Sample records for facilitates error-free replication

  1. Error-free replicative bypass of (6–4) photoproducts by DNA polymerase ζ in mouse and human cells

    PubMed Central

    Yoon, Jung-Hoon; Prakash, Louise; Prakash, Satya

    2010-01-01

    The ultraviolet (UV)-induced (6–4) pyrimidine–pyrimidone photoproduct [(6–4) PP] confers a large structural distortion in DNA. Here we examine in human cells the roles of translesion synthesis (TLS) DNA polymerases (Pols) in promoting replication through a (6–4) TT photoproduct carried on a duplex plasmid where bidirectional replication initiates from an origin of replication. We show that TLS contributes to a large fraction of lesion bypass and that it is mostly error-free. We find that, whereas Pol η and Pol ι provide alternate pathways for mutagenic TLS, surprisingly, Pol ζ functions independently of these Pols and in a predominantly error-free manner. We verify and extend these observations in mouse cells and conclude that, in human cells, TLS during replication can be markedly error-free even opposite a highly distorting DNA lesion. PMID:20080950

  2. Enzyme-Free Replication with Two or Four Bases.

    PubMed

    Richert, Clemens; Hänle, Elena

    2018-05-20

    All known forms of life encode their genetic information in a sequence of bases of a genetic polymer and produce copies of their genes via semiconservative replication. How this process started before polymerase enzymes had been evolved is unclear. Enzyme-free copying of short stretches of DNA or RNA sequence has been demonstrated, using activated nucleotides, but not replication. We have developed a methodology for replication. It involves extension with reversible termination, enzyme-free ligation, and strand capture and allowed us to monitor nucleotide incorporation for an entire helical turn of DNA, both during a first and a second round of copying. When tracking replication mass spectrometrically, we found that with all four bases (A/C/G/T) an 'error catastrophe' occurs, with the correct sequence being 'overwhelmed' by incorrect ones. When only C and G were used, approx. half of all daughter strands had the mass of the correct sequence after 20 nonenzymatic copying steps. We conclude that enzyme-free replication is more likely to be successful with the two strongly pairing bases, rather than all four bases of the genetic alphabet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    PubMed

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  4. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    PubMed

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Portable and Error-Free DNA-Based Data Storage.

    PubMed

    Yazdi, S M Hossein Tabatabaei; Gabrys, Ryan; Milenkovic, Olgica

    2017-07-10

    DNA-based data storage is an emerging nonvolatile memory technology of potentially unprecedented density, durability, and replication efficiency. The basic system implementation steps include synthesizing DNA strings that contain user information and subsequently retrieving them via high-throughput sequencing technologies. Existing architectures enable reading and writing but do not offer random-access and error-free data recovery from low-cost, portable devices, which is crucial for making the storage technology competitive with classical recorders. Here we show for the first time that a portable, random-access platform may be implemented in practice using nanopore sequencers. The novelty of our approach is to design an integrated processing pipeline that encodes data to avoid costly synthesis and sequencing errors, enables random access through addressing, and leverages efficient portable sequencing via new iterative alignment and deletion error-correcting codes. Our work represents the only known random access DNA-based data storage system that uses error-prone nanopore sequencers, while still producing error-free readouts with the highest reported information rate/density. As such, it represents a crucial step towards practical employment of DNA molecules as storage media.

  6. A Host Susceptibility Gene, DR1, Facilitates Influenza A Virus Replication by Suppressing Host Innate Immunity and Enhancing Viral RNA Replication

    PubMed Central

    Hsu, Shih-Feng; Su, Wen-Chi; Jeng, King-Song

    2015-01-01

    ABSTRACT Influenza A virus (IAV) depends on cellular factors to complete its replication cycle; thus, investigation of the factors utilized by IAV may facilitate antiviral drug development. To this end, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNA interference (RNAi) screen. Knockdown (KD) of DR1 resulted in reductions of viral RNA and protein production, demonstrating that DR1 acts as a positive host factor in IAV replication. Genome-wide transcriptomic analysis showed that there was a strong induction of interferon-stimulated gene (ISG) expression after prolonged DR1 KD. We found that beta interferon (IFN-β) was induced by DR1 KD, thereby activating the JAK-STAT pathway to turn on ISG expression, which led to a strong inhibition of IAV replication. This result suggests that DR1 in normal cells suppresses IFN induction, probably to prevent undesired cytokine production, but that this suppression may create a milieu that favors IAV replication once cells are infected. Furthermore, biochemical assays of viral RNA replication showed that DR1 KD suppressed viral RNA replication. We also showed that DR1 associated with all three subunits of the viral RNA-dependent RNA polymerase (RdRp) complex, indicating that DR1 may interact with individual components of the viral RdRp complex to enhance viral RNA replication. Thus, DR1 may be considered a novel host susceptibility gene for IAV replication via a dual mechanism, not only suppressing the host defense to indirectly favor IAV replication but also directly facilitating viral RNA replication. IMPORTANCE Investigations of virus-host interactions involved in influenza A virus (IAV) replication are important for understanding viral pathogenesis and host defenses, which may manipulate influenza virus infection or prevent the emergence of drug resistance caused by a high error rate during viral RNA replication. For this purpose, a cellular transcriptional repressor, DR1, was identified from

  7. Avoidance of APOBEC3B-induced mutation by error-free lesion bypass

    PubMed Central

    Hoopes, James I.; Hughes, Amber L.; Hobson, Lauren A.; Cortez, Luis M.; Brown, Alexander J.

    2017-01-01

    Abstract APOBEC cytidine deaminases mutate cancer genomes by converting cytidines into uridines within ssDNA during replication. Although uracil DNA glycosylases limit APOBEC-induced mutation, it is unknown if subsequent base excision repair (BER) steps function on replication-associated ssDNA. Hence, we measured APOBEC3B-induced CAN1 mutation frequencies in yeast deficient in BER endonucleases or DNA damage tolerance proteins. Strains lacking Apn1, Apn2, Ntg1, Ntg2 or Rev3 displayed wild-type frequencies of APOBEC3B-induced canavanine resistance (CanR). However, strains without error-free lesion bypass proteins Ubc13, Mms2 and Mph1 displayed respective 4.9-, 2.8- and 7.8-fold higher frequency of APOBEC3B-induced CanR. These results indicate that mutations resulting from APOBEC activity are avoided by deoxyuridine conversion to abasic sites ahead of nascent lagging strand DNA synthesis and subsequent bypass by error-free template switching. We found this mechanism also functions during telomere re-synthesis, but with a diminished requirement for Ubc13. Interestingly, reduction of G to C substitutions in Ubc13-deficient strains uncovered a previously unknown role of Ubc13 in controlling the activity of the translesion synthesis polymerase, Rev1. Our results highlight a novel mechanism for error-free bypass of deoxyuridines generated within ssDNA and suggest that the APOBEC mutation signature observed in cancer genomes may under-represent the genomic damage these enzymes induce. PMID:28334887

  8. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression

    PubMed Central

    Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J.; Schmidt, Kristina H.

    2016-01-01

    In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks. PMID:27923055

  9. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression.

    PubMed

    Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J; Schmidt, Kristina H

    2016-12-01

    In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186-212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks.

  10. Autophagy Facilitates Salmonella Replication in HeLa Cells

    PubMed Central

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  11. ATR-like kinase Mec1 facilitates both chromatin accessibility at DNA replication forks and replication fork progression during replication stress

    PubMed Central

    Rodriguez, Jairo; Tsukiyama, Toshio

    2013-01-01

    Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks. PMID:23307868

  12. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error.

    PubMed

    Nakasa, Tomoyuki; Fukuhara, Kohei; Adachi, Nobuo; Ochi, Mitsuo

    2008-05-01

    Functional instability is defined as a repeated ankle inversion sprain and a giving way sensation. Previous studies have described the damage of sensori-motor control in ankle sprain as being a possible cause of functional instability. The aim of this study was to evaluate the inversion angle replication errors in patients with functional instability after ankle sprain. The difference between the index angle and replication angle was measured in 12 subjects with functional instability, with the aim of evaluating the replication error. As a control group, the replication errors of 17 healthy volunteers were investigated. The side-to-side differences of the replication errors were compared between both the groups, and the relationship between the side-to-side differences of the replication errors and the mechanical instability were statistically analyzed in the unstable group. The side-to-side difference of the replication errors was 1.0 +/- 0.7 degrees in the unstable group and 0.2 +/- 0.7 degrees in the control group. There was a statistically significant difference between both the groups. The side-to-side differences of the replication errors in the unstable group did not statistically correlate to the anterior talar translation and talar tilt. The patients with functional instability had the deficit of joint position sense in comparison with healthy volunteers. The replication error did not correlate to the mechanical instability. The patients with functional instability should be treated appropriately in spite of having less mechanical instability.

  13. A Systematic Approach to Error Free Telemetry

    DTIC Science & Technology

    2017-06-28

    A SYSTEMATIC APPROACH TO ERROR FREE TELEMETRY 412TW-TIM-17-03 DISTRIBUTION A: Approved for public release. Distribution is...Systematic Approach to Error-Free Telemetry) was submitted by the Commander, 412th Test Wing, Edwards AFB, California 93524. Prepared by...Technical Information Memorandum 3. DATES COVERED (From - Through) February 2016 4. TITLE AND SUBTITLE A Systematic Approach to Error-Free

  14. Cyclophilin B facilitates the replication of Orf virus.

    PubMed

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  15. Error Free Software

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.

  16. [Analysis of intrusion errors in free recall].

    PubMed

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  17. Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    PubMed Central

    Adeyemi, Richard O.; Landry, Sebastien; Davis, Meredith E.; Weitzman, Matthew D.; Pintel, David J.

    2010-01-01

    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells. PMID:20949077

  18. DNA replication error-induced extinction of diploid yeast.

    PubMed

    Herr, Alan J; Kennedy, Scott R; Knowels, Gary M; Schultz, Eric M; Preston, Bradley D

    2014-03-01

    Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.

  19. WDR5 Facilitates Human Cytomegalovirus Replication by Promoting Capsid Nuclear Egress.

    PubMed

    Yang, Bo; Liu, Xi-Juan; Yao, Yongxuan; Jiang, Xuan; Wang, Xian-Zhang; Yang, Hong; Sun, Jin-Yan; Miao, Yun; Wang, Wei; Huang, Zhen-Li; Wang, Yanyi; Tang, Qiyi; Rayner, Simon; Britt, William J; McVoy, Michael A; Luo, Min-Hua; Zhao, Fei

    2018-05-01

    WD repeat-containing protein 5 (WDR5) is essential for assembling the VISA-associated complex to induce a type I interferon antiviral response to Sendai virus infection. However, the roles of WDR5 in DNA virus infections are not well described. Here, we report that human cytomegalovirus exploits WDR5 to facilitate capsid nuclear egress. Overexpression of WDR5 in fibroblasts slightly enhanced the infectious virus yield. However, WDR5 knockdown dramatically reduced infectious virus titers with only a small decrease in viral genome replication or gene expression. Further investigation of late steps of viral replication found that WDR5 knockdown significantly impaired formation of the viral nuclear egress complex and induced substantially fewer infoldings of the inner nuclear membrane. In addition, fewer capsids were associated with these infoldings, and there were fewer capsids in the cytoplasm. Restoration of WDR5 partially reversed these effects. These results suggest that WDR5 knockdown impairs the nuclear egress of capsids, which in turn decreases virus titers. These findings reveal an important role for a host factor whose function(s) is usurped by a viral pathogen to promote efficient replication. Thus, WDR5 represents an interesting regulatory mechanism and a potential antiviral target. IMPORTANCE Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 170 open reading frames and exploits numerous cellular factors to facilitate its replication. HCMV infection increases protein levels of WD repeat-containing protein 5 (WDR5) during infection, overexpression of WDR5 enhances viral replication, and knockdown of WDR5 dramatically attenuates viral replication. Our results indicate that WDR5 promotes the nuclear egress of viral capsids, the depletion of WDR5 resulting in a significant decrease in production of infectious virions. This is the first report that WDR5 favors HCMV, a DNA virus, replication and highlights a novel target for antiviral therapy

  20. Error recovery to enable error-free message transfer between nodes of a computer network

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.

    2016-01-26

    An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.

  1. SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication

    PubMed Central

    Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi

    2013-01-01

    Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434

  2. When is a failure to replicate not a type II error?

    PubMed

    Vasconcelos, Marco; Urcuioli, Peter J; Lionello-DeNolf, Karen M

    2007-05-01

    Zentall and Singer (2007) challenge our conclusion that the work-ethic effect reported by Clement, Feltus, Kaiser, and Zentall (2000) may have been a Type I error by arguing that (a) the effect has been extensively replicated and (b) the amount of overtraining our pigeons received may not have been sufficient to produce it. We believe that our conclusion is warranted because (a) the original effect has not been replicated despite multiple attempts to do so and (b) the statement that more extended overtraining may be needed itself suggests that the original effect is not reliable.

  3. When Is a Failure to Replicate Not a Type II Error?

    PubMed Central

    Vasconcelos, Marco; Urcuioli, Peter J; Lionello-DeNolf, Karen M

    2007-01-01

    Zentall and Singer (2007) challenge our conclusion that the work-ethic effect reported by Clement, Feltus, Kaiser, and Zentall (2000) may have been a Type I error by arguing that (a) the effect has been extensively replicated and (b) the amount of overtraining our pigeons received may not have been sufficient to produce it. We believe that our conclusion is warranted because (a) the original effect has not been replicated despite multiple attempts to do so and (b) the statement that more extended overtraining may be needed itself suggests that the original effect is not reliable. PMID:17575905

  4. Heterogeneity of spontaneous DNA replication errors in single isogenic Escherichia coli cells

    PubMed Central

    2018-01-01

    Despite extensive knowledge of the molecular mechanisms that control mutagenesis, it is not known how spontaneous mutations are produced in cells with fully operative mutation-prevention systems. By using a mutation assay that allows visualization of DNA replication errors and stress response transcriptional reporters, we examined populations of isogenic Escherichia coli cells growing under optimal conditions without exogenous stress. We found that spontaneous DNA replication errors in proliferating cells arose more frequently in subpopulations experiencing endogenous stresses, such as problems with proteostasis, genome maintenance, and reactive oxidative species production. The presence of these subpopulations of phenotypic mutators is not expected to affect the average mutation frequency or to reduce the mean population fitness in a stable environment. However, these subpopulations can contribute to overall population adaptability in fluctuating environments by serving as a reservoir of increased genetic variability.

  5. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres

    PubMed Central

    Kosiyatrakul, Settapong T.

    2015-01-01

    Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis. PMID:26195664

  6. When Is a Failure to Replicate Not a Type II Error?

    ERIC Educational Resources Information Center

    Vasconcelos, Marco; Urcuioli, Peter J.; Lionello-DeNolf, Karen M.

    2007-01-01

    Zentall and Singer (2007) challenge our conclusion that the work-ethic effect reported by Clement, Feltus, Kaiser, and Zentall (2000) may have been a Type I error by arguing that (a) the effect has been extensively replicated and (b) the amount of overtraining our pigeons received may not have been sufficient to produce it. We believe that our…

  7. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  8. Error-Free Software

    NASA Technical Reports Server (NTRS)

    1989-01-01

    001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.

  9. ECHO: A reference-free short-read error correction algorithm

    PubMed Central

    Kao, Wei-Chun; Chan, Andrew H.; Song, Yun S.

    2011-01-01

    Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth. PMID:21482625

  10. Model-free and model-based reward prediction errors in EEG.

    PubMed

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription.

    PubMed

    Pai, Chen-Chun; Kishkevich, Anastasiya; Deegan, Rachel S; Keszthelyi, Andrea; Folkes, Lisa; Kearsey, Stephen E; De León, Nagore; Soriano, Ignacio; de Bruin, Robertus Antonius Maria; Carr, Antony M; Humphrey, Timothy C

    2017-09-12

    Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Spectrum of Replication Errors in the Absence of Error Correction Assayed Across the Whole Genome of Escherichia coli.

    PubMed

    Niccum, Brittany A; Lee, Heewook; MohammedIsmail, Wazim; Tang, Haixu; Foster, Patricia L

    2018-06-15

    When the DNA polymerase that replicates the Escherichia coli chromosome, DNA Pol III, makes an error, there are two primary defenses against mutation: proofreading by the epsilon subunit of the holoenzyme and mismatch repair. In proofreading deficient strains, mismatch repair is partially saturated and the cell's response to DNA damage, the SOS response, may be partially induced. To investigate the nature of replication errors, we used mutation accumulation experiments and whole genome sequencing to determine mutation rates and mutational spectra across the entire chromosome of strains deficient in proofreading, mismatch repair, and the SOS response. We report that a proofreading-deficient strain has a mutation rate 4,000-fold greater than wild-type strains. While the SOS response may be induced in these cells, it does not contribute to the mutational load. Inactivating mismatch repair in a proofreading-deficient strain increases the mutation rate another 1.5-fold. DNA polymerase has a bias for converting G:C to A:T base pairs, but proofreading reduces the impact of these mutations, helping to maintain the genomic G:C content. These findings give an unprecedented view of how polymerase and error-correction pathways work together to maintain E. coli' s low mutation rate of 1 per thousand generations. Copyright © 2018, Genetics.

  13. Error-Free Text Typing Performance of an Inductive Intra-Oral Tongue Computer Interface for Severely Disabled Individuals.

    PubMed

    Andreasen Struijk, Lotte N S; Bentsen, Bo; Gaihede, Michael; Lontis, Eugen R

    2017-11-01

    For severely paralyzed individuals, alternative computer interfaces are becoming increasingly essential for everyday life as social and vocational activities are facilitated by information technology and as the environment becomes more automatic and remotely controllable. Tongue computer interfaces have proven to be desirable by the users partly due to their high degree of aesthetic acceptability, but so far the mature systems have shown a relatively low error-free text typing efficiency. This paper evaluated the intra-oral inductive tongue computer interface (ITCI) in its intended use: Error-free text typing in a generally available text editing system, Word. Individuals with tetraplegia and able bodied individuals used the ITCI for typing using a MATLAB interface and for Word typing for 4 to 5 experimental days, and the results showed an average error-free text typing rate in Word of 11.6 correct characters/min across all participants and of 15.5 correct characters/min for participants familiar with tongue piercings. Improvements in typing rates between the sessions suggest that typing ratescan be improved further through long-term use of the ITCI.

  14. Evaluation of joint position sense measured by inversion angle replication error in patients with an osteochondral lesion of the talus.

    PubMed

    Nakasa, Tomoyuki; Adachi, Nobuo; Shibuya, Hayatoshi; Okuhara, Atsushi; Ochi, Mitsuo

    2013-01-01

    The etiology of the osteochondral lesion of the talar dome (OLT) remains unclear. A joint position sense deficit of the ankle is reported to be a possible cause of ankle disorder. Repeated contact of the articular surface of the talar dome with the plafond during inversion might be a cause of OLT. The aim of the present study was to evaluate the joint position sense deficit by measuring the replication error of the inversion angle in patients with OLT. The replication error, which is the difference between the index angle and replication angle in inversion, was measured in 15 patients with OLT. The replication error in 15 healthy volunteers was evaluated as a control group. The side to side differences of the replication errors between the patients with OLT and healthy volunteers and the replication errors in each angle between the involved and uninvolved ankle in the patients with OLT were investigated. Finally, the side to side differences of the replication errors between the patients with OLT with a traumatic and nontraumatic history were compared. The side to side difference in the patients with OLT (1.3° ± 0.2°) was significantly greater than that in the healthy subjects (0.4° ± 0.7°) (p ≤ .05). Significant differences were found between the involved and uninvolved sides at 10°, 15°, 20°, and 25° in the patients with OLT. No significant difference (p > .05) was found between the patients with traumatic and nontraumatic OLT. The present study found that the patients with OLT have a joint position sense deficit during inversion movement, regardless of a traumatic history. Although various factors for the etiology of OLT have been reported, the joint position sense deficit in inversion might be a cause of OLT. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Comprehensive replication of the relationship between myopia-related genes and refractive errors in a large Japanese cohort.

    PubMed

    Yoshikawa, Munemitsu; Yamashiro, Kenji; Miyake, Masahiro; Oishi, Maho; Akagi-Kurashige, Yumiko; Kumagai, Kyoko; Nakata, Isao; Nakanishi, Hideo; Oishi, Akio; Gotoh, Norimoto; Yamada, Ryo; Matsuda, Fumihiko; Yoshimura, Nagahisa

    2014-10-21

    We investigated the association between refractive error in a Japanese population and myopia-related genes identified in two recent large-scale genome-wide association studies. Single-nucleotide polymorphisms (SNPs) in 51 genes that were reported by the Consortium for Refractive Error and Myopia and/or the 23andMe database were genotyped in 3712 healthy Japanese volunteers from the Nagahama Study using HumanHap610K Quad, HumanOmni2.5M, and/or HumanExome Arrays. To evaluate the association between refractive error and recently identified myopia-related genes, we used three approaches to perform quantitative trait locus analyses of mean refractive error in both eyes of the participants: per-SNP, gene-based top-SNP, and gene-based all-SNP analyses. Association plots of successfully replicated genes also were investigated. In our per-SNP analysis, eight myopia gene associations were replicated successfully: GJD2, RASGRF1, BICC1, KCNQ5, CD55, CYP26A1, LRRC4C, and B4GALNT2.Seven additional gene associations were replicated in our gene-based analyses: GRIA4, BMP2, QKI, BMP4, SFRP1, SH3GL2, and EHBP1L1. The signal strength of the reported SNPs and their tagging SNPs increased after considering different linkage disequilibrium patterns across ethnicities. Although two previous studies suggested strong associations between PRSS56, LAMA2, TOX, and RDH5 and myopia, we could not replicate these results. Our results confirmed the significance of the myopia-related genes reported previously and suggested that gene-based replication analyses are more effective than per-SNP analyses. Our comparison with two previous studies suggested that BMP3 SNPs cause myopia primarily in Caucasian populations, while they may exhibit protective effects in Asian populations. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Barriers and facilitators to recovering from e-prescribing errors in community pharmacies.

    PubMed

    Odukoya, Olufunmilola K; Stone, Jamie A; Chui, Michelle A

    2015-01-01

    To explore barriers and facilitators to recovery from e-prescribing errors in community pharmacies and to explore practical solutions for work system redesign to ensure successful recovery from errors. Cross-sectional qualitative design using direct observations, interviews, and focus groups. Five community pharmacies in Wisconsin. 13 pharmacists and 14 pharmacy technicians. Observational field notes and transcribed interviews and focus groups were subjected to thematic analysis guided by the Systems Engineering Initiative for Patient Safety (SEIPS) work system and patient safety model. Barriers and facilitators to recovering from e-prescription errors in community pharmacies. Organizational factors, such as communication, training, teamwork, and staffing levels, play an important role in recovering from e-prescription errors. Other factors that could positively or negatively affect recovery of e-prescription errors include level of experience, knowledge of the pharmacy personnel, availability or usability of tools and technology, interruptions and time pressure when performing tasks, and noise in the physical environment. The SEIPS model sheds light on key factors that may influence recovery from e-prescribing errors in pharmacies, including the environment, teamwork, communication, technology, tasks, and other organizational variables. To be successful in recovering from e-prescribing errors, pharmacies must provide the appropriate working conditions that support recovery from errors.

  17. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  18. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE PAGES

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; ...

    2015-09-08

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  19. Free-Inertial and Damped-Inertial Navigation Mechanization and Error Equations

    DTIC Science & Technology

    1975-04-18

    AD-A014 356 FREE-INERTIAL AND DAMPED-INERTIAL NAVIGATION MECHANIZATION AND ERROR EQUATIONS Warren G. Heller Analytic Sciences Corporation Prepared...IHI IL JI -J THE ANALYTIC SCIENCES CORPORATION TR-312-1-1 FREE-INERTIAL AND DAMPED-INERTIAL NAViGATION MECHANIZATION AND ERROR EQUATIONS Ap~ril 18...PERIOO COVC/REO Fr-,- 1wer l and Dmped-Inertial Navigation Technical Mechanization and Error Equations 8/20-73 - 8/20/74 S. PjLtFORJ4djNjOjO, REPORT

  20. Understanding the dynamics of correct and error responses in free recall: evidence from externalized free recall.

    PubMed

    Unsworth, Nash; Brewer, Gene A; Spillers, Gregory J

    2010-06-01

    The dynamics of correct and error responses in a variant of delayed free recall were examined in the present study. In the externalized free recall paradigm, participants were presented with lists of words and were instructed to subsequently recall not only the words that they could remember from the most recently presented list, but also any other words that came to mind during the recall period. Externalized free recall is useful for elucidating both sampling and postretrieval editing processes, thereby yielding more accurate estimates of the total number of error responses, which are typically sampled and subsequently edited during free recall. The results indicated that the participants generally sampled correct items early in the recall period and then transitioned to sampling more erroneous responses. Furthermore, the participants generally terminated their search after sampling too many errors. An examination of editing processes suggested that the participants were quite good at identifying errors, but this varied systematically on the basis of a number of factors. The results from the present study are framed in terms of generate-edit models of free recall.

  1. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β

    PubMed Central

    Koag, Myong-Chul; Nam, Kwangho; Lee, Seongmin

    2014-01-01

    To provide molecular-level insights into the spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β (polβ), we report four crystal structures of polβ complexed with dG•dTTP and dA•dCTP mismatches in the presence of Mg2+ or Mn2+. The Mg2+-bound ground-state structures show that the dA•dCTP-Mg2+ complex adopts an ‘intermediate’ protein conformation while the dG•dTTP-Mg2+ complex adopts an open protein conformation. The Mn2+-bound ‘pre-chemistry-state’ structures show that the dA•dCTP-Mn2+ complex is structurally very similar to the dA•dCTP-Mg2+ complex, whereas the dG•dTTP-Mn2+ complex undergoes a large-scale conformational change to adopt a Watson–Crick-like dG•dTTP base pair and a closed protein conformation. These structural differences, together with our molecular dynamics simulation studies, suggest that polβ increases replication fidelity via a two-stage mismatch discrimination mechanism, where one is in the ground state and the other in the closed conformation state. In the closed conformation state, polβ appears to allow only a Watson–Crick-like conformation for purine•pyrimidine base pairs, thereby discriminating the mismatched base pairs based on their ability to form the Watson–Crick-like conformation. Overall, the present studies provide new insights into the spontaneous replication error and the replication fidelity mechanisms of polβ. PMID:25200079

  2. Failing the Future: Three Unsuccessful Attempts to Replicate Bem's ‘Retroactive Facilitation of Recall’ Effect

    PubMed Central

    Ritchie, Stuart J.; Wiseman, Richard; French, Christopher C.

    2012-01-01

    Nine recently reported parapsychological experiments appear to support the existence of precognition. We describe three pre-registered independent attempts to exactly replicate one of these experiments, ‘retroactive facilitation of recall’, which examines whether performance on a memory test can be influenced by a post-test exercise. All three replication attempts failed to produce significant effects (combined n = 150; combined p = .83, one-tailed) and thus do not support the existence of psychic ability. PMID:22432019

  3. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals.

    PubMed

    El-Shesheny, Rabeh; Feeroz, Mohammed M; Krauss, Scott; Vogel, Peter; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2018-04-25

    Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.

  4. Error-free versus mutagenic processing of genomic uracil--relevance to cancer.

    PubMed

    Krokan, Hans E; Sætrom, Pål; Aas, Per Arne; Pettersen, Henrik Sahlin; Kavli, Bodil; Slupphaug, Geir

    2014-07-01

    Genomic uracil is normally processed essentially error-free by base excision repair (BER), with mismatch repair (MMR) as an apparent backup for U:G mismatches. Nuclear uracil-DNA glycosylase UNG2 is the major enzyme initiating BER of uracil of U:A pairs as well as U:G mismatches. Deficiency in UNG2 results in several-fold increases in genomic uracil in mammalian cells. Thus, the alternative uracil-removing glycosylases, SMUG1, TDG and MBD4 cannot efficiently complement UNG2-deficiency. A major function of SMUG1 is probably to remove 5-hydroxymethyluracil from DNA with general back-up for UNG2 as a minor function. TDG and MBD4 remove deamination products U or T mismatched to G in CpG/mCpG contexts, but may have equally or more important functions in development, epigenetics and gene regulation. Genomic uracil was previously thought to arise only from spontaneous cytosine deamination and incorporation of dUMP, generating U:G mismatches and U:A pairs, respectively. However, the identification of activation-induced cytidine deaminase (AID) and other APOBEC family members as DNA-cytosine deaminases has spurred renewed interest in the processing of genomic uracil. Importantly, AID triggers the adaptive immune response involving error-prone processing of U:G mismatches, but also contributes to B-cell lymphomagenesis. Furthermore, mutational signatures in a substantial fraction of other human cancers are consistent with APOBEC-induced mutagenesis, with U:G mismatches as prime suspects. Mutations can be caused by replicative polymerases copying uracil in U:G mismatches, or by translesion polymerases that insert incorrect bases opposite abasic sites after uracil-removal. In addition, kataegis, localized hypermutations in one strand in the vicinity of genomic rearrangements, requires APOBEC protein, UNG2 and translesion polymerase REV1. What mechanisms govern error-free versus error prone processing of uracil in DNA remains unclear. In conclusion, genomic uracil is an

  5. Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses.

    PubMed

    Nagy, Peter D; Pogany, Judit; Xu, Kai

    2016-03-03

    Plant positive strand RNA viruses are intracellular infectious agents that take advantage of cellular lipids and membranes to support replication and protect viral RNA from degradation by host antiviral responses. In this review, we discuss how Tomato bushy stunt virus (TBSV) co-opts lipid transfer proteins and modulates lipid metabolism and transport to facilitate the assembly of the membrane-bound viral replicase complexes within intricate replication compartments. Identification and characterization of the proviral roles of specific lipids and proteins involved in lipid metabolism based on results from yeast (Saccharomyces cerevisiae) model host and cell-free approaches are discussed. The review also highlights the advantage of using liposomes with chemically defined composition to identify specific lipids required for TBSV replication. Remarkably, all the known steps in TBSV replication are dependent on cellular lipids and co-opted membranes.

  6. Within-Trial Contrast: When Is a Failure to Replicate Not a Type I Error?

    ERIC Educational Resources Information Center

    Zentall, Thomas R.; Singer, Rebecca A.

    2007-01-01

    Vasconcelos, Urcuioli, and Lionello-DeNolf (2007) report the results of five experiments that fail to replicate the results of our within-trial contrast study (Clement, Feltus, Kaiser, & Zentall, 2000) and suggest that our results may represent a Type I Error. We believe that this conclusion is not warranted because (a) there is considerable…

  7. Overcoming a nucleosomal barrier to replication

    PubMed Central

    Chang, Han-Wen; Pandey, Manjula; Kulaeva, Olga I.; Patel, Smita S.; Studitsky, Vasily M.

    2016-01-01

    Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31–40) and +(41–65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop. PMID:27847876

  8. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    PubMed

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    PubMed

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N 2 -2'-deoxyguanosine (N 2 -dG) and N 6 -2'-deoxyadenosine (N 6 -dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N 2 -dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  10. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery

    PubMed Central

    Murphy, Anar K.; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I.; Chowdhury, Dipanjan; Schildkraut, Carl L.

    2014-01-01

    Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. PMID:25113031

  11. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery.

    PubMed

    Murphy, Anar K; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I; Chowdhury, Dipanjan; Schildkraut, Carl L; Borowiec, James A

    2014-08-18

    Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. © 2014 Murphy et al.

  12. Characterizing Bacteriophage PR772 as a Potential Surrogate for Adenovirus in Water Disinfection: A Comparative Analysis of Inactivation Kinetics and Replication Cycle Inhibition by Free Chlorine.

    PubMed

    Gall, Aimee M; Shisler, Joanna L; Mariñas, Benito J

    2016-03-01

    Elucidating mechanisms by which pathogenic waterborne viruses become inactivated by drinking water disinfectants would facilitate the development of sensors to detect infectious viruses and novel disinfection strategies to provide safe water. Using bacteriophages as surrogates for human pathogenic viruses could assist in elucidating these mechanisms; however, an appropriate viral surrogate for human adenovirus (HAdV), a medium-sized virus with a double-stranded DNA genome, needs to be identified. Here, we characterized the inactivation kinetics of bacteriophage PR772, a member of the Tectiviridae family with many similarities in structure and replication to HAdV. The inactivation of PR772 and HAdV by free chlorine had similar kinetics that could be represented with a model previously developed for HAdV type 2 (HAdV-2). We developed and tested a quantitative assay to analyze several steps in the PR772 replication cycle to determine if both viruses being inactivated at similar rates resulted from similar replication cycle events being inhibited. Like HAdV-2, we observed that PR772 inactivated by free chlorine still attached to host cells, and viral DNA synthesis and early and late gene transcription were inhibited. Consequently, free chlorine exposure inhibited a replication cycle event that was post-binding but took place prior to early gene synthesis for both PR772 and HAdV-2.

  13. TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.

    PubMed

    Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei

    2015-10-16

    Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Analysis of Free-Space Coupling to Photonic Lanterns in the Presence of Tilt Errors

    DTIC Science & Technology

    2017-05-01

    Analysis of Free- Space Coupling to Photonic Lanterns in the Presence of Tilt Errors Timothy M. Yarnall, David J. Geisler, Curt M. Schieler...Massachusetts Avenue Cambridge, MA 02139, USA Abstract—Free space coupling to photonic lanterns is more tolerant to tilt errors and F -number mismatch than...these errors. I. INTRODUCTION Photonic lanterns provide a means for transitioning from the free space regime to the single-mode fiber (SMF) regime by

  15. Reduction of errors during practice facilitates fundamental movement skill learning in children with intellectual disabilities.

    PubMed

    Capio, C M; Poolton, J M; Sit, C H P; Eguia, K F; Masters, R S W

    2013-04-01

    Children with intellectual disabilities (ID) have been found to have inferior motor proficiencies in fundamental movement skills (FMS). This study examined the effects of training the FMS of overhand throwing by manipulating the amount of practice errors. Participants included 39 children with ID aged 4-11 years who were allocated into either an error-reduced (ER) training programme or a more typical programme in which errors were frequent (error-strewn, ES). Throwing movement form, throwing accuracy, and throwing frequency during free play were evaluated. The ER programme improved movement form, and increased throwing activity during free play to a greater extent than the ES programme. Furthermore, ER learners were found to be capable of engaging in a secondary cognitive task while manifesting robust throwing accuracy performance. The findings support the use of movement skills training programmes that constrain practice errors in children with ID, suggesting that such approach results in improved performance and heightened movement engagement in free play. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 Blackwell Publishing Ltd.

  16. Optimization of Trade-offs in Error-free Image Transmission

    NASA Astrophysics Data System (ADS)

    Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.

    1989-05-01

    The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.

  17. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    PubMed

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Fadri-Moskwik, Maria; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Ye, Ping; Chai, Weihang

    2016-08-02

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Ethics and Animal Numbers: Informal Analyses, Uncertain Sample Sizes, Inefficient Replications, and Type I Errors

    PubMed Central

    2011-01-01

    To obtain approval for the use vertebrate animals in research, an investigator must assure an ethics committee that the proposed number of animals is the minimum necessary to achieve a scientific goal. How does an investigator make that assurance? A power analysis is most accurate when the outcome is known before the study, which it rarely is. A ‘pilot study’ is appropriate only when the number of animals used is a tiny fraction of the numbers that will be invested in the main study because the data for the pilot animals cannot legitimately be used again in the main study without increasing the rate of type I errors (false discovery). Traditional significance testing requires the investigator to determine the final sample size before any data are collected and then to delay analysis of any of the data until all of the data are final. An investigator often learns at that point either that the sample size was larger than necessary or too small to achieve significance. Subjects cannot be added at this point in the study without increasing type I errors. In addition, journal reviewers may require more replications in quantitative studies than are truly necessary. Sequential stopping rules used with traditional significance tests allow incremental accumulation of data on a biomedical research problem so that significance, replicability, and use of a minimal number of animals can be assured without increasing type I errors. PMID:21838970

  19. Individual and Contextual Factors Influencing Engagement in Learning Activities after Errors at Work: A Replication Study in a German Retail Bank

    ERIC Educational Resources Information Center

    Leicher, Veronika; Mulder, Regina H.

    2016-01-01

    Purpose: The purpose of this replication study is to identify relevant individual and contextual factors influencing learning from errors at work and to determine if the predictors for learning activities are the same for the domains of nursing and retail banking. Design/methodology/approach: A cross-sectional replication study was carried out in…

  20. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rinku; Choudhury, Jayati Roy; Buku, Angeliki

    N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the synmore » conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a “foothold” and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.« less

  1. ‘Why should I care?’ Challenging free will attenuates neural reaction to errors

    PubMed Central

    Pourtois, Gilles; Brass, Marcel

    2015-01-01

    Whether human beings have free will has been a philosophical question for centuries. The debate about free will has recently entered the public arena through mass media and newspaper articles commenting on scientific findings that leave little to no room for free will. Previous research has shown that encouraging such a deterministic perspective influences behavior, namely by promoting cursory and antisocial behavior. Here we propose that such behavioral changes may, at least partly, stem from a more basic neurocognitive process related to response monitoring, namely a reduced error detection mechanism. Our results show that the error-related negativity, a neural marker of error detection, was reduced in individuals led to disbelieve in free will. This finding shows that reducing the belief in free will has a specific impact on error detection mechanisms. More generally, it suggests that abstract beliefs about intentional control can influence basic and automatic processes related to action control. PMID:24795441

  2. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA.

    PubMed

    Miorin, Lisa; Romero-Brey, Inés; Maiuri, Paolo; Hoppe, Simone; Krijnse-Locker, Jacomine; Bartenschlager, Ralf; Marcello, Alessandro

    2013-06-01

    Flavivirus replication is accompanied by the rearrangement of cellular membranes that may facilitate viral genome replication and protect viral components from host cell responses. The topological organization of viral replication sites and the fate of replicated viral RNA are not fully understood. We exploited electron microscopy to map the organization of tick-borne encephalitis virus (TBEV) replication compartments in infected cells and in cells transfected with a replicon. Under both conditions, 80-nm vesicles were seen within the lumen of the endoplasmic reticulum (ER) that in infected cells also contained virions. By electron tomography, the vesicles appeared as invaginations of the ER membrane, displaying a pore that could enable release of newly synthesized viral RNA into the cytoplasm. To track the fate of TBEV RNA, we took advantage of our recently developed method of viral RNA fluorescent tagging for live-cell imaging combined with bleaching techniques. TBEV RNA was found outside virus-induced vesicles either associated to ER membranes or free to move within a defined area of juxtaposed ER cisternae. From our results, we propose a biologically relevant model of the possible topological organization of flavivirus replication compartments composed of replication vesicles and a confined extravesicular space where replicated viral RNA is retained. Hence, TBEV modifies the ER membrane architecture to provide a protected environment for viral replication and for the maintenance of newly replicated RNA available for subsequent steps of the virus life cycle.

  3. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.

    PubMed

    Li, Caroline M; Miao, Yunan; Lingeman, Robert G; Hickey, Robert J; Malkas, Linda H

    2016-01-01

    We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.

  4. Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells.

    PubMed

    Mänz, Benjamin; de Graaf, Miranda; Mögling, Ramona; Richard, Mathilde; Bestebroer, Theo M; Rimmelzwaan, Guus F; Fouchier, Ron A M

    2016-07-01

    A strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified using in vitro assays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts. Influenza viruses from birds jump the species barrier into humans relatively frequently. Such influenza virus zoonoses may pose public health risks if the virus adapts to humans and becomes a pandemic threat. Relatively few amino acid substitutions-most notably in the receptor binding site of hemagglutinin and at positions 591 and 627 in the polymerase protein PB2-have been identified in pandemic influenza virus strains as determinants of host adaptation, to facilitate efficient virus replication and transmission in humans. Here, we show that substantial numbers of amino acid substitutions are functionally compensating for the lack of the above-mentioned mutations in PB2 and could facilitate influenza virus emergence in humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Replication of a Prospective Randomized Controlled Trial of Resource Facilitation to Improve Return to Work and School After Brain Injury.

    PubMed

    Trexler, Lance E; Parrott, Devan R; Malec, James F

    2016-02-01

    To determine the extent to which previous findings on the effectiveness of resource facilitation to impact return to work and school could be replicated. Randomized controlled trial. Outpatient rehabilitation clinic. Outpatients with acquired brain injury (N=44). Fifteen months of resource facilitation services. A revised version of the Vocational Independence Scale and the Mayo-Portland Adaptability Inventory-4 Participation Index. Participants randomized to the resource facilitation group demonstrated a significant advantage in terms of rate and timing of return to productive community-based work relative to control participants. When examining only return to competitive work (and not return to school), 69% of the resource facilitation group was able to return compared with 50% of the control participants. Analyses of measures of participation in household and community activities revealed that both groups improved significantly over the 15-month study period, but no significant advantage for either group was demonstrated. This study replicates the positive impact of resource facilitation in improving productive community-based activity, including competitive employment and volunteering in the community. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η.

    PubMed

    Patra, Amritraj; Politica, Dustin A; Chatterjee, Arindom; Tokarsky, E John; Suo, Zucai; Basu, Ashis K; Stone, Michael P; Egli, Martin

    2016-11-03

    The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Replicative DNA Polymerase δ but Not ε Proofreads Errors in Cis and in Trans

    PubMed Central

    Flood, Carrie L.; Rodriguez, Gina P.; Bao, Gaobin; Shockley, Arthur H.; Kow, Yoke Wah; Crouse, Gray F.

    2015-01-01

    It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. PMID:25742645

  8. RAB1A promotes Vaccinia virus replication by facilitating the production of intracellular enveloped virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.

    2015-01-15

    Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore bemore » added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. - Highlights: • Characterisation of the role of the small GTPase RAB1A in VACV replication. • RAB1A is not required for production of the primary virion form (IMV). • RAB1A is required for production of processed virion forms (IEVs, CEVs and EEVs). • Consistent with known role of RAB1A in ER to Golgi transport.« less

  9. Multiconfiguration Pair-Density Functional Theory Is Free From Delocalization Error.

    PubMed

    Bao, Junwei Lucas; Wang, Ying; He, Xiao; Gagliardi, Laura; Truhlar, Donald G

    2017-11-16

    Delocalization error has been singled out by Yang and co-workers as the dominant error in Kohn-Sham density functional theory (KS-DFT) with conventional approximate functionals. In this Letter, by computing the vertical first ionization energy for well separated He clusters, we show that multiconfiguration pair-density functional theory (MC-PDFT) is free from delocalization error. To put MC-PDFT in perspective, we also compare it with some Kohn-Sham density functionals, including both traditional and modern functionals. Whereas large delocalization errors are almost universal in KS-DFT (the only exception being the very recent corrected functionals of Yang and co-workers), delocalization error is removed by MC-PDFT, which bodes well for its future as a step forward from KS-DFT.

  10. A mutation in EXO1 defines separable roles in DNA mismatch repair and post-replication repair

    PubMed Central

    Tran, Phuoc T.; Fey, Julien P.; Erdeniz, Naz; Gellon, Lionel; Boiteux, Serge; Liskay, R. Michael

    2007-01-01

    Replication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks. An important lesion bypass mechanism is the highly conserved post-replication repair (PRR) pathway that is composed of error-prone translesion and error-free bypass branches. EXO1 codes for a Rad2p family member nuclease that has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. In this report, we show EXO1 functions in the MMS2 error-free branch of the PRR pathway independent of the role of EXO1 in DNA mismatch repair (MMR). Consistent with the idea that EXO1 functions independently in two separate pathways, we defined a domain of Exo1p required for PRR distinct from those required for interaction with MMR proteins. We then generated a point mutant exo1 allele that was defective for the function of Exo1p in MMR due to disrupted interaction with Mlh1p, but still functional for PRR. Lastly, by using a compound exo1 mutant that was defective for interaction with Mlh1p and deficient for nuclease activity, we provide further evidence that Exo1p plays both structural and catalytic roles during MMR. PMID:17602897

  11. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication

    PubMed Central

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-01

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. PMID:27679476

  12. SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication

    PubMed Central

    Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong

    2016-01-01

    ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against

  13. Fade-resistant forward error correction method for free-space optical communications systems

    DOEpatents

    Johnson, Gary W.; Dowla, Farid U.; Ruggiero, Anthony J.

    2007-10-02

    Free-space optical (FSO) laser communication systems offer exceptionally wide-bandwidth, secure connections between platforms that cannot other wise be connected via physical means such as optical fiber or cable. However, FSO links are subject to strong channel fading due to atmospheric turbulence and beam pointing errors, limiting practical performance and reliability. We have developed a fade-tolerant architecture based on forward error correcting codes (FECs) combined with delayed, redundant, sub-channels. This redundancy is made feasible though dense wavelength division multiplexing (WDM) and/or high-order M-ary modulation. Experiments and simulations show that error-free communications is feasible even when faced with fades that are tens of milliseconds long. We describe plans for practical implementation of a complete system operating at 2.5 Gbps.

  14. Computer-Assisted Detection of 90% of EFL Student Errors

    ERIC Educational Resources Information Center

    Harvey-Scholes, Calum

    2018-01-01

    Software can facilitate English as a Foreign Language (EFL) students' self-correction of their free-form writing by detecting errors; this article examines the proportion of errors which software can detect. A corpus of 13,644 words of written English was created, comprising 90 compositions written by Spanish-speaking students at levels A2-B2…

  15. Within-trial contrast: when is a failure to replicate not a type I error?

    PubMed

    Zentall, Thomas R; Singer, Rebecca A

    2007-05-01

    Vasconcelos, Urcuioli, and Lionello-DeNolf (2007) report the results of five experiments that fail to replicate the results of our within-trial contrast study (Clement, Feltus, Kaiser, & Zentall, 2000) and suggest that our results may represent a Type I Error. We believe that this conclusion is not warranted because (a) there is considerable evidence in support of the effect and (b) the amount of training that they gave to their pigeons prior to test may not have been sufficient to observe the effect reliably. We suggest that when sufficient training is provided, reliable contrast can be found.

  16. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    PubMed

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  17. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex

    PubMed Central

    Ganaie, Safder S.; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve

    2017-01-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. PMID:28459842

  18. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress*

    PubMed Central

    Pszenny, Viviana; Ehrenman, Karen; Romano, Julia D.; Kennard, Andrea; Schultz, Aric; Roos, David S.; Grigg, Michael E.; Carruthers, Vern B.; Coppens, Isabelle

    2016-01-01

    The protozoan parasite Toxoplasma gondii develops within a parasitophorous vacuole (PV) in mammalian cells, where it scavenges cholesterol. When cholesterol is present in excess in its environment, the parasite expulses this lipid into the PV or esterifies it for storage in lipid bodies. Here, we characterized a unique T. gondii homologue of mammalian lecithin:cholesterol acyltransferase (LCAT), a key enzyme that produces cholesteryl esters via transfer of acyl groups from phospholipids to the 3-OH of free cholesterol, leading to the removal of excess cholesterol from tissues. TgLCAT contains a motif characteristic of serine lipases “AHSLG” and the catalytic triad consisting of serine, aspartate, and histidine (SDH) from LCAT enzymes. TgLCAT is secreted by the parasite, but unlike other LCAT enzymes it is cleaved into two proteolytic fragments that share the residues of the catalytic triad and need to be reassembled to reconstitute enzymatic activity. TgLCAT uses phosphatidylcholine as substrate to form lysophosphatidylcholine that has the potential to disrupt membranes. The released fatty acid is transferred to cholesterol, but with a lower transesterification activity than mammalian LCAT. TgLCAT is stored in a subpopulation of dense granule secretory organelles, and following secretion, it localizes to the PV and parasite plasma membrane. LCAT-null parasites have impaired growth in vitro, reduced virulence in animals, and exhibit delays in egress from host cells. Parasites overexpressing LCAT show increased virulence and faster egress. These observations demonstrate that TgLCAT influences the outcome of an infection, presumably by facilitating replication and egress depending on the developmental stage of the parasite. PMID:26694607

  19. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    PubMed

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    PubMed

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

    PubMed Central

    Edmonds, Tara G.; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S.; Conway, Joan A.; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T.; Montefiori, David C.; Kappes, John C.; Ochsenbauer, Christina

    2010-01-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. PMID:20863545

  2. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC.

    PubMed

    Edmonds, Tara G; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S; Conway, Joan A; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T; Montefiori, David C; Kappes, John C; Ochsenbauer, Christina

    2010-12-05

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Error analysis regarding the calculation of nonlinear force-free field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.

    2012-02-01

    Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96-1.19, 0.63-1.07 and 0.43-0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80-1.02, 0.67-1.34 and 0.33-0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of <| RSD|> is about 0.1˜0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.

  4. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.

    PubMed

    Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D

    2015-03-01

    RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role

  5. The Proteasomal Rpn11 Metalloprotease Suppresses Tombusvirus RNA Recombination and Promotes Viral Replication via Facilitating Assembly of the Viral Replicase Complex

    PubMed Central

    Prasanth, K. Reddisiva; Barajas, Daniel

    2014-01-01

    ABSTRACT RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a “matchmaker” that brings the viral p92pol replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA

  6. Data entry and error embedding system

    NASA Technical Reports Server (NTRS)

    Woo, Daniel N. (Inventor); Woo, Jr., John (Inventor)

    1998-01-01

    A data entry and error embedding system in which, first, a document is bitmapped and recorded in a first memory. Then, it is displayed, and portions of it to be replicated by data entry are underlayed by a window, into which window replicated data is entered in location and size such that it is juxtaposed just below that which is replicated, enhancing the accuracy of replication. Second, with this format in place, selected portions of the replicated data are altered by the insertion of character or word substitutions, thus the embedding of errors. Finally, a proofreader would endeavor to correct the error embedded data and a record of his or her changes recorded. In this manner, the skill level of the proofreader and accuracy of the data are computed.

  7. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts

    PubMed Central

    Komoda, Keisuke; Naito, Satoshi; Ishikawa, Masayuki

    2004-01-01

    The replication of eukaryotic positive-strand RNA virus genomes occurs through a complex process involving multiple viral and host proteins and intracellular membranes. Here we report a cell-free system that reproduces this process in vitro. This system uses a membrane-containing extract of uninfected plant protoplasts from which the vacuoles had been removed by Percoll gradient centrifugation. We demonstrate that the system supported translation, negative-strand RNA synthesis, genomic RNA replication, and subgenomic RNA transcription of tomato mosaic virus and two other plant positive-strand RNA viruses. The RNA synthesis, which depended on translation of the genomic RNA, produced virus-related RNA species similar to those that are generated in vivo. This system will aid in the elucidation of the mechanisms of genome replication in these viruses. PMID:14769932

  8. Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing

    PubMed Central

    Lang, Gregory I.; Murray, Andrew W.

    2011-01-01

    Previous experimental studies suggest that the mutation rate is nonuniform across the yeast genome. To characterize this variation across the genome more precisely, we measured the mutation rate of the URA3 gene integrated at 43 different locations tiled across Chromosome VI. We show that mutation rate varies 6-fold across a single chromosome, that this variation is correlated with replication timing, and we propose a model to explain this variation that relies on the temporal separation of two processes for replicating past damaged DNA: error-free DNA damage tolerance and translesion synthesis. This model is supported by the observation that eliminating translesion synthesis decreases this variation. PMID:21666225

  9. Radiative flux and forcing parameterization error in aerosol-free clear skies

    DOE PAGES

    Pincus, Robert; Mlawer, Eli J.; Oreopoulos, Lazaros; ...

    2015-07-03

    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m 2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentiallymore » unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.« less

  10. Recognizing and managing errors of cognitive underspecification.

    PubMed

    Duthie, Elizabeth A

    2014-03-01

    James Reason describes cognitive underspecification as incomplete communication that creates a knowledge gap. Errors occur when an information mismatch occurs in bridging that gap with a resulting lack of shared mental models during the communication process. There is a paucity of studies in health care examining this cognitive error and the role it plays in patient harm. The goal of the following case analyses is to facilitate accurate recognition, identify how it contributes to patient harm, and suggest appropriate management strategies. Reason's human error theory is applied in case analyses of errors of cognitive underspecification. Sidney Dekker's theory of human incident investigation is applied to event investigation to facilitate identification of this little recognized error. Contributory factors leading to errors of cognitive underspecification include workload demands, interruptions, inexperienced practitioners, and lack of a shared mental model. Detecting errors of cognitive underspecification relies on blame-free listening and timely incident investigation. Strategies for interception include two-way interactive communication, standardization of communication processes, and technological support to ensure timely access to documented clinical information. Although errors of cognitive underspecification arise at the sharp end with the care provider, effective management is dependent upon system redesign that mitigates the latent contributory factors. Cognitive underspecification is ubiquitous whenever communication occurs. Accurate identification is essential if effective system redesign is to occur.

  11. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota

    PubMed Central

    Kirouac, Kevin N.; Ling, Hong

    2011-01-01

    The 8-oxo-guanine (8-oxo-G) lesion is the most abundant and mutagenic oxidative DNA damage existing in the genome. Due to its dual coding nature, 8-oxo-G causes most DNA polymerases to misincorporate adenine. Human Y-family DNA polymerase iota (polι) preferentially incorporates the correct cytosine nucleotide opposite 8-oxo-G. This unique specificity may contribute to polι’s biological role in cellular protection against oxidative stress. However, the structural basis of this preferential cytosine incorporation is currently unknown. Here we present four crystal structures of polι in complex with DNA containing an 8-oxo-G lesion, paired with correct dCTP or incorrect dATP, dGTP, and dTTP nucleotides. An exceptionally narrow polι active site restricts the purine bases in a syn conformation, which prevents the dual coding properties of 8-oxo-G by inhibiting syn/anti conformational equilibrium. More importantly, the 8-oxo-G base in a syn conformation is not mutagenic in polι because its Hoogsteen edge does not form a stable base pair with dATP in the narrow active site. Instead, the syn 8-oxo-G template base forms the most stable replicating base pair with correct dCTP due to its small pyrimidine base size and enhanced hydrogen bonding with the Hoogsteen edge of 8-oxo-G. In combination with site directed mutagenesis, we show that Gln59 in the finger domain specifically interacts with the additional O8 atom of the lesion base, which influences nucleotide selection, enzymatic efficiency, and replication stalling at the lesion site. Our work provides the structural mechanism of high-fidelity 8-oxo-G replication by a human DNA polymerase. PMID:21300901

  12. A New KE-Free Online ICALL System Featuring Error Contingent Feedback

    ERIC Educational Resources Information Center

    Tokuda, Naoyuki; Chen, Liang

    2004-01-01

    As a first step towards implementing a human language teacher, we have developed a new template-based on-line ICALL (intelligent computer assisted language learning) system capable of automatically diagnosing learners' free-format translated inputs and returning error contingent feedback. The system architecture we have adopted allows language…

  13. Anxiety and Error Monitoring: Increased Error Sensitivity or Altered Expectations?

    ERIC Educational Resources Information Center

    Compton, Rebecca J.; Carp, Joshua; Chaddock, Laura; Fineman, Stephanie L.; Quandt, Lorna C.; Ratliff, Jeffrey B.

    2007-01-01

    This study tested the prediction that the error-related negativity (ERN), a physiological measure of error monitoring, would be enhanced in anxious individuals, particularly in conditions with threatening cues. Participants made gender judgments about faces whose expressions were either happy, angry, or neutral. Replicating prior studies, midline…

  14. Can goal-free problems facilitating students' flexible thinking?

    NASA Astrophysics Data System (ADS)

    Maulidya, Sity Rahmy; Hasanah, Rusi Ulfa; Retnowati, Endah

    2017-08-01

    Problem solving is the key of doing and also learning mathematics. It takes also the fundamental role of developing mathematical knowledge. Responding to the current reform movement in mathematics, students are expected to learn to be a flexible thinker. The ability to think flexible is challenged by the globalisation, hence influence mathematics education. A flexible thinking includes ability to apply knowledge in different contexts rather than simply use it in similar context when it is studied. Arguably problem solving activities can contribute to the development of the ability to apply skills to unfamiliar situations. Accordingly, an appropriate classroom instructional strategy must be developed. A cognitive load theory suggests that by reducing extraneous cognitive load during learning could enhance transfer learning. A goal-free problem strategy that is developed based in cognitive load theory have been showed to be effective for transfer learning. This strategy enables students to learn a large numbers of problem solving moves from a mathematics problem. The instruction in a goal-free problem directs students to `calculate as many solution as you can' rather than to calculate a single given goal. Many experiment research evident goal-free problem enhance learning. This literature review will discuss evidence goal-free problem facilitate students to solve problems flexibly and thus enhance their problem solving skills, including how its implication in the classroom.

  15. Translesion Synthesis of the N(2)-2'-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1.

    PubMed

    Bose, Arindam; Millsap, Amy D; DeLeon, Arnie; Rizzo, Carmelo J; Basu, Ashis K

    2016-09-19

    Translesion synthesis (TLS) of the N(2)-2'-deoxyguanosine (dG-N(2)-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5'-CG1G2CG3CC-3'). TLS efficiency was 38%, 29%, and 25% for the dG-N(2)-IQ located at G1, G2, and G3, respectively, which suggests that dG-N(2)-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8-35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N(2)-IQ bypass. Mutation frequencies (MFs) of dG-N(2)-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ( ( 2015 ) Nucleic Acids Res. 43 , 8340 - 8351 ). The major type of mutation induced by dG-N(2)-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N(2)-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N(2)-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences

  16. Whose statistical reasoning is facilitated by a causal structure intervention?

    PubMed

    McNair, Simon; Feeney, Aidan

    2015-02-01

    People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430-450, 2007) proposed that a causal Bayesian framework accounts for peoples' errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.

  17. Reflections as Near-Peer Facilitators of an Inquiry Project for Undergraduate Anatomy: Successes and Challenges from a Term of Trial-and-Error

    ERIC Educational Resources Information Center

    Anstey, Lauren M.; Michels, Alison; Szymus, Julianna; Law, Wyanne; Ho, Man-Hymn Edwin; Qu, Fei; Yeung, Ralph T. T.; Chow, Natalie

    2014-01-01

    Near-peer facilitators (senior students serving as facilitators to their more junior peers) bring a unique student-based perspective to teaching. With fewer years of teaching experience however, students who become involved in a facilitator role typically develop related skills quickly through a process of trial-and-error within the classroom. The…

  18. Translesion Synthesis of the N2-2′-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1

    PubMed Central

    2016-01-01

    Translesion synthesis (TLS) of the N2-2′-deoxyguanosine (dG-N2-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5′-CG1G2CG3CC-3′). TLS efficiency was 38%, 29%, and 25% for the dG-N2-IQ located at G1, G2, and G3, respectively, which suggests that dG-N2-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8–35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N2-IQ bypass. Mutation frequencies (MFs) of dG-N2-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ((2015) Nucleic Acids Res.43, 8340−835126220181). The major type of mutation induced by dG-N2-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N2-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N2-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences between

  19. Reflections as near-peer facilitators of an inquiry project for undergraduate anatomy: Successes and challenges from a term of trial-and-error.

    PubMed

    Anstey, Lauren M; Michels, Alison; Szymus, Julianna; Law, Wyanne; Edwin Ho, Man-Hymn; Qu, Fei; Yeung, Ralph T T; Chow, Natalie

    2014-01-01

    Near-peer facilitators (senior students serving as facilitators to their more junior peers) bring a unique student-based perspective to teaching. With fewer years of teaching experience however, students who become involved in a facilitator role typically develop related skills quickly through a process of trial-and-error within the classroom. The aim of this paper is to report on the authors' own experiences and reflections as student near-peer facilitators for an inquiry-based project in an undergraduate anatomy course. Three areas of the facilitator experience are explored: (1) offering adequate guidance as facilitators of inquiry, (2) motivating students to engage in the inquiry process, and (3) fostering creativity in learning. A practical framework for providing guidance to students is discussed which offers facilitators a scaffold for asking questions and assisting students through the inquiry process. Considerations for stimulating intrinsic motivations toward inquiry learning are made, paying attention to ways in which facilitators might influence feelings of motivation towards learning. Also, the role of creativity in inquiry learning is explored by highlighting the actions facilitators can take to foster a creative learning environment. Finally, recommendations are made for the development of formalized training programs that aid near-peer facilitators in the acquisition of facilitation skills before entering into a process of trial-and-error within the classroom. © 2013 American Association of Anatomists.

  20. Free fatty acids or high-concentration glucose enhances hepatitis A virus replication in association with a reduction in glucose-regulated protein 78 expression.

    PubMed

    Nwe Win, Nan; Kanda, Tatsuo; Nakamura, Masato; Nakamoto, Shingo; Okamoto, Hiroaki; Yokosuka, Osamu; Shirasawa, Hiroshi

    2017-01-29

    Although the interaction between host and hepatitis A virus (HAV) factors could lead to severe hepatitis A, the exact mechanism of acute liver failure caused by HAV infection is not yet fully understood. The effects of metabolic diseases such as dyslipidemia or diabetes mellitus on HAV replication are still unknown. Here, we examined the effects of free fatty acids or high-concentration glucose on HAV replication and the effects on mitogen-activated protein kinase signaling pathway-related genes in human hepatocytes. We discovered a novel effect of free fatty acids or high-concentration glucose on HAV replication in association with a reduction in the expression of glucose-regulated protein 78 (GRP78). We also observed that thapsigargin induced GRP78 expression and inhibited HAV replication. These findings may provide a new interpretation of the relationship between metabolic diseases and severity of hepatitis A and suggest a new understanding of the mechanism of severe HAV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjustmore » the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.« less

  2. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    PubMed Central

    Ruotsalainen, Laura; Kirkko-Jaakkola, Martti; Rantanen, Jesperi; Mäkelä, Maija

    2018-01-01

    The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM) and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU), sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS) sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF), which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf) in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is tested via two

  3. Design and Implementation of Replicated Object Layer

    NASA Technical Reports Server (NTRS)

    Koka, Sudhir

    1996-01-01

    One of the widely used techniques for construction of fault tolerant applications is the replication of resources so that if one copy fails sufficient copies may still remain operational to allow the application to continue to function. This thesis involves the design and implementation of an object oriented framework for replicating data on multiple sites and across different platforms. Our approach, called the Replicated Object Layer (ROL) provides a mechanism for consistent replication of data over dynamic networks. ROL uses the Reliable Multicast Protocol (RMP) as a communication protocol that provides for reliable delivery, serialization and fault tolerance. Besides providing type registration, this layer facilitates distributed atomic transactions on replicated data. A novel algorithm called the RMP Commit Protocol, which commits transactions efficiently in reliable multicast environment is presented. ROL provides recovery procedures to ensure that site and communication failures do not corrupt persistent data, and male the system fault tolerant to network partitions. ROL will facilitate building distributed fault tolerant applications by performing the burdensome details of replica consistency operations, and making it completely transparent to the application.Replicated databases are a major class of applications which could be built on top of ROL.

  4. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability

    PubMed Central

    Utani, Koichi; Fu, Haiqing; Jang, Sang-Min; Marks, Anna B.; Smith, Owen K.; Zhang, Ya; Redon, Christophe E.; Shimizu, Noriaki

    2017-01-01

    Abstract Chromatin structure affects DNA replication patterns, but the role of specific chromatin modifiers in regulating the replication process is yet unclear. We report that phosphorylation of the human SIRT1 deacetylase on Threonine 530 (T530-pSIRT1) modulates DNA synthesis. T530-pSIRT1 associates with replication origins and inhibits replication from a group of ‘dormant’ potential replication origins, which initiate replication only when cells are subject to replication stress. Although both active and dormant origins bind T530-pSIRT1, active origins are distinguished from dormant origins by their unique association with an open chromatin mark, histone H3 methylated on lysine 4. SIRT1 phosphorylation also facilitates replication fork elongation. SIRT1 T530 phosphorylation is essential to prevent DNA breakage upon replication stress and cells harboring SIRT1 that cannot be phosphorylated exhibit a high prevalence of extrachromosomal elements, hallmarks of perturbed replication. These observations suggest that SIRT1 phosphorylation modulates the distribution of replication initiation events to insure genomic stability. PMID:28549174

  5. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    PubMed

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  6. An understanding of Japanese children's perceptions of fun, barriers, and facilitators of active free play.

    PubMed

    Lee, YingHua; Takenaka, Koji; Kanosue, Kazuyuki

    2015-09-01

    Physical activity contributes to children's physical and mental well-being. Research suggests that active free play helps to maintain and increase physical activity in children and also contributes to social and emotional well-being. To date, these studies have focused on Western countries. Thus, this study was conducted to gain insights into the factors of perceptions of fun, barriers, and facilitators affecting active free play from the perspective of Japanese children using focus group interviews. In Japan, 12 focus groups were conducted with 60 children aged 9-11 years. Children's perceptions of fun in active free play were categorized into socializing, achievement, emotions, and freedom. Additionally, active boys' groups were interested in free play and adventure play; girls' groups were interested in free play with less physical movement and challenges; inactive boys' groups were interested in relaxing and competitive play with bodily contact. However, children mentioned that busy schedules, weather, and health-related factors acted as main barriers. Lastly, children noted facilitators include setting schedules, having access to equipment and playgrounds, and holding special events. The findings provide insights into active free play-related factors for active and inactive Japanese children and also clarify the differences between Japanese and Western children. Such findings will contribute to designing interventions to increase active free play. © The Author(s) 2013.

  7. Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study.

    PubMed

    Kim, Do-Hyun; Park, Jinha; Kahng, Byungnam

    2017-01-01

    The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of O(N), where N is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neurons, spiking neurons, etc. Nevertheless, those advances are based on fully connected networks, which are inconsistent with recent experimental discovery that the number of connections of each neuron seems to be heterogeneous, following a heavy-tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-free networks and obtain a different pattern of associative memory retrieval from that obtained on the fully connected network: the storage capacity becomes tremendously enhanced but with some error in the memory retrieval, which appears as the heterogeneity of the connections is increased. Moreover, the error rates are also obtained on several real neural networks and are indeed similar to that on scale-free model networks.

  8. The right half of the Escherichia coli replication origin is not essential for viability, but facilitates multi-forked replication

    PubMed Central

    Stepankiw, Nicholas; Kaidow, Akihiro; Boye, Erik; Bates, David

    2010-01-01

    Summary Replication initiation is a key event in the cell cycle of all organisms and oriC, the replication origin in Escherichia coli, serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriCs for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication. PMID:19737351

  9. Synchronization of DNA array replication kinetics

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  10. Correcting intensity loss errors in the absence of texture-free reference samples during pole figure measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Ahmed A., E-mail: asaleh@uow.edu.au

    Even with the use of X-ray polycapillary lenses, sample tilting during pole figure measurement results in a decrease in the recorded X-ray intensity. The magnitude of this error is affected by the sample size and/or the finite detector size. These errors can be typically corrected by measuring the intensity loss as a function of the tilt angle using a texture-free reference sample (ideally made of the same alloy as the investigated material). Since texture-free reference samples are not readily available for all alloys, the present study employs an empirical procedure to estimate the correction curve for a particular experimental configuration.more » It involves the use of real texture-free reference samples that pre-exist in any X-ray diffraction laboratory to first establish the empirical correlations between X-ray intensity, sample tilt and their Bragg angles and thereafter generate correction curves for any Bragg angle. It will be shown that the empirically corrected textures are in very good agreement with the experimentally corrected ones. - Highlights: •Sample tilting during X-ray pole figure measurement leads to intensity loss errors. •Texture-free reference samples are typically used to correct the pole figures. •An empirical correction procedure is proposed in the absence of reference samples. •The procedure relies on reference samples that pre-exist in any texture laboratory. •Experimentally and empirically corrected textures are in very good agreement.« less

  11. Mapping DNA polymerase errors by single-molecule sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David F.; Lu, Jenny; Chang, Seungwoo

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  12. Mapping DNA polymerase errors by single-molecule sequencing

    DOE PAGES

    Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...

    2016-05-16

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  13. DNA-PKcs phosphorylates hnRNP-A1 to facilitate the RPA-to-POT1 switch and telomere capping after replication.

    PubMed

    Sui, Jiangdong; Lin, Yu-Fen; Xu, Kangling; Lee, Kyung-Jong; Wang, Dong; Chen, Benjamin P C

    2015-07-13

    The heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) has been implicated in telomere protection and telomerase activation. Recent evidence has further demonstrated that hnRNP-A1 plays a crucial role in maintaining newly replicated telomeric 3' overhangs and facilitating the switch from replication protein A (RPA) to protection of telomeres 1 (POT1). The role of hnRNP-A1 in telomere protection also involves DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the detailed regulation mechanism has not been clear. Here we report that hnRNP-A1 is phosphorylated by DNA-PKcs during the G2 and M phases and that DNA-PK-dependent hnRNP-A1 phosphorylation promotes the RPA-to-POT1 switch on telomeric single-stranded 3' overhangs. Consequently, in cells lacking hnRNP-A1 or DNA-PKcs-dependent hnRNP-A1 phosphorylation, impairment of the RPA-to-POT1 switch results in DNA damage response at telomeres during mitosis as well as induction of fragile telomeres. Taken together, our results indicate that DNA-PKcs-dependent hnRNP-A1 phosphorylation is critical for capping of the newly replicated telomeres and prevention of telomeric aberrations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A Fast Surrogate-facilitated Data-driven Bayesian Approach to Uncertainty Quantification of a Regional Groundwater Flow Model with Structural Error

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Ye, M.; Liang, F.

    2016-12-01

    Due to simplification and/or misrepresentation of the real aquifer system, numerical groundwater flow and solute transport models are usually subject to model structural error. During model calibration, the hydrogeological parameters may be overly adjusted to compensate for unknown structural error. This may result in biased predictions when models are used to forecast aquifer response to new forcing. In this study, we extend a fully Bayesian method [Xu and Valocchi, 2015] to calibrate a real-world, regional groundwater flow model. The method uses a data-driven error model to describe model structural error and jointly infers model parameters and structural error. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models. The surrogate models are constructed using machine learning techniques to emulate the response simulated by the computationally expensive groundwater model. We demonstrate in the real-world case study that explicitly accounting for model structural error yields parameter posterior distributions that are substantially different from those derived by the classical Bayesian calibration that does not account for model structural error. In addition, the Bayesian with error model method gives significantly more accurate prediction along with reasonable credible intervals.

  15. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

    PubMed Central

    Fu, Haiqing; Martin, Melvenia M.; Regairaz, Marie; Huang, Liang; You, Yang; Lin, Chi-Mei; Ryan, Michael; Kim, RyangGuk; Shimura, Tsutomu; Pommier, Yves; Aladjem, Mirit I.

    2015-01-01

    The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81 deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81 deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins. PMID:25879486

  16. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas, Daniel; Xu, Kai; Sharma, Monika

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation andmore » enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.« less

  17. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    PubMed

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  18. Moments and Root-Mean-Square Error of the Bayesian MMSE Estimator of Classification Error in the Gaussian Model.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2014-06-01

    The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

  19. Ultrasound visual feedback treatment and practice variability for residual speech sound errors

    PubMed Central

    Preston, Jonathan L.; McCabe, Patricia; Rivera-Campos, Ahmed; Whittle, Jessica L.; Landry, Erik; Maas, Edwin

    2014-01-01

    Purpose The goals were to (1) test the efficacy of a motor-learning based treatment that includes ultrasound visual feedback for individuals with residual speech sound errors, and (2) explore whether the addition of prosodic cueing facilitates speech sound learning. Method A multiple baseline single subject design was used, replicated across 8 participants. For each participant, one sound context was treated with ultrasound plus prosodic cueing for 7 sessions, and another sound context was treated with ultrasound but without prosodic cueing for 7 sessions. Sessions included ultrasound visual feedback as well as non-ultrasound treatment. Word-level probes assessing untreated words were used to evaluate retention and generalization. Results For most participants, increases in accuracy of target sound contexts at the word level were observed with the treatment program regardless of whether prosodic cueing was included. Generalization between onset singletons and clusters was observed, as well as generalization to sentence-level accuracy. There was evidence of retention during post-treatment probes, including at a two-month follow-up. Conclusions A motor-based treatment program that includes ultrasound visual feedback can facilitate learning of speech sounds in individuals with residual speech sound errors. PMID:25087938

  20. Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Donnell, Tanya B.; Hyde, Jennifer L.; Mintern, Justine D.

    Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes.more » We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis. - Highlights: • MNV induces autophagy in infected murine macrophages. • MNV does not utilise autophagosomal membranes for replication. • The MNV-induced autophagosomes do not fuse with lysosomes. • MNV sequesters SQSTM1 to prevent autophagy degradation and turnover. • Chemical modulation of autophagy enhances MNV replication.« less

  1. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    PubMed

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  2. Algorithm-Based Fault Tolerance Integrated with Replication

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Rennels, David

    2008-01-01

    In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.

  3. Best practices for mapping replication origins in eukaryotic chromosomes.

    PubMed

    Besnard, Emilie; Desprat, Romain; Ryan, Michael; Kahli, Malik; Aladjem, Mirit I; Lemaitre, Jean-Marc

    2014-09-02

    Understanding the regulatory principles ensuring complete DNA replication in each cell division is critical for deciphering the mechanisms that maintain genomic stability. Recent advances in genome sequencing technology facilitated complete mapping of DNA replication sites and helped move the field from observing replication patterns at a handful of single loci to analyzing replication patterns genome-wide. These advances address issues, such as the relationship between replication initiation events, transcription, and chromatin modifications, and identify potential replication origin consensus sequences. This unit summarizes the technological and fundamental aspects of replication profiling and briefly discusses novel insights emerging from mining large datasets, published in the last 3 years, and also describes DNA replication dynamics on a whole-genome scale. Copyright © 2014 John Wiley & Sons, Inc.

  4. A free VP3 C-terminus is essential for the replication of infectious bursal disease virus.

    PubMed

    Mosley, Yung-Yi C; Wu, Ching Ching; Lin, Tsang Long

    2017-03-15

    Green fluorescent protein (GFP) has been successfully incorporated into the viral-like particles of infectious bursal disease virus (IBDV) with a linker at the C-terminus of VP3 in a baculovirus system. However, when the same locus in segment A was used to express GFP by a reverse genetic (RG) system, no viable GFP-expressing IBDV was recovered. To elucidate the underlying mechanism, cDNA construct of segment A with only the linker sequence (9 amino acids) was applied to generate RG IBDV virus (rIBDV). Similarly, no rIBDV was recovered. Moreover, when the incubation after transfection was extended, wildtype rIBDV without the linker was recovered suggesting a free C-terminus of VP3 might be necessary for IBDV replication. On the other hand, rIBDV could be recovered when additional sequence (up to 40 nucleotides) were inserted at the 3' noncoding region (NCR) adjacent to the stop codon of VP3, suggesting that the burden of the linker sequence was not in the stretched genome size but the disruption of the VP3 function. Finally, when the stop codon of VP3 was deleted in segment A to extend the translation into the 3' NCR without introducing additional genomic sequence, no rIBDV was recovered. Our data suggest that a free VP3 C-terminus is essential for IBDV replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assumption-free estimation of the genetic contribution to refractive error across childhood.

    PubMed

    Guggenheim, Jeremy A; St Pourcain, Beate; McMahon, George; Timpson, Nicholas J; Evans, David M; Williams, Cathy

    2015-01-01

    Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75-90%, families 15-70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias. Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404). The variance in refractive error explained by the SNPs ("SNP heritability") was stable over childhood: Across age 7-15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8-9 years old. Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in larger samples and inclusion of interaction effects

  6. Explanatory pluralism: An unrewarding prediction error for free energy theorists.

    PubMed

    Colombo, Matteo; Wright, Cory

    2017-03-01

    Courtesy of its free energy formulation, the hierarchical predictive processing theory of the brain (PTB) is often claimed to be a grand unifying theory. To test this claim, we examine a central case: activity of mesocorticolimbic dopaminergic (DA) systems. After reviewing the three most prominent hypotheses of DA activity-the anhedonia, incentive salience, and reward prediction error hypotheses-we conclude that the evidence currently vindicates explanatory pluralism. This vindication implies that the grand unifying claims of advocates of PTB are unwarranted. More generally, we suggest that the form of scientific progress in the cognitive sciences is unlikely to be a single overarching grand unifying theory. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli.

    PubMed

    Weiss, Marietta; Denou, Emmanuel; Bruttin, Anne; Serra-Moreno, Ruth; Dillmann, Marie-Lise; Brüssow, Harald

    2009-10-10

    The gut transit of T4 phages was studied in axenic mice mono-colonized with the non-pathogenic Escherichia coli strain K-12. Thirty minutes, 1 and 2 h after phage feeding, T4 phage had reached the jejunum, ileum and cecum, respectively. Phage was found in the lumen and was also associated with the mucosa. One day later no phage was detected in the feces. Compared to germ-free control animals, oral T4 phage led to a 300-fold higher fecal phage titer in mice mono-colonized with E. coli strain WG-5. The in vivo T4 phage replication was transient and reached peak fecal titers about 8 h after oral phage application followed by a rapid titer decrease over two days. Similar data were obtained in mice colonized with E. coli strain Nissle. In contrast, orally applied T7 phage experienced a massive and sustained in vivo replication in mice mono-colonized with E. coli strain WG-5 irrespective whether phage or E. coli host was applied first. T7 phage replication occurred mainly in the large intestine. High titers of T7 phage and high E. coli cell counts coexisted in the feces. The observation of only 20% T7 phage-resistant fecal E. coli colonies suggests a refuge model where phage-sensitive E. coli cells are physically or physiologically protected from phage infection in the gut. The difference between T7 and T4 with respect to gut replication might partly reflect their distinct in vitro capacity to replicate on slowly growing cells.

  8. Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study

    PubMed Central

    Agogo, George O.; van der Voet, Hilko; Veer, Pieter van’t; Ferrari, Pietro; Leenders, Max; Muller, David C.; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A.; Boshuizen, Hendriek

    2014-01-01

    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model. PMID:25402487

  9. Mechanistic insights into how CMG helicase facilitates replication past DNA roadblocks.

    PubMed

    Trakselis, Michael A; Seidman, Michael M; Brosh, Robert M

    2017-07-01

    Before leaving the house, it is a good idea to check for road closures that may affect the morning commute. Otherwise, one may encounter significant delays arriving at the destination. While this is commonly true, motorists may be able to consult a live interactive traffic map and pick an alternate route or detour to avoid being late. However, this is not the case if one needs to catch the train which follows a single track to the terminus; if something blocks the track, there is a delay. Such is the case for the DNA replisome responsible for copying the genetic information that provides the recipe of life. When the replication machinery encounters a DNA roadblock, the outcome can be devastating if the obstacle is not overcome in an efficient manner. Fortunately, the cell's DNA synthesis apparatus can bypass certain DNA obstructions, but the mechanism(s) are still poorly understood. Very recently, two papers from the O'Donnell lab, one structural (Georgescu et al., 2017 [1]) and the other biochemical (Langston and O'Donnell, 2017 [2]), have challenged the conventional thinking of how the replicative CMG helicase is arranged on DNA, unwinds double-stranded DNA, and handles barricades in its path. These new findings raise important questions in the search for mechanistic insights into how DNA is copied, particularly when the replication machinery encounters a roadblock. Published by Elsevier B.V.

  10. Estimating replicate time shifts using Gaussian process regression

    PubMed Central

    Liu, Qiang; Andersen, Bogi; Smyth, Padhraic; Ihler, Alexander

    2010-01-01

    Motivation: Time-course gene expression datasets provide important insights into dynamic aspects of biological processes, such as circadian rhythms, cell cycle and organ development. In a typical microarray time-course experiment, measurements are obtained at each time point from multiple replicate samples. Accurately recovering the gene expression patterns from experimental observations is made challenging by both measurement noise and variation among replicates' rates of development. Prior work on this topic has focused on inference of expression patterns assuming that the replicate times are synchronized. We develop a statistical approach that simultaneously infers both (i) the underlying (hidden) expression profile for each gene, as well as (ii) the biological time for each individual replicate. Our approach is based on Gaussian process regression (GPR) combined with a probabilistic model that accounts for uncertainty about the biological development time of each replicate. Results: We apply GPR with uncertain measurement times to a microarray dataset of mRNA expression for the hair-growth cycle in mouse back skin, predicting both profile shapes and biological times for each replicate. The predicted time shifts show high consistency with independently obtained morphological estimates of relative development. We also show that the method systematically reduces prediction error on out-of-sample data, significantly reducing the mean squared error in a cross-validation study. Availability: Matlab code for GPR with uncertain time shifts is available at http://sli.ics.uci.edu/Code/GPRTimeshift/ Contact: ihler@ics.uci.edu PMID:20147305

  11. Facilitating Constructive Alignment in Power Systems Engineering Education Using Free and Open-Source Software

    ERIC Educational Resources Information Center

    Vanfretti, L.; Milano, F.

    2012-01-01

    This paper describes how the use of free and open-source software (FOSS) can facilitate the application of constructive alignment theory in power systems engineering education by enabling the deep learning approach in power system analysis courses. With this aim, this paper describes the authors' approach in using the Power System Analysis Toolbox…

  12. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    PubMed

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  13. Eigenvector method for umbrella sampling enables error analysis

    PubMed Central

    Thiede, Erik H.; Van Koten, Brian; Weare, Jonathan; Dinner, Aaron R.

    2016-01-01

    Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence. PMID:27586912

  14. Experimental toxicology: Issues of statistics, experimental design, and replication.

    PubMed

    Briner, Wayne; Kirwan, Jeral

    2017-01-01

    The difficulty of replicating experiments has drawn considerable attention. Issues with replication occur for a variety of reasons ranging from experimental design to laboratory errors to inappropriate statistical analysis. Here we review a variety of guidelines for statistical analysis, design, and execution of experiments in toxicology. In general, replication can be improved by using hypothesis driven experiments with adequate sample sizes, randomization, and blind data collection techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.

    DTIC Science & Technology

    1995-08-31

    cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast

  16. Constitutive error based parameter estimation technique for plate structures using free vibration signatures

    NASA Astrophysics Data System (ADS)

    Guchhait, Shyamal; Banerjee, Biswanath

    2018-04-01

    In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.

  17. Claspin Promotes Normal Replication Fork Rates in Human Cells

    PubMed Central

    Helleday, Thomas; Caldecott, Keith W.

    2008-01-01

    The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone. PMID:18353973

  18. Enterovirus 3A Facilitates Viral Replication by Promoting Phosphatidylinositol 4-Kinase IIIβ–ACBD3 Interaction

    PubMed Central

    Xiao, Xia; Lei, Xiaobo; Zhang, Zhenzhen; Ma, Yijie; Qi, Jianli; Wu, Chao; Xiao, Yan; Li, Li

    2017-01-01

    ABSTRACT Like other enteroviruses, enterovirus 71 (EV71) relies on phosphatidylinositol 4-kinase IIIβ (PI4KB) for genome RNA replication. However, how PI4KB is recruited to the genome replication sites of EV71 remains elusive. Recently, we reported that a host factor, ACBD3, is needed for EV71 replication by interacting with viral 3A protein. Here, we show that ACBD3 is required for the recruitment of PI4KB to RNA replication sites. Overexpression of viral 3A or EV71 infection stimulates the interaction of PI4KB and ACBD3. Consistently, EV71 infection induces the production of phosphatidylinositol-4-phosphate (PI4P). Furthermore, PI4KB, ACBD3, and 3A are all localized to the viral-RNA replication sites. Accordingly, PI4KB or ACBD3 depletion by small interfering RNA (siRNA) leads to a reduction in PI4P production after EV71 infection. I44A or H54Y substitution in 3A interrupts the stimulation of PI4KB and ACBD3. Further analysis suggests that stimulation of ACBD3-PI4KB interaction is also important for the replication of enterovirus 68 but disadvantageous to human rhinovirus 16. These results reveal a mechanism of enterovirus replication that involves a selective strategy for recruitment of PI4KB to the RNA replication sites. IMPORTANCE Enterovirus 71, like other human enteroviruses, replicates its genome within host cells, where viral proteins efficiently utilize cellular machineries. While multiple factors are involved, it is largely unclear how viral replication is controlled. We show that the 3A protein of enterovirus 71 recruits an enzyme, phosphatidylinositol 4-kinase IIIβ, by interacting with ACBD3, which alters cellular membranes through the production of a lipid, PI4P. Consequently, the viral and host proteins form a large complex that is necessary for RNA synthesis at replication sites. Notably, PI4KB-ACBD3 interaction also differentially mediates the replication of enterovirus 68 and rhinovirus 16. These results provide new insight into the molecular

  19. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    PubMed

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  20. Genetic Control of Replication through N1-methyladenine in Human Cells*

    PubMed Central

    Conde, Juan; Yoon, Jung-Hoon; Roy Choudhury, Jayati; Prakash, Louise; Prakash, Satya

    2015-01-01

    N1-methyl adenine (1-MeA) is formed in DNA by reaction with alkylating agents and naturally occurring methyl halides. The 1-MeA lesion impairs Watson-Crick base pairing and blocks normal DNA replication. Here we identify the translesion synthesis (TLS) DNA polymerases (Pols) required for replicating through 1-MeA in human cells and show that TLS through this lesion is mediated via three different pathways in which Pols ι and θ function in one pathway and Pols η and ζ, respectively, function in the other two pathways. Our biochemical studies indicate that in the Polι/Polθ pathway, Polι would carry out nucleotide insertion opposite 1-MeA from which Polθ would extend synthesis. In the Polη pathway, this Pol alone would function at both the nucleotide insertion and extension steps of TLS, and in the third pathway, Polζ would extend from the nucleotide inserted opposite 1-MeA by an as yet unidentified Pol. Whereas by pushing 1-MeA into the syn conformation and by forming Hoogsteen base pair with the T residue, Polι would carry out TLS opposite 1-MeA, the ability of Polη to replicate through 1-MeA suggests that despite its need for Watson-Crick hydrogen bonding, Polη can stabilize the adduct in its active site. Remarkably, even though Pols η and ι are quite error-prone at inserting nucleotides opposite 1-MeA, TLS opposite this lesion in human cells occurs in a highly error-free fashion. This suggests that the in vivo fidelity of TLS Pols is regulated by factors such as post-translational modifications, protein-protein interactions, and possibly others. PMID:26491020

  1. General error analysis in the relationship between free thyroxine and thyrotropin and its clinical relevance.

    PubMed

    Goede, Simon L; Leow, Melvin Khee-Shing

    2013-01-01

    This treatise investigates error sources in measurements applicable to the hypothalamus-pituitary-thyroid (HPT) system of analysis for homeostatic set point computation. The hypothalamus-pituitary transfer characteristic (HP curve) describes the relationship between plasma free thyroxine [FT4] and thyrotropin [TSH]. We define the origin, types, causes, and effects of errors that are commonly encountered in TFT measurements and examine how we can interpret these to construct a reliable HP function for set point establishment. The error sources in the clinical measurement procedures are identified and analyzed in relation to the constructed HP model. The main sources of measurement and interpretation uncertainties are (1) diurnal variations in [TSH], (2) TFT measurement variations influenced by timing of thyroid medications, (3) error sensitivity in ranges of [TSH] and [FT4] (laboratory assay dependent), (4) rounding/truncation of decimals in [FT4] which in turn amplify curve fitting errors in the [TSH] domain in the lower [FT4] range, (5) memory effects (rate-independent hysteresis effect). When the main uncertainties in thyroid function tests (TFT) are identified and analyzed, we can find the most acceptable model space with which we can construct the best HP function and the related set point area.

  2. Facilitating the analysis of the multifocal electroretinogram using the free software environment R.

    PubMed

    Bergholz, Richard; Rossel, Mirjam; Dutescu, Ralf M; Vöge, Klaas P; Salchow, Daniel J

    2018-01-01

    The large amount of data rendered by the multifocal electroretinogram (mfERG) can be analyzed and visualized in various ways. The evaluation and comparison of more than one examination is time-consuming and prone to create errors. Using the free software environment R we developed a solution to average the data of multiple examinations and to allow a comparison of different patient groups. Data of single mfERG recordings as exported in .csv format from a RETIport 21 system (version 7/03, Roland Consult) or manually compiled .csv files are the basis for the calculations. The R software extracts response densities and implicit times of N1 and P1 for the sum response, each ring eccentricity, and each single hexagon. Averages can be calculated for as many subjects as needed. The mentioned parameters can then be compared to another group of patients or healthy subjects. Application of the software is illustrated by comparing 11 patients with chloroquine maculopathy to a control group of 7 healthy subjects. The software scripts display response density and implicit time 3D plots of each examination as well as of the group averages. Differences of the group averages are presented as 3D and grayscale 2D plots. Both groups are compared using the t-test with Bonferroni correction. The group comparison is furthermore illustrated by the average waveforms and by boxplots of each eccentricity. This software solution on the basis of the programming language R facilitates the clinical and scientific use of the mfERG and aids in interpretation and analysis.

  3. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells

    DTIC Science & Technology

    1998-07-01

    synthesome has been extensively demonstrated to carry out full length DNA replication in vitro, and to accurately depict the DNA replication process as it...occurs in the intact cell. By examining the fidelity of the DNA replication process carried out by the DNA synthesome from a number of breast cell types...we have demonstrated for the first time, that the cellular DNA replication machinery of malignant human breast cells is significantly more error-prone than that of non- malignant human breast cells.

  4. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  5. An improved estimator for the hydration of fat-free mass from in vivo measurements subject to additive technical errors.

    PubMed

    Kinnamon, Daniel D; Lipsitz, Stuart R; Ludwig, David A; Lipshultz, Steven E; Miller, Tracie L

    2010-04-01

    The hydration of fat-free mass, or hydration fraction (HF), is often defined as a constant body composition parameter in a two-compartment model and then estimated from in vivo measurements. We showed that the widely used estimator for the HF parameter in this model, the mean of the ratios of measured total body water (TBW) to fat-free mass (FFM) in individual subjects, can be inaccurate in the presence of additive technical errors. We then proposed a new instrumental variables estimator that accurately estimates the HF parameter in the presence of such errors. In Monte Carlo simulations, the mean of the ratios of TBW to FFM was an inaccurate estimator of the HF parameter, and inferences based on it had actual type I error rates more than 13 times the nominal 0.05 level under certain conditions. The instrumental variables estimator was accurate and maintained an actual type I error rate close to the nominal level in all simulations. When estimating and performing inference on the HF parameter, the proposed instrumental variables estimator should yield accurate estimates and correct inferences in the presence of additive technical errors, but the mean of the ratios of TBW to FFM in individual subjects may not.

  6. The computation of equating errors in international surveys in education.

    PubMed

    Monseur, Christian; Berezner, Alla

    2007-01-01

    Since the IEA's Third International Mathematics and Science Study, one of the major objectives of international surveys in education has been to report trends in achievement. The names of the two current IEA surveys reflect this growing interest: Trends in International Mathematics and Science Study (TIMSS) and Progress in International Reading Literacy Study (PIRLS). Similarly a central concern of the OECD's PISA is with trends in outcomes over time. To facilitate trend analyses these studies link their tests using common item equating in conjunction with item response modelling methods. IEA and PISA policies differ in terms of reporting the error associated with trends. In IEA surveys, the standard errors of the trend estimates do not include the uncertainty associated with the linking step while PISA does include a linking error component in the standard errors of trend estimates. In other words, PISA implicitly acknowledges that trend estimates partly depend on the selected common items, while the IEA's surveys do not recognise this source of error. Failing to recognise the linking error leads to an underestimation of the standard errors and thus increases the Type I error rate, thereby resulting in reporting of significant changes in achievement when in fact these are not significant. The growing interest of policy makers in trend indicators and the impact of the evaluation of educational reforms appear to be incompatible with such underestimation. However, the procedure implemented by PISA raises a few issues about the underlying assumptions for the computation of the equating error. After a brief introduction, this paper will describe the procedure PISA implemented to compute the linking error. The underlying assumptions of this procedure will then be discussed. Finally an alternative method based on replication techniques will be presented, based on a simulation study and then applied to the PISA 2000 data.

  7. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    PubMed

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms.

    PubMed Central

    Ermak, G; Paszkowski, U; Wohlmuth, M; Scheid, O M; Paszkowski, J

    1993-01-01

    Extrachromosomally replicating viral DNA is usually free of cytosine methylation and viral templates methylated in vitro are poor substrates when used in replication assays. We have investigated the mechanism of inhibition of viral replication by DNA methylation using as a model the DNA A of African cassava mosaic virus. We have constructed two component helper systems which allow for separation of the transcriptional inhibition of viral genes necessary for replication from replication inhibition due to altered interaction between the replication complex and methylated viral DNA. Our results suggest that methylation-mediated reduction of viral replication is due to both repression mechanisms and that this provides two independent selection pressures for the maintenance of methylation-free replicons in infected cells. Images PMID:7688453

  9. Analysis of Wind Tunnel Polar Replicates Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Micol, John R.

    2010-01-01

    The role of variance in a Modern Design of Experiments analysis of wind tunnel data is reviewed, with distinctions made between explained and unexplained variance. The partitioning of unexplained variance into systematic and random components is illustrated, with examples of the elusive systematic component provided for various types of real-world tests. The importance of detecting and defending against systematic unexplained variance in wind tunnel testing is discussed, and the random and systematic components of unexplained variance are examined for a representative wind tunnel data set acquired in a test in which a missile is used as a test article. The adverse impact of correlated (non-independent) experimental errors is described, and recommendations are offered for replication strategies that facilitate the quantification of random and systematic unexplained variance.

  10. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    PubMed

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  11. Effect of slope errors on the performance of mirrors for x-ray free electron laser applications

    DOE PAGES

    Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P.

    2015-12-02

    In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help tomore » correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.« less

  12. Effect of slope errors on the performance of mirrors for x-ray free electron laser applications.

    PubMed

    Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P

    2015-12-14

    In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help to correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.

  13. Did template-directed nucleation precede molecular replication?

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1986-01-01

    It is proposed that mononucleotides incorporated into the surfaces of microcrystals of inorganic phosphates such as hydroxyapatite can act as templates to assemble complementary mononucleotides from solution, and that the phosphate groups of the assembled nucleotides can facilitate nucleation of a second hydroxyapatite crystal. This would provide a mechanism of replication that is subject to natural selection. The possible role of a replicating system of this kind in the origins of life on the earth is discussed.

  14. Learning from Errors at Work: A Replication Study in Elder Care Nursing

    ERIC Educational Resources Information Center

    Leicher, Veronika; Mulder, Regina H.; Bauer, Johannes

    2013-01-01

    Learning from errors is an important way of learning at work. In this article, we analyse conditions under which elder care nurses use errors as a starting point for the engagement in social learning activities (ESLA) in the form of joint reflection with colleagues on potential causes of errors and ways to prevent them in future. The goal of our…

  15. Recovery from the DNA Replication Checkpoint

    PubMed Central

    Chaudhury, Indrajit; Koepp, Deanna M.

    2016-01-01

    Checkpoint recovery is integral to a successful checkpoint response. Checkpoint pathways monitor progress during cell division so that in the event of an error, the checkpoint is activated to block the cell cycle and activate repair pathways. Intrinsic to this process is that once repair has been achieved, the checkpoint signaling pathway is inactivated and cell cycle progression resumes. We use the term “checkpoint recovery” to describe the pathways responsible for the inactivation of checkpoint signaling and cell cycle re-entry after the initial stress has been alleviated. The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. When replication stress is encountered, replication forks are stalled, and the checkpoint signaling pathway is activated. Central to recovery from the S-phase checkpoint is the restart of stalled replication forks. If checkpoint recovery fails, stalled forks may become unstable and lead to DNA breaks or unusual DNA structures that are difficult to resolve, causing genomic instability. Alternatively, if cell cycle resumption mechanisms become uncoupled from checkpoint inactivation, cells with under-replicated DNA might proceed through the cell cycle, also diminishing genomic stability. In this review, we discuss the molecular mechanisms that contribute to inactivation of the S-phase checkpoint signaling pathway and the restart of replication forks during recovery from replication stress. PMID:27801838

  16. The origin of replicators and reproducers

    PubMed Central

    Szathmáry, Eörs

    2006-01-01

    Replicators are fundamental to the origin of life and evolvability. Their survival depends on the accuracy of replication and the efficiency of growth relative to spontaneous decay. Infrabiological systems are built of two coupled autocatalytic systems, in contrast to minimal living systems that must comprise at least a metabolic subsystem, a hereditary subsystem and a boundary, serving respective functions. Some scenarios prefer to unite all these functions into one primordial system, as illustrated in the lipid world scenario, which is considered as a didactic example in detail. Experimentally produced chemical replicators grow parabolically owing to product inhibition. A selection consequence is survival of everybody. The chromatographized replicator model predicts that such replicators spreading on surfaces can be selected for higher replication rate because double strands are washed away slower than single strands from the surface. Analysis of real ribozymes suggests that the error threshold of replication is less severe by about one order of magnitude than thought previously. Surface-bound dynamics is predicted to play a crucial role also for exponential replicators: unlinked genes belonging to the same genome do not displace each other by competition, and efficient and accurate replicases can spread. The most efficient form of such useful population structure is encapsulation by reproducing vesicles. The stochastic corrector model shows how such a bag of genes can survive, and what the role of chromosome formation and intragenic recombination could be. Prebiotic and early evolution cannot be understood without the models of dynamics. PMID:17008217

  17. Local neutral networks help maintain inaccurately replicating ribozymes.

    PubMed

    Szilágyi, András; Kun, Ádám; Szathmáry, Eörs

    2014-01-01

    The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further insight into the plausibility of an ancient RNA world.

  18. Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents.

    PubMed

    Lin, Chun-Kuang; Tseng, Chin-Kai; Wu, Yu-Hsuan; Liaw, Chih-Chuang; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Lee, Jin-Ching

    2017-03-20

    Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E 2 (PGE 2 ) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE 2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection.

  19. Thermal Windows on Brazilian Free-tailed Bats Facilitate Thermoregulation during Prolonged Flight

    PubMed Central

    Reichard, Jonathan D.; Prajapati, Suresh I.; Austad, Steven N.; Keller, Charles; Kunz, Thomas H.

    2010-01-01

    The Brazilian free-tailed bat (Tadarida brasiliensis) experiences challenging thermal conditions while roosting in hot caves, flying during warm daylight conditions, and foraging at cool high altitudes. Using thermal infrared cameras, we identified hot spots along the flanks of free-ranging Brazilian free-tailed bats, ventral to the extended wings. These hot spots are absent in syntopic cave myotis (Myotis velifer), a species that forages over relatively short distances, and does not engage in long-distance migration. We hypothesized that the hot spots, or “radiators,” on Brazilian free-tailed bats may be adaptations for migration, particularly in this long-distance, high-flying species. We examined the vasculature of radiators on Brazilian free-tailed bats with transillumination to characterize the unique arrangements of arteries and veins that are positioned perpendicular to the body in the proximal region of the wing. We hypothesized that these radiators aid in maintaining heat balance by flushing the uninsulated thermal window with warm blood, thereby dissipating heat while bats are flying under warm conditions, but shunting blood away and conserving heat when they are flying in cooler air at high altitudes. We also examined fluid-preserved specimens representing 122 species from 15 of 18 chiropteran families and radiators appeared present only in species in the family Molossidae, including both sedentary and migratory species and subspecies. Thus, the radiator appears to be a unique trait that may facilitate energy balance and water balance during sustained dispersal, foraging, and long-distance migration. PMID:20811514

  20. Unveiling the mystery of mitochondrial DNA replication in yeasts.

    PubMed

    Chen, Xin Jie; Clark-Walker, George Desmond

    2018-01-01

    Conventional DNA replication is initiated from specific origins and requires the synthesis of RNA primers for both the leading and lagging strands. In contrast, the replication of yeast mitochondrial DNA is origin-independent. The replication of the leading strand is likely primed by recombinational structures and proceeded by a rolling circle mechanism. The coexistent linear and circular DNA conformers facilitate the recombination-based initiation. The replication of the lagging strand is poorly understood. Re-evaluation of published data suggests that the rolling circle may also provide structures for the synthesis of the lagging-strand by mechanisms such as template switching. Thus, the coupling of recombination with rolling circle replication and possibly, template switching, may have been selected as an economic replication mode to accommodate the reductive evolution of mitochondria. Such a replication mode spares the need for conventional replicative components, including those required for origin recognition/remodelling, RNA primer synthesis and lagging-strand processing. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. Cyclooxygenase‐2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents

    PubMed Central

    Lin, Chun-Kuang; Tseng, Chin-Kai; Wu, Yu-Hsuan; Liaw, Chih-Chuang; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Lee, Jin-Ching

    2017-01-01

    Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E2 (PGE2) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection. PMID:28317866

  2. Links between DNA Replication, Stem Cells and Cancer

    PubMed Central

    Vassilev, Alex; DePamphilis, Melvin L.

    2017-01-01

    Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells. PMID:28125050

  3. Reference-free error estimation for multiple measurement methods.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga

    2018-01-01

    We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.

  4. Towards scalable Byzantine fault-tolerant replication

    NASA Astrophysics Data System (ADS)

    Zbierski, Maciej

    2017-08-01

    Byzantine fault-tolerant (BFT) replication is a powerful technique, enabling distributed systems to remain available and correct even in the presence of arbitrary faults. Unfortunately, existing BFT replication protocols are mostly load-unscalable, i.e. they fail to respond with adequate performance increase whenever new computational resources are introduced into the system. This article proposes a universal architecture facilitating the creation of load-scalable distributed services based on BFT replication. The suggested approach exploits parallel request processing to fully utilize the available resources, and uses a load balancer module to dynamically adapt to the properties of the observed client workload. The article additionally provides a discussion on selected deployment scenarios, and explains how the proposed architecture could be used to increase the dependability of contemporary large-scale distributed systems.

  5. Mechanisms and regulation of DNA replication initiation in eukaryotes

    PubMed Central

    Parker, Matthew W.; Botchan, Michael R.; Berger, James M.

    2017-01-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a given cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the Origin Recognition Complex (ORC), and subsequent activation of the helicase by incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here we review the molecular mechanisms that underpin eukaryotic DNA replication initiation – from selecting replication start sites to replicative helicase loading and activation – and describe how these events are often distinctly regulated across different eukaryotic model organisms. PMID:28094588

  6. Smoke-Free Universities Help Students Avoid Establishing Smoking by Means of Facilitating Quitting

    PubMed Central

    Andreeva, Tatiana I; Ananjeva, Galina A; Daminova, Natalia A; Leontieva, Tatiana V; Khakimova, Louise K

    2015-01-01

    Background: This study aimed to clarify whether smoke-free policies affect the initiation or the quitting of smoking among young adults. Methods: In this natural quasi-experiment study, three universities with different enforcement of smoke-free policies were considered in Kazan City, Russian Federation. Exposure data were collected in 2008-2009 through measurement of particulate matter concentrations in typical sets of premises in each university to distinguish smoke-free universities (SFU) and those not smoke-free (NSFU). All present third year students were surveyed in class in April-June 2011. Number of valid questionnaires equaled 635. The questionnaire was adapted from the Health Professions Students Survey and contained questions on smoking initiation, current tobacco use, willingness to quit, quit attempts, percep­tion of smoke-free policies enforcement, and the demographic data. Results: Among students of SFU, the percentage of current smokers was smaller than in NSFU: 42% vs. 64% in men and 32% vs. 43% in women. Prevalence of daily smoking was 11-12% in SFU, 26% in NSFU overall and 42% among male students. No advantage of SFU in limiting smoking initiation was found. Percentage of former smokers in SFU was 33% vs. 10% in NSFU. Among current smokers, 57% expressed willingness to quit in SFU and only 28% in NSFU. About 60% of current smokers in SFU attempted to quit within a year and only 36% did so in NSFU with 23% vs. 3% having done three or more attempts. Conclusion: Smoke-free universities help young adults to avoid establishing regular smoking by means of facilitating quitting smoking. PMID:26933643

  7. Molecular replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1986-01-01

    The object of our research program is to understand how polynucleotide replication originated on the primitive Earth. This is a central issue in studies of the origins of life, since a process similar to modern DNA and RNA synthesis is likely to have formed the basis for the most primitive system of genetic information transfer. The major conclusion of studies so far is that a preformed polynucleotide template under many different experimental conditions will facilitate the synthesis of a new oligonucleotide with a sequence complementary to that of the template. It has been shown, for example, that poly(C) facilitates the synthesis of long oligo(G)s and that the short template CCGCC facilities the synthesis of its complement GGCGG. Very recently we have shown that template-directed synthesis is not limited to the standard oligonucleotide substrates. Nucleic acid-like molecules with a pyrophosphate group replacing the phosphate of the standard nucleic acid backbone are readily synthesized from deoxynucleotide 3'-5'-diphosphates on appropriate templates.

  8. Tumor Suppression by BRCA-1: A Critical Role at DNA Replication Forks

    DTIC Science & Technology

    2006-10-01

    replication defect. We wished to test the hypothesis that BRCA1/BARD1 function during DNA replication supporting DNA transactions at replication forks. We...are using cell-free extracts derived from Xenopus laevis eggs that support: 1. Semi-conservative, cell-cycle regulated DNA replication ; 2. Many facets...complex assembles to chromatin in a DNA replication -dependent manner. Finally, we show that BRCA1/BARD1 loading to chromatin does not dramatically

  9. Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure.

    PubMed

    Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C

    2018-06-29

    A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe.

    PubMed

    Margalef, Pol; Kotsantis, Panagiotis; Borel, Valerie; Bellelli, Roberto; Panier, Stephanie; Boulton, Simon J

    2018-01-25

    Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 -/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Antiretroviral Agents Effectively Block HIV Replication after Cell-to-Cell Transfer

    PubMed Central

    Permanyer, Marc; Ballana, Ester; Ruiz, Alba; Badia, Roger; Riveira-Munoz, Eva; Gonzalo, Encarna; Clotet, Bonaventura

    2012-01-01

    Cell-to-cell transmission of HIV has been proposed as a mechanism contributing to virus escape to the action of antiretrovirals and a mode of HIV persistence during antiretroviral therapy. Here, cocultures of infected HIV-1 cells with primary CD4+ T cells or lymphoid cells were used to evaluate virus transmission and the effect of known antiretrovirals. Transfer of HIV antigen from infected to uninfected cells was resistant to the reverse transcriptase inhibitors (RTIs) zidovudine (AZT) and tenofovir, but was blocked by the attachment inhibitor IgGb12. However, quantitative measurement of viral DNA production demonstrated that all anti-HIV agents blocked virus replication with similar potency to cell-free virus infections. Cell-free and cell-associated infections were equally sensitive to inhibition of viral replication when HIV-1 long terminal repeat (LTR)-driven green fluorescent protein (GFP) expression in target cells was measured. However, detection of GFP by flow cytometry may incorrectly estimate the efficacy of antiretrovirals in cell-associated virus transmission, due to replication-independent Tat-mediated LTR transactivation as a consequence of cell-to-cell events that did not occur in short-term (48-h) cell-free virus infections. In conclusion, common markers of virus replication may not accurately correlate and measure infectivity or drug efficacy in cell-to-cell virus transmission. When accurately quantified, active drugs blocked proviral DNA and virus replication in cell-to-cell transmission, recapitulating the efficacy of antiretrovirals in cell-free virus infections and in vivo. PMID:22696642

  12. Heroin use is associated with lower levels of restriction factors and type I interferon expression and facilitates HIV-1 replication.

    PubMed

    Zhu, Jia-Wu; Liu, Feng-Liang; Mu, Dan; Deng, De-Yao; Zheng, Yong-Tang

    Heroin use is associated with increased incidence of infectious diseases such as HIV-1 infection, as a result of immunosuppression to a certain extent. Host restriction factors are recently identified cellular proteins with potent antiviral activities. Whether heroin use impacts on the in vivo expression of restriction factors that result in facilitating HIV-1 replication is poorly understood. Here we recruited 432 intravenous drug users (IDUs) and 164 non-IDUs at high-risk behaviors. Based on serological tests, significantly higher prevalence of HIV-1 infection was observed among IDUs compared with non-IDUs. We included those IDUs and non-IDUs without HIV-1 infection, and found IDUs had significantly lower levels of TRIM5α, TRIM22, APOBEC3G, and IFN-α, -β expression than did non-IDUs. We also directly examined plasma viral load in HIV-1 mono-infected IDUs and non-IDUs and found HIV-1 mono-infected IDUs had significantly higher plasma viral load than did non-IDUs. Moreover, intrinsically positive correlation between type I interferon and TRIM5α or TRIM22 was observed, however, which was dysregulated following heroin use. Collectively, heroin use benefits HIV-1 replication that may be partly due to suppression of host restriction factors and type I interferon expression. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. 3D printing facilitated scaffold-free tissue unit fabrication.

    PubMed

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.

  14. Integrated digital error suppression for improved detection of circulating tumor DNA

    PubMed Central

    Kurtz, David M.; Chabon, Jacob J.; Scherer, Florian; Stehr, Henning; Liu, Chih Long; Bratman, Scott V.; Say, Carmen; Zhou, Li; Carter, Justin N.; West, Robert B.; Sledge, George W.; Shrager, Joseph B.; Loo, Billy W.; Neal, Joel W.; Wakelee, Heather A.; Diehn, Maximilian; Alizadeh, Ash A.

    2016-01-01

    High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by ~3 fold, and synergize when combined to yield ~15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to clinical non-small cell lung cancer (NSCLC) samples, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and 96% specificity and detection of ctDNA down to 4 in 105 cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings. PMID:27018799

  15. Analysis of host response to bacterial infection using error model based gene expression microarray experiments

    PubMed Central

    Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco

    2005-01-01

    A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204

  16. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Chao, C; Columbia University, NY, NY

    2014-06-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to

  17. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection

    PubMed Central

    Fu, Yuxuan; Zhang, Li; Zhang, Fang; Tang, Ting; Zhou, Qi; Feng, Chunhong; Jin, Yu

    2017-01-01

    Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. PMID:28910400

  18. Replication of a Continuing Education Workshop in the Evidence-Based Practice Process

    ERIC Educational Resources Information Center

    Gromoske, Andrea N.; Berger, Lisa K.

    2017-01-01

    Objective: To replicate the results of Parrish and Rubin's continuing education workshop in the evidence-based practice (EBP) process utilizing different workshop facilitators with participants in a different geographic location. Methods: We used a replicated, one-group pretest-posttest design with 3-month follow-up to evaluate the effectiveness…

  19. The difference between LSMC and replicating portfolio in insurance liability modeling.

    PubMed

    Pelsser, Antoon; Schweizer, Janina

    2016-01-01

    Solvency II requires insurers to calculate the 1-year value at risk of their balance sheet. This involves the valuation of the balance sheet in 1 year's time. As for insurance liabilities, closed-form solutions to their value are generally not available, insurers turn to estimation procedures. While pure Monte Carlo simulation set-ups are theoretically sound, they are often infeasible in practice. Therefore, approximation methods are exploited. Among these, least squares Monte Carlo (LSMC) and portfolio replication are prominent and widely applied in practice. In this paper, we show that, while both are variants of regression-based Monte Carlo methods, they differ in one significant aspect. While the replicating portfolio approach only contains an approximation error, which converges to zero in the limit, in LSMC a projection error is additionally present, which cannot be eliminated. It is revealed that the replicating portfolio technique enjoys numerous advantages and is therefore an attractive model choice.

  20. Productive replication of human papillomavirus 31 requires DNA repair factor Nbs1.

    PubMed

    Anacker, Daniel C; Gautam, Dipendra; Gillespie, Kenric A; Chappell, William H; Moody, Cary A

    2014-08-01

    Activation of the ATM (ataxia telangiectasia-mutated kinase)-dependent DNA damage response (DDR) is necessary for productive replication of human papillomavirus 31 (HPV31). We previously found that DNA repair and homologous recombination (HR) factors localize to sites of HPV replication, suggesting that ATM activity is required to recruit factors to viral genomes that can productively replicate viral DNA in a recombination-dependent manner. The Mre11-Rad50-Nbs1 (MRN) complex is an essential component of the DDR that is necessary for ATM-mediated HR repair and localizes to HPV DNA foci. In this study, we demonstrate that the HPV E7 protein is sufficient to increase levels of the MRN complex and also interacts with MRN components. We have found that Nbs1 depletion blocks productive viral replication and results in decreased localization of Mre11, Rad50, and the principal HR factor Rad51 to HPV DNA foci upon differentiation. Nbs1 contributes to the DDR by acting as an upstream activator of ATM in response to double-strand DNA breaks (DSBs) and as a downstream effector of ATM activity in the intra-S-phase checkpoint. We have found that phosphorylation of ATM and its downstream target Chk2, as well as SMC1 (structural maintenance of chromosome 1), is maintained upon Nbs1 knockdown in differentiating cells. Given that ATM and Chk2 are required for productive replication, our results suggest that Nbs1 contributes to viral replication outside its role as an ATM activator, potentially through ensuring localization of DNA repair factors to viral genomes that are necessary for efficient productive replication. The mechanisms that regulate human papillomavirus (HPV) replication during the viral life cycle are not well understood. Our finding that Nbs1 is necessary for productive replication even in the presence of ATM (ataxia telangiectasia-mutated kinase) and Chk2 phosphorylation offers evidence that Nbs1 contributes to viral replication downstream of facilitating ATM

  1. Productive Replication of Human Papillomavirus 31 Requires DNA Repair Factor Nbs1

    PubMed Central

    Anacker, Daniel C.; Gautam, Dipendra; Gillespie, Kenric A.; Chappell, William H.

    2014-01-01

    facilitating ATM activation. Nbs1 is required for the recruitment of Mre11 and Rad50 to viral genomes, suggesting that the MRN complex plays a direct role in facilitating productive viral replication, potentially through the processing of substrates that are recognized by the key homologous recombination (HR) factor Rad51. The discovery that E7 increases levels of MRN components, and MRN complex formation, identifies a novel role for E7 in facilitating productive replication. Our study not only identifies DNA repair factors necessary for HPV replication but also provides a deeper understanding of how HPV utilizes the DNA damage response to regulate viral replication. PMID:24850735

  2. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  3. B23/nucleophosmin interacts with bovine immunodeficiency virus Rev protein and facilitates viral replication.

    PubMed

    Passos-Castilho, Ana Maria; Marchand, Claude; Archambault, Denis

    2018-02-01

    The bovine immunodeficiency virus (BIV) Rev shuttling protein contains nuclear/nucleolar localization signals and nuclear import/export mechanisms that are novel among lentivirus Rev proteins. Several viral proteins localize to the nucleolus, which may play a role in processes that are essential to the outcome of viral replication. Although BIV Rev localizes to the nucleoli of transfected/infected cells and colocalizes with one of its major proteins, nucleophosmin (NPM1, also known as B23), the role of the nucleolus and B23 in BIV replication remains to be determined. Here, we demonstrate for the first time that BIV Rev interacts with nucleolar phosphoprotein B23 in cells. Using small interfering RNA (siRNA) technology, we show that depletion of B23 expression inhibits virus production by BIV-infected cells, indicating that B23 plays an important role in BIV replication. The interaction between Rev and B23 may represent a potential new target for the development of antiviral drugs against lentiviruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Software reliability: Additional investigations into modeling with replicated experiments

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.; Schotz, F. M.; Skirvan, J. A.

    1984-01-01

    The effects of programmer experience level, different program usage distributions, and programming languages are explored. All these factors affect performance, and some tentative relational hypotheses are presented. An analytic framework for replicated and non-replicated (traditional) software experiments is presented. A method of obtaining an upper bound on the error rate of the next error is proposed. The method was validated empirically by comparing forecasts with actual data. In all 14 cases the bound exceeded the observed parameter, albeit somewhat conservatively. Two other forecasting methods are proposed and compared to observed results. Although demonstrated relative to this framework that stages are neither independent nor exponentially distributed, empirical estimates show that the exponential assumption is nearly valid for all but the extreme tails of the distribution. Except for the dependence in the stage probabilities, Cox's model approximates to a degree what is being observed.

  5. Achieving unequal error protection with convolutional codes

    NASA Technical Reports Server (NTRS)

    Mills, D. G.; Costello, D. J., Jr.; Palazzo, R., Jr.

    1994-01-01

    This paper examines the unequal error protection capabilities of convolutional codes. Both time-invariant and periodically time-varying convolutional encoders are examined. The effective free distance vector is defined and is shown to be useful in determining the unequal error protection (UEP) capabilities of convolutional codes. A modified transfer function is used to determine an upper bound on the bit error probabilities for individual input bit positions in a convolutional encoder. The bound is heavily dependent on the individual effective free distance of the input bit position. A bound relating two individual effective free distances is presented. The bound is a useful tool in determining the maximum possible disparity in individual effective free distances of encoders of specified rate and memory distribution. The unequal error protection capabilities of convolutional encoders of several rates and memory distributions are determined and discussed.

  6. Positive Beliefs about Errors as an Important Element of Adaptive Individual Dealing with Errors during Academic Learning

    ERIC Educational Resources Information Center

    Tulis, Maria; Steuer, Gabriele; Dresel, Markus

    2018-01-01

    Research on learning from errors gives reason to assume that errors provide a high potential to facilitate deep learning if students are willing and able to take these learning opportunities. The first aim of this study was to analyse whether beliefs about errors as learning opportunities can be theoretically and empirically distinguished from…

  7. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

    PubMed Central

    Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.

    2017-01-01

    Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724

  8. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement bothmore » defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.« less

  9. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    ERIC Educational Resources Information Center

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  10. Hepatitis B virus replication

    PubMed Central

    Beck, Juergen; Nassal, Michael

    2007-01-01

    Hepadnaviruses, including human hepatitis B virus (HBV), replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Despite this kinship to retroviruses, there are fundamental differences beyond the fact that hepadnavirions contain DNA instead of RNA. Most peculiar is the initiation of reverse transcription: it occurs by protein-priming, is strictly committed to using an RNA hairpin on the pgRNA, ε, as template, and depends on cellular chaperones; moreover, proper replication can apparently occur only in the specialized environment of intact nucleocapsids. This complexity has hampered an in-depth mechanistic understanding. The recent successful reconstitution in the test tube of active replication initiation complexes from purified components, for duck HBV (DHBV), now allows for the analysis of the biochemistry of hepadnaviral replication at the molecular level. Here we review the current state of knowledge at all steps of the hepadnaviral genome replication cycle, with emphasis on new insights that turned up by the use of such cell-free systems. At this time, they can, unfortunately, not be complemented by three-dimensional structural information on the involved components. However, at least for the ε RNA element such information is emerging, raising expectations that combining biophysics with biochemistry and genetics will soon provide a powerful integrated approach for solving the many outstanding questions. The ultimate, though most challenging goal, will be to visualize the hepadnaviral reverse transcriptase in the act of synthesizing DNA, which will also have strong implications for drug development. PMID:17206754

  11. Chromatin Constrains the Initiation and Elongation of DNA Replication.

    PubMed

    Devbhandari, Sujan; Jiang, Jieqing; Kumar, Charanya; Whitehouse, Iestyn; Remus, Dirk

    2017-01-05

    Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  13. Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line*

    PubMed Central

    Jia, Xiaofang; Chen, Jieliang; Megger, Dominik A.; Zhang, Xiaonan; Kozlowski, Maya; Zhang, Lijun; Fang, Zhong; Li, Jin; Chu, Qiaofang; Wu, Min; Li, Yaming; Sitek, Barbara; Yuan, Zhenghong

    2017-01-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. Recent evidence suggests that some viruses can manipulate the infection process by packing specific viral and cellular components into exosomes, small nanometer-sized (30–150 nm) vesicles secreted from various cells. However, the impact of HBV replication on the content of exosomes produced by hepatocytes has not been fully delineated. In this work, an HBV-inducible cell line HepAD38 was used to directly compare changes in the protein content of exosomes secreted from HepAD38 cells with or without HBV replication. Exosomes were isolated from supernantants of HepAD38 cells cultured with or without doxycycline (dox) and their purity was confirmed by transmission electron microscopy (TEM) and Western immunoblotting assays. Ion-intensity based label-free LC-MS/MS quantitation technologies were applied to analyze protein content of exosomes from HBV replicating cells [referred as HepAD38 (dox−)-exo] and from HBV nonreplicating cells [referred as HepAD38 (dox+)-exo]. A total of 1412 exosomal protein groups were identified, among which the abundance of 35 proteins was significantly changed following HBV replication. Strikingly, 5 subunit proteins from the 26S proteasome complex, including PSMC1, PSMC2, PSMD1, PSMD7 and PSMD14 were consistently enhanced in HepAD38 (dox−)-exo. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the proteasomal catabolic process. Proteasome activity assays further suggested that HepAD38 (dox−)-exo had enhanced proteolytic activity compared with HepAD38 (dox+)-exo. Furthermore, human peripheral monocytes incubated with HepAD38 (dox−)-exo induced a significantly lower level of IL-6 secretion compared with IL-6 levels from HepAD38 (dox+)-exo. Irreversible inhibition of proteasomal activity within exosomes restored higher production of IL-6 by monocytes, suggesting that transmission of proteasome

  14. Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line.

    PubMed

    Jia, Xiaofang; Chen, Jieliang; Megger, Dominik A; Zhang, Xiaonan; Kozlowski, Maya; Zhang, Lijun; Fang, Zhong; Li, Jin; Chu, Qiaofang; Wu, Min; Li, Yaming; Sitek, Barbara; Yuan, Zhenghong

    2017-04-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. Recent evidence suggests that some viruses can manipulate the infection process by packing specific viral and cellular components into exosomes, small nanometer-sized (30-150 nm) vesicles secreted from various cells. However, the impact of HBV replication on the content of exosomes produced by hepatocytes has not been fully delineated. In this work, an HBV-inducible cell line HepAD38 was used to directly compare changes in the protein content of exosomes secreted from HepAD38 cells with or without HBV replication. Exosomes were isolated from supernantants of HepAD38 cells cultured with or without doxycycline (dox) and their purity was confirmed by transmission electron microscopy (TEM) and Western immunoblotting assays. Ion-intensity based label-free LC-MS/MS quantitation technologies were applied to analyze protein content of exosomes from HBV replicating cells [referred as HepAD38 (dox - )-exo] and from HBV nonreplicating cells [referred as HepAD38 (dox + )-exo]. A total of 1412 exosomal protein groups were identified, among which the abundance of 35 proteins was significantly changed following HBV replication. Strikingly, 5 subunit proteins from the 26S proteasome complex, including PSMC1, PSMC2, PSMD1, PSMD7 and PSMD14 were consistently enhanced in HepAD38 (dox - )-exo. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the proteasomal catabolic process. Proteasome activity assays further suggested that HepAD38 (dox - )-exo had enhanced proteolytic activity compared with HepAD38 (dox + )-exo. Furthermore, human peripheral monocytes incubated with HepAD38 (dox - )-exo induced a significantly lower level of IL-6 secretion compared with IL-6 levels from HepAD38 (dox + )-exo. Irreversible inhibition of proteasomal activity within exosomes restored higher production of IL-6 by monocytes, suggesting that transmission of

  15. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications.

    PubMed

    Liu, Jun; Wang, Jian

    2016-02-22

    We present a simple configuration incorporating single polarization-sensitive phase-only liquid crystal spatial light modulator (SLM) to facilitate polarization-insensitive free-space optical communications employing orbital angular momentum (OAM) modes. We experimentally demonstrate several polarization-insensitive optical communication subsystems by propagating a single OAM mode, multicasting 4 and 10 OAM modes, and multiplexing 8 OAM modes, respectively. Free-space polarization-insensitive optical communication links using OAM modes that carry four-level pulse-amplitude modulation (PAM-4) signal are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties are less than 1 dB in both polarization-insensitive N-fold OAM modes multicasting and multiple OAM modes multiplexing at a bit-error rate (BER) of 2e-3 (enhanced forward-error correction (EFEC) threshold).

  16. Augmentation of DHCR24 expression by hepatitis C virus infection facilitates viral replication in hepatocytes.

    PubMed

    Takano, Takashi; Tsukiyama-Kohara, Kyoko; Hayashi, Masahiro; Hirata, Yuichi; Satoh, Masaaki; Tokunaga, Yuko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Funata, Nobuaki; Sudoh, Masayuki; Kohara, Michinori

    2011-09-01

    We characterized the role of 24-dehydrocholesterol reductase (DHCR24) in hepatitis C virus infection (HCV). DHCR24 is a cholesterol biosynthetic enzyme and cholesterol is a major component of lipid rafts, which is reported to play an important role in HCV replication. Therefore, we examined the potential of DHCR24 as a target for novel HCV therapeutic agents. We examined DHCR24 expression in human hepatocytes in both the livers of HCV-infected patients and those of chimeric mice with human hepatocytes. We targeted DHCR24 with siRNA and U18666A which is an inhibitor of both DHCR24 and cholesterol synthesis. We measured the level of HCV replication in these HCV replicon cell lines and HCV infected cells. U18666A was administrated into chimeric mice with humanized liver, and anti-viral effects were assessed. Expression of DHCR24 was induced by HCV infection in human hepatocytes in vitro, and in human hepatocytes of chimeric mouse liver. Silencing of DHCR24 by siRNA decreased HCV replication in replicon cell lines and HCV JFH-1 strain-infected cells. Treatment with U18666A suppressed HCV replication in the replicon cell lines. Moreover, to evaluate the anti-viral effect of U18666A in vivo, we administrated U18666A with or without pegylated interferon to chimeric mice and observed an inhibitory effect of U18666A on HCV infection and a synergistic effect with interferon. DHCR24 is an essential host factor which augmented its expression by HCV infection, and plays a significant role in HCV replication. DHCR24 may serve as a novel anti-HCV drug target. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    PubMed

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  18. The Avian-Origin PB1 Gene Segment Facilitated Replication and Transmissibility of the H3N2/1968 Pandemic Influenza Virus

    PubMed Central

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603–4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. IMPORTANCE Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the

  19. The activities of eukaryotic replication origins in chromatin.

    PubMed

    Weinreich, Michael; Palacios DeBeer, Madeleine A; Fox, Catherine A

    2004-03-15

    DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.

  20. Avian Influenza Vaccination in Chickens and Pigs with Replication-Competent Adenovirus–Free Human Recombinant Adenovirus 5

    PubMed Central

    Toro, Haroldo; van Ginkel, Frederik W.; Tang, De-chu C.; Schemera, Bettina; Rodning, Soren; Newton, Joseph

    2010-01-01

    SUMMARY Protective immunity to avian influenza (AI) virus can be elicited in chickens by in ovo or intramuscular vaccination with replication-competent adenovirus (RCA)-free human recombinant adenovirus serotype 5 (Ad5) encoding AI virus H5 (AdTW68.H5) or H7 (AdCN94.H7) hemagglutinins. We evaluated bivalent in ovo vaccination with AdTW68.H5 and AdCN94.H7 and determined that vaccinated chickens developed robust hemagglutination inhibition (HI) antibody levels to both H5 and H7 AI strains. Additionally, we evaluated immune responses of 1-day-old chickens vaccinated via spray with AdCN94.H7. These birds showed increased immunoglobulin A responses in lachrymal fluids and increased interleukin-6 expression in Harderian gland–derived lymphocytes. However, specific HI antibodies were not detected in the sera of these birds. Because pigs might play a role as a “mixing vessel” for the generation of pandemic influenza viruses we explored the use of RCA-free adenovirus technology to immunize pigs against AI virus. Weanling piglets vaccinated intramuscularly with a single dose of RCA-free AdTW68.H5 developed strong systemic antibody responses 3 wk postvaccination. Intranasal application of AdTW68.H5 in piglets resulted in reduced vaccine coverage, i.e., 33% of pigs (2/6) developed an antibody response, but serum antibody levels in those successfully immunized animals were similar to intramuscularly vaccinated animals. PMID:20521636

  1. Automatic-repeat-request error control schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.; Miller, M. J.

    1983-01-01

    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.

  2. Time-dependent phase error correction using digital waveform synthesis

    DOEpatents

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  3. Average capacity optimization in free-space optical communication system over atmospheric turbulence channels with pointing errors.

    PubMed

    Liu, Chao; Yao, Yong; Sun, Yun Xu; Xiao, Jun Jun; Zhao, Xin Hui

    2010-10-01

    A model is proposed to study the average capacity optimization in free-space optical (FSO) channels, accounting for effects of atmospheric turbulence and pointing errors. For a given transmitter laser power, it is shown that both transmitter beam divergence angle and beam waist can be tuned to maximize the average capacity. Meanwhile, their optimum values strongly depend on the jitter and operation wavelength. These results can be helpful for designing FSO communication systems.

  4. Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation

    PubMed Central

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-01-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase. PMID:25378325

  5. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation.

    PubMed

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-12-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Navigated total knee arthroplasty: is it error-free?

    PubMed

    Chua, Kerk Hsiang Zackary; Chen, Yongsheng; Lingaraj, Krishna

    2014-03-01

    The aim of this study was to determine whether errors do occur in navigated total knee arthroplasty (TKAs) and to study whether errors in bone resection or implantation contribute to these errors. A series of 20 TKAs was studied using computer navigation. The coronal and sagittal alignments of the femoral and tibial cutting guides, the coronal and sagittal alignments of the final tibial implant and the coronal alignment of the final femoral implant were compared with that of the respective bone resections. To determine the post-implantation mechanical alignment of the limb, the coronal alignment of the femoral and tibial implants was combined. The median deviation between the femoral cutting guide and bone resection was 0° (range -0.5° to +0.5°) in the coronal plane and 1.0° (range -2.0° to +1.0°) in the sagittal plane. The median deviation between the tibial cutting guide and bone resection was 0.5° (range -1.0° to +1.5°) in the coronal plane and 1.0° (range -1.0° to +3.5°) in the sagittal plane. The median deviation between the femoral bone resection and the final implant was 0.25° (range -2.0° to 3.0°) in the coronal plane. The median deviation between the tibial bone resection and the final implant was 0.75° (range -3.0° to +1.5°) in the coronal plane and 1.75° (range -4.0° to +2.0°) in the sagittal plane. The median post-implantation mechanical alignment of the limb was 0.25° (range -3.0° to +2.0°). When navigation is used only to guide the positioning of the cutting jig, errors may arise in the manual, non-navigated steps of the procedure. Our study showed increased cutting errors in the sagittal plane for both the femur and the tibia, and following implantation, the greatest error was seen in the sagittal alignment of the tibial component. Computer navigation should be used not only to guide the positioning of the cutting jig, but also to check the bone resection and implant position during TKA. IV.

  7. Seven Activities for Enhancing the Replicability of Evidence-Based Practices. Research-to-Results Brief. Publication #2007-30

    ERIC Educational Resources Information Center

    Metz, Allison J. R.; Bowie, Lillian; Blase, Karen

    2007-01-01

    This brief will define program replication, describe the critical role of "core components" in program replication, and outline seven activities that program developers and researchers can conduct to enhance the replicability of effective program models and facilitate their adoption by other organizations and programs. Outlined is seven specific…

  8. Stop Stalling: Mus81 Required for Efficient Replication | Center for Cancer Research

    Cancer.gov

    DNA replication is precisely controlled to ensure that daughter cells receive intact, accurate genetic information. Each segment of DNA must be copied only once, and the rate of replication coordinated genome-wide. Mild replication stress slows DNA synthesis and activates a pathway involving the Mus81 endonuclease, which generates a series of DNA breaks that are rapidly repaired, allowing the cell to avoid activating the S-phase checkpoint and its potentially damaging outcomes of apoptosis or error-prone repair. Mirit Aladjem, Ph.D., of CCR’s Developmental Therapeutics Branch, and her colleagues wondered whether Mus81 also plays a role in regulating the replication rate during growth in the absence of stress.

  9. Effects of fog on the bit-error rate of a free-space laser communication system.

    PubMed

    Strickland, B R; Lavan, M J; Woodbridge, E; Chan, V

    1999-01-20

    Free-space laser communication (lasercom) systems are subject to performance degradation when heavy fog or smoke obscures the line of sight. The bit-error rate (BER) of a high-bandwidth (570 Mbits/s) lasercom system was correlated with the atmospheric transmission over a folded path of 2.4 km. BER's of 10(-7) were observed when the atmospheric transmission was as low as 0.25%, whereas BER's of less than 10(-10) were observed when the transmission was above 2.5%. System performance was approximately 10 dB less than calculated, with the discrepancy attributed to scintillation, multiple scattering, and absorption. Peak power of the 810-nm communications laser was 186 mW, and the beam divergence was purposely degraded to 830 murad. These results were achieved without the use of error correction schemes or active tracking. An optimized system with narrower beam divergence and active tracking could be expected to yield significantly better performance.

  10. Clinical review: The hospital of the future - building intelligent environments to facilitate safe and effective acute care delivery

    PubMed Central

    2012-01-01

    The translation of knowledge into rational care is as essential and pressing a task as the development of new diagnostic or therapeutic devices, and is arguably more important. The emerging science of health care delivery has identified the central role of human factor ergonomics in the prevention of medical error, omission, and waste. Novel informatics and systems engineering strategies provide an excellent opportunity to improve the design of acute care delivery. In this article, future hospitals are envisioned as organizations built around smart environments that facilitate consistent delivery of effective, equitable, and error-free care focused on patient-centered rather than provider-centered outcomes. PMID:22546172

  11. Relay-aided free-space optical communications using α - μ distribution over atmospheric turbulence channels with misalignment errors

    NASA Astrophysics Data System (ADS)

    Upadhya, Abhijeet; Dwivedi, Vivek K.; Singh, G.

    2018-06-01

    In this paper, we have analyzed the performance of dual hop radio frequency (RF)/free-space optical (FSO) fixed gain relay environment confined by atmospheric turbulence induced fading channel over FSO link and modeled using α - μ distribution. The RF hop of the amplify-and-forward scheme undergoes the Rayleigh fading and the proposed system model also considers the pointing error effect on the FSO link. A novel and accurate mathematical expression of the probability density function for a FSO link experiencing α - μ distributed atmospheric turbulence in the presence of pointing error is derived. Further, we have presented analytical expressions of outage probability and bit error rate in terms of Meijer-G function. In addition to this, a useful and mathematically tractable closed-form expression for the end-to-end ergodic capacity of the dual hop scheme in terms of bivariate Fox's H function is derived. The atmospheric turbulence, misalignment errors and various binary modulation schemes for intensity modulation on optical wireless link are considered to yield the results. Finally, we have analyzed each of the three performance metrics for high SNR in order to represent them in terms of elementary functions and the achieved analytical results are supported by computer-based simulations.

  12. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    PubMed Central

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  13. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes

    PubMed Central

    Chakraborty, Anirban; Tapryal, Nisha; Venkova, Tatiana; Horikoshi, Nobuo; Pandita, Raj K.; Sarker, Altaf H.; Sarkar, Partha S.; Pandita, Tej K.; Hazra, Tapas K.

    2016-01-01

    DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. PMID:27703167

  14. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights

    PubMed Central

    Thompson, Larry H.; Hinz, John M.

    2009-01-01

    The Fanconi anemia (FA) molecular network consists of 15 “FANC” proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint; (b) mediating enzymatic replication-fork breakage and crosslink unhooking; (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s); and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ

  15. Regulation of error-prone translesion synthesis by Spartan/C1orf124

    PubMed Central

    Kim, Myoung Shin; Machida, Yuka; Vashisht, Ajay A.; Wohlschlegel, James A.; Pang, Yuan-Ping; Machida, Yuichi J.

    2013-01-01

    Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone TLS that is dependent on POLD3, the accessory subunit of the replicative DNA polymerase Pol δ. We demonstrate that the putative zinc metalloprotease domain SprT in Spartan directly interacts with POLD3 and contributes to suppression of damage-induced mutagenesis. Depletion of Spartan induces complex formation of POLD3 with Rev1 and the error-prone TLS polymerase Pol ζ, and elevates mutagenesis that relies on POLD3, Rev1 and Pol ζ. These results suggest that Spartan negatively regulates POLD3 function in Rev1/Pol ζ-dependent TLS, revealing a previously unrecognized regulatory step in error-prone TLS. PMID:23254330

  16. A simulation test of the effectiveness of several methods for error-checking non-invasive genetic data

    USGS Publications Warehouse

    Roon, David A.; Waits, L.P.; Kendall, K.C.

    2005-01-01

    Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.

  17. Replication of Heliothis virescens ascovirus in insect cell lines.

    PubMed

    Asgari, S

    2006-09-01

    Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.

  18. Replication-associated mutational asymmetry in the human genome.

    PubMed

    Chen, Chun-Long; Duquenne, Lauranne; Audit, Benjamin; Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Huvet, Maxime; d'Aubenton-Carafa, Yves; Hyrien, Olivier; Arneodo, Alain; Thermes, Claude

    2011-08-01

    During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results

  19. Replication of Minute Virus of Mice in Murine Cells Is Facilitated by Virally Induced Depletion of p21

    PubMed Central

    Adeyemi, Richard O.

    2012-01-01

    The DNA damage response to infection with minute virus of mice (MVM) leads to activated p53; however, p21 levels are reduced via a proteasome-mediated mechanism. This loss was sustained, as virus replicated in infected cells held at the G2/M border. Addition of the cyclin-dependent kinase (CDK) inhibitor roscovitine after S-phase entry reduced MVM replication, suggesting that CDK activity was critical for continued viral replication and virus-induced reduction of p21 may thus be necessary to prevent inhibition of CDK. PMID:22623787

  20. Methadone enhances human influenza A virus replication.

    PubMed

    Chen, Yun-Hsiang; Wu, Kuang-Lun; Tsai, Ming-Ta; Chien, Wei-Hsien; Chen, Mao-Liang; Wang, Yun

    2017-01-01

    Growing evidence has indicated that opioids enhance replication of human immunodeficiency virus and hepatitis C virus in target cells. However, it is unknown whether opioids can enhance replication of other clinically important viral pathogens. In this study, the interaction of opioid agonists and human influenza A/WSN/33 (H1N1) virus was examined in human lung epithelial A549 cells. Cells were exposed to morphine, methadone or buprenorphine followed by human H1N1 viral infection. Exposure to methadone differentially enhanced viral propagation, consistent with an increase in virus adsorption, susceptibility to virus infection and viral protein synthesis. In contrast, morphine or buprenorphine did not alter H1N1 replication. Because A549 cells do not express opioid receptors, methadone-enhanced H1N1 replication in human lung cells may not be mediated through these receptors. The interaction of methadone and H1N1 virus was also examined in adult mice. Treatment with methadone significantly increased H1N1 viral replication in lungs. Our data suggest that use of methadone facilitates influenza A viral infection in lungs and might raise concerns regarding the possible consequence of an increased risk of serious influenza A virus infection in people who receive treatment in methadone maintenance programs. © 2015 Society for the Study of Addiction.

  1. Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity

    PubMed Central

    Niimi, Atsuko; Limsirichaikul, Siripan; Yoshida, Shonen; Iwai, Shigenori; Masutani, Chikahide; Hanaoka, Fumio; Kool, Eric T.; Nishiyama, Yukihiro; Suzuki, Motoshi

    2004-01-01

    We isolated active mutants in Saccharomyces cerevisiae DNA polymerase α that were associated with a defect in error discrimination. Among them, L868F DNA polymerase α has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase α. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase α-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase α catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3′ T 26,000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase η, and the F34L mutant of S. cerevisiae DNA polymerase η has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase α is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes. PMID:15024063

  2. Consumer holographic read-only memory reader with mastering and replication technology.

    PubMed

    Chuang, Ernest; Curtis, Kevin; Yang, Yunping; Hill, Adrian

    2006-04-15

    What is believed to be a novel holographic design for read-only memory systems allows a compact low-cost consumer drive within a 10 mm drive height, using a lensless phase conjugate readout and a combination of polytopic and angle multiplexing. A two-step mastering method enables production of high-efficiency holographic masters, and fast replication is possible by using only a series of plane-wave illuminations. Mastering and replication techniques are verified experimentally with an array of 125 holograms with no measured bit errors.

  3. A Phonological Exploration of Oral Reading Errors.

    ERIC Educational Resources Information Center

    Moscicki, Eve K.; Tallal, Paula

    1981-01-01

    Presents study exploring oral reading errors of normally developing readers to determine any developmental differences in learning phoneme-grapheme units; to discover if the grapheme representations of some phonemes are more difficult to read than others; and to replicate results reported by Fowler, et. al. Findings show most oral reading errors…

  4. Is the replication of somatic coliphages in water environments significant?

    PubMed

    Jofre, J

    2009-04-01

    Somatic coliphages are amid several groups of bacteriophages that have been suggested as indicators in water quality assessment. One of the limitations frequently endorsed to somatic coliphages as indicators is that they can replicate in the water environment. This review intends to evaluate the significance of this potential replication. In view of: the threshold densities of somatic coliphages and host bacteria needed for productive infection to occur, the densities of both host cells supporting somatic coliphages replication and these phages in water environments, and the poor contribution of lysogenic induction to the free somatic coliphage numbers in water, it can be concluded that replication of somatic coliphages in waters is very unlikely. Consequently, the contribution of replication in the environment of somatic coliphages is expected to have a non-noticeable influence on the numbers of somatic coliphages detected in water environments. Thus, the replication in the environment should not be argued as a limitation to the use of somatic coliphages as indicators.

  5. Radiative flux and forcing parameterization error in aerosol-free clear skies.

    PubMed

    Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M

    2015-07-16

    Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

  6. Sequence-structure mapping errors in the PDB: OB-fold domains

    PubMed Central

    Venclovas, Česlovas; Ginalski, Krzysztof; Kang, Chulhee

    2004-01-01

    The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, as much as possible, error-free. In this study, we have analyzed PDB crystal structures possessing oligonucleotide/oligosaccharide binding (OB)-fold, one of the highly populated folds, for the presence of sequence-structure mapping errors. Using energy-based structure quality assessment coupled with sequence analyses, we have found that there are at least five OB-structures in the PDB that have regions where sequences have been incorrectly mapped onto the structure. We have demonstrated that the combination of these computation techniques is effective not only in detecting sequence-structure mapping errors, but also in providing guidance to correct them. Namely, we have used results of computational analysis to direct a revision of X-ray data for one of the PDB entries containing a fairly inconspicuous sequence-structure mapping error. The revised structure has been deposited with the PDB. We suggest use of computational energy assessment and sequence analysis techniques to facilitate structure determination when homologs having known structure are available to use as a reference. Such computational analysis may be useful in either guiding the sequence-structure assignment process or verifying the sequence mapping within poorly defined regions. PMID:15133161

  7. Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts

    PubMed Central

    1993-01-01

    Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. PMID:8253833

  8. The Effects of Wiggler Errors on Free Electron Laser Performance

    DTIC Science & Technology

    1990-04-02

    phase deviation at the end of the wiggler by 113. The detrimental effects of wiggler errors may be reduced by arranging the magent poles in an optimal...fdz6BI. To meet these specifications, the vendor may arrange the mIagnet pole iD an optimum sequence such that If dz6BI is minimized. The present research...zc a- A,,/2. By considering a wiggler in which the error for a given magnet pole is correlated to the errors of the surrounding poles , one may

  9. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    PubMed

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  10. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression

    PubMed Central

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-01-01

    Half of human genome is made of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using Bacterial Artificial Chromosomes (BACs) in Xenopus laevis egg extract. Using this approach we characterized chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication dependent enrichment of a network of DNA repair factors among which the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to inability of single stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of Topoisomerase I dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications on our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions. PMID:27111843

  11. When is an error not a prediction error? An electrophysiological investigation.

    PubMed

    Holroyd, Clay B; Krigolson, Olave E; Baker, Robert; Lee, Seung; Gibson, Jessica

    2009-03-01

    A recent theory holds that the anterior cingulate cortex (ACC) uses reinforcement learning signals conveyed by the midbrain dopamine system to facilitate flexible action selection. According to this position, the impact of reward prediction error signals on ACC modulates the amplitude of a component of the event-related brain potential called the error-related negativity (ERN). The theory predicts that ERN amplitude is monotonically related to the expectedness of the event: It is larger for unexpected outcomes than for expected outcomes. However, a recent failure to confirm this prediction has called the theory into question. In the present article, we investigated this discrepancy in three trial-and-error learning experiments. All three experiments provided support for the theory, but the effect sizes were largest when an optimal response strategy could actually be learned. This observation suggests that ACC utilizes dopamine reward prediction error signals for adaptive decision making when the optimal behavior is, in fact, learnable.

  12. Publication bias and the failure of replication in experimental psychology.

    PubMed

    Francis, Gregory

    2012-12-01

    Replication of empirical findings plays a fundamental role in science. Among experimental psychologists, successful replication enhances belief in a finding, while a failure to replicate is often interpreted to mean that one of the experiments is flawed. This view is wrong. Because experimental psychology uses statistics, empirical findings should appear with predictable probabilities. In a misguided effort to demonstrate successful replication of empirical findings and avoid failures to replicate, experimental psychologists sometimes report too many positive results. Rather than strengthen confidence in an effect, too much successful replication actually indicates publication bias, which invalidates entire sets of experimental findings. Researchers cannot judge the validity of a set of biased experiments because the experiment set may consist entirely of type I errors. This article shows how an investigation of the effect sizes from reported experiments can test for publication bias by looking for too much successful replication. Simulated experiments demonstrate that the publication bias test is able to discriminate biased experiment sets from unbiased experiment sets, but it is conservative about reporting bias. The test is then applied to several studies of prominent phenomena that highlight how publication bias contaminates some findings in experimental psychology. Additional simulated experiments demonstrate that using Bayesian methods of data analysis can reduce (and in some cases, eliminate) the occurrence of publication bias. Such methods should be part of a systematic process to remove publication bias from experimental psychology and reinstate the important role of replication as a final arbiter of scientific findings.

  13. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry.

    PubMed

    Betz, Karin; Malyshev, Denis A; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J; Ordoukhanian, Phillip; Romesberg, Floyd E; Marx, Andreas

    2012-07-01

    Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.

  14. Prospects for Oral Replicating Adenovirus-Vectored Vaccines

    PubMed Central

    Deal, Cailin; Pekosz, Andrew; Ketner, Gary

    2013-01-01

    Orally delivered replicating adenovirus (Ad) vaccines have been used for decades to prevent adenovirus serotype 4 and 7 respiratory illness in military recruits, demonstrating exemplary safety and high efficacy. That experience suggests that oral administration of live recombinant Ads (rAds) holds promise for immunization against other infectious diseases, including those that have been refractory to traditional vaccination methods. Live rAds can express intact antigens from free-standing transgenes during replication in infected cells. Alternatively, antigenic epitopes can be displayed on the rAd capsid itself, allowing presentation of the epitope to the immune system both prior to and during replication of the virus. Such capsid-display rAds offer a novel vaccine approach that could be used either independently of or in combination with transgene expression strategies to provide a new tool in the search for protection from infectious disease. PMID:23707160

  15. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1994-01-01

    The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.

  16. Insight on the impacts of free amino acids and their metabolites on the immune system from a perspective of inborn errors of amino acid metabolism.

    PubMed

    Pakula, Malgorzata M; Maier, Thorsten J; Vorup-Jensen, Thomas

    2017-06-01

    Amino acids (AAs) support a broad range of functions in living organisms, including several that affect the immune system. The functions of the immune system are affected when free AAs are depleted or in excess because of external factors, such as starvation, or because of genetic factors, such as inborn errors of metabolism. Areas covered: In this review, we discuss the current insights into how free AAs affect immune responses. When possible, we make comparisons to known disease states resulting from inborn errors of metabolism, in which changed levels of AAs or AA metabolites provide insight into the impact of AAs on the human immune system in vivo. We also explore the literature describing how changes in AA levels might provide pharmaceutical targets for safe immunomodulatory treatment. Expert opinion: The impact of free AAs on the immune system is a neglected topic in most immunology textbooks. That neglect is undeserved, because free AAs have both direct and indirect effects on the immune system. Consistent choices of pre-clinical models and better strategies for creating formulations are required to gain clinical impact.

  17. Approaching Error-Free Customer Satisfaction through Process Change and Feedback Systems

    ERIC Educational Resources Information Center

    Berglund, Kristin M.; Ludwig, Timothy D.

    2009-01-01

    Employee-based errors result in quality defects that can often impact customer satisfaction. This study examined the effects of a process change and feedback system intervention on error rates of 3 teams of retail furniture distribution warehouse workers. Archival records of error codes were analyzed and aggregated as the measure of quality. The…

  18. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  19. Aggregate and individual replication probability within an explicit model of the research process.

    PubMed

    Miller, Jeff; Schwarz, Wolf

    2011-09-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by obtaining either a statistically significant result in the same direction or any effect in that direction. We analyze both the probability of successfully replicating a particular experimental effect (i.e., the individual replication probability) and the average probability of successful replication across different studies within some research context (i.e., the aggregate replication probability), and we identify the conditions under which the latter can be approximated using the formulas of Killeen (2005a, 2007). We show how both of these probabilities depend on parameters of the research context that would rarely be known in practice. In addition, we show that the statistical uncertainty associated with the size of an initial observed effect would often prevent accurate estimation of the desired individual replication probability even if these research context parameters were known exactly. We conclude that accurate estimates of replication probability are generally unattainable.

  20. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases

    PubMed Central

    DeBalsi, Karen L.; Hoff, Kirsten E.; Copeland, William C.

    2016-01-01

    As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined. PMID:27143693

  1. Brefeldin A Inhibits Cell-Free, De Novo Synthesis of Poliovirus

    PubMed Central

    Cuconati, Andrea; Molla, Akhteruzzaman; Wimmer, Eckard

    1998-01-01

    Brefeldin A (BFA), an inhibitor of intracellular vesicle-dependent secretory transport, is a potent inhibitor of poliovirus RNA replication in infected cells. We have determined that the unknown mechanism of BFA inhibition of replication is reproduced in the cell-free poliovirus translation, replication, and encapsidation system. Furthermore, we provide evidence suggesting that the cellular mechanism targeted by BFA, the GTP-dependent synthesis of secretory transport vesicles, may be involved in viral RNA replication in the system via a soluble cellular GTP-binding and -hydrolyzing activity. This activity is related to the ARF (ADP-ribosylation factor) family of GTP-binding proteins. ARFs are required for the formation of several classes of secretory vesicles, and some family members are indirectly inactivated by BFA. Peptides that function as competitive inhibitors of ARF activity in cell-free transport systems also inhibit poliovirus RNA replication, and this inhibitory effect can be countered by the addition of exogenous ARF. We suggest that BFA inhibition of replication is diagnostic of a requirement for ARF activity in the cell-free system. PMID:9658088

  2. The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning

    PubMed Central

    Nasser, Helen M.; Calu, Donna J.; Schoenbaum, Geoffrey; Sharpe, Melissa J.

    2017-01-01

    Phasic activity of midbrain dopamine neurons is currently thought to encapsulate the prediction-error signal described in Sutton and Barto’s (1981) model-free reinforcement learning algorithm. This phasic signal is thought to contain information about the quantitative value of reward, which transfers to the reward-predictive cue after learning. This is argued to endow the reward-predictive cue with the value inherent in the reward, motivating behavior toward cues signaling the presence of reward. Yet theoretical and empirical research has implicated prediction-error signaling in learning that extends far beyond a transfer of quantitative value to a reward-predictive cue. Here, we review the research which demonstrates the complexity of how dopaminergic prediction errors facilitate learning. After briefly discussing the literature demonstrating that phasic dopaminergic signals can act in the manner described by Sutton and Barto (1981), we consider how these signals may also influence attentional processing across multiple attentional systems in distinct brain circuits. Then, we discuss how prediction errors encode and promote the development of context-specific associations between cues and rewards. Finally, we consider recent evidence that shows dopaminergic activity contains information about causal relationships between cues and rewards that reflect information garnered from rich associative models of the world that can be adapted in the absence of direct experience. In discussing this research we hope to support the expansion of how dopaminergic prediction errors are thought to contribute to the learning process beyond the traditional concept of transferring quantitative value. PMID:28275359

  3. Antibodies Mediate Formation of Neutrophil Extracellular Traps in the Middle Ear and Facilitate Secondary Pneumococcal Otitis Media

    PubMed Central

    Short, Kirsty R.; von Köckritz-Blickwede, Maren; Langereis, Jeroen D.; Chew, Keng Yih; Job, Emma R.; Armitage, Charles W.; Hatcher, Brandon; Fujihashi, Kohtaro; Reading, Patrick C.; Hermans, Peter W.

    2014-01-01

    Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease. PMID:24191297

  4. Skin Cooling and Force Replication at the Ankle in Healthy Individuals: A Crossover Randomized Controlled Trial

    PubMed Central

    Haupenthal, Daniela Pacheco dos Santos; de Noronha, Marcos; Haupenthal, Alessandro; Ruschel, Caroline; Nunes, Guilherme S.

    2015-01-01

    Context Proprioception of the ankle is determined by the ability to perceive the sense of position of the ankle structures, as well as the speed and direction of movement. Few researchers have investigated proprioception by force-replication ability and particularly after skin cooling. Objective To analyze the ability of the ankle-dorsiflexor muscles to replicate isometric force after a period of skin cooling. Design Randomized controlled clinical trial. Setting Laboratory. Patients or Other Participants Twenty healthy individuals (10 men, 10 women; age = 26.8 ± 5.2 years, height = 171 ± 7 cm, mass = 66.8 ± 10.5 kg). Intervention(s) Skin cooling was carried out using 2 ice applications: (1) after maximal voluntary isometric contraction (MVIC) performance and before data collection for the first target force, maintained for 20 minutes; and (2) before data collection for the second target force, maintained for 10 minutes. We measured skin temperature before and after ice applications to ensure skin cooling. Main Outcome Measure(s) A load cell was placed under an inclined board for data collection, and 10 attempts of force replication were carried out for 2 values of MVIC (20%, 50%) in each condition (ice, no ice). We assessed force sense with absolute and root mean square errors (the difference between the force developed by the dorsiflexors and the target force measured with the raw data and after root mean square analysis, respectively) and variable error (the variance around the mean absolute error score). A repeated-measures multivariate analysis of variance was used for statistical analysis. Results The absolute error was greater for the ice than for the no-ice condition (F1,19 = 9.05, P = .007) and for the target force at 50% of MVIC than at 20% of MVIC (F1,19 = 26.01, P < .001). Conclusions The error was greater in the ice condition and at 50% of MVIC. Skin cooling reduced the proprioceptive ability of the ankle-dorsiflexor muscles to replicate isometric

  5. Knockdown of RMI1 impairs DNA repair under DNA replication stress.

    PubMed

    Xu, Chang; Fang, Lianying; Kong, Yangyang; Xiao, Changyan; Yang, Mengmeng; Du, Li-Qing; Liu, Qiang

    2017-12-09

    RMI1 (RecQ-mediated genome instability protein 1) forms a conserved BTR complex with BLM, Topo IIIα, and RMI2, and its absence causes genome instability. It has been revealed that RMI1 localizes to nuclear foci with BLM and Topo IIIα in response to replication stress, and that RMI1 functions downstream of BLM in promoting replication elongation. However, the precise functions of RMI1 during replication stress are not completely understood. Here we report that RMI1 knockdown cells are hypersensitive to hydroxyurea (HU). Using comet assay, we show that RMI1 knockdown cells exhibit accumulation of broken DNAs after being released from HU treatment. Moreover, we demonstrate that RMI1 facilitates the recovery from activated checkpoint and resuming the cell cycle after replicative stress. Surprisingly, loss of RMI1 results in a failure of RAD51 loading onto DNA damage sites. These findings reveal the importance of RMI1 in response to replication stress, which could explain the molecular basis for its function in maintaining genome integrity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Bit-error rate for free-space adaptive optics laser communications.

    PubMed

    Tyson, Robert K

    2002-04-01

    An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.

  7. A New Replicator: A theoretical framework for analysing replication

    PubMed Central

    2010-01-01

    Background Replicators are the crucial entities in evolution. The notion of a replicator, however, is far less exact than the weight of its importance. Without identifying and classifying multiplying entities exactly, their dynamics cannot be determined appropriately. Therefore, it is importance to decide the nature and characteristics of any multiplying entity, in a detailed and formal way. Results Replication is basically an autocatalytic process which enables us to rest on the notions of formal chemistry. This statement has major implications. Simple autocatalytic cycle intermediates are considered as non-informational replicators. A consequence of which is that any autocatalytically multiplying entity is a replicator, be it simple or overly complex (even nests). A stricter definition refers to entities which can inherit acquired changes (informational replicators). Simple autocatalytic molecules (and nests) are excluded from this group. However, in turn, any entity possessing copiable information is to be named a replicator, even multicellular organisms. In order to deal with the situation, an abstract, formal framework is presented, which allows the proper identification of various types of replicators. This sheds light on the old problem of the units and levels of selection and evolution. A hierarchical classification for the partition of the replicator-continuum is provided where specific replicators are nested within more general ones. The classification should be able to be successfully applied to known replicators and also to future candidates. Conclusion This paper redefines the concept of the replicator from a bottom-up theoretical approach. The formal definition and the abstract models presented can distinguish between among all possible replicator types, based on their quantity of variable and heritable information. This allows for the exact identification of various replicator types and their underlying dynamics. The most important claim is that

  8. Primary Severe Acute Respiratory Syndrome Coronavirus Infection Limits Replication but Not Lung Inflammation upon Homologous Rechallenge

    PubMed Central

    Clay, Candice; Donart, Nathan; Fomukong, Ndingsa; Knight, Jennifer B.; Lei, Wanli; Price, Lance; Hahn, Fletcher; Van Westrienen, Jesse

    2012-01-01

    Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs. PMID:22345460

  9. Using incident reports to inform the prevention of medication administration errors.

    PubMed

    Härkänen, Marja; Saano, Susanna; Vehviläinen-Julkunen, Katri

    2017-11-01

    To describe ways of preventing medication administration errors based on reporters' views expressed in medication administration incident reports. Medication administration errors are very common, and nurses play important roles in committing and in preventing such errors. Thus far, incident reporters' perceptions of how to prevent medication administration errors have rarely been analysed. This is a qualitative, descriptive study using an inductive content analysis of the incident reports related to medication administration errors (n = 1012). These free-text descriptions include reporters' views on preventing the reoccurrence of medication administration errors. The data were collected from two hospitals in Finland and pertain to incidents that were reported between 1 January 2013 and 31 December 2014. Reporters' views on preventing medication administration errors were divided into three main categories related to individuals (health professionals), teams and organisations. The following categories related to individuals in preventing medication administration errors were identified: (1) accuracy and preciseness; (2) verification; and (3) following the guidelines, responsibility and attitude towards work. The team categories were as follows: (1) distribution of work; (2) flow of information and cooperation; and (3) documenting and marking the drug information. The categories related to organisation were as follows: (1) work environment; (2) resources; (3) training; (4) guidelines; and (5) development of the work. Health professionals should administer medication with a high moral awareness and an attempt to concentrate on the task. Nonetheless, the system should support health professionals by providing a reasonable work environment and encouraging collaboration among the providers to facilitate the safe administration of medication. Although there are numerous approaches to supporting medication safety, approaches that support the ability of individual health

  10. Platelet factor 4 (CXCL4) facilitates human macrophage infection with HIV-1 and potentiates virus replication.

    PubMed

    Schwartzkopff, Franziska; Grimm, Tobias A; Lankford, Carla S R; Fields, Karen; Wang, Jiun; Brandt, Ernst; Clouse, Kathleen A

    2009-12-01

    Platelet factor 4 (CXCL4), a member of the CXC chemokine subfamily released in high amounts by activated platelets, has been identified as a monocyte survival factor that induces monocyte differentiation into macrophages. Although CXCL4 has been shown to have biological effects unique to chemokines, nothing is known about the role of CXCL4-derived human macrophages or CXCL4 in human immunodeficiency virus (HIV) disease. In this study, CXCL4-derived macrophages are compared with macrophage-colony stimulating factor (M-CSF)-derived macrophages for their ability to support HIV-1 replication. We show that CXCL4-derived macrophages can be infected with macrophage-tropic HIV-1 that uses either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) as a co-receptor for viral entry. We also find that M-CSF and the chemokines, monocyte chemoattractant protein 1 (MCP-1; CCL2) and macrophage-inflammatory-protein-1-alpha (MIP-1alpha; CCL3) are produced upon R5- and X4-tropic HIV-1 replication in both M-CSF- and CXCL4-derived human macrophages. In addition, CXCL4 added to M-CSF-derived macrophages after virus adsorption and maintained throughout the infection enhances HIV-1 replication. We thus propose a novel role for CXCL4 in HIV disease.

  11. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    PubMed

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  12. Sequential structures provide insights into the fidelity of RNA replication.

    PubMed

    Ferrer-Orta, Cristina; Arias, Armando; Pérez-Luque, Rosa; Escarmís, Cristina; Domingo, Esteban; Verdaguer, Nuria

    2007-05-29

    RNA virus replication is an error-prone event caused by the low fidelity of viral RNA-dependent RNA polymerases. Replication fidelity can be decreased further by the use of mutagenic ribonucleoside analogs to a point where viral genetic information can no longer be maintained. For foot-and-mouth disease virus, the antiviral analogs ribavirin and 5-fluorouracil have been shown to be mutagenic, contributing to virus extinction through lethal mutagenesis. Here, we report the x-ray structure of four elongation complexes of foot-and-mouth disease virus polymerase 3D obtained in presence of natural substrates, ATP and UTP, or mutagenic nucleotides, ribavirin triphosphate and 5-fluorouridine triphosphate with different RNAs as template-primer molecules. The ability of these complexes to synthesize RNA in crystals allowed us to capture different successive replication events and to define the critical amino acids involved in (i) the recognition and positioning of the incoming nucleotide or analog; (ii) the positioning of the acceptor base of the template strand; and (iii) the positioning of the 3'-OH group of the primer nucleotide during RNA replication. The structures identify key interactions involved in viral RNA replication and provide insights into the molecular basis of the low fidelity of viral RNA polymerases.

  13. [From the concept of guilt to the value-free notification of errors in medicine. Risks, errors and patient safety].

    PubMed

    Haller, U; Welti, S; Haenggi, D; Fink, D

    2005-06-01

    The number of liability cases but also the size of individual claims due to alleged treatment errors are increasing steadily. Spectacular sentences, especially in the USA, encourage this trend. Wherever human beings work, errors happen. The health care system is particularly susceptible and shows a high potential for errors. Therefore risk management has to be given top priority in hospitals. Preparing the introduction of critical incident reporting (CIR) as the means to notify errors is time-consuming and calls for a change in attitude because in many places the necessary base of trust has to be created first. CIR is not made to find the guilty and punish them but to uncover the origins of errors in order to eliminate them. The Department of Anesthesiology of the University Hospital of Basel has developed an electronic error notification system, which, in collaboration with the Swiss Medical Association, allows each specialist society to participate electronically in a CIR system (CIRS) in order to create the largest database possible and thereby to allow statements concerning the extent and type of error sources in medicine. After a pilot project in 2000-2004, the Swiss Society of Gynecology and Obstetrics is now progressively introducing the 'CIRS Medical' of the Swiss Medical Association. In our country, such programs are vulnerable to judicial intervention due to the lack of explicit legal guarantees of protection. High-quality data registration and skillful counseling are all the more important. Hospital directors and managers are called upon to examine those incidents which are based on errors inherent in the system.

  14. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress

    PubMed Central

    Özer, Özgün

    2018-01-01

    Oncogene activation during tumour development leads to changes in the DNA replication programme that enhance DNA replication stress. Certain regions of the human genome, such as common fragile sites and telomeres, are particularly sensitive to DNA replication stress due to their inherently ‘difficult-to-replicate’ nature. Indeed, it appears that these regions sometimes fail to complete DNA replication within the period of interphase when cells are exposed to DNA replication stress. Under these conditions, cells use a salvage pathway, termed ‘mitotic DNA repair synthesis (MiDAS)’, to complete DNA synthesis in the early stages of mitosis. If MiDAS fails, the ensuing mitotic errors threaten genome integrity and cell viability. Recent studies have provided an insight into how MiDAS helps cells to counteract DNA replication stress. However, our understanding of the molecular mechanisms and regulation of MiDAS remain poorly defined. Here, we provide an overview of how DNA replication stress triggers MiDAS, with an emphasis on how common fragile sites and telomeres are maintained. Furthermore, we discuss how a better understanding of MiDAS might reveal novel strategies to target cancer cells that maintain viability in the face of chronic oncogene-induced DNA replication stress. PMID:29695617

  15. Representation of layer-counted proxy records as probability densities on error-free time axes

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Goswami, Bedartha; Ghil, Michael

    2016-04-01

    Time series derived from paleoclimatic proxy records exhibit substantial dating uncertainties in addition to the measurement errors of the proxy values. For radiometrically dated proxy archives, Goswami et al. [1] have recently introduced a framework rooted in Bayesian statistics that successfully propagates the dating uncertainties from the time axis to the proxy axis. The resulting proxy record consists of a sequence of probability densities over the proxy values, conditioned on prescribed age values. One of the major benefits of this approach is that the proxy record is represented on an accurate, error-free time axis. Such unambiguous dating is crucial, for instance, in comparing different proxy records. This approach, however, is not directly applicable to proxy records with layer-counted chronologies, as for example ice cores, which are typically dated by counting quasi-annually deposited ice layers. Hence the nature of the chronological uncertainty in such records is fundamentally different from that in radiometrically dated ones. Here, we introduce a modification of the Goswami et al. [1] approach that is specifically designed for layer-counted proxy records, instead of radiometrically dated ones. We apply our method to isotope ratios and dust concentrations in the NGRIP core, using a published 60,000-year chronology [2]. It is shown that the further one goes into the past, the more the layer-counting errors accumulate and lead to growing uncertainties in the probability density sequence for the proxy values that results from the proposed approach. For the older parts of the record, these uncertainties affect more and more a statistically sound estimation of proxy values. This difficulty implies that great care has to be exercised when comparing and in particular aligning specific events among different layer-counted proxy records. On the other hand, when attempting to derive stochastic dynamical models from the proxy records, one is only interested in the

  16. Molecular basis for PrimPol recruitment to replication forks by RPA.

    PubMed

    Guilliam, Thomas A; Brissett, Nigel C; Ehlinger, Aaron; Keen, Benjamin A; Kolesar, Peter; Taylor, Elaine M; Bailey, Laura J; Lindsay, Howard D; Chazin, Walter J; Doherty, Aidan J

    2017-05-23

    DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.

  17. Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex.

    PubMed

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei; Chen, Mei-Ru

    2014-08-01

    Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at

  18. Effects of replicative fitness on competing HIV strains.

    PubMed

    Chirove, Faraimunashe; Lungu, Edward M

    2013-07-01

    We develop an n-strain model to show the effects of replicative fitness of competing viral strains exerting selective density-dependant infective pressure on each other. A two strain model is used to illustrate the results. A perturbation technique and numerical simulations were used to establish the existence and stability of steady states. More than one infected steady states governed by the replicative fitness resulted from the model exhibiting either strain replacement or co-infection. We found that the presence of two or more HIV strains could result in a disease-free state that, in general, is not globally stable. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  20. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1990-01-01

    An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.

  1. RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response.

    PubMed

    Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi

    2011-06-24

    DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.

  2. Genome-wide Control of Heterochromatin Replication by the Telomere Capping Protein TRF2.

    PubMed

    Mendez-Bermudez, Aaron; Lototska, Liudmyla; Bauwens, Serge; Giraud-Panis, Marie-Josèphe; Croce, Olivier; Jamet, Karine; Irizar, Agurtzane; Mowinckel, Macarena; Koundrioukoff, Stephane; Nottet, Nicolas; Almouzni, Genevieve; Teulade-Fichou, Mare-Paule; Schertzer, Michael; Perderiset, Mylène; Londoño-Vallejo, Arturo; Debatisse, Michelle; Gilson, Eric; Ye, Jing

    2018-05-03

    Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    NASA Astrophysics Data System (ADS)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  4. The balanced mind: the variability of task-unrelated thoughts predicts error monitoring

    PubMed Central

    Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine

    2013-01-01

    Self-generated thoughts unrelated to ongoing activities, also known as “mind-wandering,” make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance. PMID:24223545

  5. Chk1 promotes replication fork progression by controlling replication initiation

    PubMed Central

    Petermann, Eva; Woodcock, Mick; Helleday, Thomas

    2010-01-01

    DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity. PMID:20805465

  6. Nematode Damage Functions: The Problems of Experimental and Sampling Error

    PubMed Central

    Ferris, H.

    1984-01-01

    The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865

  7. Influence of material surface on the scanning error of a powder-free 3D measuring system.

    PubMed

    Kurz, Michael; Attin, Thomas; Mehl, Albert

    2015-11-01

    This study aims to evaluate the accuracy of a powder-free three-dimensional (3D) measuring system (CEREC Omnicam, Sirona), when scanning the surface of a material at different angles. Additionally, the influence of water was investigated. Nine different materials were combined with human tooth surface (enamel) to create n = 27 specimens. These materials were: Controls (InCoris TZI and Cerec Guide Bloc), ceramics (Vitablocs® Mark II and IPS Empress CAD), metals (gold and amalgam) and composites (Tetric Ceram, Filtek Supreme A2B and A2E). The highly polished samples were scanned at different angles with and without water. The 216 scans were then analyzed and descriptive statistics were obtained. The height difference between the tooth and material surfaces, as measured with the 3D scans, ranged from 0.83 μm (±2.58 μm) to -14.79 μm (±3.45 μm), while the scan noise on the materials was between 3.23 μm (±0.79 μm) and 14.24 μm (±6.79 μm) without considering the control groups. Depending on the thickness of the water film, measurement errors in the order of 300-1,600 μm could be observed. The inaccuracies between the tooth and material surfaces, as well as the scan noise for the materials, were within the range of error for measurements used for conventional impressions and are therefore negligible. The presence of water, however, greatly affects the scan. The tested powder-free 3D measuring system can safely be used to scan different material surfaces without the prior application of a powder, although drying of the surface prior to scanning is highly advisable.

  8. Effect of single DNA lesions on in vitro replication with DNA polymerase III holoenzyme. Comparison with other polymerases.

    PubMed

    Belguise-Valladier, P; Maki, H; Sekiguchi, M; Fuchs, R P

    1994-02-11

    In the present work, we have studied in vitro replication of N-2-acetylaminofluorene (AAF) or cis-diamminedichloroplatinum II (cis-DDP) single modified DNA templates. We used the holoenzyme (pol III HE) or the alpha subunit of DNA polymerase III, which is involved in SOS mutagenesis, and other DNA polymerases in order to compare enzymes having different biological roles and properties. Single-stranded oligonucleotides (63-mer) bearing a single AAF adduct at one of the different guanine residues of the NarI sequence (-G1G2CG3CC-) have been used in primer extension assays. Site-specifically platinated 5'd(ApG) or 5'd(GpG) oligonucleotides were constructed and similarly used in primer extension assays. In all cases, irrespective of both the chemical nature of the lesion (i.e. AAF or cis-DDP) and its local sequence context (i.e. the 3 different sites for AAF adducts within the NarI site) replication by pol III HE and pol I Klenow fragment (pol I Kf) stops one base prior to the adduct site. Removal of the 3'-->5' proofreading activity alone was not sufficient to trigger bypass of DNA lesions. Indeed, when proofreading activity of pol I is inactivated by a point mutation (pol I Kf (exo-)), the major replication product corresponds to the position opposite the adduct site showing that incorporation across from the AAF adduct is possible. These results suggest that a polymerase with proofreading activity is actually found to stop one nucleotide before the adduct not because it is unable to insert a nucleotide opposite the adduct but most likely because elongation past the adduct is strongly impaired, giving thus an increased time frame for the proofreading exonuclease to remove the base inserted across from the adduct. These results are discussed in terms of their implications for error-free and error-prone bypass in vivo.

  9. Structural insights into the rhabdovirus transcription/replication complex.

    PubMed

    Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc

    2011-12-01

    The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Molecular replication

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1992-01-01

    Recent experiments demonstrating nonenzymatic replication in molecular systems are reviewed. The difficulties facing nonenzymatic replication are discussed along with specificity, fidelity, and mutation in nonenzymatic replication. The prospects for research in this area are considered.

  11. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  12. Accessory replicative helicases and the replication of protein-bound DNA.

    PubMed

    Brüning, Jan-Gert; Howard, Jamieson L; McGlynn, Peter

    2014-12-12

    Complete, accurate duplication of the genetic material is a prerequisite for successful cell division. Achieving this accuracy is challenging since there are many barriers to replication forks that may cause failure to complete genome duplication or result in possibly catastrophic corruption of the genetic code. One of the most important types of replicative barriers are proteins bound to the template DNA, especially transcription complexes. Removal of these barriers demands energy input not only to separate the DNA strands but also to disrupt multiple bonds between the protein and DNA. Replicative helicases that unwind the template DNA for polymerases at the fork can displace proteins bound to the template. However, even occasional failures in protein displacement by the replicative helicase could spell disaster. In such circumstances, failure to restart replication could result in incomplete genome duplication. Avoiding incomplete genome duplication via the repair and restart of blocked replication forks also challenges viability since the involvement of recombination enzymes is associated with the risk of genome rearrangements. Organisms have therefore evolved accessory replicative helicases that aid replication fork movement along protein-bound DNA. These helicases reduce the dangers associated with replication blockage by protein-DNA complexes, aiding clearance of blocks and resumption of replication by the same replisome thus circumventing the need for replication repair and restart. This review summarises recent work in bacteria and eukaryotes that has begun to delineate features of accessory replicative helicases and their importance in genome stability. Copyright © 2014. Published by Elsevier Ltd.

  13. PASHA: facilitating the replication and use of effective adolescent pregnancy and STI/HIV prevention programs.

    PubMed

    Card, Josefina J; Lessard, Laura; Benner, Tabitha

    2007-03-01

    It is important that interventions that have been shown effective in changing risky behavior be disseminated, so that they can be replicated (implemented in a new site) and so that their effectiveness in a new setting can be investigated. This article provides an update on an innovative resource for promoting the replication of effective teen pregnancy and STI/HIV prevention programs. The resource is called the Program Archive on Sexuality, Health & Adolescence (PASHA). A Scientist Expert Panel rates candidate adolescent pregnancy and STI/HIV prevention programs based on the strength of the evidence of their effectiveness in changing risky sexual behavior among youth ages 10-19 (10-21 for STI/HIV prevention programs). Developers of selected programs are invited to make their program and evaluation materials publicly available through PASHA. PASHA publishes and disseminates replication kits for programs it successfully acquires. Fifty-six programs have been selected by PASHA's Scientist Expert Panel as "effective" in changing one or more risky behaviors associated with adolescent pregnancy or STI/HIV. Complete program and evaluation materials from 35 of these programs are now currently available through PASHA, five are pending, 12 are publicly available from other sources, and only four are not publicly available. PASHA programs are aimed at a diverse target population and cover diverse content on many abstinence and contraception/condom-related topics. Many pedagogical techniques are used to effect behavior change, noticeably role play and group discussion. PASHA illustrates well the productive research-to-practice feedback loop that is the backbone of "translation research." The resource can be used by adolescent pregnancy and STI/HIV prevention practitioners to put what works to work to continue the lowering of the nation's adolescent pregnancy and STI/HIV rates.

  14. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    PubMed Central

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of

  15. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

    PubMed

    Morosky, Stefanie; Lennemann, Nicholas J; Coyne, Carolyn B

    2016-05-15

    Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression

  16. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication

    PubMed Central

    Zhang, Alice Tianbu; Langley, Alexander R.; Christov, Christo P.; Kheir, Eyemen; Shafee, Thomas; Gardiner, Timothy J.; Krude, Torsten

    2011-01-01

    Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular ‘catch and release’ mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors. PMID:21610089

  17. Joint optimization of a partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors.

    PubMed

    Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali

    2013-02-01

    Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.

  18. A Flexible Alignment Fixture for the Fabrication of Replication Mandrels

    NASA Technical Reports Server (NTRS)

    Cuttino, James F.; Todd, Michael W.

    1996-01-01

    NASA uses precision diamond turning technology to fabricate replication mandrels for its X-ray Calibration Facility (XRCF) optics. The XRCF optics are tubular, and the internal surface contains a parabolic profile over the first section and a hyperbolic profile over the last. The optic is fabricated by depositing layers of gold and nickel on to the replication mandrel and then separating it from the mandrel. Since the mandrel serves as a replication form, it must contain the inverse image of the surface. The difficulty in aligning the mandrel comes from the fabrication steps which it undergoes. The mandrel is rough machined and heat treated prior to diamond turning. After diamond turning, silicon rubber separators which are undercut in radius by 3 mm (0.12 in.) are inserted between the two end caps of the mandrel to allow the plating to wrap around the ends (to prevent flaking). The mandrel is then plated with a nickel-phosphor alloy using an electroless nickel process. At this point, the separators are removed and the mandrel is reassembled for the final cut on the DTM. The mandrel is measured for profile and finish, and polished to achieve an acceptable surface finish. Wrapping the plating around the edges helps to prevent flaking, but it also destroys the alignment surfaces between the parts of the mandrel that insure that the axes of the parts are coincident. Several mandrels have been realigned by trial-and-error methods, consuming significant amounts of setup time. When the mandrel studied in this paper was reassembled, multiple efforts resulted in a minimum radial error motion of 100 microns. Since 50 microns of nickel plating was to be removed, and a minimum plating thickness of 25 microns was to remain on the part, the radial error motion had to be reduced to less than 25 microns. The mandrel was therefore not usable in its current state.

  19. Decreased attention to object size information in scale errors performers.

    PubMed

    Grzyb, Beata J; Cangelosi, Angelo; Cattani, Allegra; Floccia, Caroline

    2017-05-01

    Young children sometimes make serious attempts to perform impossible actions on miniature objects as if they were full-size objects. The existing explanations of these curious action errors assume (but never explicitly tested) children's decreased attention to object size information. This study investigated the attention to object size information in scale errors performers. Two groups of children aged 18-25 months (N=52) and 48-60 months (N=23) were tested in two consecutive tasks: an action task that replicated the original scale errors elicitation situation, and a looking task that involved watching on a computer screen actions performed with adequate to inadequate size object. Our key finding - that children performing scale errors in the action task subsequently pay less attention to size changes than non-scale errors performers in the looking task - suggests that the origins of scale errors in childhood operate already at the perceptual level, and not at the action level. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C. elegans Embryos

    PubMed Central

    Sonneville, Remi; Craig, Gillian; Labib, Karim; Gartner, Anton; Blow, J. Julian

    2015-01-01

    Summary During cell division, chromatin alternates between a condensed state to facilitate chromosome segregation and a decondensed form when DNA replicates. In most tissues, S phase and mitosis are separated by defined G1 and G2 gap phases, but early embryogenesis involves rapid oscillations between replication and mitosis. Using Caenorhabditis elegans embryos as a model system, we show that chromosome condensation and condensin II concentration on chromosomal axes require replicated DNA. In addition, we found that, during late telophase, replication initiates on condensed chromosomes and promotes the rapid decondensation of the chromatin. Upon replication initiation, the CDC-45-MCM-GINS (CMG) DNA helicase drives the release of condensin I complexes from chromatin and the activation or displacement of inactive MCM-2–7 complexes, which together with the nucleoporin MEL-28/ELYS tethers condensed chromatin to the nuclear envelope, thereby promoting chromatin decondensation. Our results show how, in an early embryo, the chromosome-condensation cycle is functionally linked with DNA replication. PMID:26166571

  1. A replication and methodological critique of the study "Evaluating drug trafficking on the Tor Network".

    PubMed

    Munksgaard, Rasmus; Demant, Jakob; Branwen, Gwern

    2016-09-01

    The development of cryptomarkets has gained increasing attention from academics, including growing scientific literature on the distribution of illegal goods using cryptomarkets. Dolliver's 2015 article "Evaluating drug trafficking on the Tor Network: Silk Road 2, the Sequel" addresses this theme by evaluating drug trafficking on one of the most well-known cryptomarkets, Silk Road 2.0. The research on cryptomarkets in general-particularly in Dolliver's article-poses a number of new questions for methodologies. This commentary is structured around a replication of Dolliver's original study. The replication study is not based on Dolliver's original dataset, but on a second dataset collected applying the same methodology. We have found that the results produced by Dolliver differ greatly from our replicated study. While a margin of error is to be expected, the inconsistencies we found are too great to attribute to anything other than methodological issues. The analysis and conclusions drawn from studies using these methods are promising and insightful. However, based on the replication of Dolliver's study, we suggest that researchers using these methodologies consider and that datasets be made available for other researchers, and that methodology and dataset metrics (e.g. number of downloaded pages, error logs) are described thoroughly in the context of web-o-metrics and web crawling. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    PubMed

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  3. OriDB, the DNA replication origin database updated and extended.

    PubMed

    Siow, Cheuk C; Nieduszynska, Sian R; Müller, Carolin A; Nieduszynski, Conrad A

    2012-01-01

    OriDB (http://www.oridb.org/) is a database containing collated genome-wide mapping studies of confirmed and predicted replication origin sites. The original database collated and curated Saccharomyces cerevisiae origin mapping studies. Here, we report that the OriDB database and web site have been revamped to improve user accessibility to curated data sets, to greatly increase the number of curated origin mapping studies, and to include the collation of replication origin sites in the fission yeast Schizosaccharomyces pombe. The revised database structure underlies these improvements and will facilitate further expansion in the future. The updated OriDB for S. cerevisiae is available at http://cerevisiae.oridb.org/ and for S. pombe at http://pombe.oridb.org/.

  4. Medication Errors: New EU Good Practice Guide on Risk Minimisation and Error Prevention.

    PubMed

    Goedecke, Thomas; Ord, Kathryn; Newbould, Victoria; Brosch, Sabine; Arlett, Peter

    2016-06-01

    A medication error is an unintended failure in the drug treatment process that leads to, or has the potential to lead to, harm to the patient. Reducing the risk of medication errors is a shared responsibility between patients, healthcare professionals, regulators and the pharmaceutical industry at all levels of healthcare delivery. In 2015, the EU regulatory network released a two-part good practice guide on medication errors to support both the pharmaceutical industry and regulators in the implementation of the changes introduced with the EU pharmacovigilance legislation. These changes included a modification of the 'adverse reaction' definition to include events associated with medication errors, and the requirement for national competent authorities responsible for pharmacovigilance in EU Member States to collaborate and exchange information on medication errors resulting in harm with national patient safety organisations. To facilitate reporting and learning from medication errors, a clear distinction has been made in the guidance between medication errors resulting in adverse reactions, medication errors without harm, intercepted medication errors and potential errors. This distinction is supported by an enhanced MedDRA(®) terminology that allows for coding all stages of the medication use process where the error occurred in addition to any clinical consequences. To better understand the causes and contributing factors, individual case safety reports involving an error should be followed-up with the primary reporter to gather information relevant for the conduct of root cause analysis where this may be appropriate. Such reports should also be summarised in periodic safety update reports and addressed in risk management plans. Any risk minimisation and prevention strategy for medication errors should consider all stages of a medicinal product's life-cycle, particularly the main sources and types of medication errors during product development. This article

  5. Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis.

    PubMed

    Pedroza-García, José-Antonio; Mazubert, Christelle; Del Olmo, Ivan; Bourge, Mickael; Domenichini, Séverine; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Piñeiro, Manuel; Jarillo, José A; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2017-03-01

    Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis ( Arabidopsis thaliana ). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1999-01-01

    This project was aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project are: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry and (b) to identify active boundary regions, or conditions, environmental and other, that favor "organized chemistry" and stereo-selective polymerization of nucleotides. "Organized chemistry" may lead to enhanced polymerization efficiency which in turn is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases.

  7. The role of template superhelicity in the initiation of bacteriophage lambda DNA replication.

    PubMed Central

    Alfano, C; McMacken, R

    1988-01-01

    The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands. Images PMID:2847118

  8. An Empirically Derived Taxonomy of Factors Affecting Physicians' Willingness to Disclose Medical Errors

    PubMed Central

    Kaldjian, Lauris C; Jones, Elizabeth W; Rosenthal, Gary E; Tripp-Reimer, Toni; Hillis, Stephen L

    2006-01-01

    BACKGROUND Physician disclosure of medical errors to institutions, patients, and colleagues is important for patient safety, patient care, and professional education. However, the variables that may facilitate or impede disclosure are diverse and lack conceptual organization. OBJECTIVE To develop an empirically derived, comprehensive taxonomy of factors that affects voluntary disclosure of errors by physicians. DESIGN A mixed-methods study using qualitative data collection (structured literature search and exploratory focus groups), quantitative data transformation (sorting and hierarchical cluster analysis), and validation procedures (confirmatory focus groups and expert review). RESULTS Full-text review of 316 articles identified 91 impeding or facilitating factors affecting physicians' willingness to disclose errors. Exploratory focus groups identified an additional 27 factors. Sorting and hierarchical cluster analysis organized factors into 8 domains. Confirmatory focus groups and expert review relocated 6 factors, removed 2 factors, and modified 4 domain names. The final taxonomy contained 4 domains of facilitating factors (responsibility to patient, responsibility to self, responsibility to profession, responsibility to community), and 4 domains of impeding factors (attitudinal barriers, uncertainties, helplessness, fears and anxieties). CONCLUSIONS A taxonomy of facilitating and impeding factors provides a conceptual framework for a complex field of variables that affects physicians' willingness to disclose errors to institutions, patients, and colleagues. This taxonomy can be used to guide the design of studies to measure the impact of different factors on disclosure, to assist in the design of error-reporting systems, and to inform educational interventions to promote the disclosure of errors to patients. PMID:16918739

  9. Facilitation and practice in verb acquisition.

    PubMed

    Keren-Portnoy, Tamar

    2006-08-01

    This paper presents a model of syntax acquisition, whose main points are as follows: Syntax is acquired in an item-based manner; early learning facilitates subsequent learning--as evidenced by the accelerating rate of new verbs entering a given structure; and mastery of syntactic knowledge is typically achieved through practice--as evidenced by intensive use and common word order errors--and this slows down learning during the early stages of acquiring a structure. The facilitation and practice hypotheses were tested on naturalistic production samples of six Hebrew-acquiring children ranging from ages 1;1 to 2;7 (average ages 1;6 to 2;4 months). Results show that most structures did in fact accelerate; the notion of 'practice' is supported by the inverse correlation found between number of verbs and number of errors in the earliest productions in a given structure; and the absence of acceleration in a minority of the structures is due to the fact that they involve relatively less practice.

  10. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    PubMed Central

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  11. Failure to Replicate a Genetic Association May Provide Important Clues About Genetic Architecture

    PubMed Central

    Greene, Casey S.; Penrod, Nadia M.; Williams, Scott M.; Moore, Jason H.

    2009-01-01

    Replication has become the gold standard for assessing statistical results from genome-wide association studies. Unfortunately this replication requirement may cause real genetic effects to be missed. A real result can fail to replicate for numerous reasons including inadequate sample size or variability in phenotype definitions across independent samples. In genome-wide association studies the allele frequencies of polymorphisms may differ due to sampling error or population differences. We hypothesize that some statistically significant independent genetic effects may fail to replicate in an independent dataset when allele frequencies differ and the functional polymorphism interacts with one or more other functional polymorphisms. To test this hypothesis, we designed a simulation study in which case-control status was determined by two interacting polymorphisms with heritabilities ranging from 0.025 to 0.4 with replication sample sizes ranging from 400 to 1600 individuals. We show that the power to replicate the statistically significant independent main effect of one polymorphism can drop dramatically with a change of allele frequency of less than 0.1 at a second interacting polymorphism. We also show that differences in allele frequency can result in a reversal of allelic effects where a protective allele becomes a risk factor in replication studies. These results suggest that failure to replicate an independent genetic effect may provide important clues about the complexity of the underlying genetic architecture. We recommend that polymorphisms that fail to replicate be checked for interactions with other polymorphisms, particularly when samples are collected from groups with distinct ethnic backgrounds or different geographic regions. PMID:19503614

  12. A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial

    NASA Astrophysics Data System (ADS)

    Shao, C.-W.; Chiu, H.-L.; Chang, S.-K.

    2015-08-01

    Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the "colour change" of the human skeletal remains from wet to dry condition. Then, the "colure change" is used to evaluate the "real" surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The"Lingdao man No.1", is a well preserved burial of early Neolithic period (8300 B.P.) excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by step for ensuring the surface

  13. MEMS SoC: observer-based coplanar gyro-free inertial measurement unit

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Lin; Park, Sungsu

    2005-09-01

    This paper presents a novel design of a coplanar gyro-free inertial measurement unit (IMU) that consists of seven to nine single-axis linear accelerometers, and it can be utilized to perform the six DOF measurements for an object in motion. Unlike other gyro-fee IMUs, this design uses redundant accelerometers and state estimation techniques to facilitate the in situ and mass fabrication for the employed accelerometers. The alignment error from positioning accelerometers onto a measurement unit and the fabrication cost of an IMU can greatly be reduced. The outputs of the proposed design are three linear accelerations and three angular velocities. As compared to other gyro-free IMUs, the proposed design uses less integral operation and thus improves its sensing resolution and drifting problem. The sensing resolution of a gyro-free IMU depends on the sensing resolution of the employed accelerometers as well as the size of the measurement unit. Simulation results indicate that the sensing resolution of the proposed design is 2° s-1 for the angular velocity and 10 μg for the linear acceleration when nine single-axis accelerometers, each with 10 μg sensing resolution, are deployed on a 4 inch diameter disc. Also, thanks to the iterative EKF algorithm, the angle estimation error is within 10-3 deg at 2 s.

  14. Acoustic evidence for phonologically mismatched speech errors.

    PubMed

    Gormley, Andrea

    2015-04-01

    Speech errors are generally said to accommodate to their new phonological context. This accommodation has been validated by several transcription studies. The transcription methodology is not the best choice for detecting errors at this level, however, as this type of error can be difficult to perceive. This paper presents an acoustic analysis of speech errors that uncovers non-accommodated or mismatch errors. A mismatch error is a sub-phonemic error that results in an incorrect surface phonology. This type of error could arise during the processing of phonological rules or they could be made at the motor level of implementation. The results of this work have important implications for both experimental and theoretical research. For experimentalists, it validates the tools used for error induction and the acoustic determination of errors free of the perceptual bias. For theorists, this methodology can be used to test the nature of the processes proposed in language production.

  15. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    PubMed

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  16. Antibody-mediated targeting of replication-competent retroviral vectors.

    PubMed

    Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki

    2003-05-20

    Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.

  17. Human replication protein Cdc6 is selectively cleaved by caspase 3 during apoptosis

    PubMed Central

    Pelizon, Cristina; d’Adda di Fagagna, Fabrizio; Farrace, Lorena; Laskey, Ronald A.

    2002-01-01

    In eukaryotes, the initiation of DNA replication involves the ordered assembly on chromatin of pre-replicative complexes (pre-RCs), including the origin recognition complex (ORC), Cdc6, Cdt1 and the minichromosome maintenance proteins (MCMs). In light of its indispensable role in the formation of pre-RCs, Cdc6 binding to chromatin represents a key step in the regulation of DNA replication and cell proliferation. Here, we study the human Cdc6 (HuCdc6) protein during programmed cell death (apoptosis). We find that HuCdc6, but not HuOrc2 (a member of the ORC) or HuMcm5 (one of the MCMs), is specifically cleaved in several human cell lines induced to undergo apoptosis by a variety of stimuli. Expression of caspase-uncleavable mutant HuCdc6 attenuates apoptosis, delaying cell death. Therefore, an important function for cleavage of HuCdc6 is to prevent a wounded cell from replicating and to facilitate death. PMID:12151338

  18. Novel statistical tools for management of public databases facilitate community-wide replicability and control of false discovery.

    PubMed

    Rosset, Saharon; Aharoni, Ehud; Neuvirth, Hani

    2014-07-01

    Issues of publication bias, lack of replicability, and false discovery have long plagued the genetics community. Proper utilization of public and shared data resources presents an opportunity to ameliorate these problems. We present an approach to public database management that we term Quality Preserving Database (QPD). It enables perpetual use of the database for testing statistical hypotheses while controlling false discovery and avoiding publication bias on the one hand, and maintaining testing power on the other hand. We demonstrate it on a use case of a replication server for GWAS findings, underlining its practical utility. We argue that a shift to using QPD in managing current and future biological databases will significantly enhance the community's ability to make efficient and statistically sound use of the available data resources. © 2014 WILEY PERIODICALS, INC.

  19. Strategic planning to reduce medical errors: Part I--diagnosis.

    PubMed

    Waldman, J Deane; Smith, Howard L

    2012-01-01

    Despite extensive dialogue and a continuing stream of proposed medical practice revisions, medical errors and adverse impacts persist. Connectivity of vital elements is often underestimated or not fully understood. This paper analyzes medical errors from a systems dynamics viewpoint (Part I). Our analysis suggests in Part II that the most fruitful strategies for dissolving medical errors include facilitating physician learning, educating patients about appropriate expectations surrounding treatment regimens, and creating "systematic" patient protections rather than depending on (nonexistent) perfect providers.

  20. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.

    PubMed

    Liu, Shaofeng; Xu, Zhiyun; Leng, He; Zheng, Pu; Yang, Jiayi; Chen, Kaifu; Feng, Jianxun; Li, Qing

    2017-01-27

    DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. Copyright © 2017, American Association for the Advancement of Science.

  1. The use of modified and non-natural nucleotides provide unique insights into pro-mutagenic replication catalyzed by polymerase eta

    PubMed Central

    Choi, Jung-Suk; Dasari, Anvesh; Hu, Peter; Benkovic, Stephen J.; Berdis, Anthony J.

    2016-01-01

    This report evaluates the pro-mutagenic behavior of 8-oxo-guanine (8-oxo-G) by quantifying the ability of high-fidelity and specialized DNA polymerases to incorporate natural and modified nucleotides opposite this lesion. Although high-fidelity DNA polymerases such as pol δ and the bacteriophage T4 DNA polymerase replicating 8-oxo-G in an error-prone manner, they display remarkably low efficiencies for TLS compared to normal DNA synthesis. In contrast, pol η shows a combination of high efficiency and low fidelity when replicating 8-oxo-G. These combined properties are consistent with a pro-mutagenic role for pol η when replicating this DNA lesion. Studies using modified nucleotide analogs show that pol η relies heavily on hydrogen-bonding interactions during translesion DNA synthesis. However, nucleobase modifications such as alkylation to the N2 position of guanine significantly increase error-prone synthesis catalyzed by pol η when replicating 8-oxo-G. Molecular modeling studies demonstrate the existence of a hydrophobic pocket in pol η that participates in the increased utilization of certain hydrophobic nucleotides. A model is proposed for enhanced pro-mutagenic replication catalyzed by pol η that couples efficient incorporation of damaged nucleotides opposite oxidized DNA lesions created by reactive oxygen species. The biological implications of this model toward increasing mutagenic events in lung cancer are discussed. PMID:26717984

  2. Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes

    PubMed Central

    Min, Jaewon; Wright, Woodring E.

    2017-01-01

    ABSTRACT Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae. Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer. PMID:28760773

  3. Adjusting for radiotelemetry error to improve estimates of habitat use.

    Treesearch

    Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant

    2002-01-01

    Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...

  4. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins

    PubMed Central

    Gillespie, Peter J.; Gambus, Agnieszka; Blow, J. Julian

    2012-01-01

    The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication. PMID:22521908

  5. Model-based influences on humans’ choices and striatal prediction errors

    PubMed Central

    Daw, Nathaniel D.; Gershman, Samuel J.; Seymour, Ben; Dayan, Peter; Dolan, Raymond J.

    2011-01-01

    Summary The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. PMID:21435563

  6. Model-based influences on humans' choices and striatal prediction errors.

    PubMed

    Daw, Nathaniel D; Gershman, Samuel J; Seymour, Ben; Dayan, Peter; Dolan, Raymond J

    2011-03-24

    The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription.

    PubMed

    Kogoma, T

    1997-06-01

    Chromosome replication in Escherichia coli is normally initiated at oriC, the origin of chromosome replication. E. coli cells possess at least three additional initiation systems for chromosome replication that are normally repressed but can be activated under certain specific conditions. These are termed the stable DNA replication systems. Inducible stable DNA replication (iSDR), which is activated by SOS induction, is proposed to be initiated from a D-loop, an early intermediate in homologous recombination. Thus, iSDR is a form of recombination-dependent DNA replication (RDR). Analysis of iSDR and RDR has led to the proposal that homologous recombination and double-strand break repair involve extensive semiconservative DNA replication. RDR is proposed to play crucial roles in homologous recombination, double-strand break repair, restoration of collapsed replication forks, and adaptive mutation. Constitutive stable DNA replication (cSDR) is activated in mhA mutants deficient in RNase HI or in recG mutants deficient in RecG helicase. cSDR is proposed to be initiated from an R-loop that can be formed by the invasion of duplex DNA by an RNA transcript, which most probably is catalyzed by RecA protein. The third form of SDR is nSDR, which can be transiently activated in wild-type cells when rapidly growing cells enter the stationary phase. This article describes the characteristics of these alternative DNA replication forms and reviews evidence that has led to the formulation of the proposed models for SDR initiation mechanisms. The possible interplay between DNA replication, homologous recombination, DNA repair, and transcription is explored.

  8. Automated Figuring and Polishing of Replication Mandrels for X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Krebs, Carolyn (Technical Monitor); Content, David; Fleetwood, Charles; Wright, Geraldine; Arsenovic, Petar; Collela, David; Kolos, Linette

    2003-01-01

    In support of the Constellation X mission the Optics Branch at Goddard Space Flight Center is developing technology for precision figuring and polishing of mandrels used to produce replicated mirrors that will be used in X-Ray telescopes. Employing a specially built machine controlled in 2 axes by a computer, we are doing automated polishing/figuring of 15 cm long, 20 cm diameter cylindrical, conical and Wolter mandrels. A battery of tests allow us to fully characterize all important aspects of the mandrels, including surface figure and finish, mid-frequency errors, diameters and cone angle. Parts are currently being produced with surface roughnesses at the .5nm RMS level, and half-power diameter slope error less than 2 arcseconds.

  9. A distribution-free multi-factorial profiler for harvesting information from high-density screenings.

    PubMed

    Besseris, George J

    2013-01-01

    Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process.

  10. A Distribution-Free Multi-Factorial Profiler for Harvesting Information from High-Density Screenings

    PubMed Central

    Besseris, George J.

    2013-01-01

    Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process. PMID:24009744

  11. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and

  12. The role of technical assistance in the replication of effective HIV interventions.

    PubMed

    O'Donnell, L; Scattergood, P; Adler, M; Doval, A S; Barker, M; Kelly, J A; Kegeles, S M; Rebchook, G M; Adams, J; Terry, M A; Neumann, M S

    2000-01-01

    This article examines the role of technical assistance (TA) in supporting the replication of proven HIV interventions. A case study of the replication of the VOICES/VOCES intervention elucidates the level and types of TA provided to support new users through the adoption process. TA included help in garnering administrative support, identifying target audiences, recruiting groups for sessions, maintaining fidelity to the intervention's core elements, tailoring the intervention to meet clients' needs, strengthening staff members' facilitation skills, troubleshooting challenges, and devising strategies to sustain the intervention. Two to four hours per month of TA were provided to each agency adopting the intervention, at an estimated monthly cost of $206 to $412. Findings illustrate how TA supports replication by establishing a conversation between the researcher TA providers experienced with the intervention and new users. This communication helps preserve key program elements and contributes to ongoing refinement of the intervention.

  13. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    NASA Astrophysics Data System (ADS)

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-05-01

    SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent

  14. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    USGS Publications Warehouse

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-01-01

    The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the

  15. Replicative Intermediates of Human Papillomavirus Type 11 in Laryngeal Papillomas: Site of Replication Initiation and Direction of Replication

    NASA Astrophysics Data System (ADS)

    Auborn, K. J.; Little, R. D.; Platt, T. H. K.; Vaccariello, M. A.; Schildkraut, C. L.

    1994-07-01

    We have examined the structures of replication intermediates from the human papillomavirus type 11 genome in DNA extracted from papilloma lesions (laryngeal papillomas). The sites of replication initiation and termination utilized in vivo were mapped by using neutral/neutral and neutral/alkaline two-dimensional agarose gel electrophoresis methods. Initiation of replication was detected in or very close to the upstream regulatory region (URR; the noncoding, regulatory sequences upstream of the open reading frames in the papillomavirus genome). We also show that replication forks proceed bidirectionally from the origin and converge 180circ opposite the URR. These results demonstrate the feasibility of analysis of replication of viral genomes directly from infected tissue.

  16. Esophageal squamous cell carcinomas with DNA replication errors (RER+) are associated with p16/pRb loss and wild-type p53.

    PubMed

    Mathew, R; Arora, S; Mathur, M; Chattopadhyay, T K; Ralhan, R

    2001-10-01

    Microsatellite instability (MSI) as a determinant of propensity to esophageal squamous cell carcinoma (ESCC) at seven microsatellite markers at 2p (2p15-16), 3p (3p13, 3p14.1-3, 3p25, and 3p26) and 16q (16q12.1-3) was investigated to analyze their putative role as indicators of predisposition to esophageal malignancies. Seven microsatellite loci were amplified by polymerase chain reaction, from surgically resected tumor tissues from 30 ESCC patients from Indian population, to assess the loss of heterozygosity (LOH) and replication error repeats (RER) and to correlate these alterations with aberrations in major cell cycle regulatory proteins and histopathological parameters. LOH and RER analyses at these loci demonstrated moderate microsatellite alterations, suggesting the involvement of MSI in esophageal tumorigenesis in a subset of the Indian population. MSI, defined as RER in at least two or more of the loci studied, was observed in ten of 30 (33%) patients. Twenty-two of 30 patients (73%) showed LOH at one or more loci, while 17 of the 30 patients (60%) showed RER in at least one of the loci studied. RER-positive patients showed a trend towards better prognosis when compared to RER-negative patients. MSI demonstrated a significant association with concomitant loss of p16 and pRb (p16-/pRb- phenotype) (P=0.046). Interestingly, we observed an inverse correlation between MSI and p53 mutations (P=0.03) suggesting that MSI may provide a p53-independent pathway for esophageal tumorigenesis in RER+ patients. MSI showed a trend towards longer survival and absence of distant organ metastasis (P=0.06). The present study demonstrates the probable role of MSI in esophageal squamous cell carcinoma in the Indian population. Instability associated with the repetitive sequences--the revealing marks of loss of DNA replication fidelity may serve as an indicator of predisposition to esophageal cancer.

  17. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.

    PubMed

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-06-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci

    PubMed Central

    Simpson, Claire L.; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J. M.; Vitart, Veronique; Schache, Maria; Hosseini, S. Mohsen; Hysi, Pirro G.; Raffel, Leslie J.; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E. K.; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M.; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C.; Vingerling, Johannes R.; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H.-Erich; Wilson, James F.; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M.; Rahi, Jugnoo S.; Hammond, Chris J.; Hayward, Caroline; Wright, Alan F.; Paterson, Andrew D.; Baird, Paul N.; Klaver, Caroline C. W.; Rotter, Jerome I.; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E.; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of

  19. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.

    PubMed

    Simpson, Claire L; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J M; Vitart, Veronique; Schache, Maria; Hosseini, S Mohsen; Hysi, Pirro G; Raffel, Leslie J; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E K; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C; Vingerling, Johannes R; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H-Erich; Wilson, James F; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M; Rahi, Jugnoo S; Hammond, Chris J; Hayward, Caroline; Wright, Alan F; Paterson, Andrew D; Baird, Paul N; Klaver, Caroline C W; Rotter, Jerome I; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive

  20. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    PubMed

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson

  1. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    NASA Astrophysics Data System (ADS)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  2. Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest

    PubMed Central

    Singh, Mayank; Hunt, Clayton R.; Pandita, Raj K.; Kumar, Rakesh; Yang, Chin-Rang; Horikoshi, Nobuo; Bachoo, Robert; Serag, Sara; Story, Michael D.; Shay, Jerry W.; Powell, Simon N.; Gupta, Arun; Jeffery, Jessie; Pandita, Shruti; Chen, Benjamin P. C.; Deckbar, Dorothee; Löbrich, Markus; Yang, Qin; Khanna, Kum Kum; Worman, Howard J.

    2013-01-01

    The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair. PMID:23319047

  3. MICROWAVE-FACILITATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    The application of microwave-expedited solvent-free synthetic protocols in multi-component (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of heterocyclic compounds from in situ generated intermediates. R...

  4. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  5. Quantitative, Comparable Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase Retrieval

    PubMed Central

    Camp, Charles H.; Lee, Young Jong; Cicerone, Marcus T.

    2017-01-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error-correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers-Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates, and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download. PMID:28819335

  6. Direct non transcriptional role of NF-Y in DNA replication.

    PubMed

    Benatti, Paolo; Belluti, Silvia; Miotto, Benoit; Neusiedler, Julia; Dolfini, Diletta; Drac, Marjorie; Basile, Valentina; Schwob, Etienne; Mantovani, Roberto; Blow, J Julian; Imbriano, Carol

    2016-04-01

    NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Strategic Use of Random Subsample Replication and a Coefficient of Factor Replicability

    ERIC Educational Resources Information Center

    Katzenmeyer, William G.; Stenner, A. Jackson

    1975-01-01

    The problem of demonstrating replicability of factor structure across random variables is addressed. Procedures are outlined which combine the use of random subsample replication strategies with the correlations between factor score estimates across replicate pairs to generate a coefficient of replicability and confidence intervals associated with…

  8. Performance of bias-correction methods for exposure measurement error using repeated measurements with and without missing data.

    PubMed

    Batistatou, Evridiki; McNamee, Roseanne

    2012-12-10

    It is known that measurement error leads to bias in assessing exposure effects, which can however, be corrected if independent replicates are available. For expensive replicates, two-stage (2S) studies that produce data 'missing by design', may be preferred over a single-stage (1S) study, because in the second stage, measurement of replicates is restricted to a sample of first-stage subjects. Motivated by an occupational study on the acute effect of carbon black exposure on respiratory morbidity, we compare the performance of several bias-correction methods for both designs in a simulation study: an instrumental variable method (EVROS IV) based on grouping strategies, which had been recommended especially when measurement error is large, the regression calibration and the simulation extrapolation methods. For the 2S design, either the problem of 'missing' data was ignored or the 'missing' data were imputed using multiple imputations. Both in 1S and 2S designs, in the case of small or moderate measurement error, regression calibration was shown to be the preferred approach in terms of root mean square error. For 2S designs, regression calibration as implemented by Stata software is not recommended in contrast to our implementation of this method; the 'problematic' implementation of regression calibration although substantially improved with use of multiple imputations. The EVROS IV method, under a good/fairly good grouping, outperforms the regression calibration approach in both design scenarios when exposure mismeasurement is severe. Both in 1S and 2S designs with moderate or large measurement error, simulation extrapolation severely failed to correct for bias. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  10. The use of modified and non-natural nucleotides provide unique insights into pro-mutagenic replication catalyzed by polymerase eta.

    PubMed

    Choi, Jung-Suk; Dasari, Anvesh; Hu, Peter; Benkovic, Stephen J; Berdis, Anthony J

    2016-02-18

    This report evaluates the pro-mutagenic behavior of 8-oxo-guanine (8-oxo-G) by quantifying the ability of high-fidelity and specialized DNA polymerases to incorporate natural and modified nucleotides opposite this lesion. Although high-fidelity DNA polymerases such as pol δ and the bacteriophage T4 DNA polymerase replicating 8-oxo-G in an error-prone manner, they display remarkably low efficiencies for TLS compared to normal DNA synthesis. In contrast, pol η shows a combination of high efficiency and low fidelity when replicating 8-oxo-G. These combined properties are consistent with a pro-mutagenic role for pol η when replicating this DNA lesion. Studies using modified nucleotide analogs show that pol η relies heavily on hydrogen-bonding interactions during translesion DNA synthesis. However, nucleobase modifications such as alkylation to the N2 position of guanine significantly increase error-prone synthesis catalyzed by pol η when replicating 8-oxo-G. Molecular modeling studies demonstrate the existence of a hydrophobic pocket in pol η that participates in the increased utilization of certain hydrophobic nucleotides. A model is proposed for enhanced pro-mutagenic replication catalyzed by pol η that couples efficient incorporation of damaged nucleotides opposite oxidized DNA lesions created by reactive oxygen species. The biological implications of this model toward increasing mutagenic events in lung cancer are discussed. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    PubMed

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Replication of a chronic hepatitis B virus genotype F1b construct.

    PubMed

    Hernández, Sergio; Jiménez, Gustavo; Alarcón, Valentina; Prieto, Cristian; Muñoz, Francisca; Riquelme, Constanza; Venegas, Mauricio; Brahm, Javier; Loyola, Alejandra; Villanueva, Rodrigo A

    2016-03-01

    Genotype F is one of the less-studied genotypes of human hepatitis B virus, although it is widely distributed in regions of Central and South American. Our previous studies have shown that HBV genotype F is prevalent in Chile, and phylogenetic analysis of its full-length sequence amplified from the sera of chronically infected patients identified it as HBV subgenotype F1b. We have previously reported the full-length sequence of a HBV molecular clone obtained from a patient chronically infected with genotype F1b. In this report, we established a system to study HBV replication based on hepatoma cell lines transfected with full-length monomers of the HBV genome. Culture supernatants were analyzed after transfection and found to contain both HBsAg and HBeAg viral antigens. Consistently, fractionated cell extracts revealed the presence of viral replication, with both cytoplasmic and nuclear DNA intermediates. Analysis of HBV-transfected cells by indirect immunofluorescence or immunoelectron microscopy revealed the expression of viral antigens and cytoplasmic viral particles, respectively. To test the functionality of the ongoing viral replication further at the level of chromatinized cccDNA, transfected cells were treated with a histone deacetylase inhibitor, and this resulted in increased viral replication. This correlated with changes posttranslational modifications of histones at viral promoters. Thus, the development of this viral replication system for HBV genotype F will facilitate studies on the regulation of viral replication and the identification of new antiviral drugs.

  13. Effect of lethality on the extinction and on the error threshold of quasispecies.

    PubMed

    Tejero, Hector; Marín, Arturo; Montero, Francisco

    2010-02-21

    In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. (c) 2009 Elsevier Ltd. All rights reserved.

  14. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  15. The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence*

    PubMed Central

    Li, Shijun; Tan, Min; Juillard, Franceline; Ponnusamy, Rajesh; Correia, Bruno; Simas, J. Pedro; Carrondo, Maria A.; McVey, Colin E.; Kaye, Kenneth M.

    2015-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes. PMID:26420481

  16. The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence.

    PubMed

    Li, Shijun; Tan, Min; Juillard, Franceline; Ponnusamy, Rajesh; Correia, Bruno; Simas, J Pedro; Carrondo, Maria A; McVey, Colin E; Kaye, Kenneth M

    2015-11-20

    Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The evolution of replicators.

    PubMed Central

    Szathmáry, E

    2000-01-01

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914

  18. The evolution of replicators.

    PubMed

    Szathmáry, E

    2000-11-29

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators.

  19. RepExplore: addressing technical replicate variance in proteomics and metabolomics data analysis.

    PubMed

    Glaab, Enrico; Schneider, Reinhard

    2015-07-01

    High-throughput omics datasets often contain technical replicates included to account for technical sources of noise in the measurement process. Although summarizing these replicate measurements by using robust averages may help to reduce the influence of noise on downstream data analysis, the information on the variance across the replicate measurements is lost in the averaging process and therefore typically disregarded in subsequent statistical analyses.We introduce RepExplore, a web-service dedicated to exploit the information captured in the technical replicate variance to provide more reliable and informative differential expression and abundance statistics for omics datasets. The software builds on previously published statistical methods, which have been applied successfully to biomedical omics data but are difficult to use without prior experience in programming or scripting. RepExplore facilitates the analysis by providing a fully automated data processing and interactive ranking tables, whisker plot, heat map and principal component analysis visualizations to interpret omics data and derived statistics. Freely available at http://www.repexplore.tk enrico.glaab@uni.lu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  20. Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks

    PubMed Central

    George, Tresa; Wen, Qin; Griffiths, Richard; Ganesh, Anil; Meuth, Mark; Sanders, Cyril M.

    2009-01-01

    Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity. PMID:19700773

  1. Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination

    PubMed Central

    Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H

    2015-01-01

    Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413

  2. Epstein-Barr virus origin of lytic replication mediates association of replicating episomes with promyelocytic leukaemia protein nuclear bodies and replication compartments.

    PubMed

    Amon, Wolfgang; White, Robert E; Farrell, Paul J

    2006-05-01

    Epstein-Barr virus (EBV) establishes a latent persistence from which it can be reactivated to undergo lytic replication. Late lytic-cycle gene expression is linked to lytic DNA replication, as it is sensitive to the same inhibitors that block lytic replication, and it has recently been shown that the viral origin of lytic replication (ori lyt) is required in cis for late-gene expression. During the lytic cycle, the viral genome forms replication compartments, which are usually adjacent to promyelocytic leukaemia protein (PML) nuclear bodies. A tetracycline repressor DNA-binding domain-enhanced green fluorescent protein fusion was used to visualize replicating plasmids carrying a tetracycline operator sequence array. ori lyt mediated the production of plasmid replication compartments that were associated with PML nuclear bodies. Plasmids carrying ori lyt and EBV itself were visualized in the same cells and replicated in similar regions of the nucleus, further supporting the validity of the plasmids for studying late-gene regulation.

  3. Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing.

    PubMed

    Kim, Joon-Young; Mills, James K; Vette, Albert H; Popovic, Milos R

    2007-12-01

    Arm-free paraplegic standing via functional electrical stimulation (FES) has drawn much attention in the biomechanical field as it might allow a paraplegic to stand and simultaneously use both arms to perform daily activities. However, current FES systems for standing require that the individual actively regulates balance using one or both arms, thus limiting the practical use of these systems. The purpose of the present study was to show that actuating only six out of 12 degrees of freedom (12-DOFs) in the lower limbs to allow paraplegics to stand freely is theoretically feasible with respect to multibody stability and physiological torque limitations of the lower limb DOF. Specifically, the goal was to determine the optimal combination of the minimum DOF that can be realistically actuated using FES while ensuring stability and able-bodied kinematics during perturbed arm-free standing. The human body was represented by a three-dimensional dynamics model with 12-DOFs in the lower limbs. Nakamura's method (Nakamura, Y., and Ghodoussi, U., 1989, "Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators," IEEE Trans. Rob. Autom., 5(3), pp. 294-302) was applied to estimate the joint torques of the system using experimental motion data from four healthy subjects. The torques were estimated by applying our previous finding that only 6 (6-DOFs) out of 12-DOFs in the lower limbs need to be actuated to facilitate stable standing. Furthermore, it was shown that six cases of 6-DOFs exist, which facilitate stable standing. In order to characterize each of these cases in terms of the torque generation patterns and to identify a potential optimal 6-DOF combination, the joint torques during perturbations in eight different directions were estimated for all six cases of 6-DOFs. The results suggest that the actuation of both ankle flexionextension, both knee flexionextension, one hip flexionextension, and one hip abductionadduction DOF will

  4. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.

    PubMed

    Singh, Dharmendra Kumar; Pandita, Raj K; Singh, Mayank; Chakraborty, Sharmistha; Hambarde, Shashank; Ramnarain, Deepti; Charaka, Vijaya; Ahmed, Kazi Mokim; Hunt, Clayton R; Pandita, Tej K

    2018-03-15

    The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response. Copyright © 2018 American Society for Microbiology.

  5. An experiment in software reliability: Additional analyses using data from automated replications

    NASA Technical Reports Server (NTRS)

    Dunham, Janet R.; Lauterbach, Linda A.

    1988-01-01

    A study undertaken to collect software error data of laboratory quality for use in the development of credible methods for predicting the reliability of software used in life-critical applications is summarized. The software error data reported were acquired through automated repetitive run testing of three independent implementations of a launch interceptor condition module of a radar tracking problem. The results are based on 100 test applications to accumulate a sufficient sample size for error rate estimation. The data collected is used to confirm the results of two Boeing studies reported in NASA-CR-165836 Software Reliability: Repetitive Run Experimentation and Modeling, and NASA-CR-172378 Software Reliability: Additional Investigations into Modeling With Replicated Experiments, respectively. That is, the results confirm the log-linear pattern of software error rates and reject the hypothesis of equal error rates per individual fault. This rejection casts doubt on the assumption that the program's failure rate is a constant multiple of the number of residual bugs; an assumption which underlies some of the current models of software reliability. data raises new questions concerning the phenomenon of interacting faults.

  6. A viscous solvent enables information transfer from gene-length nucleic acids in a model prebiotic replication cycle

    NASA Astrophysics Data System (ADS)

    He, Christine; Gállego, Isaac; Laughlin, Brandon; Grover, Martha A.; Hud, Nicholas V.

    2017-04-01

    Many hypotheses concerning the nature of early life assume that genetic information was once transferred through the template-directed synthesis of RNA, before the emergence of coded enzymes. However, attempts to demonstrate enzyme-free, template-directed synthesis of nucleic acids have been limited by 'strand inhibition', whereby transferring information from a template strand in the presence of its complementary strand is inhibited by the stability of the template duplex. Here, we use solvent viscosity to circumvent strand inhibition, demonstrating information transfer from a gene-length template (>300 nt) within a longer (545 bp or 3 kb) duplex. These results suggest that viscous environments on the prebiotic Earth, generated periodically by water evaporation, could have facilitated nucleic acid replication—particularly of long, structured sequences such as ribozymes. Our approach works with DNA and RNA, suggesting that viscosity-mediated replication is possible for a range of genetic polymers, perhaps even for informational polymers that may have preceded RNA.

  7. The German 'Dual System' of Occupational Training: A Much-Replicated but Oft-Failed Transfer.

    ERIC Educational Resources Information Center

    Wilson, David N.

    Germany's Dual System, which consists of in-school and in-enterprise components, facilitates entry into 374 recognized technical, white-collar and blue-collar occupations listed in training regulations that are grounded in legislation. The Dual System's origins and development in Germany were examined along with several attempts to replicate the…

  8. Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication.

    PubMed

    Camara, Johanna E; Breier, Adam M; Brendler, Therese; Austin, Stuart; Cozzarelli, Nicholas R; Crooke, Elliott

    2005-08-01

    Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.

  9. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    PubMed Central

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  10. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task

    PubMed Central

    Williams, Camille K.; Tremblay, Luc; Carnahan, Heather

    2016-01-01

    Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937

  11. Success and failure in replication of genotype-phenotype associations: How does replication help in understanding the genetic basis of phenotypic variation in outbred populations?

    PubMed

    Schielzeth, Holger; Rios Villamil, Alejandro; Burri, Reto

    2018-03-25

    Recent developments in sequencing technologies have facilitated genomewide mapping of phenotypic variation in natural populations. Such mapping efforts face a number of challenges potentially leading to low reproducibility. However, reproducible research forms the basis of scientific progress. We here discuss the options for replication and the reasons for potential nonreproducibility. We then review the evidence for reproducible quantitative trait loci (QTL) with a focus on natural animal populations. Existing case studies of replication fall into three categories: (i) traits that have been mapped to major effect loci (including chromosomal inversion and supergenes) by independent research teams; (ii) QTL fine-mapped in discovery populations; and (iii) attempts to replicate QTL across multiple populations. Major effect loci, in particular those associated with inversions, have been successfully replicated in several cases within and across populations. Beyond such major effect variants, replication has been more successful within than across populations, suggesting that QTL discovered in natural populations may often be population-specific. This suggests that biological causes (differences in linkage patterns, allele frequencies or context-dependencies of QTL) contribute to nonreproducibility. Evidence from other fields, notably animal breeding and QTL mapping in humans, suggests that a significant fraction of QTL is indeed reproducible in direction and magnitude at least within populations. However, there is also a large number of QTL that cannot be easily reproduced. We put forward that more studies should explicitly address the causes and context-dependencies of QTL signals, in particular to disentangle linkage differences, allele frequency differences and gene-by-environment interactions as biological causes of nonreproducibility of QTL, especially between populations. © 2018 John Wiley & Sons Ltd.

  12. Productive Figurative Communication: Conventional Metaphors Facilitate the Comprehension of Related Novel Metaphors

    ERIC Educational Resources Information Center

    Thibodeau, Paul; Durgin, Frank H.

    2008-01-01

    Three experiments explored whether conceptual mappings in conventional metaphors are productive, by testing whether the comprehension of novel metaphors was facilitated by first reading conceptually related conventional metaphors. The first experiment, a replication and extension of Keysar et al. [Keysar, B., Shen, Y., Glucksberg, S., Horton, W.…

  13. Induction of a Cellular DNA Damage Response by Porcine Circovirus Type 2 Facilitates Viral Replication and Mediates Apoptotic Responses

    PubMed Central

    Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Yan, Xu; Li, Zixue; Hou, Lei; Wang, Naidong; Yang, Yi; Jiang, Haijun; Liu, Jue

    2016-01-01

    Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA32 following infection. The response requires active viral replication, and all the ATM (ataxia telangiectasia-mutated kinase), ATR (ATM- and Rad3-related kinase), and DNA-PK (DNA-dependent protein kinase) are the transducers of the DDR signaling events in the PCV2-infected cells as demonstrated by the phosphorylation of ATM, ATR, and DNA-PK signalings as well as reductions in their activations after treatment with specific kinase inhibitors. Inhibitions of ATM, ATR, and DNA-PK activations block viral replication and prevent apoptotic responses as observed by decreases in cleaved poly-ADP ribose polymerase (PARP) and caspase-3 as well as fragmented DNA following PCV2 infection. These results reveal that PCV2 is able to exploit the cellular DNA damage response machinery for its own efficient replication and for apoptosis induction, further extending our understanding for the molecular mechanism of PCV2 infection. PMID:27982097

  14. Type I and Type II error concerns in fMRI research: re-balancing the scale

    PubMed Central

    Cunningham, William A.

    2009-01-01

    Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors. PMID:20035017

  15. ATRX Dysfunction Induces Replication Defects in Primary Mouse Cells

    PubMed Central

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z.; Higgs, Douglas R.; Gibbons, Richard J.

    2014-01-01

    The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells. PMID:24651726

  16. Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations.

    PubMed

    Keil, Lorenz; Hartmann, Michael; Lanzmich, Simon; Braun, Dieter

    2016-07-27

    How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients - down to 100 K over one metre - can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.

  17. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struble, E. B., E-mail: evi.struble@nist.gov; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; Center for Advanced Research in Biotechnology/NIST, 9600 Gudelsky Drive, Rockville, MD 20850

    2007-06-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production ofmore » crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure.« less

  18. Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.

    PubMed

    Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao

    2016-08-01

    The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study. Copyright © 2016. Published by Elsevier B.V.

  19. Beyond hypercorrection: remembering corrective feedback for low-confidence errors.

    PubMed

    Griffiths, Lauren; Higham, Philip A

    2018-02-01

    Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.

  20. Emergence of DNA Polymerase ε Antimutators That Escape Error-Induced Extinction in Yeast

    PubMed Central

    Williams, Lindsey N.; Herr, Alan J.; Preston, Bradley D.

    2013-01-01

    DNA polymerases (Pols) ε and δ perform the bulk of yeast leading- and lagging-strand DNA synthesis. Both Pols possess intrinsic proofreading exonucleases that edit errors during polymerization. Rare errors that elude proofreading are extended into duplex DNA and excised by the mismatch repair (MMR) system. Strains that lack Pol proofreading or MMR exhibit a 10- to 100-fold increase in spontaneous mutation rate (mutator phenotype), and inactivation of both Pol δ proofreading (pol3-01) and MMR is lethal due to replication error-induced extinction (EEX). It is unclear whether a similar synthetic lethal relationship exists between defects in Pol ε proofreading (pol2-4) and MMR. Using a plasmid-shuffling strategy in haploid Saccharomyces cerevisiae, we observed synthetic lethality of pol2-4 with alleles that completely abrogate MMR (msh2Δ, mlh1Δ, msh3Δ msh6Δ, or pms1Δ mlh3Δ) but not with partial MMR loss (msh3Δ, msh6Δ, pms1Δ, or mlh3Δ), indicating that high levels of unrepaired Pol ε errors drive extinction. However, variants that escape this error-induced extinction (eex mutants) frequently emerged. Five percent of pol2-4 msh2Δ eex mutants encoded second-site changes in Pol ε that reduced the pol2-4 mutator phenotype between 3- and 23-fold. The remaining eex alleles were extragenic to pol2-4. The locations of antimutator amino-acid changes in Pol ε and their effects on mutation spectra suggest multiple mechanisms of mutator suppression. Our data indicate that unrepaired leading- and lagging-strand polymerase errors drive extinction within a few cell divisions and suggest that there are polymerase-specific pathways of mutator suppression. The prevalence of suppressors extragenic to the Pol ε gene suggests that factors in addition to proofreading and MMR influence leading-strand DNA replication fidelity. PMID:23307893

  1. Cellular Chaperonin CCTγ Contributes to Rabies Virus Replication during Infection

    PubMed Central

    Zhang, Jinyang; Wu, Xiaopeng; Zan, Jie; Wu, Yongping; Ye, Chengjin; Ruan, Xizhen

    2013-01-01

    Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCTγ was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit. PMID:23637400

  2. Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    van Veen, V.; Holroyd, C.B.; Cohen, J.D.; Stenger, V.A.; Carter, C.S.

    2004-01-01

    Recent theories of the neural basis of performance monitoring have emphasized a central role for the anterior cingulate cortex (ACC). Replicating an earlier event-related potential (ERP) study, which showed an error feedback negativity that was modeled as having an ACC generator, we used event-related fMRI to investigate whether the ACC would…

  3. Sample preparation composite and replicate strategy case studies for assay of solid oral drug products.

    PubMed

    Nickerson, Beverly; Harrington, Brent; Li, Fasheng; Guo, Michele Xuemei

    2017-11-30

    Drug product assay is one of several tests required for new drug products to ensure the quality of the product at release and throughout the life cycle of the product. Drug product assay testing is typically performed by preparing a composite sample of multiple dosage units to obtain an assay value representative of the batch. In some cases replicate composite samples may be prepared and the reportable assay value is the average value of all the replicates. In previously published work by Harrington et al. (2014) [5], a sample preparation composite and replicate strategy for assay was developed to provide a systematic approach which accounts for variability due to the analytical method and dosage form with a standard error of the potency assay criteria based on compendia and regulatory requirements. In this work, this sample preparation composite and replicate strategy for assay is applied to several case studies to demonstrate the utility of this approach and its application at various stages of pharmaceutical drug product development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Direct measurement of the poliovirus RNA polymerase error frequency in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.

    1988-02-01

    The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. Amore » fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg{sup 2+} (pH 7.0) to 7.0 mM Mg{sup 2+} (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study.« less

  5. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress

    PubMed Central

    García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.

    2016-01-01

    Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895

  6. Post-error Brain Activity Correlates With Incidental Memory for Negative Words

    PubMed Central

    Senderecka, Magdalena; Ociepka, Michał; Matyjek, Magdalena; Kroczek, Bartłomiej

    2018-01-01

    The present study had three main objectives. First, we aimed to evaluate whether short-duration affective states induced by negative and positive words can lead to increased error-monitoring activity relative to a neutral task condition. Second, we intended to determine whether such an enhancement is limited to words of specific valence or is a general response to arousing material. Third, we wanted to assess whether post-error brain activity is associated with incidental memory for negative and/or positive words. Participants performed an emotional stop-signal task that required response inhibition to negative, positive or neutral nouns while EEG was recorded. Immediately after the completion of the task, they were instructed to recall as many of the presented words as they could in an unexpected free recall test. We observed significantly greater brain activity in the error-positivity (Pe) time window in both negative and positive trials. The error-related negativity amplitudes were comparable in both the neutral and emotional arousing trials, regardless of their valence. Regarding behavior, increased processing of emotional words was reflected in better incidental recall. Importantly, the memory performance for negative words was positively correlated with the Pe amplitude, particularly in the negative condition. The source localization analysis revealed that the subsequent memory recall for negative words was associated with widespread bilateral brain activity in the dorsal anterior cingulate cortex and in the medial frontal gyrus, which was registered in the Pe time window during negative trials. The present study has several important conclusions. First, it indicates that the emotional enhancement of error monitoring, as reflected by the Pe amplitude, may be induced by stimuli with symbolic, ontogenetically learned emotional significance. Second, it indicates that the emotion-related enhancement of the Pe occurs across both negative and positive conditions

  7. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently

    PubMed Central

    Yu, Chuanhe; Gan, Haiyun

    2017-01-01

    ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720

  8. Passive chevron replicator

    NASA Technical Reports Server (NTRS)

    Oeffinger, Thomas R. (Inventor); Tocci, Leonard R. (Inventor)

    1977-01-01

    There is described a passive replicator device to be used in magnetic bubble domain systems. The replicator is passive, i.e., does not require an active element such as a current source or the like, and both propagates and replicates bubble domains. In a preferred embodiment, the replicator uses chevron type elements arranged in an appropriate pattern so as to interact with a pair of propagation paths wherein bubble domains are propagated. A bubble in one propagation path is routinely transferred therealong and, concurrently, replicated by the instant device into another propagation path. A plurality of elements arranged in juxtaposition to the chevrons assists in controlling the propagation of the bubbles through the respective propagation paths and, at the appropriate time, provides a cutting action wherein a bubble which is elongated between the chevrons of the two propagation paths is split into two separate bubbles.

  9. Latent error detection: A golden two hours for detection.

    PubMed

    Saward, Justin R E; Stanton, Neville A

    2017-03-01

    Undetected error in safety critical contexts generates a latent condition that can contribute to a future safety failure. The detection of latent errors post-task completion is observed in naval air engineers using a diary to record work-related latent error detection (LED) events. A systems view is combined with multi-process theories to explore sociotechnical factors associated with LED. Perception of cues in different environments facilitates successful LED, for which the deliberate review of past tasks within two hours of the error occurring and whilst remaining in the same or similar sociotechnical environment to that which the error occurred appears most effective. Identified ergonomic interventions offer potential mitigation for latent errors; particularly in simple everyday habitual tasks. It is thought safety critical organisations should look to engineer further resilience through the application of LED techniques that engage with system cues across the entire sociotechnical environment, rather than relying on consistent human performance. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  10. Homologous Recombination Repair Factors Rad51 and BRCA1 Are Necessary for Productive Replication of Human Papillomavirus 31.

    PubMed

    Chappell, William H; Gautam, Dipendra; Ok, Suzan T; Johnson, Bryan A; Anacker, Daniel C; Moody, Cary A

    2015-12-23

    High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for productive viral

  11. Homologous Recombination Repair Factors Rad51 and BRCA1 Are Necessary for Productive Replication of Human Papillomavirus 31

    PubMed Central

    Chappell, William H.; Gautam, Dipendra; Ok, Suzan T.; Johnson, Bryan A.; Anacker, Daniel C.

    2015-01-01

    ABSTRACT High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for

  12. NACSA Charter School Replication Guide: The Spectrum of Replication Options. Authorizing Matters. Replication Brief 1

    ERIC Educational Resources Information Center

    O'Neill, Paul

    2010-01-01

    One of the most important and high-profile issues in public education reform today is the replication of successful public charter school programs. With more than 5,000 failing public schools in the United States, there is a tremendous need for strong alternatives for parents and students. Replicating successful charter school models is an…

  13. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.

    PubMed

    Deegan, Tom D; Yeeles, Joseph Tp; Diffley, John Fx

    2016-05-02

    The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45-MCM-GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK-dependent manner. Sld3 binds specifically to DDK-phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho-MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK-independent replication. Thus, Sld3 is an essential "reader" of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Performance of multi-hop parallel free-space optical communication over gamma-gamma fading channel with pointing errors.

    PubMed

    Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei

    2016-11-10

    Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.

  15. Error framing effects on performance: cognitive, motivational, and affective pathways.

    PubMed

    Steele-Johnson, Debra; Kalinoski, Zachary T

    2014-01-01

    Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.

  16. Performance analysis of replication ALOHA for fading mobile communications channels

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Clare, Loren P.

    1986-01-01

    This paper describes an ALOHA random access protocol for fading communications channels. A two-state Markov model is used for the channel error process to account for the channel fading memory. The ALOHA protocol is modified to send multiple contiguous copies of a message at each transmission attempt. Both pure and slotted ALOHA channels are considered. The analysis is applicable to fading environments where the channel memory is short compared to the propagation delay. It is shown that smaller delay may be achieved using replications and, in noisy conditions, can also improve throughput.

  17. A constrained-gradient method to control divergence errors in numerical MHD

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-10-01

    In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.

  18. CME Velocity and Acceleration Error Estimates Using the Bootstrap Method

    NASA Technical Reports Server (NTRS)

    Michalek, Grzegorz; Gopalswamy, Nat; Yashiro, Seiji

    2017-01-01

    The bootstrap method is used to determine errors of basic attributes of coronal mass ejections (CMEs) visually identified in images obtained by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) instruments. The basic parameters of CMEs are stored, among others, in a database known as the SOHO/LASCO CME catalog and are widely employed for many research studies. The basic attributes of CMEs (e.g. velocity and acceleration) are obtained from manually generated height-time plots. The subjective nature of manual measurements introduces random errors that are difficult to quantify. In many studies the impact of such measurement errors is overlooked. In this study we present a new possibility to estimate measurements errors in the basic attributes of CMEs. This approach is a computer-intensive method because it requires repeating the original data analysis procedure several times using replicate datasets. This is also commonly called the bootstrap method in the literature. We show that the bootstrap approach can be used to estimate the errors of the basic attributes of CMEs having moderately large numbers of height-time measurements. The velocity errors are in the vast majority small and depend mostly on the number of height-time points measured for a particular event. In the case of acceleration, the errors are significant, and for more than half of all CMEs, they are larger than the acceleration itself.

  19. Narrative-compression coding for a channel with errors. Professional paper for period ending June 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, J.W.

    1988-01-01

    Data-compression codes offer the possibility of improving the thruput of existing communication systems in the near term. This study was undertaken to determine if data-compression codes could be utilized to provide message compression in a channel with up to a 0.10-bit error rate. The data-compression capabilities of codes were investigated by estimating the average number of bits-per-character required to transmit narrative files. The performance of the codes in a channel with errors (a noisy channel) was investigated in terms of the average numbers of characters-decoded-in-error and of characters-printed-in-error-per-bit-error. Results were obtained by encoding four narrative files, which were resident onmore » an IBM-PC and use a 58-character set. The study focused on Huffman codes and suffix/prefix comma-free codes. Other data-compression codes, in particular, block codes and some simple variants of block codes, are briefly discussed to place the study results in context. Comma-free codes were found to have the most-promising data compression because error propagation due to bit errors are limited to a few characters for these codes. A technique was found to identify a suffix/prefix comma-free code giving nearly the same data compressions as a Huffman code with much less error propagation than the Huffman codes. Greater data compression can be achieved through the use of this comma-free code word assignments based on conditioned probabilities of character occurrence.« less

  20. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability.

    PubMed

    Schalbetter, Stephanie A; Mansoubi, Sahar; Chambers, Anna L; Downs, Jessica A; Baxter, Jonathan

    2015-08-18

    Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein-DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein-DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin.

  1. A Comparison of Error-Correction Procedures on Skill Acquisition during Discrete-Trial Instruction

    ERIC Educational Resources Information Center

    Carroll, Regina A.; Joachim, Brad T.; St. Peter, Claire C.; Robinson, Nicole

    2015-01-01

    Previous research supports the use of a variety of error-correction procedures to facilitate skill acquisition during discrete-trial instruction. We used an adapted alternating treatments design to compare the effects of 4 commonly used error-correction procedures on skill acquisition for 2 children with attention deficit hyperactivity disorder…

  2. Divided spatial attention and feature-mixing errors.

    PubMed

    Golomb, Julie D

    2015-11-01

    Spatial attention is thought to play a critical role in feature binding. However, often multiple objects or locations are of interest in our environment, and we need to shift or split attention between them. Recent evidence has demonstrated that shifting and splitting spatial attention results in different types of feature-binding errors. In particular, when two locations are simultaneously sharing attentional resources, subjects are susceptible to feature-mixing errors; that is, they tend to report a color that is a subtle blend of the target color and the color at the other attended location. The present study was designed to test whether these feature-mixing errors are influenced by target-distractor similarity. Subjects were cued to split attention across two different spatial locations, and were subsequently presented with an array of colored stimuli, followed by a postcue indicating which color to report. Target-distractor similarity was manipulated by varying the distance in color space between the two attended stimuli. Probabilistic modeling in all cases revealed shifts in the response distribution consistent with feature-mixing errors; however, the patterns differed considerably across target-distractor color distances. With large differences in color, the findings replicated the mixing result, but with small color differences, repulsion was instead observed, with the reported target color shifted away from the other attended color.

  3. Bridging from Replication to Translation with a Thermal, Autonomous Replicator Made from Transfer RNA

    NASA Astrophysics Data System (ADS)

    Braun, Dieter; Möller, Friederike M.; Krammer, Hubert

    2013-03-01

    Central to the understanding of living systems is the interplay between DNA/RNA and proteins. Known as Eigen paradox, proteins require genetic information while proteins are needed for the replication of genes. RNA world scenarios focus on a base by base replication disconnected from translation. Here we used strategies from DNA machines to demonstrate a tight connection between a basic replication mechanism and translation. A pool of hairpin molecules replicate a two-letter code. The replication is thermally driven: the energy and negative entropy to drive replication is initially stored in metastable hairpins by kinetic cooling. Both are released by a highly specific and exponential replication reaction that is solely implemented by base hybridization. The duplication time is 30s. The reaction is monitored by fluorescence and described by a detailed kinetic model. The RNA hairpins usetransfer RNA sequences and the replication is driven by the simple disequilibrium setting of a thermal gradient The experiments propose a physical rather than a chemical scenario for the autonomous replication of protein encoding information. Supported by the NanoSystems Initiative Munich and ERC.

  4. Simulation of rare events in quantum error correction

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Vargo, Alexander

    2013-12-01

    We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability PL for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d≤20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay PL˜exp[-α(p)d] and provide a simple fitting formula for the decay rate α(p). Both noiseless and noisy syndrome readout circuits are considered.

  5. Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication

    PubMed Central

    Martinez, Matthew P.; Wacker, Amanda L.; Bruck, Irina; Kaplan, Daniel L.

    2017-01-01

    The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described. PMID:28383499

  6. A reminder on millisecond timing accuracy and potential replication failure in computer-based psychology experiments: An open letter.

    PubMed

    Plant, Richard R

    2016-03-01

    There is an ongoing 'replication crisis' across the field of psychology in which researchers, funders, and members of the public are questioning the results of some scientific studies and the validity of the data they are based upon. However, few have considered that a growing proportion of research in modern psychology is conducted using a computer. Could it simply be that the hardware and software, or experiment generator, being used to run the experiment itself be a cause of millisecond timing error and subsequent replication failure? This article serves as a reminder that millisecond timing accuracy in psychology studies remains an important issue and that care needs to be taken to ensure that studies can be replicated on current computer hardware and software.

  7. Karyopherin Alpha 6 Is Required for Replication of Porcine Reproductive and Respiratory Syndrome Virus and Zika Virus.

    PubMed

    Yang, Liping; Wang, Rong; Yang, Shixing; Ma, Zexu; Lin, Shaoli; Nan, Yuchen; Li, Qisheng; Tang, Qiyi; Zhang, Yan-Jin

    2018-05-01

    Movement of macromolecules between the cytoplasm and the nucleus occurs through the nuclear pore complex (NPC). Karyopherins comprise a family of soluble transport factors facilitating the nucleocytoplasmic translocation of proteins through the NPC. In this study, we found that karyopherin α6 (KPNA6; also known as importin α7) was required for the optimal replication of porcine reproductive and respiratory syndrome virus (PRRSV) and Zika virus (ZIKV), which are positive-sense, single-stranded RNA viruses replicating in the cytoplasm. The KPNA6 protein level in virus-infected cells was much higher than that in mock-infected controls, whereas the KPNA6 transcript remains stable. Viral infection blocked the ubiquitin-proteasomal degradation of KPNA6, which led to an extension of the KPNA6 half-life and the elevation of the KPNA6 level in comparison to mock-infected cells. PRRSV nsp12 protein induced KPNA6 stabilization. KPNA6 silencing was detrimental to the replication of PRRSV, and KPNA6 knockout impaired ZIKV replication. Moreover, KPNA6 knockout blocked the nuclear translocation of PRRSV nsp1β but had a minimal effect on two other PRRSV proteins with nuclear localization. Exogenous restitution of KPNA6 expression in the KPNA6-knockout cells results in restoration of the nuclear translocation of PRRSV nsp1β and the replication of ZIKV. These results indicate that KPNA6 is an important cellular factor for the replication of PRRSV and ZIKV. IMPORTANCE Positive-sense, single-stranded RNA (+ssRNA) viruses replicate in the cytoplasm of infected cells. The roles of transport factors in the nucleocytoplasmic trafficking system for the replication of +ssRNA viruses are not known. In this study, we discovered that PRRSV and ZIKV viruses needed karyopherin α6 (KPNA6), one of the transport factors, to enhance the virus replication. Our data showed that viral infection induced an elevation of the KPNA6 protein level due to an extension of the KPNA6 half-life via viral

  8. In Vitro Coinfection and Replication of Classical Swine Fever Virus and Porcine Circovirus Type 2 in PK15 Cells

    PubMed Central

    Zhou, Niu; Xing, Gang; Zhou, Jianwei; Jin, Yulan; Liang, Cuiqin; Gu, Jinyan; Hu, Boli; Liao, Min; Wang, Qin; Zhou, Jiyong

    2015-01-01

    Increasing clinical lines of evidence have shown the coinfection/superinfection of porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV). Here, we investigated whether PCV2 and CSFV could infect the same cell productively by constructing an in vitro coinfection model. Our results indicated that PCV2-free PK15 cells but not ST cells were more sensitive to PCV2, and the PK15 cell line could stably harbor replicating CSFV (PK15-CSFV cells) with a high infection rate. Confocal and super-resolution microscopic analysis showed that PCV2 and CSFV colocalized in the same PK15-CSFV cell, and the CSFV E2 protein translocated from the cytoplasm to the nucleus in PK15-CSFV cells infected with PCV2. Moreover, PCV2-CSFV dual-positive cells increased gradually in PK15-CSFV cells in a PCV2 dose-dependent manner. In PK15-CSFV cells, PCV2 replicated well, and the production of PCV2 progeny was not influenced by CSFV infection. However, CSFV reproduction decreased in a PCV2 dose-dependent manner. In addition, cellular apoptosis was not strengthened in PK15-CSFV cells infected with PCV2 in comparison with PCV2-infected PK15 cells. Moreover, using this coinfection model we further demonstrated PCV2-induced apoptosis might contribute to the impairment of CSFV HCLV strain replication in coinfected cells. Taken together, our results demonstrate for the first time the coinfection/superinfection of PCV2 and CSFV within the same cell, providing an in vitro model to facilitate further investigation of the underlying mechanism of CSFV and PCV2 coinfection. PMID:26431319

  9. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin.

    PubMed

    Liu, Kang; Lin, Fang-Tsyr; Graves, Joshua D; Lee, Yu-Ju; Lin, Weei-Chin

    2017-05-09

    Accumulating evidence supports the gain-of-function of mutant forms of p53 (mutp53s). However, whether mutp53 directly perturbs the DNA replication checkpoint remains unclear. Previously, we have demonstrated that TopBP1 forms a complex with mutp53s and mediates their gain-of-function through NF-Y and p63/p73. Akt phosphorylates TopBP1 and induces its oligomerization, which inhibits its ATR-activating function. Here we show that various contact and conformational mutp53s bypass Akt to induce TopBP1 oligomerization and attenuate ATR checkpoint response during replication stress. The effect on ATR response caused by mutp53 can be exploited in a synthetic lethality strategy, as depletion of another ATR activator, DNA2, in mutp53-R273H-expressing cancer cells renders cells hypersensitive to cisplatin. Expression of mutp53-R273H also makes cancer cells more sensitive to DNA2 depletion or DNA2 inhibitors. In addition to ATR-activating function during replication stress, TopBP1 interacts with Treslin in a Cdk-dependent manner to initiate DNA replication during normal growth. We find that mutp53 also interferes with TopBP1 replication function. Several contact, but not conformational, mutp53s enhance the interaction between TopBP1 and Treslin and promote DNA replication despite the presence of a Cdk2 inhibitor. Together, these data uncover two distinct mechanisms by which mutp53 enhances DNA replication: ( i ) Both contact and conformational mutp53s can bind TopBP1 and attenuate the checkpoint response to replication stress, and ( ii ) during normal growth, contact (but not conformational) mutp53s can override the Cdk2 requirement to promote replication by facilitating the TopBP1/Treslin interaction.

  10. Facilitating critical thinking.

    PubMed

    Hansten, R I; Washburn, M J

    2000-01-01

    Supporting staff to think effectively is essential to improve clinical systems, decrease errors and sentinel events, and engage staff involvement to refine patient care systems in readiness for new care-delivery models that truly reflect the valued role of the RN. The authors explore practical methods, based on current research and national consulting experience, to facilitate the development of mature critical thinking skills. Assessment tools, a sample agenda for formal presentations, and teaching strategies using behavioral examples that make the important and necessary link of theory to reality are discussed in the form of a critical thinking test as well as a conceptual model for application in problem solving.

  11. Part-set cueing impairment & facilitation in semantic memory.

    PubMed

    Kelley, Matthew R; Parihar, Sushmeena A

    2018-01-19

    The present study explored the influence of part-set cues in semantic memory using tests of "free" recall, reconstruction of order, and serial recall. Nine distinct categories of information were used (e.g., Zodiac signs, Harry Potter books, Star Wars films, planets). The results showed part-set cueing impairment for all three "free" recall sets, whereas part-set cueing facilitation was evident for five of the six ordered sets. Generally, the present results parallel those often observed across episodic tasks, which could indicate that similar mechanisms contribute to part-set cueing effects in both episodic and semantic memory. A novel anchoring explanation of part-set cueing facilitation in order and spatial tasks is provided.

  12. Phosphatidic Acid Produced by Phospholipase D Promotes RNA Replication of a Plant RNA Virus

    PubMed Central

    Hyodo, Kiwamu; Taniguchi, Takako; Manabe, Yuki; Kaido, Masanori; Mise, Kazuyuki; Sugawara, Tatsuya; Taniguchi, Hisaaki; Okuno, Tetsuro

    2015-01-01

    Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate. PMID:26020241

  13. Replication timing and nuclear structure.

    PubMed

    Fu, Haiqing; Baris, Adrian; Aladjem, Mirit I

    2018-06-01

    DNA replication proceeds along spatially and temporally coordinated patterns within the nucleus, thus protecting the genome during the synthesis of new genetic material. While we have been able to visualize replication patterns on DNA fibers for 50 years, recent developments and discoveries have provided a greater insight into how DNA replication is controlled. In this review, we highlight many of these discoveries. Of great interest are the physiological role of the replication timing program, cis and trans-acting factors that modulate replication timing and the effects of chromatin structure on the replication timing program. We also discuss future directions in the study of replication timing. Published by Elsevier Ltd.

  14. The molecular biology of Bluetongue virus replication.

    PubMed

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Teaching Common Errors in Applying a Procedure. IDD&E Working Paper No. 18.

    ERIC Educational Resources Information Center

    Garduno, Alberto O.; And Others

    The purpose of this study was to replicate the Bentti, Golden, and Reigeluth study (1983), which explored the use of nonexamples to teach common errors as an effective strategy in teaching a procedure. A total of 24 undergraduate students enrolled in the Syracuse University Symphonic Band were randomly assigned to an experimental group and a…

  16. Investigation of Error Patterns in Geographical Databases

    NASA Technical Reports Server (NTRS)

    Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.

  17. Is psychology suffering from a replication crisis? What does "failure to replicate" really mean?

    PubMed

    Maxwell, Scott E; Lau, Michael Y; Howard, George S

    2015-09-01

    Psychology has recently been viewed as facing a replication crisis because efforts to replicate past study findings frequently do not show the same result. Often, the first study showed a statistically significant result but the replication does not. Questions then arise about whether the first study results were false positives, and whether the replication study correctly indicates that there is truly no effect after all. This article suggests these so-called failures to replicate may not be failures at all, but rather are the result of low statistical power in single replication studies, and the result of failure to appreciate the need for multiple replications in order to have enough power to identify true effects. We provide examples of these power problems and suggest some solutions using Bayesian statistics and meta-analysis. Although the need for multiple replication studies may frustrate those who would prefer quick answers to psychology's alleged crisis, the large sample sizes typically needed to provide firm evidence will almost always require concerted efforts from multiple investigators. As a result, it remains to be seen how many of the recently claimed failures to replicate will be supported or instead may turn out to be artifacts of inadequate sample sizes and single study replications. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  18. Gluten-free and casein-free diets in the therapy of autism.

    PubMed

    Lange, Klaus W; Hauser, Joachim; Reissmann, Andreas

    2015-11-01

    The purpose of this study is to discuss the role of gluten-free and casein-free diets in the treatment of autism. In a recent UK survey, more than 80% of parents of children with autism spectrum disorder reported some kind of dietary intervention for their child (gluten-free and casein-free diet in 29%). When asked about the effects of the gluten-free and casein-free diet, 20-29% of the parents reported significant improvements on the autism spectrum disorder core dimensions. The findings of this study suggest additional effects of a gluten-free and casein-free diet on comorbid problems of autism such as gastrointestinal symptoms, concentration, and attention. The findings of another recent investigation suggested that age and certain urine compounds may predict the response of autism symptoms to a gluten-free and casein-free diet. Although these results need to be replicated, they highlight the importance of patient subgroup analysis. Intervention trials evaluating the effects of a gluten-free and casein-free diet on autistic symptoms have so far been contradictory and inconclusive. Most investigations assessing the efficacy of a gluten-free and casein-free diet in the treatment of autism are seriously flawed. The evidence to support the therapeutic value of this diet is limited and weak. A gluten-free and casein-free diet should only be administered if an allergy or intolerance to nutritional gluten or casein is diagnosed.

  19. Mechanisms of DNA replication termination.

    PubMed

    Dewar, James M; Walter, Johannes C

    2017-08-01

    Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.

  20. Stress Granule-Inducing Eukaryotic Translation Initiation Factor 4A Inhibitors Block Influenza A Virus Replication

    PubMed Central

    Slaine, Patrick D.; Kleer, Mariel; Smith, Nathan K.; Khaperskyy, Denys A.

    2017-01-01

    Eukaryotic translation initiation factor 4A (eIF4A) is a helicase that facilitates assembly of the translation preinitiation complex by unwinding structured mRNA 5′ untranslated regions. Pateamine A (PatA) and silvestrol are natural products that disrupt eIF4A function and arrest translation, thereby triggering the formation of cytoplasmic aggregates of stalled preinitiation complexes known as stress granules (SGs). Here we examined the effects of eIF4A inhibition by PatA and silvestrol on influenza A virus (IAV) protein synthesis and replication in cell culture. Treatment of infected cells with either PatA or silvestrol at early times post-infection resulted in SG formation, arrest of viral protein synthesis and failure to replicate the viral genome. PatA, which irreversibly binds to eIF4A, sustained long-term blockade of IAV replication following drug withdrawal, and inhibited IAV replication at concentrations that had minimal cytotoxicity. By contrast, the antiviral effects of silvestrol were fully reversible; drug withdrawal caused rapid SG dissolution and resumption of viral protein synthesis. IAV inhibition by silvestrol was invariably associated with cytotoxicity. PatA blocked replication of genetically divergent IAV strains, suggesting common dependence on host eIF4A activity. This study demonstrates that the core host protein synthesis machinery can be targeted to block viral replication. PMID:29258238

  1. Novel host restriction factors implicated in HIV-1 replication.

    PubMed

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  2. Development of an errorable car-following driver model

    NASA Astrophysics Data System (ADS)

    Yang, H.-H.; Peng, H.

    2010-06-01

    An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.

  3. Perceived Barriers and Facilitators to School Social Work Practice: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Teasley, Martell; Canifield, James P.; Archuleta, Adrian J.; Crutchfield, Jandel; Chavis, Annie McCullough

    2012-01-01

    Understanding barriers to practice is a growing area within school social work research. Using a convenience sample of 284 school social workers, this study replicates the efforts of a mixed-method investigation designed to identify barriers and facilitators to school social work practice within different geographic locations. Time constraints and…

  4. Average symbol error rate for M-ary quadrature amplitude modulation in generalized atmospheric turbulence and misalignment errors

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhat Kumar

    2016-11-01

    A framework is presented for the analysis of average symbol error rate (SER) for M-ary quadrature amplitude modulation in a free-space optical communication system. The standard probability density function (PDF)-based approach is extended to evaluate the average SER by representing the Q-function through its Meijer's G-function equivalent. Specifically, a converging power series expression for the average SER is derived considering the zero-boresight misalignment errors in the receiver side. The analysis presented here assumes a unified expression for the PDF of channel coefficient which incorporates the M-distributed atmospheric turbulence and Rayleigh-distributed radial displacement for the misalignment errors. The analytical results are compared with the results obtained using Q-function approximation. Further, the presented results are supported by the Monte Carlo simulations.

  5. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection

    PubMed Central

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N.; Gestwicki, Jason E.; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-01-01

    Summary Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. PMID:26582131

  6. Impact and quantification of the sources of error in DNA pooling designs.

    PubMed

    Jawaid, A; Sham, P

    2009-01-01

    The analysis of genome wide variation offers the possibility of unravelling the genes involved in the pathogenesis of disease. Genome wide association studies are also particularly useful for identifying and validating targets for therapeutic intervention as well as for detecting markers for drug efficacy and side effects. The cost of such large-scale genetic association studies may be reduced substantially by the analysis of pooled DNA from multiple individuals. However, experimental errors inherent in pooling studies lead to a potential increase in the false positive rate and a loss in power compared to individual genotyping. Here we quantify various sources of experimental error using empirical data from typical pooling experiments and corresponding individual genotyping counts using two statistical methods. We provide analytical formulas for calculating these different errors in the absence of complete information, such as replicate pool formation, and for adjusting for the errors in the statistical analysis. We demonstrate that DNA pooling has the potential of estimating allele frequencies accurately, and adjusting the pooled allele frequency estimates for differential allelic amplification considerably improves accuracy. Estimates of the components of error show that differential allelic amplification is the most important contributor to the error variance in absolute allele frequency estimation, followed by allele frequency measurement and pool formation errors. Our results emphasise the importance of minimising experimental errors and obtaining correct error estimates in genetic association studies.

  7. Norovirus Genome Circularization and Efficient Replication Are Facilitated by Binding of PCBP2 and hnRNP A1

    PubMed Central

    López-Manríquez, Eduardo; Vashist, Surender; Ureña, Luis; Goodfellow, Ian; Chavez, Pedro; Mora-Heredia, José Eduardo; Cancio-Lonches, Clotilde; Garrido, Efraín

    2013-01-01

    Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle. PMID:23946460

  8. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis

    PubMed Central

    Zhang, Zhenlu; He, Guijuan; Catanzaro, Nicholas; Wu, Zujian; Xie, Lianhui

    2018-01-01

    Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes

  9. Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase

    PubMed Central

    Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong

    2013-01-01

    Nitrated polycyclic aromatic hydrocarbons are common environmental pollutants, of which many are mutagenic and carcinogenic. 1-Nitropyrene is the most abundant nitrated polycyclic aromatic hydrocarbon, which causes DNA damage and is carcinogenic in experimental animals. Error-prone translesion synthesis of 1-nitropyrene–derived DNA lesions generates mutations that likely play a role in the etiology of cancer. Here, we report two crystal structures of the human Y-family DNA polymerase iota complexed with the major 1-nitropyrene DNA lesion at the insertion stage, incorporating either dCTP or dATP nucleotide opposite the lesion. Polι maintains the adduct in its active site in two distinct conformations. dCTP forms a Watson–Crick base pair with the adducted guanine and excludes the pyrene ring from the helical DNA, which inhibits replication beyond the lesion. By contrast, the mismatched dATP stacks above the pyrene ring that is intercalated in the helix and achieves a productive conformation for misincorporation. The intra-helical bulky pyrene mimics a base pair in the active site and facilitates adenine misincorporation. By structure-based mutagenesis, we show that the restrictive active site of human polη prevents the intra-helical conformation and A-base misinsertions. This work provides one of the molecular mechanisms for G to T transversions, a signature mutation in human lung cancer. PMID:23268450

  10. Methamphetamine enhances Hepatitis C virus replication in human hepatocytes

    PubMed Central

    Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.

    2009-01-01

    SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590

  11. Causal Inference for fMRI Time Series Data with Systematic Errors of Measurement in a Balanced On/Off Study of Social Evaluative Threat.

    PubMed

    Sobel, Michael E; Lindquist, Martin A

    2014-07-01

    Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.

  12. Identification and correction of systematic error in high-throughput sequence data

    PubMed Central

    2011-01-01

    Background A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. Results We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. Conclusions Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments. PMID:22099972

  13. Inhibition of avian tumor virus replication by CCCH-type zinc finger antiviral protein

    PubMed Central

    Zhu, Mingjun; Ma, Xiaoqian; Cui, Xiyao; Zhou, Jing; Li, Chengui; Huang, Libo; Shang, Yingli; Cheng, Ziqiang

    2017-01-01

    CCCH type zinc finger antiviral protein (ZAP) is a host restriction factor that inhibits the replication of a variety of viruses in mammals. However, little is known about its antiviral activity on avian tumor virus. Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces myelocytomas and various other tumors in meat and egg type chickens. Here, we identified a chicken ZAP (chZAP) that increased at early stage, and subsequently decreased after infection of ALV-J in DF-1 cells, indicating the inducible feature of the endogenous chZAP. To demonstrate the inhibitory effect on ALV-J replication by chZAP, we expressed exogenous chZAP by lentivirus based vectors in DF-1 cells that infected by ALV-J. The result showed that overexpression of chZAP significantly inhibited ALV-J replication at both mRNA level and protein level. Consequently, knockdown of endogenous chZAP by RNAi facilitated ALV-J replication in DF-1 cells. Further, we demonstrated that chZAP interacts with SU protein (encode by gp85 gene) of ALV-J in cytoplasm. Taken together, our results demonstrated that chZAP inhibits ALV-J by both mRNA and protein pathway and it may shed light on a novel antiviral approach in poultry. PMID:28938603

  14. Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.

    PubMed

    Hargrave, Catriona; Mason, Nicole; Guidi, Robyn; Miller, Julie-Anne; Becker, Jillian; Moores, Matthew; Mengersen, Kerrie; Poulsen, Michael; Harden, Fiona

    2016-03-01

    Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.

  15. Recommendations for Replication Research in Special Education: A Framework of Systematic, Conceptual Replications

    ERIC Educational Resources Information Center

    Coyne, Michael D.; Cook, Bryan G.; Therrien, William J.

    2016-01-01

    Special education researchers conduct studies that can be considered replications. However, they do not often refer to them as replication studies. The purpose of this article is to consider the potential benefits of conceptualizing special education intervention research within a framework of systematic, conceptual replication. Specifically, we…

  16. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers.

    PubMed

    Shlien, Adam; Campbell, Brittany B; de Borja, Richard; Alexandrov, Ludmil B; Merico, Daniele; Wedge, David; Van Loo, Peter; Tarpey, Patrick S; Coupland, Paul; Behjati, Sam; Pollett, Aaron; Lipman, Tatiana; Heidari, Abolfazl; Deshmukh, Shriya; Avitzur, Na'ama; Meier, Bettina; Gerstung, Moritz; Hong, Ye; Merino, Diana M; Ramakrishna, Manasa; Remke, Marc; Arnold, Roland; Panigrahi, Gagan B; Thakkar, Neha P; Hodel, Karl P; Henninger, Erin E; Göksenin, A Yasemin; Bakry, Doua; Charames, George S; Druker, Harriet; Lerner-Ellis, Jordan; Mistry, Matthew; Dvir, Rina; Grant, Ronald; Elhasid, Ronit; Farah, Roula; Taylor, Glenn P; Nathan, Paul C; Alexander, Sarah; Ben-Shachar, Shay; Ling, Simon C; Gallinger, Steven; Constantini, Shlomi; Dirks, Peter; Huang, Annie; Scherer, Stephen W; Grundy, Richard G; Durno, Carol; Aronson, Melyssa; Gartner, Anton; Meyn, M Stephen; Taylor, Michael D; Pursell, Zachary F; Pearson, Christopher E; Malkin, David; Futreal, P Andrew; Stratton, Michael R; Bouffet, Eric; Hawkins, Cynthia; Campbell, Peter J; Tabori, Uri

    2015-03-01

    DNA replication-associated mutations are repaired by two components: polymerase proofreading and mismatch repair. The mutation consequences of disruption to both repair components in humans are not well studied. We sequenced cancer genomes from children with inherited biallelic mismatch repair deficiency (bMMRD). High-grade bMMRD brain tumors exhibited massive numbers of substitution mutations (>250/Mb), which was greater than all childhood and most cancers (>7,000 analyzed). All ultra-hypermutated bMMRD cancers acquired early somatic driver mutations in DNA polymerase ɛ or δ. The ensuing mutation signatures and numbers are unique and diagnostic of childhood germ-line bMMRD (P < 10(-13)). Sequential tumor biopsy analysis revealed that bMMRD/polymerase-mutant cancers rapidly amass an excess of simultaneous mutations (∼600 mutations/cell division), reaching but not exceeding ∼20,000 exonic mutations in <6 months. This implies a threshold compatible with cancer-cell survival. We suggest a new mechanism of cancer progression in which mutations develop in a rapid burst after ablation of replication repair.

  17. Technology utilization to prevent medication errors.

    PubMed

    Forni, Allison; Chu, Hanh T; Fanikos, John

    2010-01-01

    Medication errors have been increasingly recognized as a major cause of iatrogenic illness and system-wide improvements have been the focus of prevention efforts. Critically ill patients are particularly vulnerable to injury resulting from medication errors because of the severity of illness, need for high risk medications with a narrow therapeutic index and frequent use of intravenous infusions. Health information technology has been identified as method to reduce medication errors as well as improve the efficiency and quality of care; however, few studies regarding the impact of health information technology have focused on patients in the intensive care unit. Computerized physician order entry and clinical decision support systems can play a crucial role in decreasing errors in the ordering stage of the medication use process through improving the completeness and legibility of orders, alerting physicians to medication allergies and drug interactions and providing a means for standardization of practice. Electronic surveillance, reminders and alerts identify patients susceptible to an adverse event, communicate critical changes in a patient's condition, and facilitate timely and appropriate treatment. Bar code technology, intravenous infusion safety systems, and electronic medication administration records can target prevention of errors in medication dispensing and administration where other technologies would not be able to intercept a preventable adverse event. Systems integration and compliance are vital components in the implementation of health information technology and achievement of a safe medication use process.

  18. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    NASA Astrophysics Data System (ADS)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  19. A Replication by Any Other Name: A Systematic Review of Replicative Intervention Studies

    ERIC Educational Resources Information Center

    Cook, Bryan G.; Collins, Lauren W.; Cook, Sara C.; Cook, Lysandra

    2016-01-01

    Replication research is essential to scientific knowledge. Reviews of replication studies often electronically search for "replicat*" as a textword, which does not identify studies that replicate previous research but do not self-identify as such. We examined whether the 83 intervention studies published in six non-categorical research…

  20. Effective Teaching and Learning Environments and Principal Self-Efficacy in Oklahoma: Replication of a Previous Study

    ERIC Educational Resources Information Center

    Berry, Kathryn

    2013-01-01

    The purpose of this study was to replicate a previous study by Smith et al. (2006) that explored principal self-efficacy beliefs for facilitating effective instructional environments at their schools. There has been limited research conducted on principal's self-efficacy, and the studies that have been completed on the topic have not been…

  1. Error-Trellis Construction for Convolutional Codes Using Shifted Error/Syndrome-Subsequences

    NASA Astrophysics Data System (ADS)

    Tajima, Masato; Okino, Koji; Miyagoshi, Takashi

    In this paper, we extend the conventional error-trellis construction for convolutional codes to the case where a given check matrix H(D) has a factor Dl in some column (row). In the first case, there is a possibility that the size of the state space can be reduced using shifted error-subsequences, whereas in the second case, the size of the state space can be reduced using shifted syndrome-subsequences. The construction presented in this paper is based on the adjoint-obvious realization of the corresponding syndrome former HT(D). In the case where all the columns and rows of H(D) are delay free, the proposed construction is reduced to the conventional one of Schalkwijk et al. We also show that the proposed construction can equally realize the state-space reduction shown by Ariel et al. Moreover, we clarify the difference between their construction and that of ours using examples.

  2. Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells

    PubMed Central

    Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain

    2009-01-01

    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions ∼300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as ‘master’ replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these ‘master’ origins are likely to play a key role in genome dynamics during evolution and in pathological situations. PMID:19671527

  3. RECAP (Rock County Education and Criminal Addictions Program) Program Manual Prepared to be of Assistance in Program Replication.

    ERIC Educational Resources Information Center

    Blackhawk Technical Coll., Janesville, WI.

    This document, which is designed for practitioners involved in the vocational education/rehabilitation of incarcerated adults, contains materials to facilitate replication of the Rock County Education and Criminal Additions Program (RECAP), a comprehensive, integrated training/rehabilitation program that was developed and implemented through the…

  4. System review: a method for investigating medical errors in healthcare settings.

    PubMed

    Alexander, G L; Stone, T T

    2000-01-01

    System analysis is a process of evaluating objectives, resources, structure, and design of businesses. System analysis can be used by leaders to collaboratively identify breakthrough opportunities to improve system processes. In healthcare systems, system analysis can be used to review medical errors (system occurrences) that may place patients at risk for injury, disability, and/or death. This study utilizes a case management approach to identify medical errors. Utilizing an interdisciplinary approach, a System Review Team was developed to identify trends in system occurrences, facilitate communication, and enhance the quality of patient care by reducing medical errors.

  5. Approaching a parameter-free metadynamics.

    PubMed

    Dickson, Bradley M

    2011-09-01

    We present a unique derivation of metadynamics. This work leads to a more robust understanding of the error in the computed free energy than what has been obtained previously. Moreover, a formula for the exact free energy is introduced. The formula can be used to post-process any existing well-tempered metadynamics data, allowing one, in principle, to obtain an exact free energy regardless of the metadynamics parameters.

  6. Approaching a parameter-free metadynamics

    NASA Astrophysics Data System (ADS)

    Dickson, Bradley M.

    2011-09-01

    We present a unique derivation of metadynamics. This work leads to a more robust understanding of the error in the computed free energy than what has been obtained previously. Moreover, a formula for the exact free energy is introduced. The formula can be used to post-process any existing well-tempered metadynamics data, allowing one, in principle, to obtain an exact free energy regardless of the metadynamics parameters.

  7. A system dynamics approach to analyze laboratory test errors.

    PubMed

    Guo, Shijing; Roudsari, Abdul; Garcez, Artur d'Avila

    2015-01-01

    Although many researches have been carried out to analyze laboratory test errors during the last decade, it still lacks a systemic view of study, especially to trace errors during test process and evaluate potential interventions. This study implements system dynamics modeling into laboratory errors to trace the laboratory error flows and to simulate the system behaviors while changing internal variable values. The change of the variables may reflect a change in demand or a proposed intervention. A review of literature on laboratory test errors was given and provided as the main data source for the system dynamics model. Three "what if" scenarios were selected for testing the model. System behaviors were observed and compared under different scenarios over a period of time. The results suggest system dynamics modeling has potential effectiveness of helping to understand laboratory errors, observe model behaviours, and provide a risk-free simulation experiments for possible strategies.

  8. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  9. Adaptive scaling of reward in episodic memory: a replication study.

    PubMed

    Mason, Alice; Ludwig, Casimir; Farrell, Simon

    2017-11-01

    Reward is thought to enhance episodic memory formation via dopaminergic consolidation. Bunzeck, Dayan, Dolan, and Duzel [(2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 1380-1394] provided functional magnetic resonance imaging (fMRI) and behavioural evidence that reward and episodic memory systems are sensitive to the contextual value of a reward-whether it is relatively higher or lower-as opposed to absolute value or prediction error. We carried out a direct replication of their behavioural study and did not replicate their finding that memory performance associated with reward follows this pattern of adaptive scaling. An effect of reward outcome was in the opposite direction to that in the original study, with lower reward outcomes leading to better memory than higher outcomes. There was a marginal effect of reward context, suggesting that expected value affected memory performance. We discuss the robustness of the reward memory relationship to variations in reward context, and whether other reward-related factors have a more reliable influence on episodic memory.

  10. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    PubMed

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  11. The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae.

    PubMed

    McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K

    2008-12-01

    Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.

  12. Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA Replication

    PubMed Central

    Chase, Amanda J.; Daijogo, Sarah

    2014-01-01

    ABSTRACT Due to their small genome size, picornaviruses must utilize host proteins to mediate cap-independent translation and viral RNA replication. The host RNA-binding protein poly(rC) binding protein 2 (PCBP2) is involved in both processes in poliovirus infected cells. It has been shown that the viral proteinase 3CD cleaves PCBP2 and contributes to viral translation inhibition. However, cleaved PCBP2 remains active in viral RNA replication. This would suggest that both cleaved and intact forms of PCBP2 have a role in the viral RNA replication cycle. The picornavirus genome must act as a template for both translation and RNA replication. However, a template that is actively being translated cannot function as a template for RNA replication, suggesting that there is a switch in template usage from translation to RNA replication. We demonstrate that the cleavage of PCBP2 by the poliovirus 3CD proteinase is a necessary step for efficient viral RNA replication and, as such, may be important for mediating a switch in template usage from translation to RNA replication. IMPORTANCE Poliovirus, like all positive-strand RNA viruses that replicate in the cytoplasm of eukaryotic cells, uses its genomic RNA as a template for both viral protein synthesis and RNA replication. Given that these processes cannot occur simultaneously on the same template, poliovirus has evolved a mechanism(s) to facilitate the switch from using templates for translation to using them for RNA synthesis. This study explores one possible scenario for how the virus alters the functions of a host cell RNA binding protein to mediate, in part, this important transition. PMID:24371074

  13. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    PubMed

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Template Directed Replication Supports the Maintenance of the Metabolically Coupled Replicator System

    NASA Astrophysics Data System (ADS)

    Könnyű, Balázs; Czárán, Tamás

    2015-06-01

    The RNA World scenario of prebiotic chemical evolution is among the most plausible conceptual framework available today for modelling the origin of life. RNA offers genetic and catalytic (metabolic) functionality embodied in a single chemical entity, and a metabolically cooperating community of RNA molecules would constitute a viable infrabiological subsystem with a potential to evolve into proto-cellular life. Our Metabolically Coupled Replicator System (MCRS) model is a spatially explicit computer simulation implementation of the RNA-World scenario, in which replicable ribozymes cooperate in supplying each other with monomers for their own replication. MCRS has been repeatedly demonstrated to be viable and evolvable, with different versions of the model improved in depth (chemical detail of metabolism) or in extension (additional functions of RNA molecules). One of the dynamically relevant extensions of the MCRS approach to prebiotic RNA evolution is the explicit inclusion of template replication into its assumptions, which we have studied in the present version. We found that this modification has not changed the behaviour of the system in the qualitative sense, just the range of the parameter space which is optimal for the coexistence of metabolically cooperating replicators has shifted in terms of metabolite mobility. The system also remains resistant and tolerant to parasitic replicators.

  15. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins.

    PubMed

    Rangarajan, Savithri; Woodgate, Roger; Goodman, Myron F

    2002-02-01

    In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.

  16. How to Avoid Errors in Error Propagation: Prediction Intervals and Confidence Intervals in Forest Biomass

    NASA Astrophysics Data System (ADS)

    Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.

    2016-12-01

    Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.

  17. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire

    Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10 ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.

  18. Stalled replication forks within heterochromatin require ATRX for protection

    PubMed Central

    Huh, M S; Ivanochko, D; Hashem, L E; Curtin, M; Delorme, M; Goodall, E; Yan, K; Picketts, D J

    2016-01-01

    Expansive growth of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered neocortex, while also placing a heavy burden on proteins that regulate chromatin packaging and genome integrity. This problem is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. ATRX gene mutations cause a severe intellectual disability disorder (α-thalassemia mental retardation X-linked (ATRX) syndrome; OMIM no. 301040), characterized by microcephaly, urogenital abnormalities and α-thalassemia. Although the ATRX protein is required for the maintenance of repetitive DNA within heterochromatin, how this translates to disease pathogenesis remain poorly understood and was a focus of this study. We demonstrate that AtrxFoxG1Cre forebrain-specific conditional knockout mice display poly(ADP-ribose) polymerase-1 (Parp-1) hyperactivation during neurogenesis and generate fewer late-born Cux1- and Brn2-positive neurons that accounts for the reduced cortical size. Moreover, DNA damage, induced Parp-1 and Atm activation is elevated in progenitor cells and contributes to their increased level of cell death. ATRX-null HeLa cells are similarly sensitive to hydroxyurea-induced replication stress, accumulate DNA damage and proliferate poorly. Impaired BRCA1-RAD51 colocalization and PARP-1 hyperactivation indicated that stalled replication forks are not efficiently protected. DNA fiber assays confirmed that MRE11 degradation of stalled replication forks was rampant in the absence of ATRX or DAXX. Indeed, fork degradation in ATRX-null cells could be attenuated by treatment with the MRE11 inhibitor mirin, or exacerbated by inhibiting PARP-1 activity. Taken together, these results suggest that ATRX is required to limit replication stress during cellular proliferation, whereas upregulation of PARP-1 activity functions as a compensatory mechanism to protect stalled forks

  19. Effects of holding time and measurement error on culturing Legionella in environmental water samples.

    PubMed

    Flanders, W Dana; Kirkland, Kimberly H; Shelton, Brian G

    2014-10-01

    Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Replication protein A: directing traffic at the intersection of replication and repair.

    PubMed

    Oakley, Greg G; Patrick, Steve M

    2010-06-01

    Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.

  1. [Investigating phonological planning processes in speech production through a speech-error induction technique].

    PubMed

    Nakayama, Masataka; Saito, Satoru

    2015-08-01

    The present study investigated principles of phonological planning, a common serial ordering mechanism for speech production and phonological short-term memory. Nakayama and Saito (2014) have investigated the principles by using a speech-error induction technique, in which participants were exposed to an auditory distracIor word immediately before an utterance of a target word. They demonstrated within-word adjacent mora exchanges and serial position effects on error rates. These findings support, respectively, the temporal distance and the edge principles at a within-word level. As this previous study induced errors using word distractors created by exchanging adjacent morae in the target words, it is possible that the speech errors are expressions of lexical intrusions reflecting interactive activation of phonological and lexical/semantic representations. To eliminate this possibility, the present study used nonword distractors that had no lexical or semantic representations. This approach successfully replicated the error patterns identified in the abovementioned study, further confirming that the temporal distance and edge principles are organizing precepts in phonological planning.

  2. Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate fat mobilization and intracellular growth in murine adipocytes.

    PubMed

    Walenna, Nirwana Fitriani; Kurihara, Yusuke; Chou, Bin; Ishii, Kazunari; Soejima, Toshinori; Itoh, Ryota; Shimizu, Akinori; Ichinohe, Takeshi; Hiromatsu, Kenji

    2018-01-01

    Fatty acid-binding protein 4 (FABP4), a cytosolic lipid chaperone predominantly expressed in adipocytes and macrophages, modulates lipid fluxes, trafficking, signaling, and metabolism. Recent studies have demonstrated that FABP4 regulates metabolic and inflammatory pathways, and in mouse models its inhibition can improve type 2 diabetes mellitus and atherosclerosis. However, the role of FABP4 in bacterial infection, metabolic crosstalk between host and pathogen, and bacterial pathogenesis have not been studied. As an obligate intracellular pathogen, Chlamydia pneumoniae needs to obtain nutrients such as ATP and lipids from host cells. Here, we show that C. pneumoniae successfully infects and proliferates in murine adipocytes by inducing hormone sensitive lipase (HSL)-mediated lipolysis. Chemical inhibition or genetic manipulation of HSL significantly abrogated the intracellular growth of C. pneumoniae in adipocytes. Liberated free fatty acids were utilized to generate ATP via β-oxidation, which C. pneumoniae usurped for its replication. Strikingly, chemical inhibition or genetic silencing of FABP4 significantly abrogated C. pneumoniae infection-induced lipolysis and mobilization of liberated FFAs, resulting in reduced bacterial growth in adipocytes. Collectively, these results demonstrate that C. pneumoniae exploits host FABP4 to facilitate fat mobilization and intracellular replication in adipocytes. This work uncovers a novel strategy used by intracellular pathogens for acquiring energy via hijacking of the host lipid metabolism pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy

    PubMed Central

    2017-01-01

    Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package. PMID:28100584

  4. Human Error as an Emergent Property of Action Selection and Task Place-Holding.

    PubMed

    Tamborello, Franklin P; Trafton, J Gregory

    2017-05-01

    A computational process model could explain how the dynamic interaction of human cognitive mechanisms produces each of multiple error types. With increasing capability and complexity of technological systems, the potential severity of consequences of human error is magnified. Interruption greatly increases people's error rates, as does the presence of other information to maintain in an active state. The model executed as a software-instantiated Monte Carlo simulation. It drew on theoretical constructs such as associative spreading activation for prospective memory, explicit rehearsal strategies as a deliberate cognitive operation to aid retrospective memory, and decay. The model replicated the 30% effect of interruptions on postcompletion error in Ratwani and Trafton's Stock Trader task, the 45% interaction effect on postcompletion error of working memory capacity and working memory load from Byrne and Bovair's Phaser Task, as well as the 5% perseveration and 3% omission effects of interruption from the UNRAVEL Task. Error classes including perseveration, omission, and postcompletion error fall naturally out of the theory. The model explains post-interruption error in terms of task state representation and priming for recall of subsequent steps. Its performance suggests that task environments providing more cues to current task state will mitigate error caused by interruption. For example, interfaces could provide labeled progress indicators or facilities for operators to quickly write notes about their task states when interrupted.

  5. Functional impairment of cytomegalovirus specific CD8 T cells predicts high-level replication after renal transplantation.

    PubMed

    Mattes, F M; Vargas, A; Kopycinski, J; Hainsworth, E G; Sweny, P; Nebbia, G; Bazeos, A; Lowdell, M; Klenerman, P; Phillips, R E; Griffiths, P D; Emery, V C

    2008-05-01

    Human cytomegalovirus (HCMV) remains an important cause of morbidity after allotransplantation, causing a range of direct effects including hepatitis, pneumonitis, enteritis and retinitis. A dominant risk factor for HCMV disease is high level viral replication in blood but it remains unexplained why only a subset of patients develop such diseases. In this detailed study of 25 renal transplant recipients, we show that functional impairment of HCMV specific CD8 T cells in the production of interferon gamma was associated with a 14-fold increased risk of progression to high level replication. The CD8 T-cell impairment persisted during the period of high level replication and was more prominent in patients above 40 years of age (odds ratio = 1.37, p = 0.01) and was also evident in dialysis patients. Threshold levels of functional impairment were associated with an increased risk of future HCMV replication and there was a direct relationship between the functional capacity of HCMV ppUL83 CD8 T cells and HCMV load (R(2)= 0.83). These results help to explain why a subset of seropositive individuals develop HCMV replication and are at risk of end-organ disease and may facilitate the early identification of individuals who would benefit from targeted anti-HCMV therapy after renal transplantation.

  6. Suppression of AcMNPV replication by adf and thymosin protein up-regulation in a new testis cell line, Ha-shl-t

    USDA-ARS?s Scientific Manuscript database

    Host cytoskeletons facilitate the entry, replication and egress of viruses; because cytoskeletons are essential for viral survival, one mechanism of resisting viral infections involves regulating cytoskeletal polymerization/depolymerization. However, the molecular mechanisms of regulating these chan...

  7. Inhibition of rotavirus replication by downregulation of fatty acid synthesis.

    PubMed

    Gaunt, Eleanor R; Cheung, Winsome; Richards, James E; Lever, Andrew; Desselberger, Ulrich

    2013-06-01

    Recently the recruitment of lipid droplets (LDs) to sites of rotavirus (RV) replication was reported. LDs are polymorphic organelles that store triacylglycerols, cholesterol and cholesterol esters. The neutral fats are derived from palmitoyl-CoA, synthesized via the fatty acid biosynthetic pathway. RV-infected cells were treated with chemical inhibitors of the fatty acid biosynthetic pathway, and the effects on viral replication kinetics were assessed. Treatment with compound C75, an inhibitor of the fatty acid synthase enzyme complex (FASN), reduced RV infectivity 3.2-fold (P = 0.07) and modestly reduced viral RNA synthesis (1.2-fold). Acting earlier in the fatty acid synthesis pathway, TOFA [5-(Tetradecyloxy)-2-furoic acid] inhibits the enzyme acetyl-CoA carboxylase 1 (ACC1). TOFA reduced the infectivity of progeny RV 31-fold and viral RNA production 6-fold. The effect of TOFA on RV infectivity and RNA replication was dose-dependent, and infectivity was reduced by administering TOFA up to 4 h post-infection. Co-treatment of RV-infected cells with C75 and TOFA synergistically reduced viral infectivity. Knockdown by siRNA of FASN and ACC1 produced findings similar to those observed by inhibiting these proteins with the chemical compounds. Inhibition of fatty acid synthesis using a range of approaches uniformly had a more marked impact on viral infectivity than on viral RNA yield, inferring a role for LDs in virus assembly and/or egress. Specific inhibitors of fatty acid metabolism may help pinpoint the critical structural and biochemical features of LDs that are essential for RV replication, and facilitate the development of antiviral therapies.

  8. Who Needs Replication?

    ERIC Educational Resources Information Center

    Porte, Graeme

    2013-01-01

    In this paper, the editor of a recent Cambridge University Press book on research methods discusses replicating previous key studies to throw more light on their reliability and generalizability. Replication research is presented as an accepted method of validating previous research by providing comparability between the original and replicated…

  9. Mechanisms of bacterial DNA replication restart

    PubMed Central

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  10. What Should Researchers Expect When They Replicate Studies? A Statistical View of Replicability in Psychological Science.

    PubMed

    Patil, Prasad; Peng, Roger D; Leek, Jeffrey T

    2016-07-01

    A recent study of the replicability of key psychological findings is a major contribution toward understanding the human side of the scientific process. Despite the careful and nuanced analysis reported, the simple narrative disseminated by the mass, social, and scientific media was that in only 36% of the studies were the original results replicated. In the current study, however, we showed that 77% of the replication effect sizes reported were within a 95% prediction interval calculated using the original effect size. Our analysis suggests two critical issues in understanding replication of psychological studies. First, researchers' intuitive expectations for what a replication should show do not always match with statistical estimates of replication. Second, when the results of original studies are very imprecise, they create wide prediction intervals-and a broad range of replication effects that are consistent with the original estimates. This may lead to effects that replicate successfully, in that replication results are consistent with statistical expectations, but do not provide much information about the size (or existence) of the true effect. In this light, the results of the Reproducibility Project: Psychology can be viewed as statistically consistent with what one might expect when performing a large-scale replication experiment. © The Author(s) 2016.

  11. DNA replication in the archaea.

    PubMed

    Barry, Elizabeth R; Bell, Stephen D

    2006-12-01

    The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.

  12. Measurement error associated with surveys of fish abundance in Lake Michigan

    USGS Publications Warehouse

    Krause, Ann E.; Hayes, Daniel B.; Bence, James R.; Madenjian, Charles P.; Stedman, Ralph M.

    2002-01-01

    In fisheries, imprecise measurements in catch data from surveys adds uncertainty to the results of fishery stock assessments. The USGS Great Lakes Science Center (GLSC) began to survey the fall fish community of Lake Michigan in 1962 with bottom trawls. The measurement error was evaluated at the level of individual tows for nine fish species collected in this survey by applying a measurement-error regression model to replicated trawl data. It was found that the estimates of measurement-error variance ranged from 0.37 (deepwater sculpin, Myoxocephalus thompsoni) to 1.23 (alewife, Alosa pseudoharengus) on a logarithmic scale corresponding to a coefficient of variation = 66% to 156%. The estimates appeared to increase with the range of temperature occupied by the fish species. This association may be a result of the variability in the fall thermal structure of the lake. The estimates may also be influenced by other factors, such as pelagic behavior and schooling. Measurement error might be reduced by surveying the fish community during other seasons and/or by using additional technologies, such as acoustics. Measurement-error estimates should be considered when interpreting results of assessments that use abundance information from USGS-GLSC surveys of Lake Michigan and could be used if the survey design was altered. This study is the first to report estimates of measurement-error variance associated with this survey.

  13. Correcting false memories: Errors must be noticed and replaced.

    PubMed

    Mullet, Hillary G; Marsh, Elizabeth J

    2016-04-01

    Memory can be unreliable. For example, after reading The new baby stayed awake all night, people often misremember that the new baby cried all night (Brewer, 1977); similarly, after hearing bed, rest, and tired, people often falsely remember that sleep was on the list (Roediger & McDermott, 1995). In general, such false memories are difficult to correct, persisting despite warnings and additional study opportunities. We argue that errors must first be detected to be corrected; consistent with this argument, two experiments showed that false memories were nearly eliminated when conditions facilitated comparisons between participants' errors and corrective feedback (e.g., immediate trial-by-trial feedback that allowed direct comparisons between their responses and the correct information). However, knowledge that they had made an error was insufficient; unless the feedback message also contained the correct answer, the rate of false memories remained relatively constant. On the one hand, there is nothing special about correcting false memories: simply labeling an error as "wrong" is also insufficient for correcting other memory errors, including misremembered facts or mistranslations. However, unlike these other types of errors--which often benefit from the spacing afforded by delayed feedback--false memories require a special consideration: Learners may fail to notice their errors unless the correction conditions specifically highlight them.

  14. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    PubMed

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Estimating genotype error rates from high-coverage next-generation sequence data.

    PubMed

    Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil

    2014-11-01

    Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Intact error monitoring in combat Veterans with post-traumatic stress disorder.

    PubMed

    Swick, Diane; Honzel, Nikki; Turken, U

    2015-11-30

    The error-related negativity (ERN) is a neuroelectric signature of performance monitoring during speeded response time tasks. Previous studies indicate that individuals with anxiety disorders show ERN enhancements that correlate with the degree of clinical symptomology. Less is known about the error monitoring system in post-traumatic stress disorder (PTSD). PTSD is characterized by impairments in the regulation of fear and other emotional responses, as well as deficits in maintaining cognitive control. Here, combat Veterans with PTSD were compared to control Veterans in two different versions of the flanker task (n=13 or 14 per group). Replicating and extending previous findings, PTSD patients showed an intact ERN in both experiments. In addition, task performance and error compensation behavior were intact. Finally, ERN amplitude showed no relationship with self-reported PTSD, depression, or post-concussive symptoms. These results suggest that error monitoring represents a relative strength in PTSD that can dissociate from cognitive control functions that are impaired, such as response inhibition and sustained attention. A healthy awareness of errors in external actions could be leveraged to improve interoceptive awareness of emotional state. The results could have positive implications for PTSD treatments that rely on self-monitoring abilities, such as neurofeedback and mindfulness training. Published by Elsevier Ireland Ltd.

  17. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection.

    PubMed

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N; Gestwicki, Jason E; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-11-19

    Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. POOLMS: A computer program for fitting and model selection for two level factorial replication-free experiments

    NASA Technical Reports Server (NTRS)

    Amling, G. E.; Holms, A. G.

    1973-01-01

    A computer program is described that performs a statistical multiple-decision procedure called chain pooling. It uses a number of mean squares assigned to error variance that is conditioned on the relative magnitudes of the mean squares. The model selection is done according to user-specified levels of type 1 or type 2 error probabilities.

  19. Error-related brain activity and error awareness in an error classification paradigm.

    PubMed

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.

  1. The Mechanism of Viral Replication. Structure of Replication Complexes of Encephalomyocarditis Virus

    PubMed Central

    Thach, Sigrid S.; Dobbertin, Darrell; Lawrence, Charles; Golini, Fred; Thach, Robert E.

    1974-01-01

    The structure of the purified replicative intermediate of encephalomyocarditis virus was determined by electron microscopy. Approximately 80% of the replicative intermediate complexes were characterized by a filament of double-stranded RNA of widely variable length, which had a “bush” of single-stranded RNA at one end. In many examples one or more additional single-stranded bushes were appended internally to the double-stranded RNA filament. These results support the view that before deproteinization, replicative intermediate contains little if any double-stranded RNA. Images PMID:4366773

  2. Error analysis of 3D-PTV through unsteady interfaces

    NASA Astrophysics Data System (ADS)

    Akutina, Yulia; Mydlarski, Laurent; Gaskin, Susan; Eiff, Olivier

    2018-03-01

    The feasibility of stereoscopic flow measurements through an unsteady optical interface is investigated. Position errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity waves was 6% of the water depth, resulting in water surface inclinations of about 0.2°. (The water depth is used herein as a relevant length scale, because the measurements are performed in the entire water column. In a more general case, the relevant scale is the maximum distance from the interface to the measurement plane, H, which here is the same as the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative displacement of a particle between two frames, the errors in the measured water velocities were reasonably small, because the error in the velocity is the relative position error over the average displacement distance. The relative position error was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to 1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying (have low curvature). The stronger the

  3. Dissociable Genetic Contributions to Error Processing: A Multimodal Neuroimaging Study

    PubMed Central

    Agam, Yigal; Vangel, Mark; Roffman, Joshua L.; Gallagher, Patience J.; Chaponis, Jonathan; Haddad, Stephen; Goff, Donald C.; Greenberg, Jennifer L.; Wilhelm, Sabine; Smoller, Jordan W.; Manoach, Dara S.

    2014-01-01

    Background Neuroimaging studies reliably identify two markers of error commission: the error-related negativity (ERN), an event-related potential, and functional MRI activation of the dorsal anterior cingulate cortex (dACC). While theorized to reflect the same neural process, recent evidence suggests that the ERN arises from the posterior cingulate cortex not the dACC. Here, we tested the hypothesis that these two error markers also have different genetic mediation. Methods We measured both error markers in a sample of 92 comprised of healthy individuals and those with diagnoses of schizophrenia, obsessive-compulsive disorder or autism spectrum disorder. Participants performed the same task during functional MRI and simultaneously acquired magnetoencephalography and electroencephalography. We examined the mediation of the error markers by two single nucleotide polymorphisms: dopamine D4 receptor (DRD4) C-521T (rs1800955), which has been associated with the ERN and methylenetetrahydrofolate reductase (MTHFR) C677T (rs1801133), which has been associated with error-related dACC activation. We then compared the effects of each polymorphism on the two error markers modeled as a bivariate response. Results We replicated our previous report of a posterior cingulate source of the ERN in healthy participants in the schizophrenia and obsessive-compulsive disorder groups. The effect of genotype on error markers did not differ significantly by diagnostic group. DRD4 C-521T allele load had a significant linear effect on ERN amplitude, but not on dACC activation, and this difference was significant. MTHFR C677T allele load had a significant linear effect on dACC activation but not ERN amplitude, but the difference in effects on the two error markers was not significant. Conclusions DRD4 C-521T, but not MTHFR C677T, had a significant differential effect on two canonical error markers. Together with the anatomical dissociation between the ERN and error-related dACC activation

  4. Error management for musicians: an interdisciplinary conceptual framework

    PubMed Central

    Kruse-Weber, Silke; Parncutt, Richard

    2014-01-01

    Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians’ generally negative attitude toward errors and the tendency to aim for flawless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error) and error management (during and after the error) are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly – or not at all. A more constructive, creative, and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of such an approach. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey-relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further music education and

  5. Error management for musicians: an interdisciplinary conceptual framework.

    PubMed

    Kruse-Weber, Silke; Parncutt, Richard

    2014-01-01

    Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians' generally negative attitude toward errors and the tendency to aim for flawless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error) and error management (during and after the error) are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly - or not at all. A more constructive, creative, and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of such an approach. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey-relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further music education and

  6. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NASA Astrophysics Data System (ADS)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  7. The next organizational challenge: finding and addressing diagnostic error.

    PubMed

    Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H

    2014-03-01

    Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.

  8. Reducing Diagnostic Errors through Effective Communication: Harnessing the Power of Information Technology

    PubMed Central

    Naik, Aanand Dinkar; Rao, Raghuram; Petersen, Laura Ann

    2008-01-01

    Diagnostic errors are poorly understood despite being a frequent cause of medical errors. Recent efforts have aimed to advance the "basic science" of diagnostic error prevention by tracing errors to their most basic origins. Although a refined theory of diagnostic error prevention will take years to formulate, we focus on communication breakdown, a major contributor to diagnostic errors and an increasingly recognized preventable factor in medical mishaps. We describe a comprehensive framework that integrates the potential sources of communication breakdowns within the diagnostic process and identifies vulnerable steps in the diagnostic process where various types of communication breakdowns can precipitate error. We then discuss potential information technology-based interventions that may have efficacy in preventing one or more forms of these breakdowns. These possible intervention strategies include using new technologies to enhance communication between health providers and health systems, improve patient involvement, and facilitate management of information in the medical record. PMID:18373151

  9. DNA Replication Profiling Using Deep Sequencing.

    PubMed

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  10. Comparisons of refractive errors between twins and singletons in Chinese school-age samples.

    PubMed

    Hur, Yoon-Mi; Zheng, Yingfeng; Huang, Wenyong; Ding, Xiaohu; He, Mingguang

    2009-02-01

    Studies have reported that refractive errors are associated with premature births. As twins have higher prevalence of prematurity than singletons, it is important to assess similarity of the prevalence of refractive errors in twins and singletons for proper interpretations and generalizations of the findings from twin studies. We compared refractive errors and diopter hours between 561 pairs of twins and 3757 singletons who are representative of school-age children (7-15 years) residing in an urban area of southern China. We found that the means and variances of the continuous measurement of spherical equivalent refractive error and diopter hours were not significantly different between twins and singletons. Although the prevalence of myopia was comparable between twins and singletons, that of hyperopia and astigmatism was slightly but significantly higher in twins than in singletons. These results are inconsistent with those of adult studies that showed no differences in refractive errors between twins and singletons. Given that the sample size of twins is relatively small and that this study is the first to demonstrate minor differences in refractive errors between twins and singletons, future replications are necessary to determine whether the slightly higher prevalence of refractive errors in twins than in singletons found in this study was due to a sampling error or to the developmental delay often observed in twins in childhood.

  11. Ease of articulation: A replication.

    PubMed

    Shuster, Linda I; Cottrill, Claire

    2015-01-01

    Researchers, as well as the lay public and the popular press, have become increasingly concerned about the lack of reproducibility of research findings. Despite this concern, research has shown that replications of previously published work comprise a very small proportion of published studies. Moreover, there are fewer published direct replications of research studies by independent investigators, and this type of replication is much less likely to confirm the results of the original research than are replications by the original investigator or conceptual replications. A search of the communication disorders research literature reveals that direct replications by independent investigators are virtually non-existent. The purpose of this project was to describe the major issues related to research reproducibility and report the results of a direct replication of a study by Locke (1972) regarding ease of articulation. Two methods for rating ease of articulation were employed. We were able to reproduce the results of the original study for the first method, obtaining a moderate positive correlation between our rankings of phoneme difficulty and Locke's rankings. We obtained a very high positive correlation between our phoneme rankings and rankings obtained in the original study for the second method. Moreover, we found a higher correlation between difficulty rankings and order of speech sound acquisition for American English than was found in the original study. Direct replication is not necessary for all studies in communication disorders, but should be considered for high impact studies, treatment studies, and those that provide data to support models and theories. The reader will be able to: (1) describe the major concerns related to the replicability of research findings; (2) describe the status of research replications in communication disorders; (3) describe how ease of articulation may relate to the order of speech sound acquisition in children; (4) list some

  12. Replication Proteins and Human Disease

    PubMed Central

    Jackson, Andrew P.; Laskey, Ronald A.; Coleman, Nicholas

    2014-01-01

    In this article, we discuss the significance of DNA replication proteins in human disease. There is a broad range of mutations in genes encoding replication proteins, which result in several distinct clinical disorders that share common themes. One group of replication proteins, the MCMs, has emerged as effective biomarkers for early detection of a range of common cancers. They offer practical and theoretical advantages over other replication proteins and have been developed for widespread clinical use. PMID:23881941

  13. Psychology, replication & beyond.

    PubMed

    Laws, Keith R

    2016-06-01

    Modern psychology is apparently in crisis and the prevailing view is that this partly reflects an inability to replicate past findings. If a crisis does exists, then it is some kind of 'chronic' crisis, as psychologists have been censuring themselves over replicability for decades. While the debate in psychology is not new, the lack of progress across the decades is disappointing. Recently though, we have seen a veritable surfeit of debate alongside multiple orchestrated and well-publicised replication initiatives. The spotlight is being shone on certain areas and although not everyone agrees on how we should interpret the outcomes, the debate is happening and impassioned. The issue of reproducibility occupies a central place in our whig history of psychology.

  14. Composite Interval Mapping Based on Lattice Design for Error Control May Increase Power of Quantitative Trait Locus Detection.

    PubMed

    He, Jianbo; Li, Jijie; Huang, Zhongwen; Zhao, Tuanjie; Xing, Guangnan; Gai, Junyi; Guan, Rongzhan

    2015-01-01

    Experimental error control is very important in quantitative trait locus (QTL) mapping. Although numerous statistical methods have been developed for QTL mapping, a QTL detection model based on an appropriate experimental design that emphasizes error control has not been developed. Lattice design is very suitable for experiments with large sample sizes, which is usually required for accurate mapping of quantitative traits. However, the lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or adjusted mean of each line of observations in the lattice design had to be used as a response variable, resulting in low QTL detection power. As an improvement, we developed a QTL mapping method termed composite interval mapping based on lattice design (CIMLD). In the lattice design, experimental errors are decomposed into random errors and block-within-replication errors. Four levels of block-within-replication errors were simulated to show the power of QTL detection under different error controls. The simulation results showed that the arithmetic mean method, which is equivalent to a method under random complete block design (RCBD), was very sensitive to the size of the block variance and with the increase of block variance, the power of QTL detection decreased from 51.3% to 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted mean method did not change for different block variances. The CIMLD method showed 1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean methods. Our proposed method was applied to real soybean (Glycine max) data as an example and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic variation, while only three and two QTLs were identified by arithmetic and adjusted mean methods, respectively.

  15. Replication of grazing incidence optics

    NASA Technical Reports Server (NTRS)

    Ulmer, Melville P.

    1986-01-01

    The replication of grazing incidence optics is reviewed. Electroform and epoxy replication are described and compared. It is concluded that for light weight and deep nesting, replication has a distinct advantage over direct production. The resolution of optics produced in this manner is however, limited to about 10 arc seconds; a typical value is 40 arc seconds. Epoxy replicated pieces tend to have better optical figures than electroformed optics, but the latter can be made thinner to make more deeply nested systems.

  16. Analysis of the "naming game" with learning errors in communications.

    PubMed

    Lou, Yang; Chen, Guanrong

    2015-07-16

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  17. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η.

    PubMed

    Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco

    2016-04-07

    Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Animal Mitochondrial DNA Replication

    PubMed Central

    Ciesielski, Grzegorz L.; Oliveira, Marcos T.; Kaguni, Laurie S.

    2016-01-01

    Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein- the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although a substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research. PMID:27241933

  19. (How) do we learn from errors? A prospective study of the link between the ward's learning practices and medication administration errors.

    PubMed

    Drach-Zahavy, A; Somech, A; Admi, H; Peterfreund, I; Peker, H; Priente, O

    2014-03-01

    Attention in the ward should shift from preventing medication administration errors to managing them. Nevertheless, little is known in regard with the practices nursing wards apply to learn from medication administration errors as a means of limiting them. To test the effectiveness of four types of learning practices, namely, non-integrated, integrated, supervisory and patchy learning practices in limiting medication administration errors. Data were collected from a convenient sample of 4 hospitals in Israel by multiple methods (observations and self-report questionnaires) at two time points. The sample included 76 wards (360 nurses). Medication administration error was defined as any deviation from prescribed medication processes and measured by a validated structured observation sheet. Wards' use of medication administration technologies, location of the medication station, and workload were observed; learning practices and demographics were measured by validated questionnaires. Results of the mixed linear model analysis indicated that the use of technology and quiet location of the medication cabinet were significantly associated with reduced medication administration errors (estimate=.03, p<.05 and estimate=-.17, p<.01 correspondingly), while workload was significantly linked to inflated medication administration errors (estimate=.04, p<.05). Of the learning practices, supervisory learning was the only practice significantly linked to reduced medication administration errors (estimate=-.04, p<.05). Integrated and patchy learning were significantly linked to higher levels of medication administration errors (estimate=-.03, p<.05 and estimate=-.04, p<.01 correspondingly). Non-integrated learning was not associated with it (p>.05). How wards manage errors might have implications for medication administration errors beyond the effects of typical individual, organizational and technology risk factors. Head nurse can facilitate learning from errors by "management by

  20. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new

  1. Part-Set Cuing Facilitation for Spatial Information

    ERIC Educational Resources Information Center

    Cole, Sydni M.; Reysen, Matthew B.; Kelley, Matthew R.

    2013-01-01

    Part-set cuing "inhibition" refers to the counterintuitive finding that hints--specifically, part of the set of to-be-remembered information--often impair memory performance in free recall tasks. Although inhibition is the most commonly reported result, part-set cuing "facilitation" has been shown with serial order tasks. The…

  2. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    PubMed

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  3. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

    PubMed Central

    Shinbrot, Eve; Henninger, Erin E.; Weinhold, Nils; Covington, Kyle R.; Göksenin, A. Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M.; Gibbs, Richard A.; Sander, Chris; Pursell, Zachary F.

    2014-01-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  4. Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?

    PubMed Central

    Barberis, Matteo; Spiesser, Thomas W.; Klipp, Edda

    2010-01-01

    Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857

  5. Free Riding Indexes for Ukrainian Economics Teachers.

    ERIC Educational Resources Information Center

    McCorkle, Sarapage; Watts, Michael

    1996-01-01

    Reports on the adaptation and replication of Jane Leuthold's experiment concerning consumer choice, investments, and free riding indexes. A similar experiment, conducted in a Ukrainian classroom, produced similar results with a few notable exceptions. The exceptions reflected the Ukrainians' lack of familiarity with western economic thought. (MJP)

  6. Replication Research and Special Education

    ERIC Educational Resources Information Center

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  7. Signed reward prediction errors drive declarative learning

    PubMed Central

    Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; “better-than-expected” signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli. PMID:29293493

  8. Signed reward prediction errors drive declarative learning.

    PubMed

    De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  9. Eukaryotic DNA Replication Fork.

    PubMed

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  10. Differential effects of the extracellular microenvironment on human embryonic stem cell differentiation into keratinocytes and their subsequent replicative life span.

    PubMed

    Movahednia, Mohammad Mehdi; Kidwai, Fahad Karim; Zou, Yu; Tong, Huei Jinn; Liu, Xiaochen; Islam, Intekhab; Toh, Wei Seong; Raghunath, Michael; Cao, Tong

    2015-04-01

    Culture microenvironment plays a critical role in the propagation and differentiation of human embryonic stem cells (hESCs) and their differentiated progenies. Although high efficiency of hESC differentiation to keratinocytes (hESC-Kert) has been achieved, little is known regarding the effects of early culture microenvironment and pertinent extracellular matrix (ECM) interactions during epidermal commitment on subsequent proliferative capacity of hESC-Kert. The aim of this study is to evaluate the effects of the different ECM microenvironments during hESC differentiation on subsequent replicative life span of hESC-Kert. In doing so, H1-hESCs were differentiated to keratinocytes (H1-Kert) in two differentiation systems. The first system employed autologous fibroblast feeder support, in which keratinocytes (H1-Kert(ACC)) were derived by coculture of hESCs with hESC-derived fibroblasts (H1-ebFs). The second system employed a novel decellularized matrix from H1-ebFs to create a dermoepidermal junction-like (DEJ) matrix. H1-Kert(AFF) were derived by differentiation of hESCs on the feeder-free system employing the DEJ matrix. Our study indicated that the feeder-free system with the use of DEJ matrix was more efficient in differentiation of hESCs toward epidermal progenitors. However, the feeder-free system was not sufficient to support the subsequent replicative capacity of differentiated keratinocytes. Of note, H1-Kert(AFF) showed limited replicative capacity with reduced telomere length and early cellular senescence. We further showed that the lack of cell-cell interactions during epidermal commitment led to heightened production of TGF-β1 by hESC-Kert during extended culture, which in turn was responsible for resulting in the limited replicative life span with cellular senescence of hESC-Kert derived under the feeder-free culture system. This study highlights for the first time the importance of the culture microenvironment and cell-ECM interactions during

  11. Regulation of DNA replication during development

    PubMed Central

    Nordman, Jared; Orr-Weaver, Terry L.

    2012-01-01

    As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication. PMID:22223677

  12. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.

    PubMed

    Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C

    2017-02-15

    Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that

  13. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts

    PubMed Central

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-01-01

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends. PMID:22354040

  14. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.

    PubMed

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-04-18

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.

  15. Error-free pathology: applying lean production methods to anatomic pathology.

    PubMed

    Condel, Jennifer L; Sharbaugh, David T; Raab, Stephen S

    2004-12-01

    The current state of our health care system calls for dramatic changes. In their pathology department, the authors believe these changes may be accomplished by accepting the long-term commitment of applying a lean production system. The ideal state of zero pathology errors is one that should be pursued by consistently asking, "Why can't we?" The philosophy of lean production systems began in the manufacturing industry: "All we are doing is looking at the time from the moment the customer gives us an order to the point when we collect the cash. And we are reducing that time line by removing non-value added wastes". The ultimate goals in pathology and overall health care are not so different. The authors' intention is to provide the patient (customer) with the most accurate diagnostic information in a timely and efficient manner. Their lead histotechnologist recently summarized this philosophy: she indicated that she felt she could sleep better at night knowing she truly did the best job she could. Her chances of making an error (in cutting or labeling) were dramatically decreased in the one-by-one continuous flow work process compared with previous practices. By designing a system that enables employees to be successful in meeting customer demand, and by empowering the frontline staff in the development and problem solving processes, one can meet the challenges of eliminating waste and build an improved, efficient system.

  16. EPs welcome new focus on reducing diagnostic errors.

    PubMed

    2015-12-01

    Emergency medicine leaders welcome a major new report from the Institute of Medicine (IOM) calling on providers, policy makers, and government agencies to institute changes to reduce the incidence of diagnostic errors. The 369-page report, "Improving Diagnosis in Health Care," states that the rate of diagnostic errors in this country is unacceptably high and offers a long list of recommendations aimed at addressing the problem. These include large, systemic changes that involve improvements in multiple areas, including health information technology (HIT), professional education, teamwork, and payment reform. Further, of particular interest to emergency physicians are recommended changes to the liability system. The authors of the IOM report state that while most people will likely experience a significant diagnostic error in their lifetime, the importance of this problem is under-appreciated. According to conservative estimates, the report says 5% of adults who seek outpatient care each year experience a diagnostic error. The report also notes that research over many decades shows diagnostic errors contribute to roughly 10% of all.deaths. The report says more steps need to be taken to facilitate inter-professional and intra-professional teamwork throughout the diagnostic process. Experts concur with the report's finding that mechanisms need to be developed so that providers receive ongoing feedback on their diagnostic performance.

  17. Error detection and response adjustment in youth with mild spastic cerebral palsy: an event-related brain potential study.

    PubMed

    Hakkarainen, Elina; Pirilä, Silja; Kaartinen, Jukka; van der Meere, Jaap J

    2013-06-01

    This study evaluated the brain activation state during error making in youth with mild spastic cerebral palsy and a peer control group while carrying out a stimulus recognition task. The key question was whether patients were detecting their own errors and subsequently improving their performance in a future trial. Findings indicated that error responses of the group with cerebral palsy were associated with weak motor preparation, as indexed by the amplitude of the late contingent negative variation. However, patients were detecting their errors as indexed by the amplitude of the response-locked negativity and thus improved their performance in a future trial. Findings suggest that the consequence of error making on future performance is intact in a sample of youth with mild spastic cerebral palsy. Because the study group is small, the present findings need replication using a larger sample.

  18. Error catastrophe and phase transition in the empirical fitness landscape of HIV

    NASA Astrophysics Data System (ADS)

    Hart, Gregory R.; Ferguson, Andrew L.

    2015-03-01

    We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.

  19. Implementation errors in the GingerALE Software: Description and recommendations.

    PubMed

    Eickhoff, Simon B; Laird, Angela R; Fox, P Mickle; Lancaster, Jack L; Fox, Peter T

    2017-01-01

    Neuroscience imaging is a burgeoning, highly sophisticated field the growth of which has been fostered by grant-funded, freely distributed software libraries that perform voxel-wise analyses in anatomically standardized three-dimensional space on multi-subject, whole-brain, primary datasets. Despite the ongoing advances made using these non-commercial computational tools, the replicability of individual studies is an acknowledged limitation. Coordinate-based meta-analysis offers a practical solution to this limitation and, consequently, plays an important role in filtering and consolidating the enormous corpus of functional and structural neuroimaging results reported in the peer-reviewed literature. In both primary data and meta-analytic neuroimaging analyses, correction for multiple comparisons is a complex but critical step for ensuring statistical rigor. Reports of errors in multiple-comparison corrections in primary-data analyses have recently appeared. Here, we report two such errors in GingerALE, a widely used, US National Institutes of Health (NIH)-funded, freely distributed software package for coordinate-based meta-analysis. These errors have given rise to published reports with more liberal statistical inferences than were specified by the authors. The intent of this technical report is threefold. First, we inform authors who used GingerALE of these errors so that they can take appropriate actions including re-analyses and corrective publications. Second, we seek to exemplify and promote an open approach to error management. Third, we discuss the implications of these and similar errors in a scientific environment dependent on third-party software. Hum Brain Mapp 38:7-11, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Benefits of testing for nontested information: retrieval-induced facilitation of episodically bound material.

    PubMed

    Rowland, Christopher A; DeLosh, Edward L

    2014-12-01

    Testing is a powerful means to boost the retention of information. The extent to which the benefits of testing generalize to nontested information, however, is not clear. In three experiments, we found that completing cued-recall tests for a subset of studied materials enhanced retention for the specific information tested, as well as for associated, nontested information during later free-recall testing. In Experiment 1, this generalized benefit was revealed for lists of category-exemplar pairs. Experiment 2 extended the effect to unrelated words, suggesting that retrieval can enhance later free recall of nontested information that is bound solely through episodic context. In Experiment 3, we manipulated the format of the final test and found facilitation in free-recall, but not in cued-recall, testing. The results suggest that testing may facilitate later free recall in part by enhancing access to information that is present during a prior temporal or list context. More generally, these findings suggest that retrieval-induced facilitation extends to a broader range of conditions than has previously been suggested, and they further motivate the adoption of testing as a practical and effective learning tool.