qualitatively, and in many respects quantitatively, predict the specifics of nanoscale segregation in the hydrated Nafion membrane into hydrophobic and hydrophilic subphases, water diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from a collection of isolated water clusters to a 3D network of pores filled with water embedded in the hydrophobic matrix. The segregated morphology is characterized in terms of the pore size distribution with the average size growing with hydration from ˜1 to ˜4 nm. Comparison of the predicted water diffusivity with the experimental data taken from different sources shows good agreement at high and moderate hydration and substantial deviation at low hydration, around and below the percolation threshold. This discrepancy is attributed to the dynamic percolation effects of formation and rupture of merging bridges between the water clusters, which become progressively important at low hydration, when the coarse-grained model is unable to mimic the fine structure of water network that includes singe molecule bridges. Selected simulations of water diffusion are performed for the alkali metal substituted membrane which demonstrate the effects of the counter-ions on

  20. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices

    PubMed Central

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Sawchuk, Megan G.; Scarpella, Enrico; Ljung, Karin

    2016-01-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS. PMID:27119525

  1. Transport and Retention of Concentrated Oil-in-Water Emulsions in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Muller, K.; Esahani, S. G.; Steven, C. C.; Ramsburg, A.

    2015-12-01

    Oil-in-water emulsions are widely employed to promote biotic reduction of contaminants; however, emulsions can also be used to encapsulate and deliver active ingredients required for long-term subsurface treatment. Our research focuses on encapsulating alkalinity-releasing particles in oil-in-water emulsions for sustained control of subsurface pH. Typical characteristics of these emulsions include kinetically stable for >20 hr; 20% soybean oil; 1 g/mL density; 8-10 cP viscosity; and 1.5 μm droplet d50, with emulsions developed for favorable subsurface delivery. The viscosity of the oil-in-water emulsions was found to be a function of oil content. Ultimately we aim to model both emulsion delivery and alkalinity release (from retained emulsion droplets) to provide a description of pH treatment. Emulsion transport and retention was investigated via a series of 1-d column experiments using varying particle size fractions of Ottawa sand. Emulsions were introduced for approximately two pore volumes followed by a flush of background solution (approx. ρ=1 g/mL; μ=1cP). Emulsion breakthrough curves exhibit an early fall on the backside of the breakthrough curve along with tailing. Deposition profiles are found to be hyper-exponential and unaffected by extended periods of background flow. Particle transport models established for dilute suspensions are unable to describe the transport of the concentrated emulsions considered here. Thus, we explore the relative importance of additional processes driving concentrated droplet transport and retention. Focus is placed on evaluating the role of attachment-detachment-straining processes, as well as the influence of mixing from both viscous instabilities and variable water saturation due to deposited mass.

  2. 75 FR 8412 - Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0047] Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of Accidental Radionuclide Releases; Solicitation of Public... ground water flow and transport of accidental radionuclide releases necessary to demonstrate compliance...

  3. Transendothelial Transport and Its Role in Therapeutics

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients. PMID:27355037

  4. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris

    In this study, a well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (U aq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time seriesmore » trends for U aq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in U aq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U aq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While U aq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less

  5. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone

    DOE PAGES

    Zachara, John M.; Chen, Xingyuan; Murray, Chris; ...

    2016-03-04

    In this study, a well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (U aq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time seriesmore » trends for U aq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in U aq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U aq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While U aq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less

  6. Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblast

    PubMed Central

    Cleal, J K; Glazier, J D; Ntani, G; Crozier, S R; Day, P E; Harvey, N C; Robinson, S M; Cooper, C; Godfrey, K M; Hanson, M A; Lewis, R M

    2011-01-01

    Fetal growth depends on placental transfer of amino acids from maternal to fetal blood. The mechanisms of net amino acid efflux across the basal membrane (BM) of the placental syncytiotrophoblast to the fetus, although vital for amino acid transport, are poorly understood. We examined the hypothesis that facilitated diffusion by the amino acid transporters TAT1, LAT3 and LAT4 plays an important role in this process, with possible effects on fetal growth. Amino acid transfer was measured in isolated perfused human placental cotyledons (n= 5 per experiment) using techniques which distinguish between different transport processes. Placental TAT1, LAT3 and LAT4 proteins were measured, and mRNA expression levels (measured using real-time quantitative-PCR) were related to fetal and neonatal anthropometry and dual-energy X-ray absorptiometry measurements of neonatal lean mass in 102 Southampton Women's Survey (SWS) infants. Under conditions preventing transport by amino acid exchangers, all amino acids appearing in the fetal circulation were substrates of TAT1, LAT3 or LAT4. Western blots demonstrated the presence of TAT1, LAT3 and LAT4 in placental BM preparations. Placental TAT1 and LAT3 mRNA expression were positively associated with measures of fetal growth in SWS infants (P < 0.05). We provide evidence that the efflux transporters TAT1, LAT3 and LAT4 are present in the human placental BM, and may play an important role in the net efflux of amino acids to the fetus. Unlike other transporters they can increase fetal amino acid concentrations. Consistent with a role in placental amino acid transfer capacity and fetal growth TAT1 and LAT3 mRNA expression showed positive associations with infant size at birth. PMID:21224231

  7. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier

  8. Proceedings: 2002 Workshop on Pressurized Water Reactor Elevated Feedwater Iron Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-11-01

    Some pressurized water reactor (PWR) stations have experienced difficulty with maintaining feedwater (FW) iron concentrations below recommended concentration on a regular basis. A workshop held on September 17-18 in Dana Point, California, addressed the challenge of elevated feedwater iron transport in PWRs.

  9. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters.

    PubMed

    Li, Zhen; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A

    2013-11-01

    This article characterizes, experimentally and theoretically, the transport and retention of engineered nanoparticles (NP) through sand filters at drinking water treatment plants (DWTPs) under realistic conditions. The transport of four commonly used NPs (ZnO, CeO2, TiO2, and Ag, with bare surfaces and coating agents) through filter beds filled with sands from either acid washed and calcined, freshly acquired filter media, and used filter media from active filter media, were investigated. The study was conducted using water obtained upstream of the sand filter at DWTP. The results have shown that capping agents have a determinant importance in the colloidal stability and transport of NPs through the different filter media. The presence of the biofilm in used filter media increased adsorption of NPs but its effects in retaining capped NPs was less significant. The data was used to build a mathematical model based on the advection-dispersion equation. The model was used to simulate the performance of a scale-up sand filter and the effects on filtration cycle of traditional sand filtration system used in DWTPs. Published by Elsevier Ltd.

  10. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Gregoire, Caroline; Capel, Paul D.; Coupe, Richard H.; Kalkhoff, Stephen J.

    2011-01-01

    CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.

  11. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports

    PubMed Central

    Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea. PMID:27410682

  12. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.

    PubMed

    Daryabor, Farshid; Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.

  13. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.

    PubMed

    Montalbetti, Nicolas; Dalghi, Marianela G; Albrecht, Christiane; Hediger, Matthias A

    2014-03-01

    Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

  14. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.

    PubMed

    Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-03-06

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0-10 mg L(-1)), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0-0.75), and pH (6.0-10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L(-1), greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  15. Basic Residues R260 and K357 Affect the Conformational Dynamics of the Major Facilitator Superfamily Multidrug Transporter LmrP

    PubMed Central

    Wang, Wei; van Veen, Hendrik W.

    2012-01-01

    Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H+(Na+) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by

  16. Water Transport and the Evolution of CM Parent Bodies

    NASA Technical Reports Server (NTRS)

    Coker, R.; Cohen, B.

    2014-01-01

    Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H2O or OH) among both the main-belt and near-earth asteroids is important for understanding a wide range of solar system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-µm bands indicative of bound OH or H2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0-25 C for less than 15 Myr after asteroid formation. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 percent of the asteroid's volume rising to 150 C and higher, due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high porosity, water-saturated asteroid very limited liquid water flow is predicted (distances of 100's nm at most). This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and fluid transport as well

  17. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    NASA Technical Reports Server (NTRS)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  18. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  19. Transport Phenomena of Water in Molecular Fluidic Channels

    PubMed Central

    Vo, Truong Quoc; Kim, BoHung

    2016-01-01

    In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices. PMID:27650138

  20. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry.

    PubMed

    Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F Luis; Alleva, Karina

    2016-03-29

    Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    PubMed Central

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  2. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    PubMed

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  3. The comparative analysis of pre-flood season precipitation and water vapor transportation over guangdong before and after “Hiatus”

    NASA Astrophysics Data System (ADS)

    Fan, Lingli

    2018-02-01

    Relation between pre-flood season precipitation and water vapor transport in Guangdong was analysed by using the monthly observed precipitation data, reanalysis data of ERA, NCEP/NCAR, and OAFlux during 1979-2015, and the differences between before/after global warming “hiatus” were studied. Results showed that, after “hiatus”, during the pre-flood season, skin-temperature, evaporation, and the absolute humidity over the ocean near to Southern China was decreasing, and over land was increasing. So, the water cycle over the ocean had slowed down and over land had speed up. The absolute humidity difference between the ocean and the land was reduced. However, at the same time, the total wind speed in Southern China had decreased. So, the water vapor transport from the ocean to the land had reduced. The Eastern Guangdong had an anomalous convergence of meridional water vapor transport, led to increased precipitation; but in Western Guangdong, there was no meridional water vapor transport, so precipitation had a decrease.

  4. Transport of lincomycin to surface and ground water from manure-amended cropland.

    PubMed

    Kuchta, Sandra L; Cessna, Allan J; Elliott, Jane A; Peru, Kerry M; Headley, John V

    2009-01-01

    Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.

  5. Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport[W][OA

    PubMed Central

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-01-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport. PMID:21571952

  6. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    PubMed

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  7. Transport of Water, Carbon, and Sediment Through the Yukon River Basin

    USGS Publications Warehouse

    Brabets, Timothy P.; Schuster, Paul F.

    2008-01-01

    INTRODUCTION In 2001, the U.S. Geological Survey (USGS) began a water-quality study of the Yukon River. The Yukon River Basin (YRB), which encompasses 330,000 square miles in northwestern Canada and central Alaska (fig. 1), is one of the largest and most diverse ecosystems in North America. The Yukon River is more than 1,800 miles long and is one of the last great uncontrolled rivers in the world, and is essential to the eastern Bering Sea and Chukchi Sea ecosystems, providing freshwater runoff, sediments, and nutrients (Brabets and others, 2000). Despite its remoteness, recent studies (Hinzman and others, 2005; Walvoord and Striegl, 2007) indicate the YRB is changing. These changes likely are in response to a warming trend in air temperature of 1.7i??C from 1951 to 2001 (Hartmann and Wendler, 2005). As a result of this warming trend, permafrost is thawing in the YRB, ice breakup occurs earlier on the main stem of the Yukon River and its tributaries, and timing of streamflow and movement of carbon and sediment through the basin is changing (Hinzman and others, 2005; Walvoord and Striegl, 2007). One of the most striking characteristics in the YRB is its seasonality. In the YRB, more than 75 percent of the annual streamflow runoff occurs during a five month period, May through September. This is important because streamflow determines when, where, and how much of a particular constituent will be transported. As an example, more than 95 percent of all sediment transported during an average year also occurs during this period (Brabets and others, 2000). During the other 7 months, streamflow, concentrations of sediment and other water-quality constituents are low and little or no sediment transport occurs in the Yukon River and its tributaries. Streamflow and water-quality data have been collected at more than 50 sites in the YRB (Dornblaser and Halm, 2006; Halm and Dornblaser, 2007). Five sites have been sampled more than 30 times and others have been sampled twice

  8. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    NASA Astrophysics Data System (ADS)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  9. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  10. 33 CFR 336.2 - Transportation of dredged material for the purpose of disposal into ocean waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... material for the purpose of disposal into ocean waters. 336.2 Section 336.2 Navigation and Navigable Waters... WATERS OF THE U.S. AND OCEAN WATERS § 336.2 Transportation of dredged material for the purpose of disposal into ocean waters. (a) Applicable law. Section 103(a) of the ODA provides that the Corps of...

  11. 33 CFR 336.2 - Transportation of dredged material for the purpose of disposal into ocean waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material for the purpose of disposal into ocean waters. 336.2 Section 336.2 Navigation and Navigable Waters... WATERS OF THE U.S. AND OCEAN WATERS § 336.2 Transportation of dredged material for the purpose of disposal into ocean waters. (a) Applicable law. Section 103(a) of the ODA provides that the Corps of...

  12. Mrt, a Gene Unique to Fungi, Encodes an Oligosaccharide Transporter and Facilitates Rhizosphere Competency in Metarhizium robertsii1[C][W

    PubMed Central

    Fang, Weiguo; St. Leger, Raymond J.

    2010-01-01

    The symbiotic associations between rhizospheric fungi and plants have enormous environmental impact. Fungi are crucial to plant health as antagonists of pathogens and herbivores and facilitate the uptake of soil nutrients. However, little is known about the plant products obtained by fungi in exchange or how they are transported through the symbiotic interface. Here, we demonstrate that sucrose and raffinose family oligosaccharides in root exudates are important for rhizosphere competence in the insect pathogen Metarhizium robertsii (formerly known as Metarhizium anisopliae). We identified mutants in the Metarhizium raffinose transporter (Mrt) gene of M. robertsii that grew poorly in root exudate and were greatly reduced in rhizosphere competence on grass roots. Studies on sugar uptake, including competition assays, revealed that MRT was a sucrose and galactoside transporter. Disrupting MRT resulted in greatly reduced or no growth on sucrose and galactosides but did not affect growth on monosaccharides or oligosaccharides composed entirely of glucose subunits. Consistent with this, expression of Mrt is exclusively up-regulated by galactosides and sucrose. Expressing a green fluorescent protein gene under the control of the Mrt promoter confirmed that MRT was expressed by germlings in the vicinity of grass roots but not in surrounding bulk soil. Disrupting Mrt did not reduce virulence to insects, demonstrating that Mrt is exclusively involved in M. robertsii’s interactions with plants. To our knowledge, MRT is the first oligosaccharide transporter identified and characterized in a fungus and is unique to filamentous fungi, but homologous genes in Magnaporthe, Ustilago, Aspergillus, Fusarium, Epichloe, and Penicillium species indicate that oligosaccharide transport is of widespread significance. PMID:20837701

  13. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.

    PubMed

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K

    2018-06-06

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  14. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.

    2018-06-01

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  15. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: Evidence for passive and facilitated transport

    PubMed Central

    Stott, Lucy C.; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F.; Bury, Nic R.

    2015-01-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L−1), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport. PMID:25544062

  16. Role of Water Activity on Intergranular Transport at High Pressure

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Brunet, F.; Brantut, N.; Corvisier, J.; Findling, N.; Verlaguet, A.; Lathe, C.

    2016-12-01

    The kinetics of the reaction Ca(OH)2 + MgCO3 = CaCO3 + Mg(OH)2 were investigated at a pressure of 1.8 GPa and temperatures of 120-550°C, using synchrotron X-ray diffraction and analysis of reaction rims on recovered samples. Comparable reaction kinetics were obtained under water saturated ( 10 wt.%), intermediate (0.1-1 wt.%) and dry conditions at 150, 400 and 550°C, respectively, where, in the latter case, water activity was buffered below one (no free water). At a given temperature, these gaps imply differences of several orders of magnitude in terms of reaction kinetics. Microscopy analysis shows that intergranular transport of Ca controls the reaction progress. Grain boundary diffusivities were retrieved from measurements of reaction rim widths on recovered samples. In addition, an innovative reaction rim growth model was developed to simulate and fit kinetic data. The diffusion values thus obtained show that both dry and intermediate datasets are in fact consistent with a water saturated intergranular medium with different levels of connectivity. Diffusivity of Ca in the CaCO3 + Mg(OH)2 rims is found to be much larger than that of Mg in enstatite rims, which emphasizes the prominent role of interactions between diffusing species and mineral surfaces on diffusion. We suggest that diffusivity of major species (Mg, Ca) in low-porosity metamorphic rocks is not only water-content dependent but also strongly depends on the interaction between diffusing species and mineral surfaces. This parameter, which will vary from one rock-type to the other, needs to be considered when extrapolating (P,T,t, xH2O) laboratory diffusion data to metamorphic processes. The present study, along with previous data from the literature, will help quantify the tremendous effect of small water content variations, i.e., within the 0-1 wt. % range, on intergranular transport and reaction kinetics (Gasc et al., J. Pet., In press).

  17. On the hydrogen-bond network and the non-Arrhenius transport properties of water

    NASA Astrophysics Data System (ADS)

    Galamba, N.

    2017-01-01

    We study the structural and dynamic transformations of SPC/E water with temperature, through molecular dynamics (MD), and discuss the non-Arrhenius behavior of the transport properties and orientational dynamics, and the magnitude of the breakdown of the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, in the light of these transformations. Our results show that deviations from Arrhenius behavior of the self-diffusion at low temperatures cannot be exclusively explained by the reduction of water defects (interstitial waters) and the increase of the local tetrahedrality, thus, suggesting the importance of the slowdown of collective rearrangements. Interestingly we find that at high temperatures (T  ⩾  340 K) water defects lead to a slight increase of the tetrahedrality and a decrease of the self-diffusion, opposite to water at low temperatures. The relative magnitude of the breakdown of the SE and the SED relations is found to be in accord with recent experiments (Dehaoui et al 2015 Proc. Natl Acad. Sci. USA 112 12020) resolving the discrepancy with previous MD results. Further, we show that SPC/E hydrogen-bond (HB) lifetimes deviate from Arrhenious behaviour at low temperatures in contrast with some previous MD studies. This deviation is nevertheless much smaller than that observed for the orientational dynamics and the transport properties of water, consistent with the relaxation times measured by several experimental methods. The HB acceptor exchange dynamics defined here by the acceptor switch and reform (librational dynamics) frequencies exhibit similar Arrhenius deviations, thus explaining to some extent the non-Arrhenius behavior of the transport properties and of the orientational dynamics of water. Our results also show that the fraction of HB switches through a bifurcated pathway follow a power law with the temperature decrease. Thus, at low temperatures HB acceptor switches are less frequent but occur on a faster time scale

  18. On the hydrogen-bond network and the non-Arrhenius transport properties of water.

    PubMed

    Galamba, N

    2017-01-11

    We study the structural and dynamic transformations of SPC/E water with temperature, through molecular dynamics (MD), and discuss the non-Arrhenius behavior of the transport properties and orientational dynamics, and the magnitude of the breakdown of the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, in the light of these transformations. Our results show that deviations from Arrhenius behavior of the self-diffusion at low temperatures cannot be exclusively explained by the reduction of water defects (interstitial waters) and the increase of the local tetrahedrality, thus, suggesting the importance of the slowdown of collective rearrangements. Interestingly we find that at high temperatures (T  ⩾  340 K) water defects lead to a slight increase of the tetrahedrality and a decrease of the self-diffusion, opposite to water at low temperatures. The relative magnitude of the breakdown of the SE and the SED relations is found to be in accord with recent experiments (Dehaoui et al 2015 Proc. Natl Acad. Sci. USA 112 12020) resolving the discrepancy with previous MD results. Further, we show that SPC/E hydrogen-bond (HB) lifetimes deviate from Arrhenious behaviour at low temperatures in contrast with some previous MD studies. This deviation is nevertheless much smaller than that observed for the orientational dynamics and the transport properties of water, consistent with the relaxation times measured by several experimental methods. The HB acceptor exchange dynamics defined here by the acceptor switch and reform (librational dynamics) frequencies exhibit similar Arrhenius deviations, thus explaining to some extent the non-Arrhenius behavior of the transport properties and of the orientational dynamics of water. Our results also show that the fraction of HB switches through a bifurcated pathway follow a power law with the temperature decrease. Thus, at low temperatures HB acceptor switches are less frequent but occur on a faster time scale

  19. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    NASA Astrophysics Data System (ADS)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  20. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    USGS Publications Warehouse

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0–10 mg L–1), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0–0.75), and pH (6.0–10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L–1, greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  1. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms.

    PubMed

    Gomes, D; Agasse, A; Thiébaud, P; Delrot, S; Gerós, H; Chaumont, F

    2009-06-01

    Aquaporins (AQPs) are ubiquitous membrane proteins whose identification, pioneered by Peter Agre's team in the early nineties, provided a molecular basis for transmembrane water transport, which was previously thought to occur only by free diffusion. AQPs are members of the Major Intrinsic Protein (MIP) family and often referred to as water channels. In mammals and plants they are present in almost all organs and tissues and their function is mostly associated to water molecule movement. However, recent studies have pointed out a wider range of substrates for these proteins as well as complex regulation levels and pathways. Although their relative abundance in plants and mammals makes it difficult to investigate the role of a particular AQP, the use of knock-out and mutagenesis techniques is now bringing important clues regarding the direct implication of specific AQPs in animal pathologies or plant deficiencies. The present paper gives an overview about AQP structure, function and regulation in a broad range of living organisms. Emphasis will be given on plant AQPs where the high number and diversity of these transport proteins, together with some emerging aspects of their functionalities, make them behave more like multifunctional, highly adapted channels rather than simple water pores.

  2. How long do natural waters “remember” release incidents of Marcellus Shale waters: a first order approximation using reactive transport modeling

    DOE PAGES

    Cai, Zhang; Li, Li

    2016-12-13

    Natural gas production from the Marcellus Shale formation has significantly changed energy landscape in recent years. Accidental release, including spills, leakage, and seepage of the Marcellus Shale flow back and produced waters can impose risks on natural water resources. With many competing processes during the reactive transport of chemical species, it is not clear what processes are dominant and govern the impacts of accidental release of Marcellus Shale waters (MSW) into natural waters. Here we carry out numerical experiments to explore this largely unexploited aspect using cations from MSW as tracers with a focus on abiotic interactions between cations releasedmore » from MSW and natural water systems. Reactive transport models were set up using characteristics of natural water systems (aquifers and rivers) in Bradford County, Pennsylvania. Results show that in clay-rich sandstone aquifers, ion exchange plays a key role in determining the maximum concentration and the time scale of released cations in receiving natural waters. In contrast, mineral dissolution and precipitation play a relatively minor role. The relative time scales of recovery τ rr, a dimensionless number defined as the ratio of the time needed to return to background concentrations over the residence time of natural waters, vary between 5 and 10 for Na, Ca, and Mg, and between 10 and 20 for Sr and Ba. In rivers and sand and gravel aquifers with negligible clay, τrr values are close to 1 because cations are flushed out at approximately one residence time. These values can be used as first order estimates of time scales of released MSW in natural water systems. This work emphasizes the importance of clay content and suggests that it is more likely to detect contamination in clay-rich geological formations. As a result, this work highlights the use of reactive transport modeling in understanding natural attenuation, guiding monitoring, and predicting impacts of contamination for risk

  3. How long do natural waters “remember” release incidents of Marcellus Shale waters: a first order approximation using reactive transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhang; Li, Li

    Natural gas production from the Marcellus Shale formation has significantly changed energy landscape in recent years. Accidental release, including spills, leakage, and seepage of the Marcellus Shale flow back and produced waters can impose risks on natural water resources. With many competing processes during the reactive transport of chemical species, it is not clear what processes are dominant and govern the impacts of accidental release of Marcellus Shale waters (MSW) into natural waters. Here we carry out numerical experiments to explore this largely unexploited aspect using cations from MSW as tracers with a focus on abiotic interactions between cations releasedmore » from MSW and natural water systems. Reactive transport models were set up using characteristics of natural water systems (aquifers and rivers) in Bradford County, Pennsylvania. Results show that in clay-rich sandstone aquifers, ion exchange plays a key role in determining the maximum concentration and the time scale of released cations in receiving natural waters. In contrast, mineral dissolution and precipitation play a relatively minor role. The relative time scales of recovery τ rr, a dimensionless number defined as the ratio of the time needed to return to background concentrations over the residence time of natural waters, vary between 5 and 10 for Na, Ca, and Mg, and between 10 and 20 for Sr and Ba. In rivers and sand and gravel aquifers with negligible clay, τrr values are close to 1 because cations are flushed out at approximately one residence time. These values can be used as first order estimates of time scales of released MSW in natural water systems. This work emphasizes the importance of clay content and suggests that it is more likely to detect contamination in clay-rich geological formations. As a result, this work highlights the use of reactive transport modeling in understanding natural attenuation, guiding monitoring, and predicting impacts of contamination for risk

  4. Oligomerization state of water channels and glycerol facilitators. Involvement of loop E.

    PubMed

    Lagrée, V; Froger, A; Deschamps, S; Pellerin, I; Delamarche, C; Bonnec, G; Gouranton, J; Thomas, D; Hubert, J F

    1998-12-18

    The major intrinsic protein (MIP) family includes water channels aquaporins (AQPs) and facilitators for small solutes such as glycerol (GlpFs). Velocity sedimentation on sucrose gradients demonstrates that heterologous AQPcic expressed in yeast or Xenopus oocytes behaves as an homotetramer when extracted by n-octyl beta-D-glucopyranoside (OG) and as a monomer when extracted by SDS. We performed an analysis of GlpF solubilized from membranes of Escherichia coli or of mRNA-injected Xenopus oocytes. The GlpF protein extracted either by SDS or by nondenaturing detergents, OG and Triton X-100, exhibits sedimentation coefficients only compatible with a monomeric form of the protein in micelles. We then substituted in loop E of AQPcic two amino acids predicted to play a role in the functional/structural properties of the MIPs. In two expression systems, yeast and oocytes, the mutant AQPcic-S205D is monomeric in OG and in SDS. The A209K mutation does not modify the tetrameric form of the heterologous protein in OG. This study shows that the serine residue at position 205 is essential for AQPcic tetramerization. Because the serine in this position is highly conserved among aquaporins and systematically replaced by an acid aspartic in GlpFs, we postulate that glycerol facilitators are monomers whereas aquaporins are organized in tetramers. Our data suggest that the role of loop E in MIP properties partly occurs through its ability to allow oligomerization of the proteins.

  5. Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water

    NASA Astrophysics Data System (ADS)

    Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.

    2012-12-01

    We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds

  6. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  7. Combined effect of boron and salinity on water transport: The role of aquaporins.

    PubMed

    Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela

    2008-10-01

    Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.

  8. Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil.

    PubMed

    Zhang, Miaoyue; Bradford, Scott A; Šimůnek, Jirka; Vereecken, Harry; Klumpp, Erwin

    2017-02-01

    Saturated soil column experiments were conducted to investigate the transport, retention, and release behavior of a low concentration (1 mg L -1 ) of functionalized 14 C-labeled multi-walled carbon nanotubes (MWCNTs) in a natural soil under various solution chemistries. Breakthrough curves (BTCs) for MWCNTS exhibited greater amounts of retardation and retention with increasing solution ionic strength (IS) or in the presence of Ca 2+ in comparison to K + , and retention profiles (RPs) for MWCNTs were hyper-exponential in shape. These BTCs and RPs were well described using the advection-dispersion equation with a term for time- and depth-dependent retention. Fitted values of the retention rate coefficient and the maximum retained concentration of MWCNTs were higher with increasing IS and in the presence of Ca 2+ in comparison to K + . Significant amounts of MWCNT and soil colloid release was observed with a reduction of IS due to expansion of the electrical double layer, especially following cation exchange (when K + displaced Ca 2+ ) that reduced the zeta potential of MWCNTs and the soil. Analysis of MWCNT concentrations in different soil size fractions revealed that >23.6% of the retained MWCNT mass was associated with water-dispersible colloids (WDCs), even though this fraction was only a minor portion of the total soil mass (2.38%). More MWCNTs were retained on the WDC fraction in the presence of Ca 2+ than K + . These findings indicated that some of the released MWCNTs by IS reduction and cation exchange were associated with the released clay fraction, and suggests the potential for facilitated transport of MWCNT by WDCs. Published by Elsevier Ltd.

  9. Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu; Lin, Hui

    2017-09-01

    Satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that there was a belt of turbid water appearing along an upwelling front near the Chinese coast of Guangdong, and indicate that the turbid water of the Pearl River plume water could be transported to a far-reaching area east of the Taiwan Bank. Numerical modeling results are consistent with the satellite observations, and reveal that a strong jet exists at the upwelling front with a speed as high as 0.8 m s- 1, which acts as a pathway for transporting the high-turbidity plume water. The dynamical analysis suggests that geostrophic equilibrium dominates in the upwelling front and plume areas, and the baroclinicity of the upwelling front resulting from the horizontal density gradient is responsible for the generation of the strong jet, which enhances the far-reaching transport of the terrigenous nutrient-rich water of the Pearl River plume. Model sensitivity analyses also confirm that this jet persists as long as the upwelling front exists, even when the wind subsides and becomes insignificant. Further idealized numerical model experiments indicate that the formation and persistence of the upwelling front jet depend on the forcing strength of the upwelling-favorable wind. The formation time of the jet varies from 15 to 158 h as the stress of the upwelling-favorable wind changes from 0.2 to 0.01 N m- 2. With the persistent transport of the nutrient-rich plume water, biophysical activities can be promoted significantly in the far-reaching destination area of the oligotrophic water.

  10. Leaf Photosynthetic Rate of Tropical Ferns Is Evolutionarily Linked to Water Transport Capacity

    PubMed Central

    Cao, Kun-Fang; Hu, Hong; Zhang, Jiao-Lin

    2014-01-01

    Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns. PMID:24416265

  11. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieboldt, M.; Mechtcherine, V., E-mail: mechtcherine@tu-dresden.de

    2013-10-15

    The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement,more » the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well.« less

  12. Numerical modeling of coupled water flow and heat transport in soil and snow

    Treesearch

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  13. Sodium Chloride and Water Transport in the Medullary Thick Ascending Limb of Henle. EVIDENCE FOR ACTIVE CHLORIDE TRANSPORT

    PubMed Central

    Rocha, Antonino S.; Kokko, Juha P.

    1973-01-01

    Transport of NaCl and water was examined in the rabbit medullary thick ascending limb of Henle (ALH) by perfusing isolated segments of these nephrons in vitro. Osmotic water permeability was evaluated by perfusing tubules against imposed osmotic gradients. In these experiments the net transport of fluid remained at zero when segments of thick ALH were perfused with isotonic ultrafiltrate in a bath of rabbit serum in which the serum osmolality was increased by the addition of either 239±8 mosmol/liter of raffinose or 232±17 mosmol of NaCl indicating that the thick ascending limb of Henle is impermeant to osmotic flow of water. When these tubules were perfused at slow rates with isosmolal ultrafiltrate of same rabbit serum as used for the bath, the effluent osmolality was consistently lowered to concentrations less than the perfusate and the bath. That this decrease in collected fluid osmolality represented salt transport was demonstrated in a separate set of experiments in which it was shown that the sodium and chloride concentrations decreased to 0.79±0.02 and 0.77±0.02 respectively when compared with the perfusion fluid concentrations. In each instance the simultaneously determined transtubular potential difference (PD) revealed the lumen to be positive with the magnitude dependent on the perfusion rate. At flow rates above 2 nl·min-1, the mean transtubular PD was stable and equal to 6.70±0.34 mv. At stop-flow conditions this PD became more positive. Ouabain and cooling reversibly decreased the magnitude of this PD. The transtubular PD remained positive, 3.3±0.2 mV, when complete substitution of Na by choline was carried out in both the perfusion fluid and the bathing media. These results are interpreted to indicate that the active transport process is primarily an electrogenic chloride mechanism. The isotopic permeability coefficient for Na was 6.27±0.38 × 10-5 cm·s-1 indicating that the thick ALH is approximately as permeable to Na as the proximal

  14. An artificial transport metabolon facilitates improved substrate utilization in yeast.

    PubMed

    Thomik, Thomas; Wittig, Ilka; Choe, Jun-Yong; Boles, Eckhard; Oreb, Mislav

    2017-11-01

    Efficient substrate utilization is the first and most important prerequisite for economically viable production of biofuels and chemicals by microbial cell factories. However, production rates and yields are often compromised by low transport rates of substrates across biological membranes and their diversion to competing pathways. This is especially true when common chassis organisms are engineered to utilize nonphysiological feedstocks. Here, we addressed this problem by constructing an artificial complex between an endogenous sugar transporter and a heterologous xylose isomerase in Saccharomyces cerevisiae. Direct feeding of the enzyme through the transporter resulted in acceleration of xylose consumption and substantially diminished production of xylitol as an undesired side product, with a concomitant increase in the production of ethanol. This underlying principle could also likely be implemented in other biotechnological applications.

  15. Water and chloride transport in a fine-textured soil in a feedlot pen.

    PubMed

    Veizaga, E A; Rodríguez, L; Ocampo, C J

    2015-11-01

    Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Evolution and Transport of Water in the Upper Regolith of Mars

    NASA Technical Reports Server (NTRS)

    Hudson, T. L.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N. T.; Green, J. R.

    2003-01-01

    Long standing theoretical predictions [1-3], as well as recent spacecraft observations [4] indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. An understanding of the evolution of water based on theoretical and experimental considerations of the processes operating at the Martian environment is required. In particular, the porosity, diffusivity, and permeability of soils and their effect on water vapor transport under Mars-like conditions have been estimated, but experimental validation of such models is lacking. Goal: Three related mechanisms may affect water transport in the upper Martian regolith. 1) diffusion along a concentration gradient under isobaric conditions, 2) diffusion along a thermal gradient, which may give rise to a concentration gradient as ice sublimes or molecules desorb from the regolith, and 3) hydraulic flow, or mass motion in response to a pressure gradient. Our combined theoretical and experimental investigation seeks to disentangle these mechanisms and determine which process(es) are dominant in the upper regolith over various timescales. A detailed one-dimensional model of the upper regolith is being created which incorporates water adsorption/ desorption, condensation, porosity, diffusivity, and permeability effects. Certain factors such as diffusivity are difficult to determine theoretically due to the wide range of intrinsic grain properties such as particle sizes, shapes, packing densities, and emergent properties such as tortuosity. An experiment is being designed which will allow us to more accurately determine diffusivity, permeability, and water desorption isotherms for regolith simulants.

  17. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    NASA Astrophysics Data System (ADS)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  18. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  19. Characterization of urea transport in Bufo arenarum oocytes.

    PubMed

    Silberstein, Claudia; Zotta, Elsa; Ripoche, Pierre; Ibarra, Cristina

    2003-07-01

    Xenopus laevis oocytes have been extensively used for expression cloning, structure/function relationships, and regulation analysis of transporter proteins. Urea transporters have been expressed in Xenopus oocytes and their properties have been described. In order to establish an alternative system in which urea transporters could be efficiently expressed and studied, we determined the urea transport properties of ovarian oocytes from Bufo arenarum, a toad species common in Argentina. Bufo oocytes presented a high urea permeability of 22.3 x 10(-6) cm/s, which was significantly inhibited by the incubation with phloretin. The urea uptake in these oocytes was also inhibited by mercurial reagents, and high-affinity urea analogues. The urea uptake was not sodium dependent. The activation energy was 3.2 Kcal/mol, suggesting that urea movement across membrane oocytes may be through a facilitated urea transporter. In contrast, Bufo oocytes showed a low permeability for mannitol and glycerol. From these results, we propose that one or several specific urea transporters are present in ovarian oocytes from Bufo arenarum. Therefore, these oocytes cannot be used in expression studies of foreign urea transporters. The importance of Bufo urea transporter is not known but could be implicated in osmotic regulation during the laying of eggs in water. Copyright 2003 Wiley-Liss, Inc.

  20. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: evidence for passive and facilitated transport.

    PubMed

    Stott, Lucy C; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F; Bury, Nic R

    2015-02-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L(-1)), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Animal transportation networks

    PubMed Central

    Perna, Andrea; Latty, Tanya

    2014-01-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598

  2. Mineralogy controls on reactive transport of Marcellus Shale waters.

    PubMed

    Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li

    2018-07-15

    Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock

  3. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or refuge...

  4. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or refuge...

  5. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or refuge...

  6. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or refuge...

  7. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or refuge...

  8. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth.

    PubMed

    Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia

    2013-04-23

    Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.

  9. Water transport and clustering behavior in homopolymer and graft copolymer polylactide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, An; Koo, Donghun; Theryo, Grayce

    2015-02-19

    Polylactide is a bio-based and biodegradable polymer well-known for its renewable origins. Water sorption and clustering behavior in both a homopolymer polylactide and a graft copolymer of polylactide was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. The graft copolymer, poly(1,5-cyclooctadiene-co-5-norbornene-2-methanol-graft-D,L-lactide), contained polylactide chains (95 wt.%) grafted onto a hydrophobic rubbery backbone (5 wt.%). Clustering is an important phenomenon in the study of water transport properties in polymers since the presence of water clusters can affect the water diffusivity. The HCC method using the thermal power signals and Van't Hoff's law were both employed to estimate the watermore » sorption enthalpy. Sorption enthalpy of water in both polymers was determined to be approximately -40 kJ/mol for all water activity levels. Zimm-Lundberg analysis showed that water clusters start to form at a water activity of 0.4. The engaged species induced clustering (ENSIC) model was used to curve fit sorption isotherms and showed that the affinity among water molecules is higher than that between water molecules and polymer chains. All the methods used indicate that clustering of water molecules exists in both polymers.« less

  10. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  11. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  12. Proton Transports in Pure Liquid Water Characterized by Melted Ice Lattice Model

    NASA Astrophysics Data System (ADS)

    Jie, Binbin; Sah, Chihtang

    Basic water properties have not been understood for 200 years. Our Melted Ice Lattice model accounts for the 2 basic properties of pure water, the ion product (pH) and mobilities. It has HCP primitive unit cells, each with 4H2O, based on the 1933 Bernal-Fowler model, verified by 1935 Pauling residual entropy theory of 1928-1935 Giauque experimental low temperature specific heat measurements. Our 2 ion species are point-mass protons p + and p-, for mass and electricity transport. Three protonic thermal activation energies are obtained from pH and p + and p- mobilities vs T (0-100OC). Proton transport is analyzed in 3 proton-phonon collision steps: proton detrapping by protonic phonon absorption, proton scattering by oxygenic (water) phonons, and proton trapping with protonic phonon emission. Distinction between Potential and Kinetic Energy Bands of protons (Fermions) and phonons (Bosons) is noted. Experimental protonic activation energies are the phonon energies given by the spring-mass vibration frequencies of lattice, wn = (kn/mn)1/2 . n is the proton-mass unit of the synchronized vibrating particles in the primitive unit cells.

  13. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Treesearch

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  14. Use of GIS technologies to facilitate the transportation project programming process.

    DOT National Transportation Integrated Search

    2008-05-01

    Transportation project programming in a transportation agency is a process of matching : potential projects with available funds to accomplish the agencys mission and goals of a : given period of time. Result of this process is normally a transpor...

  15. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  16. Hydrological balance and water transport processes of partially sealed soils

    NASA Astrophysics Data System (ADS)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  17. Cross‐Saharan transport of water vapor via recycled cold pool outflows from moist convection

    PubMed Central

    Trzeciak, Tomasz M.; Garcia‐Carreras, Luis

    2017-01-01

    Abstract Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day's convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere. PMID:28344367

  18. Transport of North Pacific 137Cs labeled waters to the south-eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Sanchez-Cabeza, J. A.; Levy, I.; Gastaud, J.; Eriksson, M.; Osvath, I.; Aoyama, M.; Povinec, P. P.; Komura, K.

    2011-04-01

    During the reoccupation of the WOCE transect A10 at 30°S by the BEAGLE2003 cruise, the SHOTS project partners collected a large number of samples for the analysis of isotopic tracers. 137Cs was mostly deposited on the oceans surface during the late 1950s and early 1960s, after the atmospheric detonation of large nuclear devices, which mostly occurred in the Northern Hemisphere. The development of advanced radioanalytical and counting techniques allowed to obtain, for the first time in this region, a zonal section of 137Cs water concentrations, where little information existed before, thus constituting an important benchmark for further studies. 137Cs concentrations in the upper waters (0-1000 m) of the south-eastern Atlantic Ocean are similar to those observed in the south-western Indian Ocean, suggesting transport of 137Cs labeled waters by the Agulhas current to the Benguela Current region. In contrast, bomb radiocarbon data do not show this feature, indicating the usefulness of 137Cs as a radiotracer of water mass transport from the Indian to the South Atlantic Ocean.

  19. Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121

    PubMed Central

    Quistgaard, Esben M.; Martinez Molledo, Maria

    2017-01-01

    Major facilitator superfamily (MFS) peptide transporters (typically referred to as PepT, POT or PTR transporters) mediate the uptake of di- and tripeptides, and so play an important dietary role in many organisms. In recent years, a better understanding of the molecular basis for this process has emerged, which is in large part due to a steep increase in structural information. Yet, the conformational transitions underlying the transport mechanism are still not fully understood, and additional data is therefore needed. Here we report in detail the detergent screening, crystallization, experimental MIRAS phasing, and refinement of the peptide transporter PepTSt from Streptococcus thermophilus. The space group is P3121, and the protein is crystallized in a monomeric inward facing form. The binding site is likely to be somewhat occluded, as the lobe encompassing transmembrane helices 10 and 11 is markedly bent towards the central pore of the protein, but the extent of this potential occlusion could not be determined due to disorder at the apex of the lobe. Based on structural comparisons with the seven previously determined P212121 and C2221 structures of inward facing PepTSt, the structural flexibility as well as the conformational changes mediating transition between the inward open and inward facing occluded states are discussed. In conclusion, this report improves our understanding of the structure and conformational cycle of PepTSt, and can furthermore serve as a case study, which may aid in supporting future structure determinations of additional MFS transporters or other integral membrane proteins. PMID:28264013

  20. Dynamics of glycerine and water transport across human skin from binary mixtures.

    PubMed

    Ventura, S A; Kasting, G B

    2017-04-01

    Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water

  1. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  2. Association between water and carbon dioxide transport in leaf plasma membranes: assessing the role of aquaporins.

    PubMed

    Zhao, Manchun; Tan, Hwei-Ting; Scharwies, Johannes; Levin, Kara; Evans, John R; Tyerman, Stephen D

    2017-06-01

    The role of some aquaporins as CO 2 permeable channels has been controversial. Low CO 2 permeability of plant membranes has been criticized because of unstirred layers and other limitations. Here we measured both water and CO 2 permeability (P os , P CO2 ) using stopped flow on plasma membrane vesicles (pmv) isolated from Pisum sativum (pea) and Arabidopsis thaliana leaves. We excluded the chemical limitation of carbonic anhydrase (CA) in the vesicle acidification technique for P CO2 using different temperatures and CA concentrations. Unstirred layers were excluded based on small vesicle size and the positive correlation between vesicle diameter and P CO2 . We observed high aquaporin activity (P os 0.06 to 0.22 cm s -1 ) for pea pmv based on all the criteria for their function using inhibitors and temperature dependence. Inhibitors of P os did not alter P CO2 . P CO2 ranged from 0.001 to 0.012 cm s -1 (mean 0.0079 + 0.0007 cm s -1 ) with activation energy of 30.2 kJ mol -1 . Intrinsic variation between pmv batches from normally grown or stressed plants revealed a weak (R 2  = 0.27) positive linear correlation between P os and P CO2 . Despite the low P CO2 , aquaporins may facilitate CO 2 transport across plasma membranes, but probably via a different pathway than for water. © 2016 John Wiley & Sons Ltd.

  3. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile

    PubMed Central

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-01-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[3H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [3H]cholesterol from HDL-[3H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2−/− mice. Increased flux of HDL-[3H]CE to biliary FC was noted with FABP1 overexpression and in SCP2−/− mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[3H]CE to biliary FC or bile acids in FABP1−/− mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  5. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  6. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  7. 76 FR 29135 - National Defense Transportation Day and National Transportation Week, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... movement created by America's transportation infrastructure facilitates our Nation's economic vitality. Our... also permits our military to move personnel and supplies at a moment's notice. The ability to deploy... America A Proclamation America has long depended on a robust and reliable transportation network to...

  8. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide.

    PubMed

    Bienert, Gerd P; Chaumont, François

    2014-05-01

    Hydrogen peroxide (H2O2) is an important signaling compound that has recently been identified as a new substrate for several members of the aquaporin superfamily in various organisms. Evidence is emerging about the physiological significance of aquaporin-facilitated H2O2 diffusion. This review summarizes current knowledge about aquaporin-facilitated H2O2 diffusion across cellular membranes. It focuses on physicochemical and experimental evidence demonstrating the involvement of aquaporins in the transport of this redox signaling compound and discusses the regulation and structural prerequisites of these channels to transmit this signal. It also provides perspectives about the potential importance of aquaporin-facilitated H2O2 diffusion processes and places this knowledge in the context of the current understanding of transmembrane redox signaling processes. Specific aquaporin isoforms facilitate the passive diffusion of H2O2 across biological membranes and control H2O2 membrane permeability and signaling in living organisms. Redox signaling is a very important process regulating the physiology of cells and organisms in a similar way to the well-characterized hormonal and calcium signaling pathways. Efficient transmembrane diffusion of H2O2, a key molecule in the redox signaling network, requires aquaporins and makes these channels important players in this signaling process. Channel-mediated membrane transport allows the fine adjustment of H2O2 levels in the cytoplasm, intracellular organelles, the apoplast, and the extracellular space, which are essential for it to function as a signal molecule. This article is part of a Special Issue entitled Aquaporins. © 2013.

  9. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers.

    PubMed

    McCarthy, M R; Vandegriff, K D; Winslow, R M

    2001-08-30

    We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.

  10. Solvent Effects of Model Polymeric Corrosion Control Coatings on Water Transport and Corrosion Rate

    NASA Astrophysics Data System (ADS)

    Konecki, Christina

    Industrial coating formulations are often made for volatile organic content compliance and ease of application, with little regard for the solvent impact on resultant performance characteristics. Our research objective was to understand the effect of both solvent retention and chemical structure on water transport through polymer films and resultant corrosion area growth of coated steel substrates. A clear, unpigmented Phenoxy(TM) thermoplastic polymer (PKHH) was formulated into resin solutions with three separate solvent blends selected by Hansen solubility parameter (HSP), boiling point, and ability to solubilize PKHH. Polymer films cast from MEK/PGME (methyl ethyl ketone/ propylene glycol methyl ether), dried under ambient conditions (AMB, > 6wt.% residual solvent) produced a porous morphology, which resulted in a corrosion area greater than 50%. We attributed this to the water-soluble solvent used in film preparation, which enabled residual PGME to be extracted by water. The resin solution prepared with CYCOH/DXL (Cyclohexanol/ 1,3 dioxolane) was selected because CYCOH is a solid at room temperature which acts as a pigment in the final film. Therefore, increasing the tortuosity of water transport, as well as a high hydrogen bonding character, which caused more interactions with water, slowing diffusion, producing a nodular morphology, and 37% less corrosion area than MEK/PGME AMB. The HSP of PKHH and EEP (ethyl 3-ethoxypropionate) are within 5% of each other, which produced a homogeneous morphology and resulted in comparable corrosion rates regardless of residual solvent content. We utilized electrochemical techniques and attenuated total reflectance- Fourier transform infrared spectroscopy to elucidate dynamic water absorption and solvent extraction in the exposed model formulations. We found that water absorption resulted in a loss of barrier properties, and increased corrosion due to the voids formed by solvent extraction. The polymer films were rejuvenated

  11. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua

    2013-01-01

    Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  12. Evaluating the effects of variable water chemistry on bacterial transport during infiltration.

    PubMed

    Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S

    2013-07-01

    Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10×10(-3)min(-1) to 3.71×10(-3)min(-1) due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10×10(-3)min(-1) in a constant

  13. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    PubMed

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  14. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  15. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects E scherichia coli from bile salt stress

    PubMed Central

    Paul, Stephanie; Alegre, Kamela O; Holdsworth, Scarlett R; Rice, Matthew; Brown, James A; McVeigh, Paul; Kelly, Sharon M; Law, Christopher J

    2014-01-01

    Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as E scherichia coli. Although the tripartite AcrAB–TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E . coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E . coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB–TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H+ antiport. PMID:24684269

  16. Go girl! Facilitating exploration of transportation careers for girls

    DOT National Transportation Integrated Search

    2007-07-01

    The transportation engineering profession, like every other profession that relies heavily on the engineering, technology and science fields, faces a challenging future. A recent study by the National Science Board reported a troubling decline in the...

  17. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  18. The Hydrodynamics and Odorant Transport Phenomena of Olfaction in the Hammerhead Shark

    NASA Astrophysics Data System (ADS)

    Rygg, Alex; Craven, Brent

    2013-11-01

    The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory organs, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics and odorant transport phenomena of olfaction in the hammerhead shark based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics (CFD) simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Odorant transport in the olfactory organ is investigated using a multi-scale approach, whereby molecular dynamics (MD) simulations are used to calculate odorant partition coefficients that are subsequently utilized in macro-scale CFD simulations of odorant deposition. The hydrodynamic and odorant transport results are used to elucidate several important features of olfactory function in the hammerhead shark.

  19. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.

    PubMed

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2016-09-01

    Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K(+) channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K(+) ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K(+) and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K(+) accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress.

    PubMed

    Martínez-Ballesta, Maria del Carmen; Muries, Beatriz; Moreno, Diego Ángel; Dominguez-Perles, Raúl; García-Viguera, Cristina; Carvajal, Micaela

    2014-02-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress. For this purpose, water uptake and its transport through the plasma membrane were determined in plants after NaCl addition, when sinigrin was also supplied. We found higher hydraulic conductance (L0 ) and water permeability (Pf ) and increased abundance of PIP2 aquaporins after the direct administration of sinigrin, showing the ability of the roots to promote cellular water transport across the plasma membrane in spite of the stress conditions imposed. The higher content of the allyl-isothiocyanate and the absence of sinigrin in the plant tissues suggest that the isothiocyanate is related to water balance; in fact, a direct effect of this nitro-sulphate compound on water uptake is proposed. This work provides the first evidence that the addition of a glucosinolate can regulate aquaporins and water transport: this effect and the mechanism(s) involved merit further investigation. © 2013 Scandinavian Plant Physiology Society.

  1. Flood Runoff in Relation to Water Vapor Transport by Atmospheric Rivers Over the Western United States, 1949-2015

    NASA Astrophysics Data System (ADS)

    Konrad, Christopher P.; Dettinger, Michael D.

    2017-11-01

    Atmospheric rivers (ARs) have a significant role in generating floods across the western United States. We analyze daily streamflow for water years 1949 to 2015 from 5,477 gages in relation to water vapor transport by ARs using a 6 h chronology resolved to 2.5° latitude and longitude. The probability that an AR will generate 50 mm/d of runoff in a river on the Pacific Coast increases from 12% when daily mean water vapor transport, DVT, is greater than 300 kg m-1 s-1 to 54% when DVT > 600 kg m-1 s-1. Extreme runoff, represented by the 99th quantile of daily values, doubles from 80 mm/d at DVT = 300 kg m-1 s-1 to 160 mm/d at DVT = 500 kg m-1 s-1. Forecasts and predictions of water vapor transport by atmospheric rivers can support flood risk assessment and estimates of future flood frequencies and magnitude in the western United States.

  2. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  3. Rapid Water Transport by Long-Lasting Modon Eddy Pairs in the Southern Midlatitude Oceans

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Miller, Peter I.

    2017-12-01

    Water in the ocean is generally carried with the mean flow, mixed by eddies, or transported westward by coherent eddies at speeds close to the long baroclinic Rossby wave speed. Modons (dipole eddy pairs) are a theoretically predicted exception to this behavior, which can carry water to the east or west at speeds much larger than the Rossby wave speed, leading to unusual transports of heat, nutrients, and carbon. We provide the first observational evidence of such rapidly moving modons propagating over large distances. These modons are found in the midlatitude oceans around Australia, with one also seen in the South Atlantic west of the Agulhas region. They can travel at more than 10 times the Rossby wave speed of 1-2 cm s-1 and typically persist for about 6 months carrying their unusual water mass properties with them, before splitting into individual vortices, which can persist for many months longer.

  4. Predation and transport of persistent pathogens in GAC and slow sand filters: a threat to drinking water safety?

    PubMed

    Bichai, Françoise; Dullemont, Yolanda; Hijnen, Wim; Barbeau, Benoit

    2014-11-01

    Zooplankton has been shown to transport internalized pathogens throughout engineered drinking water systems. In this study, experimental measurements from GAC and SSF filtration tests using high influent concentrations of Cryptosporidium (1.3 × 10(6) and 3.3 × 10(4) oocysts L(-1)) and Giardia (4.8 × 10(4) cysts L(-1)) are presented and compared. A predation and transport conceptual model was developed to extrapolate these results to environmental conditions of typical (oo)cyst concentrations in surface water in order to predict concentrations of internalized (oo)cysts in filtered water. Pilot test results were used to estimate transport and survival ratios of internalized (oo)cysts following predation by rotifers in the filter beds. Preliminary indications of lower transport and survival ratios in SSF were found as compared with GAC filters. A probability of infection due to internalized (oo)cysts in filtered water was calculated under likeliest environmental conditions and under a worst-case scenario. Estimated risks under the likeliest environmental scenario were found to fall below the tolerable risk target of 10(-4) infections per person per year. A discussion is presented on the health significance of persistent pathogens that are internalized by zooplankton during granular filtration processes and released into treated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Two-Dimensional Hydrodynamic Simulation of Surface-Water Flow and Transport to Florida Bay through the Southern Inland and Coastal Systems (SICS)

    USGS Publications Warehouse

    Swain, Eric D.; Wolfert, Melinda A.; Bales, Jerad D.; Goodwin, Carl R.

    2004-01-01

    Successful restoration of the southern Florida ecosystem requires extensive knowledge of the physical characteristics and hydrologic processes controlling water flow and transport of constituents through extremely low-gradient freshwater marshes, shallow mangrove-fringed coastal creeks and tidal embayments, and near-shore marine waters. A sound, physically based numerical model can provide simulations of the differing hydrologic conditions that might result from various ecosystem restoration scenarios. Because hydrology and ecology are closely linked in southern Florida, hydrologic model results also can be used by ecologists to evaluate the degree of ecosystem restoration that could be achieved for various hydrologic conditions. A robust proven model, SWIFT2D, (Surface-Water Integrated Flow and Transport in Two Dimensions), was modified to simulate Southern Inland and Coastal Systems (SICS) hydrodynamics and transport conditions. Modifications include improvements to evapotranspiration and rainfall calculation and to the algorithms that describe flow through coastal creeks. Techniques used in this model should be applicable to other similar low-gradient marsh settings in southern Florida and elsewhere. Numerous investigations were conducted within the SICS area of southeastern Everglades National Park and northeastern Florida Bay to provide data and parameter values for model development and testing. The U.S. Geological Survey and the National Park Service supported investigations for quantification of evapotranspiration, vegetative resistance to flow, wind-induced flow, land elevations, vegetation classifications, salinity conditions, exchange of ground and surface waters, and flow and transport in coastal creeks and embayments. The good agreement that was achieved between measured and simulated water levels, flows, and salinities through minimal adjustment of empirical coefficients indicates that hydrologic processes within the SICS area are represented properly

  6. Definitions of differences and changes in peritoneal membrane water transport properties.

    PubMed

    Widerøe, T E; Smeby, L C; Dahl, K; Jörstad, S

    1988-06-01

    A survey is given comparing measurements of transperitoneal water transport in different clinical situations with analyses based on the so-called "pore theory." This model links the measured changes to physical alterations of the peritoneal membrane. The calculations include "equivalent pore radius," effective "membrane area" and diffusive length, the transport resistance of the unstirred dialysate layer, and the residual intraperitoneal volume after dialysate drainage. The clinical appearances include individual differences in transperitoneal transport characteristics, changes in transperitoneal transport over time on continuous ambulatory peritoneal dialysis (CAPD) and during peritonitis, the pharmacological effect on the transport properties, and the effect of peritoneal catheter dislocation on ultrafiltration capacity. The main conclusions are as follow: During CAPD treatment the measurement of intraperitoneal solute equilibration and "mass-transfer-area coefficients" for urea and creatinine is less sensitive than the measurement of ultrafiltration volume in revealing peritoneal membrane changes. Differences and changes found have mostly a combined physical explanation, but one is more or less dominant. Changes in peritoneal membrane area seem to be the most dominant cause of changes in transperitoneal transport during time on CAPD and when sodium nitroprusside was added to the peritoneal dialysate. Changes during peritonitis can be explained by changes in pore radius and depth. Individual differences can be explained by differences in "membrane" area and in resistance of the unstirred dialysate fluid. High residual dialysate volume can give rise to clinical problems and should be considered when placing the catheter in the peritoneal cavity.

  7. The Role of Subsurface Properties on Transport of Water and Trace Gases: 1D Simulations at Selected Mars Landing Sites.

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.

    2017-12-01

    In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.

  8. Carbonate-periplatform sedimentation by density flows: A mechanism for rapid off-bank and vertical transport of shallow-water fines

    USGS Publications Warehouse

    Wilson, P.A.; Roberts, Harry H.

    1993-01-01

    Existing theories of off-bank sediment transport cannot account for rapid rates of sedimentation observed in Bahama bank and Florida shelf periplatform environments. Analysis of the physical processes operating during winter cold fronts suggests that accelerated off-bank transport of shallow-water mud may be achieved by sinking off-bank flows of sediment-charged hyperpycnal (super-dense) platform waters.

  9. Water-Quality Assessment of the High Plains Aquifer, 1999-2004

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, Kevin F.; Bruce, Breton W.; Gurdak, Jason J.; Qi, Sharon L.

    2007-01-01

    Water quality of the High Plains aquifer was assessed for the period 1999-2004 as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This effort represents the first systematic regional assessment of water quality in this nationally important aquifer. A stratified, nested group of studies was designed to assess linkages between the quality of water recharging the aquifer, the effect of transport through the hydrologic system on water quality, and the quality of the resource used for human consumption and agricultural applications. The stratified, nested design facilitated upscaling of monitoring results to unmonitored areas of the aquifer as well as upscaling of process understanding from local to regional scales.

  10. On the development and benchmarking of an approach to model gas transport in fractured media with immobile water storage

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.

    2017-12-01

    In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.

  11. On the development and benchmarking of an approach to model gas transport in fractured media with immobile water storage

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.

    2016-12-01

    In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.

  12. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    PubMed

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways). © The

  13. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers

    PubMed Central

    Ranathunge, Kosala; Kim, Yangmin X.; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria

    2017-01-01

    Abstract Background and Aims Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Methods Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography–mass spectometry (GC-MS). The hydraulic conductivity of roots (Lpr) and of cortical cells (Lpc) was measured using root and cell pressure probes. Key Results When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as ‘dots’ as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lpr. Comparison of Lpr and Lpc suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lpr from Lpc showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities (Psr) and reflection coefficients (σsr) for the solutes used. The σsr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Conclusions Suberized endodermis significantly reduces Lpr of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in

  14. Subangstrom resolution X-ray structure details aquaporin-water interactions.

    PubMed

    Eriksson, Urszula Kosinska; Fischer, Gerhard; Friemann, Rosmarie; Enkavi, Giray; Tajkhorshid, Emad; Neutze, Richard

    2013-06-14

    Aquaporins are membrane channels that facilitate the flow of water across biological membranes. Two conserved regions are central for selective function: the dual asparagine-proline-alanine (NPA) aquaporin signature motif and the aromatic and arginine selectivity filter (SF). Here, we present the crystal structure of a yeast aquaporin at 0.88 angstrom resolution. We visualize the H-bond donor interactions of the NPA motif's asparagine residues to passing water molecules; observe a polarized water-water H-bond configuration within the channel; assign the tautomeric states of the SF histidine and arginine residues; and observe four SF water positions too closely spaced to be simultaneously occupied. Strongly correlated movements break the connectivity of SF waters to other water molecules within the channel and prevent proton transport via a Grotthuss mechanism.

  15. User interface for ground-water modeling: Arcview extension

    USGS Publications Warehouse

    Tsou, Ming‐shu; Whittemore, Donald O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  16. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.

    PubMed

    Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua

    2017-03-29

    Ion transport plays an important role in solar-to-electricity conversion, drug delivery, and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination, and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (R ct ) after an electric potential is applied. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.

  17. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  18. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    NASA Astrophysics Data System (ADS)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  19. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    NASA Astrophysics Data System (ADS)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  20. A triangular fuzzy TOPSIS-based approach for the application of water technologies in different emergency water supply scenarios.

    PubMed

    Qu, Jianhua; Meng, Xianlin; Yu, Huan; You, Hong

    2016-09-01

    Because of the increasing frequency and intensity of unexpected natural disasters, providing safe drinking water for the affected population following a disaster has become a global challenge of growing concern. An onsite water supply technology that is portable, mobile, or modular is a more suitable and sustainable solution for the victims than transporting bottled water. In recent years, various water techniques, such as membrane-assisted technologies, have been proposed and successfully implemented in many places. Given the diversity of techniques available, the current challenge is how to scientifically identify the optimum options for different disaster scenarios. Hence, a fuzzy triangular-based multi-criteria, group decision-making tool was developed in this research. The approach was then applied to the selection of the most appropriate water technologies corresponding to the different emergency water supply scenarios. The results show this tool capable of facilitating scientific analysis in the evaluation and selection of emergency water technologies for enduring security drinking water supply in disaster relief.

  1. Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels

    NASA Technical Reports Server (NTRS)

    Komar, P. D.

    1980-01-01

    The paper discusses application to Martian water flows of the criteria that determine which grain-size ranges are transported as bed load, suspension, and wash load. The results show nearly all sand-sized material and finer would have been transported as wash load and that basalt pebbles and even cobbles could have been transported at rapid rates of suspension. An analysis of the threshold of sediment motion on Mars further indicates that the flows would have been highly competent, the larger flows having been able to transport boulder-sized material. Comparisons with terrestrial rivers which transport hyperconcentration levels of sediments suggest that the Martian water flows could have achieved sediment concentrations up to 70% in weight. Although it is possible that flows could have picked up enough sediment to convert to pseudolaminar mud flows, they probably remained at hyperconcentration levels and fully turbulent in flow character.

  2. Prediction of contaminant fate and transport in potable water systems using H2OFate

    NASA Astrophysics Data System (ADS)

    Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark

    2009-05-01

    BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.

  3. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard

    NASA Astrophysics Data System (ADS)

    Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.

    2018-01-01

    Mesoscale eddies are known to transport heat and biogeochemical properties from Arctic Ocean boundary currents to basin interiors. Previous hydrographic surveys and model results suggest that eddy formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative eddy survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW eddies in an eddy-resolving sea ice-ocean model. The boundary current sheds AW eddies along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though eddies forming east of 20°E are likely more important for slope-to-basin transport. Eddy formation seasonality reflects seasonal stability properties of the boundary current in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced eddy formation during summer merits further investigation. AW eddies tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their warm cores, 1.0 TW away from the boundary current. These findings suggest eddies may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water eddies in the Canadian Basin.

  4. Peristaltic transport of copper-water nanofluid saturating porous medium

    NASA Astrophysics Data System (ADS)

    Abbasi, F. M.; Hayat, T.; Ahmad, B.

    2015-03-01

    Prime goal of present study is to model the problem for peristaltic transport of copper-water nanofluid in an asymmetric channel. The fluid fills porous space. Analysis is carried out in the presence of mixed conviction, viscous dissipation and heat generation/absorption. Long wavelength and low Reynolds number approximations are utilized in problem formulation. Numerical computations are presented for the axial velocity, pressure gradient, streamlines, temperature and heat transfer rate at the boundary. Graphical analysis is carried out to examine the effects of sundry parameters on flow quantities of interest. Results revealed that the axial velocity of copper-water nanofluid decreases with an increase in the nanoparticle volume fraction. Copper nanoparticles prove effective coolant since they sufficiently reduce the fluid temperature and show increase in the heat transfer between the fluid and solid boundary. Moreover temperature of the fluid decreases by increasing the permeability of porous medium.

  5. Comparison of Rotavirus and Norovirus transport in standardised and natural soil-water systems

    NASA Astrophysics Data System (ADS)

    Gamazo, P. A.; Schijven, J. F.; Victoria, M.; Alvareda, E.; Lopez, F.; Ramos, J.; Lizasoain, A.; Sapriza-Azuri, G.; Castells, M.; Colina, R.

    2016-12-01

    Rotavirus and Norovirus are waterborne viruses that are major causes of diarrhea and others symptoms of acute gastroenteritis. An important pathway of these viruses is groundwater. In Uruguay, as in many developed and developing countries, there are areas where the only source of water for human consumption is groundwater. In the rural area of the Salto district, groundwater is commonly used without any treatment, as it is traditionally considered as a safe source. However, virus contamination have been detected in several wells in the area. The most probable source of contamination are nearby septic systems, since the sewer coverage is scarce. This work aims to evaluate and compare the virus transport processes for a standardised soil-water systems and for the Salto aquifer system. For this, the transport of Rotavirus and Norovirus from clinic samples was studied in two sets of column experiments: 6.7 cm columns with quartz sand under saturated conditions (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes on the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both Rotavirus and Norovirus were removed two orders in magnitude. In the Salto sand column, Rotavirus was removed 2 log10 as well, but Norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for Rotavirus in the Salto sand column. These results are consistent with field observation where only Rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent was measured for these two viruses. This work, besides reporting actual

  6. Characterization of Nano-scale Aluminum Oxide Transport through Porous Media

    NASA Astrophysics Data System (ADS)

    Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.

    2011-12-01

    Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of nano-scale colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-phase concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the nano-scale colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these nano-scale colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for

  7. Estimation of Hydraulic Properties Influencing Recharge and Contaminant Transport through Complex Vadose Zones by Analyzing Perched Water Data from the 1994 Large-Scale Infiltration Test at the Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Creasey, K. M.; Nimmo, J. R.

    2014-12-01

    Layers of strong geologic contrast within the vadose zone can control recharge and contaminant transport to underlying aquifers. Above the eastern Snake River Plain Aquifer, multiple sedimentary interbeds are interspersed between fractured basalt. These interbeds have a variety of thicknesses and hydraulic properties, and can impede water flow, which allows perched water to collect on the interbeds. The Large-Scale Infiltration Test (LSIT) of 1994 at the Idaho National Laboratory (INL) maintained a circular pond, 200 meters in diameter, at a constant head for 20 days. Monitoring wells were arranged in circles of different radii around and within the pond, and perched water levels on a major sedimentary interbed, 55 meters below ground surface, were measured over time. Data showed that water formed a mound on the interbed before seeping through the interbed. Such behavior is consistent with a hypothesis of rapid flow through the fractured basalt being impeded by the sedimentary interbed. In 2014, the USGS, in cooperation with the U.S. Department of Energy, used a modified version of a Hantush (1967) equation to model the time-dependent perched water table heights from the LSIT as a function of radial distance from the pond center. The modeled volume change between time-steps and the known inflows to the pond were used in a mass balance to estimate the time-varying volume of water seeping through the interbed. This volume of water, the height of perched water, and the interbed thickness were used in Darcy's Law to estimate the effective saturated hydraulic conductivity of the impeding interbed. Results indicate a slightly higher effective conductivity than laboratory measurements of small core samples taken from the interbed, reflecting the presence of fractures or other heterogeneities that facilitate field-scale flow through the interbed. Applied to other locations, this method can improve estimates of recharge and contaminant transport to underlying aquifers.

  8. Petroleum produced water disposal: Mobility and transport of barium in sandstone and dolomite rocks.

    PubMed

    Ebrahimi, Pouyan; Vilcáez, Javier

    2018-09-01

    To assess the risk of underground sources of drinking water contamination by barium (Ba) present in petroleum produced water disposed into deep saline aquifers, we examined the effect of salinity (NaCl), competition of cations (Ca, Mg), temperature (22 and 60°C), and organic fracturing additives (guar gum) on the sorption and transport of Ba in dolomites and sandstones. We found that at typical concentration levels of NaCl, Ca, and Mg in petroleum produced water, Ba sorption in both dolomites and sandstones is inhibited by the formation of Ba(Cl) + complexes in solution and/or the competition of cations for binding sites of minerals. The inhibition of Ba sorption by both mechanisms is greater in dolomites than in sandstones. This is reflected by a larger decrease in the breakthrough times of Ba through dolomites than through sandstones. We found that the presence of guar gum has little influence on the sorption and thus the transport of Ba in both dolomites and sandstones. Contrary to most heavy metals, Ba sorption in both dolomites and sandstones decreases with increasing temperature, however the reducing effect of temperature on Ba sorption is relevant only at low salinity conditions. Higher inhibition of Ba sorption in dolomites than in sandstones is due to the greater reactivity of dolomite over sandstone. The results of this study which includes the formulation of a reactive transport model and estimation of partition coefficients of Ba in dolomites and sandstones have significant implications in understanding and predicting the mobility and transport of Ba in deep dolomite and sandstone saline aquifers. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    USGS Publications Warehouse

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  10. Subsurface-water flow and solute transport: federal glossary of selected terms

    USGS Publications Warehouse

    Isensee, Alan R.; Johnson, Lynn; Thornhill, Jerry; Nicholson, Thomas J.; Meyer, Gerald; Vecchioli, John; Laney, Robert

    1989-01-01

    The definitions and conversion charts are from two principal sources provided herein. The first is the 11Glossary11 compiled by A. I. Johnson in the 1981 report by the American Society of Testing and Materials titled Permeability and Groundwater Contaminant Transport. The second is Manu a 1 40, 11Ground-water Management, 11 produced by the American Society of Civil Engineers in 1985.

  11. Real-time hydraulic interval state estimation for water transport networks: a case study

    NASA Astrophysics Data System (ADS)

    Vrachimis, Stelios G.; Eliades, Demetrios G.; Polycarpou, Marios M.

    2018-03-01

    Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.

  12. Closing Plant Stomata Requires a Homolog of an Aluminum-Activated Malate Transporter

    PubMed Central

    Sasaki, Takayuki; Mori, Izumi C.; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-01-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure. PMID:20154005

  13. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    PubMed

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.

  14. Efficient Numerical Methods for Nonlinear-Facilitated Transport and Exchange in a Blood-Tissue Exchange Unit

    PubMed Central

    Poulain, Christophe A.; Finlayson, Bruce A.; Bassingthwaighte, James B.

    2010-01-01

    The analysis of experimental data obtained by the multiple-indicator method requires complex mathematical models for which capillary blood-tissue exchange (BTEX) units are the building blocks. This study presents a new, nonlinear, two-region, axially distributed, single capillary, BTEX model. A facilitated transporter model is used to describe mass transfer between plasma and intracellular spaces. To provide fast and accurate solutions, numerical techniques suited to nonlinear convection-dominated problems are implemented. These techniques are the random choice method, an explicit Euler-Lagrange scheme, and the MacCormack method with and without flux correction. The accuracy of the numerical techniques is demonstrated, and their efficiencies are compared. The random choice, Euler-Lagrange and plain MacCormack method are the best numerical techniques for BTEX modeling. However, the random choice and Euler-Lagrange methods are preferred over the MacCormack method because they allow for the derivation of a heuristic criterion that makes the numerical methods stable without degrading their efficiency. Numerical solutions are also used to illustrate some nonlinear behaviors of the model and to show how the new BTEX model can be used to estimate parameters from experimental data. PMID:9146808

  15. Uptake of L-nicotine and of 6-hydroxy-L-nicotine by Arthrobacter nicotinovorans and by Escherichia coli is mediated by facilitated diffusion and not by passive diffusion or active transport.

    PubMed

    Ganas, Petra; Brandsch, Roderich

    2009-06-01

    The mechanism by which l-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[(14)C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K(m) of 6.2+/-0.1 microM and a V(max) of 0.70+/-0.08 micromol min(-1) (mg protein)(-1). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1(-)) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[(14)C]nicotine took place. A. nicotinovorans pAO1(-) and Escherichia coli were also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound. l-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood-brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.

  16. Towards the development of a combined Norovirus and sediment transport model for coastal waters

    NASA Astrophysics Data System (ADS)

    Barry, K.; O'Kane, J. P. J.

    2009-04-01

    Sewage effluent in coastal waters used for oyster culture poses a risk to human health. The primary pathogen in outbreaks of gastroenteritis following consumption of raw oysters is the Norovirus or "winter vomiting bug". The Norovirus is a highly infectious RNA virus of the Caliciviridae taxonomic family. It has a long survival time in coastal waters (T90 = 30 days in winter). Oysters selectively concentrate Norovirus in their digestive ducts. The virus cannot be removed by conventional depuration. The primary goal of the research is to quantify the risk of Norovirus infection in coastal waters through physically-based high-resolution numerical modelling. Cork Harbour and Clew Bay in Ireland provide case studies for the research. The models simulate a number of complex physical, chemical and biological processes which influence the transport and decay of the virus as well as its bioaccumulation in oyster tissue. The current phase of the research is concerned with the adsorption of the virus to suspended sediment in the water column. Adsorbed viruses may be taken out of the water column when sedimentation occurs and, subsequently, be added to it with resuspension of the bed sediment. Preliminary simulations of the Norovirus-sediment model indicate that suspended sediment can influence the transport of the virus in coastal waters when a high sediment-water partitioning coefficient is used and the model is run under calm environmental conditions. In this instance a certain fraction of the adsorbed viruses are taken out of the water column by sedimentation and end up locked in the bed sediment. Subsequently, under storm conditions, a large number of viruses in the bed are released into the water column by erosion of the bed and a risk of contamination occurs at a time different to when the viruses were initially released into the body of water.

  17. Protons and how they are transported by proton pumps.

    PubMed

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  18. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport

    USGS Publications Warehouse

    Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P.

    2009-01-01

    We studied total mercury (THg) and methylmercury (MeHg) in eight streams, located in Oregon, Wisconsin, and Florida, that span large ranges in climate, landscape characteristics, atmospheric Hg deposition, and water chemistry. While atmospheric deposition was the source of Hg at each site, basin characteristics appeared to mediate this source by providing controls on methylation and fluvial THg and MeHg transport. Instantaneous concentrations of filtered total mercury (FTHg) and filtered methylmercury (FMeHg) exhibited strong positive correlations with both dissolved organic carbon (DOC) concentrations and streamflow for most streams, whereas mean FTHg and FMeHg concentrations were correlated with wetland density of the basins. For all streams combined, whole water concentrations (sum of filtered and particulate forms) of THg and MeHg correlated strongly with DOC and suspended sediment concentrations in the water column. ?? 2009 American Chemical Society.

  19. Pre-sedation and transport of Rhamdia quelen in water containing essential oil of Lippia alba: metabolic and physiological responses.

    PubMed

    Becker, Alexssandro G; Parodi, Thaylise V; Zeppenfeld, Carla C; Salbego, Joseânia; Cunha, Mauro A; Heldwein, Clarissa G; Loro, Vania L; Heinzmann, Berta M; Baldisserotto, Bernardo

    2016-02-01

    The effects of transporting silver catfish (Rhamdia quelen) for 6 h in plastic bags containing 0 (control), 30 or 40 µL/L of essential oil (EO) from Lippia alba leaves were investigated. Prior to transport, the fish in the two experimental groups were sedated with 200 µL/L of EO for 3 min. After transport, dissolved oxygen, carbon dioxide, alkalinity, water hardness, pH, temperature and un-ionized ammonia levels in the transport water did not differ significantly among the groups. However, total ammonia nitrogen levels and net Na(+), Cl(-) and K(+) effluxes were significantly lower in the groups transported with EO of L. alba than those in the control group. PvO2, PvCO2 and HCO3(-) were higher after transporting fish in 40 µL/L of EO of L. alba, but there were no significant differences between groups regarding blood pH or hematocrit. Cortisol levels were significantly higher in fish transported in 30 µL/L of EO of L. alba compared to those of the control group. The metabolic parameters (glycogen, lactate, total amino acid, total ammonia and total protein) showed different responses after adding EO to the transport water. In conclusion, while the EO of L. alba is recommended for fish transport in the conditions tested in the present study because it was effective in reducing waterborne total ammonia levels and net ion loss, the higher hepatic oxidative stress in this species with the same EO concentrations reported by a previous study led us to conclude that the 10-20 µL/L concentration range of EO and lack of pre-sedation before transport are more effective.

  20. Ammonia Excretion in an Osmoregulatory Syncytium Is Facilitated by AeAmt2, a Novel Ammonia Transporter in Aedes aegypti Larvae

    PubMed Central

    Durant, Andrea C.; Donini, Andrew

    2018-01-01

    The larvae of the mosquito Aedes aegypti inhabit ammonia rich septic tanks in tropical regions of the world that make extensive use of these systems, explaining the prevalence of disease during dry seasons. Since ammonia (NH3/NH4+) is toxic to animals, an understanding of the physiological mechanisms of ammonia excretion permitting the survival of A. aegypti larvae in high ammonia environments is important. We have characterized a novel ammonia transporter, AeAmt2, belonging to the Amt/MEP/Rh family of ammonia transporters. Based on the amino acid sequence, the predicted topology of AeAmt2 consists of 11 transmembrane helices with an extracellular N-terminus and a cytoplasmic C-terminus region. Alignment of the predicted AeAmt2 amino acid sequence with other Amt/MEP proteins from plants, bacteria, and yeast highlights the presence of conserved residues characteristic of ammonia conducting channels in this protein. AeAmt2 is expressed in the ionoregulatory anal papillae of A. aegypti larvae where it is localized to the apical membrane of the epithelium. dsRNA-mediated knockdown of AeAmt2 results in a significant decrease in NH4+ efflux from the anal papillae, suggesting a key role in facilitating ammonia excretion. The effect of high environmental ammonia (HEA) on expression of AeAmt2, along with previously characterized AeAmt1, AeRh50-1, and AeRh50-2 in the anal papillae was investigated. We show that changes in expression of ammonia transporters occur in response to acute and chronic exposure to HEA, which reflects the importance of these transporters in the physiology of life in high ammonia habitats. PMID:29695971

  1. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Bing; Li Beibei; Zhang Hongchao

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. Themore » numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.« less

  2. Aquaporin 1 Is Involved in Acid Secretion by Ionocytes of Zebrafish Embryos through Facilitating CO2 Transport

    PubMed Central

    Horng, Jiun-Lin; Chao, Pei-Lin; Chen, Po-Yen; Shih, Tin-Han; Lin, Li-Yih

    2015-01-01

    Mammalian aquaporin 1 (AQP1) is well known to function as a membrane channel for H2O and CO2 transport. Zebrafish AQP1a.1 (the homologue of mammalian AQP1) was recently identified in ionocytes of embryos; however its role in ionocytes is still unclear. In this study, we hypothesized that zebrafish AQP1a.1 is involved in the acid secretion by ionocytes through facilitating H2O and CO2 diffusion. A real-time PCR showed that mRNA levels of AQP1a.1 in embryos were induced by exposure to 1% CO2 hypercapnia for 3 days. In situ hybridization and immunohistochemistry showed that the AQP1a.1 transcript was highly expressed by acid-secreting ionocytes, i.e., H+-ATPase-rich (HR) cells. A scanning ion-selective electrode technique (SIET) was applied to analyze CO2-induced H+ secretion by individual ionocytes in embryos. H+ secretion by HR cells remarkably increased after a transient loading of CO2 (1% for 10 min). AQP1a.1 knockdown with morpholino oligonucleotides decreased the H+ secretion of HR cells by about half and limited the CO2 stimulated increase. In addition, exposure to an AQP inhibitor (PCMB) for 10 min also suppressed CO2-induced H+ secretion. Results from this study support our hypothesis and provide in vivo evidence of the physiological role of AQP1 in CO2 transport. PMID:26287615

  3. Hydrology in Lichens: How Biological Architecture is Used to Regulate Water Access to Support Drought Resilience and Nutrient Transport

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Dismukes, G. C.; Ananyev, G.

    2017-12-01

    Lichens are Nature's masters at controlling water and air flux within a symbiotic organism comprised of an algal photobiont and its fungal host. Here we investigated the equilibrium partitioning and kinetic transport of water between the symbionts in the lichen flavoparmelia species. Lichens have developed a unique strategy to recover after deep dehydration, that otherwise would kill the majority of free living phototrophs. By measuring both kinetics of water content and chlorophyll fluorescence emission (indicative of algal charge separation and water oxidation) during dehydration, we identified 3 distinct temporal stages and mapped these to physical zones by confocal microscopy using a combination of hydro-philic/-phobic dyes. Below a critical level of water content, controlled by the greater hydrophilicity of fungal tissues, algal photosynthesis rapidly turns off. We show that the distinct stages in dehydration mirror the 3D architecture of lichen tissue (the thallus). We provide evidence that control of water distribution is achieved by capillary forces within ordered zones of physical space possessing different hydro-phobic/-philic characteristics. This strategy ensures that photosynthetic capacity is protected from and can quickly recover after desiccation. The fungal host controls the onset and extent of photosynthesis in the enslaved alga, presumably to ensure transport of algal derived sugars and oxygen (O2) to the fungal host only when sufficient water exists for transport. Lichen architecture provides Nature's solution to gas-water transport that is self-regulated by humidity. It offers novel lessons for designing practical devices such as fuel cell membranes and dialysis membranes. Supported by the US Dept of Energy, Basic Energy Sciences, Physical Biosciences Division.

  4. Control factors and scale analysis of annual river water, sediments and carbon transport in China.

    PubMed

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-11

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  5. African American Women's Perceptions on Access to Food and Water in Flint, Michigan.

    PubMed

    Mayfield, Kellie E; Carolan, Marsha; Weatherspoon, Lorraine; Chung, Kimberly R; Hoerr, Sharon M

    2017-06-01

    To explore the perceptions of food access by African American women in Flint, MI. Using womanist theory, in which African American women's experiential knowledge centered the analysis, 8 focus groups were conducted during fall/spring, 2014-2015. Seventeen mothers aged 21-50 years with children aged <18 years and 13 women aged >60 years comprised the groups. The high cost of water, poor availability of healthy foods in inner-city stores, and limited transportation were barriers to accessing healthy food. Conversely, receiving food from food giveaways, friends, and family, as well as access to transportation facilitated food access. These women also reported discriminatory experiences and diet-related health concerns. Participants were keenly aware of available free community resources and gender, racial, and income barriers to accessing them. Understanding these barriers and facilitators provides information to aid local food policy assistance decisions and inform community-based interventions, especially given the lead contamination of water and the purported importance of a healthy diet to sequester lead. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  6. Water pumps

    PubMed Central

    Loo, Donald D F; Wright, Ernest M; Zeuthen, Thomas

    2002-01-01

    The transport of water across epithelia has remained an enigma ever since it was discovered over 100 years ago that water was transported across the isolated small intestine in the absence of osmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute transport, the actual mechanisms are not well understood. Current dogma holds that active ion transport sets up local osmotic gradients in the spaces between epithelial cells, the lateral intercellular spaces, and this in turn drives water transport by local osmosis. In the case of the small intestine, which in humans absorbs about 8 l of water a day, there is no direct evidence for either local osmosis or aquaporin gene expression in enterocytes. Intestinal water absorption is greatly enhanced by glucose, and this is the basis for oral rehydration therapy in patients with secretory diarrhoea. In our studies of the intestinal brush border Na+-glucose cotransporter we have obtained evidence that there is a direct link between the transport of Na+, glucose and water transport, i.e. there is cotransport of water along with Na+ and sugar, that will account for about 50 % of the total water transport across the human intestinal brush border membrane. In this short review we summarize the evidence for water cotransport and propose how this occurs during the enzymatic turnover of the transporter. This is a general property of cotransporters and so we expect that this may have wider implications in the transport of water and other small polar molecules across cell membranes in animals and plants. PMID:12096049

  7. Water pumps.

    PubMed

    Loo, Donald D F; Wright, Ernest M; Zeuthen, Thomas

    2002-07-01

    The transport of water across epithelia has remained an enigma ever since it was discovered over 100 years ago that water was transported across the isolated small intestine in the absence of osmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute transport, the actual mechanisms are not well understood. Current dogma holds that active ion transport sets up local osmotic gradients in the spaces between epithelial cells, the lateral intercellular spaces, and this in turn drives water transport by local osmosis. In the case of the small intestine, which in humans absorbs about 8 l of water a day, there is no direct evidence for either local osmosis or aquaporin gene expression in enterocytes. Intestinal water absorption is greatly enhanced by glucose, and this is the basis for oral rehydration therapy in patients with secretory diarrhoea. In our studies of the intestinal brush border Na+-glucose cotransporter we have obtained evidence that there is a direct link between the transport of Na+, glucose and water transport, i.e. there is cotransport of water along with Na+ and sugar, that will account for about 50 % of the total water transport across the human intestinal brush border membrane. In this short review we summarize the evidence for water cotransport and propose how this occurs during the enzymatic turnover of the transporter. This is a general property of cotransporters and so we expect that this may have wider implications in the transport of water and other small polar molecules across cell membranes in animals and plants.

  8. Intermodal Freight Transportation: Projects and Planning Issues

    DOT National Transportation Integrated Search

    1996-07-01

    A review of several intermodal freight transportation issues: (1)The Department of Transportation's (DOT) efforts to track how states use ISTEA funds for facilitating intermodal transportation and the nature and extent of ISTEA funds used by states f...

  9. Section 1. Simulation of surface-water integrated flow and transport in two-dimensions: SWIFT2D user's manual

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    2004-01-01

    A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the

  10. U.S. and Texas international trade and transportation.

    DOT National Transportation Integrated Search

    2011-07-01

    This report, funded by the Southwest Region University Transportation Center, examines various : aspects of international trade, transportation, and foreign practices implemented facilitate and fund : transport-related infrastructure. The report is c...

  11. Modelling fate and transport of pesticides in river catchments with drinking water abstractions

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet; Touchant, Kaatje

    2010-05-01

    When drinking water is abstracted from surface water, the presence of pesticides may have a large impact on the purification costs. In order to respect imposed thresholds at points of drinking water abstraction in a river catchment, sustainable pesticide management strategies might be required in certain areas. To improve management strategies, a sound understanding of the emission routes, the transport, the environmental fate and the sources of pesticides is needed. However, pesticide monitoring data on which measures are founded, are generally scarce. Data scarcity hampers the interpretation and the decision making. In such a case, a modelling approach can be very useful as a tool to obtain complementary information. Modelling allows to take into account temporal and spatial variability in both discharges and concentrations. In the Netherlands, the Meuse river is used for drinking water abstraction and the government imposes the European drinking water standard for individual pesticides (0.1 ?g.L-1) for surface waters at points of drinking water abstraction. The reported glyphosate concentrations in the Meuse river frequently exceed the standard and this enhances the request for targeted measures. In this study, a model for the Meuse river was developed to estimate the contribution of influxes at the Dutch-Belgian border on the concentration levels detected at the drinking water intake 250 km downstream and to assess the contribution of the tributaries to the glyphosate loads. The effects of glyphosate decay on environmental fate were considered as well. Our results show that the application of a river model allows to asses fate and transport of pesticides in a catchment in spite of monitoring data scarcity. Furthermore, the model provides insight in the contribution of different sub basins to the pollution level. The modelling results indicate that the effect of local measures to reduce pesticides concentrations in the river at points of drinking water

  12. Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline▿†

    PubMed Central

    Park, Hyung Soo; Chatterjee, Indranil; Dong, Xiaoli; Wang, Sheng-Hung; Sensen, Christoph W.; Caffrey, Sean M.; Jack, Thomas R.; Boivin, Joe; Voordouw, Gerrit

    2011-01-01

    Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters. PMID:21856836

  13. Impact of freeze-drying, mixing and horizontal transport on water vapor in the upper troposphere and lower stratosphere (UTLS)

    NASA Astrophysics Data System (ADS)

    Poshyvailo, Liubov; Ploeger, Felix; Müller, Rolf; Tao, Mengchu; Konopka, Paul; Abdoulaye Diallo, Mohamadou; Grooß, Jens-Uwe; Günther, Gebhard; Riese, Martin

    2017-04-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) is a key player in the global radiation budget. Therefore, a realistic representation of the water vapor distribution in this region and the involved control processes is critical for climate models, but largely uncertain hitherto. It is known that the extremely low temperatures around the tropical tropopause cause the dominant factor controlling water vapor in the lower stratosphere. Here, we focus on additional processes, such as horizontal transport between tropics and extratropics, small-scale mixing, and freeze-drying. We assess the sensitivities of simulated water vapor in the UTLS from simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). CLaMS is a Lagrangian transport model, with a parameterization of small-scale mixing (model diffusion) which is coupled to deformations in the large-scale flow. First, to assess the robustness of water vapor with respect to the meteorological datasets we examine CLaMS driven by ECMWF ERA-Interim and the Japanese 55-year reanalysis. Second, to investigate the effects of small-scale mixing we vary the parameterized mixing strength in the CLaMS model between the reference case with the mixing strength optimized to reproduce atmospheric trace gas observations and a purely advective simulation with parameterized mixing turned off. Also calculation of Lagrangian cold points gives further insight of the processes involved. Third, to assess the effects of horizontal transport between the tropics and extratropics we carry out sensitivity simulations with horizontal transport barriers along latitude circles at the equator, 15°N/S and 35°N/S. Finally, the impact of Antarctic dehydration is estimated from additional sensitivity simulations with switched off freeze-drying in the model at high latitudes of 50°N/S. Our results show that the uncertainty in the tropical tropopause temperatures between current reanalysis datasets causes significant

  14. 29 CFR 783.39 - “Vessel” includes all means of water transportation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false âVesselâ includes all means of water transportation. 783.39 Section 783.39 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS APPLICATION OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES...

  15. Methane transport and emissions from soil as affected by water table and vascular plants.

    PubMed

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  16. Transport and fate of river waters under flood conditions and rim current influence: the Mississippi River test case

    NASA Astrophysics Data System (ADS)

    Kourafalou, Villy; Androulidakis, Yannis

    2013-04-01

    Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions

  17. A New Scheme for Considering Soil Water-Heat Transport Coupling Based on Community Land Model: Model Description and Preliminary Validation

    NASA Astrophysics Data System (ADS)

    Wang, Chenghai; Yang, Kai

    2018-04-01

    Land surface models (LSMs) have developed significantly over the past few decades, with the result that most LSMs can generally reproduce the characteristics of the land surface. However, LSMs fail to reproduce some details of soil water and heat transport during seasonal transition periods because they neglect the effects of interactions between water movement and heat transfer in the soil. Such effects are critical for a complete understanding of water-heat transport within a soil thermohydraulic regime. In this study, a fully coupled water-heat transport scheme (FCS) is incorporated into the Community Land Model (version 4.5) to replaces its original isothermal scheme, which is more complete in theory. Observational data from five sites are used to validate the performance of the FCS. The simulation results at both single-point and global scale show that the FCS improved the simulation of soil moisture and temperature. FCS better reproduced the characteristics of drier and colder surface layers in arid regions by considering the diffusion of soil water vapor, which is a nonnegligible process in soil, especially for soil surface layers, while its effects in cold regions are generally inverse. It also accounted for the sensible heat fluxes caused by liquid water flow, which can contribute to heat transfer in both surface and deep layers. The FCS affects the estimation of surface sensible heat (SH) and latent heat (LH) and provides the details of soil heat and water transportation, which benefits to understand the inner physical process of soil water-heat migration.

  18. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution

    PubMed Central

    Zeuthen*, Thomas; Belhage, Bo; Zeuthen, Emil

    2006-01-01

    The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378 ± 20 (n = 18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue α-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86 ± 0.03 (15). For the human SGLT1 the respective numbers were 234 ± 12 (18) and 0.85 ± 0.8 (7). For NIS, 253 ± 16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN−, MW 58), with I− as anion (MW 127) only 162 ± 11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute. PMID:16322051

  19. Secondary water pore formation for proton transport in a ClC exchanger revealed by an atomistic molecular-dynamics simulation.

    PubMed

    Ko, Youn Jo; Jo, Won Ho

    2010-05-19

    Several prokaryotic ClC proteins have been demonstrated to function as exchangers that transport both chloride ions and protons simultaneously in opposite directions. However, the path of the proton through the ClC exchanger, and how the protein brings about the coupled movement of both ions are still unknown. In this work, we use an atomistic molecular dynamics (MD) simulation to demonstrate that a previously unknown secondary water pore is formed inside an Escherichia coli ClC exchanger. The secondary water pore is bifurcated from the chloride ion pathway at E148. From the systematic simulations, we determined that the glutamate residue exposed to the intracellular solution, E203, plays an important role as a trigger for the formation of the secondary water pore, and that the highly conserved tyrosine residue Y445 functions as a barrier that separates the proton from the chloride ion pathways. Based on our simulation results, we conclude that protons in the ClC exchanger are conducted via a water network through the secondary water pore, and we propose a new mechanism for the coupled transport of chloride ions and protons. It has been reported that several members of ClC proteins are not just channels that simply transport chloride ions across lipid bilayers; rather, they are exchangers that transport both the chloride ion and proton in opposite directions. However, the ion transit pathways and the mechanism of the coupled movement of these two ions have not yet been unveiled. In this article, we report a new finding (to our knowledge) of a water pore inside a prokaryotic ClC protein as revealed by computer simulation. This water pore is bifurcated from the putative chloride ion, and water molecules inside the new pore connect two glutamate residues that are known to be key residues for proton transport. On the basis of our simulation results, we conclude that the water wire that is formed inside the newly found pore acts as a proton pathway, which enables us to

  20. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  1. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    PubMed

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  2. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake

    NASA Astrophysics Data System (ADS)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.

    2017-06-01

    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  3. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    PubMed

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  4. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees

    PubMed Central

    Apgaua, Deborah M. G.; Ishida, Françoise Y.; Tng, David Y. P.; Laidlaw, Melinda J.; Santos, Rubens M.; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A. M.; Laurance, Susan G. W.

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  5. A Molecular Dynamics-Quantum Mechanics Theoretical Study of DNA-Mediated Charge Transport in Hydrated Ionic Liquids.

    PubMed

    Meng, Zhenyu; Kubar, Tomas; Mu, Yuguang; Shao, Fangwei

    2018-05-08

    Charge transport (CT) through biomolecules is of high significance in the research fields of biology, nanotechnology, and molecular devices. Inspired by our previous work that showed the binding of ionic liquid (IL) facilitated charge transport in duplex DNA, in silico simulation is a useful means to understand the microscopic mechanism of the facilitation phenomenon. Here molecular dynamics simulations (MD) of duplex DNA in water and hydrated ionic liquids were employed to explore the helical parameters. Principal component analysis was further applied to capture the subtle conformational changes of helical DNA upon different environmental impacts. Sequentially, CT rates were calculated by a QM/MM simulation of the flickering resonance model based upon MD trajectories. Herein, MD simulation illustrated that the binding of ionic liquids can restrain dynamic conformation and lower the on-site energy of the DNA base. Confined movement among the adjacent base pairs was highly related to the increase of electronic coupling among base pairs, which may lead DNA to a CT facilitated state. Sequentially combining MD and QM/MM analysis, the rational correlations among the binding modes, the conformational changes, and CT rates illustrated the facilitation effects from hydrated IL on DNA CT and supported a conformational-gating mechanism.

  6. Bedload transport over run-of-river dams, Delaware, U.S.A.

    NASA Astrophysics Data System (ADS)

    Pearson, Adam J.; Pizzuto, Jim

    2015-11-01

    We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams

  7. Letter from A & R Transport about Section 308 of the Clean Water Act Discharge of Perfluorinated Compounds

    EPA Pesticide Factsheets

    January 16, 2009 letter from Kenneth E. Pate, VP of Safety and Risk Management of A & R Transport, Inc. to EPA Clean Water Enforcement Branch, about an Information Request about the Section 308 of the Clean Water Act, discharge of pefluorinated compounds.

  8. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter

    NASA Astrophysics Data System (ADS)

    Lee, Yongchan; Nishizawa, Tomohiro; Yamashita, Keitaro; Ishitani, Ryuichiro; Nureki, Osamu

    2015-01-01

    SWEET family proteins mediate sugar transport across biological membranes and play crucial roles in plants and animals. The SWEETs and their bacterial homologues, the SemiSWEETs, are related to the PQ-loop family, which is characterized by highly conserved proline and glutamine residues (PQ-loop motif). Although the structures of the bacterial SemiSWEETs were recently reported, the conformational transition and the significance of the conserved motif in the transport cycle have remained elusive. Here we report crystal structures of SemiSWEET from Escherichia coli, in the both inward-open and outward-open states. A structural comparison revealed that SemiSWEET undergoes an intramolecular conformational change in each protomer. The conserved PQ-loop motif serves as a molecular hinge that enables the ‘binder clip-like’ motion of SemiSWEET. The present work provides the framework for understanding the overall transport cycles of SWEET and PQ-loop family proteins.

  9. Implications of sediment transport by subglacial water flow for interpreting contemporary glacial erosion rates

    NASA Astrophysics Data System (ADS)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area

  10. Chemistry experience in the primary heat transport circuits of Kraftwerk Union pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, R.

    Chosen for this description of the selected Kraftwerk Union (KWU) pressurized water reactor units were Obrigheim (KWO, 345 MW(e)), Stade (KKS, 662 (MW(e)), Borselle (KCB, 477 MW(e)), and Biblis (KWB-A, 1204 MW(e)). The experience at these plants shows that with a special startup procedure and a proper chemical control of the primary heat transport system that influences general corrosion, selective types of corrosion, corrosion product activity transport and resulting contamination, and radiation-induced decomposition, KWU units have no basic problems.

  11. Sudden clearing of estuarine waters upon crossing the threshold from transport to supply regulation of sediment transport as an erodible sediment pool is depleted: San Francisco Bay, 1999

    USGS Publications Warehouse

    Schoellhamer, David H.

    2011-01-01

    The quantity of suspended sediment in an estuary is regulated either by transport, where energy or time needed to suspend sediment is limiting, or by supply, where the quantity of erodible sediment is limiting. This paper presents a hypothesis that suspended-sediment concentration (SSC) in estuaries can suddenly decrease when the threshold from transport to supply regulation is crossed as an erodible sediment pool is depleted. This study was motivated by a statistically significant 36% step decrease in SSC in San Francisco Bay from water years 1991–1998 to 1999–2007. A quantitative conceptual model of an estuary with an erodible sediment pool and transport or supply regulation of sediment transport is developed. Model results confirm that, if the regulation threshold was crossed in 1999, SSC would decrease rapidly after water year 1999 as observed. Estuaries with a similar history of a depositional sediment pulse followed by erosion may experience sudden clearing.

  12. Constraining Water Vapor Abundance on Mars using a Coupled Heat-Water Transport Model and Seasonal Frost Observations

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Byrne, S.

    2016-12-01

    The stability of water ice on Mars' surface is determined by its temperature and the density of water vapor at the bottom of the atmosphere. Multiple orbiting instruments have been used to study column-integrated water abundance in the martian atmosphere, resolving the global annual water cycle. However, poor knowledge of the vertical distribution of water makes constraining its abundance near the surface difficult. One must assume a mixing regime to produce surface vapor density estimates. More indirectly, one can use the appearance and disappearance of seasonal water frost, along with ice stability models, to estimate this value. Here, we use derived temperature and surface reflectance data from MGS TES to constrain a 1-D thermal diffusion model, which is coupled to an atmospheric water transport model. TES temperatures are used to constrain thermal properties of our modeled subsurface, while changes in TES albedo can be used to determine the timing of water frost. We tune the density of water vapor in the atmospheric model to match the observed seasonal water frost timing in the northern hemisphere, poleward of 45°N. Thus, we produce a new estimate for the water abundance in the lower atmosphere of Mars and how it varies seasonally and geographically. The timing of water frost can be ambiguous in TES data, especially at lower latitudes where the albedo contrast between frosted and unfrosted surfaces is lower (presumably due to lesser areal coverage of water frost). The uncertainty in frost timing with our approach is <20° LS ( 40 sols), and will be used to define upper and lower bounds in our estimate of vapor density. The implications of our derived vapor densities on the stability of surface and subsurface water ice will be discussed.

  13. Transportation Facilitation Education Program: A Handbook for Transportation and Distribution. Part III. Final Report.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. Coll. of Business Administration.

    The handbook accents the nature of transportation and related domestic and international business activities. Its objective is to provide basic information for the newcomer to the field. Chapters 2 and 3 describe assistance available from public and private agencies, as well as regulatory requirements for foreign traders and a resume of the…

  14. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers.

    PubMed

    Kang, Hongyan; Cancel, Limary M; Tarbell, John M

    2014-04-01

    Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with an NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 h elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by an NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers

    PubMed Central

    Kang, Hongyan; Cancel, Limary M.; Tarbell, John M.

    2014-01-01

    Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with a NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 hours elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by a NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells. PMID:24583416

  16. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau

    PubMed Central

    Fu, Rong; Hu, Yuanlong; Wright, Jonathon S.; Jiang, Jonathan H.; Dickinson, Robert E.; Chen, Mingxuan; Filipiak, Mark; Read, William G.; Waters, Joe W.; Wu, Dong L.

    2006-01-01

    During boreal summer, much of the water vapor and CO entering the global tropical stratosphere is transported over the Asian monsoon/Tibetan Plateau (TP) region. Studies have suggested that most of this transport is carried out either by tropical convection over the South Asian monsoon region or by extratropical convection over southern China. By using measurements from the newly available National Aeronautics and Space Administration Aura Microwave Limb Sounder, along with observations from the Aqua and Tropical Rainfall-Measuring Mission satellites, we establish that the TP provides the main pathway for cross-tropopause transport in this region. Tropospheric moist convection driven by elevated surface heating over the TP is deeper and detrains more water vapor, CO, and ice at the tropopause than over the monsoon area. Warmer tropopause temperatures and slower-falling, smaller cirrus cloud particles in less saturated ambient air at the tropopause also allow more water vapor to travel into the lower stratosphere over the TP, effectively short-circuiting the slower ascent of water vapor across the cold tropical tropopause over the monsoon area. Air that is high in water vapor and CO over the Asian monsoon/TP region enters the lower stratosphere primarily over the TP, and it is then transported toward the Asian monsoon area and disperses into the large-scale upward motion of the global stratospheric circulation. Thus, hydration of the global stratosphere could be especially sensitive to changes of convection over the TP. PMID:16585523

  17. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.

    PubMed

    Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping

    2015-01-01

    Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.

  18. Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management

    NASA Astrophysics Data System (ADS)

    Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.

    2017-04-01

    Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.

  19. Water and solute transport parameterization form a soil of semi-arid region of northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Netto, A. M.; Antonino, A. C. D.; Lima, L. J. S.; Angulo-Jaramillo, R.; Montenegro, S. M. G.

    2003-04-01

    Water and solute transfer modeling needs the transport parameters as input data. Classical theory, Fickian advection-dispersion, is not successfully applied to account for solute transport along with preferential flow pathways. This transport may be operating at scales smaller than spatial discretization used in a field scale numerical model. An axisymetric infiltration using a single ring infiltrometer along with a conservative tracer (Cl^-) is an efficient and easy method to use in fields tools. Two experiments were accomplished on a Yellow Oxissol in a 4,0 ha area in Centro de Ciências Agrárias, UFPB, Areia City, Paraíba State, Brazil (6^o 58'S, 35o 41'W and 645 m), in a 50 × 50 m grid (16 points): a) cultivated with beans (Vigna Unguinculata (L.) Walp.), and b) bare soil after harvest. The unsaturated hydraulic conductivity K and sorptivity S were estimated from short time or long time analysis of cumulative three dimensional infiltration. Single tracer technique was used for the calculation of mobile water fraction f by measuring the solute concentration underneath the ring infiltrometer, at the end of infiltration. A solute transfer numerical model, based on the mobile-immobile water concept, was used for the determination of the solute transport parameters. The mobile water fraction f, the dispersion coefficient D, and the mass transfer coefficient α, were estimated from both the measured infiltration depth and concentration profile underneath the ring infiltrometer. The presence of preferential flow was due to the soil nature (aggregated soil, macropores, flux instabilities and heterogeneity). The lateral solute transfer is not only diffusive but also convective. The parameters deduced from the numerical model associated to the solute profile concentration are representative of this phenomenon.

  20. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  1. Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles.

    PubMed

    Ni, Li; Zheng, Weichao; Zhang, Qiang; Cao, Wei; Li, Baoming

    2016-10-01

    The effectiveness of slightly acidic electrolyzed water (SAEW) in reducing Escherichia coli, Salmonella typhimurim, Staphylococcus aureus or bacterial mixtures on stainless steel surfaces was evaluated and compared its efficacy with composite phenol solution for reducing total aerobic bacteria in animal transport vehicles. Stainless steel surfaces were inoculated with these strains individually or in a mixture, and sprayed with SAEW, composite phenol, or alkaline electrolyzed water for 0.5, 1, 1.5 and 2min. The bactericidal activity of SAEW increased with increasing available chlorine concentration and spraying duration. The SAEW solution of 50mgl -1 of available chlorine concentration showed significantly higher effectiveness than composite phenol in reducing the pathogens on stainless steel surfaces (P<0.05). Complete inactivation of pathogens on stainless steel surfaces were observed after treatment with alkaline electrolyzed water followed by SAEW at 50mgl -1 of available chlorine concentration for 2min or alkaline electrolyzed water treatment followed by SAEW treatment at 90mgl -1 of available chlorine concentration for 0.5min. The efficacy of SAEW in reducing total aerobic bacteria in animal transport vehicles was also determined. Vehicles in the disinfection booth were sprayed with the same SAEW, alkaline electrolyzed water and composite phenol solutions using the automatic disinfection system. Samples from vehicle surfaces were collected with sterile cotton swabs before and after each treatment. No significant differences in bactericidal efficiency were observed between SAEW and composite phenol for reducing total aerobic bacteria in the vehicles (P>0.05). SAEW was also found to be more effective when used in conjunction with alkaline electrolyzed water. Results suggest that the bactericidal efficiency of SAEW was higher than or equivalent to that of composite phenol and SAEW may be used as effective alternative for reducing microbial contamination of

  2. Coordination and transport of water and carbohydrates in the coupled soil-root-xylem-phloem leaf system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel; Huang, Cheng-Wei

    2017-04-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior.

  3. Forensic toxicology in drug-facilitated sexual assault.

    PubMed

    Dinis-Oliveira, Ricardo Jorge; Magalhães, Teresa

    2013-09-01

    The low rates of reporting, prosecution and conviction that characterize sexual assault, is likely even more evident in drug-facilitated cases. Typically, in these crimes, victims are incapacitated and left unable to resist sexual advances, unconscious, unable to fight off the abuser or to say "no" and unable to clearly remember the circumstances surrounding the events due to anterograde amnesia. The consequence is the delay in performing toxicological analysis aggravated by the reluctance of the victim to disclose the crime. Moreover since "date rape drugs" are often consumed with ethanol and exhibit similar toxicodynamic effects, the diagnosis is erroneously performed as being classical ethanol intoxication. Therefore, it is imperative to rapidly consider toxicological analysis in drug-facilitated sexual assaults. The major focus of this review is to harmonize practical approaches and guidelines to rapidly uncover drug-facilitated sexual assault, namely issues related to when to perform toxicological analysis, toxicological requests, samples to be collected, storage, preservation and transport precautions and xenobiotics or endobiotics to be analyzed.

  4. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    USGS Publications Warehouse

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  5. Evaluation of potential sources and transport mechanisms of fecal indicator bacteria to beach water, Murphy Park Beach, Door County, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Corsi, Steven R.; McDermott, Colleen; Kleinheinz, Gregory; Fogarty, Lisa R.; Haack, Sheridan K.; Johnson, Heather E.

    2013-01-01

    Fecal Indicator Bacteria (FIB) concentrations in beach water have been used for many years as a criterion for closing beaches due to potential health concerns. Yet, current understanding of sources and transport mechanisms that drive FIB occurrence remains insufficient for accurate prediction of closures at many beaches. Murphy Park Beach, a relatively pristine beach on Green Bay in Door County, Wis., was selected for a study to evaluate FIB sources and transport mechanisms. Although the relatively pristine nature of the beach yielded no detection of pathogenic bacterial genes and relatively low FIB concentrations during the study period compared with other Great Lakes Beaches, its selection limited the number of confounding FIB sources and associated transport mechanisms. The primary sources of FIB appear to be internal to the beach rather than external sources such as rivers, storm sewer outfalls, and industrial discharges. Three potential FIB sources were identified: sand, swash-zone groundwater, and Cladophora mats. Modest correlations between FIB concentrations in these potential source reservoirs and FIB concentrations at the beach from the same day illustrate the importance of understanding transport mechanisms between FIB sources and the water column. One likely mechanism for transport and dispersion of FIB from sand and Cladophora sources appears to be agitation of Cladophora mats and erosion of beach sand due to storm activity, as inferred from storm indicators including turbidity, wave height, current speed, wind speed, sky visibility, 24-hour precipitation, and suspended particulate concentration. FIB concentrations in beach water had a statistically significant relation (p-value ‹0.05) with the magnitude of these storm indicators. In addition, transport of FIB in swash-zone groundwater into beach water appears to be driven by groundwater recharge associated with multiday precipitation and corresponding increased swash-zone groundwater discharge at

  6. Forms of trace arsenic, cesium, cadmium, and lead transported into river water for the irrigation of Japanese paddy rice fields

    NASA Astrophysics Data System (ADS)

    Nakaya, Shinji; Chi, Hai; Muroda, Kengo; Masuda, Harue

    2018-06-01

    In this study, we focus on the behavior of geogenic, toxic trace elements, particularly As, Cs, Cd, and Pb, during their transportation in two rivers for irrigation commonly used in monsoon Asia; one river originates from an active volcano, Mt. Asama, and the other originates from a currently inactive volcano, Yatsugatake Mountains in Nagano, Japan. These rivers were investigated to understand the role of river water as a pollutant of rice and other aquatic plants (via irrigation) and aquatic animals. The results indicated that the behavior of toxic trace elements in river water are likely controlled by their interactions with particulate Fe, Al, and Ti compounds. The majority of Pb and Cd is transported as particulate matter with Fe, Al, and Ti, while the majority of As is transported in the dissolved form, predominantly as arsenate, with low abundance of particulate matter. Cs is transported either as the dissolved form or as particulate matter in both rivers. The investigated elements are transported in the rivers as particulate and dissolved forms, and the ratio of these forms is controlled by the pH and presence of particulate Fe, Al, and Ti phases in the river water. With respect to Cs in both rivers, the parameter governing the concentration and transportation of Cs, in the bimodal form (i.e., particulate and dissolved forms), through the river possibly shifts from sorption to pH by particulate Fe-Al-Ti, according to the abrupt increase in the concentration of Cs in the river. The chemical attraction of particulate Fe-Al-Ti for Cs is weaker than that for Pb and Cd, indicating that the lower electronegativity of Cs weakens the chemical attraction on a colloid for the competitive sorption with the other trace elements. The different relationships between As and Fe in the river and in the irrigation water and soil water, as well as those in paddy rice, suggested that As in paddy rice is not directly derived from As in the irrigation water from the river under

  7. Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells

    DTIC Science & Technology

    2014-10-13

    harvestingelectrical power directly from waste and renewable biomass and thus represent a promising technology for sustainable energy production.1−5 Central...cell membrane (Figure 3e), serving as a porous semiconducting “ shell ” to facilitate the charge transport at bacteria/electrode or bacteria/bacteria

  8. Vadose Zone Transport Field Study: Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-30

    Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of themore » past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.« less

  9. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  10. Water generation and transport through the high-pressure ice layers of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Choblet, G.; Tobie, G.; Grasset, O.

    2017-09-01

    We investigate the generation and transport of water through the high-pressure (HP) ice layers of Ganymede and Titan using a numerical model of two-phase convection in 2D geometry. Our results suggest that water can be generated at the silicate/HP ice interface for small to intermediate values of Rayleigh number (Ra 1.e8-1.e10) while no melt is generated for the higher values (Ra 1.e11). If generated, water is transported through the layer by the upwelling plumes and, depending on the vigor of convection, it stays liquid (smaller Ra) or it may freeze (intermediate Ra) before melting again as the plume reaches the temperate layer at the interface with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the HP ice permeability. This process may enable the transfer of volatiles and salts that might have been leached from silicates by the meltwater. Since the HP ice layer is much thinner on Titan than on Ganymede, it is probably more permeable for volatiles and salts leached from the silicate core.

  11. Transpiration Driven Hydrologic Transport in vegetated shallow water environments: Implications on Diel and Seasonal Soil Biogeochemical Processes and System Management

    NASA Astrophysics Data System (ADS)

    Bachand, P.; Bachand, S. M.; Fleck, J.; Anderson, F.

    2011-12-01

    Hydrology arguably plays the most important role in biogeochemical cycling of mercury in wetlands and other shallow aquatic systems. CFSTR, PFR and non-ideal reactor models are oftentimes currently used to hydrologically assess these systems and to account for the fate, transport and cycling of constituents of concern (COC) with systems assumed to be non-leaky and with diffusion dominating soil transport. Yet a number of results in the literature imply transpiration drives soil transport: transpiration into the root zone is in the range of 50 - 75% of ET seasonally; gaseous emissions from aquatic systems show a diel pattern that tracks diel ET patterns; in long detention time aquatic systems ET is the largest sink for applied surface waters; and non-reactive tracers when applied to surface waters can find themselves in the root zone and within plants. All these findings strongly suggest transpiration driven infiltration into the root zone, is a significant hydrologic pathway for constituents and is an important transport mechanism. This paper examines the annual water budget for four shallow aquatic land uses in the Yolo Bypass, California: rice, wild rice, fallowed fields and wetlands. Results indicate that differences in hydrology between the fields, particularly the temporal nature of transpiration, play a significant role in mercury transformations and transport. During the irrigation period, fallowed fields discharged 6 cm of surface water (15% applied water), rice fields 31 - 43 cm (27 - 31% applied water), and wild rice fields 16 - 39 cm (15 - 31% applied water). Evapotranspiration rates were in the range of 120 - 130 cm/y for all land uses (i.e. rice, wild rice, fallowed fields and seasonal wetlands) except for the permanent wetland which was about 1/3 higher at about 170 cm/y. During the summer, approximately 50% of the applied surface water was drawn into the root zone to meet transpiration demands. Based upon results from our water budget and utilizing

  12. Modeling water exchange and contaminant transport through a Baltic coastal region.

    PubMed

    Engqvist, Anders; Döös, Kristofer; Andrejev, Oleg

    2006-12-01

    The water exchange of the Baltic coastal zone is characterized by its seasonally varying regimes. In the safety assessment of a potential repository for spent nuclear fuel, it is important to assess the consequences of a hypothetical leak of radionuclides through the seabed into a waterborne transport phase. In particular, estimates of the associated residence times in the near-shore coastal zone are of interest. There are several methods to quantify such measures, of which three are presented here. Using the coastal location of Forsmark (Sweden) as an example, methods based on passive tracers, particle trajectories, and the average age distribution of exogeneous water parcels are compared for a representative one-year cycle. Tracer-based methods can simulate diffusivity more realistically than the other methods. Trajectory-based methods can handle Lagrangian dispersion processes due to advection but neglect diffusion on the sub-grid scale. The method based on the concept of average age (AvA) of exogeneous water can include all such sources simultaneously not only boundary water bodies but also various (fresh)-water discharges. Due to the inclusion of sub-grid diffusion this method gives a smoother measure of the water renewal. It is shown that backward in time trajectories and AvA-times are basically equipollent methods, yielding correlated results within the limits set by the diffusivity.

  13. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.

    PubMed

    Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S

    2017-08-21

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.

  14. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma

    PubMed Central

    Yao, Xiaoming; Dix, James A; Jin, Byung-Ju

    2017-01-01

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma. PMID:28826498

  15. Aquaporins: The renal water channels

    PubMed Central

    Agarwal, S. K.; Gupta, A.

    2008-01-01

    Water is the most abundant molecule in any cell. Specialized membrane channel, proteins called aquaporins, facilitate water transport across cell membranes. At least seven aquaporins (AQP): 1, 2, 3, 4, 6, 7, and 11 are expressed in the kidneys. Aquaporins play a role in both the short-term and long-term regulation of water balance as well as in the pathophysiology of water balance disorders. Aquaporin is composed of a single peptide chain consisting of approximately 270 amino acids. Inherited central and nephrogenic diabetes insipidus are primarily due to the decreased expression of AQP2 while mutation in the AQP2 molecule is responsible for inherited central diabetes insipidus. In acquired causes of nephrogenic diabetes insipidus, there is a downregulation of AQP2 expression in the inner medulla of the kidney. Nephrotic syndrome is characterized by excessive sodium and water reabsorption, although in spite of this, patients do not develop hyponatremia. There is a marked downregulation of both AQP2 and AQP3 expression, which could be a physiologic response to extracellular water reabsorption in patients with nephrotic syndrome. There are some conditions in which aquaporin expression has been found to increase such as experimentally induced heart failure, cirrhosis, and pregnancy. Some drugs such as cisplatin and cyclosporine, also alter the expression of aquaporins. The three-pore model of peritoneal transport depicts the importance of aquaporins. Thus, the understanding of renal water channels has solved the mystery behind many water balance disorders. Further insights into the molecular structure and biology of aquaporins will help to lay a foundation for the development of future drugs. PMID:20142913

  16. Biocolloid transport in water saturated columns packed with sand

    NASA Astrophysics Data System (ADS)

    Syngouna, V. I.; Chrysikopoulos, C.

    2010-12-01

    Protection of groundwater supplies from microbial contamination necessitates a solid understanding of the factors controlling the migration and retention of pathogenic organisms (biocolloids) in the subsurface. The transport behavior of three waterborne pathogens (Escherichia coli, MS2, and ΦΧ174) was investigated using laboratory-scale columns packed with clean quartz sand. Various grain sizes and pore water velocities were examined. Though coliform bacteria and coliphages are used worldwide to indicate fecal pollution of groundwater, the various parameters controlling the transport of Escherichia coli MS2 and ΦΧ174 in the subsurface are not fully understood. In this study, the attachment behavior of Escherichia coli, MS2, and ΦΧ174 onto ultra-pure quartz sand were evaluated. The mass recoveries of the three biocolloids examined were found to be proportional to the sand size. The observed mass recoveries were in the order: Escherichia coli > ΦΧ174 > MS2. To assess the importance of biocolloid attachment, the single collector removal efficiency, and the collision efficiency were quantified using the classical colloid filtration theory. Our results indicate that the secondary energy minimum plays an important role in biocolloid deposition even for smaller biocolloid particles (e.g. viruses).

  17. Effects of water stress on photosynthetic electron transport, photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells.

    PubMed

    Sharkey, T D; Badger, M R

    1982-12-01

    Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.

  18. SUMO and Nucleocytoplasmic Transport.

    PubMed

    Ptak, Christopher; Wozniak, Richard W

    2017-01-01

    The transport of proteins between the nucleus and cytoplasm occurs through nuclear pore complexes and is facilitated by numerous transport factors. These transport processes are often regulated by post-translational modification or, reciprocally, transport can function to control post-translational modifications through regulated transport of key modifying enzymes. This interplay extends to relationships between nucleocytoplasmic transport and SUMO-dependent pathways. Examples of protein sumoylation inhibiting or stimulating nucleocytoplasmic transport have been documented, both through its effects on the physical properties of cargo molecules and by directly regulating the functions of components of the nuclear transport machinery. Conversely, the nuclear transport machinery regulates the localization of target proteins and enzymes controlling dynamics of sumoylation and desumoylation thereby affecting the sumoylation state of target proteins. These inter-relationships between SUMO and the nucleocytoplasmic transport machinery, and the varied ways in which they occur, are discussed.

  19. A lunar transportation system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  20. Experimental Study of Water Transport through Hydrophilic Nanochannels

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2015-11-01

    In this paper, we investigate one of the fundamental aspects of Nanofluidics, which is the experimental study of water transport through nanoscale hydrophilic conduits. A new method based on spontaneous filling and a novel hybrid nanochannel design is developed to measure the pure mass flow resistance of single nanofluidic channels/tubes. This method does not require any pressure and flow sensors and also does not rely on any theoretical estimations, holding the potential to be standards for nanofluidic flow characterization. We have used this method to measure the pure mass flow resistance of single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our experimental results quantify the increased mass flow resistance as a function of nanochannel height, showing a 45% increase for a 7nm channel compared with classical hydrodynamics, and suggest that the increased resistance is possibly due to formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. It has been further shown that this method can reliably measure a wide range of pure mass flow resistances of nanoscale conduits, and thus is promising for advancing studies of liquid transport in hydrophobic graphene nanochannels, CNTs, as well as nanoporous media. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).