Sample records for facilitates interspecies hydrogen

  1. Inter-species competition-facilitation in stochastic riparian vegetation dynamics.

    PubMed

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2013-02-07

    Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Interspecies Extrapolation

    EPA Science Inventory

    Interspecies extrapolation encompasses two related but distinct topic areas that are germane to quantitative extrapolation and hence computational toxicology-dose scaling and parameter scaling. Dose scaling is the process of converting a dose determined in an experimental animal ...

  3. Interspecies chimeras.

    PubMed

    Suchy, Fabian; Nakauchi, Hiromitsu

    2018-05-30

    By probing early embryogenesis and regeneration, interspecies chimeras provide a unique platform for discovery and clinical use. Although efficient generation of human:animal chimeric embryos remains elusive, recent advancements attempt to overcome incompatibilities in xenogeneic development and transplantation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates.

    PubMed

    Morita, Masahiko; Malvankar, Nikhil S; Franks, Ashley E; Summers, Zarath M; Giloteaux, Ludovic; Rotaru, Amelia E; Rotaru, Camelia; Lovley, Derek R

    2011-01-01

    Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.

  6. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    DOEpatents

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  7. Interspecies chemical communication in bacterial development.

    PubMed

    Straight, Paul D; Kolter, Roberto

    2009-01-01

    Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.

  8. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide.

    PubMed

    Bienert, Gerd P; Chaumont, François

    2014-05-01

    Hydrogen peroxide (H2O2) is an important signaling compound that has recently been identified as a new substrate for several members of the aquaporin superfamily in various organisms. Evidence is emerging about the physiological significance of aquaporin-facilitated H2O2 diffusion. This review summarizes current knowledge about aquaporin-facilitated H2O2 diffusion across cellular membranes. It focuses on physicochemical and experimental evidence demonstrating the involvement of aquaporins in the transport of this redox signaling compound and discusses the regulation and structural prerequisites of these channels to transmit this signal. It also provides perspectives about the potential importance of aquaporin-facilitated H2O2 diffusion processes and places this knowledge in the context of the current understanding of transmembrane redox signaling processes. Specific aquaporin isoforms facilitate the passive diffusion of H2O2 across biological membranes and control H2O2 membrane permeability and signaling in living organisms. Redox signaling is a very important process regulating the physiology of cells and organisms in a similar way to the well-characterized hormonal and calcium signaling pathways. Efficient transmembrane diffusion of H2O2, a key molecule in the redox signaling network, requires aquaporins and makes these channels important players in this signaling process. Channel-mediated membrane transport allows the fine adjustment of H2O2 levels in the cytoplasm, intracellular organelles, the apoplast, and the extracellular space, which are essential for it to function as a signal molecule. This article is part of a Special Issue entitled Aquaporins. © 2013.

  9. A modeling approach to direct interspecies electron transfer process in anaerobic transformation of ethanol to methane.

    PubMed

    Liu, Yiwen; Zhang, Yaobin; Zhao, Zhiqiang; Ngo, Huu Hao; Guo, Wenshan; Zhou, Junliang; Peng, Lai; Ni, Bing-Jie

    2017-01-01

    Recent studies have shown that direct interspecies electron transfer (DIET) plays an important part in contributing to methane production from anaerobic digestion. However, so far anaerobic digestion models that have been proposed only consider two pathways for methane production, namely, acetoclastic methanogenesis and hydrogenotrophic methanogenesis, via indirect interspecies hydrogen transfer, which lacks an effective way for incorporating DIET into this paradigm. In this work, a new mathematical model is specifically developed to describe DIET process in anaerobic digestion through introducing extracellular electron transfer as a new pathway for methane production, taking anaerobic transformation of ethanol to methane as an example. The developed model was able to successfully predict experimental data on methane dynamics under different experimental conditions, supporting the validity of the developed model. Modeling predictions clearly demonstrated that DIET plays an important role in contributing to overall methane production (up to 33 %) and conductive material (i.e., carbon cloth) addition would significantly promote DIET through increasing ethanol conversion rate and methane production rate. The model developed in this work will potentially enhance our current understanding on syntrophic metabolism via DIET.

  10. Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review.

    PubMed

    Dubé, Charles-David; Guiot, Serge R

    2015-01-01

    Direct interspecies electrons transfer (DIET) is a syntrophic metabolism in which free electrons flow from one cell to another without being shuttled by reduced molecules such as molecular hydrogen or formate. As more and more microorganisms show a capacity for electron exchange, either to export or import them, it becomes obvious that DIET is a syntrophic metabolism that is much more present in nature than previously thought. This article reviews literature related to DIET, specifically in reference to anaerobic digestion. Anaerobic granular sludge, a biofilm, is a specialized microenvironment where syntrophic bacterial and archaeal organisms grow together in close proximity. Exoelectrogenic bacteria degrading organic substrates or intermediates need an electron sink and electrotrophic methanogens represent perfect partners to assimilate those electrons and produce methane. The granule extracellular polymeric substances by making the biofilm matrix more conductive, play a role as electrons carrier in DIET.

  11. Interspecies interactions are an integral determinant of microbial community dynamics

    PubMed Central

    Aziz, Fatma A. A.; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki

    2015-01-01

    This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177

  12. Lessons from Interspecies Mammalian Chimeras.

    PubMed

    Suchy, Fabian; Nakauchi, Hiromitsu

    2017-10-06

    As chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.

  13. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  14. An alternative pluripotent state confers interspecies chimaeric competency

    PubMed Central

    Wu, Jun; Okamura, Daiji; Li, Mo; Suzuki, Keiichiro; Luo, Chongyuan; Ma, Li; He, Yupeng; Li, Zhongwei; Benner, Chris; Tamura, Isao; Krause, Marie N.; Nery, Joseph R.; Du, Tingting; Zhang, Zhuzhu; Hishida, Tomoaki; Takahashi, Yuta; Aizawa, Emi; Kim, Na Young; Lajara, Jeronimo; Guillen, Pedro; Campistol, Josep M.; Esteban, Concepcion Rodriguez; Ross, Pablo J.; Saghatelian, Alan; Ren, Bing; Ecker, Joseph R.; Belmonte, Juan Carlos Izpisua

    2017-01-01

    Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution. PMID:25945737

  15. Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production.

    PubMed

    Lee, Jung-Yeol; Park, Jeong-Hoon; Park, Hee-Deung

    2017-10-01

    Direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea via conductive materials is reported as an efficient method to produce methane in anaerobic organic waste digestion. A voltage can be applied to the conductive materials to accelerate the DIET between two groups of microorganisms to produce methane. To evaluate this hypothesis, two sets of anaerobic serum bottles with and without applied voltage were used with a pair of graphite rods as conductive materials to facilitate DIET. Initially, the methane production rate was similar between the two sets of serum bottles, and later the serum bottles with an applied voltage of 0.39V showed a 168% higher methane production rate than serum bottles without an applied voltage. In cyclic voltammograms, the characteristic redox peaks for hydrogen and acetate oxidation were identified in the serum bottles with an applied voltage. In the microbial community analyses, hydrogenotrophic methanogens (e.g. Methanobacterium) were observed to be abundant in serum bottles with an applied voltage, while methanogens utilizing carbon dioxide (e.g., Methanosaeta and Methanosarcina) were dominant in serum bottles without an applied voltage. Taken together, the applied voltage on conductive materials might not be effective to promote DIET in methane production. Instead, it appeared to generate a condition for hydrogenotrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Observation of interspecies ion separation in inertial-confinement-fusion implosions

    DOE PAGES

    Hsu, Scott C.; Joshi, Tirtha Raj; Hakel, Peter; ...

    2016-10-24

    Here we report direct experimental evidence of interspecies ion separation in direct-drive, inertial-confinement-fusion experiments on the OMEGA laser facility. These experiments, which used plastic capsules with D 2/Ar gas fill (1% Ar by atom), were designed specifically to reveal interspecies ion separation by exploiting the predicted, strong ion thermo-diffusion between ion species of large mass and charge difference. Via detailed analyses of imaging x-ray-spectroscopy data, we extract Ar-atom-fraction radial profiles at different times, and observe both enhancement and depletion compared to the initial 1%-Ar gas fill. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles modelsmore » of interspecies ion diffusion. Finally, the experimentally inferred Ar-atom-fraction profiles agree reasonably, but not exactly, with calculated profiles associated with the incoming and rebounding first shock.« less

  17. Evolutionary Analysis of Heterochromatin Protein Compatibility by Interspecies Complementation in Saccharomyces

    PubMed Central

    Zill, Oliver A.; Scannell, Devin R.; Kuei, Jeffrey; Sadhu, Meru; Rine, Jasper

    2012-01-01

    The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus. PMID:22923378

  18. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Wang, Liying; Quan, Xie

    2015-06-09

    Direct interspecies electron transfer (DIET) between Geobacter species and Methanosaeta species is an alternative to interspecies hydrogen transfer (IHT) in anaerobic digester, which however has not been established in anaerobic sludge digestion as well as in bioelectrochemical systems yet. In this study, it was found that over 50% of methane production of an electric-anaerobic sludge digester was resulted from unknown pathway. Pyrosequencing analysis revealed that Geobacter species were significantly enriched with electrodes. Fluorescence in situ hybridization (FISH) further confirmed that the dominant Geobacter species enriched belonged to Geobacter metallireducens. Together with Methanosaeta species prevailing in the microbial communities, the direct electron exchange between Geobacter species and Methanosaeta species might be an important reason for the "unknown" increase of methane production. Conductivity of the sludge in this electric-anaerobic digester was about 30% higher than that of the sludge in a control digester without electrodes. This study not only revealed for the first time that DIET might be the important mechanism on the methanogenesis of bioelectrochemical system, but also provided a new method to enhance DIET by means of bioelectric enrichment of Geobacter species.

  19. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion

    PubMed Central

    Zhao, Zhiqiang; Zhang, Yaobin; Wang, Liying; Quan, Xie

    2015-01-01

    Direct interspecies electron transfer (DIET) between Geobacter species and Methanosaeta species is an alternative to interspecies hydrogen transfer (IHT) in anaerobic digester, which however has not been established in anaerobic sludge digestion as well as in bioelectrochemical systems yet. In this study, it was found that over 50% of methane production of an electric-anaerobic sludge digester was resulted from unknown pathway. Pyrosequencing analysis revealed that Geobacter species were significantly enriched with electrodes. Fluorescence in situ hybridization (FISH) further confirmed that the dominant Geobacter species enriched belonged to Geobacter metallireducens. Together with Methanosaeta species prevailing in the microbial communities, the direct electron exchange between Geobacter species and Methanosaeta species might be an important reason for the “unknown” increase of methane production. Conductivity of the sludge in this electric-anaerobic digester was about 30% higher than that of the sludge in a control digester without electrodes. This study not only revealed for the first time that DIET might be the important mechanism on the methanogenesis of bioelectrochemical system, but also provided a new method to enhance DIET by means of bioelectric enrichment of Geobacter species. PMID:26057581

  20. Widespread interspecies homologous recombination reveals reticulate evolution within the genus Streptomyces.

    PubMed

    Cheng, Kun; Rong, Xiaoying; Huang, Ying

    2016-09-01

    Homologous recombination is increasingly being recognized as a driving force in microbial evolution. However, recombination in streptomycetes, a rich source of diverse secondary metabolites, particularly among different species, remains minimally investigated. In this study, the largest sample of Streptomyces species to date, consisting of 142 type strains spanning the genus, with available sequences of 16S rRNA, atpD, gyrB, recA, rpoB and trpB genes, were collected and subjected to a comprehensive population genetic analysis to generate an overall estimate of the level of Streptomyces interspecies genetic exchange and its effect on the evolution of this genus. The results indicate frequent homologous recombination among Streptomyces species, which occurred three times more frequently and was nearly 14 times more important than point mutation in nucleotide sequence divergence (ρ/θw=3.10, r/m=13.74). As a result, a facilitating effect on the evolutionary process and confusion in phylogenetic relationships were observed, as well as a number of specific transfer events of the six gene fragments. A resultant phylogenetic network depicted extensive horizontal genetic exchange which decays clonality in streptomycetes. Moreover, seven evolutionary lineage groups were identified in the present sample in the Structure analysis, generally consistent with morphological and physiological data, and the contribution of recombination was detected to be varied among them. Our analyses demonstrated a reticulate evolution within Streptomyces due to the high level of interspecies gene exchange, which greatly challenges the traditional tree-shaped phylogeny in this genus and may advance our evolutionary understanding of a genuine Streptomyces species. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Development of Interspecies Correlation Models for Petroleum Hydrocarbons

    EPA Science Inventory

    Estimating the consequences of petroleum products to water column organisms has commonly been hampered by limited acute toxicity data, which exists only for a relatively small number of test species. In this study, we developed petroleum-specific Interspecies Correlation Estimati...

  2. Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

    PubMed

    Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos

    2017-01-26

    Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells.

    PubMed

    Opiela, J; Samiec, M; Romanek, J

    2017-07-15

    Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda ( Ailurus fulgens).

    PubMed

    Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong

    2009-05-01

    In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.

  5. Enabling interspecies epigenomic comparison with CEpBrowser.

    PubMed

    Cao, Xiaoyi; Zhong, Sheng

    2013-05-01

    We developed the Comparative Epigenome Browser (CEpBrowser) to allow the public to perform multi-species epigenomic analysis. The web-based CEpBrowser integrates, manages and visualizes sequencing-based epigenomic datasets. Five key features were developed to maximize the efficiency of interspecies epigenomic comparisons. CEpBrowser is a web application implemented with PHP, MySQL, C and Apache. URL: http://www.cepbrowser.org/.

  6. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models

    PubMed Central

    Davis, Brian W.; Seabury, Christopher M.; Brashear, Wesley A.; Li, Gang; Roelke-Parker, Melody; Murphy, William J.

    2015-01-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented “rule of speciation.” We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the “Large X-Effect” in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. PMID:26006188

  7. Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds

    EPA Science Inventory

    We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...

  8. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    PubMed

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications.

    PubMed

    Cheng, Qiwen; Call, Douglas F

    2016-08-10

    Multicellular microbial communities are important catalysts in engineered systems designed to treat wastewater, remediate contaminated sediments, and produce energy from biomass. Understanding the interspecies interactions within them is therefore essential to design effective processes. The flow of electrons within these communities is especially important in the determination of reaction possibilities (thermodynamics) and rates (kinetics). Conventional models of electron transfer incorporate the diffusion of metabolites generated by one organism and consumed by a second, frequently referred to as mediated interspecies electron transfer (MIET). Evidence has emerged in the last decade that another method, called direct interspecies electron transfer (DIET), may occur between organisms or in conjunction with electrically conductive materials. Recent research has suggested that DIET can be stimulated in engineered systems to improve desired treatment goals and energy recovery in systems such as anaerobic digesters and microbial electrochemical technologies. In this review, we summarize the latest understanding of DIET mechanisms, the associated microorganisms, and the underlying thermodynamics. We also critically examine approaches to stimulate DIET in engineered systems and assess their effectiveness. We find that in most cases attempts to promote DIET in mixed culture systems do not yield the improvements expected based on defined culture studies. Uncertainties of other processes that may be co-occurring in real systems, such as contaminant sorption and biofilm promotion, need to be further investigated. We conclude by identifying areas of future research related to DIET and its application in biological treatment processes.

  10. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobedo, Fernando A., E-mail: fe13@cornell.edu

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward themore » target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.« less

  11. New developments in microbial interspecies signaling.

    PubMed

    Shank, Elizabeth Anne; Kolter, Roberto

    2009-04-01

    There is a growing appreciation that in addition to well-documented intraspecies quorum sensing systems, small molecules act as signals between microbes of different species. This review will focus on how bacterial small molecules modulate these interspecies interactions. We will particularly emphasize complex relationships such as those between microbes and insects, interactions resulting in non-antagonistic outcomes (i.e. developmental and morphological processes), how co-culture can lead to the discovery of new small molecules, and the use of known compounds to evoke unexpected responses and mediate crosstalk between microbes.

  12. Vocal and visual stimulation, congruence and lateralization affect brain oscillations in interspecies emotional positive and negative interactions.

    PubMed

    Balconi, Michela; Vanutelli, Maria Elide

    2016-01-01

    The present research explored the effect of cross-modal integration of emotional cues (auditory and visual (AV)) compared with only visual (V) emotional cues in observing interspecies interactions. The brain activity was monitored when subjects processed AV and V situations, which represented an emotional (positive or negative), interspecies (human-animal) interaction. Congruence (emotionally congruous or incongruous visual and auditory patterns) was also modulated. electroencephalography brain oscillations (from delta to beta) were analyzed and the cortical source localization (by standardized Low Resolution Brain Electromagnetic Tomography) was applied to the data. Frequency band (mainly low-frequency delta and theta) showed a significant brain activity increasing in response to negative compared to positive interactions within the right hemisphere. Moreover, differences were found based on stimulation type, with an increased effect for AV compared with V. Finally, delta band supported a lateralized right dorsolateral prefrontal cortex (DLPFC) activity in response to negative and incongruous interspecies interactions, mainly for AV. The contribution of cross-modality, congruence (incongruous patterns), and lateralization (right DLPFC) in response to interspecies emotional interactions was discussed at light of a "negative lateralized effect."

  13. Microbial interspecies electron transfer via electric currents through conductive minerals

    PubMed Central

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2012-01-01

    In anaerobic biota, reducing equivalents (electrons) are transferred between different species of microbes [interspecies electron transfer (IET)], establishing the basis of cooperative behaviors and community functions. IET mechanisms described so far are based on diffusion of redox chemical species and/or direct contact in cell aggregates. Here, we show another possibility that IET also occurs via electric currents through natural conductive minerals. Our investigation revealed that electrically conductive magnetite nanoparticles facilitated IET from Geobacter sulfurreducens to Thiobacillus denitrificans, accomplishing acetate oxidation coupled to nitrate reduction. This two-species cooperative catabolism also occurred, albeit one order of magnitude slower, in the presence of Fe ions that worked as diffusive redox species. Semiconductive and insulating iron-oxide nanoparticles did not accelerate the cooperative catabolism. Our results suggest that microbes use conductive mineral particles as conduits of electrons, resulting in efficient IET and cooperative catabolism. Furthermore, such natural mineral conduits are considered to provide ecological advantages for users, because their investments in IET can be reduced. Given that conductive minerals are ubiquitously and abundantly present in nature, electric interactions between microbes and conductive minerals may contribute greatly to the coupling of biogeochemical reactions. PMID:22665802

  14. Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts

    PubMed Central

    Lee, Taehyung

    2017-01-01

    In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals. PMID:29236050

  15. ESTIMATION OF CHEMICAL TOXICITY TO WILDLIFE SPECIES USING INTERSPECIES CORRELATION MODELS

    EPA Science Inventory

    Ecological risks to wildlife are typically assessed using toxicity data for relataively few species and with limited understanding of differences in species sensitivity to contaminants. Empirical interspecies correlation models were derived from LD50 values for 49 wildlife speci...

  16. Processing the Interspecies Quorum-sensing Signal Autoinducer-2 (AI-2)

    PubMed Central

    Marques, João C.; Lamosa, Pedro; Russell, Caitlin; Ventura, Rita; Maycock, Christopher; Semmelhack, Martin F.; Miller, Stephen T.; Xavier, Karina B.

    2011-01-01

    The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsible for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior. PMID:21454635

  17. Processing the Interspecies Quorum-sensing Signal Autoinducer-2 (AI-2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Marques; P Lamosa; C Russell

    The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsiblemore » for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior.« less

  18. INTER-SPECIES MODELS FOR ACUTE AQUATIC TOXICITY BASED ON MECHANISM OF ACTION

    EPA Science Inventory

    This presentation will provide interspecies QSARs for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, insect larvae, and bacteria developed using 5,000 toxic effect results for approximately 2400 chemicals.

  19. Development of Algal Interspecies Correlation Estimation Models for Chemical Hazard Assessment

    EPA Science Inventory

    Web-based Interspecies Correlation Estimation (ICE) is an application developed to predict the acute toxicity of a chemical from 1 species to another taxon. Web-ICE models use the acute toxicity value for a surrogate species to predict effect values for other species, thus potent...

  20. Development of Species Sensitivity Distributions for Wildlife Using Interspecies Toxicity Correlation Models

    EPA Science Inventory

    Species sensitivity distributions (SSD) are cumulative distributions of chemical toxicity of multiple species and have had limited application in wildlife risk assessment because of relatively small datasets of wildlife toxicity values. Interspecies correlation estimation (ICE) m...

  1. Risk for interspecies transmission of zoonotic pathogens during poultry processing and pork production in Peru: A qualitative study.

    PubMed

    Carnero, A M; Kitayama, K; Diaz, D A; Garvich, M; Angulo, N; Cama, V A; Gilman, R H; Bayer, A M

    2018-03-30

    Interspecies transmission of pathogens is an unfrequent but naturally occurring event and human activities may favour opportunities not previously reported. Reassortment of zoonotic pathogens like influenza A virus can result from these activities. Recently, swine and birds have played a central role as "mixing vessels" for epidemic and pandemic events related to strains like H1N1 and H5N1. Unsafe practices in poultry markets and swine farms can lead to interspecies transmission, favouring the emergence of novel strains. Thus, understanding practices that lead to interspecies interactions is crucial. This qualitative study aimed to evaluate poultry processing practices in formal and informal markets and the use of leftovers by swine farmers in three Peruvian cities: Lima (capital), Tumbes (coastal) and Tarapoto (jungle). We conducted 80 direct observations at formal and informal markets and interviewed 15 swine farmers. Processors slaughter and pluck chickens and vendors and/or processors eviscerate chickens. Food safety and hygiene practices were suboptimal or absent, although some heterogeneity was observed between cities and chicken vendors versus processors. Both vendors (76%) and processors (100%) sold the chicken viscera leftovers to swine farmers, representing the main source of chicken viscera for swine farms (53%). Swine farmers fed the chicken viscera to their swine. Chicken viscera cooking times varied widely and were insufficient in some cases. Non-abattoired poultry leads to the sale of poultry leftovers to small-scale swine farms, resulting in indirect but frequent interspecies contacts that can lead to interspecies transmission of bacterial pathogens or the reassortment of influenza A viruses. These interactions are exacerbated by suboptimal safety and hygiene conditions. People involved in these activities constitute an at-risk population who could play a central role in preventing the transmission of pathogens between species. Educational

  2. Augmenting Species Diversity in Water Quality Criteria Derivation using Interspecies Correlation Models

    EPA Science Inventory

    The specific requirements for taxa diversity of the 1985 guidelines have limited the number of ambient water quality criteria (AWQC) developed for aquatic life protection. The EPA developed the Web-based Interspecies Correlation Estimation (Web-ICE) tool to allow extrapolation of...

  3. Demonstration of the Web-based Interspecies Correlation Estimation (Web-ICE) modeling application

    EPA Science Inventory

    The Web-based Interspecies Correlation Estimation (Web-ICE) modeling application is available to the risk assessment community through a user-friendly internet platform (http://epa.gov/ceampubl/fchain/webice/). ICE models are log-linear least square regressions that predict acute...

  4. Observation of Interspecies Ion Separation in Inertial-Confinement-Fusion Implosions via Imaging X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Tirtha Raj

    2016-10-01

    Interspecies ion separation has been proposed as a yield-degradation mechanism in inertial-confinement-fusion (ICF) experiments. We present direct experimental evidence of interspecies ion separation in direct-drive ICF experiments performed at the OMEGA laser facility. These experiments were designed based on the fact that interspecies ion thermo-diffusion would be strongest for species with large mass and charge difference. The targets were spherical plastic shells filled with D2 and Ar (1% by atom). Ar K-shell spectral features were observed primarily between the time of first-shock convergence and slightly before neutron bang time, using a time- and space-integrated spectrometer, streaked crystal spectrometer, and two gated multi-monochromatic X-ray imagers fielded along quasi-orthogonal lines-of-sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal deviation from the initial 1%-Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree gently with calculated profiles associated with the incoming and rebounding first shock. This work was done in collaboration with P. Hakel, S. C. Hsu, E. L. Vold, M. J. Schmitt, N. M. Hoffman, R. M. Rauenzahn, G. Kagan, X.-Z. Tang, Y. Kim, and H. W. Herrmann of LANL, and R. C. Mancini of UNR. LA-UR-16-24804. Supported by the LANL ICF and ASC Programs under US-DoE contract no. DE-AC52-06NA25396.

  5. Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells.

    PubMed

    de Pascual, Ricardo; Baraibar, Andrés M; Méndez-López, Iago; Pérez-Ciria, Martín; Polo-Vaquero, Ignacio; Gandía, Luis; Ohia, Sunny E; García, Antonio G; de Diego, Antonio M G

    2018-05-02

    Gasotransmitter hydrogen sulphide (H 2 S) has emerged as a regulator of multiple physiological and pathophysiological processes throughout. Here, we have investigated the effects of NaHS (fast donor of H 2 S) and GYY4137 (GYY, slow donor of H 2 S) on the exocytotic release of catecholamines from fast-perifused bovine adrenal chromaffin cells (BCCs) challenged with sequential intermittent pulses of a K + -depolarizing solution. Both donors caused a concentration-dependent facilitation of secretion. This was not due to an augmentation of Ca 2+ entry through voltage-activated Ca 2+ channels (VACCs) because, in fact, NaHS and GYY caused a mild inhibition of whole-cell Ca 2+ currents. Rather, the facilitation of exocytosis seemed to be associated to an augmented basal [Ca 2+ ] c and the K + -elicited [Ca 2+ ] c transients; such effects of H 2 S donors are aborted by cyclopiazonic acid (CPA), that causes endoplasmic reticulum (ER) Ca 2+ depletion through sarcoendoplasmic reticulum Ca2+ ATPase inhibition and by protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), that impedes the ability of mitochondria to sequester cytosolic Ca 2+ during cell depolarization. Inasmuch as CPA and FCCP reversed the facilitation of secretion triggered by K + in the presence of NaHS and GYY, is seems that such facilitation is tightly coupled to Ca 2+ handling by the ER and mitochondria. On the basis of these results, we propose that H 2 S regulates catecholamine secretory responses triggered by K + in BCCs by (i) mobilisation of ER Ca 2+ and (ii) interference with mitochondrial Ca 2+ circulation. In so doing, the clearance of the [Ca 2+ ] c transient will be delayed and the Ca 2+ -dependent trafficking of secretory vesicles will be enhanced to overfill the secretory machinery with new vesicles to enhance exocytosis.

  6. Predicting the impact of biocorona formation kinetics on interspecies extrapolations of nanoparticle biodistribution modeling.

    PubMed

    Sahneh, Faryad Darabi; Scoglio, Caterina M; Monteiro-Riviere, Nancy A; Riviere, Jim E

    2015-01-01

    To assess the impact of biocorona kinetics on expected tissue distribution of nanoparticles (NPs) across species. The potential fate of NPs in vivo is described through a simple and descriptive pharmacokinetic model using rate processes dependent upon basal metabolic rate coupled to dynamics of protein corona. Mismatch of time scales between interspecies allometric scaling and the kinetics of corona formation is potentially a fundamental issue with interspecies extrapolations of NP biodistribution. The impact of corona evolution on NP biodistribution across two species is maximal when corona transition half-life is close to the geometric mean of NP half-lives of the two species. While engineered NPs can successfully reach target cells in rodent models, the results may be different in humans due to the fact that the longer circulation time allows for further biocorona evolution.

  7. Ligand iron catalysts for selective hydrogenation

    DOEpatents

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  8. Automated aural classification used for inter-species discrimination of cetaceans.

    PubMed

    Binder, Carolyn M; Hines, Paul C

    2014-04-01

    Passive acoustic methods are in widespread use to detect and classify cetacean species; however, passive acoustic systems often suffer from large false detection rates resulting from numerous transient sources. To reduce the acoustic analyst workload, automatic recognition methods may be implemented in a two-stage process. First, a general automatic detector is implemented that produces many detections to ensure cetacean presence is noted. Then an automatic classifier is used to significantly reduce the number of false detections and classify the cetacean species. This process requires development of a robust classifier capable of performing inter-species classification. Because human analysts can aurally discriminate species, an automated aural classifier that uses perceptual signal features was tested on a cetacean data set. The classifier successfully discriminated between four species of cetaceans-bowhead, humpback, North Atlantic right, and sperm whales-with 85% accuracy. It also performed well (100% accuracy) for discriminating sperm whale clicks from right whale gunshots. An accuracy of 92% and area under the receiver operating characteristic curve of 0.97 were obtained for the relatively challenging bowhead and humpback recognition case. These results demonstrated that the perceptual features employed by the aural classifier provided powerful discrimination cues for inter-species classification of cetaceans.

  9. Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts

    PubMed Central

    Dujon, Bernard

    2012-01-01

    Summary: Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes. PMID:23204364

  10. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments.

    PubMed

    Lopandic, Ksenija

    2018-01-01

    The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    PubMed

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  12. ESTIMATION OF AQUATIC SPECIES SENSITIVITY USING INTERSPECIES CORRELATION AND ACUTE TO CHRONIC TOXICITY MODELS

    EPA Science Inventory

    Abstract for presentation

    Estimation of aquatic species sensitivity using interspecies correlation and acute to chronic toxicity models

    Determining species sensitivity of aquatic organisms to contaminants is a critical component of criteria development and ecolog...

  13. USE OF INTERSPECIES CORRELATION ESTIMATIONS TO PREDICT HC5'S BASED ON QSAR

    EPA Science Inventory

    Dyer, S.D., S. Belanger, J. Chaney, D. Versteeg and F. Mayer. In press. Use of Interspecies Correlation Estimations to predict HC5's Based on QSARs (Abstract). To be presented at the SETAC Europe 14th Annual Meeting: Environmental Science Solution: A Pan-European Perspective, 18-...

  14. Acute toxicity prediction to threatened and endangered species using Interspecies Correlation Estimation (ICE) models

    EPA Science Inventory

    Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA’s Internet application Web-ICE is a suite of Interspecies Correlati...

  15. Promoting Interspecies Electron Transfer with Biochar

    PubMed Central

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Malvankar, Nikhil S.; Liu, Fanghua; Fan, Wei; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why biochar may enhance methane production from organic wastes under anaerobic conditions. PMID:24846283

  16. Prion replication without host adaptation during interspecies transmissions.

    PubMed

    Bian, Jifeng; Khaychuk, Vadim; Angers, Rachel C; Fernández-Borges, Natalia; Vidal, Enric; Meyerett-Reid, Crystal; Kim, Sehun; Calvi, Carla L; Bartz, Jason C; Hoover, Edward A; Agrimi, Umberto; Richt, Jürgen A; Castilla, Joaquín; Telling, Glenn C

    2017-01-31

    Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrP C ) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrP C Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrP C conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrP C was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrP C from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrP C also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders.

  17. Prion replication without host adaptation during interspecies transmissions

    PubMed Central

    Bian, Jifeng; Khaychuk, Vadim; Angers, Rachel C.; Fernández-Borges, Natalia; Meyerett-Reid, Crystal; Kim, Sehun; Calvi, Carla L.; Bartz, Jason C.; Hoover, Edward A.; Agrimi, Umberto; Richt, Jürgen A.; Castilla, Joaquín; Telling, Glenn C.

    2017-01-01

    Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrPC) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrPC. Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrPC conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrPC was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrPC from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrPC also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders. PMID:28096357

  18. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide.

    PubMed

    Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François

    2014-01-01

    Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity. © 2013.

  19. WEB-BASED INTERSPECIES CORRELATION ESTIMATION (WEB-ICE) FOR ACUTE TOXICITY: USER MANUAL V2

    EPA Science Inventory

    Predictive toxicological models are integral to environmental risk Assessment where data for most species are limited. Web-based Interspecies Correlation Estimation (Web-ICE) models are least square regressions that predict acute toxicity (LC50/LD50) of a chemical to a species, ...

  20. Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

    PubMed Central

    Watson, Emma; MacNeil, Lesley T.; Ritter, Ashlyn D.; Yilmaz, L. Safak; Rosebrock, Adam P.; Caudy, Amy A.; Walhout, Albertha J. M.

    2014-01-01

    SUMMARY Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here we used an interspecies systems biology approach with Caenorhabditis elegans and two if its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal’s gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development and reduces fertility, but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. PMID:24529378

  1. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.

    PubMed

    Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan

    2008-03-01

    The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.

  2. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon.

    PubMed

    Park, Jeong-Hoon; Park, Jong-Hun; Je Seong, Hoon; Sul, Woo Jun; Jin, Kang-Hyun; Park, Hee-Deung

    2018-07-01

    To provide insight into direct interspecies electron transfer via granular activated carbon (GAC), the effect of GAC supplementation on anaerobic digestion was evaluated. Compared to control samples, the GAC supplementation increased the total amount of methane production and its production rate by 31% and 72%, respectively. 16S rDNA sequencing analysis revealed a shift in the archaeal community composition; the Methanosarcina proportion decreased 17%, while the Methanosaeta proportion increased 5.6%. Metagenomic analyses based on shotgun sequencing demonstrated that the abundance of pilA and omcS genes belonging to Geobacter species decreased 69.4% and 29.4%, respectively. Furthermore, the analyses suggested a carbon dioxide reduction pathway rather than an acetate decarboxylation pathway for methane formation. Taken together, these results suggest that GAC improved methane production performance by shifting the microbial community and altering functional genes associated with direct interspecies electron transfer via conductive materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Web-based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual Version 3.1

    EPA Science Inventory

    Predictive toxicological models are integral to ecological risk assessment because data for most species are limited. Web-based Interspecies Correlation Estimation (Web-ICE) models are least square regressions that predict acute toxicity (LC50/LD50) of a chemical to a species, ge...

  4. USE OF INTERSPECIES CORRELATION ESTIMATIONS TO PREDICT HC5'S BASED ON MINIMAL DATA

    EPA Science Inventory

    Dyer, S., S. Belanger, J. Chaney, D. Versteeg and F. Mayer. In press. Use of Interspecies Correlation Estimations to Predict HC5's Based on Minimal Data (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1013).

  5. Hydrogenated MoS2 QD-TiO2 heterojunction mediated efficient solar hydrogen production.

    PubMed

    Saha, Arka; Sinhamahapatra, Apurba; Kang, Tong-Hyun; Ghosh, Subhash C; Yu, Jong-Sung; Panda, Asit B

    2017-11-09

    Herein, we report the development of a hydrogenated MoS 2 QD-TiO 2 (HMT) heterojunction as an efficient photocatalytic system via a one-pot hydrothermal reaction followed by hydrogenation. This synthetic strategy facilitates the formation of MoS 2 QDs with an enhanced band gap and a proper heterojunction between them and TiO 2 , which accelerates charge transfer process. Hydrogenation leads to oxygen vacancies in TiO 2 , enhancing the visible light absorption capacity through narrowing its band gap, and sulfur vacancies in MoS 2 , which enhance the active sites for hydrogen adsorption. Due to the band gap reduction of hydrogenated TiO 2 and the band gap enhancement of the MoS 2 QDs, the energy states are rearranged to create a reverse movement of electrons and holes facilitated the charge transfer process which enhance life-time of photo-generated charges. The photocatalyst showed stable, efficient and exceptionally high noble metal free sunlight-induced hydrogen production with a maximum rate of 3.1 mmol g -1 h -1 . The developed synthetic strategy also provides flexibility towards the shape of the MoS 2 , e.g. QDs/single or few layers, on TiO 2 and offers the opportunity to design novel visible light active photocatalysts for different applications.

  6. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer.

    PubMed

    Lanza, R P; Cibelli, J B; Diaz, F; Moraes, C T; Farin, P W; Farin, C E; Hammer, C J; West, M D; Damiani, P

    2000-01-01

    Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan < 100 animals) were electrofused with enucleated oocytes from domestic cows. Twelve percent of the reconstructed oocytes developed to the blastocyst stage, and 18% of these embryos developed to the fetal stage when transferred to surrogate mothers. Three of the fetuses were electively removed at days 46 to 54 of gestation, and two continued gestation longer than 180 (ongoing) and 200 days, respectively. Microsatellite marker and cytogenetic analyses confirmed that the nuclear genome of the cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.

  7. Species and interspecies radioimmunoassays for rat type C virus p30: interviral comparisons and assay of human tumor extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charman, H.P.; White, M.H.; Rahman, R.

    1976-01-01

    The major internal protein, p30, of rat type C virus (RaLV) was purified and utilized to establish intra- and interspecies radioimmunoassays. Three rat viruses were compared in homologous and heterologous intraspecies assays with no evidence of type specificity. The only heterologous viruses to give inhibition in these species assays were the feline (FeLV) and hamster (HaLV) type C viruses; these reactions were incomplete and required high virus concentrations. An interspecies assay using a goat antiserum prepared after sequentially immunizing with FeLV, RD 114, and woolly monkey virus p30's and labeled RaLV p30 was inhibited by all mammalian type C viruses,more » although preferentially by RaLV, FeLV, and HaLV. Thus, as in a previously reported assay developed with HaLV p30, rat, hamster, and cat p30's seem more closely related to each other than to mouse type C virus p30. High levels of specific antigen were found in all cell lines producing rat virus, whereas embryonic tissues from several rat strains and cell lines considered virus-free based on other tests were negative for p30. Rats bearing tumors containing Moloney murine sarcoma virus (RaLV) did not contain free circulating antibody to RaLV p30. Fifty-one human tumor extracts (including two tumor cell lines) were tested for activity in the RaLV species and 47 in the interspecies assays after Sephadex gel filtration and pooling of material in the 15,000- to 40,000-molecular-weight range. At a sensitivity level of 7 ng/ml (0.7 ng/assay) in the interspecies assay, all human tissues, with one exception, were negative. The one positive result is considered nonspecific based on proteolysis of the labeled antigen. Input tissue protein of the purified tumor extracts averaged 1.9 mg/ml with a range of less than 0.025 to 22 mg/ml. Tissues from NIH Swiss mice processed in the same manner were positive in the interspecies assay but negative in the intraspecies RaLV assay. (auth)« less

  8. Observation and modeling of interspecies ion separation in inertial confinement fusion implosions via imaging x-ray spectroscopy

    DOE PAGES

    Joshi, Tirtha Raj; Hakel, Peter; Hsu, Scott C.; ...

    2017-03-22

    In this article, we report the first direct experimental evidence of interspecies ion separation in direct-drive inertial confinement fusion experiments performed at the OMEGA laser facility via spectrally, temporally, and spatially resolved imaging x-ray-spectroscopy data [S. C. Hsu et al., Europhys. Lett. 115, 65001 (2016)]. These experiments were designed based on the expectation that interspecies ion thermo-diffusion would be the strongest for species with a large mass and charge difference. The targets were spherical plastic shells filled with D2 and a trace amount of Ar (0.1% or 1% by atom). Ar K-shell spectral features were observed primarily between the timemore » of first-shock convergence and slightly before the neutron bang time, using a time- and space-integrated spectrometer, a streaked crystal spectrometer, and two gated multi-monochromatic x-ray imagers fielded along quasi-orthogonal lines of sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal the deviation from the initial 1% Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted using radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. Lastly, the experimentally inferred Ar-atom fraction profiles agree reasonably with calculated profiles associated with the incoming and rebounding first shock.« less

  9. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission

    PubMed Central

    Amorim, Ariane Ribeiro; Fornells, Luz Alba Maria Garcete; Reis, Felicidade da Costa; Rezende, Daiana Jacinto; Mendes, Gabriella da Silva; Couceiro, José Nelson dos Santos Silva; Santos, Norma Suely de Oliveira

    2013-01-01

    Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330) were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9%) influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs. PMID:23903968

  10. Using Web-based Interspecies Correlation Estimation (Web-ICE) models as a tool for acute toxicity prediction

    EPA Science Inventory

    In order to assess risk of contaminants to taxa with limited or no toxicity data available, Interspecies Correlation Estimation (ICE) models have been developed by the U.S. Environmental Protection Agency to extrapolate contaminant sensitivity predictions based on data from commo...

  11. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  12. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.

    PubMed

    Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk

    2013-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (P<0.05). The use of domestic dog oocytes in the cloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.

  13. Interspecies hormonal control of host root morphology by parasitic plants

    PubMed Central

    Melnyk, Charles W.; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi

    2017-01-01

    Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana. Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant–host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum-induced host hypertrophy required cytokinin signaling genes (AHK3,4) but not cytokinin biosynthesis genes (IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants. PMID:28461500

  14. Interspecies hormonal control of host root morphology by parasitic plants.

    PubMed

    Spallek, Thomas; Melnyk, Charles W; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi; Shirasu, Ken

    2017-05-16

    Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant-host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum -induced host hypertrophy required cytokinin signaling genes ( AHK3,4 ) but not cytokinin biosynthesis genes ( IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants.

  15. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  16. [In vitro development and chimeric efficiency of mouse-porcine interspecies chimeric embryos in different culture systems].

    PubMed

    Wang, Ying; Ren, Jilong; Song, Yuran; Hai, Tang; Zhou, Qi; Liu, Zhonghua

    2016-07-25

    With the advancements of stem cells and regenerative medicine, interspecies chimera has become a hot topic and will pave a new way of providing donor sources in organ transplantation. However, the interspecies chimera is confronted with a number of scientific questions and technical obstacles, including selections of appropriate embryonic stage and appropriate culture medium; those factors will deeply influence the developmental balance between donor cells and receptor embryos. Due to its relatively rapid reproductive cycle and similar organ size to human's, porcine is a very potential donor candidate to study these questions. To compare the development and chimeric efficiency of interspecies embryos, we tested and evaluated three different culture systems, PZM-3 (Porcine zygotic medium), culture medium for iPSCs (N2B27) and 3.5 h of N2B27 before PZM-3 (N2B27(3.5 h)), and two different embryonic stages, 8-cell and blastocyst in mouse-porcine chimeric embryos using parthenogenetically activated porcine embryos and mouse induced pluripotent stem cells (miPS). The results showed that, PZM-3 was beneficial for both development of chimeric embryos and miPSCs proliferation in porcine embryos in the 8-cell injection group. After early blastocyst injection, the chimeric efficiency did not appear significantly different among the three culture systems but was lower than 8-cell injection. In summary, the results suggest that 8-cell injection and PZM-3 culture medium are more beneficial to the in vitro development and chimeric efficiency of mouse-porcine chimeric embryos.

  17. Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic species

    EPA Science Inventory

    Ecological risks to aquatic organisms are typically assessed using toxicity data for relatively few species and with limited understanding of relative species sensitivity. We developed a comprehensive set of interspecies correlation estimation (ICE) models for aquatic organisms a...

  18. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium

    PubMed Central

    Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313

  19. NREL Facilitates Installment of Advanced Hydrogen Fuel Station in

    Science.gov Websites

    . Department of Energy's (DOE's) Fuel Cell Technologies Office and Department of Interior's National Park the first phase of their collaborative efforts to accelerate deployment of advanced hydrogen fuel cell experience by showcasing and using fuel cell electric vehicle (FCEV) technologies throughout the D.C. metro

  20. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.

    PubMed

    Zhuang, Li; Ma, Jinlian; Tang, Jia; Tang, Ziyang; Zhou, Shungui

    2017-05-01

    Propionate degradation is a critical step during the conversion of complex organic matter under methanogenic conditions, and it requires a syntrophic cooperation between propionate-oxidizing bacteria and methanogenic archaea. Increasing evidences suggest that interspecies electron transfer for syntrophic metabolism is not limited to the reducing equivalents of hydrogen and formate. This study tested the ability of an electron shuttle to mediate interspecies electron transfer in syntrophic methanogenesis. We found that cysteine supplementation (100, 400, and 800 μM) accelerated CH 4 production from propionate in paddy soil enrichments. Of the concentrations tested, 100 μM cysteine was the most effective at enhancing propionate degradation to CH 4 , and the rates of CH 4 production and propionate degradation were increased by 109 and 79%, respectively, compared with the cysteine-free control incubations. We eliminated the possibility that the stimulatory effect of cysteine on methanogenesis was attributable to the function of cysteine as a methanogenic substrate in the presence of propionate. The potential catalytic effect involved cysteine serving as an electron carrier to mediate interspecies electron transfer in syntrophic propionate oxidization. The redox potential of cystine/cysteine, which is dependent on the concentration, might be more suitable to facilitate interspecies electron transfer between syntrophic partners at a concentration of 100 μM. Pelotomaculum, obligately syntrophic, propionate-oxidizing bacteria, and hydrogenotrophic methanogens of the family Methanobacteriaceae are predominant in cysteine-mediated methanogenic propionate degradation. The stimulatory effect of cysteine on syntrophic methanogenesis offers remarkable potential for improving the performance of anaerobic digestion and conceptually broaden strategies for interspecies electron transfer in syntrophic metabolism.

  1. INTERSPECIES CORRELATION ESTIMATION (ICE) FOR ACUTE TOXICITY TO AQUATIC ORGANISMS AND WILDLIFE. II. USER MANUAL AND SOFTWARE

    EPA Science Inventory

    Asfaw, Amha, Mark R. Ellersieck and Foster L. Mayer. 2003. Interspecies Correlation Estimations (ICE) for Acute Toxicity to Aquatic Organisms and Wildlife. II. User Manual and Software. EPA/600/R-03/106. U.S. Environmental Protection Agency, National Health and Environmental Effe...

  2. Hydrogen-facilitated corrosion and stress corrosion cracking of austenitic stainless steel of type 310

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao Lijie; Chu Wuyang; Miao Huijun

    1993-04-01

    The effects of hydrogen precharge and stress on anodic dissolution for Type 310 austenitic stainless steel (ASS) have been investigated. An experiment determining the effect of hydrogen on stress corrosion cracking (SCC) was carried out in a boiling 42% MgCl[sub 2] solution and in a 2.5 mol/l H[sub 2]SO[sub 4] + 1 mol/l HCl solution. The results showed that both hydrogen and stress would increase the dissolution rate, and the effects of hydrogen and stress on the dissolution rate were synergistic rather than simply additive. Hydrogen lowered the threshold stress and the shortened fracture time of SCC in a boilingmore » MgCl[sub 2] solution by a factor of 1/5 and 10, respectively.« less

  3. Comparison of Species Sensitivity Distributions Derived from Interspecies Correlation Models to Distributions used to Derive Water Quality Criteria

    EPA Science Inventory

    Species sensitivity distributions (SSD) require a large number of measured toxicity values to define a chemical’s toxicity to multiple species. This investigation comprehensively evaluated the accuracy of SSDs generated from toxicity values predicted from interspecies correlation...

  4. Final Technical Report for GO17004 Regulatory Logic: Codes and Standards for the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakarado, Gary L.

    The objectives of this project are to: develop a robust supporting research and development program to provide critical hydrogen behavior data and a detailed understanding of hydrogen combustion and safety across a range of scenarios, needed to establish setback distances in building codes and minimize the overall data gaps in code development; support and facilitate the completion of technical specifications by the International Organization for Standardization (ISO) for gaseous hydrogen refueling (TS 20012) and standards for on-board liquid (ISO 13985) and gaseous or gaseous blend (ISO 15869) hydrogen storage by 2007; support and facilitate the effort, led by the NFPA,more » to complete the draft Hydrogen Technologies Code (NFPA 2) by 2008; with experimental data and input from Technology Validation Program element activities, support and facilitate the completion of standards for bulk hydrogen storage (e.g., NFPA 55) by 2008; facilitate the adoption of the most recently available model codes (e.g., from the International Code Council [ICC]) in key regions; complete preliminary research and development on hydrogen release scenarios to support the establishment of setback distances in building codes and provide a sound basis for model code development and adoption; support and facilitate the development of Global Technical Regulations (GTRs) by 2010 for hydrogen vehicle systems under the United Nations Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations and Working Party on Pollution and Energy Program (ECE-WP29/GRPE); and to Support and facilitate the completion by 2012 of necessary codes and standards needed for the early commercialization and market entry of hydrogen energy technologies.« less

  5. Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation

    PubMed Central

    Balconi, Michela; Vanutelli, Maria Elide

    2016-01-01

    The brain activity, considered in its hemodynamic (optical imaging: functional Near-Infrared Spectroscopy, fNIRS) and electrophysiological components (event-related potentials, ERPs, N200) was monitored when subjects observed (visual stimulation, V) or observed and heard (visual + auditory stimulation, VU) situations which represented inter-species (human-animal) interactions, with an emotional positive (cooperative) or negative (uncooperative) content. In addition, the cortical lateralization effect (more left or right dorsolateral prefrontal cortex, DLPFC) was explored. Both ERP and fNIRS showed significant effects due to emotional interactions which were discussed at light of cross-modal integration effects. The significance of inter-species effect for the emotional behavior was considered. In addition, hemodynamic and EEG consonant results and their value as integrated measures were discussed at light of valence effect. PMID:26976052

  6. Canine distemper outbreak in raccoons suggests pathogen interspecies transmission amongst alien and native carnivores in urban areas from Germany.

    PubMed

    Rentería-Solís, Zaida; Förster, Christine; Aue, Angelika; Wittstatt, Ulrich; Wibbelt, Gudrun; König, Matthias

    2014-11-07

    From December 2012 to May 2013, an outbreak occurred among urban wild carnivores from Berlin. We collected 97 free-ranging raccoons from the city area. PCR assays, histopathology and immunohistochemistry confirmed canine distemper virus (CDV) infection in 74 raccoons. Phylogenetic analysis of haemagglutinin gene fragments (1767 nucleotides) of CDV isolated from four raccoons showed close relation to CDV isolates from foxes from Germany and a domestic dog from Hungary; all belonging to the "Europe" lineage of CDV. These study results suggest an inter-species transmission of CDV as the origin for the outbreak among the raccoon population. Implications for domestic pets and suggested interspecies transmission between urban wildlife and raccoons are discussed. This is the first major outbreak of CDV amongst free-ranging raccoons in Europe. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  8. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient

    PubMed Central

    Karanth, K. Ullas; Srivathsa, Arjun; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N. Samba

    2017-01-01

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole (Cuon alpinus), leopard (Panthera pardus) and tiger (Panthera tigris) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. PMID:28179511

  9. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

    PubMed Central

    Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; Dohnalkova, Alice C.; Fredrickson, James K.; Madigan, Michael T.; Beyenal, Haluk

    2017-01-01

    Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities. PMID:28067226

  10. Hydrogen Hazards Assessment Protocol (HHAP): Approach and Methodology

    NASA Technical Reports Server (NTRS)

    Woods, Stephen

    2009-01-01

    This viewgraph presentation reviews the approach and methodology to develop a assessment protocol for hydrogen hazards. Included in the presentation are the reasons to perform hazards assessment, the types of hazard assessments that exist, an analysis of hydrogen hazards, specific information about the Hydrogen Hazards Assessment Protocol (HHAP). The assessment is specifically tailored for hydrogen behavior. The end product of the assesment is a compilation of hazard, mitigations and associated factors to facilitate decision making and achieve the best practice.

  11. Validation and Application of Pharmacokinetic Models for Interspecies Extrapolations in Toxicity Risk Assessments of Volatile Organics

    DTIC Science & Technology

    1988-08-30

    Ai _.. ;:: -- I. OVERALL OBJECTIVE AND STATEMENT OF WORK The overall objective of the proposed project is to investigate the scientific basis...development and inter-species correlations with toxicity. A second series of tissue disposition experiments will be conducted to determine what ...elimination of halocarbons is hepatic metabolism. If metabolism plays a significant role in the disposition and subsequent neurobehavioral effects of

  12. Atomic hydrogen propellants: Historical perspectives and future possibilities

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1993-01-01

    Atomic hydrogen, a very high density free-radical propellant, is anticipated to generate a specific impulse of 600-1500 lb-f sec/lb-mass performance; this may facilitate the development of unique launch vehicles. A development status evaluation is presently given for atomic hydrogen investigations. It is noted that breakthroughs are required in the production, storage, and transfer of atomic hydrogen, before this fuel can become a viable rocket propellant.

  13. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    PubMed

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  14. Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: Challenges, opportunities, and research needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess-Herbert, Sarah L., E-mail: sarah.burgess@alum.mit.edu; Euling, Susan Y.

    A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionarymore » biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended.« less

  15. Interspecies scaling of a camptothecin analogue: human predictions for intravenous topotecan using animal data.

    PubMed

    Ahlawat, P; Srinivas, N R

    2008-11-01

    As a class, camptothecin analogues via market entry of topotecan and irinotecan, have shown promise for the treatment of various solid tumours. Topotecan, in particular, was chosen as the substrate for allometric scaling and prediction of human parameter values for both total clearance (CL) and volume of distribution (V(ss)). The availability of published data in mouse, rat, dog, and monkey paved the way for interspecies scaling via allometry. Although it appeared that at a minimum mouse, rat, and dog would reasonably fit in a three-species allometry scale-up, the inclusion of monkey data enabled a better prediction of the human parameter values for total topotecan-e.g., CL: allometric equation: 1.5234W(0.7865); predicted value = 43.04 l h(-1): observed CL = 24-53 l h(-1); V(ss): allometric equation: 1.1939W(1.0208); predicted value = 91.29 litres: observed V(ss) = 66-146 litres. The proximity of the allometric exponent values of CL (0.7885) and V(ss) (1.0208) to the suggested values of 0.75 and 1.00 was not only encouraging, but also confirmed the applicability of interspecies scaling approach for topotecan. The data suggest that allometric scaling approaches with suitable correction factors could potentially be used to predict the human pharmacokinetics of novel CPT analogues prospectively.

  16. Morphological and molecular characterization of yellow oyster mushroom, Pleurotus citrinopileatus, hybrids obtained by interspecies mating.

    PubMed

    Rosnina, A G; Tan, Yee Shin; Abdullah, Noorlidah; Vikineswary, S

    2016-02-01

    Pleurotus citrinopileatus (yellow oyster mushroom) has an attractive shape and yellow colour but the fragile texture complicates packaging, and its strong aroma is unappealing to consumers. This study aimed to improve the characteristics and yield of P. citrinopileatus by interspecies mating between monokaryotic cultures of P. citrinopileatus and P. pulmonarius. Ten monokaryon cultures of the parental lines were crossed in all combinations to obtain hybrids. Eleven compatible mating pairs were obtained and cultivated to observe their sporophore morphology and yield. The selected hybrid, i.e. P1xC9, was beige in colour while hybrid P3xC8 was yellow in colour. Their sporophores had less offensive aroma, improved texture and higher yield. The DNA sequences of these hybrids were found to be in the same clade as the P. citrinopileatus parent with a bootstrap value of 99%. High bootstrap values indicate high genetic homology between hybrids and the P. citrinopileatus parent. The biological efficiencies of these hybrids P1xC9 (70.97%) and P3xC8 (52.14%) were also higher than the P. citrinopileatus parent (35.63%). Interspecies hybrids obtained by this mating technique can lead to better strains of mushrooms for genetic improvement of the Pleurotus species.

  17. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  18. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    EPA Science Inventory

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  19. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

    DOE PAGES

    Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; ...

    2017-01-09

    Microbial phototrophs, key primary producers on Earth, use H 2O, H 2, H 2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis’. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii doesmore » not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. Lastly, this process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities.« less

  20. Intra- and interspecies gene expression models for predicting drug response in canine osteosarcoma.

    PubMed

    Fowles, Jared S; Brown, Kristen C; Hess, Ann M; Duval, Dawn L; Gustafson, Daniel L

    2016-02-19

    Genomics-based predictors of drug response have the potential to improve outcomes associated with cancer therapy. Osteosarcoma (OS), the most common primary bone cancer in dogs, is commonly treated with adjuvant doxorubicin or carboplatin following amputation of the affected limb. We evaluated the use of gene-expression based models built in an intra- or interspecies manner to predict chemosensitivity and treatment outcome in canine OS. Models were built and evaluated using microarray gene expression and drug sensitivity data from human and canine cancer cell lines, and canine OS tumor datasets. The "COXEN" method was utilized to filter gene signatures between human and dog datasets based on strong co-expression patterns. Models were built using linear discriminant analysis via the misclassification penalized posterior algorithm. The best doxorubicin model involved genes identified in human lines that were co-expressed and trained on canine OS tumor data, which accurately predicted clinical outcome in 73 % of dogs (p = 0.0262, binomial). The best carboplatin model utilized canine lines for gene identification and model training, with canine OS tumor data for co-expression. Dogs whose treatment matched our predictions had significantly better clinical outcomes than those that didn't (p = 0.0006, Log Rank), and this predictor significantly associated with longer disease free intervals in a Cox multivariate analysis (hazard ratio = 0.3102, p = 0.0124). Our data show that intra- and interspecies gene expression models can successfully predict response in canine OS, which may improve outcome in dogs and serve as pre-clinical validation for similar methods in human cancer research.

  1. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Gorman, Paul D.; English, Niall J.; MacElroy, J. M. D.

    2012-01-01

    Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H2-THF system in which there is single H2 occupation of the small cage (labelled "1SC 1LC"), we find that no H2 migration occurs, and this is also the case for pure H2 hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H2-THF and pure-H2 systems, in which there is double H2 occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes.

  2. Eating For Two: How Metabolism Establishes Interspecies Interactions in the Gut

    PubMed Central

    Fischbach, Michael A.; Sonnenburg, Justin L.

    2011-01-01

    In bacterial communities, ‘tight economic times’ are the norm. Of the many challenges bacteria face in making a living, perhaps none are more important than generating energy, maintaining redox balance, and acquiring carbon and nitrogen to synthesize primary metabolites. The ability of bacteria to meet these challenges depends heavily on the rest of their community. Indeed, the most fundamental way in which bacteria communicate is by importing the substrates for metabolism and exporting metabolic end products. As an illustration of this principle, we will travel down a carbohydrate catabolic pathway common to many species of Bacteroides, highlighting the interspecies interactions established (often inevitably) at its key steps. We also discuss the metabolic considerations in maintaining the stability of host-associated microbial communities. PMID:22018234

  3. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient.

    PubMed

    Karanth, K Ullas; Srivathsa, Arjun; Vasudev, Divya; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N Samba

    2017-02-08

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole ( Cuon alpinus ), leopard ( Panthera pardus ) and tiger ( Panthera tigris ) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. © 2017 The Author(s).

  4. SPECIES DIFFERENCES IN ANDROGEN AND ESTROGEN RECEPTOR STRUCTURE AND FUNCTION AMONG VERTEBRATES AND INVERTEBRATES: INTERSPECIES EXTRAPOLATIONS REGARDING ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Species Differences in Androgen and Estrogen Receptor Structure and Function Among Vertebrates and Invertebrates: Interspecies Extrapolations regarding Endocrine Disrupting Chemicals
    VS Wilson1, GT Ankley2, M Gooding 1,3, PD Reynolds 1,4, NC Noriega 1, M Cardon 1, P Hartig1,...

  5. Inter-species protein trafficking endows dodder (Cuscuta pentagona) with a host-specific herbicide-tolerant trait.

    PubMed

    Jiang, Linjian; Qu, Feng; Li, Zhaohu; Doohan, Douglas

    2013-06-01

    · Besides photosynthates, dodder (Cuscuta spp.) acquires phloem-mobile proteins from host; however, whether this could mediate inter-species phenotype transfer was not demonstrated. Specifically, we test whether phosphinothricin acetyl transferase (PAT) that confers host plant glufosinate herbicide tolerance traffics and functions inter-specifically. · Dodder tendrils excised from hosts can grow in vitro for weeks or resume in vivo by parasitizing new hosts. The level of PAT in in vivo and in vitro dodder tendrils was quantified by enzyme-linked immunosorbent assay. The glufosinate sensitivity was examined by dipping the distal end of in vivo and in vitro tendrils, growing on or excised from LibertyLink (LL; PAT-transgenic and glufosinate tolerant) and conventional (CN; glufosinate sensitive) soybean hosts, into glufosinate solutions for 5 s. After in vitro tendrils excised from LL hosts reparasitized new CN and LL hosts, the PAT level and the glufosinate sensitivity were also examined. · When growing on LL host, dodder tolerated glufosinate and contained PAT at a level of 0.3% of that encountered in LL soybean leaf. After PAT was largely degraded in dodders, they became glufosinate sensitive. PAT mRNA was not detected by reverse transcription PCR in dodders. · In conclusion, the results indicated that PAT inter-species trafficking confers dodder glufosinate tolerance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?

    PubMed

    Simková, Andrea; Dávidová, Martina; Papoušek, Ivo; Vetešník, Lukáš

    2013-04-12

    Host specificity varies among parasite species. Some parasites are strictly host-specific, others show a specificity for congeneric or non-congeneric phylogenetically related host species, whilst some others are non-specific (generalists). Two cyprinids, Cyprinus carpio and Carassius gibelio, plus their respective hybrids were investigated for metazoan parasites. The aim of this study was to analyze whether interspecies hybridization affects host specificity. The different degrees of host specificity within a phylogenetic framework were taken into consideration (i.e. strict specialist, intermediate specialist, and intermediate generalist). Fish were collected during harvesting the pond and identified using meristic traits and molecular markers. Metazoan parasite species were collected. Host specificity of parasites was determined using the following classification: strict specialist, intermediate specialist, intermediate generalist and generalist. Parasite species richness was compared between parental species and their hybrids. The effect of host species on abundance of parasites differing in host specificity was tested. Hybrids harbored more different parasite species but their total parasite abundance was lower in comparison with parental species. Interspecies hybridization affected the host specificity of ecto- and endoparasites. Parasite species exhibiting different degrees of host specificity for C. carpio and C. gibelio were also present in hybrids. The abundance of strict specialists of C. carpio was significantly higher in parental species than in hybrids. Intermediate generalists parasitizing C. carpio and C. gibelio as two phylogenetically closely related host species preferentially infected C. gibelio when compared to C. carpio, based on prevalence and maximum intensity of infection. Hybrids were less infected by intermediate generalists when compared to C. gibelio. This finding does not support strict co-adaptation between host and parasite genotypes

  7. Mechanisms of hydrogen-assisted fracture in austenitic stainless steel welds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balch, Dorian K.; Sofronis, Petros; Somerday, Brian P.

    2005-03-01

    The objective of this study was to quantify the hydrogen-assisted fracture susceptibility of gas-tungsten arc (GTA) welds in the nitrogen-strengthened, austenitic stainless steels 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5). In addition, mechanisms of hydrogen-assisted fracture in the welds were identified using electron microscopy and finite-element modeling. Elastic-plastic fracture mechanics experiments were conducted on hydrogen-charged GTA welds at 25 C. Results showed that hydrogen dramatically lowered the fracture toughness from 412 kJ/m{sup 2} to 57 kJ/m{sup 2} in 21-6-9 welds and from 91 kJ/m{sup 2} to 26 kJ/m{sup 2} in 22-13-5 welds. Microscopy results suggested that hydrogen served two roles in themore » fracture of welds: it promoted the nucleation of microcracks along the dendritic structure and accelerated the link-up of microcracks by facilitating localized deformation. A continuum finite-element model was formulated to test the notion that hydrogen could facilitate localized deformation in the ligament between microcracks. On the assumption that hydrogen decreased local flow stress in accordance with the hydrogen-enhanced dislocation mobility argument, the finite-element results showed that deformation was localized in a narrow band between two parallel, overlapping microcracks. In contrast, in the absence of hydrogen, the finite-element results showed that deformation between microcracks was more uniformly distributed.« less

  8. The role of receptor binding specificity in interspecies transmission of influenza viruses

    PubMed Central

    Imai, Masaki; Kawaoka, Yoshihiro

    2017-01-01

    Influenza A virus infection begins with the binding of the hemagglutinin (HA) glycoprotein to sialic acid-containing receptors on the surface of the target cell. Avian influenza viruses, including avian H5N1, H7, and H9N2 viruses, can occasionally cross the species barrier and infect humans; however, these viruses do not spread efficiently from person to person, perhaps, in part, due to differences in the receptor-binding specificities of human and avian influenza viruses. The HAs of avian influenza viruses must adapt to receptors in humans to acquire efficient human-to-human transmissibility. In this review, we discuss the receptor binding specificity of influenza A viruses and its role in interspecies transmission. PMID:22445963

  9. Interspecies nuclear transfer using fibroblasts from leopard, tiger, and lion ear piece collected postmortem as donor cells and rabbit oocytes as recipients.

    PubMed

    Yelisetti, Uma Mahesh; Komjeti, Suman; Katari, Venu Charan; Sisinthy, Shivaji; Brahmasani, Sambasiva Rao

    2016-06-01

    Skin fibroblast cells were obtained from a small piece of an ear of leopard, lion, and tiger collected postmortem and attempts were made to synchronize the skin fibroblasts at G0/G1 of cell cycle using three different approaches. Efficiency of the approaches was tested following interspecies nuclear transfer with rabbit oocytes as recipient cytoplasm. Fluorescence-activated cell sorting revealed that the proportion of G0/G1 cells increased significantly (P < 0.05) when cells subjected to serum starvation, contact inhibition, and 3 mM sodium butyrate (NaBu) treatment when compared with cycling cells. However, 3 mM NaBu treatment caused alterations in cell morphology and increase in dead cells. Thus, interspecies nuclear transfer was carried out using fibroblast cells subjected to contact inhibition for 72 h, serum starvation for 48 h, and cells treated with 1.0 mM NaBu for 48 h. The fusion rates, the proportion of fused couplets that cleaved to two-cell and developed to blastocyst, were highest in all three species when the donor cells were treated with 1.0 mM NaBu for 48 h. But, the blastocyst percentage of interspecies nuclear embryos (5-6%) was significantly lower when compared with rabbit-rabbit nuclear transfer embryos (22.9%). In conclusion, fibroblast cells of leopard, lion, and tiger were successfully synchronized and used for the development of blastocysts using rabbit oocytes as recipient cytoplasm.

  10. Development of algal interspecies correlation estimation models for chemical hazard assessment.

    PubMed

    Brill, Jessica L; Belanger, Scott E; Chaney, Joel G; Dyer, Scott D; Raimondo, Sandy; Barron, Mace G; Pittinger, Charles A

    2016-09-01

    Web-based Interspecies Correlation Estimation (ICE) is an application developed to predict the acute toxicity of a chemical from 1 species to another taxon. Web-ICE models use the acute toxicity value for a surrogate species to predict effect values for other species, thus potentially filling in data gaps for a variety of environmental assessment purposes. Web-ICE has historically been dominated by aquatic and terrestrial animal prediction models. Web-ICE models for algal species were essentially absent and are addressed in the present study. A compilation of public and private sector-held algal toxicity data were compiled and reviewed for quality based on relevant aspects of individual studies. Interspecies correlations were constructed from the most commonly tested algal genera for a broad spectrum of chemicals. The ICE regressions were developed based on acute 72-h and 96-h endpoint values involving 1647 unique studies on 476 unique chemicals encompassing 40 genera and 70 species of green, blue-green, and diatom algae. Acceptance criteria for algal ICE models were established prior to evaluation of individual models and included a minimum sample size of 3, a statistically significant regression slope, and a slope estimation parameter ≥0.65. A total of 186 ICE models were possible at the genus level, with 21 meeting quality criteria; and 264 ICE models were developed at the species level, with 32 meeting quality criteria. Algal ICE models will have broad utility in screening environmental hazard assessments, data gap filling in certain regulatory scenarios, and as supplemental information to derive species sensitivity distributions. Environ Toxicol Chem 2016;35:2368-2378. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public

  11. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.

    2010-05-15

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAsmore » methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [{sup 73}As]arsenite (iAs{sup III}; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs{sup III} to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs{sup III} than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs{sup III} was associated with inhibition of DMAs production by moderate concentrations of iAs{sup III} and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also

  12. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles.

    PubMed

    Mu, Jingyao; Zhuang, Xiaoying; Wang, Qilong; Jiang, Hong; Deng, Zhong-Bin; Wang, Baomei; Zhang, Lifeng; Kakar, Sham; Jun, Yan; Miller, Donald; Zhang, Huang-Ge

    2014-07-01

    Exosomes, small vesicles participating in intercellular communication, have been extensively studied recently; however, the role of edible plant derived exosomes in interspecies communication has not been investigated. Here, we investigate the biological effects of edible plant derived exosome-like nanoparticles (EPDENs) on mammalian cells. In this study, exosome-like nanoparticles from four edible plants were isolated and characterized. We show that these EPDENs contain proteins, lipids, and microRNA. EPDENs are taken up by intestinal macrophages and stem cells. The results generated from EPDEN-transfected macrophages indicate that ginger EPDENs preferentially induce the expression of the antioxidation gene, heme oxygenase-1 and the anti-inflammatory cytokine, IL-10; whereas grapefruit, ginger, and carrot EPDENs promote activation of nuclear factor like (erythroid-derived 2). Furthermore, analysis of the intestines of canonical Wnt-reporter mice, i.e. B6.Cg-Tg(BAT-lacZ)3Picc/J mice, revealed that the numbers of β-galactosidase(+) (β-Gal) intestinal crypts are increased, suggesting that EPDEN treatment of mice leads to Wnt-mediated activation of the TCF4 transcription machinery in the crypts. The data suggest a role for EPDEN-mediated interspecies communication by inducing expression of genes for anti-inflammation cytokines, antioxidation, and activation of Wnt signaling, which are crucial for maintaining intestinal homeostasis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles

    PubMed Central

    Mu, Jingyao; Zhuang, Xiaoying; Wang, Qilong; Jiang, Hong; Deng, Zhong-Bin; Wang, Baomei; Zhang, Lifeng; Kakar, Sham; Jun, Yan; Miller, Donald; Zhang, Huang-Ge

    2015-01-01

    Scope Exosomes, small vesicles participating in intercellular communication have been extensively studied recently; however, the role of edible plant derived exosomes in interspecies communication has not been investigated. Here, we investigate the biological effects of edible plant derived exosome-like nanoparticles (EPDEN) on mammalian cells. Methods and results In this study, exosome-like nanoparticles from four edible plants were isolated and characterized. We show that these EPDENs contain proteins, lipids and microRNA. EPDENs are taken up by intestinal macrophages and stem cells. The results generated from EPDEN transfected macrophages indicate that ginger EPDENs preferentially induce the expression of the anti-oxidation gene, heme oxygenase-1 (HO-1) and the anti-inflammatory cytokine, IL-10; whereas grapefruit, ginger, and carrot EPDENs promote activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Furthermore, analysis of the intestines of canonical Wnt reporter mice, i.e., B6.Cg-Tg(BAT-lacZ)3Picc/J mice, revealed that the numbers of β-galactosidase+ (β-Gal) intestinal crypts are increased, suggesting that EPDEN treatment of mice leads to Wnt mediated activation of the Tcf4 transcription machinery in the crypts. Conclusion The data suggest a role for EPDEN mediated interspecies communication by inducing expression of genes for anti-inflammation cytokines, anti-oxidation and activation of Wnt signaling, which are crucial for maintaining intestinal homeostasis. PMID:24842810

  14. Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins

    PubMed Central

    Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris

    2015-01-01

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830

  15. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    DOE PAGES

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less

  16. Recent Transmission of a Novel Alphacoronavirus, Bat Coronavirus HKU10, from Leschenault's Rousettes to Pomona Leaf-Nosed Bats: First Evidence of Interspecies Transmission of Coronavirus between Bats of Different Suborders

    PubMed Central

    Lau, Susanna K. P.; Li, Kenneth S. M.; Tsang, Alan K. L.; Shek, Chung-Tong; Wang, Ming; Choi, Garnet K. Y.; Guo, Rongtong; Wong, Beatrice H. L.; Poon, Rosana W. S.; Lam, Carol S. F.; Wang, Sylvia Y. H.; Fan, Rachel Y. Y.; Chan, Kwok-Hung; Zheng, Bo-Jian

    2012-01-01

    Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault's rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault's rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ∼40% amino acid divergence after recent interspecies transmission was even greater than the ∼20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of

  17. Photographic evidence of interspecies mating in geckos of the Lepidodactylus lugubris unisexual-bisexual complex (Squamata: Gekkonidae)

    USGS Publications Warehouse

    Buden, Donald W.; Cianchini, Carlos; Taborosi, Danko; Fisher, Robert N.; Bauer, Aaron; Ineich, Ivan

    2014-01-01

    An interspecies mating between unisexual Lepidodactylus lugubris and a male of the bisexual Lepidodactylus moestus was photographed by Carlos Cianchini on Kosrae [Island], FSM, at 18:15 h on 22 August 2013 (Figure 1). The mating pair was on a window frame inside a house at Pukusruk Wan village (05°21'01" N, 163°00'41" E, elev. 28 m a.s.l.) on the northeastern side of the island. This is the first direct evidence of mating between these two species.

  18. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts.

    PubMed

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-01

    The past decade's rapid progress in human pluripotent stem cell (hPSC) research has generated hope for meeting the rising demand of organ donation, which remains the only effective cure for end-stage organ failure, a major cause of death worldwide. Despite the potential, generation of transplantable organs from hPSCs using in vitro differentiation is far-fetched. An in vivo interspecies chimeric complementation strategy relying on chimeric-competent hPSCs and zygote genome editing provides an auspicious alternative for providing unlimited organ source for transplantation.

  19. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive.more » Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.« less

  20. Interspecies Somatic Cell Nuclear Transfer: Advancements and Problems

    PubMed Central

    Lagutina, Irina; Fulka, Helena; Lazzari, Giovanna

    2013-01-01

    Abstract Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the “Dolly experiment,” the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus–cytoplasmic incompatibility. PMID:24033141

  1. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less

  2. Analysis of nuclear export using photoactivatable GFP fusion proteins and interspecies heterokaryons.

    PubMed

    Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina

    2010-01-01

    In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.

  3. Comprehensive mollusk acute toxicity database improves the use of Interspecies Correlation Estimation (ICE) models to predict toxicity of untested freshwater and endangered mussel species

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models extrapolate acute toxicity data from surrogate test species to untested taxa. A suite of ICE models developed from a comprehensive database is available on the US Environmental Protection Agency’s web-based application, Web-I...

  4. Application of the Web-based Interspecies Correlation Estimation (Web-ICE) tool to assess risks of national pesticide registrations to federally listed (threatened and endangered) species

    EPA Science Inventory

    The National Academy of Science (NAS) recently recommended exploration of predictive tools, such as interspecies correlation estimation (ICE), to estimate acute toxicity values for listed species and support development of species sensitivity distributions (SSDs). We explored the...

  5. Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity

    NASA Astrophysics Data System (ADS)

    Ma, Renzhi; Bando, Yoshio; Sato, Tadao; Golberg, Dmitri; Zhu, Hongwei; Xu, Cailu; Wu, Dehai

    2002-12-01

    High-purity boron nitride (BN) nanofibers with diameters ranging from 30 to 100 nm were synthesized. Electron energy loss spectroscopy revealed that they have stoichiometric BN composition. The hydrogen uptake capacity measurements showed that the fibers could adsorb 2.9 wt % hydrogen under ˜10 MPa at room temperature. This hydrogen uptake capacity was compared with those of BN multiwalled or bamboo-like nanotubes under the same experimental conditions. It was suggested that the unique morphology of nanofibers, namely open-ended BN edge layers on the exterior surface, might facilitate hydrogen adsorption.

  6. Octopus lipid and vitamin E composition: interspecies, interorigin, and nutritional variability.

    PubMed

    Torrinha, Alvaro; Cruz, Rebeca; Gomes, Filipa; Mendes, Eulália; Casal, Susana; Morais, Simone

    2014-08-20

    Octopus vulgaris, Octopus maya, and Eledone cirrhosa from distinct marine environments [Northeast Atlantic (NEA), Northwest Atlantic (NWA), Eastern Central Atlantic, Western Central Atlantic (WCA), Pacific Ocean, and Mediterranean Sea] were characterized regarding their lipid and vitamin E composition. These species are those commercially more relevant worldwide. Significant interspecies and interorigin differences were observed. Unsaturated fatty acids account for more than 65% of total fatty acids, mostly ω-3 PUFA due to docosahexaenoic (18.4-29.3%) and eicosapentanoic acid (11.4-23.9%) contributions. The highest ω-3 PUFA amounts and ω-3/ω-6 ratios were quantified in the heaviest specimens, O. vulgaris from NWA, with high market price, and simultaneously in the lowest graded samples, E. cirrhosa from NEA, of reduced dimensions. Although having the highest cholesterol contents, E. cirrhosa from NEA and O. maya from WCA have also higher protective fatty acid indexes. Chemometric discrimination allowed clustering the selected species and several origins based on lipid and vitamin E profiles.

  7. Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens.

    PubMed

    Hattori, S; Luo, H; Shoun, H; Kamagata, Y

    2001-01-01

    To determine whether formate is involved in interspecies electron transfer between substrate-oxidizing bacteria and hydrogenotrophic microorganisms under anaerobic conditions, a syntrophic acetate-oxidizing bacterium Thermacetogenium phaeum strain PB was cocultured either with a formate /H2-utilizing methanogen strain TM (designated as PB/TM coculture), or an H2-utilizing methanogen strain deltaH (designated as PB/deltaH coculture). Acetate oxidation and subsequent methanogenesis in PB/TM coculture were found to be significantly faster than in PB/deltaH coculture. Formate dehydrogenase and hydrogenase were both detected in strains PB and TM. H2 partial pressures in the PB/TM coculture were kept lower (20 to 40 Pa) than those of the PB/deltaH coculture (40 to 60 Pa) during the exponential growth phase. Formate was also detected in both PB/TM and PB/deltaH cocultures, and the concentration of formate was maintained at a lower level in the PB/TM coculture (5 to 9 microM) than in the PB/deltaH coculture. Thermodynamic calculations revealed that the concentrations of both H2 and formate severely affect the syntrophic oxidation of acetate. These results strongly indicate that not only H2 but also formate may be involved in interspecies electron transfer.

  8. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    PubMed

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  9. Hafnium—an optical hydrogen sensor spanning six orders in pressure

    PubMed Central

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material. PMID:28580959

  10. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure

  11. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding

    PubMed Central

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej

    2014-01-01

    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  12. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  13. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    PubMed Central

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  14. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  15. Function of the Pyruvate Oxidase-Lactate Oxidase Cascade in Interspecies Competition between Streptococcus oligofermentans and Streptococcus mutans

    PubMed Central

    Liu, Lei

    2012-01-01

    Complex interspecies interactions occur constantly between oral commensals and the opportunistic pathogen Streptococcus mutans in dental plaque. Previously, we showed that oral commensal Streptococcus oligofermentans possesses multiple enzymes for H2O2 production, especially lactate oxidase (Lox), allowing it to out-compete S. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene in S. oligofermentans. A pox deletion mutant completely lost Pox activity, while ectopically expressed pox restored activity. Pox was determined to produce most of the H2O2 in the earlier growth phase and log phase, while Lox mainly contributed to H2O2 production in stationary phase. Both pox and lox were expressed throughout the growth phase, while expression of the lox gene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H2O2 can be attributed to differential gene expression and substrate availability. Interestingly, inactivation of pox causes a dramatic reduction in H2O2 production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H2O2. In an in vitro two-species biofilm experiment, the pox mutant of S. oligofermentans failed to inhibit S. mutans even though lox was active. In summary, S. oligofermentans develops a Pox-Lox synergy strategy to maximize its H2O2 formation so as to win the interspecies competition. PMID:22287002

  16. Interspecies radioimmunoassay for the major structural proteins of primate type-D retroviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colcher, D.; Teramoto, Y.A.; Schlom, J.

    1977-12-01

    A competition radioimmunoassay has been developed in which type-D retroviruses from three primate species compete. The assay utilizes the major structural protein (36,000 daltons) of the endogenous squirrel monkey retrovirus and antisera directed against the major structural protein (27,000 daltons) of the Mason-Pfizer monkey virus isolated from rhesus monkeys. Purified preparations of both viruses grown in heterologous cells, as well as extracts of heterologous cells infected with squirrel monkey retrovirus or Mason-Pfizer monkey virus, compete completely in the assay. Addition of an endogenous virus of the langur monkey also results in complete blocking. No blocking in the assay is observedmore » with type-C baboon viruses, woolly monkey virus, and gibbon virus. Various other type-C and type-B viruses also showed no reactivity. An interspecies assay has thus been developed that recognizes the type-D retroviruses from both Old World monkey (rhesus and langur) and New World monkey (squirrel) species.« less

  17. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  18. Inter-Species Grafting Caused Extensive and Heritable Alterations of DNA Methylation in Solanaceae Plants

    PubMed Central

    Lin, Yan; Ma, Yiqiao; Liu, Gang; Yu, Xiaoming; Zhong, Silin; Liu, Bao

    2013-01-01

    Background Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term “graft hybrid” meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. Methodology/Principal Findings We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls), self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT)-PCR. We found that (1) hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2) the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3) hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. Conclusions/Significance Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We suggest that

  19. [Mechanisms of viral emergence and interspecies transmission: the exemple of simian foamy viruses in Central Africa].

    PubMed

    Gessain, Antoine

    2013-12-01

    A large proportion of viral pathogens that have emerged during the last decades in humans are considered to have originated from various animal species. This is well exemplified by several recent epidemics such as those of Nipah, Severe Acute Respiratory Syndrome, Avian flu, Ebola, Monkeypox, and Hantaviruses. After the initial interspecies transmission per se, the viruses can disseminate into the human population through various and distinct mechanisms. Some of them are well characterized and understood, thus allowing a certain level of risk control and prevention. Surprisingly and in contrast, the initial steps that lead to the emergence of several viruses, and of their associated diseases, remain still poorly understood. Epidemiological field studies conducted in certain specific high-risk populations are thus necessary to obtain new insights into the early events of this emergence process. Human infections by simian viruses represent increasing public health concerns. Indeed, by virtue of their genetic andphysiological similarities, non-human primates (NHPs) are considered to be likely the sources of viruses that can infect humans and thus may pose a significant threat to human population. This is well illustrated by retroviruses, which have the ability to cross species, adapt to a new host and sometimes spread within these new species. Sequence comparison and phylogenetic studies have thus clearly showed that the emergence of human immunodeficiency virus type 1 (HIV-1) and HIV-2 in humans have resulted from several independent interspecies transmissions of different SIV types from Chimpanzees and African monkeys (including sooty mangabeys), respectively, probably during the first part of the last century. The situation for Human T cell Lymphotropic virus type 1 (HTLV-1) is, for certain aspects, quite comparable. Indeed, the origin of most HTLV-1 subtypes appears to be linked to interspecies transmission between STLV-1-infected monkeys and humans, followed by

  20. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer.

    PubMed

    Adams, Ralph W; Aguilar, Juan A; Atkinson, Kevin D; Cowley, Michael J; Elliott, Paul I P; Duckett, Simon B; Green, Gary G R; Khazal, Iman G; López-Serrano, Joaquín; Williamson, David C

    2009-03-27

    The sensitivity of both nuclear magnetic resonance spectroscopy and magnetic resonance imaging is very low because the detected signal strength depends on the small population difference between spin states even in high magnetic fields. Hyperpolarization methods can be used to increase this difference and thereby enhance signal strength. This has been achieved previously by incorporating the molecular spin singlet para-hydrogen into hydrogenation reaction products. We show here that a metal complex can facilitate the reversible interaction of para-hydrogen with a suitable organic substrate such that up to an 800-fold increase in proton, carbon, and nitrogen signal strengths are seen for the substrate without its hydrogenation. These polarized signals can be selectively detected when combined with methods that suppress background signals.

  1. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  2. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  3. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Hamid, Sharifah Bee Abd; Juan, Joon Ching; Basirun, Wan Jefrey; Kandjani, Ahmad Esmaielzadeh

    2015-12-01

    Preparation of highly photo-activated TiO2 is achievable by hydrogenation at constant temperature and pressure, with controlled hydrogenation duration. The formation of surface disorders and Ti3+ is responsible for the color change from white unhydrogenated TiO2 to bluish-gray hydrogenated TiO2. This color change, together with increased oxygen vacancies and Ti3+ enhanced the solar light absorption from UV to infra-red region. Interestingly, no band gap narrowing is observed. The photocatalytic activity in the UV and visible region is controlled by Ti3+ and oxygen vacancies respectively. Both Ti3+ and oxygen vacancies increases the electron density on the catalyst surface thus facilitates rad OH radicals formation. The lifespan of surface photo-excited electrons and holes are also sustained thus prevents charge carrier recombination. However, excessive amount of oxygen vacancies deteriorates the photocatalytic activity as it serves as charge traps. Hydrogenation of TiO2 also promotes the growth of active {0 0 1} facets and facilitates the photocatalytic activity by higher concentration of surface OH radicals. However, the growth of {0 0 1} facets is small and insignificant toward the overall photo-kinetics. This work also shows that larger role is played by Ti3+ and oxygen vacancies rather than the surface disorders created during the hydrogenation process. It also demonstrates the ability of hydrogenated TiO2 to absorb wider range of photons even though at a similar band gap as unhydrogenated TiO2. In addition, the photocatalytic activity is shown to be decreased for extended hydrogenation duration due to excessive catalyst growth and loss in the total surface area. Thus, a balance in the physico-chemical properties of hydrogenated TiO2 is crucial to enhance the photocatalytic activity by simply controlling the hydrogenation duration.

  4. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  5. Impact of Gestational Bisphenol A on Oxidative Stress and Free Fatty Acids: Human Association and Interspecies Animal Testing Studies

    PubMed Central

    Veiga-Lopez, Almudena; Pennathur, Subramaniam; Kannan, Kurunthachalam; Patisaul, Heather B.; Dolinoy, Dana C.; Zeng, Lixia

    2015-01-01

    Bisphenol A (BPA) is a high production volume chemical and an endocrine disruptor. Developmental exposures to BPA have been linked to adult metabolic pathologies, but the pathways through which these disruptions occur remain unknown. This is a comprehensive interspecies association vs causal study to evaluate risks posed by prenatal BPA exposure and to facilitate discovery of biomarkers of relevance to BPA toxicity. Samples from human pregnancies during the first trimester and at term, as well as fetal and/or adult samples from prenatally BPA-treated sheep, rats, and mice, were collected to assess the impact of BPA on free fatty acid and oxidative stress dynamics. Mothers exposed to higher BPA during early to midpregnancy and their matching term cord samples displayed increased 3-nitrotyrosine (NY), a marker of nitrosative stress. Maternal samples had increased palmitic acid, which was positively correlated with NY. Sheep fetuses and adult sheep and rats prenatally exposed to a human-relevant exposure dose of BPA showed increased systemic nitrosative stress. The strongest effect of BPA on circulating free fatty acids was observed in adult mice in the absence of increased oxidative stress. This is the first multispecies study that combines human association and animal causal studies assessing the risk posed by prenatal BPA exposure to metabolic health. This study provides evidence of the induction of nitrosative stress by prenatal BPA in both the mother and fetus at time of birth and is thus supportive of the use of maternal NY as a biomarker for offspring health. PMID:25603046

  6. ISAAC - InterSpecies Analysing Application using Containers.

    PubMed

    Baier, Herbert; Schultz, Jörg

    2014-01-15

    Information about genes, transcripts and proteins is spread over a wide variety of databases. Different tools have been developed using these databases to identify biological signals in gene lists from large scale analysis. Mostly, they search for enrichments of specific features. But, these tools do not allow an explorative walk through different views and to change the gene lists according to newly upcoming stories. To fill this niche, we have developed ISAAC, the InterSpecies Analysing Application using Containers. The central idea of this web based tool is to enable the analysis of sets of genes, transcripts and proteins under different biological viewpoints and to interactively modify these sets at any point of the analysis. Detailed history and snapshot information allows tracing each action. Furthermore, one can easily switch back to previous states and perform new analyses. Currently, sets can be viewed in the context of genomes, protein functions, protein interactions, pathways, regulation, diseases and drugs. Additionally, users can switch between species with an automatic, orthology based translation of existing gene sets. As todays research usually is performed in larger teams and consortia, ISAAC provides group based functionalities. Here, sets as well as results of analyses can be exchanged between members of groups. ISAAC fills the gap between primary databases and tools for the analysis of large gene lists. With its highly modular, JavaEE based design, the implementation of new modules is straight forward. Furthermore, ISAAC comes with an extensive web-based administration interface including tools for the integration of third party data. Thus, a local installation is easily feasible. In summary, ISAAC is tailor made for highly explorative interactive analyses of gene, transcript and protein sets in a collaborative environment.

  7. Interspecies Communication among Commensal and Pathogenic Streptococci

    PubMed Central

    Cook, Laura C.; LaSarre, Breah; Federle, Michael J.

    2013-01-01

    ABSTRACT Quorum sensing (QS) regulates diverse and coordinated behaviors in bacteria, including the production of virulence factors, biofilm formation, sporulation, and competence development. It is now established that some streptococci utilize Rgg-type proteins in concert with short hydrophobic peptides (SHPs) to mediate QS, and sequence analysis reveals that several streptococcal species contain highly homologous Rgg/SHP pairs. In group A streptococcus (GAS), two SHPs (SHP2 and SHP3 [SHP2/3]) were previously identified to be important in GAS biofilm formation. SHP2/3 are detected by two antagonistic regulators, Rgg2 and Rgg3, which control expression of the shp genes. In group B streptococcus (GBS), RovS is a known virulence gene regulator and ortholog of Rgg2, whereas no apparent Rgg3 homolog exists. Adjacent to rovS is a gene (shp1520) encoding a peptide nearly identical to SHP2. Using isogenic mutant strains and transcriptional reporters, we confirmed that RovS/SHP1520 comprise a QS circuit in GBS. More important, we performed experiments demonstrating that production and secretion of SHP1520 by GBS can modulate Rgg2/3-regulated gene expression in GAS in trans; likewise, SHP2/3 production by GAS can stimulate RovS-mediated gene regulation in GBS. An isolate of Streptococcus dysgalactiae subsp. equisimilis also produced a secreted factor capable of simulating the QS circuits of both GAS and GBS, and sequencing confirms the presence of an orthologous Rgg2/SHP2 pair in this species as well. To our knowledge, this is the first documented case of bidirectional signaling between streptococcal species in coculture and suggests a role for orthologous Rgg/SHP systems in interspecies communication between important human pathogens. PMID:23882015

  8. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    PubMed

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  9. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    PubMed

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  10. Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid

    PubMed Central

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-01-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production. PMID:19261625

  11. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis.

    PubMed

    Wu, Chia-Hua; Ito, Keigo; Buytendyk, Allyson M; Bowen, K H; Wu, Judy I

    2017-08-22

    Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y - ), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y - ] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pK a concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pK a values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.

  12. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    NASA Astrophysics Data System (ADS)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  13. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, T.C.; Blanc, R.; Zeid, J.

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in themore » presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A

  14. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  15. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  16. Non-Simian Foamy Viruses: Molecular Virology, Tropism and Prevalence and Zoonotic/Interspecies Transmission

    PubMed Central

    Kehl, Timo; Tan, Juan; Materniak, Magdalena

    2013-01-01

    Within the field of retrovirus, our knowledge of foamy viruses (FV) is still limited. Their unique replication strategy and mechanism of viral persistency needs further research to gain understanding of the virus-host interactions, especially in the light of the recent findings suggesting their ancient origin and long co-evolution with their nonhuman hosts. Unquestionably, the most studied member is the primate/prototype foamy virus (PFV) which was originally isolated from a human (designated as human foamy virus, HFV), but later identified as chimpanzee origin; phylogenetic analysis clearly places it among other Old World primates. Additionally, the study of non-simian animal FVs can contribute to a deeper understanding of FV-host interactions and development of other animal models. The review aims at highlighting areas of special interest regarding the structure, biology, virus-host interactions and interspecies transmission potential of primate as well as non-primate foamy viruses for gaining new insights into FV biology. PMID:24064793

  17. Sensory-based conservation of seabirds: a review of management strategies and animal behaviours that facilitate success.

    PubMed

    Friesen, Megan R; Beggs, Jacqueline R; Gaskett, Anne C

    2017-08-01

    Sensory-based conservation harnesses species' natural communication and signalling behaviours to mitigate threats to wild populations. To evaluate this emerging field, we assess how sensory-based manipulations, sensory mode, and target taxa affect success. To facilitate broader, cross-species application of successful techniques, we test which behavioural and life-history traits correlate with positive conservation outcomes. We focus on seabirds, one of the world's most rapidly declining groups, whose philopatry, activity patterns, foraging, mate choice, and parental care behaviours all involve reliance on, and therefore strong selection for, sophisticated sensory physiology and accurate assessment of intra- and inter-species signals and cues in several sensory modes. We review the use of auditory, olfactory, and visual methods, especially for attracting seabirds to newly restored habitat or deterring birds from fishing boats and equipment. We found that more sensory-based conservation has been attempted with Procellariiformes (tube-nosed seabirds) and Charadriiformes (e.g. terns and gulls) than other orders, and that successful outcomes are more likely for Procellariiformes. Evolutionary and behavioural traits are likely to facilitate sensory-based techniques, such as social attraction to suitable habitat, across seabird species. More broadly, successful application of sensory-based conservation to other at-risk animal groups is likely to be associated with these behavioural and life-history traits: coloniality, philopatry, nocturnal, migratory, long-distance foraging, parental care, and pair bonds/monogamy. © 2016 Cambridge Philosophical Society.

  18. The effect of urea on microstructures of Ni{sub 3}S{sub 2} on nickel foam and its hydrogen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinlong, Lv, E-mail: ljltsinghua@126.com; State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084; Tongxiang, Liang, E-mail: txliang@mail.tsinghua.edu.cn

    The effects of urea concentration on microstructures of Ni{sub 3}S{sub 2}formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni{sub 3}S{sub 2} nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni{sub 3}S{sub 2} nanotube arrays. The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction. - Graphical abstract: The resulting Ni{sub 3}S{submore » 2} nanotube arrays exhibited higher catalytic activity than Ni{sub 3}S{sub 2} nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction and hydrogen evolution. - Highlights: • Urea promoted to forming more Ni{sub 3}S{sub 2} nanotube arrays on nickel foam. • Ni{sub 3}S{sub 2} nanotube arrays showed higher catalytic activity in alkaline solution. • Ni{sub 3}S{sub 2} nanotube arrays promoted electron transport and reaction during the HER.« less

  19. Interspecies variation of Kitasatospora recifensis endophytic from yam bean producing thermostable amylases in alternative media.

    PubMed

    Stamford, Tania Lucia Montenegro; Stamford, Thayza Christina Montenegro; Stamford, Newton Pereira; Santos, Carolina Etienne Rosália Silva; de Lyra, Maria do Carmo Catanho Pereira; Ha-Park, Yong; Bae, Jin-Won; Araújo, Janete Magali

    2007-12-01

    An endophytic actinomycete isolated from tubers of yam beam (Pachyrhizus erosus L. Urban) was classified as a novel species nominated Kitasatospora recifensis based in phenotypic and genotypic analysis (16S rDNA gene sequence). Monosporic culture using specific ISP2 media revealed three interspecies, which were identified by DNA southern hybridization (Wild strain 13817 W, Aerial Mycelium strain 13817 AM and Vegetative Mycelium strain 13817 VM). The strains were tested for the production of amylolitic enzymes in alternative media. Maximum yields for both enzymes were observed in starch-casein. Higher α-amylase was obtained with strain 13817 W in starch-urea, and amyloglucosidase with strain 13817 AM in starch-ammonium that are economic sources and may be important for industrial purposes. Type strain (DAUFPE 13817(T) = KCTC 9972(T )= DSM 44943(T)).

  20. Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution.

    PubMed

    Zhang, Y-H Percival; Huang, Wei-Dong

    2012-06-01

    In this opinion, we suggest the electricity-carbohydrate-hydrogen (ECHo) cycle which bridges primary energies and secondary energies. Carbohydrates are sources of food, feed, liquid biofuels, and renewable materials and are a high-density hydrogen carrier and electricity storage compounds (e.g. >3000 Wh/kg). One element of this ECHo cycle can be converted to another reversibly and efficiently depending on resource availability, needs and costs. This cycle not only supplements current and future primary energy utilization systems for facilitating electricity and hydrogen storage and enhancing secondary energy conversion efficiencies, but also addresses such sustainability challenges as transportation fuel production, CO(2) utilization, fresh water conservation, and maintenance of a small closed ecosystem in emergency situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Hydrogen embrittlement in nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  2. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    PubMed

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  3. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition

    PubMed Central

    Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.

    2016-01-01

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks. PMID:27759014

  4. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures

    PubMed Central

    Li, Meng; Xie, De-Gang; Ma, Evan; Li, Ju; Zhang, Xi-Xiang; Shan, Zhi-Wei

    2017-01-01

    Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures. PMID:28218260

  5. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

    PubMed

    Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P

    2007-01-12

    The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.

  6. Acute oral toxicity: variability, reliability, relevance and interspecies comparison of rodent LD50 data from literature surveyed for the ACuteTox project.

    PubMed

    Hoffmann, Sebastian; Kinsner-Ovaskainen, Agnieszka; Prieto, Pilar; Mangelsdorf, Inge; Bieler, Christian; Cole, Thomas

    2010-12-01

    The ACuteTox project has aimed to optimise and prevalidate an in vitro testing strategy for predicting human acute toxicity. Ninety-seven reference substances were selected and an in vivo acute toxicity database was compiled. Comprehensive statistical analyses of the in vivo LD50 data to evaluate variability and reliability, interspecies correlation, predictive capacities with regard to EU and GHS toxicity categories, and deduction of performance criteria for in vitro methods is presented. For the majority of substances variability among rodent data followed a log normal distribution where good reproducibility was found. Rat and mouse interspecies comparison of LD50 studies by ordinary regression showed high correlation, with coefficients of determination, ranging between 0.8 and 0.9. Substance specific differences were only significant for warfarin and cycloheximide. No correlation of compound LD50 range with presumed study quality rank (by assigning Klimisch reliability scores) was found. Modelling based on LD50 variability showed that with at least 90% probability ∼54% of the substances would fall into only one GHS category and ∼44% would fall within two adjacent categories. These results could form the basis for deriving a predictive capacity that should be expected from alternative approaches to the conventional in vivo acute oral toxicity test. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Inter-species and Seasonal Variability in Mg / Ca in Larger Benthic Foraminifera: Implications for Paleo-proxy

    NASA Astrophysics Data System (ADS)

    Singh, A.; Saraswati, P. K.; Pande, K.; Sanyal, P.

    2015-12-01

    The reports of inter-species variability to intra-test heterogeneity in Mg/Ca in several species of foraminifera have raised question about its use in estimation of seawater temperatures and necessitate field and culture studies to verify it for species from different habitats. In this study, we attempt to investigate if Mg/Ca in larger benthic foraminifera (LBF) could be a potential proxy of seawater temperatures for shallow marine carbonates. The samples were collected in different seasons from coral reef at Akajima (Okinawa, Japan). The Ca and Mg of 13 species of LBF and small benthic foraminifera from the same season were determined to examine variation in Mg/Ca among the species calcified under presumably the same temperature and salinity conditions. We also analyzed Amphistegina lessoni from different seasons for Ca, Mg and δ18O to determine variation in Mg/Ca with temperature and see how the two proxies of temperatures, Mg/Ca and δ18O, correlate in the same species. The species cluster about two distinctly separated Mg/Ca values. The first group comprising species of Amphistegina, Gypsina, Ammonia and Elphidium have relatively lower Mg/Ca, varying from 30 to 45 mmol/mol. The second group, having average Mg/Ca ranging from ~110 to 170 mmol/mol, includes species of Schlumbergerella, Baculogypsinoides, Baculogypsina, Heterostegina, Operculina, Calcarina, Amphisorus, Alveolinella and Poroeponides. The result suggests large interspecies variability implying vital effect in foraminiferal Mg/Ca. There is no distinct difference in Mg/Ca values between porcelaneous and hyaline types or symbiont-bearing and symbiont-free types. In Amphistegina lessoni the variation in Mg/Ca between individuals of the same season is as large as variation across the seasons. There is no correlation between Mg/Ca and seawater temperature. Lack of correlation between Mg/Ca and δ18O further suggests that Mg/Ca in the species is not primarily controlled by temperature.

  8. Thermodynamic and Kinetic Requirements in Anaerobic Methane Oxidizing Consortia Exclude Hydrogen, Acetate, and Methanol as Possible Electron Shuttles.

    PubMed

    Sørensen, K.B.; Finster, K.; Ramsing, N.B.

    2001-07-01

    Anaerobic methane oxidation (AMO) has long remained an enigma in microbial ecology. In the process the net reaction appears to be an oxidation of methane with sulfate as electron acceptor. In order to explain experimental data such as effects of inhibitors and isotopic signals in biomarkers it has been suggested that the process is carried out by a consortium of bacteria using an unknown compound to shuttle electrons between the participants. The overall change in free energy during AMO with sulfate is very small (?22 kJ mol-1) at in situ concentrations of methane and sulfate. In order to share the available free energy between the members of the consortium, the concentration of the intermediate electron shuttle compound becomes crucial. Diffusive flux of a substrate (i.e, the electron shuttle) between bacteria requires a stable concentration gradient where the concentration is higher in the producing organism than in the consuming organism. Since changes in concentrations cause changes in reaction free energies, the diffusive flux of a catabolic product/substrate between bacteria is associated with a net loss of available energy. This restricts maximal inter-bacterial distances in consortia composed of stationary bacteria. A simple theoretical model was used to describe the relationship between inter-bacterial distances and the energy lost due to concentration differences in consortia. Key parameters turned out to be the permissible concentration range of the electron shuttle in the consortium (i.e., the concentration range that allows both participants to gain sufficient energy) and the stoichiometry of the partial reactions. The model was applied to two known consortia degrading ethanol and butyrate and to four hypothetical methane-oxidizing consortia (MOC) based on interspecies transfer of hydrogen, methanol, acetate, or formate, respectively. In the first three MOCs the permissible distances between producers and consumers of the transferred compounds were

  9. An in vitro approach for comparative interspecies metabolism of agrochemicals.

    PubMed

    Whalley, Paul M; Bartels, Michael; Bentley, Karin S; Corvaro, Marco; Funk, Dorothee; Himmelstein, Matthew W; Neumann, Birgit; Strupp, Christian; Zhang, Fagen; Mehta, Jyotigna

    2017-08-01

    The metabolism and elimination of a xenobiotic has a direct bearing on its potential to cause toxicity in an organism. The confidence with which data from safety studies can be extrapolated to humans depends, among other factors, upon knowing whether humans are systemically exposed to the same chemical entities (i.e. a parent compound and its metabolites) as the laboratory animals used to study toxicity. Ideally, to understand a metabolite in terms of safety, both the chemical structure and the systemic exposure would need to be determined. However, as systemic exposure data (i.e. blood concentration/time data of test material or metabolites) in humans will not be available for agrochemicals, an in vitro approach must be taken. This paper outlines an in vitro experimental approach for evaluating interspecies metabolic comparisons between humans and animal species used in safety studies. The aim is to ensure, where possible, that all potential human metabolites are also present in the species used in the safety studies. If a metabolite is only observed in human in vitro samples and is not present in a metabolic pathway defined in the toxicological species already, the toxicological relevance of this metabolite must be evaluated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell.

    PubMed

    Zhao, Zisheng; Zhang, Yaobin; Quan, Xie; Zhao, Huimin

    2016-01-01

    Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cyanobacterial Hydrogenases and Hydrogen Metabolism Revisited: Recent Progress and Future Prospects

    PubMed Central

    Khanna, Namita; Lindblad, Peter

    2015-01-01

    Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(P)H. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review. PMID:26006225

  12. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Environmental and Health Benefits and Risks of a Global Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2003-12-01

    Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.

  14. Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes.

    PubMed

    Seyedsayamdost, Mohammad R; Traxler, Matthew F; Clardy, Jon; Kolter, Roberto

    2012-01-01

    Actinomycetes, a group of filamentous, Gram-positive bacteria, have long been a remarkable source of useful therapeutics. Recent genome sequencing and transcriptomic studies have shown that these bacteria, responsible for half of the clinically used antibiotics, also harbor a large reservoir of gene clusters, which have the potential to produce novel secreted small molecules. Yet, many of these clusters are not expressed under common culture conditions. One reason why these clusters have not been linked to a secreted small molecule lies in the way that actinomycetes have typically been studied: as pure cultures in nutrient-rich media that do not mimic the complex environments in which these bacteria evolved. New methods based on multispecies culture conditions provide an alternative approach to investigating the products of these gene clusters. We have recently implemented binary interspecies interaction assays to mine for new secondary metabolites and to study the underlying biology of interactinomycete interactions. Here, we describe the detailed biological and chemical methods comprising these studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Live Animal Markets in Minnesota: A Potential Source for Emergence of Novel Influenza A Viruses and Interspecies Transmission

    PubMed Central

    Choi, Mary J.; Torremorell, Montserrat; Bender, Jeff B.; Smith, Kirk; Boxrud, David; Ertl, Jon R.; Yang, My; Suwannakarn, Kamol; Her, Duachi; Nguyen, Jennifer; Uyeki, Timothy M.; Levine, Min; Lindstrom, Stephen; Katz, Jacqueline M.; Jhung, Michael; Vetter, Sara; Wong, Karen K.; Sreevatsan, Srinand; Lynfield, Ruth

    2015-01-01

    Background. Live animal markets have been implicated in transmission of influenza A viruses (IAVs) from animals to people. We sought to characterize IAVs at 2 live animal markets in Minnesota to assess potential routes of occupational exposure and risk for interspecies transmission. Methods. We implemented surveillance for IAVs among employees, swine, and environment (air and surfaces) during a 12-week period (October 2012–January 2013) at 2 markets epidemiologically associated with persons with swine-origin IAV (variant) infections. Real-time reverse transcription polymerase chain reaction (rRT-PCR), viral culture, and whole-genome sequencing were performed on respiratory and environmental specimens, and serology on sera from employees at beginning and end of surveillance. Results. Nasal swabs from 11 of 17 (65%) employees tested positive for IAVs by rRT-PCR; 7 employees tested positive on multiple occasions and 1 employee reported influenza-like illness. Eleven of 15 (73%) employees had baseline hemagglutination inhibition antibody titers ≥40 to swine-origin IAVs, but only 1 demonstrated a 4-fold titer increase to both swine-origin and pandemic A/Mexico/4108/2009 IAVs. IAVs were isolated from swine (72/84), air (30/45), and pen railings (5/21). Whole-genome sequencing of 122 IAVs isolated from swine and environmental specimens revealed multiple strains and subtype codetections. Multiple gene segment exchanges among and within subtypes were observed, resulting in new genetic constellations and reassortant viruses. Genetic sequence similarities of 99%–100% among IAVs of 1 market customer and swine indicated interspecies transmission. Conclusions. At markets where swine and persons are in close contact, swine-origin IAVs are prevalent and potentially provide conditions for novel IAV emergence. PMID:26223994

  16. Live Animal Markets in Minnesota: A Potential Source for Emergence of Novel Influenza A Viruses and Interspecies Transmission.

    PubMed

    Choi, Mary J; Torremorell, Montserrat; Bender, Jeff B; Smith, Kirk; Boxrud, David; Ertl, Jon R; Yang, My; Suwannakarn, Kamol; Her, Duachi; Nguyen, Jennifer; Uyeki, Timothy M; Levine, Min; Lindstrom, Stephen; Katz, Jacqueline M; Jhung, Michael; Vetter, Sara; Wong, Karen K; Sreevatsan, Srinand; Lynfield, Ruth

    2015-11-01

    Live animal markets have been implicated in transmission of influenza A viruses (IAVs) from animals to people. We sought to characterize IAVs at 2 live animal markets in Minnesota to assess potential routes of occupational exposure and risk for interspecies transmission. We implemented surveillance for IAVs among employees, swine, and environment (air and surfaces) during a 12-week period (October 2012-January 2013) at 2 markets epidemiologically associated with persons with swine-origin IAV (variant) infections. Real-time reverse transcription polymerase chain reaction (rRT-PCR), viral culture, and whole-genome sequencing were performed on respiratory and environmental specimens, and serology on sera from employees at beginning and end of surveillance. Nasal swabs from 11 of 17 (65%) employees tested positive for IAVs by rRT-PCR; 7 employees tested positive on multiple occasions and 1 employee reported influenza-like illness. Eleven of 15 (73%) employees had baseline hemagglutination inhibition antibody titers ≥40 to swine-origin IAVs, but only 1 demonstrated a 4-fold titer increase to both swine-origin and pandemic A/Mexico/4108/2009 IAVs. IAVs were isolated from swine (72/84), air (30/45), and pen railings (5/21). Whole-genome sequencing of 122 IAVs isolated from swine and environmental specimens revealed multiple strains and subtype codetections. Multiple gene segment exchanges among and within subtypes were observed, resulting in new genetic constellations and reassortant viruses. Genetic sequence similarities of 99%-100% among IAVs of 1 market customer and swine indicated interspecies transmission. At markets where swine and persons are in close contact, swine-origin IAVs are prevalent and potentially provide conditions for novel IAV emergence. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids.

    PubMed

    Zuchowska, Magdalena; Jaenicke, Elmar; König, Helmut; Claus, Harald

    2015-11-01

    The transport of sugars across the plasma membrane is a critical step in the utilization of glucose and fructose by Saccharomyces cerevisiae during must fermentations. Variations in the molecular structure of hexose transporters and kinases may affect the ability of wine yeast strains to finish sugar fermentation, even under stressful wine conditions. In this context, we sequenced and compared genes encoding the hexose transporter Hxt3p and the kinases Hxk1p/Hxk2p of Saccharomyces strains and interspecies hybrids with different industrial usages and regional backgrounds. The Hxt3p primary structure varied in a small set of amino acids, which characterized robust yeast strains used for the production of sparkling wine or to restart stuck fermentations. In addition, interspecies hybrid strains, previously isolated at the end of spontaneous fermentations, revealed a common amino acid signature. The location and potential influence of the amino acids exchanges is discussed by means of a first modelled Hxt3p structure. In comparison, hexokinase genes were more conserved in different Saccharomyces strains and hybrids. Thus, molecular variants of the hexose carrier Hxt3p, but not of kinases, correlate with different fermentation performances of yeast. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  19. Interspecies Transmission of Feline Immunodeficiency Virus from the Domestic Cat to the Tsushima Cat (Felis bengalensis euptilura) in the Wild

    PubMed Central

    Nishimura, Yoshiaki; Goto, Yuko; Yoneda, Kumiko; Endo, Yasuyuki; Mizuno, Takuya; Hamachi, Masaharu; Maruyama, Hiroyuki; Kinoshita, Hirotoshi; Koga, Susumu; Komori, Mitsuru; Fushuku, Seigo; Ushinohama, Kanji; Akuzawa, Masao; Watari, Toshihiro; Hasegawa, Atsuhiko; Tsujimoto, Hajime

    1999-01-01

    Feline immunodeficiency virus (FIV) was isolated from a wild-caught Tsushima cat (Felis bengalensis euptilura), an endangered Japanese nondomestic subspecies of leopard cat (F. bengalensis). Phylogenetic analysis of the env gene sequences indicated that the FIV from the Tsushima cat belonged to a cluster of subtype D FIVs from domestic cats. FIVs from both the Tsushima cat and the domestic cat showed similar levels of replication and cytopathicity in lymphoid cell lines derived from these two species. The results indicated the occurrence of interspecies transmission of FIV from the domestic cat to the Tsushima cat in the wild. PMID:10438892

  20. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  1. NASA Hydrogen Research for Spaceport and Space Based Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Tim

    2005-01-01

    Project management activities for this grant includes internal oversight, coordination and facilitation among research groups (internal to UF and external); system and/or trade studies to assist in evaluating and prioritizing new hydrogen production processes that may become available for potential research investigations; a technical and programmatic outreach activity; and formal reporting, including periodic technical reviews with the NASA team.

  2. HBNG: Graph theory based visualization of hydrogen bond networks in protein structures.

    PubMed

    Tiwari, Abhishek; Tiwari, Vivek

    2007-07-09

    HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Program is available from the authors for non-commercial purposes.

  3. A Few Facts about Hydrogen [and] Hydrogen Bibliography.

    ERIC Educational Resources Information Center

    Hinds, H. Roger

    Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…

  4. Deposition of hydrogenated silicon clusters for efficient epitaxial growth.

    PubMed

    Le, Ha-Linh Thi; Jardali, Fatme; Vach, Holger

    2018-06-13

    Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions. There is strong evidence that a temporary phase transition of the substrate area around the cluster impact site to the liquid state is necessary for the epitaxial growth to take place. We predict further that a non-normal incidence angle for the cluster impact significantly facilitates the epitaxial growth of thin crystalline silicon films.

  5. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesusmore » monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.« less

  6. Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology

    PubMed Central

    Miranda-Dominguez, Oscar; Mills, Brian D.; Grayson, David; Woodall, Andrew; Grant, Kathleen A.; Kroenke, Christopher D.

    2014-01-01

    Resting state functional connectivity MRI (rs-fcMRI) may provide a powerful and noninvasive “bridge” for comparing brain function between patients and experimental animal models; however, the relationship between human and macaque rs-fcMRI remains poorly understood. Here, using a novel surface deformation process for species comparisons in the same anatomical space (Van Essen, 2004, 2005), we found high correspondence, but also unique hub topology, between human and macaque functional connectomes. The global functional connectivity match between species was moderate to strong (r = 0.41) and increased when considering the top 15% strongest connections (r = 0.54). Analysis of the match between functional connectivity and the underlying anatomical connectivity, derived from a previous retrograde tracer study done in macaques (Markov et al., 2012), showed impressive structure–function correspondence in both the macaque and human. When examining the strongest structural connections, we found a 70–80% match between structural and functional connectivity matrices in both species. Finally, we compare species on two widely used metrics for studying hub topology: degree and betweenness centrality. The data showed topological agreement across the species, with nodes of the posterior cingulate showing high degree and betweenness centrality. In contrast, nodes in medial frontal and parietal cortices were identified as having high degree and betweenness in the human as opposed to the macaque. Our results provide: (1) a thorough examination and validation for a surface-based interspecies deformation process, (2) a strong theoretical foundation for making interspecies comparisons of rs-fcMRI, and (3) a unique look at topological distinctions between the species. PMID:24741045

  7. Secondary SCNT doubles the pre-implantation development rate of reconstructed interspecies embryos by using cytoplasts of Sannen dairy goat ova.

    PubMed

    Zhang, Ai Min; Chen, Jian Quan; Sha, Hong Ying; Chen, Juan; Xu, Xu Jun; Wu, You Bin; Ge, Lai Xiang; Da, Hu Wei; Cheng, Guo Xiang

    2007-10-01

    The aim of this study was to investigate whether ova of Sannen goat could support the pre-implantation development of interspecies embryos constructed through somatic cell nucleus transfer (SCNT) embryos and whether secondary SCNT (SSCNT) could improve the pre-implantation development of those embryos. The primary SCNT (PSCNT) embryos were produced by using Sannen goat ovum cytoplasts as recipients and fibroblast cells, derived from human, rabbit and Boer goat skins, as nucleus donors. The blastomeres of 8 to 16 cells stage of PSCNT embryos were subsequently used as nucleus donor cells and Sannen goat ovum cytoplasts as recipients to evaluate the effect of SSCNT on the pre-implantation development rate of these reconstructed interspecies embryos. Our results indicate that the pre-implantation development rates of SSCNT embryos reconstructed using these three different blastomeres are almost twice of that of corresponding PSCNT embryos (human, 15.8% vs. 7.8%; rabbit, 27.9% vs. 12.5%; Boer goat 55.3% vs. 24.5%; P < 0.05 in all three cases). The time durations that embryos need for the serial events of remodeling and reprogramming to take place vary, depending on the animal species of nucleus donors. These data suggest that remodeling and reprogramming of donor nucleus may be enhanced by prolonged exposure of donor nucleus to maternal cytoplast. We conclude that Sannen goat cytoplast can support the pre-implantation development of embryos constructed with nuclei from various donors, including fibroblasts of human, rabbit and Boer goat; and the somatic nucleus derived from different species requires more time to achieve its reprogramming necessary for pre-implantation development.

  8. Charge induced enhancement of adsorption for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang

    2009-12-01

    The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl2 and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage

  9. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.

    PubMed

    Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng

    2018-06-08

    While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.

  10. A Volcanic Hydrogen Habitable Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{submore » 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.« less

  11. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    PubMed Central

    Quecine, Maria Carolina; Kidarsa, Teresa A.; Goebel, Neal C.; Shaffer, Brenda T.; Henkels, Marcella D.; Zabriskie, T. Mark

    2015-01-01

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. PMID:26655755

  12. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  13. Macroevolution of gastric Helicobacter species unveils interspecies admixture and time of divergence.

    PubMed

    Smet, Annemieke; Yahara, Koji; Rossi, Mirko; Tay, Alfred; Backert, Steffen; Armin, Ensser; Fox, James G; Flahou, Bram; Ducatelle, Richard; Haesebrouck, Freddy; Corander, Jukka

    2018-06-25

    Since the discovery of the human pathogen Helicobacter pylori, various other Helicobacter species have been identified in the stomach of domesticated and wild mammals. To better understand the evolutionary history of these ecologically similar but genetically distinct species, we analyzed 108 gastric Helicobacter genomes and included 54 enterohepatic Helicobacter genomes for comparison purposes. An admixture analysis supported the presence of an ecological barrier, preventing the genetic exchange between the gastric and enterohepatic Helicobacter species, and unraveled many gene flow events within and across species residing in the stomach. As pets can be colonized by multiple gastric Helicobacter species, the genetic exchange between the canine and feline strains was evident, with H. heilmannii and H. bizzozeronii showing the highest interspecies recombination. An admixture between H. pylori (in particular, the ancestral African strains), H. acinonychis from wild felines and H. cetorum from marine mammals was also identified. Because these latter species do not share the same host, this phenomenon is most likely a remaining signal of shared ancestry. A reconstruction of the time of divergence of the gastric Helicobacter spp. revealed that the domestic animal-related Helicobacter species evolved in parallel with H. pylori and its two closest relatives (H. acinonychis and H. cetorum), rather than together.

  14. The oxidative environment: a mediator of interspecies communication that drives symbiosis evolution.

    PubMed

    Moné, Yves; Monnin, David; Kremer, Natacha

    2014-06-22

    Symbiotic interactions are ubiquitous in nature and play a major role in driving the evolution of life. Interactions between partners are often mediated by shared signalling pathways, which strongly influence both partners' biology and the evolution of the association in various environments. As an example of 'common language', the regulation of the oxidative environment plays an important role in driving the evolution of symbiotic associations. Such processes have been occurring for billions of years, including the increase in Earth's atmospheric oxygen and the subsequent evolution of mitochondria. The effect of reactive oxygen species and reactive nitrogen species (RONS) has been characterized functionally, but the molecular dialogue between partners has not been integrated within a broader evolutionary context yet. Given the pleiotropic role of RONS in cell-cell communication, development and immunity, but also their associated physiological costs, we discuss here how their regulation can influence the establishment, the maintenance and the breakdown of various symbiotic associations. By synthesizing recent developments in redox biology, we aim to provide an interdisciplinary understanding of the influence of such mediators of interspecies communication on the evolution and stability of symbioses, which in turn can shape ecosystems and play a role in health and disease.

  15. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site.

    PubMed

    Wang, Lu; Fried, Stephen D; Boxer, Steven G; Markland, Thomas E

    2014-12-30

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.

  16. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  17. Novel technologies in rumen microbiology: What have we learned?

    USDA-ARS?s Scientific Manuscript database

    Beginning in the 1950s, rumen microbiology enjoyed a golden age in which the secrets of the rumen began to be teased out through the isolation of numerous new microbial species and the discovery of such important concepts as interspecies hydrogen transfer and the quantitative aspects of bacterial gr...

  18. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon.

    PubMed

    Zhang, Shuo; Chang, Jiali; Lin, Chao; Pan, Yiran; Cui, Kangping; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia

    2017-12-01

    To understand how granular activated carbon (GAC) promotes methanogenesis, batch tests of CH 4 production potential in anaerobic serum bottles with addition of GAC or not were conducted. Tests showed that GAC promoted methanogenesis remarkably, but the non-conductive zeolite did not. The qPCR demonstrated that the biomass on GAC contributed little to the promotion. High-throughput sequencing data implied that promotion was related with direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae. According to the c-type cytochromes (c-Cyts) response to the supplement of GAC, it was speculated that GAC may play the role of c-Cyts' substitution. In the undefined cultures, the phenomenon that c-Cyts were repressed by GAC was first observed. This research provided new evidence to microbial mechanism of promoting methanogenesis via GAC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs.

    PubMed

    Lin, Ying; Kashio, Akinori; Sakamoto, Takashi; Suzukawa, Keigo; Kakigi, Akinobu; Yamasoba, Tatsuya

    2011-01-03

    It has been shown that molecular hydrogen acts as a therapeutic and preventive antioxidant by selectively reducing the hydroxyl radical, the most cytotoxic of the reactive oxygen species. In the present study, we tested the hypothesis that acoustic damage in guinea pigs can be attenuated by the consumption of molecular hydrogen. Guinea pigs received normal water or hydrogen-rich water for 14 days before they were exposed to 115 dB SPL 4-kHz octave band noise for 3h. Animals in each group underwent measurements for auditory brainstem response (ABR) or distortion-product otoacoustic emissions (DPOAEs) before the treatment (baseline) and immediately, 1, 3, 7, and 14 days after noise exposure. The ABR thresholds at 2 and 4 kHz were significantly better on post-noise days 1, 3, and 14 in hydrogen-treated animals when compared to the normal water-treated controls. Compared to the controls, the hydrogen-treated animals showed greater amplitude of DPOAE input/output growth functions during the recovery process, with statistical significance detected on post-noise days 3 and 7. These findings suggest that hydrogen can facilitate the recovery of hair cell function and attenuate noise-induced temporary hearing loss. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte.

    PubMed

    Tang, Maureen H; Hahn, Christopher; Klobuchar, Aidan J; Ng, Jia Wei Desmond; Wellendorff, Jess; Bligaard, Thomas; Jaramillo, Thomas F

    2014-09-28

    The development of improved catalysts for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) in basic electrolytes remains a major technical obstacle to improved fuel cells, water electrolyzers, and other devices for electrochemical energy storage and conversion. Based on the free energy of adsorbed hydrogen intermediates, theory predicts that alloys of nickel and silver are active for these reactions. In this work, we synthesize binary nickel-silver bulk alloys across a range of compositions and show that nickel-silver alloys are indeed more active than pure nickel for hydrogen evolution and, possibly, hydrogen oxidation. To overcome the mutual insolubility of silver and nickel, we employ electron-beam physical vapor codeposition, a low-temperature synthetic route to metastable alloys. This method also produces flat and uniform films that facilitate the measurement of intrinsic catalytic activity with minimal variations in the surface area, ohmic contact, and pore transport. Rotating-disk-electrode measurements demonstrate that the hydrogen evolution activity per geometric area of the most active catalyst in this study, Ni0.75Ag0.25, is approximately twice that of pure nickel and has comparable stability and hydrogen oxidation activity. Our experimental results are supported by density functional theory calculations, which show that bulk alloying of Ni and Ag creates a variety of adsorption sites, some of which have near-optimal hydrogen binding energy.

  1. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  2. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  3. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Burgess, Robert M; Schmidt, Kara

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, includingmore » the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and

  4. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOEpatents

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  5. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaofeng; Raaen, Steinar, E-mail: sraaen@ntnu.no

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbonmore » cone containing material.« less

  6. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  7. Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012

    PubMed Central

    Bowman, Andrew S; Sreevatsan, Srinand; Killian, Mary L; Page, Shannon L; Nelson, Sarah W; Nolting, Jacqueline M; Cardona, Carol; Slemons, Richard D

    2012-01-01

    Evidence accumulating in 2011–2012 indicates that there is significant intra- and inter-species transmission of influenza A viruses at agricultural fairs, which has renewed interest in this unique human/swine interface. Six human cases of influenza A (H3N2) variant (H3N2v) virus infections were epidemiologically linked to swine exposure at fairs in the United States in 2011. In 2012, the number of H3N2v cases in the Midwest had exceeded 300 from early July to September, 2012. Prospective influenza A virus surveillance among pigs at Ohio fairs resulted in the detection of H3N2pM (H3N2 influenza A viruses containing the matrix (M) gene from the influenza A (H1N1) pdm09 virus). These H3N2pM viruses were temporally and spatially linked to several human H3N2v cases. Complete genomic analyses of these H3N2pM isolates demonstrated >99% nucleotide similarity to the H3N2v isolates recovered from human cases. Actions to mitigate the bidirectional interspecies transmission of influenza A virus between people and animals at agricultural fairs may be warranted. PMID:26038404

  8. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

    PubMed Central

    Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.

    2014-01-01

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367

  9. Compact hydrogenator

    NASA Technical Reports Server (NTRS)

    Simmonds, P. G. (Inventor)

    1974-01-01

    The development and characteristics of a hydrogenating apparatus are described. The device consists of a reaction chamber which is selectively permeable to atomic hydrogen and catalytically active to a hydrogenating reaction. In one device, hydrogen is pumped out of the reaction chamber while the reactant remains inside to remove molecular hydrogen so that more atomic hydrogen can pass through the walls. In another device, the reactant is pumped through the reaction chamber, and the hydrogen is removed from the material leaving the chamber. The reactant is then cycled through the chamber.

  10. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    PubMed

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  11. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  12. Interspecies sexual behaviour between a male Japanese macaque and female sika deer.

    PubMed

    Pelé, Marie; Bonnefoy, Alexandre; Shimada, Masaki; Sueur, Cédric

    2017-04-01

    Interspecies sexual behaviour or 'reproductive interference' has been reported across a wide range of animal taxa. However, most of these occurrences were observed in phylogenetically close species and were mainly discussed in terms of their effect on fitness, hybridization and species survival. The few cases of heterospecific mating in distant species occurred between animals that were bred and maintained in captivity. Only one scientific study has reported this phenomenon, describing sexual harassment of king penguins by an Antarctic fur seal. This is the first article to report mating behaviour between a male Japanese macaque (Macaca fuscata yakui) and female sika deer (Cervus nippon yakushimae) on Yakushima Island, Japan. Although Japanese macaques are known to ride deer, this individual showed clearly sexual behaviour towards several female deer, some of which tried to escape whilst others accepted the mount. This male seems to belong to a group of peripheral males. Although this phenomenon may be explained as copulation learning, this is highly unlikely. The most realistic hypothesis would be that of mate deprivation, which states that males with limited access to females are more likely to display this behaviour. Whatever the cause for this event may be, the observation of highly unusual animal behaviour may be a key to understanding the evolution of heterospecific mating behaviour in the animal kingdom.

  13. On being a (modern) scientist: risks of public engagement in the UK interspecies embryo debate.

    PubMed

    Porter, James; Williams, Clare; Wainwright, Steven; Cribb, Alan

    2012-12-01

    In 2006, a small group of UK academic scientists made headlines when they proposed the creation of interspecies embryos - mixing human and animal genetic material. A public campaign was fought to mobilize support for the research. Drawing on interviews with the key scientists involved, this paper argues that engaging the public through communicating their ideas via the media can result in tensions between the necessity of, and inherent dangers in, scientists campaigning on controversial issues. Some scientists believed that communicating science had damaged their professional standing in the eyes of their peers, who, in turn, policed the boundaries around what they believed constituted a "good" scientist. Tensions between promoting "science" versus promotion of the "scientist;" engaging the public versus publishing peer-reviewed articles and winning grants; and building expectations versus overhyping the science reveal the difficult choices scientists in the modern world have to make over the potential gains and risks of communicating science. We conclude that although scientists' participation in public debates is often encouraged, the rewards of such engagement remain. Moreover, this participation can detrimentally affect scientists' careers.

  14. Photochemically engineering the metal-semiconductor interface for room-temperature transfer hydrogenation of nitroarenes with formic acid.

    PubMed

    Li, Xin-Hao; Cai, Yi-Yu; Gong, Ling-Hong; Fu, Wei; Wang, Kai-Xue; Bao, Hong-Liang; Wei, Xiao; Chen, Jie-Sheng

    2014-12-08

    A mild photochemical approach was applied to construct highly coupled metal-semiconductor dyads, which were found to efficiently facilitate the hydrogenation of nitrobenzene. Aniline was produced in excellent yield (>99 %, TOF: 1183) using formic acid as hydrogen source and water as solvent at room temperature. This general and green catalytic process is applicable to a wide range of nitroarenes without the involvement of high-pressure gases or sacrificial additives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrogen Metabolism in Helicobacter pylori Plays a Role in Gastric Carcinogenesis through Facilitating CagA Translocation.

    PubMed

    Wang, Ge; Romero-Gallo, Judith; Benoit, Stéphane L; Piazuelo, M Blanca; Dominguez, Ricardo L; Morgan, Douglas R; Peek, Richard M; Maier, Robert J

    2016-08-16

    A known virulence factor of Helicobacter pylori that augments gastric cancer risk is the CagA cytotoxin. A carcinogenic derivative strain, 7.13, that has a greater ability to translocate CagA exhibits much higher hydrogenase activity than its parent noncarcinogenic strain, B128. A Δhyd mutant strain with deletion of hydrogenase genes was ineffective in CagA translocation into human gastric epithelial AGS cells, while no significant attenuation of cell adhesion was observed. The quinone reductase inhibitor 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) was used to specifically inhibit the H2-utilizing respiratory chain of outer membrane-permeabilized bacterial cells; that level of inhibitor also greatly attenuated CagA translocation into AGS cells, indicating the H2-generated transmembrane potential is a contributor to toxin translocation. The Δhyd strain showed a decreased frequency of DNA transformation, suggesting that H. pylori hydrogenase is also involved in energizing the DNA uptake apparatus. In a gerbil model of infection, the ability of the Δhyd strain to induce inflammation was significantly attenuated (at 12 weeks postinoculation), while all of the gerbils infected with the parent strain (7.13) exhibited a high level of inflammation. Gastric cancer developed in 50% of gerbils infected with the wild-type strain 7.13 but in none of the animals infected with the Δhyd strain. By examining the hydrogenase activities from well-defined clinical H. pylori isolates, we observed that strains isolated from cancer patients (n = 6) have a significantly higher hydrogenase (H2/O2) activity than the strains isolated from gastritis patients (n = 6), further supporting an association between H. pylori hydrogenase activity and gastric carcinogenesis in humans. Hydrogen-utilizing hydrogenases are known to be important for some respiratory pathogens to colonize hosts. Here a gastric cancer connection is made via a pathogen's (H. pylori) use of molecular hydrogen, a

  16. Morphological plasticity in watermelon in response to interspecific competition in a low-resource intercropping system

    USDA-ARS?s Scientific Manuscript database

    Interspecies specific interactions are generally regarded as drivers of plant productivity in multispecies agroecosystems. Positive interactions such as facilitation can dominate over competition under high abiotic stress conditions. Furthermore, complementary use of resource in diverse communities ...

  17. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models.

    PubMed

    Willming, Morgan M; Lilavois, Crystal R; Barron, Mace G; Raimondo, Sandy

    2016-10-04

    Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA's Internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa using least-squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family). Web-ICE was expanded with new models that can predict toxicity to over 250 listed species. A case study was used to assess protectiveness of genus and family model estimates derived from either geometric mean or minimum taxa toxicity values for listed species. Models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE model estimates were compared to HC5 values derived from Species Sensitivity Distributions for the case study chemicals to assess protectiveness of the two approaches. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species.

  18. Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

    NASA Astrophysics Data System (ADS)

    Choi, Eunho; Kwak, Young Jun; Song, Myoung Youp

    2018-06-01

    Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN = 2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN = 3 at 593 K in 12 bar H2. At CN = 1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

  19. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    PubMed

    Quecine, Maria Carolina; Kidarsa, Teresa A; Goebel, Neal C; Shaffer, Brenda T; Henkels, Marcella D; Zabriskie, T Mark; Loper, Joyce E

    2015-12-11

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. A thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts.

    PubMed

    Wang, Kun; Chartrand, Patrice

    2018-06-15

    This paper presents a quantitative thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts, which is of technological importance to the Hall-Héroult electrolytic aluminum extraction cell. The Modified Quasichemical Model in the Quadruplet Approximation (MQMQA), as used to treat a large variety of molten salt systems, was adopted to thermodynamically describe the present liquid phase; all solid solutions were modeled using the Compound Energy Formalism (CEF); the gas phase was thermodynamically treated as an ideal mixture of all possible species. The model parameters were mainly obtained by critical evaluations and optimizations of thermodynamic and phase equilibrium data available from relative experimental measurements and theoretical predictions (first-principles calculations and empirical estimations) for the lower-order subsystems. These optimized model parameters were thereafter merged within the Kohler/Toop interpolation scheme, facilitating the prediction of gas solubility (H2O, HF and H2) in multicomponent cryolite-base molten salts using the FactSage thermochemical software. Several interesting diagrams were finally obtained in order to provide useful information for the industrial partners dedicated to the Hall-Héroult electrolytic aluminum production or other molten-salt technologies (the purification process and electroslag refining).

  1. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  2. Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition.

    PubMed

    Liu, Pudong; Shi, Runhe; Zhang, Chao; Zeng, Yuyan; Wang, Jiapeng; Tao, Zhu; Gao, Wei

    2017-10-31

    The invasive species Spartina alterniflora and native species Phragmites australis display a significant co-occurrence zonation pattern and this co-exist region exerts most competitive situations between these two species, competing for the limited space, directly influencing the co-exist distribution in the future. However, these two species have different growth ratios in this area, which increase the difficulty to detect the distribution situation directly by remote sensing. As chlorophyll content is a key indicator of plant growth and physiological status, the objective of this study was to reduce the effect of interspecies competition when estimating Cab content; we evaluated 79 published representative indices to determine the optimal indices for estimating the chlorophyll a and b (Cab) content. After performing a sensitivity analysis for all 79 spectral indices, five spectral indices were selected and integrated using an artificial neural network (ANN) to estimate the Cab content of different competition ratios: the Gitelson ratio green index, the transformed chlorophyll absorption ratio index/optimized soil-adjusted vegetation index, the modified normalized difference vegetation index, the chlorophyll fluorescence index, and the Vogelmann chlorophyll index. The ANN method yielded better results (R 2  = 0.7110 and RMSE = 8.3829 μg cm -2 ) on average than the best single spectral index (R 2  = 0.6319 and RMSE = 9.3535 μg cm -2 ), representing an increase of 10.78% in R 2 and a decrease of 10.38% in RMSE. Our results indicated that integrating multiple vegetation indices with an ANN can alleviate the impact of interspecies competition and achieve higher estimation accuracy than the traditional approach using a single index.

  3. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins

    PubMed Central

    Cao, Zheng; Bowie, James U

    2014-01-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090

  4. Crystal structures and hydrogen bonding in the anhydrous tryptaminium salts of the isomeric (2,4-di­chloro­phen­oxy)acetic and (3,5-di­chloro­phen­oxy)acetic acids

    PubMed Central

    Smith, Graham; Lynch, Daniel E.

    2015-01-01

    The anhydrous salts of 2-(1H-indol-3-yl)ethanamine (tryptamine) with isomeric (2,4-di­chloro­phen­oxy)acetic acid (2,4-D) and (3,5-di­chloro­phen­oxy)acetic (3,5-D), both C10H13N2 +·C8H5Cl2O3 − [(I) and (II), respectively], have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I), the aminium H atoms are involved in three separate inter-species N—H⋯O hydrogen-bonding inter­actions, two with carboxyl­ate O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl­ate O,O′ chelate [graph set R 1 2(4)]. The indole H atom forms an N—H⋯Ocarboxyl­ate hydrogen bond, extending the chain structure along the b-axis direction. In (II), two of the three aminium H atoms are also involved in N—H⋯Ocarboxyl­ate hydrogen bonds similar to (I) but with the third, a three-centre asymmetric inter­action with carboxyl­ate and phen­oxy O atoms is found [graph set R 1 2(5)]. The chain polymeric extension is also along b. There are no π–π ring inter­actions in either of the structures. The aminium side-chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts. PMID:26090147

  5. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  6. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  7. Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon.

    PubMed

    Robert, C; Del'Homme, C; Bernalier-Donadille, A

    2001-12-18

    Interspecies H2 transfer between two newly isolated fibrolytic strains (18P13 and 18P16) and H2-utilizing methanogen or acetogen from the human colon was investigated during in vitro cellulose degradation. Both H2-consuming microorganisms utilized efficiently H2 produced from cellulose fermentation by the fibrolytic species. H2 utilization by Methanobrevibacter smithii did not change the metabolism and the cellulolytic activity of strain 18P16 whereas it induced a metabolic shift in strain 18P13. However, this metabolic shift was not associated with enhancement of cellulose degradation. In contrast, an increase in cellulose breakdown was observed when strain 18P13 was cultivated with Ruminococcus hydrogenotrophicus. This stimulating effect could be attributed to both the autotrophic and the heterotrophic metabolism of the acetogen in the coculture.

  8. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  9. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  10. Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  11. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    NASA Astrophysics Data System (ADS)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.

  12. Facilitating Facilitators: Enhancing PBL through a Structured Facilitator Development Program

    ERIC Educational Resources Information Center

    Salinitri, Francine D.; Wilhelm, Sheila M.; Crabtree, Brian L.

    2015-01-01

    With increasing adoption of the problem-based learning (PBL) model, creative approaches to enhancing facilitator training and optimizing resources to maintain effective learning in small groups is essential. We describe a theoretical framework for the development of a PBL facilitator training program that uses the constructivist approach as the…

  13. Hydrogen transport and hydrogen embrittlement in stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, T.P.

    1985-01-01

    In order to understand the kinetics of gaseous hydrogen-induced slow crack growth (SCG) in metastable austenitic stainless steels, hydrogen permeation and/or cracking velocity were measured and compared for three types of stainless steels. These included austenitic, ferritic, and duplex (..gamma../..cap alpha..) alloys. Deformation in AISI 301 resulted in various amounts of ..cap alpha..' martensite, which enhanced the effective hydrogen diffusivity and permeability. No phase transformation was observed in deformed AISI 310. The effective hydrogen diffusivity in this alloy was slightly reduced after plastic deformation, presumably by dislocation trapping. In either the dynamic or static tensile test, AISI 301 exhibited themore » greatest hydrogen embrittlement and therefore the highest SCG velocity among all the alloys tested in this work. The SCG velocity was believed to be controlled by the rate of accumulation of hydrogen in the embrittlement region ahead of the crack tip and therefore could be explained with the hydrogen transport parameters measured from the permeation experiments. The relatively high SCG velocity in AISI 301 was probably due to the fast transport of hydrogen through the primarily stress-induced ..cap alpha..' phase around the crack. No SCG was observed in AISI 310. The presence of H/sub 2/O vapor was found to reduce both the hydrogen permeation and SCG velocity.« less

  14. Hydrogen Storage | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    research. An International Multi-Laboratory Investigation of Carbon-Based Hydrogen Sorbent Materials Carbon Nanotube Anions, Journal of Materials Research (2012) Manipulation of Hydrogen Binding Energy and Spectroscopy, Journal of Physical Chemistry C (2012) Reactions and Reversible Hydrogenation of Single-Walled

  15. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals

    PubMed Central

    Diehl, William E; Patel, Nirali; Halm, Kate; Johnson, Welkin E

    2016-01-01

    Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections. DOI: http://dx.doi.org/10.7554/eLife.12704.001 PMID:26952212

  16. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals.

    PubMed

    Diehl, William E; Patel, Nirali; Halm, Kate; Johnson, Welkin E

    2016-03-08

    Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections.

  17. Oxidative coupling of sp 2 and sp 3 carbon-hydrogen bonds to construct dihydrobenzofurans.

    PubMed

    Shi, Jiang-Ling; Wang, Ding; Zhang, Xi-Sha; Li, Xiao-Lei; Chen, Yu-Qin; Li, Yu-Xue; Shi, Zhang-Jie

    2017-08-10

    Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon-carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon-hydrogen bond. From an economic and environmental point of view, oxidative couplings between two carbon-hydrogen bonds would be ideal. Oxidative coupling between phenyl and "inert" alkyl carbon-hydrogen bonds still awaits realization. It is very difficult to develop successful strategies for oxidative coupling of two carbon-hydrogen bonds owning different chemical properties. This article provides a solution to this challenge in a convenient preparation of dihydrobenzofurans from substituted phenyl alkyl ethers. For the phenyl carbon-hydrogen bond activation, our choice falls on the carboxylic acid fragment to form the palladacycle as a key intermediate. Through careful manipulation of an additional ligand, the second "inert" alkyl carbon-hydrogen bond activation takes place to facilitate the formation of structurally diversified dihydrobenzofurans.Cross-dehydrogenative coupling is finding increasing application in synthesis, but coupling two chemically distinct sites remains a challenge. Here, the authors report an oxidative coupling between sp 2 and sp 3 carbons by sequentially activating the more active aryl site followed by the alkyl position.

  18. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  19. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  20. Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Shi, Xiaoshuang; He, Shuai; Wang, Lin; Dai, Meng; Qiu, Yanling; Dang, Xiaoxiao

    2016-07-01

    Bioaugmentation can facilitate hydrogen production from complex organic substrates, but it still is unknown how indigenous microbial communities respond to the added bacteria. Here, using a Hydrogenispora ethanolica LX-B (named as LX-B) bioaugmentation experiments, the distribution of metabolites and the responses of indigenous bacterial communities were investigated via batch cultivation (BC) and repeated batch cultivation (RBC). In BC the LX-B/sludge ratio of 0.12 achieved substantial high hydrogen yield, which was over twice that of control. In RBC one-time bioaugmentation and repeated batch bioaugmentation of LX-B resulted in the hydrogen yield that was average 1.2-fold and 0.8-fold higher than that in control, respectively. This improved hydrogen production performance mainly benefited from a shift in composition of the indigenous bacterial community caused by LX-B bioaugmentation. The findings represented an important step in understanding the relationship between bioaugmentation, a shift in bacterial communities, and altered bioreactor performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    DOE PAGES

    Wang, John Jy-An; Ren, Fei; Tan, Tin; ...

    2014-12-19

    Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed in the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to many catastrophic failures. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, special testing apparatus were designed to facilitate in situ fracture testing in H 2. A torsional fixture was developed tomore » utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H 2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.« less

  2. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  3. In Search of the E. coli Compounds that Change the Antibiotic Production Pattern of Streptomyces coelicolor During Inter-species Interaction.

    PubMed

    Mavituna, Ferda; Luti, Khalid Jaber Kadhum; Gu, Lixing

    2016-08-01

    The aim of this work was to investigate the interaction between E.coli and Streptomyces coelicolor A3 (2) for the increased production of undecylprodigiosin and identify the E. coli actives mediating this inter-species interaction. The antibiotics of interest were the red-pigmented undecylprodigiosin and blue-pigmented actinorhodin. Pure cultures of S. coelicolor in a defined medium produced higher concentrations of actinorhodin compared to those of undecylprodigiosin. The latter however, is more important due to its immunosuppressive and antitumor properties. As a strategy to increase undecylprodigiosin production, we added separately, live cells and heat-killed cells of E. coli C600, and the cell-free supernatant of E. coli culture to S. coelicolor cultures in shake flasks. The interaction with live cells of E. coli altered the antibiotic production pattern and undecylprodigiosin production was enhanced by 3.5-fold compared to the pure cultures of S. coelicolor and actinorhodin decreased by 15-fold. The heat-killed cells of E. coli however, had no effect on antibiotic production. In all cases, growth and glucose consumption of S. coelicolor remained almost the same as those observed in the pure culture indicating that the changes in antibiotic production were not due to nutritional stress. Results with cell-free supernatant of E. coli culture indicated that the interaction between S. coelicolor and E. coli was mediated via diffusible molecule(s). Using a set of extraction procedures and agar-well diffusion bioassays, we isolated and preliminarily identified a class of compounds. For the preliminary verification, we added the compound which was the common chemical structural moiety in this class of compounds to the pure S. coelicolor cultures. We observed similar effects on antibiotic production as with the live E. coli cells and their supernatant indicating that this class of compounds secreted by E. coli indeed could act as actives during interspecies

  4. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  5. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  6. Alternative Saccharomyces interspecies hybrid combinations and their potential for low‐temperature wort fermentation

    PubMed Central

    Nikulin, Jarkko; Krogerus, Kristoffer

    2017-01-01

    Abstract The lager yeast hybrid (Saccharomyces cerevisiae × Saccharomyces eubayanus) possesses two key characteristics that are essential for lager brewing: efficient sugar utilization and cold tolerance. Here we explore the possibility that the lager yeast phenotype can be recreated by hybridizing S. cerevisiae ale yeast with a number of cold‐tolerant Saccharomyces species including Saccharomyces arboricola, Saccharomyces eubayanus, Saccharomyces mikatae and Saccharomyces uvarum. Interspecies hybrids performed better than parental strains in lager brewing conditions (12°C and 12°P wort), with the S. mikatae hybrid performing as well as the S. eubayanus hybrid. Where the S. cerevisiae parent was capable of utilizing maltotriose, this trait was inherited by the hybrids. A greater production of higher alcohols and esters by the hybrids resulted in the production of more aromatic beers relative to the parents. Strong fermentation performance relative to the parents was dependent on ploidy, with polyploid hybrids (3n, 4n) performing better than diploid hybrids. All hybrids produced 4‐vinyl guaiacol, a smoke/clove aroma generally considered an off flavour in lager beer. This characteristic could however be eliminated by isolating spore clones from a fertile hybrid of S. cerevisiae and S. mikatae. The results suggest that S. eubayanus is dispensable when constructing yeast hybrids that express the typical lager yeast phenotype. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:28755430

  7. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production.

    PubMed

    Bizaj, Etjen; Cordente, Antonio G; Bellon, Jennifer R; Raspor, Peter; Curtin, Chris D; Pretorius, Isak S

    2012-06-01

    Industrial food-grade yeast strains are selected for traits that enhance their application in quality production processes. Wine yeasts are required to survive in the harsh environment of fermenting grape must, while at the same time contributing to wine quality by producing desirable aromas and flavors. For this reason, there are hundreds of wine yeasts available, exhibiting characteristics that make them suitable for different fermentation conditions and winemaking practices. As wine styles evolve and technical winemaking requirements change, however, it becomes necessary to improve existing strains. This becomes a laborious and costly process when the targets for improvement involve flavor compound production. Here, we demonstrate a new approach harnessing preexisting industrial yeast strains that carry desirable flavor phenotypes - low hydrogen sulfide (H(2) S) production and high ester production. A low-H(2) S Saccharomyces cerevisiae strain previously generated by chemical mutagenesis was hybridized independently with two ester-producing natural interspecies hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Deficiencies in sporulation frequency and spore viability were overcome through use of complementary selectable traits, allowing successful isolation of several novel hybrids exhibiting both desired traits in a single round of selection. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment.

    PubMed

    Li, Qian; Xu, Manjuan; Wang, Gaojun; Chen, Rong; Qiao, Wei; Wang, Xiaochang

    2018-02-01

    Batch experiments were conducted using biochar (BC) to promote stable and efficient methane production from thermophilic co-digestion of food waste (FW) and waste activated sludge (WAS) at feedstock/seed sludge (F/S) ratios of 0.25, 0.75, 1.5, 2.25, and 3. The results showed that the presence of BC dramatically shortened the lag time of methane production and increased the methane production rate with increased organic loading. The higher buffer capacity and large specific surface area of BC promoted microorganism growth and adaption to VFAs accumulation. Additionally, the electron exchange in syntrophic oxidation of butyrate and acetate as intermediate products was significantly facilitated by BC possibly due to the selective succession of bacteria and methanogens which may have participated in direct interspecies electron transfer, in contrast with the control group with low-efficient electron ferried between syntrophic oxidizers and methanogens using hydrogen as the electron carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. On the distribution of interspecies correlation for Markov models of character evolution on Yule trees.

    PubMed

    Mulder, Willem H; Crawford, Forrest W

    2015-01-07

    Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. On being a (modern) scientist: risks of public engagement in the UK interspecies embryo debate

    PubMed Central

    Porter, James; Williams, Clare; Wainwright, Steven; Cribb, Alan

    2012-01-01

    In 2006, a small group of UK academic scientists made headlines when they proposed the creation of interspecies embryos – mixing human and animal genetic material. A public campaign was fought to mobilize support for the research. Drawing on interviews with the key scientists involved, this paper argues that engaging the public through communicating their ideas via the media can result in tensions between the necessity of, and inherent dangers in, scientists campaigning on controversial issues. Some scientists believed that communicating science had damaged their professional standing in the eyes of their peers, who, in turn, policed the boundaries around what they believed constituted a “good” scientist. Tensions between promoting “science” versus promotion of the “scientist;” engaging the public versus publishing peer-reviewed articles and winning grants; and building expectations versus overhyping the science reveal the difficult choices scientists in the modern world have to make over the potential gains and risks of communicating science. We conclude that although scientists' participation in public debates is often encouraged, the rewards of such engagement remain. Moreover, this participation can detrimentally affect scientists' careers. PMID:23293548

  12. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture.

    PubMed

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S; Brislawn, Colin J; Mobberley, Jennifer M; Isern, Nancy; Chrisler, William B; Markillie, Lye Meng; Barney, Brett M; Song, Hyun-Seob; Nelson, William C; Bernstein, Hans C

    2018-01-10

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized - and confirmed - that co-cultivation under glucose as the sole carbon source would result in competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended on nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.

  13. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S.

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesizedmore » – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.« less

  14. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-03-01

    The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  15. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  16. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE PAGES

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; ...

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  17. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  18. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    PubMed Central

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-01-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing. PMID:28145527

  19. Kinetics of Hydrogen Diffusion in LaNi(sub 5-x)Sn(sub x) Alloys

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Hightower, A.; Witham, C.; Bowman, R. C.; Fultz, B.

    1996-01-01

    Solid-state diffusion of hydrogen in metal hydride (MH) alloys is recognized as the rate determining step in the discharge of MH alloys in alkaline Ni-MH rechargeable cells. In our pursuit of new ternary solutes in LaNi(sub 5) for extended cycle lifetimes, we have observed noticeable improvement in the cycle life with small substitutions of Sn and Ge for Ni. Furthermore, these substituents also facilitate enhanced charge transfer kinetics for hydriding-dehydriding process. In this paper, we report our studies on the kinetics of hydrogen diffusion in LaNi(sub 5-x) Sn(sub x) alloys by electrochemical pulse techniques, chronoamperometry and chronocoulometry.

  20. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas.

    PubMed

    Gebhart, Kristi A; Malm, William C; Ashbaugh, Lowell L

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years.

  1. Interspecies protein substitution to investigate the role of the lyssavirus glycoprotein.

    PubMed

    Marston, Denise A; McElhinney, Lorraine M; Banyard, Ashley C; Horton, Daniel L; Núñez, Alejandro; Koser, Martin L; Schnell, Matthias J; Fooks, Anthony R

    2013-02-01

    European bat lyssaviruses type 1 (EBLV-1) and type 2 (EBLV-2) circulate within bat populations throughout Europe and are capable of causing disease indistinguishable from that caused by classical rabies virus (RABV). However, the determinants of viral fitness and pathogenicity are poorly understood. Full-length genome clones based on the highly attenuated, non-neuroinvasive, RABV vaccine strain (SAD-B19) were constructed with the glycoprotein (G) of either SAD-B19 (SN), of EBLV-1 (SN-1) or EBLV-2 (SN-2). In vitro characterization of SN-1 and SN-2 in comparison to wild-type EBLVs demonstrated that the substitution of G affected the final virus titre and antigenicity. In vivo, following peripheral infection with a high viral dose (10(4) f.f.u.), animals infected with SN-1 had reduced survivorship relative to infection with SN, resulting in survivorship similar to animals infected with EBLV-1. The histopathological changes and antigen distribution observed for SN-1 were more representative of those observed with SN than with EBLV-1. EBLV-2 was unable to achieve a titre equivalent to that of the other viruses. Therefore, a reduced-dose experiment (10(3) f.f.u.) was undertaken in vivo to compare EBLV-2 and SN-2, which resulted in 100 % survivorship for all recombinant viruses (SN, SN-1 and SN-2) while clinical disease developed in mice infected with the EBLVs. These data indicate that interspecies replacement of G has an effect on virus titre in vitro, probably as a result of suboptimal G-matrix protein interactions, and influences the survival outcome following a peripheral challenge with a high virus titre in mice.

  2. Interspecies difference in placement of developing teeth and its relationship with cross-sectional geometry of the mandibular symphysis in four primate species including modern humans.

    PubMed

    Fukase, Hitoshi

    2012-02-01

    The form of the anthropoid mandibular symphysis has recently been addressed in association with spatial requirements for the forming anterior teeth. To evaluate potential relationships between the symphyseal shape and teeth further, the growth patterns of the symphyseal region and the positioning of the tooth crypts were examined using CT data, comparing four primate species (modern humans, chimpanzees, Japanese monkeys, and hamadryas baboons) with varied symphyseal curvature and tooth size. First, results showed that interspecies differences in overall mandibular shape including symphyseal inclination and bicanine width are consistently expressed throughout postnatal ontogeny, although local symphyseal configurations related to the superior transverse torus (STT) tended to change considerably during growth in chimpanzees. Second, the four species were found to exhibit differentiated formation positions of the incisor and canine crypts. In particular, I2 developed between I1 and C in humans with a broad bicanine space and small teeth, whereas it was positioned posterior to I1 and above C in the cercopithecines with an extremely narrow bicanine space. In chimpanzees, despite the large bicanine width, I1 and I2 grew with a large antero-posterior overlap owing to their large size. These results indicate that the dental positioning is determined in concert with the size balance of the available mandibular space and forming teeth. Finally, the positions/contours of I2 crypt were shown to correspond strongly with the STT across the taxa. This suggests that interspecies differences in symphyseal shape should be interpreted partially by the species-specific positional relationships of the developing anterior teeth. Copyright © 2011 Wiley Periodicals, Inc.

  3. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2

  4. Hydrogen storage methods.

    PubMed

    Züttel, Andreas

    2004-04-01

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen

  5. Hydrogen storage methods

    NASA Astrophysics Data System (ADS)

    Züttel, Andreas

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is

  6. An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.

    PubMed

    Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; Du, Xian-Long; Wang, Jian-Qiang; He, He-Yong; Cao, Yong

    2014-12-01

    The formate-based rechargeable hydrogen battery (RHB) promises high reversible capacity to meet the need for safe, reliable, and sustainable H2 storage used in fuel cell applications. Described herein is an additive-free RHB which is based on repetitive cycles operated between aqueous formate dehydrogenation (discharging) and bicarbonate hydrogenation (charging). Key to this truly efficient and durable H2 handling system is the use of highly strained Pd nanoparticles anchored on graphite oxide nanosheets as a robust and efficient solid catalyst, which can facilitate both the discharging and charging processes in a reversible and highly facile manner. Up to six repeated discharging/charging cycles can be performed without noticeable degradation in the storage capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  8. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  9. Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen

    Science.gov Websites

    at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell

  10. Nanoindentation of silicon implanted with hydrogen: effect of implantation dose on silicon’s mechanical properties and nanoindentation-induced phase transformation

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet; Goncharova, Lyudmila V.; Wong, Sing Fai

    2017-07-01

    Implantation of hydrogen in single-crystal silicon (c-Si) is known to affect its machining. However, very little is reported on the material and mechanical properties of hydrogen-implanted silicon (Si). In this article, near-surface regions (~0-500 nm) of lightly doped (1 0 0) Si were modified by varying the hydrogen concentration using ion implantation. The maximum hydrogen concentration was varied from ~4  ×  1020 to ~3.2  ×  1021 cm-3. The implanted Si was investigated by nanoindentation. From the dynamic nanoindentation test, it was found that in hydrogen-implanted Si hardness is increased significantly, while the elastic modulus is reduced. The nanoindentation-induced Si phase transformation was studied under different load/unload rates and loads. Raman spectroscopy revealed that the hydrogen implantation tends to suppress Si-XII and Si-III phases and facilitates amorphous Si formation during the unloading stage of nanoindentation. Both the mechanical properties and phase transformations were qualitatively related not only to the hydrogen concentration, but also to the implantation-generated defects and strain.

  11. Effect of PdO on TiO(sub2) Loading on Chemochromic Detection of Hydrogen

    NASA Technical Reports Server (NTRS)

    Mohajeri, Nahid; T-Rassisi, Ali; Bokerman, Gary; Captain, Janine E.; Peterson, Barbara V.; Whitten, Mary; Berger, Cristina

    2007-01-01

    Safety is always a concern in all applications that utilize hydrogen (H(sub2)) in one form or the other. Hydrogen leaks are invisible and odorless. In addition, blending odorants or additives into hydrogen in a manner similar to natural gas is generally undesirable for certain applications including proton exchange membrane fuel cells. To facilitate detection of the location of hydrogen leaks, a special chemochromic H(sub2) sensing material that employs titania (Ti0(sub2)) supported palladium oxide (PdO) pigments encapsulated within a special silicone matrix has been developed at the Florida Solar Energy Center (FSEC). Several batches of PdO H(sub2) sensing pigments were synthesized using various Ti0(sub2) supports and their hydrogen detection activity determined. TEM and Particle size distribution analysis showed that smaller particles with hemispherical crystalline structure produced faster coloration kinetics when exposed to H(sub2) gas. However, uniformly distributed PdO particles on the Ti0(sub2) surface displayed greater color contrast, quantified by delta epsilon measurements. XRD analysis indicated that the crystalline phase of Ti0(sub2) had no effect on the chemochromic performance of the pigments in laboratory environment.

  12. Reaping Environmental Benefits of a Global Hydrogen Economy: How Large, Fow Soon, and at What Risks?

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2004-12-01

    The Western world has taken an aggressive posture to transition to a global hydrogen economy. While numerous technical challenges need to be addressed to achieve this it is timely to examine the environmental benefits and risks of this transition. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the leak rates in global hydrogen infrastructure and the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) are principal sources of uncertainty in our assessment.

  13. Hydrogen-related defects in hydrogenated amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Jin, Shu; Ley, Lothar

    1991-07-01

    One of the key steps in the formation of glow-discharge-deposited (GD) a-Si:H or a-Ge:H films by plasma deposition from the gas phase is the elimination of excess hydrogen from the growth surface which is necessary for the cross linking of the Si or Ge network and the reduction of the defect density associated with the hydrogen-rich surface layer. The high defect density (~1018 cm-3) in a growing surface layer can, depending on preparation conditions, be either reduced (to ~1016 cm-3) or be trapped in the bulk upon subsequent growth, as evidenced by a great deal of data. However, little is known about its origin and implication. We have investigated the change in electronic structure related with this process using UHV-evaporated a-Ge as a model system, subjected to thermal hydrogenation, plasma hydrogenation, and various annealing cycles. The density of occupied states in the pseudogap of the a-Ge(:H) surface (probing depth ~50 Å) was determined with total-yield photoelectron spectroscopy. In this way, effects of thermal annealing, hydrogenation, and ion bombarding on the near-surface defect density could be studied. We identify in room-temperature (RT) hydrogenated a-Ge:H another defect at about Ev+0.45 eV in addition to the dangling-bond defect. This defect exists at the initial stage of hydrogen incorporation, decreases upon ~250 °C annealing, and is restored upon RT rehydrogenation. Therefore we suspect that this defect is hydrogen induced and concomitant with the formation of unexpected bondings [both multiply bonded XHx (X=Si or Ge and x=2 and 3) and polyhydride (XH2)n configurations] favored at RT hydrogenation. As a possible candidate we suggest the Ge-H-Ge three-center bond in which one electron is placed in a nonbonding orbital that gives rise to the paramagnetic state in the gap of a-Ge:H observed here. This defect also accounts for the large defect density at the growing surface in the optimized plasma chemical-vapor-deposition process, where the

  14. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  15. Guide to Permitting Hydrogen Motor Fuel Dispensing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, Carl; Buttner, William; Burgess, Robert

    2016-03-28

    The purpose of this guide is to assist project developers, permitting officials, code enforcement officials, and other parties involved in developing permit applications and approving the implementation of hydrogen motor fuel dispensing facilities. The guide facilitates the identification of the elements to be addressed in the permitting of a project as it progresses through the approval process; the specific requirements associated with those elements; and the applicable (or potentially applicable) codes and standards by which to determine whether the specific requirements have been met. The guide attempts to identify all applicable codes and standards relevant to the permitting requirements.

  16. Insights from Hydrogen Refueling Station Manufacturing Competitiveness Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayyas, Ahmad

    2015-12-18

    In work for the Clean Energy Manufacturing Analysis Center (CEMAC), NREL is currently collaborating with Great Lakes Wind Network in conducting a comprehensive hydrogen refueling stations manufacturing competitiveness and supply chain analyses. In this project, CEMAC will be looking at several metrics that will facilitate understanding of the interactions between and within the HRS supply chain, such metrics include innovation potential, intellectual properties, learning curves, related industries and clustering, existing supply chains, ease of doing business, and regulations and safety. This presentation to Fuel Cell Seminar and Energy Exposition 2015 highlights initial findings from CEMAC's analysis.

  17. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  18. Hydrogen and Fuel Cell Basics | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Hydrogen and Fuel Cell Basics Hydrogen and Fuel Cell Basics NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment basics of NREL's hydrogen and fuel cell research and development. Fuel cell electric vehicles (FCEVs

  19. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  20. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    PubMed

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  1. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  2. Peroxotantalate-Based Ionic Liquid Catalyzed Epoxidation of Allylic Alcohols with Hydrogen Peroxide.

    PubMed

    Ma, Wenbao; Chen, Chen; Kong, Kang; Dong, Qifeng; Li, Kun; Yuan, Mingming; Li, Difan; Hou, Zhenshan

    2017-05-29

    The efficient and environmentally benign epoxidation of allylic alcohols has been attained by using new kinds of monomeric peroxotantalate anion-functionalized ionic liquids (ILs=[P 4,4,4,n ] 3 [Ta(O) 3 (η-O 2 )], P 4,4,4,n =quaternary phosphonium cation, n=4, 8, and 14), which have been developed and their structures determined accordingly. This work revealed the parent anions of the ILs underwent structural transformation in the presence of H 2 O 2 . The formed active species exhibited excellent catalytic activity, with a turnover frequency for [P 4,4,4,4 ] 3 [Ta(O) 3 (η-O 2 )] of up to 285 h -1 , and satisfactory recyclability in the epoxidation of various allylic alcohols under very mild conditions by using only one equivalent of hydrogen peroxide as an oxidant. NMR studies showed the reaction was facilitated through a hydrogen-bonding mechanism, in which the peroxo group (O-O) of the peroxotantalate anion served as the hydrogen-bond acceptor and hydroxyl group in the allylic alcohols served as the hydrogen-bond donor. This work demonstrates that simple monomeric peroxotantalates can catalyze epoxidation of allylic alcohols efficiently. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, Katrina; Hecht, Ethan; Reynolds, John Thomas

    The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety andmore » to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.« less

  4. Hydrogen System Component Validation | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Meeting (June 2017) Hydrogen Component Validation: 2016 Annual Progress Report, Danny Terlip, Excerpt from the 2016 DOE Annual Progress Report (February 2017) Hydrogen Component Validation: 2016 Annual Merit Transportation Decisions, NREL Fact Sheet (June 2016) Hydrogen Component Validation: 2015 Annual Progress Report

  5. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst

    PubMed Central

    Wang, Liang; Wang, Guoxiong; Zhang, Jian; Bian, Chaoqun; Meng, Xiangju; Xiao, Feng-Shou

    2017-01-01

    The synthesis of organic nitriles without using toxic cyanides is in great demand but challenging to make. Here we report an environmentally benign and cost-efficient synthesis of nitriles from the direct oxidative cyanation of primary carbon-hydrogen bonds with easily available molecular oxygen and urea. The key to this success is to design and synthesize manganese oxide catalysts fixed inside zeolite crystals, forming a manganese oxide catalyst with zeolite sheath (MnOx@S-1), which exhibits high selectivity for producing nitriles by efficiently facilitating the oxidative cyanation reaction and hindering the side hydration reaction. The work delineates a sustainable strategy for synthesizing nitriles while avoiding conventional toxic cyanide, which might open a new avenue for selective transformation of carbon-hydrogen bonds. PMID:28504259

  6. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    PubMed

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. RepSox improves viability and regulates gene expression in rhesus monkey-pig interspecies cloned embryos.

    PubMed

    Zhu, Hai-Ying; Jin, Long; Guo, Qing; Luo, Zhao-Bo; Li, Xiao-Chen; Zhang, Yu-Chen; Xing, Xiao-Xu; Xuan, Mei-Fu; Zhang, Guang-Lei; Luo, Qi-Rong; Wang, Jun-Xia; Cui, Cheng-Du; Li, Wen-Xue; Cui, Zheng-Yun; Yin, Xi-Jun; Kang, Jin-Dan

    2017-05-01

    To investigate the effect of the small molecule, RepSox, on the expression of developmentally important genes and the pre-implantation development of rhesus monkey-pig interspecies somatic cell nuclear transfer (iSCNT) embryos. Rhesus monkey cells expressing the monomeric red fluorescent protein 1 which have a normal (42) chromosome complement, were used as donor cells to generate iSCNT embryos. RepSox increased the expression levels of the pluripotency-related genes, Oct4 and Nanog (p < 0.05), but not of Sox2 compared with untreated embryos at the 2-4-cell stage. Expression of the anti-apoptotic gene, Bcl2, and the pro-apoptotic gene Bax was also affected at the 2-4-cell stage. RepSox treatment also increased the immunostaining intensity of Oct4 at the blastocyst stage (p < 0.05). Although the blastocyst developmental rate was higher in the group treated with 25 µM RepSox for 24 h than in the untreated control group (2.4 vs. 1.2%, p > 0.05), this was not significant. RepSox can improve the developmental potential of rhesus monkey-pig iSCNT embryos by regulating the expression of pluripotency-related genes.

  8. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  9. Hydrogen Production Cost Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Analysis Hydrogen Production Cost Analysis This interactive map displays the results of a 2011 NREL analysis on the cost of hydrogen from electrolysis at potential sites across the United States. NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11

  10. Florida Hydrogen Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  11. The anaerobic digestion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited rangemore » of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.« less

  12. Advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Advanced designs for individual pressure vessel nickel-hydrogen cells have been concieved which should improve the cycle life at deep depths-of-discharge. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  13. Molecular Genetic Analysis of the Melanoma Regulatory locus in Xiphophorus Interspecies Hybrids

    PubMed Central

    Lu, Yuan; Boswell, Mikki; Boswell, William; Kneitz, Susanne; Hausmann, Michael; Klotz, Barbara; Regneri, Janine; Savage, Markita; Amores, Angel; Postlethwait, John; Warren, Wesley; Schartl, Manfred; Walter, Ronald

    2018-01-01

    Development of spontaneous melanoma in Xiphophorus interspecies backcross hybrid progeny, (X. hellerii × [X. maculatus Jp 163 A × X. hellerii]) is due to Mendelian segregation of a oncogene (xmrk) and a molecularly uncharacterized locus, called R(Diff), on LG5. R(Diff) is thought to suppresses the activity of xmrk in healthy X. maculatus Jp 163 A parental species that rarely develop melanoma. To better understand the molecular genetics of R(Diff), we utilized RNA-Seq to study allele-specific gene expression of spontaneous melanoma tumors and corresponding normal skin samples derived from 15 first generation backcross (BC1) hybrids and 13 fifth generation (BC5) hybrids. Allele-specific expression was determined for all genes and assigned to parental allele inheritance for each backcross hybrid individual. Results showed that genes residing in a 5.81 Mbp region on LG5 were exclusively expressed from the X. hellerii alleles in tumor-bearing BC1 hybrids. This observation indicates this region is consistently homozygous for X. hellerii alleles in tumor bearing animals, and therefore defines this region to be the R(Diff) locus. The R(Diff) locus harbors 164 gene models and includes the previously characterized R(Diff) candidate, cdkn2x. Twenty one genes in the R(Diff) region show differential expression in the tumor samples compared to normal skin tissue. These results further characterize the R(Diff) locus and suggest tumor suppression may require a multigenic region rather than a single gene variant. Differences in gene expression between tumor and normal skin tissue in this region may indicate interactions among several genes are required for backcross hybrid melanoma development. PMID:28345808

  14. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  15. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-05

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.

  16. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases.

    PubMed

    Horowitz, Scott; Dirk, Lynnette M A; Yesselman, Joseph D; Nimtz, Jennifer S; Adhikari, Upendra; Mehl, Ryan A; Scheiner, Steve; Houtz, Robert L; Al-Hashimi, Hashim M; Trievel, Raymond C

    2013-10-16

    S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.

  17. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    PubMed

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  18. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  19. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  20. Quantum-chemical prediction of the effects of Ni-loading on the hydrogenation and water-splitting efficiency of TiO2 nanoparticles with an experimental test

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Kuo; Chuang, Chung-Ching; Raghunath, Putikam; Srinivasadesikan, V.; Wang, T. T.; Lin, M. C.

    2017-01-01

    The effects of Ni-loading on TiO2 nanoparticles can pronouncedly reduce the barriers for dissociation of H2 from 48 kcal/mol on the pure TiO2 to as low as 1-3 kcal/mol on the loaded samples facilitating the hydrogenation of NPs. Preliminary data of our test indicate that the hydrogenation of Ni-loaded TiO2 NPs results in a significant UV-visible absorption extending well beyond 750 nm with an increase in water splitting efficiency by as much as 67 times over those of pure and hydrogenated TiO2 NPs without Ni-loading under our mild hydrogenation condition using 800 Torr of H2 at 300 °C for 3 h.

  1. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  2. Hydrogen-fluorine exchange in NaBH4-NaBF4.

    PubMed

    Rude, L H; Filsø, U; D'Anna, V; Spyratou, A; Richter, B; Hino, S; Zavorotynska, O; Baricco, M; Sørby, M H; Hauback, B C; Hagemann, H; Besenbacher, F; Skibsted, J; Jensen, T R

    2013-11-07

    Hydrogen-fluorine exchange in the NaBH4-NaBF4 system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state (19)F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2(-) complex ion, reproducing the observation of a (19)F chemical shift at -144.2 ppm, which is different from that of NaBF4 at -159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 °C. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF and BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8% for NaBH4 as measured using Sievert's method under identical conditions, but more than 50% using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.

  3. [Effect of TSA and VPA treatment on long-tailed macaque (Macaca fascicularis)-pig interspecies somatic cell nuclear transfer].

    PubMed

    Qin, Zu-Xing; Huang, Gao-Bo; Luo, Jun; Ning, Shu-Fang; Lu, Sheng-Sheng; Lu, Ke-Huan

    2012-03-01

    Long-tailed macaque-pig interspecies somatic cell nuclear transfer (iSCNT) is beneficial to yield embryonic stem cells from iSCNT embryos with similar genetic background as human, which can be used as materials for medical and basic research. The primary objective of this study was to investigate the effects of concentrations and treatment duration of two histone deacetylase inhibitors-Trichostatin A (TSA) and Valproic acid (VPA) and two different embryo culture media (PZM-3 and HECM-10) on the in vitro development of iSCNT embryos. The results suggested that when PZM-3 was used as the embryo culture medium, the blastocyst rate of 10 nmol/L TSA treatment for 48 h was significantly higher than the control group (22.78% vs 9.86%, P< 0.05). However, neither in PZM-3 nor in HECM-10, 2-10 mmol/L VPA treatment did not increase the in vitro developmental potential of iSCNT embryos. It was concluded that TSA treatment could enhance the in vitro developmental potential of long-tailed macaque-pig iSCNT embryos.

  4. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  5. Integrated multi-channel nano-engineered optical hydrogen and temperature sensor detection systems for launch vehicles

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.; Kazemi, A. A.

    2008-08-01

    Launch vehicles and other satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Therefore, there is a critical need for miniaturized sensors and instruments suitable for use in space applications. This paper describes a novel multi-channel integrated nano-engineered optical sensor to detect hydrogen and monitor the temperature. The integrated optic sensor is made of multi-channel waveguide elements that measure hydrogen concentration in real Time. Our sensor is based on the use of a high index waveguide with a Ni/Pd overlay to detect hydrogen. When hydrogen is absorbed into the Ni/Pd alloy there is a change in the absorption of the material and the optical signal in the waveguide is increased. Our design uses a thin alloy (few nanometers thick) overlay which facilitates the absorption of the hydrogen and will result in a response time of approximately few seconds. Like other Pd/Pd-Ni based sensors the device response varies with temperature and hence the effects of temperature variations must be taken into account. One solution to this problem is simultaneous measurement of temperature in addition to hydrogen concentration at the same vicinity. Our approach here is to propose a temperature sensor that can easily be integrated on the same platform as the hydrogen sensor reported earlier by our group. One suitable choice of material system is silicon on insulator (SOI). Here, we propose a micro ring resonators

  6. A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.

  7. Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols

    NASA Astrophysics Data System (ADS)

    Suárez, Andrés

    2018-02-01

    Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.

  8. Practice Facilitators' and Leaders' Perspectives on a Facilitated Quality Improvement Program.

    PubMed

    McHugh, Megan; Brown, Tiffany; Liss, David T; Walunas, Theresa L; Persell, Stephen D

    2018-04-01

    Practice facilitation is a promising approach to helping practices implement quality improvements. Our purpose was to describe practice facilitators' and practice leaders' perspectives on implementation of a practice facilitator-supported quality improvement program and describe where their perspectives aligned and diverged. We conducted interviews with practice leaders and practice facilitators who participated in a program that included 35 improvement strategies aimed at the ABCS of heart health (aspirin use in high-risk individuals, blood pressure control, cholesterol management, and smoking cessation). Rapid qualitative analysis was used to collect, organize, and analyze the data. We interviewed 17 of the 33 eligible practice leaders, and the 10 practice facilitators assigned to those practices. Practice leaders and practice facilitators both reported value in the program's ability to bring needed, high-quality resources to practices. Practice leaders appreciated being able to set the schedule for facilitation and select among the 35 interventions. According to practice facilitators, however, relying on practice leaders to set the pace of the intervention resulted in a lower level of program intensity than intended. Practice leaders preferred targeted assistance, particularly electronic health record documentation guidance and linkages to state smoking cessation programs. Practice facilitators reported that the easiest interventions were those that did not alter care practices. The dual perspectives of practice leaders and practice facilitators provide a more holistic picture of enablers and barriers to program implementation. There may be greater opportunities to assist small practices through simple, targeted practice facilitator-supported efforts rather than larger, comprehensive quality improvement projects. © 2018 Annals of Family Medicine, Inc.

  9. Metallic hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga

    2018-06-01

    Hydrogen is the simplest and most abundant element in the Universe. There are two pathways for creating metallic hydrogen under high pressures. Over 80 years ago Wigner and Huntington predicted that if solid molecular hydrogen was sufficiently compressed in the T  =  0 K limit, molecules would dissociate to form atomic metallic hydrogen (MH). We have observed this transition at a pressure of 4.95 megabars. MH in this form has probably never existed on Earth or in the Universe; it may be a room temperature superconductor and is predicted to be metastable. If metastable it will have an important technological impact. Liquid metallic hydrogen can also be produced at intermediate pressures and high temperatures and is believed to make up ~90% of the planet Jupiter. We have observed this liquid–liquid transition, also known as the plasma phase transition, at pressures of ~1–2 megabar and temperatures ~1000–2000 K. However, in this paper we shall focus on the Wigner–Huntington transition. We shall discuss the methods used to observe metallic hydrogen at extreme conditions of static pressure in the laboratory, extending our understanding of the phase diagram of the simplest atom in the periodic table.

  10. Hydrogen production by Cyanobacteria.

    PubMed

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-12-21

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  11. Hydrogen production by Cyanobacteria

    PubMed Central

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-01-01

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161

  12. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  13. Chemical grafting of Co9S8 onto C60 for hydrogen spillover and storage.

    PubMed

    Han, Lu; Qin, Wei; Zhou, Jia; Jian, Jiahuang; Lu, Songtao; Wu, Xiaohong; Fan, Guohua; Gao, Peng; Liu, Boyu

    2017-04-20

    Metal modified C 60 is considered to be a potential hydrogen storage medium due to its high theoretical capacity. Research interest is growing in various hybrid inorganic compounds-C 60 . While the design and synthesis of a novel hybrid inorganic compound-C 60 is difficult to attain, it has been theorized that the atomic hydrogen could transfer from the inorganic compound to the adjacent C 60 surfaces via spillover and surface diffusion. Here, as a proof of concept experiment, we graft Co 9 S 8 onto C 60 via a facile high energy ball milling process. The Raman, XPS, XRD, TEM, HTEM and EELS measurements have been conducted to evaluate the composition and structure of the pizza-like hybrid material. In addition, the electrochemical measurements and calculated results demonstrate that the chemical "bridges" (C-S bonds) between these two materials enhance the binding strength and, hence, facilitate the hydriding reaction of C 60 during the hydrogen storage process. As a result, an increased hydrogen storage capacity of 4.03 wt% is achieved, along with a favorable cycling stability of ∼80% after 50 cycles. Excluding the direct hydrogen storage contribution from Co 9 S 8 in the hybrid paper, the hydrogen storage ability of C 60 was enhanced by 5.9× through the hydriding reaction caused by the Co 9 S 8 modifier. Based on these experimental measurements and theoretical calculations, the unique chemical structure reported here could potentially inspire other C 60 -based advanced hybrids.

  14. Computational study of sodium magnesium hydride for hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Soto Valle, Fernando Antonio

    Hydrogen offers considerable potential benefits as an energy carrier. However, safe and convenient storage of hydrogen is one of the biggest challenges to be resolved in the near future. Sodium magnesium hydride (NaMgH 3) has attracted attention as a hydrogen storage material due to its light weight and high volumetric hydrogen density of 88 kg/m3. Despite the advantages, hydrogen release in this material occurs at approximately 670 K, which is well above the operable range for on-board hydrogen storage applications. In this regard, hydrogen release may be facilitated by substitution doping of transition-metals. This dissertation describes first-principles computational methods that enable an examination of the hydrogen storage properties of NaMgH3. The novel contribution of this dissertation includes a combination of crystal, supercell, and surface slab calculations that provides new and relevant insights about the thermodynamic and kinetic properties of NaMgH3. First-principles calculations on the pristine crystal structure provide a starting reference point for the study of this material as a hydrogen storage material. To the best of our knowledge, it is reported for the first time that a 25% mol doping concentration of Ti, V, Cu, and Zn dopants reduce the reaction enthalpy of hydrogen release for NaMgH3. The largest decrease in the DeltaH(298 K) value corresponds to the Zn-doped model (67.97 kJ/(mol H2)). Based on cohesive energy calculations, it is reported that at the 6.25% mol doping concentration, Ti and Zn dopants are the only transition metals that destabilize the NaMgH3 hydride. In terms of hydrogen removal energy, it is quantified that the energy cost to remove a single H from the Ti-doped supercell model is 0.76 eV, which is lower with respect to the pristine model and other prototypical hydrogen storage materials. From the calculation of electronic properties such as density of states, electron density difference, and charge population analysis

  15. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  16. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  17. Solar hydrogen generator

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Sabol, A. P. (Inventor)

    1977-01-01

    An apparatus, using solar energy to manufacture hydrogen by dissociating water molecules into hydrogen and oxygen molecules is described. Solar energy is concentrated on a globe containing water thereby heating the water to its dissociation temperature. The globe is pervious to hydrogen molecules permitting them to pass through the globe while being essentially impervious to oxygen molecules. The hydrogen molecules are collected after passing through the globe and the oxygen molecules are removed from the globe.

  18. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone.

    PubMed

    Mozo Mulero, Cristina; Sáez, Alfonso; Iniesta, Jesús; Montiel, Vicente

    2018-01-01

    The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (L Pd ) of 0.2 and 0.02 mg cm -2 . The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H 2 SO 4 . Current densities of 10, 15 and 20 mA cm -2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (X R ) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity.

  19. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone

    PubMed Central

    Mozo Mulero, Cristina; Iniesta, Jesús; Montiel, Vicente

    2018-01-01

    The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (LPd) of 0.2 and 0.02 mg cm−2. The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H2SO4. Current densities of 10, 15 and 20 mA cm−2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (XR) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity. PMID:29623115

  20. Copy Number Heterogeneity, Large Origin Tandem Repeats, and Interspecies Recombination in Human Herpesvirus 6A (HHV-6A) and HHV-6B Reference Strains

    PubMed Central

    Roychoudhury, Pavitra; Makhsous, Negar; Hanson, Derek; Chase, Jill; Krueger, Gerhard; Xie, Hong; Huang, Meei-Li; Saunders, Lindsay; Ablashi, Dharam; Koelle, David M.; Cook, Linda; Jerome, Keith R.

    2018-01-01

    ABSTRACT Quantitative PCR is a diagnostic pillar for clinical virology testing, and reference materials are necessary for accurate, comparable quantitation between clinical laboratories. Accurate quantitation of human herpesvirus 6A/B (HHV-6A/B) is important for detection of viral reactivation and inherited chromosomally integrated HHV-6A/B in immunocompromised patients. Reference materials in clinical virology commonly consist of laboratory-adapted viral strains that may be affected by the culture process. We performed next-generation sequencing to make relative copy number measurements at single nucleotide resolution of eight candidate HHV-6A and seven HHV-6B reference strains and DNA materials from the HHV-6 Foundation and Advanced Biotechnologies Inc. Eleven of 17 (65%) HHV-6A/B candidate reference materials showed multiple copies of the origin of replication upstream of the U41 gene by next-generation sequencing. These large tandem repeats arose independently in culture-adapted HHV-6A and HHV-6B strains, measuring 1,254 bp and 983 bp, respectively. The average copy number measured was between 5 and 10 times the number of copies of the rest of the genome. We also report the first interspecies recombinant HHV-6A/B strain with a HHV-6A backbone and a >5.5-kb region from HHV-6B, from U41 to U43, that covered the origin tandem repeat. Specific HHV-6A reference strains demonstrated duplication of regions at U1/U2, U87, and U89, as well as deletion in the U12-to-U24 region and the U94/U95 genes. HHV-6A/B strains derived from cord blood mononuclear cells from different laboratories on different continents with fewer passages revealed no copy number differences throughout the viral genome. These data indicate that large origin tandem duplications are an adaptation of both HHV-6A and HHV-6B in culture and show interspecies recombination is possible within the Betaherpesvirinae. IMPORTANCE Anything in science that needs to be quantitated requires a standard unit of

  1. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  2. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  3. A conformationally persistent pseudo-bicyclic guanidinium for anion coordination as stabilized by dual intramolecular hydrogen bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seipp, Charles A.; Williams, Neil J.; Bryantsev, Vyacheslav S.

    2015-11-30

    In this paper, the first example of a pseudo-bicyclic guanidinium ligand is reported. When bound to an anion, the N,N'-bis(2-pyridyl)guanidinium cation persistently adopts the planar α,α conformation featuring intramolecular N···H–N–H···N hydrogen bonds in the solid state, which facilitates crystallization of sulphate from aqueous mixtures of anions.

  4. Characterizing interspecies uncertainty using data from studies of anti-neoplastic agents in animals and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Paul S.; Keenan, Russell E.; Swartout, Jeffrey C.

    For most chemicals, the Reference Dose (RfD) is based on data from animal testing. The uncertainty introduced by the use of animal models has been termed interspecies uncertainty. The magnitude of the differences between the toxicity of a chemical in humans and test animals and its uncertainty can be investigated by evaluating the inter-chemical variation in the ratios of the doses associated with similar toxicological endpoints in test animals and humans. This study performs such an evaluation on a data set of 64 anti-neoplastic drugs. The data set provides matched responses in humans and four species of test animals: mice,more » rats, monkeys, and dogs. While the data have a number of limitations, the data show that when the drugs are evaluated on a body weight basis: 1) toxicity generally increases with a species' body weight; however, humans are not always more sensitive than test animals; 2) the animal to human dose ratios were less than 10 for most, but not all, drugs; 3) the current practice of using data from multiple species when setting RfDs lowers the probability of having a large value for the ratio. These findings provide insight into inter-chemical variation in animal to human extrapolations and suggest the need for additional collection and analysis of matched toxicity data in humans and test animals.« less

  5. A ’Hydrogen Partitioning’ Model for Hydrogen Assisted Crack Growth.

    DTIC Science & Technology

    1984-09-01

    the change in Stage II crack growth rate from Region A to Region C in the 18NI maraging steels . It cannot, however, explain the sudden drop off in...Neither partitioning of hydrogen nor adsorption equilibrium can account for the observed "high" temperature response of l8Ni maraging steel in hydrogen...ment and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, p. 103 (in press). 11. R. P. Wei: in Hydrogen Effects in

  6. Investigation of hydrogen recycling in long-duration discharges and its modification with a hot wall in the spherical tokamak QUEST

    NASA Astrophysics Data System (ADS)

    Hanada, K.; Yoshida, N.; Honda, T.; Wang, Z.; Kuzmin, A.; Takagi, I.; Hirata, T.; Oya, Y.; Miyamoto, M.; Zushi, H.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Watanabe, O.; Onchi, T.; Kuroda, K.; Long, H.; Watanabe, H.; Tokunaga, K.; Higashijima, A.; Kawasaki, S.; Nagata, T.; Takase, Y.; Fukuyama, A.; Mitarai, O.

    2017-12-01

    Fully non-inductive plasma maintenance was achieved by a microwave of 8.2 GHz and 40 kW for more than 1 h 55 min with a well-controlled plasma-facing wall (PFW) temperature of 393 K, using a hot wall in the middle-sized spherical tokamak QUEST, until the discharge was finally terminated by the uncontrollability of the density. The PFW was composed of atmospheric plasma-sprayed tungsten and stainless steel. The hot wall plays an essential role in reducing the amount of wall-stored hydrogen and facilitates hydrogen recycling. The behaviour of fuel hydrogen in the PFW was investigated by monitoring the injection and evacuation of hydrogen into and from the plasma-producing vessel. A fuel particle balance equation based on the presence of a hydrogen transport barrier between the deposited layer and the substrate was applied to the long-duration discharges. It was found that the model could readily predict the observed behaviour in which a higher wall temperature likely gives rise to faster wall saturation.

  7. Inter-species pathway perturbation prediction via data-driven detection of functional homology.

    PubMed

    Hafemeister, Christoph; Romero, Roberto; Bilal, Erhan; Meyer, Pablo; Norel, Raquel; Rhrissorrakrai, Kahn; Bonneau, Richard; Tarca, Adi L

    2015-02-15

    Experiments in animal models are often conducted to infer how humans will respond to stimuli by assuming that the same biological pathways will be affected in both organisms. The limitations of this assumption were tested in the IMPROVER Species Translation Challenge, where 52 stimuli were applied to both human and rat cells and perturbed pathways were identified. In the Inter-species Pathway Perturbation Prediction sub-challenge, multiple teams proposed methods to use rat transcription data from 26 stimuli to predict human gene set and pathway activity under the same perturbations. Submissions were evaluated using three performance metrics on data from the remaining 26 stimuli. We present two approaches, ranked second in this challenge, that do not rely on sequence-based orthology between rat and human genes to translate pathway perturbation state but instead identify transcriptional response orthologs across a set of training conditions. The translation from rat to human accomplished by these so-called direct methods is not dependent on the particular analysis method used to identify perturbed gene sets. In contrast, machine learning-based methods require performing a pathway analysis initially and then mapping the pathway activity between organisms. Unlike most machine learning approaches, direct methods can be used to predict the activation of a human pathway for a new (test) stimuli, even when that pathway was never activated by a training stimuli. Gene expression data are available from ArrayExpress (accession E-MTAB-2091), while software implementations are available from http://bioinformaticsprb.med.wayne.edu?p=50 and http://goo.gl/hJny3h. christoph.hafemeister@nyu.edu or atarca@med.wayne.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  8. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation

    PubMed Central

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David

    2015-01-01

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system. PMID:25882348

  9. Hydrogen production from carbonaceous material

    DOEpatents

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  10. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Technicians with Praxair pressurize the hydrogen trailer before offloading liquid hydrogen during a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  11. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome.

    PubMed

    Traxler, Matthew F; Watrous, Jeramie D; Alexandrov, Theodore; Dorrestein, Pieter C; Kolter, Roberto

    2013-08-20

    these interspecies interactions stimulated production of numerous chemical compounds that were not made when they grew alone. Among these compounds were at least 12 different versions of a molecule called desferrioxamine, a siderophore used by the bacteria to gather iron. Many other compounds of unknown identity were also observed, and the pattern of compound production varied greatly among the interaction sets. These findings suggest that chemical interactions between actinomycetes are surprisingly complex and that coculture may be a promising strategy for finding new molecules from actinomycetes.

  12. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, Cressie E.; Kovach, Louis; Taylor, Albert J.

    1981-01-01

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400.degree. K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10-30 vol. % carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing bases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  13. Evolution of chemical-specific adjustment factors (CSAF) based on recent international experience; increasing utility and facilitating regulatory acceptance.

    PubMed

    Bhat, Virunya S; Meek, M E Bette; Valcke, Mathieu; English, Caroline; Boobis, Alan; Brown, Richard

    2017-10-01

    The application of chemical-specific toxicokinetic or toxicodynamic data to address interspecies differences and human variability in the quantification of hazard has potential to reduce uncertainty and better characterize variability compared with the use of traditional default or categorically-based uncertainty factors. The present review summarizes the state-of-the-science since the introduction of the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) guidance on chemical-specific adjustment factors (CSAF) in 2005 and the availability of recent applicable guidance including the WHO/IPCS guidance on physiologically-based pharmacokinetic (PBPK) modeling in 2010 as well as the U.S. EPA guidance on data-derived extrapolation factors in 2014. A summary of lessons learned from an analysis of more than 100 case studies from global regulators or published literature illustrates the utility and evolution of CSAF in regulatory decisions. Challenges in CSAF development related to the adequacy of, or confidence in, the supporting data, including verification or validation of PBPK models. The analysis also identified issues related to adequacy of CSAF documentation, such as inconsistent terminology and often limited and/or inconsistent reporting, of both supporting data and/or risk assessment context. Based on this analysis, recommendations for standardized terminology, documentation and relevant interdisciplinary research and engagement are included to facilitate the continuing evolution of CSAF development and guidance.

  14. The Influence of Facilitator and Facilitation Characteristics on Participants' Ratings of Stepfamily Education

    ERIC Educational Resources Information Center

    Higginbotham, Brian J.; Myler, Cory

    2010-01-01

    We examine the relative importance of facilitator and facilitation characteristics on participant ratings of a stepfamily education program. Data from 48 facilitators and 598 participants suggest that quality facilitation is more meaningful to participants than whether facilitators have comparable demographic characteristics or life experiences.…

  15. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less

  16. Hydrogen Infrastructure Testing and Research Facility | Hydrogen and Fuel

    Science.gov Websites

    stations, enabling NREL to validate current industry standards and methods for hydrogen fueling as well as the HITRF to: Develop, quantify performance of, and improve renewable hydrogen production methods

  17. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  18. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  19. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  20. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  1. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  2. Graphene Derivative in Magnetically Recoverable Catalyst Determines Catalytic Properties in Transfer Hydrogenation of Nitroarenes to Anilines with 2-Propanol.

    PubMed

    Das, Vijay Kumar; Mazhar, Sumaira; Gregor, Lennon; Stein, Barry D; Morgan, David Gene; Maciulis, Nicholas A; Pink, Maren; Losovyj, Yaroslav; Bronstein, Lyudmila M

    2018-06-14

    Here, we report transfer hydrogenation of nitroarenes to aminoarenes using 2-propanol as a hydrogen source and Ag-containing magnetically recoverable catalysts based on partially reduced graphene oxide (pRGO) sheets. X-ray diffraction and X-ray photoelectron spectroscopy data demonstrated that, during the one-pot catalyst synthesis, formation of magnetite nanoparticles (NPs) is accompanied by the reduction of graphene oxide (GO) to pRGO. The formation of Ag 0 NPs on top of magnetite nanoparticles does not change the pRGO structure. At the same time, the catalyst structure is further modified during the transfer hydrogenation, leading to a noticeable increase of sp 2 carbons. These carbons are responsible for the adsorption of substrate and intermediates, facilitating a hydrogen transfer from Ag NPs and creating synergy between the components of the catalyst. The nitroarenes with electron withdrawing and electron donating substituents allow for excellent yields of aniline derivatives with high regio and chemoselectivity, indicating that the reaction is not disfavored by these functionalities. The versatility of the catalyst synthetic protocol was demonstrated by a synthesis of an Ru-containing graphene derivative based catalyst, also allowing for efficient transfer hydrogenation. Easy magnetic separation and stable catalyst performance in the transfer hydrogenation make this catalyst promising for future applications.

  3. Iridium-Catalyzed Hydrogen Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Saidi, Ourida; Williams, Jonathan M. J.

    This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.

  4. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOEpatents

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  5. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  6. Examining hydrogen transitions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals ofmore » these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.« less

  7. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release.

    PubMed

    Grimpo, Kirsten; Kutschke, Maria; Kastl, Anja; Meyer, Carola W; Heldmaier, Gerhard; Exner, Cornelia; Jastroch, Martin

    2014-01-01

    Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents. © 2013.

  8. Using learning theory, interprofessional facilitation competencies, and behavioral indicators to evaluate facilitator training.

    PubMed

    LeGros, Theresa A; Amerongen, Helen M; Cooley, Janet H; Schloss, Ernest P

    2015-01-01

    Despite the increasing need for faculty and preceptors skilled in interprofessional facilitation (IPF), the relative novelty of the field poses a challenge to the development and evaluation of IPF programs. We use learning theory and IPF competencies with associated behavioral indicators to develop and evaluate six key messages in IPF training and experience. Our mixed methods approach included two phases: quantitative data collection with embedded qualitative data, followed by qualitative data collection in explanatory sequential fashion. This enabled triangulated analyses of both data types and of facilitation behaviors from facilitator and student perspectives. Results indicate the competency-based training was effective. Facilitators felt comfortable performing behaviors associated with IPF competencies; student observations of those behaviors supported facilitator self-reported performance. Overall, students perceived more facilitation opportunities than facilitators. Findings corroborate the importance of recruiting seasoned facilitators and establishing IPF guidelines that acknowledge variable team dynamics and help facilitators recognize teachable moments.

  9. Inter-species prediction of protein phosphorylation in the sbv IMPROVER species translation challenge

    PubMed Central

    Biehl, Michael; Sadowski, Peter; Bhanot, Gyan; Bilal, Erhan; Dayarian, Adel; Meyer, Pablo; Norel, Raquel; Rhrissorrakrai, Kahn; Zeller, Michael D.; Hormoz, Sahand

    2015-01-01

    Motivation: Animal models are widely used in biomedical research for reasons ranging from practical to ethical. An important issue is whether rodent models are predictive of human biology. This has been addressed recently in the framework of a series of challenges designed by the systems biology verification for Industrial Methodology for Process Verification in Research (sbv IMPROVER) initiative. In particular, one of the sub-challenges was devoted to the prediction of protein phosphorylation responses in human bronchial epithelial cells, exposed to a number of different chemical stimuli, given the responses in rat bronchial epithelial cells. Participating teams were asked to make inter-species predictions on the basis of available training examples, comprising transcriptomics and phosphoproteomics data. Results: Here, the two best performing teams present their data-driven approaches and computational methods. In addition, post hoc analyses of the datasets and challenge results were performed by the participants and challenge organizers. The challenge outcome indicates that successful prediction of protein phosphorylation status in human based on rat phosphorylation levels is feasible. However, within the limitations of the computational tools used, the inclusion of gene expression data does not improve the prediction quality. The post hoc analysis of time-specific measurements sheds light on the signaling pathways in both species. Availability and implementation: A detailed description of the dataset, challenge design and outcome is available at www.sbvimprover.com. The code used by team IGB is provided under http://github.com/uci-igb/improver2013. Implementations of the algorithms applied by team AMG are available at http://bhanot.biomaps.rutgers.edu/wiki/AMG-sc2-code.zip. Contact: meikelbiehl@gmail.com PMID:24994890

  10. Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Adamopoulos, G.; Robertson, J.; Morrison, N. A.; Godet, C.

    2004-12-01

    In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5eV ) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted.

  11. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  12. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  13. Hydrogen Fuel Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of themore » development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.« less

  14. Design of hydrogen vent line for the cryogenic hydrogen system in J-PARC

    NASA Astrophysics Data System (ADS)

    Tatsumoto, Hideki; Aso, Tomokazu; Kato, Takashi; Ohtsu, Kiichi; Hasegawa, Shoichi; Maekawa, Fujio; Futakawa, Masatoshi

    2009-02-01

    As one of the main experimental facilities in J-PARC, an intense spallation neutron source (JSNS) driven by a 1-MW proton beam selected supercritical hydrogen at a temperature of 20 K and a pressure of 1.5 MPa as a moderator material. Moderators are controlled by a cryogenic hydrogen system that has a hydrogen relief system, which consists of high and low pressure stage of manifolds, a hydrogen vent line and a stack, in order to release hydrogen to the outside safely. The design of the hydrogen vent line should be considered to prevent purge nitrogen gas in the vent line from freezing when releasing the cryogenic hydrogen, to prevent moisture in the stack placed in an outdoor location from freezing, and to inhibit large piping temperature reduction at a building wall penetration. In this work, temperature change behaviors in the hydrogen vent line were analyzed by using a CFD code, STAR-CD. We determined required sizes of the vent line based on the analytical results and its layout in the building.

  15. Freezing Hydrogen

    NASA Image and Video Library

    2009-11-17

    An engineer loads hydrogen gas into the Wide-Field Infrared Survey Explorer in a clean room at the Vandenberg Air Force Base, Calif. The hydrogen is cooled and frozen inside a Thermos-like bottle, called the cryostat, which keeps the science instrument

  16. Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Cells A hydrogen-powered fuel cell electric vehicle driving past NREL's hydrogen fueling station NREL's hydrogen and fuel cell research and development (R&D) focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation

  17. The hydrogen issue.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  18. Electrochemical hydrogen Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy.more » A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in

  19. Oxidation resistant organic hydrogen getters

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  20. Liquid hydrogen production via hydrogen sulfide methane reformation

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  1. Evaluation of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells.

    PubMed

    Lee, Mi-Young; Kim, Kyoung-Yeol; Yang, Euntae; Kim, In S

    2015-01-01

    In order to enhance hydrogen production by facilitated proton transport through a forward osmosis (FO) membrane, the FO membrane was integrated into microbial electrolysis cells (MECs). An improved hydrogen production rate was obtained in the FO-MEC (12.5±1.84×10(-3)m(3)H2/m(3)/d) compared to that of the cation exchange membrane (CEM) - MEC (4.42±0.04×10(-3)m(3)H2/m(3)/d) during batch tests (72h). After an internal resistance analysis, it was confirmed that the enhanced hydrogen production in FO-MEC was attributed to the smaller charge transfer resistance than in the CEM-MEC (90.3Ω and 133.4Ω respectively). The calculation of partial internal resistance concluded that the transport resistance can be substantially reduced by replacing a CEM with a FO membrane; decrease of the resistance from 0.069Ωm(2) to 5.99×10(-4)Ωm(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  3. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  4. Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones.

    PubMed

    Zhao, Liang; Wei, Jianwei; Lu, Junhua; He, Cheng; Duan, Chunying

    2017-07-17

    Using small molecules with defined pockets to catalyze chemical transformations resulted in attractive catalytic syntheses that echo the remarkable properties of enzymes. By modulating the active site of a nicotinamide adenine dinucleotide (NADH) model in a redox-active molecular flask, we combined biomimetic hydrogenation with in situ regeneration of the active site in a one-pot transformation using light as a clean energy source. This molecular flask facilitates the encapsulation of benzoxazinones for biomimetic hydrogenation of the substrates within the inner space of the flask using the active sites of the NADH models. The redox-active metal centers provide an active hydrogen source by light-driven proton reduction outside the pocket, allowing the in situ regeneration of the NADH models under irradiation. This new synthetic platform, which offers control over the location of the redox events, provides a regenerating system that exhibits high selectivity and efficiency and is extendable to benzoxazinone and quinoxalinone systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis

    USGS Publications Warehouse

    Shaw, H.R.

    1963-01-01

    Experiments at 700??C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H2O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H 2O and oxygen.

  6. Inter-species and intra-annual variations of moss nitrogen utilization: Implications for nitrogen deposition assessment.

    PubMed

    Dong, Yu-Ping; Liu, Xue-Yan; Sun, Xin-Chao; Song, Wei; Zheng, Xu-Dong; Li, Rui; Liu, Cong-Qiang

    2017-11-01

    Moss nitrogen (N) concentrations and natural 15 N abundance (δ 15 N values) have been widely employed to evaluate annual levels and major sources of atmospheric N deposition. However, different moss species and one-off sampling were often used among extant studies, it remains unclear whether moss N parameters differ with species and different samplings, which prevented more accurate assessment of N deposition via moss survey. Here concentrations, isotopic ratios of bulk carbon (C) and bulk N in natural epilithic mosses (Bryum argenteum, Eurohypnum leptothallum, Haplocladium microphyllum and Hypnum plumaeforme) were measured monthly from August 2006 to August 2007 at Guiyang, SW China. The H. plumaeforme had significantly (P < 0.05) lower bulk N concentrations and higher δ 13 C values than other species. Moss N concentrations were significantly (P < 0.05) lower in warmer months than in cooler months, while moss δ 13 C values exhibited an opposite pattern. The variance component analyses showed that different species contributed more variations of moss N concentrations and δ 13 C values than different samplings. Differently, δ 15 N values did not differ significantly between moss species, and its variance mainly reflected variations of assimilated N sources, with ammonium as the dominant contributor. These results unambiguously reveal the influence of inter-species and intra-annual variations of moss N utilization on N deposition assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fluctuating hydrogen-bond networks govern anomalous electron transfer kinetics in a blue copper protein.

    PubMed

    Kretchmer, Joshua S; Boekelheide, Nicholas; Warren, Jeffrey J; Winkler, Jay R; Gray, Harry B; Miller, Thomas F

    2018-06-12

    We combine experimental and computational methods to address the anomalous kinetics of long-range electron transfer (ET) in mutants of Pseudomonas aeruginosa azurin. ET rates and driving forces for wild type (WT) and three N47X mutants (X = L, S, and D) of Ru(2,2'-bipyridine) 2 (imidazole)(His83) azurin are reported. An enhanced ET rate for the N47L mutant suggests either an increase of the donor-acceptor (DA) electronic coupling or a decrease in the reorganization energy for the reaction. The underlying atomistic features are investigated using a recently developed nonadiabatic molecular dynamics method to simulate ET in each of the azurin mutants, revealing unexpected aspects of DA electronic coupling. In particular, WT azurin and all studied mutants exhibit more DA compression during ET (>2 Å) than previously recognized. Moreover, it is found that DA compression involves an extended network of hydrogen bonds, the fluctuations of which gate the ET reaction, such that DA compression is facilitated by transiently rupturing hydrogen bonds. It is found that the N47L mutant intrinsically disrupts this hydrogen-bond network, enabling particularly facile DA compression. This work, which reveals the surprisingly fluctional nature of ET in azurin, suggests that hydrogen-bond networks can modulate the efficiency of long-range biological ET. Copyright © 2018 the Author(s). Published by PNAS.

  8. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  9. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  10. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  11. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.

    PubMed

    Eng, Alex Yong Sheng; Sofer, Zdenek; Šimek, Petr; Kosina, Jiri; Pumera, Martin

    2013-11-11

    Hydrogenated graphenes exhibit a variety of properties with potential applications in devices, ranging from a tunable band gap to fluorescence, ferromagnetism, and the storage of hydrogen. We utilize a one-step microwave-irradiation process in hydrogen plasma to create highly hydrogenated graphene from graphite oxides. The procedure serves the dual purposes of deoxygenation and concurrent hydrogenation of the carbon backbone. The effectiveness of the hydrogenation process is investigated on three different graphite oxides (GOs), which are synthesized by using the Staudenmaier, Hofmann, and Hummers methods. A systematic characterization of our hydrogenated graphenes is performed using UV/Vis spectroscopy, SEM, AFM, Raman spectroscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), combustible elemental analysis, and electrical conductivity measurements. The highest hydrogenation extent is observed in hydrogenated graphene produced from the Hummers-method GO, with a hydrogen content of 19 atomic % in the final product. In terms of the removal of oxygen groups, microwave exfoliation yields graphenes with very similar oxygen contents despite differences in their parent GOs. In addition, we examine the prospective application of hydrogenated graphenes as electrochemical transducers through a cyclic voltammetry (CV) study. The highly hydrogenated graphenes exhibit fast heterogeneous electron-transfer rates, suggestive of their suitability for electrochemical applications in electrodes, supercapacitors, batteries, and sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Surface hydrogenation regulated wrinkling and torque capability of hydrogenated graphene annulus under circular shearing.

    PubMed

    Li, Yinfeng; Liu, Silin; Datta, Dibakar; Li, Zhonghua

    2015-11-12

    Wrinkles as intrinsic topological feature have been expected to affect the electrical and mechanical properties of atomically thin graphene. Molecular dynamics simulations are adopted to investigate the wrinkling characteristics in hydrogenated graphene annulus under circular shearing at the inner edge. The amplitude of wrinkles induced by in-plane rotation around the inner edge is sensitive to hydrogenation, and increases quadratically with hydrogen coverage. The effect of hydrogenation on mechanical properties is investigated by calculating the torque capability of annular graphene with varying hydrogen coverage and inner radius. Hydrogenation-enhanced wrinkles cause the aggregation of carbon atoms towards the inner edge and contribute to the critical torque strength of annulus. Based on detailed stress distribution contours, a shear-to-tension conversion mechanism is proposed for the contribution of wrinkles on torque capacity. As a result, the graphane annulus anomalously has similar torque capacity to pristine graphene annulus. The competition between hydrogenation caused bond strength deterioration and wrinkling induced local stress state conversion leads to a U-shaped evolution of torque strength relative to the increase of hydrogen coverage from 0 to 100%. Such hydrogenation tailored topological and mechanical characteristics provides an innovative mean to develop novel graphene-based devices.

  13. Hydrogen-storing hydride complexes

    DOEpatents

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  14. Hydrogen storage container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  15. Hydrogen Fuel Cell Electric Vehicle Learning Demonstration | Hydrogen and

    Science.gov Websites

    Fuel Cells | NREL Fuel Cell Electric Vehicle Learning Demonstration Hydrogen Fuel Cell Electric Vehicle Learning Demonstration Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project-later dubbed the Fuel Cell Electric Vehicle (FCEV) Learning Demonstration

  16. Room temperature micro-hydrogen-generator

    NASA Astrophysics Data System (ADS)

    Gervasio, Don; Tasic, Sonja; Zenhausern, Frederic

    A new compact and cost-effective hydrogen-gas generator has been made that is well suited for supplying hydrogen to a fuel-cell for providing base electrical power to hand-carried appliances. This hydrogen-generator operates at room temperature, ambient pressure and is orientation-independent. The hydrogen-gas is generated by the heterogeneous catalytic hydrolysis of aqueous alkaline borohydride solution as it flows into a micro-reactor. This reactor has a membrane as one wall. Using the membrane keeps the liquid in the reactor, but allows the hydrogen-gas to pass out of the reactor to a fuel-cell anode. Aqueous alkaline 30 wt% borohydride solution is safe and promotes long application life, because this solution is non-toxic, non-flammable, and is a high energy-density (≥2200 W-h per liter or per kilogram) hydrogen-storage solution. The hydrogen is released from this storage-solution only when it passes over the solid catalyst surface in the reactor, so controlling the flow of the solution over the catalyst controls the rate of hydrogen-gas generation. This allows hydrogen generation to be matched to hydrogen consumption in the fuel-cell, so there is virtually no free hydrogen-gas during power generation. A hydrogen-generator scaled for a system to provide about 10 W electrical power is described here. However, the technology is expected to be scalable for systems providing power spanning from 1 W to kW levels.

  17. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  18. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  19. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  20. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  1. Hydrogen peroxide kinetics in water radiolysis

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.

    2018-04-01

    The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.

  2. Hydrogen Chemical Configuration and Thermal Stability in Tungsten Disulfide Nanoparticles Exposed to Hydrogen Plasma

    PubMed Central

    Laikhtman, Alex; Makrinich, Gennady; Sezen, Meltem; Yildizhan, Melike Mercan; Martinez, Jose I.; Dinescu, Doru; Prodana, Mariana; Enachescu, Marius; Alonso, Julio A.; Zak, Alla

    2017-01-01

    The chemical configuration and interaction mechanism of hydrogen adsorbed in inorganic nanoparticles of WS2 are investigated. Our recent approaches of using hydrogen activated by either microwave or radiofrequency plasma dramatically increased the efficiency of its adsorption on the nanoparticles surface. In the current work we make an emphasis on elucidation of the chemical configuration of the adsorbed hydrogen. This configuration is of primary importance as it affects its adsorption stability and possibility of release. To get insight on the chemical configuration, we combined the experimental analysis methods with theoretical modeling based on the density functional theory (DFT). Micro-Raman spectroscopy was used as a primary tool to elucidate chemical bonding of hydrogen and to distinguish between chemi- and physisorption. Hydrogen adsorbed in molecular form (H2) was clearly identified in all the plasma-hydrogenated WS2 nanoparticles samples. It was shown that the adsorbed hydrogen is generally stable under high vacuum conditions at room temperature, which implies its stability at the ambient atmosphere. A DFT model was developed to simulate the adsorption of hydrogen in the WS2 nanoparticles. This model considers various adsorption sites and identifies the preferential locations of the adsorbed hydrogen in several WS2 structures, demonstrating good concordance between theory and experiment and providing tools for optimizing of hydrogen exposure conditions and the type of substrate materials. PMID:28596812

  3. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  4. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, C.E. Jr.; Kovach, L.; Taylor, A.J.

    1980-01-22

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400/sup 0/K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10 to 30 vol% carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing gases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  5. Electronuclear paths in the nuclear conversion of molecular hydrogen in silicon

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2017-01-01

    The ortho-para conversion of hydrogen molecules oscillating inside tetrahedral cages of silicon compounds relies on the interaction of the nuclear protons with the silicon electrons. At each collision against the cage hard walls, the electron repulsion changes the molecular rotation while projecting a valence electron in the antibonding molecular state dressed by a group of conduction ones. That «bridge» facilitates the hyperfine contact of the electrons with the protons. At room temperature, the angular momentum transfer is enhanced by electron fluctuations that overcome the silicon gap and accelerate the nuclear rates by more than one order of magnitude.

  6. Proton and hydrogen transport through two-dimensional monolayers

    NASA Astrophysics Data System (ADS)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  7. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  8. Hydrogen Fueling Infrastructure Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    (retail and non-retail combined) Retail stations only Publications The following publications provide more Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through ) Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined

  9. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Becker, H.-W.; Williams, G. V. M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-03-01

    Hydrogenated diamond-like carbon films produced by C3H6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  10. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  11. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE PAGES

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  12. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yang; Barger, Vernon; Berger, Joshua

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  13. Hydrogen powered bus

    ScienceCinema

    Glass, Bob; Mathis, Mike; Cochran, Ron; Garback, John

    2018-06-08

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  14. Hydrogenation of carbonaceous materials

    DOEpatents

    Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  15. Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Tang, Xiaosheng; Chen, Weiwei; Zu, Zhiqiang; Zang, Zhigang; Deng, Ming; Zhu, Tao; Sun, Kuan; Sun, Lidong; Xue, Junmin

    2015-11-01

    In this study, AgInZnS-reduced graphene (AIZS-rGO) nanocomposites with tunable band gap absorption and large specific surface area were synthesized by a simple hydrothermal route, which showed highly efficient photocatalytic hydrogen evolution under visible-light irradiation. The relationships between their crystal structures, morphology, surface chemical states and photocatalytic activity have been explored in detail. Importantly, the AIZS-rGO nanocomposites with 0.02 wt% of graphene exhibited the highest hydrogen production rate of 1.871 mmol h-1 g-1, which was nearly 2 times the hydrogen production rate when using pure AIZS nanoparticles as the photocatalyst. This high photocatalytic H2-production activity was attributed predominantly to the incorporation of graphene sheets, which demonstrated an obvious influence on the structure and optical properties of the AIZS nanoparticles. In the AIZS-rGO nanocomposites, graphene could not only serve as an effective supporting layer but also is a recombination center for conduction band electrons and valence band holes. It is believed that this kind of graphene-based material would attract much attention as a promising photocatalyst with a high efficiency and a low cost for photocatalytic H2 evolution and facilitates their application in the environmental protection field.In this study, AgInZnS-reduced graphene (AIZS-rGO) nanocomposites with tunable band gap absorption and large specific surface area were synthesized by a simple hydrothermal route, which showed highly efficient photocatalytic hydrogen evolution under visible-light irradiation. The relationships between their crystal structures, morphology, surface chemical states and photocatalytic activity have been explored in detail. Importantly, the AIZS-rGO nanocomposites with 0.02 wt% of graphene exhibited the highest hydrogen production rate of 1.871 mmol h-1 g-1, which was nearly 2 times the hydrogen production rate when using pure AIZS nanoparticles as the

  16. Estimation of descriptors for hydrogen-bonding compounds from chromatographic and liquid-liquid partition measurements.

    PubMed

    Lenca, Nicole; Atapattu, Sanka N; Poole, Colin F

    2017-12-01

    Retention factors obtained by gas chromatography and reversed-phase liquid chromatography on varied columns and partition constants in different liquid-liquid partition systems are used to estimate WSU descriptor values for 36 anilines and N-heterocyclic compounds, 13 amides and related compounds, and 45 phenols and alcohols. These compounds are suitable for use as calibration compounds to characterize separation systems covering the descriptor space E=0.2-3, S=0.4-2.1, A=0-1.5, B=0.1-1.5, L=2.5-10.0 and V=0.5-2.2. Hydrogen-bonding properties are discussed in terms of structure, the possibility of induction effects, intramolecular hydrogen bonding and steric factors for anilines, amides, phenols and alcohols. The relationship between these parameters and observed descriptor values are difficult to predict from structure but facilitate improving the general occupancy of the descriptor space by creating incremental changes in hydrogen-bonding properties. It is verified that the compounds included in this study can be merged with an existing database of compounds recommended for characterizing separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Draft Genome Sequence of Pedobacter sp. Strain V48, Isolated from a Coastal Sand Dune in the Netherlands

    PubMed Central

    Bitzer, Adam S.; Garbeva, Paolina

    2014-01-01

    Pedobacter sp. strain V48 participates in an interaction with Pseudomonas fluorescens which elicits interaction-induced phenotypes. We report the draft genome sequence of Pedobacter sp. V48, consisting of 6.46 Mbp. The sequence will contribute to improved understanding of the genus and facilitate genomic analysis of the model interspecies interaction with P. fluorescens. PMID:24578271

  18. Hydrogen bonding. Part 25. The nature of the hydrogen bond in hydroxytropenylium chloride (tropone hydrochloride)

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Cross, Joan E.; Toccalino, Patricia L.

    1988-08-01

    Hydroxytropenylium iodide and bromide contain normal electrostatic OH⋯X - hydrogen bonds. Hydroxytropenylium chloride, however, contains a hydrogen bond intermediate between the normal electrostatic type and the very strong covalent type, similar to the hydrogen bonds found in choline fluoride or the Type I C∞v hydrogen dihalide ions. Infrared comparisons with compounds previously studied demonstrate that the hydroxytropenylium ion is a stronger hydrogen bond donor than either choline cation or protonated betaine cation, and suggest that hydroxytropenylium fluoride, if it can be prepared, should contain a three-center covalent hydrogen bond.

  19. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  20. Simian Rotaviruses Possess Divergent Gene Constellations That Originated from Interspecies Transmission and Reassortment▿

    PubMed Central

    Matthijnssens, Jelle; Taraporewala, Zenobia F.; Yang, Hongyan; Rao, Shujing; Yuan, Lijuan; Cao, Dianjun; Hoshino, Yasutaka; Mertens, Peter P. C.; Carner, Gerry R.; McNeal, Monica; Sestak, Karol; Van Ranst, Marc; Patton, John T.

    2010-01-01

    Although few simian rotaviruses (RVs) have been isolated, such strains have been important for basic research and vaccine development. To explore the origins of simian RVs, the complete genome sequences of strains PTRV (G8P[1]), RRV (G3P[3]), and TUCH (G3P[24]) were determined. These data allowed the genotype constellations of each virus to be determined and the phylogenetic relationships of the simian strains with each other and with nonsimian RVs to be elucidated. The results indicate that PTRV was likely transmitted from a bovine or other ruminant into pig-tailed macaques (its host of origin), since its genes have genotypes and encode outer-capsid proteins similar to those of bovine RVs. In contrast, most of the genes of rhesus-macaque strains, RRV and TUCH, have genotypes more typical of canine-feline RVs. However, the sequences of the canine and/or feline (canine/feline)-like genes of RRV and TUCH are only distantly related to those of modern canine/feline RVs, indicating that any potential transmission of a progenitor of these viruses from a canine/feline host to a simian host was not recent. The remaining genes of RRV and TUCH appear to have originated through reassortment with bovine, human, or other RV strains. Finally, comparison of PTRV, RRV, and TUCH genes with those of the vervet-monkey RV SA11-H96 (G3P[2]) indicates that SA11-H96 shares little genetic similarity to other simian strains and likely has evolved independently. Collectively, our data indicate that simian RVs are of diverse ancestry with genome constellations that originated largely by interspecies transmission and reassortment with nonhuman animal RVs. PMID:19939934

  1. Dense, layered membranes for hydrogen separation

    DOEpatents

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  2. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  3. Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)

    NASA Technical Reports Server (NTRS)

    McLaughlin, Russell

    2013-01-01

    NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations

  4. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  5. Hydrogen storage compositions

    DOEpatents

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  6. Progress in hydrogen energy; Proceedings of the National Workshop on Hydrogen Energy, New Delhi, India, July 4-6, 1985

    NASA Astrophysics Data System (ADS)

    Dahiya, R. P.

    1987-06-01

    The present conference on the development status of hydrogen energy technologies considers electrolytic hydrogen production, photoelectrolytic hydrogen production, microorganic hydrogen production, OTEC hydrogen production, solid-state materials for hydrogen storage, and a thin-film hydrogen storage system. Also discussed are the cryogenic storage of hydrogen; liquid hydrogen fuel for ground, air, and naval vehicles; hydrogen-fuel internal combustion engines; the use of hydrogen for domestic, commercial, and industrial applications; hydrogen fuel-cell development; enzyme electrodes for the use of hydrogen-rich fuels in biochemical fuel cells; an analysis of H2-O2 MHD generators; and hydrogen energy technology characterization and evaluation on the basis of an input-output structure.

  7. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  8. Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene [The effects of hydrogenation on the volatility of organic hydrogen getters

    DOE PAGES

    Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.; ...

    2017-11-15

    Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less

  9. Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene [The effects of hydrogenation on the volatility of organic hydrogen getters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.

    Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less

  10. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha

    The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less

  11. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen

    DOE PAGES

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...

    2017-06-30

    The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less

  12. Onboard hydrogen generation for automobiles

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  13. Hydrogenated amorphous silicon formation by flux control and hydrogen effects on the growth mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.

    1986-06-01

    The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.

  14. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  15. Advanced hydrogen electrode for hydrogen-bromide battery

    NASA Technical Reports Server (NTRS)

    Kosek, Jack A.; Laconti, Anthony B.

    1987-01-01

    Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.

  16. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  17. Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode

    PubMed Central

    Rodenas, Pau; Zhu, Fangqi; Sleutels, Tom; Saakes, Michel; Buisman, Cees

    2017-01-01

    Abstract Background Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m‐2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m‐2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE). Results With the GDE, hydrogen was oxidized to produce a current density of 2.9 A m‐2 at an anode potential of –0.2 V. Addition of bicarbonate to the influent led to production of acetate, in addition to current. At a bicarbonate concentration of 50 mmol L‐1, current density increased to 10.7 A m‐2 at an anode potential of –0.2 V. This increase in current density could be due to oxidation of formed acetate in addition to oxidation of hydrogen, or enhanced growth of hydrogen oxidizing bacteria due to the availability of acetate as carbon source. The effect of mass transfer was further assessed through enhanced mixing and in combination with the addition of bicarbonate (50 mmol L‐1) current density increased further to 17.1 A m‐2. Conclusion Hydrogen gas may offer opportunities as electron donor for bioanodes, with acetate as potential intermediate, at locations where excess hydrogen and no organics are available. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200586

  18. Hydrogen Data | Geospatial Data Science | NREL

    Science.gov Websites

    Hydrogen Data Hydrogen Data This hydrogen data estimates the potential for producing hydrogen from Coordinate System Name: GCS_North_American_1983 Coverage File Last Updated Metadata KMZ File Hydrogen Zip of hydrogen could be produced annually from wind, solar, and biomass resources in the United States

  19. Composition and method for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  20. Hydrogen Production from Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  1. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  2. Hydrogenation of passivated contacts

    DOEpatents

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  3. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  4. Hydrogen environment embrittlement of metals

    NASA Technical Reports Server (NTRS)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P.

    1973-01-01

    Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base allows are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking that occurs appears to be a surface phenomenon, is unlike that of internal hydrogen embrittlement.

  5. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.

    PubMed

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Soferová, Lýdie; Sedmidubský, David; Pumera, Martin

    2014-02-21

    Hydrogenated graphene and graphane are in the forefront of graphene research. Hydrogenated graphene is expected to exhibit ferromagnetism, tunable band gap, fluorescence, and high thermal and low electrical conductivity. Currently available techniques for fabrication of highly hydrogenated graphene use either a liquid ammonia (-33 °C) reduction pathway using alkali metals or plasma low pressure or ultra high pressure hydrogenation. These methods are either technically challenging or pose inherent risks. Here we wish to demonstrate that highly hydrogenated graphene can be prepared at room temperature in the aqueous phase by reduction of graphene oxide by nascent hydrogen generated by dissolution of metal in acid. Nascent hydrogen is known to be a strong reducing agent. We studied the influence of metal involved in nascent hydrogen generation and characterized the samples in detail. The resulting reduced graphenes and hydrogenated graphenes were characterized in detail. The resulting hydrogenated graphene had the chemical formula C1.16H1O0.66. Such simple hydrogenation of graphene is of high importance for large scale safe synthesis of hydrogenated graphene.

  6. Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences

    PubMed Central

    McPartland, J M; Glass, M; Pertwee, R G

    2007-01-01

    A meta-analysis, unlike a literature review, synthesizes previous studies into new results. Pooled data from 211 studies measured ligand binding affinities at human (Hs) or rat (Rn) cannabinoid receptors CB1 and CB2. Cochrane methods were modified for this non-clinical analysis. Meta-regression detected data heterogeneity arising from methodological factors: use of sectioned tissues, lack of PMSF and choice of radioligand. Native brain tissues exhibited greater affinity (lower nM) than transfected cells, but the trend fell short of significance, as did the trend between centrifugation and filtration methods. Correcting for heterogeneity, mean Ki values for Δ9-tetrahydrocannabinol differed significantly between HsCB1 and RnCB1 (25.1 and 42.6 nM, respectively) but not between HsCB1 and HsCB2 (25.1 and 35.2). Mean Kd values for HsCB1, RnCB1 and HsCB2 of CP55,940 (2.5, 0.98, 0.92) and WIN55,212-2 (16.7, 2.4, 3.7) differed between HsCB1 and RnCB1 and between HsCB1 and HsCB2. SR141716A differed between HsCB1 and RnCB1 (2.9 and 1.0 nM). Anandamide at HsCB1, RnCB1 and HsCB2 (239.2, 87.7, 439.5) fell short of statistical differences due to heterogeneity. We consider these Kd and Ki values to be the most valid estimates in the literature. Sensitivity analyses did not support the numerical validity of cannabidiol, cannabinol, 2-arachidonoyl glycerol and all ligands at RnCB2. Aggregate rank order analysis of CB1 distribution in the brain (pooled from 119 autoradiographic, immunohistochemical and in situ hybridization studies) showed denser HsCB1 expression in cognitive regions (cerebral cortex) compared to RnCB1, which was relatively richer in movement-associated areas (cerebellum, caudate-putamen). Implications of interspecies differences are discussed. PMID:17641667

  7. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    NASA Astrophysics Data System (ADS)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  8. Mercury Methylation by Interspecies Hydrogen and Acetate Transfer between Sulfidogens and Methanogens†

    PubMed Central

    Pak, K.-R.; Bartha, R.

    1998-01-01

    Cocultures of Desulfovibrio desulfuricans and Methanococcus maripaludis grew on sulfate-free lactate medium while vigorously methylating Hg2+. Individually, neither bacterium could grow or methylate mercury in this medium. Similar synergistic growth of sulfidogens and methanogens may create favorable conditions for Hg2+ methylation in low-sulfate anoxic freshwater sediments. PMID:9603804

  9. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, WC; Zhuang, ZB; Gao, MR

    2015-01-08

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearlymore » increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.« less

  10. Hydrogen-powered flight

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2005-01-01

    As the Nation moves towards a hydrogen economy the shape of aviation will change dramatically. To accommodate a switch to hydrogen the aircraft designs, propulsion, and power systems will look much different than the systems of today. Hydrogen will enable a number of new aircraft capabilities from high altitude long endurance remotely operated aircraft (HALE ROA) that will fly weeks to months without refueling to clean, zero emissions transport aircraft. Design and development of new hydrogen powered aircraft have a number of challenges which must be addressed before an operational system can become a reality. While the switch to hydrogen will be most outwardly noticeable in the aircraft designs of the future, other significant changes will be occurring in the environment. A switch to hydrogen for aircraft will completely eliminate harmful greenhouse gases such as carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), unburnt hydrocarbons and smoke. While these aircraft emissions are a small percentage of the amount produced on a daily basis, their placement in the upper atmosphere make them particularly harmful. Another troublesome gaseous emission from aircraft is nitrogen oxides (NOx) which contribute to ozone depletion in the upper atmosphere. Nitrogen oxide emissions are produced during the combustion process and are primarily a function of combustion temperature and residence time. The introduction of hydrogen to a gas turbine propulsion system will not eliminate NOx emissions; however the wide flammability range will make low NOx producing, lean burning systems feasible. A revolutionary approach to completely eliminating NOx would be to fly all electric aircraft powered by hydrogen air fuel cells. The fuel cells systems would only produce water, which could be captured on board or released in the lower altitudes. Currently fuel cell systems do not have sufficient energy densities for use in large aircraft, but the long term potential of eliminating

  11. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felten, A.; Nittler, L.; Pireaux, J.-J.

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values asmore » high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.« less

  12. Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope

    DOEpatents

    Tanaka, John; Reilly, Jr., James J.

    1978-01-01

    This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

  13. Nickel-hydrogen cell reversal characteristics

    NASA Technical Reports Server (NTRS)

    Lurie, Charles

    1994-01-01

    Nickel-hydrogen cell reversal characteristics are being studied as part of a TRW program directed towards development of a high current battery cell bypass switch. The following are discussed: cell bypass switch; nickel-hydrogen cell reversal characteristics; and nickel-hydrogen cell chemistry: discharge/reversal and overdischarge (reversal) with nickel and hydrogen precharge.

  14. Understanding Facilitation: Theory and Principles.

    ERIC Educational Resources Information Center

    Hogan, Christine

    This book introduces newcomers to the concept of facilitation, and it presents a critical analysis of established and current theory on facilitation for existing practitioners. The following are among the topics discussed: (1) emergence of the field of facilitation; (2) development of facilitation in management; (3) development of facilitation in…

  15. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  16. Striving toward noble-metal-free photocatalytic water splitting: The hydrogenated-graphene-TiO 2 prototype

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Liu, Zongyuan; ...

    2015-08-20

    Graphane, graphone and hydrogenated graphene (HG) have been extensively studied in recent years due to their interesting properties and potential use in commercial and industrial applications. The present study reports investigation of hydrogenated graphene/TiO 2-x (HGT) nanocomposites as photocatalysts for H 2 and O 2 production from water without the assistance of a noble metal co-catalyst. By combination of several techniques, the morphologies, bulk/atomic structure and electronic properties of all the powders were exhaustively interrogated. Hydrogenation treatment efficiently reduces TiO 2 nanoparticles, while the graphene oxide sheets undergo the topotactic transformation from a graphene-like structure to a mixture of graphiticmore » and turbostratic carbon (amorphous/disordered) upon altering the calcination atmosphere from a mildly reducing to a H 2-abundant environment. Remarkably, the hydrogenated graphene-TiO 2-x composite that results upon H 2-rich reduction exhibits the highest photocatalytic H 2 evolution performance equivalent to low loading of Pt (~0.12 wt%), whereas the addition of HG suppresses the O 2 production. As a result, we propose that such an enhancement can be attributed to a combination of factors including the introduction of oxygen vacancies and Ti 3+ states, retarding the recombination of charge carriers and thus, facilitating the charge transfer from TiO 2-x to the carbonaceous sheet.« less

  17. Hydrogen rotation-vibration oscillator

    DOEpatents

    Rhodes, C.K.

    1974-01-29

    A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

  18. Hydrogen, socio-environmental impact

    NASA Technical Reports Server (NTRS)

    Gilmore, J. S.; Matthews, W. E.; Duff, M. K.

    1975-01-01

    The concept and logic flow of a hydrogen technology assessment are described along with a specific procedure for such an assessment. The development of hydrogen technology is discussed. Factors considered in the development and use of hydrogen include: stimulus of societal needs and technological innovations; economic factors; and social and environmental effects.

  19. Hydrogen purifier module with membrane support

    DOEpatents

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  20. Continuous catalytic hydrogenation of polyaromatic hydrocarbon compounds in hydrogen-supercritical carbon dioxide.

    PubMed

    Yuan, Tao; Fournier, Anick R; Proudlock, Raymond; Marshall, William D

    2007-03-15

    A continuous hydrogenation device was evaluated for the detoxification of selected tri-, tetra-, or pentacyclic polyaromatic hydrocarbon (PAH) compounds {anthracene, phenanthrene, chrysene, and benzo[a]pyrene (B[a]P)} by hydrogenation. A substrate stream in hexane, 0.05-1.0% (w/v), was mixed with hydrogen-carbon dioxide (H2-CO2, 5-30% v/v) and delivered to a heated reactor column (25 cm x 1 cm) containing palladium supported on gamma alumina (Pd0/gamma-Al2O3) that was terminated with a capillary restrictor. The flow rate from the reactor, approximately 800 mL min(-1) decompressed gas, corresponded to 4 mL min(-1) fluid under the operating conditions of the trials. Reaction products were recovered by passing the reactor effluent through hexane. At 90 degrees C, the anthracene or phenanthrene substrate was hydrogenated only partially to octahydro and dodecahydro species and contained only a minor quantity of totally hydrogenated products. For substrates with increasing numbers of fused aromatic rings, the hydrogenation efficiency was decreased further. However, at an increasing temperature (90-150 degrees C) and increasing mobile phase flow rate (20.68 MPa corresponding to 2100 mL min(-1) decompressed gas), B[a]P and chrysene were hydrogenated, virtuallytotally, to their corresponding perhydro analogues (eicosahydrobenzo[a]pyrenes and octadecahydrochrysenes), respectively. That this approach might be useful for decontaminating soil extracts was supported by companion in vitro trials in which the substrate and products were assayed for mutagenic activity with five bacterial strains that are auxotrophic for histidine (Salmonella typhimurium TA98, TA100, TA1535, and TA1537) or tryptophan (Escherichia coliWP2 uvrA), using the bacterial reverse mutation assay (modified Ames test). Generally, substantial increases in revertant colony counts were not observed with any of the strains following exposure to the hydrogenation products in the absence or presence of the 10 or 30

  1. Prospects for hydrogen storage in graphene.

    PubMed

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  2. Experimental study of catalytic hydrogenation by using an in-situ hydrogen measuring technique. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, S.H.; Klinzing, G.E.; Cheng, Y.S.

    1984-12-01

    An in-situ technique for measuring hydrogen concentration (partial pressure) had been previously used to measure static properties (hydrogen solubilities, vapor pressures of hydrocarbons, etc.). Because of its good precision (2% relative error) and relatively short respond time (9.7 to 2.0 seconds at 589 to 728K), the technique was successfully applied to a dynamic study of hydrogenation reactions in this work. Furthermore, the technique is to be tested for industrial uses. Hydrogen/1-methylnaphthalene system was experimentally investigated in a one-liter autoclave equipped with a magnetically driven stirrer and temperature controlling devices. Catalytic hydrogenation of 1-methylnaphthalene was studied in the presence of sulfidedmore » Co-Mo-Al2O3 catalyst. In addition, the vapor/liquid equilibrium relationship was determined by using this technique. Hydrogenation reaction runs were performed at temperatures of 644.1, 658.0 and 672.0K and pressures up to 9.0 MPa. The ring hydrogenation, resulting in 1- and 5-methyltetralin, was found to be the dominant reaction. This is in agreement with cited literature. Effects of hydrogen partial pressure, operating temperature, as well as presulfided catalyst are also investigated and discussed in this work. The vapor pressure of 1-methylnaphthalene was measured over a temperature range of 555.2 to 672.0K. The results are in good agreement with literature data. Measurements for hydrogen solubility in 1-methylnaphthalene were conducted over temperature and pressure range of 598 to 670K and 5.2 to 8.8 MPa, respectively. Similar to previously reported results, the hydrogen solubility increases with increasing temperature when total pressure is held constant. A linear relation is found between the hydrogen solubility and hydrogen partial pressure. 21 refs., 13 figs., 10 tabs.« less

  3. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1.

    PubMed

    Hu, Bin-Bin; Zhu, Ming-Jun

    2017-05-03

    Energy shortage and environmental pollution are two severe global problems, and biological hydrogen production from lignocellulose shows great potential as a promising alternative biofuel to replace the fossil fuels. Currently, most studies on hydrogen production from lignocellulose concentrate on cellulolytic microbe, pretreatment method, process optimization and development of new raw materials. Due to no effective approaches to relieve the inhibiting effect of inhibitors, the acid pretreated lignocellulose hydrolysate was directly discarded and caused environmental problems, suggesting that isolation of inhibitor-tolerant strains may facilitate the utilization of acid pretreated lignocellulose hydrolysate. Thermophilic bacteria for producing hydrogen from various kinds of sugars were screened, and the new strain named MJ1 was isolated from paper sludge, with 99% identity to Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. The hydrogen yields of 11.18, 4.25 and 2.15 mol-H 2 /mol sugar can be reached at an initial concentration of 5 g/L cellobiose, glucose and xylose, respectively. The main metabolites were acetate and butyrate. More important, MJ1 had an excellent tolerance to inhibitors of dilute-acid (1%, g/v) pretreated sugarcane bagasse hydrolysate (DAPSBH) and could efficiently utilize DAPSBH for hydrogen production without detoxication, with a production higher than that of pure sugars. The hydrogen could be quickly produced with the maximum hydrogen production reached at 24 h. The hydrogen production reached 39.64, 105.42, 111.75 and 110.44 mM at 20, 40, 60 and 80% of DAPSBH, respectively. Supplementation of CaCO 3 enhanced the hydrogen production by 21.32% versus the control. These results demonstrate that MJ1 could directly utilize DAPSBH for biohydrogen production without detoxication and can serve as an excellent candidate for industrialization of hydrogen production from DAPSBH. The results also suggest that isolating unique

  4. A light hydrocarbon fuel processor producing high-purity hydrogen

    NASA Astrophysics Data System (ADS)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The

  5. Hydrogen Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Hydrogen Maps Hydrogen Maps This collection of U.S. hydrogen maps provides examples of how : Milestone Report, NREL Technical Report (2006) Hydrogen Potential from Renewable Energy Resources This study Technical Report (2007) Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Resources This study

  6. Freezing WISE Hydrogen

    NASA Image and Video Library

    2009-11-12

    A scaffolding structure built around NASA Wide-field Infrared Survey Explorer allows engineers to freeze its hydrogen coolant. The WISE infrared instrument is kept extremely cold by a bottle-like tank filled with frozen hydrogen, called the cryostat.

  7. Waste/By-Product Hydrogen

    DTIC Science & Technology

    2011-01-13

    Waste /By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...By‐product Hydrogen Fuel Flexibility Biogas : generated from organic waste �Wastewater treatment plants can provide multiple MW of renewable...13 Waste /By product Hydrogen ‐ Biogas

  8. Nickel-hydrogen component development

    NASA Technical Reports Server (NTRS)

    Charleston, J. A.

    1983-01-01

    Light weight energy storage systems for future space missions are investigated. One of the systems being studied is the nickel hydrogen battery. This battery is designed to achieve longer life, improve performance, and higher energy densities for space applications. The nickel hydrogen component development is discussed. Test data from polarization measurements of the hydrogen electrode component is presented.

  9. Histone Deacetylase Inhibitor Improves the Development and Acetylation Levels of Cat–Cow Interspecies Cloned Embryos

    PubMed Central

    Wittayarat, Manita; Sato, Yoko; Do, Lanh Thi Kim; Morita, Yasuhiro; Chatdarong, Kaywalee; Techakumphu, Mongkol; Taniguchi, Masayasu

    2013-01-01

    Abstract Abnormal epigenetic reprogramming, such as histone acetylation, might cause low efficiency of interspecies somatic cell nuclear transfer (iSCNT). This study was conducted to evaluate the effects of trichostatin A (TSA) on the developmental competence and histone acetylation of iSCNT embryos reconstructed from cat somatic cells and bovine cytoplasm. The iSCNT cat and parthenogenetic bovine embryos were treated with various concentrations of TSA (0, 25, 50, or 100 nM) for 24 h, respectively, following fusion and activation. Treatment with 50 nM TSA produced significantly higher rates of cleavage and blastocyst formation (84.3% and 4.6%, respectively) of iSCNT embryos than the rates of non-TSA–treated iSCNT embryos (63.8% and 0%, respectively). Similarly, the treatment of 50 nM TSA increased the blastocyst formation rate of parthenogenetic bovine embryos. The acetylation levels of histone H3 lysine 9 (H3K9) in the iSCNT embryos with the treatment of 50 nM TSA were similar to those of in vitro–fertilized embryos and significantly higher (p<0.05) than those of non-TSA–treated iSCNT embryos (control), irrespective of the embryonic development stage (two-cell, four-cell, and eight-cell stages). These results indicated that the treatment of 50 nM TSA postfusion was beneficial for development to the blastocyst stage of iSCNT cat embryos and correlated with the increasing levels of acetylation at H3K9. PMID:23790014

  10. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  11. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Zhou, Zhenfang; Nie, Sen; Wang, Honghu; Peng, Hongrui; Li, Guicun; Chen, Kezheng

    2014-12-01

    Flower-like hydrogenated TiO2(B) nanostructures have been synthesized via a facile solvothermal approach combined with hydrogenation treatment. The obtained TiO2(B) nanostructures show uniform and hierarchical flower-like morphology with a diameter of 124 ± 5 nm, which are further constructed by primary nanosheets with a thickness of 10 ± 1.2 nm. The Ti3+ species and/or oxygen vacancies are well introduced into the structures of TiO2(B) after hydrogen reduction, resulting in an enhancement in the electronic conductivity (up to 2.79 × 10-3 S cm-1) and the modified surface electrochemical activity. When evaluated for lithium storage capacity, the hydrogenated TiO2(B) nanostructures exhibit enhanced electrochemical energy storage performances compared to the pristine TiO2(B) nanostructures, including high capacity (292.3 mA h g-1 at 0.5C), excellent rate capability (179.6 mA h g-1 at 10C), and good cyclic stability (98.4% capacity retention after 200 cycles at 10C). The reasons for these improvements are explored in terms of the increased electronic conductivity and the facilitation of lithium ion transport arising from the introduction of oxygen vacancies and the unique flower-like morphologies.

  12. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  13. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOEpatents

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  14. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  15. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  16. Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency

    NASA Technical Reports Server (NTRS)

    Crampton, S. B.

    1979-01-01

    Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.

  17. Hydrogen-Detection Apparatus

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard; Bourgeois, Chris M.

    1995-01-01

    Apparatus continuously monitors concentration of hydrogen, at level ranging from few parts per million to several percent, in mixture of gases. Simple and fast, providing high sensitivity and linear response. Used to alert technicians to potentially explosive concentrations of residual hydrogen.

  18. Interspecies Interactions Reverse the Hazard of Antibiotics Exposure: A Plankton Community Study on Responses to Ciprofloxacin hydrochloride.

    PubMed

    Wang, Changyou; Wang, Ziyang; Zhang, Yong; Su, Rongguo

    2017-05-24

    The ecotoxicological effects of Ciprofloxacin hydrochloride (CIP) were tested on population densities of plankton assemblages consisting of two algae (Isochrysis galbana and Platymonas subcordiformis) and a rotifer (Brachionus plicatilis). The I. galbana showed a significant decrease in densities when concentrations of CIP were above 2.0 mg L -1 in single-species tests, while P. subcordiformis and B. plicatilis were stable in densities when CIP were less than10.0 mg L -1 . The equilibrium densities of I. galbana in community test increased with CIP concentrations after falling to a trough at 5.0 mg L -1 , showed a completely different pattern of P. subcordiformis which decreased with CIP concentrations after reaching a peak at 30.0 mg L -1 . The observed beneficial effect was a result of interspecies interactions of trophic cascade that buffered for more severe direct effects of toxicants. The community test-based NOEC of CIP (2.0 mg L -1 ), embodying the indirect effects, was different from the extrapolated one derived by single-species tests (0.5 mg L -1 ), but all lacked confidence interval. A CIP threshold concentration of obvious relevance to ecological interaction was calculated with a simplified plankton ecological model, achieving a value of 1.26 mg L -1 with a 95% bootstrapping confidence interval from 1.18 to 1.31 mg L -1 .

  19. Car-Parrinello simulation of hydrogen bond dynamics in sodium hydrogen bissulfate.

    PubMed

    Pirc, Gordana; Stare, Jernej; Mavri, Janez

    2010-06-14

    We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car-Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrodinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540 cm(-1) and a half width of about 700 cm(-1), which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600 cm(-1), respectively. The hydrogen probability densities obtained by solving the vibrational Schrodinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.

  20. Titania nanofibers as a photo-antenna for dye-sensitized solar hydrogen.

    PubMed

    Choi, Sung Kyu; Kim, Soonhyun; Ryu, Jungho; Lim, Sang Kyoo; Park, Hyunwoong

    2012-09-01

    Directionally grown TiO(2) nano-architectures can serve as effective platforms for photogenerated charges to flow vectorially through the architecture framework, promising an unexpectedly high efficiency. This study demonstrates that directionally aligned TiO(2) nanofibers (TNF) obtained via a simple rearrangement of randomly scattered TiO(2) nanoparticles (TNP) exhibit significantly enhanced activity in terms of hydrogen production from water under visible light (λ > 420 nm). It has been found that Eosin Y (EY)-sensitized hydrogen production with TNF is greater than those with TNP and commercial TiO(2) samples (Degussa P25 and Hombikat UV-100) by a factor of 7 and >140, respectively, in the presence of triethanolamine (TEOA) as an electron donor. The annealing of TNF at elevated temperatures reduces the amount of H(2) produced and changes various physicochemical properties. Attempts have been made to find correlation factors between hydrogen production and reaction parameters (e.g., pH-dependent EY adsorption, surface area, pore size, particle size, and anatase-to-rutile ratio), none of which have provided an apparent correlation. It was suggested that the interparticle electron transfer is facilitated when TiO(2) nanoparticles are physically interconnected, and TNF might work as a robust photo-antenna for efficiently collecting the photogenerated electrons. The photocurrent measurements in visible light-irradiated EY/TiO(2) suspensions indicate that the photocurrent of TNF is 50% higher than that of TNP, supporting the photo-antenna mechanism of TNF.

  1. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  2. Initial performance of advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.

    1986-01-01

    Advanced designs for individual pressure vessel nickel-hydrogen cells have been conceived which should improve the cycle life at deep depths-of-discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  3. Initial performance of advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1985-01-01

    Advanced designs for individual pressure vessel nickel hydrogen cells were conceived which should improve the life cycle at deep depths of discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) the use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  4. Autothermal hydrogen storage and delivery systems

    DOEpatents

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  5. Facilitated versus Non-Facilitated Online Case Discussions: Comparing Differences in Problem Space Coverage

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Koehler, Adrie A.

    2015-01-01

    The facilitator plays a key role in guiding students' efforts during case discussions. However, few studies have compared differences in learning outcomes for students participating in facilitated versus non-facilitated discussions. In this research, we used "problem space coverage" as a learning measure to compare outcomes between…

  6. Visual hydrogen detector with variable reversibility

    NASA Technical Reports Server (NTRS)

    Muradov, Nazim (Inventor)

    2011-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  7. Visual hydrogen detector with variable reversibilty

    NASA Technical Reports Server (NTRS)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  8. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  9. Clean energy and the hydrogen economy.

    PubMed

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  10. Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator

    NASA Astrophysics Data System (ADS)

    Henriksson, Jonas; Villanueva, Luis Guillermo; Brugger, Juergen

    2012-07-01

    Hydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence of H2, therefore generating a stress build-up that causes the frequency of the device to drop. The devices are able to detect H2 concentrations below 0.5% within 1 s of the onset of the exposure using only a few hundreds of pW of power, matching the industry requirements for H2 safety sensors. In addition, we investigate the strongly detrimental effect that relative humidity (RH) has on the Pd responsivity to H2, showing that the response is almost nullified at about 70% RH. As a remedy for this intrinsic limitation, we applied a mild heating current through the beam, generating a few μW of power, whereby the responsivity of the sensors is fully restored and the chemo-mechanical process is accelerated, significantly decreasing response times. The sensors are fabricated using standard processes, facilitating their eventual mass-production.Hydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence of H2, therefore generating a stress build-up that causes the frequency of the device to drop. The devices are able to detect H2 concentrations below 0.5% within 1 s of the onset of the exposure using only a few hundreds of pW of power, matching the industry requirements for H2 safety sensors. In addition, we investigate the strongly detrimental effect that relative humidity (RH) has on the Pd responsivity to H2, showing that the response is almost nullified at about 70% RH. As a remedy for this intrinsic limitation, we applied a mild heating

  11. Advanced Hydrogen Liquefaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Joseph; Kromer, Brian; Neu, Ben

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased themore » understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.« less

  12. STME Hydrogen Mixer Study

    NASA Technical Reports Server (NTRS)

    Blumenthal, Rob; Kim, Dongmoon; Bache, George

    1992-01-01

    The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.

  13. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  14. Diffusion Analysis Of Hydrogen-Desorption Measurements

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1988-01-01

    Distribution of hydrogen in metal explains observed desorption rate. Report describes application of diffusion theory to anaylsis of experimental data on uptake and elimination of hydrogen in high-strength alloys of 25 degree C. Study part of program aimed at understanding embrittlement of metals by hydrogen. Two nickel-base alloys, Rene 41 and Waspaloy, and one ferrous alloy, 4340 steel, studied. Desorption of hydrogen explained by distribution of hydrogen in metal. "Fast" hydrogen apparently not due to formation of hydrides on and below surface as proposed.

  15. Storing Renewable Energy in the Hydrogen Cycle.

    PubMed

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  16. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  17. Solid-phase microextraction may catalize hydrogenation when using hydrogen as carrier in gas chromatography.

    PubMed

    Fiorini, D; Boarelli, M C

    2016-07-01

    When hydrogen is used as carrier gas, carbon-carbon double bonds may be hydrogenated in the hot gas chromatograph (GC) injector if introduced by solid-phase microextraction (SPME). SPME fibers coated with polydimethylsiloxane (PDMS)/carboxen/divinylbenzene (DVB), PDMS/carboxen, polyacrylate, PDMS/DVB and PDMS on fused silica, stableflex or metal alloy core have been tested with fatty acid methyl esters (FAMEs) from olive oil. Using coatings containing DVB, hydrogenation took place with high conversion rates (82.0-92.9%) independently of the core material. With all fibers having a metal core, hydrogenation was observed to a certain extent (27.4-85.3%). PDMS, PDMS/carboxen and polyacrylate coated fibers with a fused silica or stableflex core resulted in negligible hydrogenation (0.2-2.5%). The occurrence of hydrogenation was confirmed also with other substances containing carbon-carbon double bonds (n-alkenes, alkenoic acids, mono- and polyunsaturated fatty acid methyl and ethyl esters). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C. Edwin; Keyser, Matthew A.; Benson, David K.

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  19. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  20. Bandgap opening in hydrogenated germanene

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Zhang, L.; Kabanov, N. S.; Rudenko, A. N.; Arjmand, T.; Rahimpour Soleimani, H.; Klavsyuk, A. L.; Zandvliet, H. J. W.

    2018-04-01

    We have studied the hydrogenation of germanene synthesized on Ge2Pt crystals using scanning tunneling microscopy and spectroscopy. The germanene honeycomb lattice is buckled and consists of two hexagonal sub-lattices that are slightly displaced with respect to each other. The hydrogen atoms adsorb exclusively on the Ge atoms of the upward buckled hexagonal sub-lattice. At a hydrogen exposure of about 100 L, the (1 × 1) buckled honeycomb structure of germanene converts to a (2 × 2) structure. Scanning tunneling spectra recorded on this (2 × 2) structure reveal the opening of a bandgap of about 0.2 eV. A fully (half) hydrogenated germanene surface is obtained after an exposure of about 9000 L hydrogen. The hydrogenated germanene, also referred to as germanane, has a sizeable bandgap of about 0.5 eV and is slightly n-type.

  1. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    PubMed

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  2. CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

    NASA Astrophysics Data System (ADS)

    Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.

    2018-04-01

    Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

  3. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  4. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    PubMed

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    compared to that required for displacement of a single coil to facilitate amide hydrogen exchange in either the terminal or penultimate coils. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Competitive Adsorption-Assisted Formation of One-Dimensional Cobalt Nanochains with High CO Hydrogenation Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xin; Ren, Zhibo; Zhu, Xiaolin

    In the present work, cobalt nanochains have been successfully synthesized by a novel co assisted self-assembling formation strategy. A dramatic morphology transformation from cobalt nanoparticles to nanochains are observed when co molecules were introduced into the synthetic system. DFT calculations further confirm that competitive co-adsorbed co and oleylamine over the cobalt nanoparticles facilitates the formation of cobalt nanochains, which show higher co hydrogenation performance. The present work provides a new strategic and promising method for controllable synthesis of catalyst nanomaterials with the preferred surface structure and morphology.

  6. Sensitive Capacitive-type Hydrogen Sensor Based on Ni Thin Film in Different Hydrogen Concentrations.

    PubMed

    Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz

    2018-04-01

    Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.

  7. Isothermal vapor-liquid equilibria for the systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Y.W.; Lee, Y.Y.

    1997-03-01

    Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.

  8. Inter-species chimeras of leukaemia inhibitory factor define a major human receptor-binding determinant.

    PubMed Central

    Owczarek, C M; Layton, M J; Metcalf, D; Lock, P; Willson, T A; Gough, N M; Nicola, N A

    1993-01-01

    Human leukaemia inhibitory factor (hLIF) binds to both human and mouse LIF receptors (LIF-R), while mouse LIF (mLIF) binds only to mouse LIF-R. Moreover, hLIF binds with higher affinity to the mLIF-R than does mLIF. In order to define the regions of the hLIF molecule responsible for species-specific interaction with the hLIF-R and for the unusual high-affinity binding to the mLIF-R, a series of 15 mouse/human LIF hybrids has been generated. Perhaps surprisingly, both of these properties mapped to the same region of the hLIF molecule. The predominant contribution was from residues in the loop linking the third and fourth helices, with lesser contributions from residues in the third helix and the loop connecting the second and third helices in the predicted three-dimensional structure. Since all chimeras retained full biological activity and receptor-binding activity on mouse cells, and there was little variation in the specific biological activity of the purified proteins, it can be concluded that the overall secondary and tertiary structures of each chimera were intact. This observation also implied that the primary binding sites on mLIF and hLIF for the mLIF-R were unaltered by inter-species domain swapping. Consequently, the site on the hLIF molecule that confers species-specific binding to the hLIF-R and higher affinity binding to the mLIF-R, must constitute an additional interaction site to that used by both mLIF and hLIF to bind to the mLIF-R. These studies define a maximum of 15 amino acid differences between hLIF and mLIF that are responsible for the different properties of these proteins. Images PMID:8253075

  9. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  10. Nature of hydrogen embrittlement of steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archakov, Yu. I.; Grebeshkova, I.D.

    1986-01-01

    The hydrogen embrittlement of metals is the result of the origin and development of microcracks, which are formed as the result of the occurence of internal stresses. The specific feature of the appearance of hydrogen embrittlement are the result of the physical properties of the metals and the character of their interaction with hydrogen. The tendency of metals toward hydrogen embrittlement is determined by the following characteristics: their capacity to dissolve hydrogen and its maximum solubility; the chemical activity of the metals and other phases in relation to hydrogen, that is, the capacity toward hydride formation and failure of themore » carbided sand oxides, and the tendency of the metal toward the occurence and propagation of cracks. The authors cite and discuss two general forms of action of hydrogen on metals, the physical action of hydrogen on metals and the physicochemical action when chemical interaction of hydrogen with the different phases and the individual components of the alloy on the surface and in the volume occurs. The tendency toward hydrogen embrittlement is shown to increase with an increase in the strength of the steel. In addition to the strength, this characteristic also depends upon the chemical composition and structural condition of the steel.« less

  11. Hydrogen Fire Spectroscopy Issues Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  12. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  13. Trapping and spectroscopy of hydrogen

    NASA Astrophysics Data System (ADS)

    Cesar, Claudio Lenz

    1997-08-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 1012 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 1018. While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen.

  14. Hydrogen purification systems for PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, Arvind; Hwang, Hyun Tae; Al-Kukhun, Ahmad

    A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include anmore » absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.« less

  15. Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes.

    PubMed

    Martínez, José I; Laikhtman, Alex; Moon, Hoi Ri; Zak, Alla; Alonso, Julio A

    2018-05-07

    Understanding the interaction of hydrogen with layered materials is crucial in the fields of sensors, catalysis, fuel cells and hydrogen storage, among others. Density functional theory, improved by the introduction of van der Waals dispersion forces, provides an efficient and practical workbench to investigate the interaction of molecular and atomic hydrogen with WS 2 multilayers and nanotubes. We find that H 2 physisorbs on the surface of those materials on top of W atoms, while atomic H chemisorbs on top of S atoms. In the case of nanotubes, the chemisorption strength is sensitive to the nanotube diameter. Diffusion of H 2 on the surface of WS 2 encounters quite small activation barriers whose magnitude helps to explain previous and new experimental results for the observed dependence of the hydrogen concentration with temperature. Intercalation of H 2 between adjacent planar WS 2 layers reveals an endothermic character. Intercalating H atoms is energetically favorable, but the intercalation energy does not compensate for the cost of dissociating the molecules. When H 2 molecules are intercalated between the walls of a double wall nanotube, the rigid confinement induces the dissociation of the confined molecules. A remarkable result is that the presence of a full H 2 monolayer adsorbed on top of the first WS 2 layer of a WS 2 multilayer system strongly facilitates the intercalation of H 2 between WS 2 layers underneath. This opens up an additional gate to intercalation processes.

  16. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  17. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  18. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  19. Hydrogen as an energy medium

    NASA Technical Reports Server (NTRS)

    Cox, K. E.

    1976-01-01

    Coal, though abundant in certain geographical locations of the USA poses environmental problems associated with its mining and combustion. Also, nuclear fission energy appears to have problems regarding safety and radioactive waste disposal that are as yet unresolved. The paper discusses hydrogen use and market projection along with energy sources for hydrogen production. Particular attention is given to hydrogen production technology as related to electrolysis and thermochemical water decomposition. Economics of hydrogen will ultimately be determined by the price and availability of future energy carriers such as electricity and synthetic natural gas. Thermochemical methods of hydrogen production appear to offer promise largely in the efficiency of energy conversion and in capital costs over electrolytic methods.

  20. Fluidic hydrogen detector production prototype development

    NASA Technical Reports Server (NTRS)

    Roe, G. W.; Wright, R. E.

    1976-01-01

    A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas.