Sample records for facilitates intronic processing

  1. Short intronic repeat sequences facilitate circular RNA production.

    PubMed

    Liang, Dongming; Wilusz, Jeremy E

    2014-10-15

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery "backsplices" and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼ 30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3' end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. © 2014 Liang and Wilusz; Published by Cold Spring Harbor Laboratory Press.

  2. Short intronic repeat sequences facilitate circular RNA production

    PubMed Central

    Liang, Dongming

    2014-01-01

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery “backsplices” and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3′ end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. PMID:25281217

  3. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts.

    DTIC Science & Technology

    1987-07-31

    1{ 1. Project Goals: A. To determine the mechanism of tRNA intron processing in the halophilic archaebacteria. B. Characterize and compare the...enzyme(s) responsible for the removal of 5’-flanking sequences from halophilic and sulfur-dependent tRNA gene transcripts. C. Examine the structure and...distribution of tRNA introns in the halophilic archaebacteria. 2. Accomplishments: A. Intron processing mechanism We have succeeded in our primary

  4. Introns: The Functional Benefits of Introns in Genomes.

    PubMed

    Jo, Bong-Seok; Choi, Sun Shim

    2015-12-01

    The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced.

  5. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that

  6. Analysis of nonuniformity in intron phase distribution.

    PubMed Central

    Fedorov, A; Suboch, G; Bujakov, M; Fedorova, L

    1992-01-01

    The distribution of different intron groups with respect to phases has been analyzed. It has been established that group II introns and nuclear introns have a minimum frequency of phase 2 introns. Since the phase of introns is an extremely conservative measure the observed minimum reflects evolutionary processes. A sample of all known, group I introns was too small to provide a valid characteristic of their phase distribution. The findings observed for the unequal distribution of phases cannot be explained solely on the basis of the mobile properties of introns. One of the most likely explanations for this nonuniformity in the intron phase distribution is the process of exon shuffling. It is proposed that group II introns originated at the early stages of evolution and were involved in the process of exon shuffling. PMID:1598214

  7. Origin and evolution of spliceosomal introns

    PubMed Central

    2012-01-01

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome

  8. Phase distribution of spliceosomal introns: implications for intron origin

    PubMed Central

    Nguyen, Hung D; Yoshihama, Maki; Kenmochi, Naoya

    2006-01-01

    Background The origin of spliceosomal introns is the central subject of the introns-early versus introns-late debate. The distribution of intron phases is non-uniform, with an excess of phase-0 introns. Introns-early explains this by speculating that a fraction of present-day introns were present between minigenes in the progenote and therefore must lie in phase-0. In contrast, introns-late predicts that the nonuniformity of intron phase distribution reflects the nonrandomness of intron insertions. Results In this paper, we tested the two theories using analyses of intron phase distribution. We inferred the evolution of intron phase distribution from a dataset of 684 gene orthologs from seven eukaryotes using a maximum likelihood method. We also tested whether the observed intron phase distributions from 10 eukaryotes can be explained by intron insertions on a genome-wide scale. In contrast to the prediction of introns-early, the inferred evolution of intron phase distribution showed that the proportion of phase-0 introns increased over evolution. Consistent with introns-late, the observed intron phase distributions matched those predicted by an intron insertion model quite well. Conclusion Our results strongly support the introns-late hypothesis of the origin of spliceosomal introns. PMID:16959043

  9. Identification of human short introns

    PubMed Central

    Abebrese, Emmanuel L.; Arnold, Zachary R.; Armstrong, Katharine; Burns, Lindsay; Day, R. Thomas; Hsu, Daniel G.; Jarrell, Katherine; Luo, Yi; Mugayo, Daphine

    2017-01-01

    Canonical pre-mRNA splicing requires snRNPs and associated splicing factors to excise conserved intronic sequences, with a minimum intron length required for efficient splicing. Non-canonical splicing–intron excision without the spliceosome–has been documented; most notably, some tRNAs and the XBP1 mRNA contain short introns that are not removed by the spliceosome. There have been some efforts to identify additional short introns, but little is known about how many short introns are processed from mRNAs. Here, we report an approach to identify RNA short introns from RNA-Seq data, discriminating against small genomic deletions. We identify hundreds of short introns conserved among multiple human cell lines. These short introns are often alternatively spliced and are found in a variety of RNAs–both mRNAs and lncRNAs. Short intron splicing efficiency is increased by secondary structure, and we detect both canonical and non-canonical short introns. In many cases, splicing of these short introns from mRNAs is predicted to alter the reading frame and change protein output. Our findings imply that standard gene prediction models which often assume a lower limit for intron size fail to predict short introns effectively. We conclude that short introns are abundant in the human transcriptome, and short intron splicing represents an added layer to mRNA regulation. PMID:28520720

  10. An intronic open reading frame was released from one of group II introns in the mitochondrial genome of the haptophyte Chrysochromulina sp. NIES-1333

    PubMed Central

    Nishimura, Yuki; Kamikawa, Ryoma; Hashimoto, Tetsuo; Inagaki, Yuji

    2014-01-01

    Mitochondrial (mt) genome sequences, which often bear introns, have been sampled from phylogenetically diverse eukaryotes. Thus, we can anticipate novel insights into intron evolution from previously unstudied mt genomes. We here investigated the origins and evolution of three introns in the mt genome of the haptophyte Chrysochromulina sp. NIES-1333, which was sequenced completely in this study. All the three introns were characterized as group II, on the basis of predicted secondary structure, and the conserved sequence motifs at the 5′ and 3′ termini. Our comparative studies on diverse mt genomes prompt us to propose that the Chrysochromulina mt genome laterally acquired the introns from mt genomes in distantly related eukaryotes. Many group II introns harbor intronic open reading frames for the proteins (intron-encoded proteins or IEPs), which likely facilitate the splicing of their host introns. However, we propose that a “free-standing,” IEP-like protein, which is not encoded within any introns in the Chrysochromulina mt genome, is involved in the splicing of the first cox1 intron that lacks any open reading frames. PMID:25054084

  11. Ancient nature of alternative splicing and functions of introns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but intronsmore » retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.« less

  12. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts

    DTIC Science & Technology

    1988-07-27

    number) The overall goal of this project is to develop an understanding of tRNA gene structure and transcript processing in the halophilic Archaebacteria...containing precursor tRNAs in the halophilic Archaebecteria suggest that tRNATr p may be the only interrupted tR?4A gene in these organisms...1 August 1986 RESEARCH OBJECTIVE: To determine the mechanism of tRNA intron processing in the halophilic archaebacteria; characterize the enzyme

  13. Transposition of an intron in yeast mitochondria requires a protein encoded by that intron.

    PubMed

    Macreadie, I G; Scott, R M; Zinn, A R; Butow, R A

    1985-06-01

    The optional 1143 bp intron in the yeast mitochondrial 21S rRNA gene (omega +) is nearly quantitatively inserted in genetic crosses into 21S rRNA alleles that lack it (omega -). The intron contains an open reading frame that can encode a protein of 235 amino acids, but no function has been ascribed to this sequence. We previously found an in vivo double-strand break in omega - DNA at or close to the intron insertion site only in zygotes of omega + X omega - crosses that appears with the same kinetics as intron insertion. We now show that mutations in the intron open reading frame that would alter the translation product simultaneously inhibit nonreciprocal omega recombination and the in vivo double-strand break in omega - DNA. These results provide evidence that the open reading frame encodes a protein required for intron transposition and support the role of the double-strand break in the process.

  14. Forks in the tracks: Group II introns, spliceosomes, telomeres and beyond.

    PubMed

    Agrawal, Rajendra Kumar; Wang, Hong-Wei; Belfort, Marlene

    2016-12-01

    Group II introns are large catalytic RNAs that form a ribonucleoprotein (RNP) complex by binding to an intron-encoded protein (IEP). The IEP, which facilitates both RNA splicing and intron mobility, has multiple activities including reverse transcriptase. Recent structures of a group II intron RNP complex and of IEPs from diverse bacteria fuel arguments that group II introns are ancestrally related to eukaryotic spliceosomes as well as to telomerase and viruses. Furthermore, recent structural studies of various functional states of the spliceosome allow us to draw parallels between the group II intron RNP and the spliceosome. Here we present an overview of these studies, with an emphasis on the structure of the IEPs in their isolated and RNA-bound states and on their evolutionary relatedness. In addition, we address the conundrum of the free, albeit truncated IEPs forming dimers, whereas the IEP bound to the intron ribozyme is a monomer in the mature RNP. Future studies needed to resolve some of the outstanding issues related to group II intron RNP function and dynamics are also discussed.

  15. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE PAGES

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; ...

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  16. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  17. Introns in Cryptococcus.

    PubMed

    Janbon, Guilhem

    2018-01-01

    In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revealed that C. neoformans introns help to prevent transposon dissemination and protect genome integrity. These characteristics of cryptococcal introns are probably not unique to Cryptococcus, and this yeast likely can be considered as a model for intron-related studies in fungi.

  18. Recurrent Loss of Specific Introns during Angiosperm Evolution

    PubMed Central

    Wang, Hao; Devos, Katrien M.; Bennetzen, Jeffrey L.

    2014-01-01

    Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss. PMID:25474210

  19. Intron open reading frames as mobile elements and evolution of a group I intron.

    PubMed

    Sellem, C H; Belcour, L

    1997-05-01

    Group I introns are proposed to have become mobile following the acquisition of open reading frames (ORFs) that encode highly specific DNA endonucleases. This proposal implies that intron ORFs could behave as autonomously mobile entities. This was supported by abundant circumstantial evidence but no experiment of ORF transfer from an ORF-containing intron to its ORF-less counterpart has been described. In this paper we present such experiments, which demonstrate the efficient mobility of the mitochondrial nad1-i4-orf1 between two Podospora strains. The homing of this mobile ORF was accompanied by a bidirectional co-conversion that did not systematically involve the whole intron sequence. Orf1 acquisition would be the most recent step in the evolution of the nad1-i4 intron, which has resulted in many strains of Podospora having an intron with two ORFs (biorfic) and four splicing pathways. We show that two of the splicing events that operate in this biorfic intron, as evidenced by PCR experiments, are generated by a 5'-alternative splice site, which is most probably a remnant of the monoorfic ancestral form of the intron. We propose a sequential evolution model that is consistent with the four organizations of the corresponding nad1 locus that we found among various species of the Pyrenomycete family; these organizations consist of no intron, an intron alone, a monoorfic intron, and a biorfic intron.

  20. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence.

    PubMed

    Akkuratov, Evgeny E; Walters, Lorraine; Saha-Mandal, Arnab; Khandekar, Sushant; Crawford, Erin; Zirbel, Craig L; Leisner, Scott; Prakash, Ashwin; Fedorova, Larisa; Fedorov, Alexei

    2014-09-10

    Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria

    PubMed Central

    Sultan, Laure D.; Grewe, Felix; Rolle, Katarzyna; Abudraham, Sivan; Shevtsov, Sofia; Klipcan, Liron; Barciszewski, Jan; Dietrich, André

    2016-01-01

    Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4. Its conservation across land plants and RNA editing events, which restore conserved amino acids, indicates that matR encodes a functional protein. However, the biological role of MatR remains unclear. Here, we performed an in vivo investigation of the roles of MatR in Brassicaceae. Directed knockdown of matR expression via synthetically designed ribozymes altered the processing of various introns, including nad1 i4. Pull-down experiments further indicated that MatR is associated with nad1 i4 and several other intron-containing pre-mRNAs. MatR may thus represent an intermediate link in the gradual evolutionary transition from the intron-specific maturases in bacteria into their versatile spliceosomal descendants in the nucleus. The similarity between maturases and the core spliceosomal Prp8 protein further supports this intriguing theory. PMID:27760804

  2. Parallel Loss of Plastid Introns and Their Maturase in the Genus Cuscuta

    PubMed Central

    McNeal, Joel R.; Kuehl, Jennifer V.; Boore, Jeffrey L.; Leebens-Mack, Jim; dePamphilis, Claude W.

    2009-01-01

    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta. PMID:19543388

  3. Parallel loss of plastid introns and their maturase in the genus Cuscuta.

    PubMed

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; Leebens-Mack, Jim; dePamphilis, Claude W

    2009-06-19

    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.

  4. Intermediate introns in nuclear genes of euglenids - are they a distinct type?

    PubMed

    Milanowski, Rafał; Gumińska, Natalia; Karnkowska, Anna; Ishikawa, Takao; Zakryś, Bożena

    2016-02-29

    intron type conversion between nonconventional and conventional. Furthermore, an analysis of conventional introns revealed that the ability to form a stable RNA secondary structure by some introns is probably not a result of their relationship with nonconventional introns. It was also shown that acquisition of new nonconventional introns is an ongoing process and can be observed at the level of a single species. In the recently acquired intron in the gapC gene an extended direct repeats at the intron-exon junctions are present, suggesting that double-strand break repair process could be the source of new nonconventional introns.

  5. Group I introns are widespread in archaea.

    PubMed

    Nawrocki, Eric P; Jones, Thomas A; Eddy, Sean R

    2018-05-18

    Group I catalytic introns have been found in bacterial, viral, organellar, and some eukaryotic genomes, but not in archaea. All known archaeal introns are bulge-helix-bulge (BHB) introns, with the exception of a few group II introns. It has been proposed that BHB introns arose from extinct group I intron ancestors, much like eukaryotic spliceosomal introns are thought to have descended from group II introns. However, group I introns have little sequence conservation, making them difficult to detect with standard sequence similarity searches. Taking advantage of recent improvements in a computational homology search method that accounts for both conserved sequence and RNA secondary structure, we have identified 39 group I introns in a wide range of archaeal phyla, including examples of group I introns and BHB introns in the same host gene.

  6. The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria.

    PubMed

    Sultan, Laure D; Mileshina, Daria; Grewe, Felix; Rolle, Katarzyna; Abudraham, Sivan; Głodowicz, Paweł; Niazi, Adnan Khan; Keren, Ido; Shevtsov, Sofia; Klipcan, Liron; Barciszewski, Jan; Mower, Jeffrey P; Dietrich, André; Ostersetzer-Biran, Oren

    2016-11-01

    Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4. Its conservation across land plants and RNA editing events, which restore conserved amino acids, indicates that matR encodes a functional protein. However, the biological role of MatR remains unclear. Here, we performed an in vivo investigation of the roles of MatR in Brassicaceae. Directed knockdown of matR expression via synthetically designed ribozymes altered the processing of various introns, including nad1 i4. Pull-down experiments further indicated that MatR is associated with nad1 i4 and several other intron-containing pre-mRNAs. MatR may thus represent an intermediate link in the gradual evolutionary transition from the intron-specific maturases in bacteria into their versatile spliceosomal descendants in the nucleus. The similarity between maturases and the core spliceosomal Prp8 protein further supports this intriguing theory. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    PubMed

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  8. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome

    PubMed Central

    Cuenca, Argelia; Ross, T. Gregory; Graham, Sean W.; Barrett, Craig F.; Davis, Jerrold I.; Seberg, Ole; Petersen, Gitte

    2016-01-01

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. PMID:27435795

  9. Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding.

    PubMed

    Schuster, Astrid; Lopez, Jose V; Becking, Leontine E; Kelly, Michelle; Pomponi, Shirley A; Wörheide, Gert; Erpenbeck, Dirk; Cárdenas, Paco

    2017-03-20

    Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.

  10. Functional understanding of the diverse exon-intron structures of human GPCR genes.

    PubMed

    Hammond, Dorothy A; Olman, Victor; Xu, Ying

    2014-02-01

    The GPCR genes have a variety of exon-intron structures even though their proteins are all structurally homologous. We have examined all human GPCR genes with at least two functional protein isoforms, totaling 199, aiming to gain an understanding of what may have contributed to the large diversity of the exon-intron structures of the GPCR genes. The 199 genes have a total of 808 known protein splicing isoforms with experimentally verified functions. Our analysis reveals that 1301 (80.6%) adjacent exon-exon pairs out of the total of 1,613 in the 199 genes have either exactly one exon skipped or the intron in-between retained in at least one of the 808 protein splicing isoforms. This observation has a statistical significance p-value of 2.051762 * e(-09), assuming that the observed splicing isoforms are independent of the exon-intron structures. Our interpretation of this observation is that the exon boundaries of the GPCR genes are not randomly determined; instead they may be selected to facilitate specific alternative splicing for functional purposes.

  11. DNA double-strand break in vivo at the 3' extremity of exons located upstream of group II introns. Senescence and circular DNA introns in Podospora mitochondria.

    PubMed

    Sainsard-Chanet, A; Begel, O; Belcour, L

    1994-10-07

    In the filamentous fungus Podospora anserina, the unavoidable phenomenon of senescence is associated with the amplification of the first intron of the mitochondrial cox1 that accumulates as circular DNA molecules consisting of tandem repeats. This group II intron (cox1-i1 or alpha) is able to transpose and contains an open reading frame with significant amino acid similarity with reverse transcriptases. The generation of these intronic circular DNA molecules, their amplification and their involvement in the senescence process are unresolved questions. We demonstrate here that: (1) another group II intron, the fourth intron of gene cox1, cox1-i4, is also able to give precise DNA end to end junctions; (2) this intronic sequence can be found amplified during senescence, although to a lesser extent than cox1-i1; (3) the amplification of the DNA multimeric cox1-i1 molecules likely does not proceed by autonomous replication; (4) the generation of the DNA intronic circles does not require efficient intron splicing; (5) a DNA double-strand break occurs in vivo at the 3' extremity of the cox1-e1 and cox1-e4 exons preceding the group II introns that form circular DNAs. On the whole, these results show that the ability to form DNA circular molecules is a property of some group II introns and they demonstrate the occurrence of a specific DNA cleavage at or near the integration site of these group II introns. The results strongly suggest that this cleavage is involved in the formation of the group II intronic DNA circles and could also be involved in the phenomenon of group II intron homing.

  12. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution.

    PubMed

    Rogozin, Igor B; Wolf, Yuri I; Sorokin, Alexander V; Mirkin, Boris G; Koonin, Eugene V

    2003-09-02

    Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.

  13. Mitochondrial Group II Introns, Cytochrome c Oxidase, and Senescence in Podospora anserina†

    PubMed Central

    Begel, Odile; Boulay, Jocelyne; Albert, Beatrice; Dufour, Eric; Sainsard-Chanet, Annie

    1999-01-01

    Podospora anserina is a filamentous fungus with a limited life span. It expresses a degenerative syndrome called senescence, which is always associated with the accumulation of circular molecules (senDNAs) containing specific regions of the mitochondrial chromosome. A mobile group II intron (α) has been thought to play a prominent role in this syndrome. Intron α is the first intron of the cytochrome c oxidase subunit I gene (COX1). Mitochondrial mutants that escape the senescence process are missing this intron, as well as the first exon of the COX1 gene. We describe here the first mutant of P. anserina that has the α sequence precisely deleted and whose cytochrome c oxidase activity is identical to that of wild-type cells. The integration site of the intron is slightly modified, and this change prevents efficient homing of intron α. We show here that this mutant displays a senescence syndrome similar to that of the wild type and that its life span is increased about twofold. The introduction of a related group II intron into the mitochondrial genome of the mutant does not restore the wild-type life span. These data clearly demonstrate that intron α is not the specific senescence factor but rather an accelerator or amplifier of the senescence process. They emphasize the role that intron α plays in the instability of the mitochondrial chromosome and the link between this instability and longevity. Our results strongly support the idea that in Podospora, “immortality” can be acquired not by the absence of intron α but rather by the lack of active cytochrome c oxidase. PMID:10330149

  14. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.

    PubMed

    Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James

    2008-04-11

    The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of

  15. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  16. Evolution of introns in the archaeal world.

    PubMed

    Tocchini-Valentini, Giuseppe D; Fruscoloni, Paolo; Tocchini-Valentini, Glauco P

    2011-03-22

    The self-splicing group I introns are removed by an autocatalytic mechanism that involves a series of transesterification reactions. They require RNA binding proteins to act as chaperones to correctly fold the RNA into an active intermediate structure in vivo. Pre-tRNA introns in Bacteria and in higher eukaryote plastids are typical examples of self-splicing group I introns. By contrast, two striking features characterize RNA splicing in the archaeal world. First, self-splicing group I introns cannot be found, to this date, in that kingdom. Second, the RNA splicing scenario in Archaea is uniform: All introns, whether in pre-tRNA or elsewhere, are removed by tRNA splicing endonucleases. We suggest that in Archaea, the protein recruited for splicing is the preexisting tRNA splicing endonuclease and that this enzyme, together with the ligase, takes over the task of intron removal in a more efficient fashion than the ribozyme. The extinction of group I introns in Archaea would then be a consequence of recruitment of the tRNA splicing endonuclease. We deal here with comparative genome analysis, focusing specifically on the integration of introns into genes coding for 23S rRNA molecules, and how this newly acquired intron has to be removed to regenerate a functional RNA molecule. We show that all known oligomeric structures of the endonuclease can recognize and cleave a ribosomal intron, even when the endonuclease derives from a strain lacking rRNA introns. The persistence of group I introns in mitochondria and chloroplasts would be explained by the inaccessibility of these introns to the endonuclease.

  17. Hypervariable and highly divergent intron-exon organizations in the chordate Oikopleura dioica.

    PubMed

    Edvardsen, Rolf B; Lerat, Emmanuelle; Maeland, Anne Dorthea; Flåt, Mette; Tewari, Rita; Jensen, Marit F; Lehrach, Hans; Reinhardt, Richard; Seo, Hee-Chan; Chourrout, Daniel

    2004-10-01

    Oikopleura dioica is a pelagic tunicate with a very small genome and a very short life cycle. In order to investigate the intron-exon organizations in Oikopleura, we have isolated and characterized ribosomal protein EF-1alpha, Hox, and alpha-tubulin genes. Their intron positions have been compared with those of the same genes from various invertebrates and vertebrates, including four species with entirely sequenced genomes. Oikopleura genes, like Caenorhabditis genes, have introns at a large number of nonconserved positions, which must originate from late insertions or intron sliding of ancient insertions. Both species exhibit hypervariable intron-exon organization within their alpha-tubulin gene family. This is due to localization of most nonconserved intron positions in single members of this gene family. The hypervariability and divergence of intron positions in Oikopleura and Caenorhabditis may be related to the predominance of short introns, the processing of which is not very dependent upon the exonic environment compared to large introns. Also, both species have an undermethylated genome, and the control of methylation-induced point mutations imposes a control on exon size, at least in vertebrate genes. That introns placed at such variable positions in Oikopleura or C. elegans may serve a specific purpose is not easy to infer from our current knowledge and hypotheses on intron functions. We propose that new introns are retained in species with very short life cycles, because illegitimate exchanges including gene conversion are repressed. We also speculate that introns placed at gene-specific positions may contribute to suppressing these exchanges and thereby favor their own persistence.

  18. Bacterial group II introns: not just splicing.

    PubMed

    Toro, Nicolás; Jiménez-Zurdo, José Ignacio; García-Rodríguez, Fernando Manuel

    2007-04-01

    Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed.

  19. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites.

    PubMed

    Philippi, Susanne; Lorain, Stéphanie; Beley, Cyriaque; Peccate, Cécile; Précigout, Guillaume; Spuler, Simone; Garcia, Luis

    2015-07-15

    The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Imprecise intron losses are less frequent than precise intron losses but are not rare in plants.

    PubMed

    Ma, Ming-Yue; Zhu, Tao; Li, Xue-Nan; Lan, Xin-Ran; Liu, Heng-Yuan; Yang, Yu-Fei; Niu, Deng-Ke

    2015-05-27

    In this study, we identified 19 intron losses, including 11 precise intron losses (PILs), six imprecise intron losses (IILs), one de-exonization, and one exon deletion in tomato and potato, and 17 IILs in Arabidopsis thaliana. Comparative analysis of related genomes confirmed that all of the IILs have been fixed during evolution. Consistent with previous studies, our results indicate that PILs are a major type of intron loss. However, at least in plants, IILs are unlikely to be as rare as previously reported. This article was reviewed by Jun Yu and Zhang Zhang. For complete reviews, see the Reviewers' Reports section.

  1. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome

    PubMed Central

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes. PMID:25482895

  2. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    PubMed

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  3. Splicing-Related Features of Introns Serve to Propel Evolution

    PubMed Central

    Luo, Yuping; Li, Chun; Gong, Xi; Wang, Yanlu; Zhang, Kunshan; Cui, Yaru; Sun, Yi Eve; Li, Siguang

    2013-01-01

    The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron's ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution. PMID:23516505

  4. Extensive intron gain in the ancestor of placental mammals

    PubMed Central

    2011-01-01

    Background Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures. Results A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals. Conclusions This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The

  5. Reenacting the birth of an intron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.

    2011-07-01

    An intron is an extended genomic feature whose function requires multiple constrained positions - donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers - that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half a billion years ago.

  6. Efficiency of introns from various origins in fish cells.

    PubMed

    Bétancourt, O H; Attal, J; Théron, M C; Puissant, C; Houdebine, L M

    1993-06-01

    Several vectors containing (1) regulatory regions from Rous sarcoma virus (RSV), human cytomegalovirus (CMV), and herpes simplex thymidine kinase (TK); (2) introns from early or late SV40 genes and from trout growth hormone gene (tGH); (3) chloramphenicol acetyltransferase gene (CAT); and (4) transcription terminators from SV40 were transfected into carp EPC cells, salmon CHSE cells, tilapia TO2 cells, quail QT6 cells, and hamster CHO cells. CAT activity was measured in extracts from several cell lines 3 days after transfection and in the fish EPC stable clones. The CMV and RSV promoters were the most potent in all cell types. The intron from late SV40 genes (VP1 intron) worked properly in QT6 and CHO cells but not in EPC and very weakly in TO2 cells. The tGH intron was efficient in all cell types but preferentially in fish cells. The small t intron from SV40 was processed in all cell types. The small t and, to a lesser extent, the tGH introns amplified expression of cat gene in stable clones, in comparison to the transiently transfected cells. These results indicate that elements from mammalian genes may not be properly recognized by the fish cellular machinery and in an unpredictable manner. This finding suggests that vectors prepared to express foreign genes in transfected cultured fish cells and transgenic fish should preferably contain DNA sequences from fish genes or, alternatively, those sequences from mammalian genes that have been previously proved to be compatible with the fish cellular machinery.

  7. Crystal structure of group II intron domain 1 reveals a template for RNA assembly

    DOE PAGES

    Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; ...

    2015-10-26

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. In this paper, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed andmore » the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. Finally, the open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures.« less

  8. Intron-loss evolution of hatching enzyme genes in Teleostei

    PubMed Central

    2010-01-01

    Background Hatching enzyme, belonging to the astacin metallo-protease family, digests egg envelope at embryo hatching. Orthologous genes of the enzyme are found in all vertebrate genomes. Recently, we found that exon-intron structures of the genes were conserved among tetrapods, while the genes of teleosts frequently lost their introns. Occurrence of such intron losses in teleostean hatching enzyme genes is an uncommon evolutionary event, as most eukaryotic genes are generally known to be interrupted by introns and the intron insertion sites are conserved from species to species. Here, we report on extensive studies of the exon-intron structures of teleostean hatching enzyme genes for insight into how and why introns were lost during evolution. Results We investigated the evolutionary pathway of intron-losses in hatching enzyme genes of 27 species of Teleostei. Hatching enzyme genes of basal teleosts are of only one type, which conserves the 9-exon-8-intron structure of an assumed ancestor. On the other hand, otocephalans and euteleosts possess two types of hatching enzyme genes, suggesting a gene duplication event in the common ancestor of otocephalans and euteleosts. The duplicated genes were classified into two clades, clades I and II, based on phylogenetic analysis. In otocephalans and euteleosts, clade I genes developed a phylogeny-specific structure, such as an 8-exon-7-intron, 5-exon-4-intron, 4-exon-3-intron or intron-less structure. In contrast to the clade I genes, the structures of clade II genes were relatively stable in their configuration, and were similar to that of the ancestral genes. Expression analyses revealed that hatching enzyme genes were high-expression genes, when compared to that of housekeeping genes. When expression levels were compared between clade I and II genes, clade I genes tends to be expressed more highly than clade II genes. Conclusions Hatching enzyme genes evolved to lose their introns, and the intron-loss events occurred at

  9. Intron Definition Is Required for Excision of the Minute Virus of Mice Small Intron and Definition of the Upstream Exon

    PubMed Central

    Haut, Donald D.; Pintel, D. J.

    1998-01-01

    Alternative splicing of pre-mRNAs plays a critical role in maximizing the coding capacity of the small parvovirus genome. The small-intron region of minute virus of mice (MVM) pre-mRNAs undergoes an unusual pattern of overlapping alternative splicing—using two donors (D1 and D2) and two acceptors (A1 and A2) within a region of 120 nucleotides—that determines the steady-state ratios of the various viral mRNAs. In this report, we show that the determinants that govern excision of the small intron are complex and are also required for efficient definition of the upstream exon. For the MVM small intron in its natural context, the two donors appear to compete for the splicing machinery: the position of D1 favors its usage, while the primary sequence of D2 must be more like the consensus sequence than is D1 to be used efficiently. We have genetically defined the branch points that are used for generation of the major and minor spliced forms and show that recognition of components of the small-intron acceptors is likely to be the dominant determinant in alternative small-intron excision. We have also identified a G-rich intronic enhancer sequence within the small intron that is essential for splicing of the minor form (D2 to A2) but not the major form (D1 to A1) of MVM mRNAs and is required for efficient definition of the upstream NS2-specific exon. In its natural context, the small intron appears to be excised by a mechanism consistent with intron definition. When the MVM small intron is expanded, various parameters of its excision are altered, indicating that critical cis-acting signals are context dependent. Relative use of the donors and acceptors is altered, and the upstream NS2-specific exon is no longer efficiently defined. The fact that definition of the upstream NS2-specific exon can be achieved by the MVM small intron in its natural context, but not when it is expanded, suggests that the multiple determinants that govern definition and excision of the small

  10. Patterns and rates of intron divergence between humans and chimpanzees

    PubMed Central

    Gazave, Elodie; Marqués-Bonet, Tomàs; Fernando, Olga; Charlesworth, Brian; Navarro, Arcadi

    2007-01-01

    Background Introns, which constitute the largest fraction of eukaryotic genes and which had been considered to be neutral sequences, are increasingly acknowledged as having important functions. Several studies have investigated levels of evolutionary constraint along introns and across classes of introns of different length and location within genes. However, thus far these studies have yielded contradictory results. Results We present the first analysis of human-chimpanzee intron divergence, in which differences in the number of substitutions per intronic site (Ki) can be interpreted as the footprint of different intensities and directions of the pressures of natural selection. Our main findings are as follows: there was a strong positive correlation between intron length and divergence; there was a strong negative correlation between intron length and GC content; and divergence rates vary along introns and depending on their ordinal position within genes (for instance, first introns are more GC rich, longer and more divergent, and divergence is lower at the 3' and 5' ends of all types of introns). Conclusion We show that the higher divergence of first introns is related to their larger size. Also, the lower divergence of short introns suggests that they may harbor a relatively greater proportion of regulatory elements than long introns. Moreover, our results are consistent with the presence of functionally relevant sequences near the 5' and 3' ends of introns. Finally, our findings suggest that other parts of introns may also be under selective constraints. PMID:17309804

  11. Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains.

    PubMed

    Keren, Ido; Klipcan, Liron; Bezawork-Geleta, Ayenachew; Kolton, Max; Shaya, Felix; Ostersetzer-Biran, Oren

    2008-08-22

    CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted "catalytically active" form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.

  12. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins.

    PubMed

    Kramer, Marianne C; Liang, Dongming; Tatomer, Deirdre C; Gold, Beth; March, Zachary M; Cherry, Sara; Wilusz, Jeremy E

    2015-10-15

    Thousands of eukaryotic protein-coding genes are noncanonically spliced to produce circular RNAs. Bioinformatics has indicated that long introns generally flank exons that circularize in Drosophila, but the underlying mechanisms by which these circular RNAs are generated are largely unknown. Here, using extensive mutagenesis of expression plasmids and RNAi screening, we reveal that circularization of the Drosophila laccase2 gene is regulated by both intronic repeats and trans-acting splicing factors. Analogous to what has been observed in humans and mice, base-pairing between highly complementary transposable elements facilitates backsplicing. Long flanking repeats (∼ 400 nucleotides [nt]) promote circularization cotranscriptionally, whereas pre-mRNAs containing minimal repeats (<40 nt) generate circular RNAs predominately after 3' end processing. Unlike the previously characterized Muscleblind (Mbl) circular RNA, which requires the Mbl protein for its biogenesis, we found that Laccase2 circular RNA levels are not controlled by Mbl or the Laccase2 gene product but rather by multiple hnRNP (heterogeneous nuclear ribonucleoprotein) and SR (serine-arginine) proteins acting in a combinatorial manner. hnRNP and SR proteins also regulate the expression of other Drosophila circular RNAs, including Plexin A (PlexA), suggesting a common strategy for regulating backsplicing. Furthermore, the laccase2 flanking introns support efficient circularization of diverse exons in Drosophila and human cells, providing a new tool for exploring the functional consequences of circular RNA expression across eukaryotes. © 2015 Kramer et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins

    PubMed Central

    Kramer, Marianne C.; Liang, Dongming; Tatomer, Deirdre C.; Gold, Beth; March, Zachary M.; Cherry, Sara; Wilusz, Jeremy E.

    2015-01-01

    Thousands of eukaryotic protein-coding genes are noncanonically spliced to produce circular RNAs. Bioinformatics has indicated that long introns generally flank exons that circularize in Drosophila, but the underlying mechanisms by which these circular RNAs are generated are largely unknown. Here, using extensive mutagenesis of expression plasmids and RNAi screening, we reveal that circularization of the Drosophila laccase2 gene is regulated by both intronic repeats and trans-acting splicing factors. Analogous to what has been observed in humans and mice, base-pairing between highly complementary transposable elements facilitates backsplicing. Long flanking repeats (∼400 nucleotides [nt]) promote circularization cotranscriptionally, whereas pre-mRNAs containing minimal repeats (<40 nt) generate circular RNAs predominately after 3′ end processing. Unlike the previously characterized Muscleblind (Mbl) circular RNA, which requires the Mbl protein for its biogenesis, we found that Laccase2 circular RNA levels are not controlled by Mbl or the Laccase2 gene product but rather by multiple hnRNP (heterogeneous nuclear ribonucleoprotein) and SR (serine–arginine) proteins acting in a combinatorial manner. hnRNP and SR proteins also regulate the expression of other Drosophila circular RNAs, including Plexin A (PlexA), suggesting a common strategy for regulating backsplicing. Furthermore, the laccase2 flanking introns support efficient circularization of diverse exons in Drosophila and human cells, providing a new tool for exploring the functional consequences of circular RNA expression across eukaryotes. PMID:26450910

  14. Intron retention in viruses and cellular genes: Detention, border controls and passports.

    PubMed

    Rekosh, David; Hammarskjold, Marie-Louise

    2018-05-01

    Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.

  15. Human intron-encoded Alu RNAs are processed and packaged into Wdr79-associated nucleoplasmic box H/ACA RNPs

    PubMed Central

    Jády, Beáta E.; Ketele, Amandine; Kiss, Tamás

    2012-01-01

    Alu repetitive sequences are the most abundant short interspersed DNA elements in the human genome. Full-length Alu elements are composed of two tandem sequence monomers, the left and right Alu arms, both derived from the 7SL signal recognition particle RNA. Since Alu elements are common in protein-coding genes, they are frequently transcribed into pre-mRNAs. Here, we demonstrate that the right arms of nascent Alu transcripts synthesized within pre-mRNA introns are processed into metabolically stable small RNAs. The intron-encoded Alu RNAs, termed AluACA RNAs, are structurally highly reminiscent of box H/ACA small Cajal body (CB) RNAs (scaRNAs). They are composed of two hairpin units followed by the essential H (AnAnnA) and ACA box motifs. The mature AluACA RNAs associate with the four H/ACA core proteins: dyskerin, Nop10, Nhp2, and Gar1. Moreover, the 3′ hairpin of AluACA RNAs carries two closely spaced CB localization motifs, CAB boxes (UGAG), which bind Wdr79 in a cumulative fashion. In contrast to canonical H/ACA scaRNPs, which concentrate in CBs, the AluACA RNPs accumulate in the nucleoplasm. Identification of 348 human AluACA RNAs demonstrates that intron-encoded AluACA RNAs represent a novel, large subgroup of H/ACA RNAs, which are apparently confined to human or primate cells. PMID:22892240

  16. Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns

    PubMed Central

    Mohr, Georg; Ghanem, Eman; Lambowitz, Alan M.

    2010-01-01

    Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. PMID:20543989

  17. Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

    PubMed Central

    Kaer, Kristel; Branovets, Jelena; Hallikma, Anni; Nigumann, Pilvi; Speek, Mart

    2011-01-01

    Background Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. Methodology/Principal Findings Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3′ ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. Conclusions/Significance Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression. PMID:22022525

  18. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.

    PubMed

    Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit

    2017-08-17

    Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D; García-Rodríguez, Fernando M; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti , the nitrogen-fixing endosymbiont of legumes of genus Medicago , harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.

  20. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution

    PubMed Central

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D.; García-Rodríguez, Fernando M.; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation. PMID:29670598

  1. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro . The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  2. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  3. Choosing and Using Introns in Molecular Phylogenetics

    PubMed Central

    Creer, Simon

    2007-01-01

    Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics. PMID:19461984

  4. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  5. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    PubMed

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  6. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing.

    PubMed

    Mohr, Sabine; Ghanem, Eman; Smith, Whitney; Sheeter, Dennis; Qin, Yidan; King, Olga; Polioudakis, Damon; Iyer, Vishwanath R; Hunicke-Smith, Scott; Swamy, Sajani; Kuersten, Scott; Lambowitz, Alan M

    2013-07-01

    Mobile group II introns encode reverse transcriptases (RTs) that function in intron mobility ("retrohoming") by a process that requires reverse transcription of a highly structured, 2-2.5-kb intron RNA with high processivity and fidelity. Although the latter properties are potentially useful for applications in cDNA synthesis and next-generation RNA sequencing (RNA-seq), group II intron RTs have been difficult to purify free of the intron RNA, and their utility as research tools has not been investigated systematically. Here, we developed general methods for the high-level expression and purification of group II intron-encoded RTs as fusion proteins with a rigidly linked, noncleavable solubility tag, and we applied them to group II intron RTs from bacterial thermophiles. We thus obtained thermostable group II intron RT fusion proteins that have higher processivity, fidelity, and thermostability than retroviral RTs, synthesize cDNAs at temperatures up to 81°C, and have significant advantages for qRT-PCR, capillary electrophoresis for RNA-structure mapping, and next-generation RNA sequencing. Further, we find that group II intron RTs differ from the retroviral enzymes in template switching with minimal base-pairing to the 3' ends of new RNA templates, making it possible to efficiently and seamlessly link adaptors containing PCR-primer binding sites to cDNA ends without an RNA ligase step. This novel template-switching activity enables facile and less biased cloning of nonpolyadenylated RNAs, such as miRNAs or protein-bound RNA fragments. Our findings demonstrate novel biochemical activities and inherent advantages of group II intron RTs for research, biotechnological, and diagnostic methods, with potentially wide applications.

  7. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

    PubMed Central

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang

    2015-01-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5′ intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5′ intron finds the 3′ introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5′ intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing. PMID:25838544

  8. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  9. Familiarity facilitates feature-based face processing.

    PubMed

    Visconti di Oleggio Castello, Matteo; Wheeler, Kelsey G; Cipolli, Carlo; Gobbini, M Ida

    2017-01-01

    Recognition of personally familiar faces is remarkably efficient, effortless and robust. We asked if feature-based face processing facilitates detection of familiar faces by testing the effect of face inversion on a visual search task for familiar and unfamiliar faces. Because face inversion disrupts configural and holistic face processing, we hypothesized that inversion would diminish the familiarity advantage to the extent that it is mediated by such processing. Subjects detected personally familiar and stranger target faces in arrays of two, four, or six face images. Subjects showed significant facilitation of personally familiar face detection for both upright and inverted faces. The effect of familiarity on target absent trials, which involved only rejection of unfamiliar face distractors, suggests that familiarity facilitates rejection of unfamiliar distractors as well as detection of familiar targets. The preserved familiarity effect for inverted faces suggests that facilitation of face detection afforded by familiarity reflects mostly feature-based processes.

  10. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA

    PubMed Central

    Howe, Kenneth James; Ares, Manuel

    1997-01-01

    Skipping of internal exons during removal of introns from pre-mRNA must be avoided for proper expression of most eukaryotic genes. Despite significant understanding of the mechanics of intron removal, mechanisms that ensure inclusion of internal exons in multi-intron pre-mRNAs remain mysterious. Using a natural two-intron yeast gene, we have identified distinct RNA–RNA complementarities within each intron that prevent exon skipping and ensure inclusion of internal exons. We show that these complementarities are positioned to act as intron identity elements, bringing together only the appropriate 5′ splice sites and branchpoints. Destroying either intron self-complementarity allows exon skipping to occur, and restoring the complementarity using compensatory mutations rescues exon inclusion, indicating that the elements act through formation of RNA secondary structure. Introducing new pairing potential between regions near the 5′ splice site of intron 1 and the branchpoint of intron 2 dramatically enhances exon skipping. Similar elements identified in single intron yeast genes contribute to splicing efficiency. Our results illustrate how intron secondary structure serves to coordinate splice site pairing and enforce exon inclusion. We suggest that similar elements in vertebrate genes could assist in the splicing of very large introns and in the evolution of alternative splicing. PMID:9356473

  11. Mechanism for DNA transposons to generate introns on genomic scales

    PubMed Central

    Huff, Jason T.; Zilberman, Daniel; Roy, Scott W.

    2017-01-01

    Discovered four decades ago, the existence of introns was one of the most unexpected findings in molecular biology1. Introns are sequences interrupting genes that must be removed as part of mRNA production. Genome sequencing projects have documented that most eukaryotic genes contain at least one and frequently many introns2,3. Comparison of these genomes reveals a history of long evolutionary periods with little intron gain punctuated by episodes of rapid, extensive gain2,3. However, no detailed mechanism for such episodic intron generation has been empirically supported on a sufficient scale, despite several proposals4–8. Here we show how short non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from gene sequence duplicated upon transposon insertion, allowing perfect splicing out of RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between preexisting nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases2 and prevalence of nucleosome-sized exons9 observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism plausibly accounting for episodes of rapid, extensive intron gain during eukaryotic evolution2,3. PMID:27760113

  12. Evolution of Mhc-DRB introns: implications for the origin of primates.

    PubMed

    Kupfermann, H; Satta, Y; Takahata, N; Tichy, H; Klein, J

    1999-06-01

    Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders-Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera.

  13. Branchpoint selection in the splicing of U12-dependent introns in vitro.

    PubMed

    McConnell, Timothy S; Cho, Soo-Jin; Frilander, Mikko J; Steitz, Joan A

    2002-05-01

    In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome.

  14. Branchpoint selection in the splicing of U12-dependent introns in vitro.

    PubMed Central

    McConnell, Timothy S; Cho, Soo-Jin; Frilander, Mikko J; Steitz, Joan A

    2002-01-01

    In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome. PMID:12022225

  15. Exon–intron organization of genes in the slime mold Physarum polycephalum

    PubMed Central

    Trzcinska-Danielewicz, Joanna; Fronk, Jan

    2000-01-01

    The slime mold Physarum polycephalum is a morphologically simple organism with a large and complex genome. The exon–intron organization of its genes exhibits features typical for protists and fungi as well as those characteristic for the evolutionarily more advanced species. This indicates that both the taxonomic position as well as the size of the genome shape the exon–intron organization of an organism. The average gene has 3.7 introns which are on average 138 bp, with a rather narrow size distribution. Introns are enriched in AT base pairs by 13% relative to exons. The consensus sequences at exon–intron boundaries resemble those found for other species, with minor differences between short and long introns. A unique feature of P.polycephalum introns is the strong preference for pyrimidines in the coding strand throughout their length, without a particular enrichment at the 3′-ends. PMID:10982858

  16. Structural and Functional Characterization of Ribosomal Protein Gene Introns in Sponges

    PubMed Central

    Perina, Drago; Korolija, Marina; Mikoč, Andreja; Roller, Maša; Pleše, Bruna; Imešek, Mirna; Morrow, Christine; Batel, Renato; Ćetković, Helena

    2012-01-01

    Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with “higher” metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales. PMID:22880015

  17. Structural and functional characterization of ribosomal protein gene introns in sponges.

    PubMed

    Perina, Drago; Korolija, Marina; Mikoč, Andreja; Roller, Maša; Pleše, Bruna; Imešek, Mirna; Morrow, Christine; Batel, Renato; Ćetković, Helena

    2012-01-01

    Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with "higher" metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales.

  18. Remarkable sequence conservation of the last intron in the PKD1 gene.

    PubMed

    Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P

    2003-10-01

    The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.

  19. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.

  20. [Detection of factor VIII intron 1 inversion in severe haemophilia A].

    PubMed

    Liang, Yan; Yan, Zhen-yu; Yan, Mei; Hua, Bao-lai; Xiao, Bai; Zhao, Yong-qiang; Liu, Jing-zhong

    2009-06-01

    Screening the intron 1 inversion of factor VIII (FVIII) in the population of severe haemophilia A(HA) in China and performing carrier detection and prenatal diagnosis. Using LD-PCR to detect intron 22 inversions and multiple-PCR within two tubes to intron 1 inversions in severe HA patients. Carrier detection and prenatal diagnosis were performed in affected families. Linkage analysis and DNA sequencing were used to verify these tests. One hundred and eighteen patients were seven diagnosed as intron 22 inversions and 7 were intron 1 inversions out of 247 severe HA patients. The prevalence of the intron 1 inversion in Chinese severe haemophilia A patients was 2.8% (7/247). Six women from family A and 2 from family B were diagnosed as carriers. One fetus from family A was affected fetus. Intron 1 inversion could be detected directly by multiple-PCR within two tubes. This method made the strategy more perfective in carrier and prenatal diagnosis of haemophilia A.

  1. Limited MHC class I intron 2 repertoire variation in bonobos.

    PubMed

    de Groot, Natasja G; Heijmans, Corrine M C; Helsen, Philippe; Otting, Nel; Pereboom, Zjef; Stevens, Jeroen M G; Bontrop, Ronald E

    2017-10-01

    Common chimpanzees (Pan troglodytes) experienced a selective sweep, probably caused by a SIV-like virus, which targeted their MHC class I repertoire. Based on MHC class I intron 2 data analyses, this selective sweep took place about 2-3 million years ago. As a consequence, common chimpanzees have a skewed MHC class I repertoire that is enriched for allotypes that are able to recognise conserved regions of the SIV proteome. The bonobo (Pan paniscus) shared an ancestor with common chimpanzees approximately 1.5 to 2 million years ago. To investigate whether the signature of this selective sweep is also detectable in bonobos, the MHC class I gene repertoire of two bonobo panels comprising in total 29 animals was investigated by Sanger sequencing. We identified 14 Papa-A, 20 Papa-B and 11 Papa-C alleles, of which eight, five and eight alleles, respectively, have not been reported previously. Within this pool of MHC class I variation, we recovered only 2 Papa-A, 3 Papa-B and 6 Papa-C intron 2 sequences. As compared to humans, bonobos appear to have an even more diminished MHC class I intron 2 lineage repertoire than common chimpanzees. This supports the notion that the selective sweep may have predated the speciation of common chimpanzees and bonobos. The further reduction of the MHC class I intron 2 lineage repertoire observed in bonobos as compared to the common chimpanzee may be explained by a founding effect or other subsequent selective processes.

  2. Exon definition as a potential negative force against intron losses in evolution.

    PubMed

    Niu, Deng-Ke

    2008-11-13

    Previous studies have indicated that the wide variation in intron density (the number of introns per gene) among different eukaryotes largely reflects varying degrees of intron loss during evolution. The most popular model, which suggests that organisms lose introns through a mechanism in which reverse-transcribed cDNA recombines with the genomic DNA, concerns only one mutational force. Using exons as the units of splicing-site recognition, exon definition constrains the length of exons. An intron-loss event results in fusion of flanking exons and thus a larger exon. The large size of the newborn exon may cause splicing errors, i.e., exon skipping, if the splicing of pre-mRNAs is initiated by exon definition. By contrast, if the splicing of pre-mRNAs is initiated by intron definition, intron loss does not matter. Exon definition may thus be a selective force against intron loss. An organism with a high frequency of exon definition is expected to experience a low rate of intron loss throughout evolution and have a high density of spliceosomal introns. The majority of spliceosomal introns in vertebrates may be maintained during evolution not because of potential functions, but because of their splicing mechanism (i.e., exon definition). Further research is required to determine whether exon definition is a negative force in maintaining the high intron density of vertebrates. This article was reviewed by Dr. Scott W. Roy (nominated by Dr. John Logsdon), Dr.Eugene V. Koonin, and Dr. Igor B. Rogozin (nominated by Dr. Mikhail Gelfand). For the full reviews,please go to the Reviewers' comments section.

  3. Structure of a group II intron in complex with its reverse transcriptase.

    PubMed

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-06-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.

  4. De novo insertion of an intron into the mammalian sex determining gene, SRY

    PubMed Central

    O’Neill, Rachel J. Waugh; Brennan, Francine E.; Delbridge, Margaret L.; Crozier, Ross H.; Graves, Jennifer A. Marshall

    1998-01-01

    Two theories have been proposed to explain the evolution of introns within eukaryotic genes. The introns early theory, or “exon theory of genes,” proposes that introns are ancient and that recombination within introns provided new exon structure, and thus new genes. The introns late theory, or “insertional theory of introns,” proposes that ancient genes existed as uninterrupted exons and that introns have been introduced during the course of evolution. There is still controversy as to how intron–exon structure evolved and whether the majority of introns are ancient or novel. Although there is extensive evidence in support of the introns early theory, phylogenetic comparisons of several genes indicate recent gain and loss of introns within these genes. However, no example has been shown of a protein coding gene, intronless in its ancestral form, which has acquired an intron in a derived form. The mammalian sex determining gene, SRY, is intronless in all mammals studied to date, as is the gene from which it recently evolved. However, we report here comparisons of genomic and cDNA sequences that now provide evidence of a de novo insertion of an intron into the SRY gene of dasyurid marsupials. This recently (approximately 45 million years ago) inserted sequence is not homologous with known transposable elements. Our data demonstrate that introns may be inserted as spliced units within a developmentally crucial gene without disrupting its function. PMID:9465071

  5. Homing endonucleases from mobile group I introns: discovery to genome engineering

    PubMed Central

    2014-01-01

    Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity. PMID:24589358

  6. Evaluation of the mechanisms of intron loss and gain in the social amoebae Dictyostelium.

    PubMed

    Ma, Ming-Yue; Che, Xun-Ru; Porceddu, Andrea; Niu, Deng-Ke

    2015-12-18

    Spliceosomal introns are a common feature of eukaryotic genomes. To approach a comprehensive understanding of intron evolution on Earth, studies should look beyond repeatedly studied groups such as animals, plants, and fungi. The slime mold Dictyostelium belongs to a supergroup of eukaryotes not covered in previous studies. We found 441 precise intron losses in Dictyostelium discoideum and 202 precise intron losses in Dictyostelium purpureum. Consistent with these observations, Dictyostelium discoideum was found to have significantly more copies of reverse transcriptase genes than Dictyostelium purpureum. We also found that the lost introns are significantly further from the 5' end of genes than the conserved introns. Adjacent introns were prone to be lost simultaneously in Dictyostelium discoideum. In both Dictyostelium species, the exonic sequences flanking lost introns were found to have a significantly higher GC content than those flanking conserved introns. Together, these observations support a reverse-transcription model of intron loss in which intron losses were caused by gene conversion between genomic DNA and cDNA reverse transcribed from mature mRNA. We also identified two imprecise intron losses in Dictyostelium discoideum that may have resulted from genomic deletions. Ninety-eight putative intron gains were also observed. Consistent with previous studies of other lineages, the source sequences were found in only a small number of cases, with only two instances of intron gain identified in Dictyostelium discoideum. Although they diverged very early from animals and fungi, Dictyostelium species have similar mechanisms of intron loss.

  7. Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators

    PubMed Central

    Oliveira, Patrícia; Sanges, Remo; Huntsman, David; Stupka, Elia; Oliveira, Carla

    2012-01-01

    Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer. PMID:22317972

  8. Emotion processing facilitates working memory performance.

    PubMed

    Lindström, Björn R; Bohlin, Gunilla

    2011-11-01

    The effect of emotional stimulus content on working memory performance has been investigated with conflicting results, as both emotion-dependent facilitation and impairments are reported in the literature. To clarify this issue, 52 adult participants performed a modified visual 2-back task with highly arousing positive stimuli (sexual scenes), highly arousing negative stimuli (violent death) and low-arousal neutral stimuli. Emotional stimulus processing was found to facilitate task performance relative to that of neutral stimuli, both in regards to response accuracy and reaction times. No emotion-dependent differences in false-alarm rates were found. These results indicate that emotional information can have a facilitating effect on working memory maintenance and processing of information.

  9. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer.

    PubMed

    Nisa-Martínez, Rafael; Jiménez-Zurdo, José I; Martínez-Abarca, Francisco; Muñoz-Adelantado, Estefanía; Toro, Nicolás

    2007-01-01

    RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase-maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless homing sites (ISRm2011-2) by a mechanism known as retrohoming. This work describes how the RmInt1 intron spreads in the S.meliloti genome upon acquisition by conjugation. This process was revealed by using the wild-type intron RmInt1 and engineered intron-donor constructs based on ribozyme coding sequence (DeltaORF)-derivatives with higher homing efficiency than the wild-type intron. The data demonstrate that RmInt1 propagates into the S.meliloti genome primarily by retrohoming with a strand bias related to replication of the chromosome and symbiotic megaplasmids. Moreover, we show that when expressed in trans from a separate plasmid, the IEP is able to mobilize genomic DeltaORF ribozymes that afterward displayed wild-type levels of retrohoming. Our results contribute to get further understanding of how group II introns spread into bacterial genomes in nature.

  10. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer

    PubMed Central

    Nisa-Martínez, Rafael; Jiménez-Zurdo, José I.; Martínez-Abarca, Francisco; Muñoz-Adelantado, Estefanía; Toro, Nicolás

    2007-01-01

    RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase–maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless homing sites (ISRm2011-2) by a mechanism known as retrohoming. This work describes how the RmInt1 intron spreads in the S.meliloti genome upon acquisition by conjugation. This process was revealed by using the wild-type intron RmInt1 and engineered intron-donor constructs based on ribozyme coding sequence (ΔORF)-derivatives with higher homing efficiency than the wild-type intron. The data demonstrate that RmInt1 propagates into the S.meliloti genome primarily by retrohoming with a strand bias related to replication of the chromosome and symbiotic megaplasmids. Moreover, we show that when expressed in trans from a separate plasmid, the IEP is able to mobilize genomic ΔORF ribozymes that afterward displayed wild-type levels of retrohoming. Our results contribute to get further understanding of how group II introns spread into bacterial genomes in nature. PMID:17158161

  11. The splicing of tiny introns of Paramecium is controlled by MAGO.

    PubMed

    Contreras, Julia; Begley, Victoria; Marsella, Laura; Villalobo, Eduardo

    2018-07-15

    The exon junction complex (EJC) is a key element of the splicing machinery. The EJC core is composed of eIF4A3, MAGO, Y14 and MLN51. Few accessory proteins, such as CWC22 or UPF3, bind transiently to the EJC. The EJC has been implicated in the control of the splicing of long introns. To ascertain whether the EJC controls the splicing of short introns, we used Paramecium tetraurelia as a model organism, since it has thousands of very tiny introns. To elucidate whether EJC affects intron splicing in P. tetraurelia, we searched for EJC protein-coding genes, and silenced those genes coding for eIF4A3, MAGO and CWC22. We found that P. tetraurelia likely assembles an active EJC with only three of the core proteins, since MLN51 is lacking. Silencing of eIF4A3 or CWC22 genes, but not that of MAGO, caused lethality. Silencing of the MAGO gene caused either an increase, decrease, or no change in intron retention levels of some intron-containing mRNAs used as reporters. We suggest that a fine-tuning expression of EJC genes is required for steady intron removal in P. tetraurelia. Taking into consideration our results and those published by others, we conclude that the EJC controls splicing independently of the intron size. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    PubMed Central

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  13. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting.

    PubMed

    Qu, Guosheng; Piazza, Carol Lyn; Smith, Dorie; Belfort, Marlene

    2018-06-15

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis , inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. © 2018, Qu et al.

  14. Post-transcriptional regulation mediated by specific neurofilament introns in vivo.

    PubMed

    Wang, Chen; Szaro, Ben G

    2016-04-01

    Neurons regulate genes post-transcriptionally to coordinate the supply of cytoskeletal proteins, such as the medium neurofilament (NEFM), with demand for structural materials in response to extracellular cues encountered by developing axons. By using a method for evaluating functionality of cis-regulatory gene elements in vivo through plasmid injection into Xenopus embryos, we discovered that splicing of a specific nefm intron was required for robust transgene expression, regardless of promoter or cell type. Transgenes utilizing the nefm 3'-UTR but substituting other nefm introns expressed little or no protein owing to defects in handling of the messenger (m)RNA as opposed to transcription or splicing. Post-transcriptional events at multiple steps, but mainly during nucleocytoplasmic export, contributed to these varied levels of protein expression. An intron of the β-globin gene was also able to promote expression in a manner identical to that of the nefm intron, implying a more general preference for certain introns in controlling nefm expression. These results expand our knowledge of intron-mediated gene expression to encompass neurofilaments, indicating an additional layer of complexity in the control of a cytoskeletal gene needed for developing and maintaining healthy axons. © 2016. Published by The Company of Biologists Ltd.

  15. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1998-10-05

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate

  16. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  17. Pea chloroplast tRNA(Lys) (UUU) gene: transcription and analysis of an intron-containing gene.

    PubMed

    Boyer, S K; Mullet, J E

    1988-07-01

    The pea chloroplast trnK gene which encodes tRNA(Lys) (UUU) was sequenced. TrnK is located 210 bp upstream from the promoter of psbA and immediately downstream from the 3'-end of rbcL. The gene is transcribed from the same DNA strand as psbA and rbcL. A 2447 bp intron with class II features is located in the trnK anticodon loop. The intron contains a 506 amino acid open reading frame which could encode an RNA maturase. The primary transcript of trnK is 2.9 kb long; its 5'-end was identified as a site of transcription initiation by in vitro transcription experiments. The 5'-terminus is adjacent to DNA sequences previously identified as transcription promoter elements. The most abundant trnK transcript is 2.5 kb long with termini corresponding to the 5' and 3' ends of the trnK exons. Intron specific RNAs were not detected. This suggests that RNA processing which produces tRNA(Lys) leads to rapid degradation of intron sequences.

  18. Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia).

    PubMed

    Celis, Juan Sebastián; Edgell, David R; Stelbrink, Björn; Wibberg, Daniel; Hauffe, Torsten; Blom, Jochen; Kalinowski, Jörn; Wilke, Thomas

    2017-01-01

    Group I introns and homing endonuclease genes (HEGs) are mobile genetic elements, capable of invading target sequences in intron-less genomes. LAGLIDADG HEGs are the largest family of endonucleases, playing a key role in the mobility of group I introns in a process known as 'homing'. Group I introns and HEGs are rare in metazoans, and can be mainly found inserted in the COXI gene of some sponges and cnidarians, including stony corals (Scleractinia) and mushroom corals (Corallimorpharia). Vertical and horizontal intron transfer mechanisms have been proposed as explanations for intron occurrence in cnidarians. However, the central role of LAGLIDADG motifs in intron mobility mechanisms remains poorly understood. To resolve questions regarding the evolutionary origin and distribution of group I introns and HEGs in Scleractinia and Corallimorpharia, we examined intron/HEGs sequences within a comprehensive phylogenetic framework. Analyses of LAGLIDADG motif conservation showed a high degree of degradation in complex Scleractinia and Corallimorpharia. Moreover, the two motifs lack the respective acidic residues necessary for metal-ion binding and catalysis, potentially impairing horizontal intron mobility. In contrast, both motifs are highly conserved within robust Scleractinia, indicating a fully functional endonuclease capable of promoting horizontal intron transference. A higher rate of non-synonymous substitutions (Ka) detected in the HEGs of complex Scleractinia and Corallimorpharia suggests degradation of the HEG, whereas lower Ka rates in robust Scleractinia are consistent with a scenario of purifying selection. Molecular-clock analyses and ancestral inference of intron type indicated an earlier intron insertion in complex Scleractinia and Corallimorpharia in comparison to robust Scleractinia. These findings suggest that the lack of horizontal intron transfers in the former two groups is related to an age-dependent degradation of the endonuclease activity. Moreover

  19. Analysis of Claviceps africana and C. sorghi from India using AFLPs, EF-1alpha gene intron 4, and beta-tubulin gene intron 3.

    PubMed

    Tooley, Paul W; Bandyopadhyay, Ranajit; Carras, Marie M; Pazoutová, Sylvie

    2006-04-01

    Isolates of Claviceps causing ergot on sorghum in India were analysed by AFLP analysis, and by analysis of DNA sequences of the EF-1alpha gene intron 4 and beta-tubulin gene intron 3 region. Of 89 isolates assayed from six states in India, four were determined to be C. sorghi, and the rest C. africana. A relatively low level of genetic diversity was observed within the Indian C. africana population. No evidence of genetic exchange between C. africana and C. sorghi was observed in either AFLP or DNA sequence analysis. Phylogenetic analysis was conducted using DNA sequences from 14 different Claviceps species. A multigene phylogeny based on the EF-1alpha gene intron 4, the beta-tubulin gene intron 3 region, and rDNA showed that C. sorghi grouped most closely with C. gigantea and C. africana. Although the Claviceps species we analysed were closely related, they colonize hosts that are taxonomically very distinct suggesting that there is no direct coevolution of Claviceps with its hosts.

  20. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking amore » long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In

  1. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination

    PubMed Central

    Deveson, Ira W.; Holleley, Clare E.; Blackburn, James; Marshall Graves, Jennifer A.; Mattick, John S.; Waters, Paul D.; Georges, Arthur

    2017-01-01

    In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3, in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD. PMID:28630932

  2. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination.

    PubMed

    Deveson, Ira W; Holleley, Clare E; Blackburn, James; Marshall Graves, Jennifer A; Mattick, John S; Waters, Paul D; Georges, Arthur

    2017-06-01

    In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3 , in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD.

  3. Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns.

    PubMed

    Wu, Baojun; Hao, Weilong

    2014-04-16

    Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.

  4. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  5. Comparative Analysis of Vertebrate Dystrophin Loci Indicate Intron Gigantism as a Common Feature

    PubMed Central

    Pozzoli, Uberto; Elgar, Greg; Cagliani, Rachele; Riva, Laura; Comi, Giacomo P.; Bresolin, Nereo; Bardoni, Alessandra; Sironi, Manuela

    2003-01-01

    The human DMD gene is the largest known to date, spanning > 2000 kb on the X chromosome. The gene size is mainly accounted for by huge intronic regions. We sequenced 190 kb of Fugu rubripes (pufferfish) genomic DNA corresponding to the complete dystrophin gene (FrDMD) and provide the first report of gene structure and sequence comparison among dystrophin genomic sequences from different vertebrate organisms. Almost all intron positions and phases are conserved between FrDMD and its mammalian counterparts, and the predicted protein product of the Fugu gene displays 55% identity and 71% similarity to human dystrophin. In analogy to the human gene, FrDMD presents several-fold longer than average intronic regions. Analysis of intron sequences of the human and murine genes revealed that they are extremely conserved in size and that a similar fraction of total intron length is represented by repetitive elements; moreover, our data indicate that intron expansion through repeat accumulation in the two orthologs is the result of independent insertional events. The hypothesis that intron length might be functionally relevant to the DMD gene regulation is proposed and substantiated by the finding that dystrophin intron gigantism is common to the three vertebrate genes. [Supplemental material is available online at www.genome.org.] PMID:12727896

  6. Determinism and randomness in the evolution of introns and sine inserts in mouse and human mitochondrial solute carrier and cytokine receptor genes.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A

    2015-04-01

    In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria.

    PubMed

    Santamaria, Monica; Vicario, Saverio; Pappadà, Graziano; Scioscia, Gaetano; Scazzocchio, Claudio; Saccone, Cecilia

    2009-06-16

    A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers. The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries. After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals. The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode

  8. SURVEY AND SUMMARY: exon-intron organization of genes in the slime mold Physarum polycephalum.

    PubMed

    Trzcinska-Danielewicz, J; Fronk, J

    2000-09-15

    The slime mold Physarum polycephalum is a morphologically simple organism with a large and complex genome. The exon-intron organization of its genes exhibits features typical for protists and fungi as well as those characteristic for the evolutionarily more advanced species. This indicates that both the taxonomic position as well as the size of the genome shape the exon-intron organization of an organism. The average gene has 3.7 introns which are on average 138 bp, with a rather narrow size distribution. Introns are enriched in AT base pairs by 13% relative to exons. The consensus sequences at exon-intron boundaries resemble those found for other species, with minor differences between short and long introns. A unique feature of P.polycephalum introns is the strong preference for pyrimidines in the coding strand throughout their length, without a particular enrichment at the 3'-ends.

  9. Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses

    PubMed Central

    Da Lage, Jean-Luc; Maczkowiak, Frédérique; Cariou, Marie-Louise

    2011-01-01

    Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that “resets” of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures. PMID:21611157

  10. Spliceosomal Intron Insertions in Genome Compacted Ray-Finned Fishes as Evident from Phylogeny of MC Receptors, Also Supported by a Few Other GPCRs

    PubMed Central

    Sinha, Rahul; Goyal, Pankaj; Grapputo, Alessandro

    2011-01-01

    Background Insertions of spliceosomal introns are very rare events during evolution of vertebrates and the mechanisms governing creation of novel intron(s) remain obscure. Largely, gene structures of melanocortin (MC) receptors are characterized by intron-less architecture. However, recently a few exceptions have been reported in some fishes. This warrants a systematic survey of MC receptors for understanding intron insertion events during vertebrate evolution. Methodology/Principal Findings We have compiled an extended list of MC receptors from different vertebrate genomes with variations in fishes. Notably, the closely linked MC2Rs and MC5Rs from a group of ray-finned fishes have three and one intron insertion(s), respectively, with conserved positions and intron phase. In both genes, one novel insertion was in the highly conserved DRY motif at the end of helix TM3. Further, the proto-splice site MAG↑R is maintained at intron insertion sites in these two genes. However, the orthologs of these receptors from zebrafish and tetrapods are intron-less, suggesting these introns are simultaneously created in selected fishes. Surprisingly, these novel introns are traceable only in four fish genomes. We found that these fish genomes are severely compacted after the separation from zebrafish. Furthermore, we also report novel intron insertions in P2Y receptors and in CHRM3. Finally, we report ultrasmall introns in MC2R genes from selected fishes. Conclusions/Significance The current repository of MC receptors illustrates that fishes have no MC3R ortholog. MC2R, MC5R, P2Y receptors and CHRM3 have novel intron insertions only in ray-finned fishes that underwent genome compaction. These receptors share one intron at an identical position suggestive of being inserted contemporaneously. In addition to repetitive elements, genome compaction is now believed to be a new hallmark that promotes intron insertions, as it requires rapid DNA breakage and subsequent repair processes to

  11. a Simple Symmetric Algorithm Using a Likeness with Introns Behavior in RNA Sequences

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2009-02-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences has some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algoritnm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  12. A pipeline of programs for collecting and analyzing group II intron retroelement sequences from GenBank

    PubMed Central

    2013-01-01

    Background Accurate and complete identification of mobile elements is a challenging task in the current era of sequencing, given their large numbers and frequent truncations. Group II intron retroelements, which consist of a ribozyme and an intron-encoded protein (IEP), are usually identified in bacterial genomes through their IEP; however, the RNA component that defines the intron boundaries is often difficult to identify because of a lack of strong sequence conservation corresponding to the RNA structure. Compounding the problem of boundary definition is the fact that a majority of group II intron copies in bacteria are truncated. Results Here we present a pipeline of 11 programs that collect and analyze group II intron sequences from GenBank. The pipeline begins with a BLAST search of GenBank using a set of representative group II IEPs as queries. Subsequent steps download the corresponding genomic sequences and flanks, filter out non-group II introns, assign introns to phylogenetic subclasses, filter out incomplete and/or non-functional introns, and assign IEP sequences and RNA boundaries to the full-length introns. In the final step, the redundancy in the data set is reduced by grouping introns into sets of ≥95% identity, with one example sequence chosen to be the representative. Conclusions These programs should be useful for comprehensive identification of group II introns in sequence databases as data continue to rapidly accumulate. PMID:24359548

  13. [Analysis of chloroplast rpS16 intron sequences in Lemnaceae].

    PubMed

    Martirosian, E V; Ryzhova, N N; Kochieva, E Z; Skriabin, K G

    2009-01-01

    Chloroplast rpS16 gene intron sequences were determined and characterized for twenty-five Lemnaceae accessions representing nine duckweed species. For each Lemnaceae species nucleotide substitutions and for Lemna minor, Lemna aequinoctialis, Wolffia arrhiza different indels were detected. Most of indels were found for Wolffia arrhiza and Lemna aequinoctialis. The analyses of intraspecific polymorphism resulted in identification of several gaplotypes in L. gibba and L. trisulca. Lemnaceae phylogenetic relationship based on rpS16 intron variability data has revealed significant differences between L. aequinoctialis and other Lemna species. Genetic distance values corroborated competence of Landoltia punctata separations from Spirodela into an independent generic taxon. The acceptability of rpS16 intron sequences for phylogenetic studies in Lemnaceae was shown.

  14. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    PubMed Central

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  15. Coordination of two sequential ester-transfer reactions: exogenous guanosine binding promotes the subsequent ωG binding to a group I intron

    PubMed Central

    Bao, Penghui; Wu, Qi-Jia; Yin, Ping; Jiang, Yanfei; Wang, Xu; Xie, Mao-Hua; Sun, Tao; Huang, Lin; Mo, Ding-Ding; Zhang, Yi

    2008-01-01

    Self-splicing of group I introns is accomplished by two sequential ester-transfer reactions mediated by sequential binding of two different guanosine ligands, but it is yet unclear how the binding is coordinated at a single G-binding site. Using a three-piece trans-splicing system derived from the Candida intron, we studied the effect of the prior GTP binding on the later ωG binding by assaying the ribozyme activity in the second reaction. We showed that adding GTP simultaneously with and prior to the esterified ωG in a substrate strongly accelerated the second reaction, suggesting that the early binding of GTP facilitates the subsequent binding of ωG. GTP-mediated facilitation requires C2 amino and C6 carbonyl groups on the Watson–Crick edge of the base but not the phosphate or sugar groups, suggesting that the base triple interactions between GTP and the binding site are important for the subsequent ωG binding. Strikingly, GTP binding loosens a few local structures of the ribozyme including that adjacent to the base triple, providing structural basis for a rapid exchange of ωG for bound GTP. PMID:18978026

  16. Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts.

    PubMed

    Asakura, Yukari; Bayraktar, Omer Ali; Barkan, Alice

    2008-11-01

    Chloroplast genomes in angiosperms encode approximately 20 group II introns, approximately half of which are classified as subgroup IIB. The splicing of all but one of the subgroup IIB introns requires a heterodimer containing the peptidyl-tRNA hydrolase homolog CRS2 and one of two closely related proteins, CAF1 or CAF2, that harbor a recently recognized RNA binding domain called the CRM domain. Two CRS2/CAF-dependent introns require, in addition, a CRM domain protein called CFM2 that is only distantly related to CAF1 and CAF2. Here, we show that CFM3, a close relative of CFM2, associates in vivo with those CRS2/CAF-dependent introns that are not CFM2 ligands. Mutant phenotypes in rice and Arabidopsis support a role for CFM3 in the splicing of most of the introns with which it associates. These results show that either CAF1 or CAF2 and either CFM2 or CFM3 simultaneously bind most chloroplast subgroup IIB introns in vivo, and that the CAF and CFM subunits play nonredundant roles in splicing. These results suggest that the expansion of the CRM protein family in plants resulted in two subfamilies that play different roles in group II intron splicing, with further diversification within a subfamily to accommodate multiple intron ligands.

  17. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  18. The in vivo use of alternate 3'-splice sites in group I introns.

    PubMed

    Sellem, C H; Belcour, L

    1994-04-11

    Alternative splicing of group I introns has been postulated as a possible mechanism that would ensure the translation of proteins encoded into intronic open reading frames, discontinuous with the upstream exon and lacking an initiation signal. Alternate splice sites were previously depicted according to secondary structures of several group I introns. We present here strong evidence that, in the case of Podospora anserina nad 1-i4 and cox1-i7 mitochondrial introns, alternative splicing events do occur in vivo. Indeed, by PCR experiments we have detected molecules whose sequence is precisely that expected if the predicted alternate 3'-splice sites were used.

  19. Functional comparison of three transformer gene introns regulating conditional female lethality

    USDA-ARS?s Scientific Manuscript database

    The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...

  20. Mobile group II intron based gene targeting in Lactobacillus plantarum WCFS1.

    PubMed

    Sasikumar, Ponnusamy; Paul, Eldho; Gomathi, Sivasamy; Abhishek, Albert; Sasikumar, Sundaresan; Selvam, Govindan Sadasivam

    2016-10-01

    The usage of recombinant lactic acid bacteria for delivery of therapeutic proteins to the mucosa has been emerging. In the present study, an attempt was made to engineer a thyA mutant of Lactobacillus plantarum (L. plantarum) using lactococcal group II intron Ll.LtrB for the development of biologically contained recombinant L. plantarum for prevention of calcium oxalate stone disease. The 3 kb Ll.LtrB intron donor cassettes from the source vector pACD4C was PCR amplified, ligated into pSIP series of lactobacillus vector pLp_3050sAmyA, yielding a novel vector pLpACD4C (8.6 kb). The quantitative real-time PCR experiment shows 94-fold increased expression of Ll.LtrB intron and 14-fold increased expression of ltrA gene in recombinant L. plantarum containing pLpACD4C. In order to target the thyA gene, the potential intron RNA binding sites in the thyA gene of L. plantarum was predicted with help of computer algorithm. The insertion location 188|189s of thyA gene (lowest E-0.134) was chosen and the wild type intron Ll.LtrB was PCR modified, yielding a retargeted intron of pLpACDthyA. The retargeted intron was expressed by using induction peptide (sppIP), subsequently the integration of intron in thyA gene was identified by PCR screening and finally ThyA - mutant of L. plantarum (ThyA18) was detected. In vitro growth curve result showed that in the absence of thymidine, colony forming units of mutant ThyA18 was decreased, whereas high thymidine concentration (10 μM) supported the growth of the culture until saturation. In conclusion, ThyA - mutant of L. plantarum (ThyA18) constructed in this study will be used as a biologically contained recombinant probiotic to deliver oxalate decarboxylase into the lumen for treatment of hyperoxaluria and calcium oxalate stone deposition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genetic Manipulation of Lactococcus lactis by Using Targeted Group II Introns: Generation of Stable Insertions without Selection

    PubMed Central

    Frazier, Courtney L.; San Filippo, Joseph; Lambowitz, Alan M.; Mills, David A.

    2003-01-01

    Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci. PMID:12571038

  2. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing. PMID:21935348

  3. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2017-12-01

    The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    PubMed

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  5. The Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities

    PubMed Central

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner. PMID:23505475

  6. Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA.

    PubMed

    Ortiz, Raúl; Georgieva, Maya V; Gutiérrez, Sara; Pedraza, Neus; Fernández-Moya, Sandra M; Gallego, Carme

    2017-07-05

    Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Tobacco chloroplast tRNA(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron.

    PubMed

    Sugita, M; Shinozaki, K; Sugiura, M

    1985-06-01

    The nucleotide sequence of a tRNA(Lys)(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNA(Gly)(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long.

  8. Diversity in mRNA expression of the serine-type carboxypeptidase ocpG in Aspergillus oryzae through intron retention.

    PubMed

    Ishida, Ken; Kuboshima, Megumi; Morita, Hiroto; Maeda, Hiroshi; Okamoto, Ayako; Takeuchi, Michio; Yamagata, Youhei

    2014-01-01

    Alternative splicing is thought to be a means for diversification of products by mRNA modification. Although some intron retentions are predicted by transcriptome analysis in Aspergillus oryzae, its physiological significance remains unknown. We found that intron retention occurred occasionally in the serine-type carboxypeptidase gene, ocpG. Analysis under various culture conditions revealed that extracellular nitrogen conditions influence splicing patterns; this suggested that there might be a correlation between splicing efficiency and the necessity of OcpG activity for obtaining a nitrogen source. Since further analysis showed that splicing occurred independently in each intron, we constructed ocpG intron-exchanging strain by interchanging the positions of intron-1 and intron-2. The splicing pattern indicated the probability that ocpG intron retention was affected by the secondary structures of intronic mRNA.

  9. The Internet Process Addiction Test: Screening for Addictions to Processes Facilitated by the Internet.

    PubMed

    Northrup, Jason C; Lapierre, Coady; Kirk, Jeffrey; Rae, Cosette

    2015-07-28

    The Internet Process Addiction Test (IPAT) was created to screen for potential addictive behaviors that could be facilitated by the internet. The IPAT was created with the mindset that the term "Internet addiction" is structurally problematic, as the Internet is simply the medium that one uses to access various addictive processes. The role of the internet in facilitating addictions, however, cannot be minimized. A new screening tool that effectively directed researchers and clinicians to the specific processes facilitated by the internet would therefore be useful. This study shows that the Internet Process Addiction Test (IPAT) demonstrates good validity and reliability. Four addictive processes were effectively screened for with the IPAT: Online video game playing, online social networking, online sexual activity, and web surfing. Implications for further research and limitations of the study are discussed.

  10. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  11. Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons

    PubMed Central

    2011-01-01

    Background The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intron's promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element. Results Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1. Re-examination of all published cox1 genes uncovered additional cases of extended co-conversion and identified a rare case of putative intron loss, accompanied by full retention of the CCT. Conclusions We infer that the cox1 intron was separately and recently acquired by at least three different lineages of Solanaceae. The striking identity of the intron and CCT from two of these lineages suggests that one of these three intron captures may have occurred by a within-family transfer event. This is consistent with previous evidence that horizontal transfer in plants is biased towards phylogenetically local events. The discovery

  12. DigiMemo: Facilitating the Note Taking Process

    ERIC Educational Resources Information Center

    Kurt, Serhat

    2009-01-01

    Everyone takes notes daily for various reasons. Note taking is very popular in school settings and generally recognized as an effective learning strategy. Further, note taking is a complex process because it requires understanding, selection of information and writing. Some new technological tools may facilitate the note taking process. Among such…

  13. Tobacco chloroplast tRNALys(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron

    PubMed Central

    Sugita, Mamoru; Shinozaki, Kazuo; Sugiura, Masahiro

    1985-01-01

    The nucleotide sequence of a tRNALys(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNAGly(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long. Images PMID:16593561

  14. Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid Eutreptiella pomquetensis

    PubMed Central

    Bennett, Matthew S.; Triemer, Richard E.; Preisfeld, Angelika

    2017-01-01

    Background Over the last few years multiple studies have been published showing a great diversity in size of chloroplast genomes (cpGenomes), and in the arrangement of gene clusters, in the Euglenales. However, while these genomes provided important insights into the evolution of cpGenomes across the Euglenales and within their genera, only two genomes were analyzed in regard to genomic variability between and within Euglenales and Eutreptiales. To better understand the dynamics of chloroplast genome evolution in early evolving Eutreptiales, this study focused on the cpGenome of Eutreptiella pomquetensis, and the spread and peculiarities of introns. Methods The Etl. pomquetensis cpGenome was sequenced, annotated and afterwards examined in structure, size, gene order and intron content. These features were compared with other euglenoid cpGenomes as well as those of prasinophyte green algae, including Pyramimonas parkeae. Results and Discussion With about 130,561 bp the chloroplast genome of Etl. pomquetensis, a basal taxon in the phototrophic euglenoids, was considerably larger than the two other Eutreptiales cpGenomes sequenced so far. Although the detected quadripartite structure resembled most green algae and plant chloroplast genomes, the gene content of the single copy regions in Etl. pomquetensis was completely different from those observed in green algae and plants. The gene composition of Etl. pomquetensis was extensively changed and turned out to be almost identical to other Eutreptiales and Euglenales, and not to P. parkeae. Furthermore, the cpGenome of Etl. pomquetensis was unexpectedly permeated by a high number of introns, which led to a substantially larger genome. The 51 identified introns of Etl. pomquetensis showed two major unique features: (i) more than half of the introns displayed a high level of pairwise identities; (ii) no group III introns could be identified in the protein coding genes. These findings support the hypothesis that group III

  15. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed Central

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-01-01

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917

  16. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    PubMed

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  17. Localization of a Bacterial Group II Intron-Encoded Protein in Eukaryotic Nuclear Splicing-Related Cell Compartments

    PubMed Central

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns. PMID:24391881

  18. The Internet Process Addiction Test: Screening for Addictions to Processes Facilitated by the Internet

    PubMed Central

    Northrup, Jason C.; Lapierre, Coady; Kirk, Jeffrey; Rae, Cosette

    2015-01-01

    The Internet Process Addiction Test (IPAT) was created to screen for potential addictive behaviors that could be facilitated by the internet. The IPAT was created with the mindset that the term “Internet addiction” is structurally problematic, as the Internet is simply the medium that one uses to access various addictive processes. The role of the internet in facilitating addictions, however, cannot be minimized. A new screening tool that effectively directed researchers and clinicians to the specific processes facilitated by the internet would therefore be useful. This study shows that the Internet Process Addiction Test (IPAT) demonstrates good validity and reliability. Four addictive processes were effectively screened for with the IPAT: Online video game playing, online social networking, online sexual activity, and web surfing. Implications for further research and limitations of the study are discussed. PMID:26226007

  19. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-08-05

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.

  20. Localization of a bacterial group II intron-encoded protein in human cells

    PubMed Central

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; Pérez, José Luis García; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  1. Deep intronic GPR143 mutation in a Japanese family with ocular albinism.

    PubMed

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-06-10

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease.

  2. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS.

    PubMed

    Luisier, Raphaelle; Tyzack, Giulia E; Hall, Claire E; Mitchell, Jamie S; Devine, Helen; Taha, Doaa M; Malik, Bilal; Meyer, Ione; Greensmith, Linda; Newcombe, Jia; Ule, Jernej; Luscombe, Nicholas M; Patani, Rickie

    2018-05-22

    Mutations causing amyotrophic lateral sclerosis (ALS) strongly implicate ubiquitously expressed regulators of RNA processing. To understand the molecular impact of ALS-causing mutations on neuronal development and disease, we analysed transcriptomes during in vitro differentiation of motor neurons (MNs) from human control and patient-specific VCP mutant induced-pluripotent stem cells (iPSCs). We identify increased intron retention (IR) as a dominant feature of the splicing programme during early neural differentiation. Importantly, IR occurs prematurely in VCP mutant cultures compared with control counterparts. These aberrant IR events are also seen in independent RNAseq data sets from SOD1- and FUS-mutant MNs. The most significant IR is seen in the SFPQ transcript. The SFPQ protein binds extensively to its retained intron, exhibits lower nuclear abundance in VCP mutant cultures and is lost from nuclei of MNs in mouse models and human sporadic ALS. Collectively, we demonstrate SFPQ IR and nuclear loss as molecular hallmarks of familial and sporadic ALS.

  3. Sensing Self and Foreign Circular RNAs by Intron Identity.

    PubMed

    Chen, Y Grace; Kim, Myoungjoo V; Chen, Xingqi; Batista, Pedro J; Aoyama, Saeko; Wilusz, Jeremy E; Iwasaki, Akiko; Chang, Howard Y

    2017-07-20

    Circular RNAs (circRNAs) are single-stranded RNAs that are joined head to tail with largely unknown functions. Here we show that transfection of purified in vitro generated circRNA into mammalian cells led to potent induction of innate immunity genes and confers protection against viral infection. The nucleic acid sensor RIG-I is necessary to sense foreign circRNA, and RIG-I and foreign circRNA co-aggregate in cytoplasmic foci. CircRNA activation of innate immunity is independent of a 5' triphosphate, double-stranded RNA structure, or the primary sequence of the foreign circRNA. Instead, self-nonself discrimination depends on the intron that programs the circRNA. Use of a human intron to express a foreign circRNA sequence abrogates immune activation, and mature human circRNA is associated with diverse RNA binding proteins reflecting its endogenous splicing and biogenesis. These results reveal innate immune sensing of circRNA and highlight introns-the predominant output of mammalian transcription-as arbiters of self-nonself identity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Is “Junk” DNA Mostly Intron DNA?

    PubMed Central

    Wong, Gane Ka-Shu; Passey, Douglas A.; Huang, Ying-zong; Yang, Zhiyong; Yu, Jun

    2000-01-01

    Among higher eukaryotes, very little of the genome codes for protein. What is in the rest of the genome, or the “junk” DNA, that, in Homo sapiens, is estimated to be almost 97% of the genome? Is it possible that much of this “junk” is intron DNA? This is not a question that can be answered just by looking at the published data, even from the finished genomes. One cannot assume that there are no genes in a sequenced region, just because no genes were annotated. We introduce another approach to this problem, based on an analysis of the cDNA-to-genomic alignments, in all of the complete or nearly-complete genomes from the multicellular organisms. Our conclusion is that, in animals but not in plants, most of the “junk” is intron DNA. PMID:11076852

  5. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis.

    PubMed

    Enyeart, Peter J; Mohr, Georg; Ellington, Andrew D; Lambowitz, Alan M

    2014-01-13

    high processivity and fidelity of group II intron reverse transcriptases along with their novel template-switching activity, which can directly link RNA-seq adaptor sequences to cDNAs during reverse transcription, open new approaches for RNA-seq and the identification and profiling of non-coding RNAs, with potentially wide applications in research and biotechnology.

  6. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci.

    PubMed

    Mills, D A; McKay, L L; Dunny, G M

    1996-06-01

    Analysis of a region involved in the conjugative transfer of the lactococcal conjugative element pRS01 has revealed a bacteria] group II intron. Splicing of this lactococcal intron (designated Ll.ltrB) in vivo resulted in the ligation of two exon messages (ltrBE1 and ltrBE2) which encoded a putative conjugative relaxase essential for the transfer of pRS01. Like many group II introns, the Ll.ltrB intron possessed an open reading frame (ltrA) with homology to reverse transcriptases. Remarkably, sequence analysis of ltrA suggested a greater similarity to open reading frames encoded by eukaryotic mitochondrial group II introns than to those identified to date from other bacteria. Several insertional mutations within ltrA resulted in plasmids exhibiting a conjugative transfer-deficient phenotype. These results provide the first direct evidence for splicing of a prokaryotic group II intron in vivo and suggest that conjugative transfer is a mechanism for group II intron dissemination in bacteria.

  7. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  8. mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis.

    PubMed

    Zmudjak, Michal; Colas des Francs-Small, Catherine; Keren, Ido; Shaya, Felix; Belausov, Eduard; Small, Ian; Ostersetzer-Biran, Oren

    2013-07-01

    The coding regions of many mitochondrial genes in plants are interrupted by intervening sequences that are classified as group II introns. Their splicing is essential for the expression of the genes they interrupt and hence for respiratory function, and is facilitated by various protein cofactors. Despite the importance of these cofactors, only a few of them have been characterized. CRS1-YhbY domain (CRM) is a recently recognized RNA-binding domain that is present in several characterized splicing factors in plant chloroplasts. The Arabidopsis genome encodes 16 CRM proteins, but these are largely uncharacterized. Here, we analyzed the intracellular location of one of these hypothetical proteins in Arabidopsis, mitochondrial CAF-like splicing factor 1 (mCSF1; At4 g31010), and analyzed the growth phenotypes and organellar activities associated with mcsf1 mutants in plants. Our data indicated that mCSF1 resides within mitochondria and its functions are essential during embryogenesis. Mutant plants with reduced mCSF1 displayed inhibited germination and retarded growth phenotypes that were tightly associated with reduced complex I and IV activities. Analogously to the functions of plastid-localized CRM proteins, analysis of the RNA profiles in wildtype and mcsf1 plants showed that mCSF1 acts in the splicing of many of the group II intron RNAs in Arabidopsis mitochondria. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Recent mobility of plastid encoded group II introns and twintrons in five strains of the unicellular red alga Porphyridium

    PubMed Central

    Perrineau, Marie-Mathilde; Price, Dana C.; Mohr, Georg

    2015-01-01

    Group II introns are closely linked to eukaryote evolution because nuclear spliceosomal introns and the small RNAs associated with the spliceosome are thought to trace their ancient origins to these mobile elements. Therefore, elucidating how group II introns move, and how they lose mobility can potentially shed light on fundamental aspects of eukaryote biology. To this end, we studied five strains of the unicellular red alga Porphyridium purpureum that surprisingly contain 42 group II introns in their plastid genomes. We focused on a subset of these introns that encode mobility-conferring intron-encoded proteins (IEPs) and found them to be distributed among the strains in a lineage-specific manner. The reverse transcriptase and maturase domains were present in all lineages but the DNA endonuclease domain was deleted in vertically inherited introns, demonstrating a key step in the loss of mobility. P. purpureum plastid intron RNAs had a classic group IIB secondary structure despite variability in the DIII and DVI domains. We report for the first time the presence of twintrons (introns-within-introns, derived from the same mobile element) in Rhodophyta. The P. purpureum IEPs and their mobile introns provide a valuable model for the study of mobile retroelements in eukaryotes and offer promise for biotechnological applications. PMID:26157604

  10. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site.

    PubMed

    Muddukrishna, Bhavana; Jackson, Christopher A; Yu, Michael C

    2017-06-01

    Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery. Published by Elsevier B.V.

  11. Deep intronic GPR143 mutation in a Japanese family with ocular albinism

    PubMed Central

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-01-01

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757

  12. Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication.

    PubMed

    Beauregard, Arthur; Chalamcharla, Venkata R; Piazza, Carol Lyn; Belfort, Marlene; Coros, Colin J

    2006-11-01

    Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.

  13. Bacterial Group II Introns: Identification and Mobility Assay.

    PubMed

    Toro, Nicolás; Molina-Sánchez, María Dolores; Nisa-Martínez, Rafael; Martínez-Abarca, Francisco; García-Rodríguez, Fernando Manuel

    2016-01-01

    Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities.

  14. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    PubMed

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-02-15

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U).

  15. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    PubMed Central

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-01-01

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U). PMID:8604302

  16. Trans individuals' facilitative coping: An analysis of internal and external processes.

    PubMed

    Budge, Stephanie L; Chin, Mun Yuk; Minero, Laura P

    2017-01-01

    Existing research on trans individuals has primarily focused on their negative experiences and has disproportionately examined coming-out processes and identity development stages. Using a grounded theory approach, this qualitative study sought to examine facilitative coping processes among trans-identified individuals. Facilitative coping was operationalized as processes whereby individuals seek social support, learn new skills, change behaviors to positively adapt, and find alternative means to seek personal growth and acceptance. The sample included 15 participants who self-identified with a gender identity that was different from their assigned sex at birth. Results yielded a total of nine overarching themes: Accepting Support from Others, Actions to Increase Protection, Active Engagement Throughout the Transition Process, Actively Seeking Social Interactions, Engaging in Exploration, Internal Processes Leading to Self-Acceptance, Self-Efficacy, Shifts Leading to Embracing Change and Flexibility, and Utilization of Agency. Based on the analysis, a theoretical model emerged that highlighted the importance of internal and external coping processes in facilitating gender identity development and navigating stressors among trans individuals. Clinical implications focusing on how to implement facilitative coping processes are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis.

    PubMed

    Chee, Gab-Joo; Takami, Hideto

    2011-01-01

    Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.

  18. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  19. Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice.

    PubMed

    Horiuchi, Keiko; Perez-Cerezales, Serafín; Papasaikas, Panagiotis; Ramos-Ibeas, Priscila; López-Cardona, Angela Patricia; Laguna-Barraza, Ricardo; Fonseca Balvís, Noelia; Pericuesta, Eva; Fernández-González, Raul; Planells, Benjamín; Viera, Alberto; Suja, Jose Angel; Ross, Pablo Juan; Alén, Francisco; Orio, Laura; Rodriguez de Fonseca, Fernando; Pintado, Belén; Valcárcel, Juan; Gutiérrez-Adán, Alfonso

    2018-04-03

    The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns.

    PubMed Central

    Wolff, G; Burger, G; Lang, B F; Kück, U

    1993-01-01

    The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles. PMID:7680126

  1. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication.

    PubMed

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-06-04

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.

  2. Visual form predictions facilitate auditory processing at the N1.

    PubMed

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  3. Arabidopsis Chloroplast Mini-Ribonuclease III Participates in rRNA Maturation and Intron Recycling

    PubMed Central

    Hotto, Amber M.; Castandet, Benoît; Gilet, Laetitia; Higdon, Andrea; Condon, Ciarán; Stern, David B.

    2015-01-01

    RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3′ end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3′ extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation. PMID:25724636

  4. Alternative intronic promoters in development and disease.

    PubMed

    Vacik, Tomas; Raska, Ivan

    2017-05-01

    Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.

  5. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia.

    PubMed

    Vaughn, J C; Mason, M T; Sper-Whitis, G L; Kuhlman, P; Palmer, J D

    1995-11-01

    We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.

  6. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  7. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing

    PubMed Central

    Tang, Thean Hock; Rozhdestvensky, Timofey S.; d’Orval, Béatrice Clouet; Bortolin, Marie-Line; Huber, Harald; Charpentier, Bruno; Branlant, Christiane; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2002-01-01

    The bulge–helix–bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularisation of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5′ external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA. PMID:11842103

  8. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication

    PubMed Central

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-01-01

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615

  9. Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach.

    PubMed

    Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M

    2017-03-27

    Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome

  10. The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene

    PubMed Central

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  11. Polymorphism in Mitochondrial Group I Introns among Cryptococcus neoformans and Cryptococcus gattii Genotypes and Its Association with Drug Susceptibility.

    PubMed

    Gomes, Felipe E E S; Arantes, Thales D; Fernandes, José A L; Ferreira, Leonardo C; Romero, Héctor; Bosco, Sandra M G; Oliveira, Maria T B; Del Negro, Gilda M B; Theodoro, Raquel C

    2018-01-01

    Cryptococcosis, one of the most important systemic mycosis in the world, is caused by different genotypes of Cryptococcus neoformans and Cryptococcus gattii , which differ in their ecology, epidemiology, and antifungal susceptibility. Therefore, the search for new molecular markers for genotyping, pathogenicity and drug susceptibility is necessary. Group I introns fulfill the requisites for such task because (i) they are polymorphic sequences; (ii) their self-splicing is inhibited by some drugs; and (iii) their correct splicing under parasitic conditions is indispensable for pathogen survival. Here, we investigated the presence of group I introns in the mitochondrial LSU rRNA gene in 77 Cryptococcus isolates and its possible relation to drug susceptibility. Sequencing revealed two new introns in the LSU rRNA gene. All the introns showed high sequence similarity to other mitochondrial introns from distinct fungi, supporting the hypothesis of an ancient non-allelic invasion. Intron presence was statistically associated with those genotypes reported to be less pathogenic ( p < 0.001). Further virulence assays are needed to confirm this finding. In addition, in vitro antifungal tests indicated that the presence of LSU rRNA introns may influence the minimum inhibitory concentration (MIC) of amphotericin B and 5-fluorocytosine. These findings point to group I introns in the mitochondrial genome of Cryptococcus as potential molecular markers for antifungal resistance, as well as therapeutic targets.

  12. A 5′ Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo

    PubMed Central

    Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072

  13. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing

    PubMed Central

    Perriman, Rhonda; Ares, Manuel

    2010-01-01

    U2 snRNA-intron branchpoint pairing is a critical step in pre-mRNA recognition by the splicing apparatus, but the mechanism by which these two RNAs engage each other is unknown. Here we identify a new U2 snRNA structure, the branchpoint interaction stem-loop (BSL), that presents the U2 nucleotides that will contact the intron. We provide evidence that the BSL forms prior to interaction with the intron, and is disrupted by the DExD/H protein Prp5p during engagement of the snRNA with the intron. In vitro splicing complex assembly in a BSL-destabilized mutant extract suggests that the BSL is required at a previously unrecognized step between commitment complex and prespliceosome formation. The extreme evolutionary conservation of the BSL suggests it represents an ancient structural solution to the problem of intron branchpoint recognition by dynamic RNA elements that must serve multiple functions at other times during splicing. PMID:20471947

  14. Intron size and genome size in plants.

    Treesearch

    J. Wendel; R. Cronn; I. Alvarez; B. Liu; R. Small; D. Senchina

    2002-01-01

    It has long been known that genomes vary over a remarkable range of sizes in both plants (Bennett, Cox, and Leitch 1997) and animals (Gregory 2001). It also has become evident that across the broad phylogenetic sweep, genome size may be correlated with intron size (Deutsch and Long 1999; Vinogradov 1999; McLysaght et al. 2000), suggesting that some component of genome...

  15. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers

    PubMed Central

    Moretzsohn, Márcio C.; Gouvea, Ediene G.; Inglis, Peter W.; Leal-Bertioli, Soraya C. M.; Valls, José F. M.; Bertioli, David J.

    2013-01-01

    Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. Key Results Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3–2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. Conclusions The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the

  16. The paradox of MHC-DRB exon/intron evolution: alpha-helix and beta-sheet encoding regions diverge while hypervariable intronic simple repeats coevolve with beta-sheet codons.

    PubMed

    Schwaiger, F W; Weyers, E; Epplen, C; Brün, J; Ruff, G; Crawford, A; Epplen, J T

    1993-09-01

    Twenty-one different caprine and 13 ovine MHC-DRB exon 2 sequences were determined including part of the adjacent introns containing simple repetitive (gt)n(ga)m elements. The positions for highly polymorphic DRB amino acids vary slightly among ungulates and other mammals. From man and mouse to ungulates the basic (gt)n(ga)m structure is fixed in evolution for 7 x 10(7) years whereas ample variations exist in the tandem (gt)n and (ga)m dinucleotides and especially their "degenerated" derivatives. Phylogenetic trees for the alpha-helices and beta-pleated sheets of the ungulate DRB sequences suggest different evolutionary histories. In hoofed animals as well as in humans DRB beta-sheet encoding sequences and adjacent intronic repeats can be assembled into virtually identical groups suggesting coevolution of noncoding as well as coding DNA. In contrast alpha-helices and C-terminal parts of the first DRB domain evolve distinctly. In the absence of a defined mechanism causing specific, site-directed mutations, double-recombination or gene-conversion-like events would readily explain this fact. The role of the intronic simple (gt)n(ga)m repeat is discussed with respect to these genetic exchange mechanisms during evolution.

  17. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2016-06-01

    Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron-encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure-function relationships within group II intron-maturase complexes.

  18. Mitochondrial intronic open reading frames in Podospora: mobility and consecutive exonic sequence variations.

    PubMed

    Sellem, C H; d'Aubenton-Carafa, Y; Rossignol, M; Belcour, L

    1996-06-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group 1 intronic ORFs are mobile elements and that their transfer, and concomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes.

  19. ‘In the Moment’: An Analysis of Facilitator Impact During a Quality Improvement Process

    PubMed Central

    Shaw, Erik; Looney, Anna; Chase, Sabrina; Navalekar, Rohini; Stello, Brian; Lontok, Oliver; Crabtree, Benjamin

    2010-01-01

    Facilitators frequently act ‘in the moment’ – deciding if, when and how to intervene into group process discussions. This paper offers a unique look at how facilitators impacted eleven primary care teams engaged in a 12-week quality improvement (QI) process. Participating in a federally funded QI trial, primary care practices in New Jersey and Pennsylvania formed practice-based teams comprised of physicians, nurses, administrative staff, and patients. External facilitators met with each team to help them identify and implement changes aimed at improving the organization, work relationships, office functions, and patient care. Audio-recordings of the meetings and descriptive field notes were collected. These qualitative data provided information on how facilitators acted ‘in the moment’ and how their interventions impacted group processes over time. Our findings reveal that facilitators impacted groups in multiple ways throughout the QI process, rather than through a linear progression of stages or events. We present five case examples that show what acting ‘in the moment’ looked like during the QI meetings and how these facilitator actions/interventions impacted the primary care teams. These accounts provide practical lessons learned and insights into effective facilitation that may encourage others in their own facilitation work and offer beneficial strategies to facilitators in other contexts. PMID:22557936

  20. An intronic microRNA silences genes that are functionally antagonistic to its host gene.

    PubMed

    Barik, Sailen

    2008-09-01

    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.

  1. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo

    PubMed Central

    Waldsich, Christina; Grossberger, Rupert; Schroeder, Renée

    2002-01-01

    Efficient splicing of the td group I intron in vivo is dependent on the ribosome. In the absence of translation, the pre-mRNA is trapped in nonnative-splicing-incompetent conformations. Alternatively, folding of the pre-mRNA can be promoted by the RNA chaperone StpA or by the group I intron-specific splicing factor Cyt-18. To understand the mechanism of action of RNA chaperones, we probed the impact of StpA on the structure of the td intron in vivo. Our data suggest that StpA loosens tertiary interactions. The most prominent structural change was the opening of the base triples, which are involved in the correct orientation of the two major intron core domains. In line with the destabilizing activity of StpA, splicing of mutant introns with a reduced structural stability is sensitive to StpA. In contrast, Cyt-18 strengthens tertiary contacts, thereby rescuing splicing of structurally compromised td mutants in vivo. Our data provide direct evidence for protein-induced conformational changes within catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the overall compactness of the td intron in vivo. PMID:12208852

  2. The gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis contains a group I intron.

    PubMed Central

    De Wachter, R; Neefs, J M; Goris, A; Van de Peer, Y

    1992-01-01

    The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing. PMID:1561081

  3. Interactions between the promoter and first intron are involved in transcriptional control of alpha 1(I) collagen gene expression.

    PubMed Central

    Bornstein, P; McKay, J; Liska, D J; Apone, S; Devarayalu, S

    1988-01-01

    The first intron of the human collagen alpha 1(I) gene contains several positively and negatively acting elements. We have studied the transcription of collagen-human growth hormone fusion genes, containing deletions and rearrangements of collagen intronic sequences, by transient transfection of chick tendon fibroblasts and NIH 3T3 cells. In chick tendon fibroblasts, but not in 3T3 cells, inversion of intronic sequences containing a previously studied 274-base-pair segment, A274, resulted in markedly reduced human growth hormone mRNA levels as determined by an RNase protection assay. This inhibitory effect was largely alleviated when deletions were introduced in the collagen promoter of plasmids containing negatively oriented intronic sequences. Evidence for interaction of the promoter with the intronic segment, A274, was obtained by gel mobility shift assays. We suggest that promoter-intron interactions, mediated by DNA-binding proteins, regulate collagen gene transcription. Inversion of intronic segments containing critical interactive elements might then lead to an altered geometry and reduced activity of a transcriptional complex in those cells with sufficiently high levels of appropriate transcription factors. We further suggest that the deleted promoter segment plays a key role in directing DNA interactions involved in transcriptional control. Images PMID:3211130

  4. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae).

    PubMed

    Brouard, Jean-Simon; Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA) structure, size, gene order, and intron content have been observed. The large inverted repeat (IR), an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales) but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum . The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium , it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold longer and dispersed repeats are more

  5. Process Memos: Facilitating Dialogues about Writing between Students and Instructors

    ERIC Educational Resources Information Center

    Parrott, Heather Macpherson; Cherry, Elizabeth

    2015-01-01

    We have created a new teaching tool--process memos--to improve student writing. Process memos are guided reflections submitted with scaffolded assignments that facilitate a written dialogue between students and instructors about the process of writing. Within these memos, students critically assess available teaching tools, discuss their writing…

  6. The mitochondrial genome of fission yeast: inability of all introns to splice autocatalytically, and construction and characterization of an intronless genome.

    PubMed

    Schäfer, B; Merlos-Lange, A M; Anderl, C; Welser, F; Zimmer, M; Wolf, K

    1991-01-01

    In this paper we report the inability of four group I introns in the gene encoding subunit I of cytochrome c oxidase (cox1) and the group II intron in the apocytochrome b gene (cob) to splice autocatalytically. Furthermore we present the characterization of the first cox1 intron in the mutator strain anar-14 and the construction and characterization of strains with intronless mitochondrial genomes. We provide evidence that removal of introns at the DNA level (termed DNA splicing) is dependent on an active RNA maturase. Finally we demonstrate that the absence of introns does not abolish homologous mitochondrial recombination.

  7. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution.

    PubMed Central

    Copertino, D W; Christopher, D A; Hallick, R B

    1991-01-01

    The splicing of a 409 nucleotide intron from the Euglena gracilis chloroplast ribosomal protein S3 gene (rps3) was examined by cDNA cloning and sequencing, and northern hybridization. Based on the characterization of a partially spliced pre-mRNA, the intron was characterized as a 'mixed' twintron, composed of a 311 nucleotide group II intron internal to a 98 nucleotide group III intron. Twintron excision is via a 2-step sequential splicing pathway, with removal of the internal group II intron preceding excision of the external group III intron. Based on secondary structural analysis of the twintron, we propose that group III introns may represent highly degenerate versions of group II introns. The existence of twintrons is interpreted as evidence that group II introns were inserted during the evolution of Euglena chloroplast genes from a common ancestor with eubacteria, archaebacteria, cyanobacteria, and other chloroplasts. Images PMID:1721702

  8. Development of single-copy nuclear intron markers for species-level phylogenetics: Case study with Paullinieae (Sapindaceae).

    PubMed

    Chery, Joyce G; Sass, Chodon; Specht, Chelsea D

    2017-09-01

    We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.

  9. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage

    PubMed Central

    Jangi, Mohini; Fleet, Christina; Cullen, Patrick; Gupta, Shipra V.; Mekhoubad, Shila; Chiao, Eric; Allaire, Norm; Bennett, C. Frank; Rigo, Frank; Krainer, Adrian R.; Hurt, Jessica A.; Carulli, John P.; Staropoli, John F.

    2017-01-01

    Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death. PMID:28270613

  10. Dissociative tendencies and facilitated emotional processing.

    PubMed

    Oathes, Desmond J; Ray, William J

    2008-10-01

    Dissociation is a process linked to lapses of attention, history of abuse or trauma, compromised emotional memory, and a disintegrated sense of self. It is theorized that dissociation stems from avoiding emotional information, especially negative emotion, to protect a fragile psyche. The present study tested whether or not dissociaters do actually avoid processing emotion by asking groups scoring high or low on the Dissociative Experiences Scale to judge the affective valence of several types of emotional stimuli. Manipulations of valence, modality (pictures or words), task complexity, and personal relevance lead to results suggesting that dissociation is linked to facilitated rather than deficient emotional processing. Our results are consistent with a theory that sensitivity to emotional material may be a contributing factor in subsequent dissociation to avoid further elaboration of upsetting emotion in these individuals. The findings for dissociation further exemplify the influence of individual differences in the link between cognition and emotion. (c) 2008 APA, all rights reserved

  11. Intriguing Balancing Selection on the Intron 5 Region of LMBR1 in Human Population

    PubMed Central

    He, Fang; Wu, Dong-Dong; Kong, Qing-Peng; Zhang, Ya-Ping

    2008-01-01

    Background The intron 5 of gene LMBR1 is the cis-acting regulatory module for the sonic hedgehog (SHH) gene. Mutation in this non-coding region is associated with preaxial polydactyly, and may play crucial roles in the evolution of limb and skeletal system. Methodology/Principal Findings We sequenced a region of the LMBR1 gene intron 5 in East Asian human population, and found a significant deviation of Tajima's D statistics from neutrality taking human population growth into account. Data from HapMap also demonstrated extended linkage disequilibrium in the region in East Asian and European population, and significantly low degree of genetic differentiation among human populations. Conclusion/Significance We proposed that the intron 5 of LMBR1 was presumably subject to balancing selection during the evolution of modern human. PMID:18698406

  12. Mitochondrial intronic open reading frames in Podospora: Mobility and consecutive exonic sequence variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellem, C.H.; Rossignol, M.; Belcour, L.

    1996-06-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optical sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences.more » In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. 46 refs., 5 figs., 2 tabs.« less

  13. Mitochondrial Intronic Open Reading Frames in Podospora: Mobility and Consecutive Exonic Sequence Variations

    PubMed Central

    Sellem, C. H.; d'Aubenton-Carafa, Y.; Rossignol, M.; Belcour, L.

    1996-01-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. PMID:8725226

  14. Hidden genetic history of the Japanese sand dollar Peronella (Echinoidea: Laganidae) revealed by nuclear intron sequences.

    PubMed

    Endo, Megumi; Hirose, Mamiko; Honda, Masanao; Koga, Hiroyuki; Morino, Yoshiaki; Kiyomoto, Masato; Wada, Hiroshi

    2018-06-15

    The marine environment around Japan experienced significant changes during the Cenozoic Era. In this study, we report findings suggesting that this dynamic history left behind traces in the genome of the Japanese sand dollar species Peronella japonica and P. rubra. Although mitochondrial Cytochrome C Oxidase I sequences did not indicate fragmentation of the current local populations of P. japonica around Japan, two different types of intron sequence were found in the Alx1 locus. We inferred that past fragmentation of the populations account for the presence of two types of nuclear sequences as alleles in the Alx1 intron of P. japonica. It is likely that the split populations have intermixed in recent times; hence, we did not detect polymorphisms in the sequences reflecting the current localization of the species. In addition, we found two allelic sequences of theAlx1 intron in the sister species P. rubra. The divergence times of the two types of Alx1 intron sequences were estimated at approximately 14.9 and 4.0 million years ago for P. japonica and P. rubra, respectively. Our study indicates that information from the intron sequences of nuclear genes can enhance our understanding of past genetic events in organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Euglena gracilis chloroplast DNA: analysis of a 1.6 kb intron of the psb C gene containing an open reading frame of 458 codons.

    PubMed

    Montandon, P E; Vasserot, A; Stutz, E

    1986-01-01

    We retrieved a 1.6 kbp intron separating two exons of the psb C gene which codes for the 44 kDa reaction center protein of photosystem II. This intron is 3 to 4 times the size of all previously sequenced Euglena gracilis chloroplast introns. It contains an open reading frame of 458 codons potentially coding for a basic protein of 54 kDa of yet unknown function. The intron boundaries follow consensus sequences established for chloroplast introns related to class II and nuclear pre-mRNA introns. Its 3'-terminal segment has structural features similar to class II mitochondrial introns with an invariant base A as possible branch point for lariat formation.

  17. Euglena Transcript Processing.

    PubMed

    McWatters, David C; Russell, Anthony G

    2017-01-01

    RNA transcript processing is an important stage in the gene expression pathway of all organisms and is subject to various mechanisms of control that influence the final levels of gene products. RNA processing involves events such as nuclease-mediated cleavage, removal of intervening sequences referred to as introns and modifications to RNA structure (nucleoside modification and editing). In Euglena, RNA transcript processing was initially examined in chloroplasts because of historical interest in the secondary endosymbiotic origin of this organelle in this organism. More recent efforts to examine mitochondrial genome structure and RNA maturation have been stimulated by the discovery of unusual processing pathways in other Euglenozoans such as kinetoplastids and diplonemids. Eukaryotes containing large genomes are now known to typically contain large collections of introns and regulatory RNAs involved in RNA processing events, and Euglena gracilis in particular has a relatively large genome for a protist. Studies examining the structure of nuclear genes and the mechanisms involved in nuclear RNA processing have revealed that indeed Euglena contains large numbers of introns in the limited set of genes so far examined and also possesses large numbers of specific classes of regulatory and processing RNAs, such as small nucleolar RNAs (snoRNAs). Most interestingly, these studies have also revealed that Euglena possesses novel processing pathways generating highly fragmented cytosolic ribosomal RNAs and subunits and non-conventional intron classes removed by unknown splicing mechanisms. This unexpected diversity in RNA processing pathways emphasizes the importance of identifying the components involved in these processing mechanisms and their evolutionary emergence in Euglena species.

  18. Intron retention generates ANKRD1 splice variants that are co-regulated with the main transcript in normal and failing myocardium.

    PubMed

    Torrado, Mario; Iglesias, Raquel; Nespereira, Beatriz; Centeno, Alberto; López, Eduardo; Mikhailov, Alexander T

    2009-07-01

    The cardiac ankyrin repeat domain 1 protein (ANKRD1, also known as CARP) has been extensively characterized with regard to its proposed functions as a cardio-enriched transcriptional co-factor and stress-inducible myofibrillar protein. The present results show the occurrence of alternative splicing by intron retention events in the pig and human ankrd1 gene. In pig heart, ankrd1 is expressed as four alternatively spliced transcripts, three of which have non-excised introns: ankrd1-contained introns 6, 7 and 8 (i.e., ankrd1-i6,7,8), ankrd1-contained introns 7 and 8 (i.e., ankrd1-i7,8), and ankrd1 retained only intron 8 (i.e., ankrd1-i8). In the human heart, two orthologues of porcine intron-retaining ankrd1 variants (i.e., ankrd1-i8 and ankrd1-i7,8) are detected. We demonstrate that these newly-identified intron-retaining ankrd1 transcripts are functionally intact, efficiently translated into protein in vitro and exported to the cytoplasm in cardiomyocytes in vivo. In the piglet heart, both the intronless and intron-retaining ankrd1 mRNAs are co-expressed in a chamber-dependent manner being more abundant in the left as compared to the right myocardium. Our data further indicate co-upregulation of the ankrd1 spliced variants in myocardium in the porcine model of diastolic heart failure. Most significantly, we demonstrate that in vivo forced expression of recombinant intronless ankrd1 markedly increases the levels of intron-retaining ankrd1 variants (but not of the endogenous main transcript) in piglet myocardium, suggesting that ANKRD1 may positively regulate the expression of its own intron-containing RNAs in response to cardiac stress. Overall, our findings demonstrate that in cardiomyocytes ANKRD1 can exist in multiple isoforms which may contribute to the functional diversity of this factor in heart development and disease.

  19. The intron 1 of HPV 16 has a suboptimal branch point at a guanosine.

    PubMed

    De la Rosa-Rios, Marco Antonio; Martínez-Salazar, Martha; Martínez-Garcia, Martha; González-Bonilla, César; Villegas-Sepúlveda, Nicolás

    2006-06-01

    The branch point sequence (BPS) of intron 1 of the HPV-16 was determined via RT-PCR in a cell free system, using lariat intermediates obtained by in vitro splicing reactions. We used synthetic E6/E7 transcripts and HeLa nuclear protein extracts to obtain the splicing intermediates. Then, a divergent oligonucleotide primer set, pairing on the lariat RNA that encompassed the 2'-5' phosphodiester bond formed between the 5' end of the intron and the BPS, was used for cDNA synthesis and PCR amplification. Subsequent RT-PCR assays revealed four splicing intermediates, made up of a major intermediary corresponding to the BPS and four cryptic branched sequences. Only intermediates bound at the 5' end of the intron are probably the authentic branch point sequence, and all of them branch at guanosine 328 instead of the typical adenosine. Unusually, the BPS of intron 1 of HPV-16 is a suboptimal sequence (AGUGAGU) that differs from the eukaryotic consensus BPS, which correlates with the splicing profile observed for early transcripts of HPV-16 in tumors and tumor derived cell lines. The implications of this unusual branch point sequence for splicing of the HPV-16 pre-mRNA are discussed.

  20. Nucleotide sequence of the ribosomal RNA gene of Physarum polycephalum: intron 2 and its flanking regions of the 26S rRNA gene.

    PubMed Central

    Nomiyama, H; Kuhara, S; Kukita, T; Otsuka, T; Sakaki, Y

    1981-01-01

    The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved. Images PMID:6171776

  1. ERP evidence of distinct processes underlying semantic facilitation and interference in word production.

    PubMed

    Python, Grégoire; Fargier, Raphaël; Laganaro, Marina

    2018-02-01

    In everyday conversations, we take advantage of lexical-semantic contexts to facilitate speech production, but at the same time, we also have to reduce interference and inhibit semantic competitors. The blocked cyclic naming paradigm (BCNP) has been used to investigate such context effects. Typical results on production latencies showed semantic facilitation (or no effect) during the first presentation cycle, and interference emerging in subsequent cycles. Even if semantic contexts might be just as facilitative as interfering, previous BCNP studies focused on interference, which was interpreted as reflecting lemma selection and self-monitoring processes. Facilitation in the first cycle was rarely considered/analysed, although it potentially informs on word production to the same extent as interference. Here we contrasted the event-related potential (ERP) signatures of both semantic facilitation and interference in a BCNP. ERPs differed between homogeneous and heterogeneous blocks from about 365 msec post picture onset in the first cycle (facilitation) and in an earlier time-window (270 msec post picture onset) in the third cycle (interference). Three different analyses of the ERPs converge towards distinct processes underlying semantic facilitation and interference (post-lexical vs lexical respectively). The loci of semantic facilitation and interference are interpreted in the context of different theoretical frameworks of language production: the post-lexical locus of semantic facilitation involves interactive phonological-semantic processes and/or self-monitoring, whereas the lexical locus of semantic interference is in line with selection through increased lexical competition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Emotional words facilitate lexical but not early visual processing.

    PubMed

    Trauer, Sophie M; Kotz, Sonja A; Müller, Matthias M

    2015-12-12

    Emotional scenes and faces have shown to capture and bind visual resources at early sensory processing stages, i.e. in early visual cortex. However, emotional words have led to mixed results. In the current study ERPs were assessed simultaneously with steady-state visual evoked potentials (SSVEPs) to measure attention effects on early visual activity in emotional word processing. Neutral and negative words were flickered at 12.14 Hz whilst participants performed a Lexical Decision Task. Emotional word content did not modulate the 12.14 Hz SSVEP amplitude, neither did word lexicality. However, emotional words affected the ERP. Negative compared to neutral words as well as words compared to pseudowords lead to enhanced deflections in the P2 time range indicative of lexico-semantic access. The N400 was reduced for negative compared to neutral words and enhanced for pseudowords compared to words indicating facilitated semantic processing of emotional words. LPC amplitudes reflected word lexicality and thus the task-relevant response. In line with previous ERP and imaging evidence, the present results indicate that written emotional words are facilitated in processing only subsequent to visual analysis.

  3. Quaternary arrangement of an active, native group II intron ribonucleoprotein complex revealed by small-angle X-ray scattering.

    PubMed

    Gupta, Kushol; Contreras, Lydia M; Smith, Dorie; Qu, Guosheng; Huang, Tao; Spruce, Lynn A; Seeholzer, Steven H; Belfort, Marlene; Van Duyne, Gregory D

    2014-04-01

    The stable ribonucleoprotein (RNP) complex formed between the Lactococcus lactis group II intron and its self-encoded LtrA protein is essential for the intron's genetic mobility. In this study, we report the biochemical, compositional, hydrodynamic and structural properties of active group II intron RNP particles (+A) isolated from its native host using a novel purification scheme. We employed small-angle X-ray scattering to determine the structural properties of these particles as they exist in solution. Using sucrose as a contrasting agent, we derived a two-phase quaternary model of the protein-RNA complex. This approach revealed that the spatial properties of the complex are largely defined by the RNA component, with the protein dimer located near the center of mass. A transfer RNA fusion engineered into domain II of the intron provided a distinct landmark consistent with this interpretation. Comparison of the derived +A RNP shape with that of the previously reported precursor intron (ΔA) particle extends previous findings that the loosely packed precursor RNP undergoes a dramatic conformational change as it compacts into its active form. Our results provide insights into the quaternary arrangement of these RNP complexes in solution, an important step to understanding the transition of the group II intron from the precursor to a species fully active for DNA invasion.

  4. Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron.

    PubMed

    Emblem, Åse; Karlsen, Bård Ove; Evertsen, Jussi; Johansen, Steinar D

    2011-11-01

    Group I introns are genetic insertion elements that invade host genomes in a wide range of organisms. In metazoans, however, group I introns are extremely rare, so far only identified within mitogenomes of hexacorals and some sponges. We sequenced the complete mitogenome of the cold-water scleractinian coral Lophelia pertusa, the dominating deep sea reef-building coral species in the North Atlantic Ocean. The mitogenome (16,150 bp) has the same gene content but organized in a unique gene order compared to that of other known scleractinian corals. A complex group I intron (6460 bp) inserted in the ND5 gene (position 717) was found to host seven essential mitochondrial protein genes and one ribosomal RNA gene. Phylogenetic analysis supports a vertical inheritance pattern of the ND5-717 intron among hexacoral mitogenomes with no examples of intron loss. Structural assessments of the Lophelia intron revealed an unusual organization that lacks the universally conserved ωG at the 3' end, as well as a highly compact RNA core structure with overlapping ribozyme and protein coding capacities. Based on phylogenetic and structural analyses we reconstructed the evolutionary history of ND5-717, from its ancestral protist origin, through intron loss in some early metazoan lineages, and into a compulsory feature with functional implications in hexacorals. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation.

    PubMed

    Naro, Chiara; Jolly, Ariane; Di Persio, Sara; Bielli, Pamela; Setterblad, Niclas; Alberdi, Antonio J; Vicini, Elena; Geremia, Raffaele; De la Grange, Pierre; Sette, Claudio

    2017-04-10

    Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Sequence Variation of the tRNALeu Intron as a Marker for Genetic Diversity and Specificity of Symbiotic Cyanobacteria in Some Lichens

    PubMed Central

    Paulsrud, Per; Lindblad, Peter

    1998-01-01

    We examined the genetic diversity of Nostoc symbionts in some lichens by using the tRNALeu (UAA) intron as a genetic marker. The nucleotide sequence was analyzed in the context of the secondary structure of the transcribed intron. Cyanobacterial tRNALeu (UAA) introns were specifically amplified from freshly collected lichen samples without previous DNA extraction. The lichen species used in the present study were Nephroma arcticum, Peltigera aphthosa, P. membranacea, and P. canina. Introns with different sizes around 300 bp were consistently obtained. Multiple clones from single PCRs were screened by using their single-stranded conformational polymorphism pattern, and the nucleotide sequence was determined. No evidence for sample heterogenity was found. This implies that the symbiont in situ is not a diverse community of cyanobionts but, rather, one Nostoc strain. Furthermore, each lichen thallus contained only one intron type, indicating that each thallus is colonized only once or that there is a high degree of specificity. The same cyanobacterial intron sequence was also found in samples of one lichen species from different localities. In a phylogenetic analysis, the cyanobacterial lichen sequences grouped together with the sequences from two free-living Nostoc strains. The size differences in the intron were due to insertions and deletions in highly variable regions. The sequence data were used in discussions concerning specificity and biology of the lichen symbiosis. It is concluded that the tRNALeu (UAA) intron can be of great value when examining cyanobacterial diversity. PMID:9435083

  7. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species.

    PubMed

    Liu, Yanbin; Yap, Sihui Amy; Koh, Chong Mei John; Ji, Lianghui

    2016-11-25

    Red yeast species in the Rhodotorula/Rhodosporidium genus are outstanding producers of triacylglyceride and cell biomass. Metabolic engineering is expected to further enhance the productivity and versatility of these hosts for the production of biobased chemicals and fuels. Promoters with strong activity during oil-accumulation stage are critical tools for metabolic engineering of these oleaginous yeasts. The upstream DNA sequences of 6 genes involved in lipid biosynthesis or accumulation in Rhodotorula toruloides were studied by luciferase reporter assay. The promoter of perilipin/lipid droplet protein 1 gene (LDP1) displayed much stronger activity (4-11 folds) than that of glyceraldehyde-3-phosphate dehydrogenase gene (GPD1), one of the strongest promoters known in yeasts. Depending on the stage of cultivation, promoter of acetyl-CoA carboxylase gene (ACC1) and fatty acid synthase β subunit gene (FAS1) exhibited intermediate strength, displaying 50-160 and 20-90% levels of GPD1 promoter, respectively. Interestingly, introns significantly modulated promoter strength at high frequency. The incorporation of intron 1 and 2 of LDP1 (LDP1in promoter) enhanced its promoter activity by 1.6-3.0 folds. Similarly, the strength of ACC1 promoter was enhanced by 1.5-3.2 folds if containing intron 1. The intron 1 sequences of ACL1 and FAS1 also played significant regulatory roles. When driven by the intronic promoters of ACC1 and LDP1 (ACC1in and LDP1in promoter, respectively), the reporter gene expression were up-regulated by nitrogen starvation, independent of de novo oil biosynthesis and accumulation. As a proof of principle, overexpression of the endogenous acyl-CoA-dependent diacylglycerol acyltransferase 1 gene (DGA1) by LDP1in promoter was significantly more efficient than GPD1 promoter in enhancing lipid accumulation. Intronic sequences play an important role in regulating gene expression in R. toruloides. Three intronic promoters, LDP1in, ACC1in and FAS1in, are

  8. The m6A pathway facilitates sex determination in Drosophila

    PubMed Central

    Kan, Lijuan; Grozhik, Anya V.; Vedanayagam, Jeffrey; Patil, Deepak P.; Pang, Nan; Lim, Kok-Seong; Huang, Yi-Chun; Joseph, Brian; Lin, Ching-Jung; Despic, Vladimir; Guo, Jian; Yan, Dong; Kondo, Shu; Deng, Wu-Min; Dedon, Peter C.; Jaffrey, Samie R.; Lai, Eric C.

    2017-01-01

    The conserved modification N6-methyladenosine (m6A) modulates mRNA processing and activity. Here, we establish the Drosophila system to study the m6A pathway. We first apply miCLIP to map m6A across embryogenesis, characterize its m6A ‘writer’ complex, validate its YTH ‘readers’ CG6422 and YT521-B, and generate mutants in five m6A factors. While m6A factors with additional roles in splicing are lethal, m6A-specific mutants are viable but present certain developmental and behavioural defects. Notably, m6A facilitates the master female determinant Sxl, since multiple m6A components enhance female lethality in Sxl sensitized backgrounds. The m6A pathway regulates Sxl processing directly, since miCLIP data reveal Sxl as a major intronic m6A target, and female-specific Sxl splicing is compromised in multiple m6A pathway mutants. YT521-B is a dominant m6A effector for Sxl regulation, and YT521-B overexpression can induce female-specific Sxl splicing. Overall, our transcriptomic and genetic toolkit reveals in vivo biologic function for the Drosophila m6A pathway. PMID:28675155

  9. Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching

    PubMed Central

    Filichkin, Sergei A.; Hamilton, Michael; Dharmawardhana, Palitha D.; Singh, Sunil K.; Sullivan, Christopher; Ben-Hur, Asa; Reddy, Anireddy S. N.; Jaiswal, Pankaj

    2018-01-01

    Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns – a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses. PMID:29483921

  10. cisprimertool: software to implement a comparative genomics strategy for the development of conserved intron scanning (CIS) markers.

    PubMed

    Jayashree, B; Jagadeesh, V T; Hoisington, D

    2008-05-01

    The availability of complete, annotated genomic sequence information in model organisms is a rich resource that can be extended to understudied orphan crops through comparative genomic approaches. We report here a software tool (cisprimertool) for the identification of conserved intron scanning regions using expressed sequence tag alignments to a completely sequenced model crop genome. The method used is based on earlier studies reporting the assessment of conserved intron scanning primers (called CISP) within relatively conserved exons located near exon-intron boundaries from onion, banana, sorghum and pearl millet alignments with rice. The tool is freely available to academic users at http://www.icrisat.org/gt-bt/CISPTool.htm. © 2007 ICRISAT.

  11. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    PubMed

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome. © 2015 Collins et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Expression analysis and in silico characterization of intronic long noncoding RNAs in renal cell carcinoma: emerging functional associations

    PubMed Central

    2013-01-01

    Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC. Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them

  13. Discovering weighted patterns in intron sequences using self-adaptive harmony search and back-propagation algorithms.

    PubMed

    Huang, Yin-Fu; Wang, Chia-Ming; Liou, Sing-Wu

    2013-01-01

    A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete.

  14. ExDom: an integrated database for comparative analysis of the exon–intron structures of protein domains in eukaryotes

    PubMed Central

    Bhasi, Ashwini; Philip, Philge; Manikandan, Vinu; Senapathy, Periannan

    2009-01-01

    We have developed ExDom, a unique database for the comparative analysis of the exon–intron structures of 96 680 protein domains from seven eukaryotic organisms (Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Danio rerio, Gallus gallus and Arabidopsis thaliana). ExDom provides integrated access to exon-domain data through a sophisticated web interface which has the following analytical capabilities: (i) intergenomic and intragenomic comparative analysis of exon–intron structure of domains; (ii) color-coded graphical display of the domain architecture of proteins correlated with their corresponding exon-intron structures; (iii) graphical analysis of multiple sequence alignments of amino acid and coding nucleotide sequences of homologous protein domains from seven organisms; (iv) comparative graphical display of exon distributions within the tertiary structures of protein domains; and (v) visualization of exon–intron structures of alternative transcripts of a gene correlated to variations in the domain architecture of corresponding protein isoforms. These novel analytical features are highly suited for detailed investigations on the exon–intron structure of domains and make ExDom a powerful tool for exploring several key questions concerning the function, origin and evolution of genes and proteins. ExDom database is freely accessible at: http://66.170.16.154/ExDom/. PMID:18984624

  15. Genome-wide identification, phylogenetic classification, and exon-intron structure characterisation of the tubulin and actin genes in flax (Linum usitatissimum).

    PubMed

    Pydiura, Nikolay; Pirko, Yaroslav; Galinousky, Dmitry; Postovoitova, Anastasiia; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2018-06-08

    Flax (Linum usitatissimum L.) is a valuable food and fiber crop cultivated for its quality fiber and seed oil. α-, β-, γ-tubulins and actins are the main structural proteins of the cytoskeleton. α- and γ-tubulin and actin genes have not been characterized yet in the flax genome. In this study, we have identified 6 α-tubulin genes, 13 β-tubulin genes, 2 γ-tubulin genes, and 15 actin genes in the flax genome and analysed the phylogenetic relationships between flax and A. thaliana tubulin and actin genes. Six α-tubulin genes are represented by 3 paralogous pairs, among 13 β-tubulin genes 7 different isotypes can be distinguished, 6 of which are encoded by two paralogous genes each. γ-tubulin is represented by a paralogous pair of genes one of which may be not functional. Fifteen actin genes represent 7 paralogous pairs - 7 actin isotypes and a sequentially duplicated copy of one of the genes of one of the isotypes. Exon-intron structure analysis has shown intron length polymorphism within the β-tubulin genes and intron number variation among the α-tubulin gene: 3 or 4 introns are found in two or four genes, respectively. Intron positioning occurs at conservative sites, as observed in numerous other plant species. Flax actin genes show both intron length polymorphisms and variation in the number of intron that may be 2 or 3. These data will be useful to support further studies on the specificity, functioning, regulation and evolution of the flax cytoskeleton proteins. This article is protected by copyright. All rights reserved.

  16. The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells

    PubMed Central

    Barnea-Yizhar, Ofer; Ram, Sigal; Kovalev, Ekaterina; Azriel, Aviva; Rand, Ulfert; Nakayama, Manabu; Hauser, Hansjörg; Gepstein, Lior; Levi, Ben-Zion

    2016-01-01

    Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation. PMID:27257682

  17. Discovering Weighted Patterns in Intron Sequences Using Self-Adaptive Harmony Search and Back-Propagation Algorithms

    PubMed Central

    Wang, Chia-Ming; Liou, Sing-Wu

    2013-01-01

    A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete. PMID:23737711

  18. Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays

    PubMed Central

    Sugnet, Charles W; Srinivasan, Karpagam; Clark, Tyson A; O'Brien, Georgeann; Cline, Melissa S; Wang, Hui; Williams, Alan; Kulp, David; Blume, John E; Haussler, David; Ares, Manuel

    2006-01-01

    Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families. PMID:16424921

  19. Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera).

    PubMed

    Dool, Serena E; Puechmaille, Sebastien J; Foley, Nicole M; Allegrini, Benjamin; Bastian, Anna; Mutumi, Gregory L; Maluleke, Tinyiko G; Odendaal, Lizelle J; Teeling, Emma C; Jacobs, David S

    2016-04-01

    Despite many studies illustrating the perils of utilising mitochondrial DNA in phylogenetic studies, it remains one of the most widely used genetic markers for this purpose. Over the last decade, nuclear introns have been proposed as alternative markers for phylogenetic reconstruction. However, the resolution capabilities of mtDNA and nuclear introns have rarely been quantified and compared. In the current study we generated a novel ∼5kb dataset comprising six nuclear introns and a mtDNA fragment. We assessed the relative resolution capabilities of the six intronic fragments with respect to each other, when used in various combinations together, and when compared to the traditionally used mtDNA. We focused on a major clade in the horseshoe bat family (Afro-Palaearctic clade; Rhinolophidae) as our case study. This old, widely distributed and speciose group contains a high level of conserved morphology. This morphological stasis renders the reconstruction of the phylogeny of this group with traditional morphological characters complex. We sampled multiple individuals per species to represent their geographic distributions as best as possible (122 individuals, 24 species, 68 localities). We reconstructed the species phylogeny using several complementary methods (partitioned Maximum Likelihood and Bayesian and Bayesian multispecies-coalescent) and made inferences based on consensus across these methods. We computed pairwise comparisons based on Robinson-Foulds tree distance metric between all Bayesian topologies generated (27,000) for every gene(s) and visualised the tree space using multidimensional scaling (MDS) plots. Using our supported species phylogeny we estimated the ancestral state of key traits of interest within this group, e.g. echolocation peak frequency which has been implicated in speciation. Our results revealed many potential cryptic species within this group, even in taxa where this was not suspected a priori and also found evidence for mt

  20. A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome.

    PubMed

    Nozu, Kandai; Iijima, Kazumoto; Nozu, Yoshimi; Ikegami, Ei; Imai, Takehide; Fu, Xue Jun; Kaito, Hiroshi; Nakanishi, Koichi; Yoshikawa, Norishige; Matsuo, Masafumi

    2009-11-01

    Many mutations have been detected in the SLC12A3 gene of Gitelman syndrome (GS, OMIM 263800) patients. In previous studies, only one mutant allele was detected in approximately 20 to 41% of patients with GS; however, the exact reason for the nonidentification has not been established. In this study, we used RT-PCR using mRNA to investigate for the first time transcript abnormalities caused by deep intronic mutation. Direct sequencing analysis of leukocyte DNA identified one base insertion in exon 6 (c.818_819insG), but no mutation was detected in another allele. We analyzed RNA extracted from leukocytes and urine sediments and detected unknown sequence containing 238bp between exons 13 and 14. The genomic DNA analysis of intron 13 revealed a single-base substitution (c.1670-191C>T) that creates a new donor splice site within the intron resulting in the inclusion of a novel cryptic exon in mRNA. This is the first report of creation of a splice site by a deep intronic single-nucleotide change in GS and the first report to detect the onset mechanism in a patient with GS and missing mutation in one allele. This molecular onset mechanism may partly explain the poor success rate of mutation detection in both alleles of patients with GS.

  1. Novel BRCA1 mutations and more frequent intron-20 alteration found among 236 women from Western Poland.

    PubMed

    Sobczak, K; Kozłowski, P; Napierała, M; Czarny, J; Woźniak, M; Kapuścińska, M; Lośko, M; Koziczak, M; Jasińska, A; Powierska, J; Braczkowski, R; Breborowicz, J; Godlewski, D; Mackiewicz, A; Krzyzosiak, W

    1997-10-09

    Three different novel BRCA1 mutations, five independent cases of the same 12 bp insertion-duplication in intron-20 and two novel rare BRCA1 sequence variants were identified among 122 Polish women with positive, in most cases moderate family history of breast and/or ovarian cancer, 80 controls and 34 unselected breast cancer tissue specimens. All mutations and variants were germline. The 4153 delA frameshift mutation, the Tyr105Cys missense mutation and two cases of the alteration in intron-20 were found in the group of healthy women with positive family history. Two other cases of the intronic insertion were found in unselected controls. Their carriers had no family history of breast or ovarian cancer but other cancers occurred in their families. The 1782 Trp/STOP nonsense mutation and one case of the insertion in intron-20 were first found in tissue specimens of breast cancer patient and breast/ovarian cancer patient, respectively. Their carriers also had no family history of breast or ovarian cancer. The distribution of the insertion in intron-20 in analysed groups and results of RT-PCR experiments suggest a less prominent role for this variant considered earlier a splicing mutation. This study shows also, that more population-oriented research is needed, involving women with less profound or even no family history of breast and ovarian cancer, to better understand the role and significance of different BRCA1 variants and mutations.

  2. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  3. Metazoan tRNA introns generate stable circular RNAs in vivo

    PubMed Central

    Lu, Zhipeng; Filonov, Grigory S.; Noto, John J.; Schmidt, Casey A.; Hatkevich, Talia L.; Wen, Ying; Jaffrey, Samie R.; Matera, A. Gregory

    2015-01-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating “designer” circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. PMID:26194134

  4. Interactions between Depression and Facilitation within Neural Networks: Updating the Dual-Process Theory of Plasticity

    PubMed Central

    Prescott, Steven A.

    1998-01-01

    Repetitive stimulation often results in habituation of the elicited response. However, if the stimulus is sufficiently strong, habituation may be preceded by transient sensitization or even replaced by enduring sensitization. In 1970, Groves and Thompson formulated the dual-process theory of plasticity to explain these characteristic behavioral changes on the basis of competition between decremental plasticity (depression) and incremental plasticity (facilitation) occurring within the neural network. Data from both vertebrate and invertebrate systems are reviewed and indicate that the effects of depression and facilitation are not exclusively additive but, rather, that those processes interact in a complex manner. Serial ordering of induction of learning, in which a depressing locus precedes the modulatory system responsible for inducing facilitation, causes the facilitation to wane. The parallel and/or serial expression of depression and waning facilitation within the stimulus–response pathway culminates in the behavioral changes that characterize dual-process learning. A mathematical model is presented to formally express and extend understanding of the interactions between depression and facilitation. PMID:10489261

  5. Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.

    PubMed

    Weber, U; Beier, H; Gross, H J

    1996-06-15

    The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.

  6. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae.

    PubMed

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-10-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.

  7. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae

    PubMed Central

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-01-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species. PMID:24736785

  8. Antisense oligonucleotides effectively inhibit the co-transcriptional splicing of a Candida group I intron in vitro and in vivo: Implications for antifungal therapeutics.

    PubMed

    Zhang, Libin; Leibowitz, Michael J; Zhang, Yi

    2009-02-18

    Self-splicing of group I intron from the 26S rRNA of Candida albicans is essential for maturation of the host RNA. Here, we demonstrated that the co-transcriptional splicing of the intron in vitro was blocked by antisense oligonucleotides (AONs) targeting the P3-P7 core of the intron. The core-targeted AON effectively and specifically inhibited the intron splicing from its host RNA in living C. albicans. Furthermore, flow cytometry experiments showed that the growth inhibition was caused by a fungicidal effect. For the first time, we showed that an AON targeting the ribozyme core folding specifically inhibits the endogenous ribozyme splicing in living cells and specifically kills the intron-containing fungal strains, which sheds light on the development of antifungal drugs in the future.

  9. Attention and emotion: an ERP analysis of facilitated emotional stimulus processing.

    PubMed

    Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2003-06-11

    Recent event-related potential studies observed an early posterior negativity (EPN) reflecting facilitated processing of emotional images. The present study explored if the facilitated processing of emotional pictures is sustained while subjects perform an explicit non-emotional attention task. EEG was recorded from 129 channels while subjects viewed a rapid continuous stream of images containing emotional pictures as well as task-related checkerboard images. As expected, explicit selective attention to target images elicited large P3 waves. Interestingly, emotional stimuli guided stimulus-driven selective encoding as reflected by augmented EPN amplitudes to emotional stimuli, in particular to stimuli of evolutionary significance (erotic contents, mutilations, and threat). These data demonstrate the selective encoding of emotional stimuli while top-down attentional control was directed towards non-emotional target stimuli.

  10. Variants in intron 13 of the ELMO1 gene are associated with diabetic nephropathy in African Americans

    PubMed Central

    Leak, T. S.; Perlegas, P.S.; Smith, S.G.; Keene, K.L.; Hicks, P.J.; Langefeld, C.D.; Mychaleckyj, J.C.; Rich, S.S.; Kirk, J.K.; Freedman, B.I.; Bowden, D.W.; Sale, M.M.

    2009-01-01

    Variants in the engulfment and cell motility 1 (ELMO1) gene are associated with nephropathy due to type 2 diabetes mellitus (T2DM) in a Japanese cohort. We comprehensively evaluated this gene in African American (AA) T2DM patients with end-stage renal disease (ESRD). Three hundred nine HapMap tagging SNPs and 9 reportedly associated SNPs were genotyped in 577 AA T2DM-ESRD patients and 596 AA non-diabetic controls, plus 43 non-diabetic European American controls and 45 Yoruba Nigerian samples for admixture adjustment. Replication analyses were conducted in 558 AAs with T2DM-ESRD and 564 controls without diabetes. Extension analyses included 328 AA with T2DM lacking nephropathy and 326 with non-diabetic ESRD. The original and replication analyses confirmed association with four SNPs in intron 13 (permutation p-values for combined analyses = 0.001-0.003), one in intron 1 (P=0.004) and one in intron 5 (P=0.002) with T2DM-associated ESRD. In a subsequent combined analysis of all 1,135 T2DM-ESRD cases and 1,160 controls, an additional 7 intron 13 SNPs produced evidence of association (P = 3.5×10-5 – P=0.05). No associations were seen with these SNPs in those with T2DM lacking nephropathy or with ESRD due to non-diabetic causes. Variants in intron 13 of the ELMO1 gene appear to confer risk for diabetic nephropathy in AA. PMID:19183347

  11. The utility of DNA sequences of an intron from the beta-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae).

    PubMed

    Prychitko, T M; Moore, W S

    1997-10-01

    Estimating phylogenies from DNA sequence data has become the major methodology of molecular phylogenetics. To date, molecular phylogenetics of the vertebrates has been very dependent on mtDNA, but studies involving mtDNA are limited because the several genes comprising the mt-genome are inherited as a single linkage group. The only apparent solution to this problem is to sequence additional genes, each representing a distinct linkage group, so that the resultant gene trees provide independent estimates of the species tree. There exists the need to find novel gene sequences which contain enough phylogenetic information to resolve relationships between closely related species. A possible source is the nuclear-encoded introns, because they evolve more rapidly than exons. We designed primers to amplify and sequence the 7 intron from the beta-fibrinogen gene for a recently evolved group, the woodpeckers. We sequenced the entire intron for 10 specimens representing five species. Nucleotide substitutions are randomly distributed along the length of the intron, suggesting selective neutrality. A preliminary analysis indicates that the phylogenetic signal in the intron is as strong as that in the mitochondrial encoded cytochrome b (cyt b) gene. The topology of the beta-fibrinogen tree is identical to that of the cyt b tree. This analysis demonstrates the ability of the 7 intron of beta-fibrinogen to provide well resolved, independent gene trees for recently evolved groups and establishes it as a source of sequences to be used in other phylogenetic studies. Copyright 1997 Academic Press

  12. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

    PubMed

    Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia

    2016-09-12

    Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.

  13. Barriers to and facilitators of the acceptance process for individuals with serious mental illness.

    PubMed

    Mizock, Lauren; Russinova, Zlatka; Millner, Uma Chandrika

    2014-09-01

    The process of acceptance of mental illness is a central component of recovery and has been linked to functioning, illness management, and quality of life. A number of barriers and facilitators have been theorized as impacting this process. This study was conducted with 30 participants with serious mental illness (a major psychiatric disorder with impairment in multiple areas of functioning) to elicit the barriers to and facilitators of the acceptance of mental illness. Grounded theory methodology was utilized to analyze the 30 semistructured interviews. Results revealed barriers to and facilitators of acceptance of mental illness at the micro level (cognitive, emotional, behavioral, identity-related), meso level (relational), and macro level (cultural, systemic). Clinical and research implications are discussed with regard to facilitating acceptance of mental illness. © The Author(s) 2014.

  14. How Batterer Intervention Programs Work: Participant and Facilitator Accounts of Processes of Change

    ERIC Educational Resources Information Center

    Silvergleid, Courtenay S.; Mankowski, Eric S.

    2006-01-01

    Understanding what facilitates change in men who perpetrate domestic violence can aid the development of more effective batterer intervention programs (BIPs). To identify and describe key change processes, in-depth interviews were conducted with nine successful BIP completers and with 10 intervention group facilitators. The accounts described a…

  15. Facilitated early cortical processing of nude human bodies.

    PubMed

    Alho, Jussi; Salminen, Nelli; Sams, Mikko; Hietanen, Jari K; Nummenmaa, Lauri

    2015-07-01

    Functional brain imaging has identified specialized neural systems supporting human body perception. Responses to nude vs. clothed bodies within this system are amplified. However, it remains unresolved whether nude and clothed bodies are processed by same cerebral networks or whether processing of nude bodies recruits additional affective and arousal processing areas. We recorded simultaneous MEG and EEG while participants viewed photographs of clothed and nude bodies. Global field power revealed a peak ∼145ms after stimulus onset to both clothed and nude bodies, and ∼205ms exclusively to nude bodies. Nude-body-sensitive responses were centered first (100-200ms) in the extrastriate and fusiform body areas, and subsequently (200-300ms) in affective-motivational areas including insula and anterior cingulate cortex. We conclude that visibility of sexual features facilitates early cortical processing of human bodies, the purpose of which is presumably to trigger sexual behavior and ultimately ensure reproduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Process factors facilitating and inhibiting medical ethics teaching in small groups.

    PubMed

    Bentwich, Miriam Ethel; Bokek-Cohen, Ya'arit

    2017-11-01

    To examine process factors that either facilitate or inhibit learning medical ethics during case-based learning. A qualitative research approach using microanalysis of transcribed videotaped discussions of three consecutive small-group learning (SGL) sessions on medical ethics teaching (MET) for three groups, each with 10 students. This research effort revealed 12 themes of learning strategies, divided into 6 coping and 6 evasive strategies. Cognitive-based strategies were found to relate to Kamin's model of critical thinking in medical education, thereby supporting our distinction between the themes of coping and evasive strategies. The findings also showed that cognitive efforts as well as emotional strategies are involved in discussions of ethical dilemmas. Based on Kamin's model and the constructivist learning theory, an examination of the different themes within the two learning strategies-coping and evasive-revealed that these strategies may be understood as corresponding to process factors either facilitating or inhibiting MET in SGL, respectively. Our classification offers a more nuanced observation, specifically geared to pinpointing the desired and less desired process factors in the learning involved in MET in the SGL environment. Two key advantages of this observation are: (1) it brings to the forefront process factors that may inhibit and not merely facilitate MET in SGL and (2) it acknowledges the existence of emotional and not just cognitive process factors. Further enhancement of MET in SGL may thus be achieved based on these observations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. A mutation in yeast mitochondrial DNA results in a precise excision of the terminal intron of the cytochrome b gene.

    PubMed

    Hill, J; McGraw, P; Tzagoloff, A

    1985-03-25

    The yeast nuclear gene CBP2 was previously proposed to code for a protein necessary for processing of the terminal intron in the cytochrome b pre-mRNA (McGraw, P., and Tzagoloff, A. (1983) J. Biol. Chem. 258, 9459-9468). In the present study we describe a mitochondrial mutation capable of suppressing the respiratory deficiency of cbp2 mutants. The mitochondrial suppressor mutation has been shown to be the result of a precise excision of the last intervening sequence from the cytochrome b gene. Strains with the altered mitochondrial DNA have normal levels of mature cytochrome b mRNA and of cytochrome b and exhibit wild type growth on glycerol. These results confirm that CBP2 codes for a protein specifically required for splicing of the cytochrome b intron and further suggest that absence of the intervening sequence does not noticeably affect the expression of respiratory function in mitochondria.

  18. Nucleotide sequence of the COX1 gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron.

    PubMed

    Hardy, C M; Clark-Walker, G D

    1991-07-01

    The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.

  19. A contracted DNA repeat in LHX3 intron 5 is associated with aberrant splicing and pituitary dwarfism in German shepherd dogs.

    PubMed

    Voorbij, Annemarie M W Y; van Steenbeek, Frank G; Vos-Loohuis, Manon; Martens, Ellen E C P; Hanson-Nilsson, Jeanette M; van Oost, Bernard A; Kooistra, Hans S; Leegwater, Peter A

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism.

  20. A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs

    PubMed Central

    Voorbij, Annemarie M. W. Y.; van Steenbeek, Frank G.; Vos-Loohuis, Manon; Martens, Ellen E. C. P.; Hanson-Nilsson, Jeanette M.; van Oost, Bernard A.; Kooistra, Hans S.; Leegwater, Peter A.

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism. PMID:22132174

  1. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases

    PubMed Central

    Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.

    2016-01-01

    Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from <1 ng of plasma RNA in <5 h. TGIRT-seq of RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030

  2. Elaboration over a Discourse Facilitates Retrieval in Sentence Processing

    PubMed Central

    Troyer, Melissa; Hofmeister, Philip; Kutas, Marta

    2016-01-01

    Language comprehension requires access to stored knowledge and the ability to combine knowledge in new, meaningful ways. Previous work has shown that processing linguistically more complex expressions (‘Texas cattle rancher’ vs. ‘rancher’) leads to slow-downs in reading during initial processing, possibly reflecting effort in combining information. Conversely, when this information must subsequently be retrieved (as in filler-gap constructions), processing is facilitated for more complex expressions, possibly because more semantic cues are available during retrieval. To follow up on this hypothesis, we tested whether information distributed across a short discourse can similarly provide effective cues for retrieval. Participants read texts introducing two referents (e.g., two senators), one of whom was described in greater detail than the other (e.g., ‘The Democrat had voted for one of the senators, and the Republican had voted for the other, a man from Ohio who was running for president’). The final sentence (e.g., ‘The senator who the {Republican/Democrat}had voted for…’) contained a relative clause picking out either the Many-Cue referent (with ‘Republican’) or the One-Cue referent (with ‘Democrat’). We predicted facilitated retrieval (faster reading times) for the Many-Cue condition at the verb region (‘had voted for’), where readers could understand that ‘The senator’ is the object of the verb. As predicted, this pattern was observed at the retrieval region and continued throughout the rest of the sentence. Participants also completed the Author/Magazine Recognition Tests (ART/MRT; Stanovich and West, 1989), providing a proxy for world knowledge. Since higher ART/MRT scores may index (a) greater experience accessing relevant knowledge and/or (b) richer/more highly structured representations in semantic memory, we predicted it would be positively associated with effects of elaboration on retrieval. We did not observe the

  3. Elaboration over a Discourse Facilitates Retrieval in Sentence Processing.

    PubMed

    Troyer, Melissa; Hofmeister, Philip; Kutas, Marta

    2016-01-01

    Language comprehension requires access to stored knowledge and the ability to combine knowledge in new, meaningful ways. Previous work has shown that processing linguistically more complex expressions ('Texas cattle rancher' vs. 'rancher') leads to slow-downs in reading during initial processing, possibly reflecting effort in combining information. Conversely, when this information must subsequently be retrieved (as in filler-gap constructions), processing is facilitated for more complex expressions, possibly because more semantic cues are available during retrieval. To follow up on this hypothesis, we tested whether information distributed across a short discourse can similarly provide effective cues for retrieval. Participants read texts introducing two referents (e.g., two senators), one of whom was described in greater detail than the other (e.g., 'The Democrat had voted for one of the senators, and the Republican had voted for the other, a man from Ohio who was running for president'). The final sentence (e.g., 'The senator who the {Republican/Democrat}had voted for…') contained a relative clause picking out either the Many-Cue referent (with 'Republican') or the One-Cue referent (with 'Democrat'). We predicted facilitated retrieval (faster reading times) for the Many-Cue condition at the verb region ('had voted for'), where readers could understand that 'The senator' is the object of the verb. As predicted, this pattern was observed at the retrieval region and continued throughout the rest of the sentence. Participants also completed the Author/Magazine Recognition Tests (ART/MRT; Stanovich and West, 1989), providing a proxy for world knowledge. Since higher ART/MRT scores may index (a) greater experience accessing relevant knowledge and/or (b) richer/more highly structured representations in semantic memory, we predicted it would be positively associated with effects of elaboration on retrieval. We did not observe the predicted interaction between ART

  4. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention

    PubMed Central

    Yap, Karen; Lim, Zhao Qin; Khandelia, Piyush; Friedman, Brad; Makeyev, Eugene V.

    2012-01-01

    Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3′-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context. PMID:22661231

  5. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention.

    PubMed

    Yap, Karen; Lim, Zhao Qin; Khandelia, Piyush; Friedman, Brad; Makeyev, Eugene V

    2012-06-01

    Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3'-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context.

  6. Psychological needs and the facilitation of integrative processes.

    PubMed

    Ryan, R M

    1995-09-01

    The assumption that there are innate integrative or actualizing tendencies underlying personality and social development is reexamined. Rather than viewing such processes as either nonexistent or as automatic, I argue that they are dynamic and dependent upon social-contextual supports pertaining to basic human psychological needs. To develop this viewpoint, I conceptually link the notion of integrative tendencies to specific developmental processes, namely intrinsic motivation; internalization; and emotional integration. These processes are then shown to be facilitated by conditions that fulfill psychological needs for autonomy, competence, and relatedness, and forestalled within contexts that frustrate these needs. Interactions between psychological needs and contextual supports account, in part, for the domain and situational specificity of motivation, experience, and relative integration. The meaning of psychological needs (vs. wants) is directly considered, as are the relations between concepts of integration and autonomy and those of independence, individualism, efficacy, and cognitive models of "multiple selves."

  7. Parallel workflow tools to facilitate human brain MRI post-processing

    PubMed Central

    Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang

    2015-01-01

    Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043

  8. A common class of transcripts with 5'-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification.

    PubMed

    Cenik, Can; Chua, Hon Nian; Singh, Guramrit; Akef, Abdalla; Snyder, Michael P; Palazzo, Alexander F; Moore, Melissa J; Roth, Frederick P

    2017-03-01

    Introns are found in 5' untranslated regions (5'UTRs) for 35% of all human transcripts. These 5'UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5'UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5'UTR intron status, we developed a classifier that can predict 5'UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5 ' proximal- i ntron- m inus-like-coding regions ("5IM" transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5' cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5' proximal positions. Finally, N 1 -methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5' proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N 1 -methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC. © 2017 Cenik et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Familial early-onset dementia with tau intron 10 + 16 mutation with clinical features similar to those of Alzheimer disease.

    PubMed

    Doran, Mark; du Plessis, Daniel G; Ghadiali, Eric J; Mann, David M A; Pickering-Brown, Stuart; Larner, Andrew J

    2007-10-01

    Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) owing to the tau intron 10 + 16 mutation usually occurs with a prototypical frontotemporal dementia phenotype with prominent disinhibition and affective disturbances. To report a new FTDP-17 pedigree with the tau intron 10 + 16 mutation demonstrating a clinical phenotype suggestive of Alzheimer disease. Case reports. Regional neuroscience centers in northwest England. Patients We examined 4 members of a kindred in which 8 individuals were affected in 3 generations. All 4 patients reported memory difficulty. Marked anomia was also present, but behavioral disturbances were conspicuously absent in the early stages of disease. All patients had an initial clinical diagnosis of Alzheimer disease. No mutations were found in the presenilin or amyloid precursor protein genes. Pathologic examination of the proband showed features typical of FTDP-17, and tau gene analysis showed the intron 10 + 16 mutation. This pedigree illustrates the phenotypic variability of tau intron 10 + 16 mutations. In pedigrees with a clinical diagnosis of Alzheimer disease but without presenilin or amyloid precursor protein gene mutations, tau gene mutations may be found.

  10. Metazoan tRNA introns generate stable circular RNAs in vivo.

    PubMed

    Lu, Zhipeng; Filonov, Grigory S; Noto, John J; Schmidt, Casey A; Hatkevich, Talia L; Wen, Ying; Jaffrey, Samie R; Matera, A Gregory

    2015-09-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating "designer" circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. © 2015 Lu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice

    PubMed Central

    Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371

  12. Intronic deletions in the SLC34A3 gene: A cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria

    PubMed Central

    Ichikawa, Shoji; Tuchman, Shamir; Padgett, Leah R.; Gray, Amie K.; Baluarte, H. Jorge; Econs, Michael J.

    2013-01-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6 ½-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24- hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH) levels, and elevated 1,25(OH)2D level. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440–1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63 bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH. PMID:24176905

  13. Intronic deletions in the SLC34A3 gene: a cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria.

    PubMed

    Ichikawa, Shoji; Tuchman, Shamir; Padgett, Leah R; Gray, Amie K; Baluarte, H Jorge; Econs, Michael J

    2014-02-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6-1/2-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24-hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH), and elevated 1,25(OH)2D. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440-1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH. © 2013.

  14. Improvement of a yeast self-excising integrative vector by prevention of expression leakage of the intronated Cre recombinase gene during plasmid maintenance in Escherichia coli.

    PubMed

    Agaphonov, Michael O

    2017-12-01

    The use of plasmids possessing a regulatable gene coding for a site-specific recombinase together with its recognition sequences significantly facilitates genome manipulations since it allows self-excision of the portion of the genetic construct integrated into the host genome. Stable maintenance of such plasmids in Escherichia coli, which is used for plasmid preparation, requires prevention of recombinase synthesis in this host, which can be achieved by interrupting the recombinase gene with an intron. Based on this approach, Saccharomyces cerevisiae and Hansenula polymorpha self-excising vectors possessing intronated gene for Cre recombinase and its recognition sites (LoxP) were previously constructed. However, this work shows instability of the H. polymorpha vectors during plasmid maintenance in E. coli cells. This could be due to recombination between the loxP sites caused by residual expression of the cre gene. Prevention of translation reinitiation on an internal methionine codon completely solved this problem. A similar modification was made in a self-excising vector designed for S. cerevisiae. Apart from substantial improvement of yeast self-excising vectors, the obtained results also narrow down the essential part of Cre sequence. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A retained intron in the 3'-UTR of Calm3 mRNA mediates its Staufen2- and activity-dependent localization to neuronal dendrites.

    PubMed

    Sharangdhar, Tejaswini; Sugimoto, Yoichiro; Heraud-Farlow, Jacqueline; Fernández-Moya, Sandra M; Ehses, Janina; Ruiz de Los Mozos, Igor; Ule, Jernej; Kiebler, Michael A

    2017-10-01

    Dendritic localization and hence local mRNA translation contributes to synaptic plasticity in neurons. Staufen2 (Stau2) is a well-known neuronal double-stranded RNA-binding protein (dsRBP) that has been implicated in dendritic mRNA localization. The specificity of Stau2 binding to its target mRNAs remains elusive. Using individual-nucleotide resolution CLIP (iCLIP), we identified significantly enriched Stau2 binding to the 3'-UTRs of 356 transcripts. In 28 (7.9%) of those, binding occurred to a retained intron in their 3'-UTR The strongest bound 3'-UTR intron was present in the longest isoform of Calmodulin 3 ( Calm3 L ) mRNA Calm3 L 3'-UTR contains six Stau2 crosslink clusters, four of which are in this retained 3'-UTR intron. The Calm3 L mRNA localized to neuronal dendrites, while lack of the 3'-UTR intron impaired its dendritic localization. Importantly, Stau2 mediates this dendritic localization via the 3'-UTR intron, without affecting its stability. Also, NMDA-mediated synaptic activity specifically promoted the dendritic mRNA localization of the Calm3 L isoform, while inhibition of synaptic activity reduced it substantially. Together, our results identify the retained intron as a critical element in recruiting Stau2, which then allows for the localization of Calm3 L mRNA to distal dendrites. © 2017 The Authors.

  16. Molecular gene organisation and secondary structure of the mitochondrial large subunit ribosomal RNA from the cultivated Basidiomycota Agrocybe aegerita: a 13 kb gene possessing six unusual nucleotide extensions and eight introns.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1999-04-01

    The complete gene sequence and secondary structure of the mitochondrial LSU rRNA from the cultivated Basidiomycota Agrocybe aegerita was derived by chromosome walking. The A.aegerita LSU rRNA gene (13 526 nt) represents, to date, the longest described, due to the highest number of introns (eight) and the occurrence of six long nucleotidic extensions. Seven introns belong to group I, while the intronic sequence i5 constitutes the first typical group II intron reported in a fungal mitochondrial LSU rDNA. As with most fungal LSU rDNA introns reported to date, four introns (i5-i8) are distributed in domain V associated with the peptidyl-transferase activity. One intron (i1) is located in domain I, and three (i2-i4) in domain II. The introns i2-i8 possess homologies with other fungal, algal or protozoan introns located at the same position in LSU rDNAs. One of them (i6) is located at the same insertion site as most Ascomycota or algae LSU introns, suggesting a possible inheritance from a common ancestor. On the contrary, intron i1 is located at a so-far unreported insertion site. Among the six unusual nucleotide extensions, five are located in domain I and one in domain V. This is the first report of a mitochondrial LSU rRNA gene sequence and secondary structure for the whole Basidiomycota division.

  17. Facilitators and constraints at each stage of the migration decision process.

    PubMed

    Kley, Stefanie

    2017-10-01

    Behavioural models of migration emphasize the importance of migration decision-making for the explanation of subsequent behaviour. But empirical migration research regularly finds considerable gaps between those who intend to migrate and those who actually realize their intention. This paper applies the Theory of Planned Behaviour, enriched by the Rubicon model, to test specific hypotheses about distinct effects of facilitators and constraints on specific stages of migration decision-making and behaviour. The data come from a tailor-made panel survey based on random samples of people drawn from two German cities in 2006-07. The results show that in conventional models the effects of facilitators and constraints on migration decision-making are likely to be underestimated. Splitting the process of migration decision-making into a pre-decisional and a pre-actional phase helps to avoid bias in the estimated effects of facilitators and constraints on both migration decision-making and migration behaviour.

  18. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice

    PubMed Central

    Hua, Yimin; Vickers, Timothy A.; Okunola, Hazeem L.; Bennett, C. Frank; Krainer, Adrian R.

    2008-01-01

    survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recognition. By using an antisense oligonucleotide (ASO)-tiling method, we systematically screened the proximal intronic regions flanking exon 7 and identified two intronic splicing silencers (ISSs): one in intron 6 and a recently described one in intron 7. We analyzed the intron 7 ISS by mutagenesis, coupled with splicing assays, RNA-affinity chromatography, and protein overexpression, and found two tandem hnRNP A1/A2 motifs within the ISS that are responsible for its inhibitory character. Mutations in these two motifs, or ASOs that block them, promote very efficient exon 7 inclusion. We screened 31 ASOs in this region and selected two optimal ones to test in human SMN2 transgenic mice. Both ASOs strongly increased hSMN2 exon 7 inclusion in the liver and kidney of the transgenic animals. Our results show that the high-resolution ASO-tiling approach can identify cis-elements that modulate splicing positively or negatively. Most importantly, our results highlight the therapeutic potential of some of these ASOs in the context of SMA. PMID:18371932

  19. [Applylication of new type combined fragments: nrDNA ITS+ nad 1-intron 2 for identification of Dendrobium species of Fengdous].

    PubMed

    Geng, Li-xia; Zheng, Rui; Ren, Jie; Niu, Zhi-tao; Sun, Yu-long; Xue, Qing-yun; Liu, Wei; Ding, Xiao-yu

    2015-08-01

    In this study, 17 kinds of Dendrobium species of Fengdous including 39 individuals were collected from 4 provinces. Mitochondrial gene sequences co I, nad 5, nad 1-intron 2 and chloroplast gene sequences rbcL, matK amd psbA-trnH were amplified from these materials, as well as nrDNA ITS. Furthermore, suitable sequences for identification of Dendrobium species of Fengdous were screened by K-2-P and P-distance. The results showed that during the mentioned 7 sequences, nrDNA ITS, nad 1-intron 2 and psbA-trnH which had a high degree of variability could be used to identify Dendrobium species of Fengdous. However, single fragment could not be used to distinguish D. moniliforme and D. huoshanense. Moreover, compared to other combined fragments, new type combined fragments nrDNA ITS+nad 1-intron 2 was more effective in identifying the original plants of Dendrobium species and could be used to identify D. huoshanense and D. moniliforme. Besides, according to the UPGMA tree constructed with nrDNA ITS+nad 1-intron 2, 3 inspected Dendrobium plants were identified as D. huoshanense, D. moniliforme and D. officinale, respectively. This study identified Dendrobium species of Fengdous by combined fragments nrDNA ITS+nad 1-intron 2 for the first time, which provided a more effective basis for identification of Dendrobium species. And this study will be helpful for regulating the market of Fengdous.

  20. Development of biology student worksheets to facilitate science process skills of student

    NASA Astrophysics Data System (ADS)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.

    2018-01-01

    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  1. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate.

    PubMed

    Geiss, K T; Abbas, G M; Makaroff, C A

    1994-04-01

    The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.

  2. BIALLELIC POLYMORPHISM IN THE INTRON REGION OF B-TUBULIN GENE OF CRYPTOSPORIDIUM PARASITES

    EPA Science Inventory

    Nucleotide sequencing of polymerase chain reaction-amplified intron region of the Cryptosporidium parvum B-tubulin gene in 26 human and 15 animal isolates revealed distinct genetic polymorphism between the human and bovine genotypes. The separation of 2 genotypes of C. parvum is...

  3. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae)

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    Abstract To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G. planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G. planctonica and 262,888-bp G. sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G. sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. PMID:27503298

  4. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium

    PubMed Central

    Grewe, Felix; Zhu, Andan; Mower, Jeffrey P.

    2016-01-01

    The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches. PMID:27664178

  5. Supervision of Facilitators in a Multisite Study: Goals, Process, and Outcomes

    PubMed Central

    2010-01-01

    Objective To describe the aims, implementation, and desired outcomes of facilitator supervision for both interventions (treatment and control) in Project Eban and to present the Eban Theoretical Framework for Supervision that guided the facilitators’ supervision. The qualifications and training of supervisors and facilitators are also described. Design This article provides a detailed description of supervision in a multisite behavioral intervention trial. The Eban Theoretical Framework for Supervision is guided by 3 theories: cognitive behavior therapy, the Life-long Model of Supervision, and “Empowering supervisees to empower others: a culturally responsive supervision model.” Methods Supervision is based on the Eban Theoretical Framework for Supervision, which provides guidelines for implementing both interventions using goals, process, and outcomes. Results Because of effective supervision, the interventions were implemented with fidelity to the protocol and were standard across the multiple sites. Conclusions Supervision of facilitators is a crucial aspect of multisite intervention research quality assurance. It provides them with expert advice, optimizes the effectiveness of facilitators, and increases adherence to the protocol across multiple sites. Based on the experience in this trial, some of the challenges that arise when conducting a multisite randomized control trial and how they can be handled by implementing the Eban Theoretical Framework for Supervision are described. PMID:18724192

  6. Cognitive processes facilitated by contextual cueing: evidence from event-related brain potentials.

    PubMed

    Schankin, Andrea; Schubö, Anna

    2009-05-01

    Finding a target in repeated search displays is faster than finding the same target in novel ones (contextual cueing). It is assumed that the visual context (the arrangement of the distracting objects) is used to guide attention efficiently to the target location. Alternatively, other factors, e.g., facilitation in early visual processing or in response selection, may play a role as well. In a contextual cueing experiment, participant's electrophysiological brain activity was recorded. Participants identified the target faster and more accurately in repeatedly presented displays. In this condition, the N2pc, a component reflecting the allocation of visual-spatial attention, was enhanced, indicating that attention was allocated more efficiently to those targets. However, also response-related processes, reflected by the LRP, were facilitated, indicating that guidance of attention cannot account for the entire contextual cueing benefit.

  7. The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development

    PubMed Central

    Xu, Tao; Kim, Bo Mi; Kwak, Kyung Jin; Jung, Hyun Ju; Kang, Hunseung

    2016-01-01

    The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development. PMID:27091878

  8. Ovarian Tumors related to Intronic Mutations in DICER1: A Report from the International Ovarian and Testicular Stromal Tumor Registry

    PubMed Central

    Schultz, Kris Ann; Harris, Anne; Messinger, Yoav; Sencer, Susan; Baldinger, Shari; Dehner, Louis P.; Hill, D. Ashley

    2015-01-01

    Germline DICER1 mutations have been described in individuals with pleuropulmonary blastoma (PPB), ovarian Sertoli-Leydig cell tumor (SLCT), sarcomas, multinodular goiter, thyroid carcinoma, cystic nephroma and other neoplastic conditions. Early results from the International Ovarian and Testicular Stromal Tumor Registry show germline DICER1 mutations in 48% of girls and women with SLCT. In this report, a young woman presented with ovarian undifferentiated sarcoma. Four years later, she presented with SLCT. She was successfully treated for both malignancies. Sequence results showed a germline intronic mutation in DICER1. This mutation results in an exact duplication of the six bases at the splice site at the intron 23 and exon 24 junction. Predicted improper splicing leads to inclusion of 10 bases of intronic sequence, frameshift and premature truncation of the protein disrupting the RNase IIIb domain. A second individual with SLCT was found to have an identical germline mutation. In each of the ovarian tumors, an additional somatic mutation in the RNase IIIb domain of DICER1 was found. In rare patients, germline intronic mutations in DICER1 that are predicted to cause incorrect splicing can also contribute to the pathogenesis of SLCT. PMID:26289771

  9. The wheat cytochrome oxidase subunit II gene has an intron insert and three radical amino acid changes relative to maize

    PubMed Central

    Bonen, Linda; Boer, Poppo H.; Gray, Michael W.

    1984-01-01

    We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity. ImagesFig. 3.Fig. 4.Fig. 5. PMID:16453565

  10. PERSPECTIVES ON MULTIDISCIPLINARY TEAM PROCESSES AMONG HEALTHCARE EXECUTIVES: PROCESSES THAT FACILITATE TEAM EFFECTIVENESS.

    PubMed

    Landry, Amy; Erwin, Cathleen

    2015-01-01

    Multidisciplinary teams (MDTs) are used in healthcare organizations to address both clinical and managerial functions. Despite their prevalence, little is known about how team processes work to facilitate effectiveness among MDT leadership teams. This study explores perceptions of MDT participation experienced by organizational leaders in healthcare organizations in the United States. A survey of American College of Healthcare Executives members was conducted to assess involvement and perceptions of MDTs among health care management professionals. Descriptive statistics, independent T-Tests and Chi-square analyses were used to examine participation in MDTs, perception of MDT processes, and the association of participation and perceived processes with employee and organizational characteristics. The survey yielded a sample comprised of 492 healthcare executive or executive-track employees. An overwhelming majority indicated participation in MDTs. The study identified team processes that could use improvement including communication, cooperation, and conflict resolution. The study provides evidence that can help guide the development of training programs that focus on providing managerial leaders with strategies aimed at improving communication, coordination, and conflict resolution that will improve the effectiveness of MDT functioning in healthcare organizations.

  11. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells.

    PubMed

    Musiyenko, Alla; Bitko, Vira; Barik, Sailen

    2008-03-01

    MicroRNAs (miRNAs) are endogenous noncoding RNAs that down-regulate gene expression by promoting cleavage or translational arrest of target mRNAs. While most miRNAs are transcribed from their own dedicated genes, some map to introns of 'host' transcripts, the biological significance of which remains unknown. Here, we show that prostate cells are naturally devoid of EGF-like domain 7 (Egfl7) transcripts and hence also deficient in a miRNA, miR-126*, generated from splicing and processing of its ninth intron. Use of recombinant and synthetic miRNAs or a specific antagomir established a role of miR-126* in silencing prostein in non-endothelial cells. We mapped two miR-126*-binding sites in the 3'UTR of the prostein mRNA required for translational repression. Transfection of synthetic miR-126* into prostate cancer LNCaP cells strongly reduced the translation of prostein. Interestingly, loss of prostein correlated with reduction of LNCaP cell migration and invasion. Thus, the robust expression of prostein protein in the prostate cells results from a combination of transcriptional activation of the prostein gene and absence of intronic miRNA-126* due to the prostate-specific repression of the Egfl7 gene. We conclude that intronic miRNAs from tissue-specific transcripts, or their natural absence, make cardinal contributions to cellular gene expression and phenotype. These findings also open the door to tissue-specific miRNA therapy.

  12. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs.

    PubMed

    Parekh, Swati; Ziegenhain, Christoph; Vieth, Beate; Enard, Wolfgang; Hellmann, Ines

    2018-06-01

    Single-cell RNA-sequencing (scRNA-seq) experiments typically analyze hundreds or thousands of cells after amplification of the cDNA. The high throughput is made possible by the early introduction of sample-specific bar codes (BCs), and the amplification bias is alleviated by unique molecular identifiers (UMIs). Thus, the ideal analysis pipeline for scRNA-seq data needs to efficiently tabulate reads according to both BC and UMI. zUMIs is a pipeline that can handle both known and random BCs and also efficiently collapse UMIs, either just for exon mapping reads or for both exon and intron mapping reads. If BC annotation is missing, zUMIs can accurately detect intact cells from the distribution of sequencing reads. Another unique feature of zUMIs is the adaptive downsampling function that facilitates dealing with hugely varying library sizes but also allows the user to evaluate whether the library has been sequenced to saturation. To illustrate the utility of zUMIs, we analyzed a single-nucleus RNA-seq dataset and show that more than 35% of all reads map to introns. Also, we show that these intronic reads are informative about expression levels, significantly increasing the number of detected genes and improving the cluster resolution. zUMIs flexibility makes if possible to accommodate data generated with any of the major scRNA-seq protocols that use BCs and UMIs and is the most feature-rich, fast, and user-friendly pipeline to process such scRNA-seq data.

  13. Phylogenetic inferences of Nepenthes species in Peninsular Malaysia revealed by chloroplast (trnL intron) and nuclear (ITS) DNA sequences.

    PubMed

    Bunawan, Hamidun; Yen, Choong Chee; Yaakop, Salmah; Noor, Normah Mohd

    2017-01-26

    The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus. Phylogeny reconstruction was carried out using neighbor-joining, maximum parsimony and Bayesian analyses. All the trees revealed two major clusters, a lowland group consisting of N. ampullaria, N. mirabilis, N. gracilis and N. rafflesiana, and another containing both intermediately distributed species (N. albomarginata and N. benstonei) and four highland species (N. sanguinea, N. macfarlanei, N. ramispina and N. alba). The trnL intron and ITS sequences proved to provide phylogenetic informative characters for deriving a phylogeny of Nepenthes species in Peninsular Malaysia. To our knowledge, this is the first molecular phylogenetic study of Nepenthes species occurring along an altitudinal gradient in Peninsular Malaysia.

  14. The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development.

    PubMed

    Xu, Tao; Kim, Bo Mi; Kwak, Kyung Jin; Jung, Hyun Ju; Kang, Hunseung

    2016-05-01

    The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. [Frequency of intron 1 inversion of factor VIII gene in Chinese hemophilia A patients with case report of a female patient with heterozygous intron 1 inversion].

    PubMed

    Yan, Zhen-yu; Liang, Yan; Yan, Mei; Fan, Lian-kai; Xiao, Bai; Hua, Bao-lai; Liu, Jing-zhong; Zhao, Yong-qiang

    2008-10-21

    To investigate the frequency of intron 1 inversion (inv1) in FVIII gene in Chinese hemophilia A (HA) patients and to investigate the mechanism of pathogenesis. Peripheral blood samples were collected from 158 unrelated HA patients, aged 20 (1 - 73), including one female HA patient, aged 5, and several family members of a patient positive in inv1. One-stage method was used to assay the FVIII activity (FVIII:C). Long distance PCR and multiple PCR in duplex reactions were used to screen for the intron 22 inversion (inv22) and inv1 of the FVIII coding gene (F8). The F8 coding sequence was amplified with PCR and sequenced with an automatic sequencer. Two unrelated patients (pedigrees) were detected as inv1 positive with a positive rate of 1.26%. A rare female HA patient with inv1 was also discovered in a positive family (3 HA cases were found in this family and regarded as one case in calculating the total detection rate). The full length of FVIII was sequenced, and no other mutation was detected. There frequency of FVIII inv1 is low in Chinese HA patients compared with other populations. Female HA patients are heterozygous for FVIII inv1 and that may be resulted from nonrandom inactivation of X chromosome.

  16. Processes, barriers and facilitators to implementation of a participatory ergonomics program among eldercare workers.

    PubMed

    Rasmussen, Charlotte Diana Nørregaard; Lindberg, Naja Klærke; Ravn, Marie Højbjerg; Jørgensen, Marie Birk; Søgaard, Karen; Holtermann, Andreas

    2017-01-01

    This study aimed to investigate the processes of a participatory ergonomics program among 594 eldercare workers with emphasis on identified risk factors for low back pain and solutions, and reveal barriers and facilitators for implementation. Sixty-nine per cent of the identified risk factors were physical ergonomic, 24% were organisational and 7% were psychosocial risk factors. Most solutions were organisational (55%), followed by physical (43%) and psychosocial solutions (2%). Internal factors (e.g. team or management) constituted 47% of the barriers and 75% of the facilitators. External factors (e.g. time, financial resources, collaboration with resident or relatives) constituted 53% of the barriers and 25% of the facilitators. This study revealed the processes and implementation of a participatory ergonomics program among eldercare workers. The findings can be transferred to workers, workplaces, health and safety professionals, and researchers to improve future participatory ergonomics programs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability.

    PubMed

    Joardar, Vinita; Abrams, Natalie F; Hostetler, Jessica; Paukstelis, Paul J; Pakala, Suchitra; Pakala, Suman B; Zafar, Nikhat; Abolude, Olukemi O; Payne, Gary; Andrianopoulos, Alex; Denning, David W; Nierman, William C

    2012-12-12

    The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population

  18. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae).

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-09-19

    To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G planctonica and 262,888-bp G sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Personality and recovery: integrating personality assessment data to facilitate the recovery process.

    PubMed

    Donat, D C

    2001-01-01

    The relatively enduring and persistent nature of personality traits means that they will likely continue to impact the course of psychiatric recovery after Axis I symptoms are stabilized. These traits can significantly impact the choices that recovering persons make and the quality of interpersonal relationships with care providers who are trying to facilitate the recovery process. Despite this, they are often inadequately assessed and considered in providing psychiatric care. This manuscript reviews the common combinations of personality traits that have emerged across a variety of clinical samples. The implications of these personality features for the provision of care in an inpatient setting to facilitate recovery are discussed.

  20. Identification of an Intronic Splicing Enhancer Essential for the Inclusion of FGFR2 Exon IIIc*S⃞

    PubMed Central

    Seth, Puneet; Miller, Heather B.; Lasda, Erika L.; Pearson, James L.; Garcia-Blanco, Mariano A.

    2008-01-01

    The ligand specificity of fibroblast growth factor receptor 2 (FGFR2) is determined by the alternative splicing of exons 8 (IIIb) or 9 (IIIc). Exon IIIb is included in epithelial cells, whereas exon IIIc is included in mesenchymal cells. Although a number of cis elements and trans factors have been identified that play a role in exon IIIb inclusion in epithelium, little is known about the activation of exon IIIc in mesenchyme. We report here the identification of a splicing enhancer required for IIIc inclusion. This 24-nucleotide (nt) downstream intronic splicing enhancer (DISE) is located within intron 9 immediately downstream of exon IIIc. DISE was able to activate the inclusion of heterologous exons rat FGFR2 IIIb and human β-globin exon 2 in cell lines from different tissues and species and also in HeLa cell nuclear extracts in vitro. DISE was capable of replacing the intronic activator sequence 1 (IAS1), a known IIIb splicing enhancer and vice versa. This fact, together with the requirement for DISE to be close to the 5′-splice site and the ability of DISE to promote binding of U1 snRNP, suggested that IAS1 and DISE belong to the same class of cis-acting elements. PMID:18256031

  1. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5' but not the 3' splice site inhibit intron processing in Nicotiana plumbaginifolia.

    PubMed

    Liu, H X; Goodall, G J; Kole, R; Filipowicz, W

    1995-01-16

    We have performed a systematic study of the effect of artificial hairpins on pre-mRNA splicing in protoplasts of a dicot plant, Nicotiana plumbaginifolia. Hairpins with a potential to form 18 or 24 bp stems strongly inhibit splicing when they sequester the 5' splice site or are placed in the middle of short introns. However, similar 24 bp hairpins sequestering the 3' splice site do not prevent this site from being used as an acceptor. Utilization of the stem-located 3' site requires that the base of the stem is separated from the upstream 5' splice site by a minimum of approximately 45 nucleotides and that another 'helper' 3' splice site is present downstream of the stem. The results indicate that the spliceosome or factors associated with it may have a potential to unfold secondary structure present in the downstream portion of the intron, prior to or at the step of the 3' splice site selection. The finding that the helper 3' site is required for utilization of the stem-located acceptor confirms and extends previous observations, obtained with HeLa cell in vitro splicing systems, indicating that the 3' splice site may be recognized at least twice during spliceosome assembly.

  2. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR.

    PubMed

    Rebscher, Nicole; Deichmann, Christina; Sudhop, Stefanie; Fritzenwanker, Jens Holger; Green, Stephen; Hassel, Monika

    2009-10-01

    We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.

  3. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA

    PubMed Central

    Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.

    1998-01-01

    Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763

  4. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer.

    PubMed

    Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia

    2018-04-01

    The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.

  5. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

    PubMed

    Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin

    2017-09-01

    The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Effectiveness of Adopting E-Readers to Facilitate EFL Students' Process-Based Academic Writing

    ERIC Educational Resources Information Center

    Hung, Hui-Chun; Young, Shelley Shwu-Ching

    2015-01-01

    English as Foreign Language (EFL) students face additional difficulties for academic writing largely due to their level of language competency. An appropriate structural process of writing can help students develop their academic writing skills. This study explored the use of the e-readers to facilitate EFL students' process-based academic…

  7. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    PubMed Central

    Calvanese, Vincenzo; Mallya, Meera; Campbell, R Duncan; Aguado, Begoña

    2008-01-01

    Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD). This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC). This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F) undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C) and not on their own. PMID:18817541

  8. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae)

    PubMed Central

    Jansen, Robert K.; Wojciechowski, Martin F.; Sanniyasi, Elumalai; Lee, Seung-Bum; Daniell, Henry

    2008-01-01

    Chickpea (Cicer arietinum, Leguminosae), an important grain legume, is widely used for food and fodder throughout the world. We sequenced the complete plastid genome of chickpea, which is 125,319 bp in size, and contains only one copy of the inverted repeat (IR). The genome encodes 108 genes, including 4 rRNAs, 29 tRNAs, and 75 proteins. The genes rps16, infA, and ycf4 are absent in the chickpea plastid genome, and ndhB has an internal stop codon in the 5′exon, similar to other legumes. Two genes have lost their introns, one in the 3′exon of the transpliced gene rps12, and the one between exons 1 and 2 of clpP; this represents the first documented case of the loss of introns from both of these genes in the same plastid genome. An extensive phylogenetic survey of these intron losses was performed on 302 taxa across legumes and the related family Polygalaceae. The clpP intron has been lost exclusively in taxa from the temperate “IR-lacking clade” (IRLC), whereas the rps12 intron has been lost in most members of the IRLC (with the exception of Wisteria, Callerya, Afgekia, and certain species of Millettia, which represent the earliest diverging lineages of this clade), and in the tribe Desmodieae, which is closely related to the tribes Phaseoleae and Psoraleeae. Data provided here suggest that the loss of the rps12 intron occurred after the loss of the IR. The two new genomic changes identified in the present study provide additional support of the monophyly of the IR-loss clade, and resolution of the pattern of the earliest-branching lineages in this clade. The availability of the complete chickpea plastid genome sequence also provides valuable information on intergenic spacer regions among legumes and endogenous regulatory sequences for plastid genetic engineering. PMID:18638561

  9. Increased heart rate after exercise facilitates the processing of fearful but not disgusted faces.

    PubMed

    Pezzulo, G; Iodice, P; Barca, L; Chausse, P; Monceau, S; Mermillod, M

    2018-01-10

    Embodied theories of emotion assume that emotional processing is grounded in bodily and affective processes. Accordingly, the perception of an emotion re-enacts congruent sensory and affective states; and conversely, bodily states congruent with a specific emotion facilitate emotional processing. This study tests whether the ability to process facial expressions (faces having a neutral expression, expressing fear, or disgust) can be influenced by making the participants' body state congruent with the expressed emotion (e.g., high heart rate in the case of faces expressing fear). We designed a task requiring participants to categorize pictures of male and female faces that either had a neutral expression (neutral), or expressed emotions whose linkage with high heart rate is strong (fear) or significantly weaker or absent (disgust). Critically, participants were tested in two conditions: with experimentally induced high heart rate (Exercise) and with normal heart rate (Normal). Participants processed fearful faces (but not disgusted or neutral faces) faster when they were in the Exercise condition than in the Normal condition. These results support the idea that an emotionally congruent body state facilitates the automatic processing of emotionally-charged stimuli and this effect is emotion-specific rather than due to generic factors such as arousal.

  10. Dynamic evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates

    PubMed Central

    Palmer, Jeffrey D.; Adams, Keith L.; Cho, Yangrae; Parkinson, Christopher L.; Qiu, Yin-Long; Song, Keming

    2000-01-01

    We summarize our recent studies showing that angiosperm mitochondrial (mt) genomes have experienced remarkably high rates of gene loss and concomitant transfer to the nucleus and of intron acquisition by horizontal transfer. Moreover, we find substantial lineage-specific variation in rates of these structural mutations and also point mutations. These findings mostly arise from a Southern blot survey of gene and intron distribution in 281 diverse angiosperms. These blots reveal numerous losses of mt ribosomal protein genes but, with one exception, only rare loss of respiratory genes. Some lineages of angiosperms have kept all of their mt ribosomal protein genes whereas others have lost most of them. These many losses appear to reflect remarkably high (and variable) rates of functional transfer of mt ribosomal protein genes to the nucleus in angiosperms. The recent transfer of cox2 to the nucleus in legumes provides both an example of interorganellar gene transfer in action and a starting point for discussion of the roles of mechanistic and selective forces in determining the distribution of genetic labor between organellar and nuclear genomes. Plant mt genomes also acquire sequences by horizontal transfer. A striking example of this is a homing group I intron in the mt cox1 gene. This extraordinarily invasive mobile element has probably been acquired over 1,000 times separately during angiosperm evolution via a recent wave of cross-species horizontal transfers. Finally, whereas all previously examined angiosperm mtDNAs have low rates of synonymous substitutions, mtDNAs of two distantly related angiosperms have highly accelerated substitution rates. PMID:10860957

  11. Facilitating Adult Learning and a Researcher Identity through a Higher Education Pedagogical Process

    ERIC Educational Resources Information Center

    Wright, Lisa L.; Lange, Elizabeth; Da Costa, Jose

    2009-01-01

    This empirical study uses auto-ethnography to describe a higher education pedagogical process that facilitated largely doctoral students in preparing their candidacy proposals through the use of specific adult learning principles. Students' experiences and points of view of such a learning environment were explored, including: (1) how they…

  12. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    PubMed

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  13. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes.

    PubMed

    Zernant, Jana; Lee, Winston; Nagasaki, Takayuki; Collison, Frederick T; Fishman, Gerald A; Bertelsen, Mette; Rosenberg, Thomas; Gouras, Peter; Tsang, Stephen H; Allikmets, Rando

    2018-05-30

    Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of the ABCA4 locus in STGD1 patients identifies two expected disease-causing alleles in ~75% of patients and only one mutation in ~15% of patients. Recently, many possibly pathogenic variants in deep intronic sequences of ABCA4 have been identified in the latter group. We extended our analyses of deep intronic ABCA4 variants and determined that one of these, c.4253+43G>A (rs61754045), is present in 29/1155 (2.6%) of STGD1 patients. The variant is found at statistically significantly higher frequency in patients with only one pathogenic ABCA4 allele, 23/160 (14.38%), MAF=0.072, compared to MAF=0.013 in all STGD1 cases and MAF=0.006 in the matching general population (P<1x10-7). The variant, which is not predicted to have any effect on splicing, is the first reported intronic "extremely hypomorphic allele" in the ABCA4 locus; i.e., it is pathogenic only when in trans with a loss-of-function ABCA4 allele. It results in a distinct clinical phenotype characterized by late-onset of symptoms and foveal sparing. In ~70% of cases the variant was allelic with the c.6006-609T>A (rs575968112) variant, which was deemed non-pathogenic. Another rare deep intronic variant, c.5196+1056A>G (rs886044749), found in 5/834 (0.6%) of STGD1 cases is, conversely, a severe allele. This study determines pathogenicity for three non-coding variants in STGD1 patients of European descent accounting for ~3% of the disease. Defining disease-associated alleles in the non-coding sequences of the ABCA4 locus can be accomplished by integrated clinical and genetic analyses. Cold Spring Harbor Laboratory Press.

  14. Novel nuclear intron-spanning primers for Arecaceae evolutionary biology.

    PubMed

    Bacon, Christine D; Feltus, F Alex; Paterson, Andrew H; Bailey, C Donovan

    2008-01-01

    In this study, 96 nuclear 'conserved intron-scanning primers' were screened across subfamilies the Arecaceae (palms) for potential use in research focused on palm evolutionary biology. Primers were evaluated based on their ability to amplify single polymerase chain reaction products in Arecaceae, the clarity of sequencing reads, and the interspecific variability observed. Ultimately, the results suggest that: (i) seven of the loci are likely to be suitable when comparing non-Arecaceae outgroups and Arecaceae ingroups; (ii) seven loci may be of use when comparing subfamilies of Arecaceae; and (iii) four of the loci may be of use when comparing closely related genera. © 2007 Blackwell Publishing Ltd No claim to original US government works.

  15. Monoblepharidomycetes diversity includes new parasitic and saprotrophic species with highly intronized rDNA.

    PubMed

    Karpov, Sergey A; Mamanazarova, Karomat S; Popova, Olga V; Aleoshin, Vladimir V; James, Timothy Y; Mamkaeva, Maria A; Tcvetkova, Victoria S; Vishnyakov, Andrey E; Longcore, Joyce E

    2017-08-01

    The Monoblepharidomycetes is the sister class to the Chytridiomycetes in the phylum Chytridiomycota. The six known genera have thalli that are either monocentric and without rhizoids or produce hyphae with an independent evolutionary origin from the hyphae of higher fungi. On the basis of morphological characters and phylogenetic evidence from the small and large subunits of nuclear ribosomal RNA, we established two new genera, Sanchytrium and Telasphaerula, each with a single species. We re-analyzed intergeneric relationships within the monoblephs, and established two new families. The new genera significantly expand the known morphological and ecological diversity of the Monoblepharidomycetes by adding a monocentric, epibiotic, algal parasitic species and a rhizomycelial, saprotrophic species. Based on the presence of environmental sequences related to Sanchytrium strains, the Monoblepharidomycetes contain previously unsuspected diversity. The ribosomal DNA of the new genera contains an unusually high density of group I introns. We found 20 intron insertion positions including six that are new for rRNA genes (S1053, L803, L829, L961, L1844, and L2281). Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. COL1A1 transgene expression in stably transfected osteoblastic cells. Relative contributions of first intron, 3'-flanking sequences, and sequences derived from the body of the human COL1A1 minigene

    NASA Technical Reports Server (NTRS)

    Breault, D. T.; Lichtler, A. C.; Rowe, D. W.

    1997-01-01

    Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.

  17. Strong Signature of Natural Selection within an FHIT Intron Implicated in Prostate Cancer Risk

    PubMed Central

    Ding, Yan; Larson, Garrett; Rivas, Guillermo; Lundberg, Cathryn; Geller, Louis; Ouyang, Ching; Weitzel, Jeffrey; Archambeau, John; Slater, Jerry; Daly, Mary B.; Benson, Al B.; Kirkwood, John M.; O'Dwyer, Peter J.; Sutphen, Rebecca; Stewart, James A.; Johnson, David; Nordborg, Magnus; Krontiris, Theodore G.

    2008-01-01

    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. PMID:18953408

  18. Insertion of part of an intron into the 5[prime] untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, R.; Thomas, J.; Spieth, J.

    In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of amore » vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.« less

  19. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    PubMed

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  20. Genome Analysis Reveals Interplay between 5′UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes

    PubMed Central

    Cenik, Can; Chua, Hon Nian; Zhang, Hui; Tarnawsky, Stefan P.; Akef, Abdalla; Derti, Adnan; Tasan, Murat; Moore, Melissa J.; Palazzo, Alexander F.; Roth, Frederick P.

    2011-01-01

    In higher eukaryotes, messenger RNAs (mRNAs) are exported from the nucleus to the cytoplasm via factors deposited near the 5′ end of the transcript during splicing. The signal sequence coding region (SSCR) can support an alternative mRNA export (ALREX) pathway that does not require splicing. However, most SSCR–containing genes also have introns, so the interplay between these export mechanisms remains unclear. Here we support a model in which the furthest upstream element in a given transcript, be it an intron or an ALREX–promoting SSCR, dictates the mRNA export pathway used. We also experimentally demonstrate that nuclear-encoded mitochondrial genes can use the ALREX pathway. Thus, ALREX can also be supported by nucleotide signals within mitochondrial-targeting sequence coding regions (MSCRs). Finally, we identified and experimentally verified novel motifs associated with the ALREX pathway that are shared by both SSCRs and MSCRs. Our results show strong correlation between 5′ untranslated region (5′UTR) intron presence/absence and sequence features at the beginning of the coding region. They also suggest that genes encoding secretory and mitochondrial proteins share a common regulatory mechanism at the level of mRNA export. PMID:21533221

  1. Rare intronic variants of TCF7L2 arising by selective sweeps in an indigenous population from Mexico.

    PubMed

    Acosta, Jose Luis; Hernández-Mondragón, Alma Cristal; Correa-Acosta, Laura Carolina; Cazañas-Padilla, Sandra Nathaly; Chávez-Florencio, Berenice; Ramírez-Vega, Elvia Yamilet; Monge-Cázares, Tulia; Aguilar-Salinas, Carlos A; Tusié-Luna, Teresa; Del Bosque-Plata, Laura

    2016-05-26

    Genetic variations of the TCF7L2 gene are associated with the development of Type 2 diabetes (T2D). The associated mutations have demonstrated an adaptive role in some human populations, but no studies have determined the impact of evolutionary forces on genetic diversity in indigenous populations from Mexico. Here, we sequenced and analyzed the variation of the TCF7L2 gene in three Amerindian populations and compared the results with whole-exon-sequencing of Mestizo populations from Sigma and the 1000 Genomes Project to assess the roles of selection and recombination in diversity. The diversity in the indigenous populations was biased to intronic regions. Most of the variation was low frequency. Only mutations rs77961654 and rs61724286 were located on exon 15. We did not observe variation in intronic region 4-6 in any of the three indigenous populations. In addition, we identified peaks of selective sweeps in the mestizo samples from the Sigma Project within this region. By replicating the analysis of association with T2D between case-controls from the Sigma Project, we determined that T2D was most highly associated with the rs7903146 risk allele and to a lesser extent with the other six variants. All associated markers were located in intronic region 4-6, and their r(2) values of linkage disequilibrium were significantly higher in the Mexican population than in Africans from the 1000 Genomes Project. We observed reticulations in both the haplotypes network analysis from seven marker associates and the neighborNet tree based on 6061 markers in the TCF7L2 gene identified from all samples of the 1000 Genomes Project. Finally, we identified two recombination hotspots in the upstream region and 3' end of the TCF7L2 gene. The lack of diversity in intronic region 4-6 in Indigenous populations could be an effect of selective sweeps generated by the selection of neighboring rare variants at T2D-associated mutations. The survivors' variants make the intronic region 4-6 the

  2. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    PubMed

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  3. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.

    PubMed Central

    Suh, E R; Waring, R B

    1990-01-01

    It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site. Images PMID:2342465

  4. A COMPUTATIONAL AND EXPERIMENTAL STUDY OF MERCURY SPECIATION AS FACILITATED BY THE DEACON PROCESS

    EPA Science Inventory

    The paper gives results of a computational and experimental study of mercury (Hg) speciation as facilitated by the Deacon process. Fly ashes that contain trace cupric or ferric oxide are effective catalysts for elemental mercury (Hg) conversion to mercuric chloride in the presenc...

  5. Arginine kinase in Toxocara canis: Exon-intron organization, functional analysis of site-directed mutants and evaluation of putative enzyme inhibitors.

    PubMed

    Wickramasinghe, Susiji; Yatawara, Lalani; Nagataki, Mitsuru; Agatsuma, Takeshi

    2016-10-01

    To determine exon/intron organization of the Toxocara canis (T. canis) AK (TCAK) and to test green and black tea and several other chemicals against the activity of recombinant TCAK in the guanidino-specific region by site-directed mutants. Amplification of genomic DNA fragments containing introns was carried out by PCRs. The open-reading frame (1200 bp) of TCAK (wild type) was cloned into the BamH1/SalI site of pMAL-c2X. The maltose-binding protein-TCAK fusion protein was expressed in Escherichia coli TB1 cells. The purity of the expressed enzyme was verified by SDS-PAGE. Mutations were introduced into the guanidino-specific region and other areas of pMAL/TCAK by PCR. Enzyme activity was measured with an NADH-linked assay at 25 °C for the forward reaction (phosphagen synthesis). Arginine kinase in T. canis has a seven-exon/six-intron gene structure. The lengths of the introns ranged from 542 bp to 2 500 bp. All introns begin with gt and end with ag. Furthermore, we measured the enzyme activity of site-directed mutants of the recombinant TCAK. The K m value of the mutant (Alanine to Serine) decreased indicating a higher affinity for substrate arginine than the wild-type. The K m value of the mutant (Serine to Glycine) increased to 0.19 mM. The K m value (0.19 mM) of the double mutant (Alanine-Serine to Serine-Glycine) was slightly greater than in the wild-type (0.12 mM). In addition, several other chemicals were tested; including plant extract Azadiracta indica (A. indica), an aminoglycoside antibiotic (aminosidine), a citrus flavonoid glycoside (rutin) and a commercially available catechin mixture against TCAK. Green and black tea (1:10 dilution) produced 15% and 25% inhibition of TCAK, respectively. The extract of A. indica produced 5% inhibition of TCAK. Moreover, green and black tea produced a non-competitive type of inhibition and A. indica produced a mixed-type of inhibition on TCAK. Arginine kinase in T. canis has a seven-exon/six-intron gene

  6. Neurodegenerative disorder FTDP-17-related tau intron 10 +16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice.

    PubMed

    Umeda, Tomohiro; Yamashita, Takenari; Kimura, Tetsuya; Ohnishi, Kiyouhisa; Takuma, Hiroshi; Ozeki, Tomoko; Takashima, Akihiko; Tomiyama, Takami; Mori, Hiroshi

    2013-07-01

    Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative disorder caused by mutations in the tau gene. Many mutations identified in FTDP-17 have been shown to affect tau exon 10 splicing in vitro, which presumably causes pathologic imbalances in exon 10(-) [3-repeat (3R)] and exon 10(+) [4-repeat (4R)] tau expression and leads to intracellular inclusions of hyperphosphorylated tau in patient brains. However, no reports have investigated this theory using model mice with a tau intronic mutation. Herein, we generated new transgenic mice harboring the tau intron 10 +16C → T mutation. We prepared a transgene construct containing intronic sequences required for exon 10 splicing in the longest tau isoform cDNA. Although mice bearing the construct without the intronic mutation showed normal developmental changes of the tau isoform from 3R tau to equal amounts of 3R and 4R tau, mice with the mutation showed much higher levels of 4R tau at the adult stage. 4R tau was selectively recovered in insoluble brain fractions in their old age. Furthermore, these mice displayed abnormal tau phosphorylation, synapse loss and dysfunction, memory impairment, glial activation, tangle formation, and neuronal loss in an age-dependent manner. These findings provide the first evidence in a mouse model that a tau intronic mutation-induced imbalance of 3R and 4R tau could be a cause of tauopathy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene.

    PubMed

    Surendran, S; Sacksteder, K A; Gould, S J; Coldwell, J G; Rady, P L; Tyring, S K; Matalon, R

    2001-09-15

    Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a -5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency. Copyright 2001 Wiley-Liss, Inc.

  8. The chloroplast tRNALys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide.

    PubMed

    Neuhaus, H; Link, G

    1987-01-01

    The trnK gene endocing the tRNALys(UUU) has been located on mustard (Sinapis alba) chloroplast DNA, 263 bp upstream of the psbA gene on the same strand. The nucleotide sequence of the trnK gene and its flanking regions as well as the putative transcription start and termination sites are shown. The 5' end of the transcript lies 121 bp upstream of the 5' tRNA coding region and is preceded by procaryotic-type "-10" and "-35" sequence elements, while the 3' end maps 2.77 kb downstream to a DNA region with possible stemloop secondary structure. The anticodon loop of the tRNALys is interrupted by a 2,574 bp intron containing a long open reading frame, which codes for 524 amino acids. Based on conserved stem and loop structures, this intron has characteristic features of a class II intron. A region near the carboxyl terminus of the derived polypeptide appears structurally related to maturases.

  9. Facilitating comparative effectiveness research in cancer genomics: evaluating stakeholder perceptions of the engagement process

    PubMed Central

    Deverka, Patricia A; Lavallee, Danielle C; Desai, Priyanka J; Armstrong, Joanne; Gorman, Mark; Hole-Curry, Leah; O’Leary, James; Ruffner, BW; Watkins, John; Veenstra, David L; Baker, Laurence H; Unger, Joseph M; Ramsey, Scott D

    2013-01-01

    Aims The Center for Comparative Effectiveness Research in Cancer Genomics completed a 2-year stakeholder-guided process for the prioritization of genomic tests for comparative effectiveness research studies. We sought to evaluate the effectiveness of engagement procedures in achieving project goals and to identify opportunities for future improvements. Materials & methods The evaluation included an online questionnaire, one-on-one telephone interviews and facilitated discussion. Responses to the online questionnaire were tabulated for descriptive purposes, while transcripts from key informant interviews were analyzed using a directed content analysis approach. Results A total of 11 out of 13 stakeholders completed both the online questionnaire and interview process, while nine participated in the facilitated discussion. Eighty-nine percent of questionnaire items received overall ratings of agree or strongly agree; 11% of responses were rated as neutral with the exception of a single rating of disagreement with an item regarding the clarity of how stakeholder input was incorporated into project decisions. Recommendations for future improvement included developing standard recruitment practices, role descriptions and processes for improved communication with clinical and comparative effectiveness research investigators. Conclusions Evaluation of the stakeholder engagement process provided constructive feedback for future improvements and should be routinely conducted to ensure maximal effectiveness of stakeholder involvement. PMID:23459832

  10. Facilitating comparative effectiveness research in cancer genomics: evaluating stakeholder perceptions of the engagement process.

    PubMed

    Deverka, Patricia A; Lavallee, Danielle C; Desai, Priyanka J; Armstrong, Joanne; Gorman, Mark; Hole-Curry, Leah; O'Leary, James; Ruffner, B W; Watkins, John; Veenstra, David L; Baker, Laurence H; Unger, Joseph M; Ramsey, Scott D

    2012-07-01

    The Center for Comparative Effectiveness Research in Cancer Genomics completed a 2-year stakeholder-guided process for the prioritization of genomic tests for comparative effectiveness research studies. We sought to evaluate the effectiveness of engagement procedures in achieving project goals and to identify opportunities for future improvements. The evaluation included an online questionnaire, one-on-one telephone interviews and facilitated discussion. Responses to the online questionnaire were tabulated for descriptive purposes, while transcripts from key informant interviews were analyzed using a directed content analysis approach. A total of 11 out of 13 stakeholders completed both the online questionnaire and interview process, while nine participated in the facilitated discussion. Eighty-nine percent of questionnaire items received overall ratings of agree or strongly agree; 11% of responses were rated as neutral with the exception of a single rating of disagreement with an item regarding the clarity of how stakeholder input was incorporated into project decisions. Recommendations for future improvement included developing standard recruitment practices, role descriptions and processes for improved communication with clinical and comparative effectiveness research investigators. Evaluation of the stakeholder engagement process provided constructive feedback for future improvements and should be routinely conducted to ensure maximal effectiveness of stakeholder involvement.

  11. CRISPR/Cas9 Genome Editing Reveals That the Intron Is Not Essential for var2csa Gene Activation or Silencing in Plasmodium falciparum.

    PubMed

    Bryant, Jessica M; Regnault, Clément; Scheidig-Benatar, Christine; Baumgarten, Sebastian; Guizetti, Julien; Scherf, Artur

    2017-07-11

    Plasmodium falciparum relies on monoallelic expression of 1 of 60 var virulence genes for antigenic variation and host immune evasion. Each var gene contains a conserved intron which has been implicated in previous studies in both activation and repression of transcription via several epigenetic mechanisms, including interaction with the var promoter, production of long noncoding RNAs (lncRNAs), and localization to repressive perinuclear sites. However, functional studies have relied primarily on artificial expression constructs. Using the recently developed P. falciparum clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we directly deleted the var2csa P. falciparum 3D7_1200600 (Pf3D7_1200600) endogenous intron, resulting in an intronless var gene in a natural, marker-free chromosomal context. Deletion of the var2csa intron resulted in an upregulation of transcription of the var2csa gene in ring-stage parasites and subsequent expression of the PfEMP1 protein in late-stage parasites. Intron deletion did not affect the normal temporal regulation and subsequent transcriptional silencing of the var gene in trophozoites but did result in increased rates of var gene switching in some mutant clones. Transcriptional repression of the intronless var2csa gene could be achieved via long-term culture or panning with the CD36 receptor, after which reactivation was possible with chondroitin sulfate A (CSA) panning. These data suggest that the var2csa intron is not required for silencing or activation in ring-stage parasites but point to a subtle role in regulation of switching within the var gene family. IMPORTANCE Plasmodium falciparum is the most virulent species of malaria parasite, causing high rates of morbidity and mortality in those infected. Chronic infection depends on an immune evasion mechanism termed antigenic variation, which in turn relies on monoallelic expression of 1 of ~60 var genes. Understanding antigenic variation and the

  12. Barriers and facilitators of medication reconciliation processes for recently discharged patients from community pharmacists’ perspectives

    PubMed Central

    Kennelty, Korey A.; Chewning, Betty; Wise, Meg; Kind, Amy; Roberts, Tonya; Kreling, David

    2015-01-01

    Background Community pharmacists play a vital part in reconciling medications for patients transitioning from hospital to community care, yet their roles have not been fully examined in the extant literature. Objectives The objectives of this study were to: 1) examine the barriers and facilitators community pharmacists face when reconciling medications for recently discharged patients; and 2) identify pharmacists’ preferred content and modes of information transfer regarding updated medication information for recently discharged patients. Methods Community pharmacists were purposively and conveniently sampled from the Wisconsin (U.S. state) pharmacist-based research network, Pharmacy Practice Enhancement and Action Research Link (PEARL Rx). Community pharmacists were interviewed face-to-face, and transcriptions from audio recordings were analyzed using directed content analysis. The Theory of Planned Behavior (TPB) guided the development of questions for the semi-structured interviews. Results Interviewed community pharmacists (N = 10) described the medication reconciliation process to be difficult and time-consuming for recently discharged patients. In the context of the TPB, more barriers than facilitators of reconciling medications were revealed. Themes were categorized as organizational and individual-level themes. Major organizational-level factors affecting the medication reconciliation process included: pharmacy resources, discharge communication, and hospital resources. Major individual-level factors affecting the medication reconciliation process included: pharmacists’ perceived responsibility, relationships, patient perception of pharmacist, and patient characteristics. Interviewed pharmacists consistently responded that several pieces of information items would be helpful when reconciling medications for recently discharged patients, including the hospital medication discharge list and stop-orders for discontinued medications. Conclusions The TPB was

  13. Barriers and facilitators of medication reconciliation processes for recently discharged patients from community pharmacists' perspectives.

    PubMed

    Kennelty, Korey A; Chewning, Betty; Wise, Meg; Kind, Amy; Roberts, Tonya; Kreling, David

    2015-01-01

    Community pharmacists play a vital part in reconciling medications for patients transitioning from hospital to community care, yet their roles have not been fully examined in the extant literature. The objectives of this study were to: 1) examine the barriers and facilitators community pharmacists face when reconciling medications for recently discharged patients; and 2) identify pharmacists' preferred content and modes of information transfer regarding updated medication information for recently discharged patients. Community pharmacists were purposively and conveniently sampled from the Wisconsin (U.S. state) pharmacist-based research network, Pharmacy Practice Enhancement and Action Research Link (PEARL Rx). Community pharmacists were interviewed face-to-face, and transcriptions from audio recordings were analyzed using directed content analysis. The Theory of Planned Behavior (TPB) guided the development of questions for the semi-structured interviews. Interviewed community pharmacists (N = 10) described the medication reconciliation process to be difficult and time-consuming for recently discharged patients. In the context of the TPB, more barriers than facilitators of reconciling medications were revealed. Themes were categorized as organizational and individual-level themes. Major organizational-level factors affecting the medication reconciliation process included: pharmacy resources, discharge communication, and hospital resources. Major individual-level factors affecting the medication reconciliation process included: pharmacists' perceived responsibility, relationships, patient perception of pharmacist, and patient characteristics. Interviewed pharmacists consistently responded that several pieces of information items would be helpful when reconciling medications for recently discharged patients, including the hospital medication discharge list and stop-orders for discontinued medications. The TPB was useful for identifying barriers and facilitators of

  14. Lynch syndrome: barriers to and facilitators of screening and disease management.

    PubMed

    Watkins, Kathy E; Way, Christine Y; Fiander, Jacqueline J; Meadus, Robert J; Esplen, Mary Jane; Green, Jane S; Ludlow, Valerie C; Etchegary, Holly A; Parfrey, Patrick S

    2011-09-07

    Lynch syndrome is a hereditary cancer with confirmed carriers at high risk for colorectal (CRC) and extracolonic cancers. The purpose of the current study was to develop a greater understanding of the factors influencing decisions about disease management post-genetic testing. The study used a grounded theory approach to data collection and analysis as part of a multiphase project examining the psychosocial and behavioral impact of predictive DNA testing for Lynch syndrome. Individual and small group interviews were conducted with individuals from 10 families with the MSH2 intron 5 splice site mutation or exon 8 deletion. The data from confirmed carriers (n = 23) were subjected to re-analysis to identify key barriers to and/or facilitators of screening and disease management. Thematic analysis identified personal, health care provider and health care system factors as dominant barriers to and/or facilitators of managing Lynch syndrome. Person-centered factors reflect risk perceptions and decision-making, and enduring screening/disease management. The perceived knowledge and clinical management skills of health care providers also influenced participation in recommended protocols. The health care system barriers/facilitators are defined in terms of continuity of care and coordination of services among providers. Individuals with Lynch syndrome often encounter multiple barriers to and facilitators of disease management that go beyond the individual to the provider and health care system levels. The current organization and implementation of health care services are inadequate. A coordinated system of local services capable of providing integrated, efficient health care and follow-up, populated by providers with knowledge of hereditary cancer, is necessary to maintain optimal health.

  15. The minor spliceosomal protein U11/U12-31K is an RNA chaperone crucial for U12 intron splicing and the development of dicot and monocot plants.

    PubMed

    Kwak, Kyung Jin; Jung, Hyun Ju; Lee, Kwang Ho; Kim, Young Soon; Kim, Won Yong; Ahn, Sung Ju; Kang, Hunseung

    2012-01-01

    U12 intron-specific spliceosomes contain U11 and U12 small nuclear ribonucleoproteins and mediate the removal of U12 introns from precursor-mRNAs. Among the several proteins unique to the U12-type spliceosomes, an Arabidopsis thaliana AtU11/U12-31K protein has been shown to be indispensible for proper U12 intron splicing and for normal growth and development of Arabidopsis plants. Here, we assessed the functional roles of the rice (Oryza sativa) OsU11/U12-31K protein in U12 intron splicing and development of plants. The U11/U12-31K transcripts were abundantly expressed in the shoot apical meristems (SAMs) of Arabidopsis and rice. Ectopic expression of OsU11/U12-31K in AtU11/U12-31K-defecient Arabidopsis mutant complemented the incorrect U12 intron splicing and abnormal development phenotypes of the Arabidopsis mutant plants. Impaired cell division activity in the SAMs and inflorescence stems observed in the AtU11/U12-31K-deficient mutant was completely recovered to normal by the expression of OsU11/U12-31K. Similar to Arabidopsis AtU11/U12-31K, rice OsU11/U12-31K was determined to harbor RNA chaperone activity. Collectively, the present findings provide evidence for the emerging idea that the U11/U12-31K protein is an indispensible RNA chaperone that functions in U12 intron splicing and is necessary for normal development of monocotyledonous plants as well as dicotyledonous plants.

  16. [Identification and phylogenetic application of unique nucleotide sequence of nad7 intron2 in Rhodiola (Crassulaceae) species].

    PubMed

    Deng, Ke-Jun; Yang, Zu-Jun; Liu, Cheng; Zhao, Wei; Liu, Chang; Feng, Juan; Ren, Zheng-Long

    2007-03-01

    Genetic characterization of 9 populations of Rhodiola crenulata, R. fastigiata and R. sachalinensis (Crassulaceae) species from Sichuan and Jilin Provinces of China, was investigated using the conserved primer of nad7 intron 2. All PCR products about 800 bp long were shorter than other Crassulaceae plants, which were used as molecular markers to identify the Rhodiola species. The sequence of the products indicated that total exon of 53 bp and intron of 738 bp exhibit only 9 nucleotide variations. Blasting the nad7 sequences to GenBank and the phylogenetic analysis showed that the sequence of Rhodiola species was clusted independently, and the length was smaller than all the registered sequences of higher plants. The result suggests that the Rhiodola species had a unique sequence in this gene region, which might be related to the special growth condition.

  17. An RNA electrophoretic mobility shift and mutational analysis of rnp-4f 5′-UTR intron splicing regulatory proteins in Drosophila reveals a novel new role for a dADAR protein isoform

    PubMed Central

    Lakshmi, G. Girija; Ghosh, Sushmita; Jones, Gabriel P.; Parikh, Roshni; Rawlins, Bridgette A.; Vaughn, Jack C.

    2014-01-01

    Alternative splicing greatly enhances the diversity of proteins encoded by eukaryotic genomes, and is also important in gene expression control. In contrast to the great depth of knowledge as to molecular mechanisms in the splicing pathway itself, relatively little is known about the regulatory events behind this process. The 5′-UTR and 3′-UTR in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation, and nearly 4,000 of the roughly 14,000 protein coding genes in Drosophila contain introns of unknown functional significance in their 5′-UTR. Here we report the results of an RNA electrophoretic mobility shift analysis of Drosophila rnp-4f 5′-UTR intron 0 splicing regulatory proteins. The pre-mRNA potential regulatory element consists of an evolutionarily-conserved 177-nt stem-loop arising from pairing of intron 0 with part of adjacent exon 2. Incubation of in vitro transcribed probe with embryo protein extract is shown to result in two shifted RNA-protein bands, and protein extract from a dADAR null mutant fly line results in only one shifted band. A mutated stem-loop in which the conserved exon 2 primary sequence is changed but secondary structure maintained by introducing compensatory base changes results in diminished band shifts. To test the hypothesis that dADAR plays a role in intron splicing regulation in vivo, levels of unspliced rnp-4f mRNA in dADAR mutant were compared to wild-type via real-time qRT-PCR. The results show that during embryogenesis unspliced rnp-4f mRNA levels fall by up to 85% in the mutant, in support of the hypothesis. Taken together, these results demonstrate a novel role for dADAR protein in rnp-4f 5′-UTR alternative intron splicing regulation which is consistent with a previously proposed model. PMID:23026215

  18. The benefits of sensorimotor knowledge: body-object interaction facilitates semantic processing.

    PubMed

    Siakaluk, Paul D; Pexman, Penny M; Sears, Christopher R; Wilson, Kim; Locheed, Keri; Owen, William J

    2008-04-05

    This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable. Responses were faster and more accurate for high BOI words (e.g., mask) than for low BOI words (e.g., ship). In Experiment 2, BOI effects were examined in a semantic lexical decision task (SLDT), which taps both semantic feedback and semantic processing. The BOI effect was larger in the SLDT than in the SCT, suggesting that BOI facilitates both semantic feedback and semantic processing. The findings are consistent with the embodied cognition perspective (e.g., Barsalou's, 1999, Perceptual Symbols Theory), which proposes that sensorimotor interactions with the environment are incorporated in semantic knowledge. 2008 Cognitive Science Society, Inc.

  19. Association of IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms with risk of mitral valve disease in children with rheumatic heart disease.

    PubMed

    Yousry, Sherif M; Sedky, Yasser; Sobieh, Alaa

    2016-10-01

    Aim Rheumatic heart disease is an inflammatory disease of cardiac tissue. The underlying pathogenic mechanisms highlight a complex interplay of immunological, genetic, and environmental factors. The aim of the present study was to investigate whether IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms could be associated with susceptibility and/or severity of rheumatic heart disease among patients from the Egyptian population. Materials and methods A cohort of 140 Egyptian children with rheumatic heart disease and 100 healthy controls were enrolled in this case-control study. Genotyping for IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms was carried out for all patients using a polymerase chain reaction-based analysis. No significant difference in the distribution of genotypes and allelic frequencies between rheumatic heart disease cases and controls for IL-4 (intron 3) (p=0.17; OR 1.07, 95% CI 0.82-3.74) and IL-10 (-1082) (p=0.49; OR 1.03, 95% CI 0.65-2.71) gene polymorphisms was observed. Further categorisation of patients into mitral valve disease and combined valve disease subgroups showed that cases with mitral valve disease have significantly higher frequency of the RP2 allele of IL-4 (intron 3) (p=0.03; OR 2.98, 95% CI 1.93-6.15) and the G allele of IL-10 (-1082) (p=0.04; OR 2.14, 95% CI 1.62-4.95) when compared with controls. Discussion Our study shows that IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms are not significantly associated with susceptibility to rheumatic heart disease, but they might play a role in the pathogenesis of patients with mitral valve disease.

  20. Novel pre-mRNA splicing of intronically integrated HBV generates oncogenic chimera in hepatocellular carcinoma.

    PubMed

    Chiu, Yung-Tuen; Wong, John K L; Choi, Shing-Wan; Sze, Karen M F; Ho, Daniel W H; Chan, Lo-Kong; Lee, Joyce M F; Man, Kwan; Cherny, Stacey; Yang, Wan-Ling; Wong, Chun-Ming; Sham, Pak-Chung; Ng, Irene O L

    2016-06-01

    Hepatitis B virus (HBV) integration is common in HBV-associated hepatocellular carcinoma (HCC) and may play an important pathogenic role through the production of chimeric HBV-human transcripts. We aimed to screen the transcriptome for HBV integrations in HCCs. Transcriptome sequencing was performed on paired HBV-associated HCCs and corresponding non-tumorous liver tissues to identify viral-human chimeric sites. Validation was further performed in an expanded cohort of human HCCs. Here we report the discovery of a novel pre-mRNA splicing mechanism in generating HBV-human chimeric protein. This mechanism was exemplified by the formation of a recurrent HBV-cyclin A2 (CCNA2) chimeric transcript (A2S), as detected in 12.5% (6 of 48) of HCC patients, but in none of the 22 non-HCC HBV-associated cirrhotic liver samples examined. Upon the integration of HBV into the intron of the CCNA2 gene, the mammalian splicing machinery utilized the foreign splice sites at 282nt. and 458nt. of the HBV genome to generate a pseudo-exon, forming an in-frame chimeric fusion with CCNA2. The A2S chimeric protein gained a non-degradable property and promoted cell cycle progression, demonstrating its potential oncogenic functions. A pre-mRNA splicing mechanism is involved in the formation of HBV-human chimeric proteins. This represents a novel and possibly common mechanism underlying the formation of HBV-human chimeric transcripts from intronically integrated HBV genome with functional impact. HBV is involved in the mammalian pre-mRNA splicing machinery in the generation of potential tumorigenic HBV-human chimeras. This study also provided insight on the impact of intronic HBV integration with the gain of splice sites in the development of HBV-associated HCC. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. A novel non-coding RNA within an intron of CDH2 and association of its SNP with non-syndromic cleft lip and palate.

    PubMed

    Kumari, Priyanka; Singh, Subodh Kumar; Raman, Rajiva

    2018-06-05

    Genome-wide linkage analysis and whole genome sequencing in a Van der Woude syndrome (VWS) family revealed that the SNP, rs539075, within intron 2 of the cadherin 2 gene (CDH2) co-segregated with the disease phenotype. A study with nonsyndromic cleft lip with or without cleft palate (NSCL ± P) cases (N = 292) and controls (N = 287) established association of this SNP with NSCL ± P as a risk factor. RT-PCR based expression analysis of the SNP-harbouring region of intron 2 of CDH2 in the clefted lip and/or palate tissues of 16 patients revealed that the mutant allele expressed in all those individuals having it (hetero-/homozygous), whereas the wild type allele expressed in <50% of the samples in which it was present. The intronic transcript was also present in the prospective lip and palate region of 13.5 dpc mouse embryo, detected by RNA in situ hybridization and RT-PCR. These results including the in silico, characterization of the ~200 nt-intronic transcript showed that conformationally it fits best with noncoding small RNA, possibly a precursor of miRNA. Its function in the orofacial organogenesis remains to be elucidated which will enable us to define the role of this mutant ncRNA in the clefting of lip and palate. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. COL5A1: Fine genetic mapping, intron/exon organization, and exclusion as candidate gene in families with tuberous sclerosis complex 1, hereditary hemorrhagic telangiectasia, and Ehlers-Danlos syndrome type II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenspan, D.S.; Papenberg, K.A.; Marchuk, D.A.

    1994-09-01

    Type V collagen is the only fibrillar collagen which has yet to be implicated in the pathogenesis of genetic diseases in humans or mice. To begin examining the possible role of type V collagen in genetic disease, we have previously mapped COL5A1, the gene for the {alpha}1 chain of type V collagen, to 9q23.2{r_arrow}q34.3 and described two restriction site polymorphisms which allowed us to exclude COL5A1 as candidate gene for nail-patella syndrome. We have now used these polymorphisms to exclude COL5A1 as candidate gene for tuberous sclerosis complex 1 and Ehlers-Danlos syndrome type II. In addition, we describe a CAmore » repeat, with observed heterozygosity of about 0.5, in a COL5A1 intron, which has allowed us to exclude COL5A1 as a candidate gene in hereditary hemorrhagic telangiectasia and to place COL5A1 on the CEPH family genetic map between markers D9S66 and D9S67. We have also determined the entire intron/exon organization of COL5A1, which will facilitate characterization of mutations in genetic diseases with which COL5A1 may be linked in future studies.« less

  3. In vivo effects on intron retention and exon skipping by the U2AF large subunit and SF1/BBP in the nematode Caenorhabditis elegans

    PubMed Central

    Ma, Long; Tan, Zhiping; Teng, Yanling; Hoersch, Sebastian; Horvitz, H. Robert

    2011-01-01

    The in vivo analysis of the roles of splicing factors in regulating alternative splicing in animals remains a challenge. Using a microarray-based screen, we identified a Caenorhabditis elegans gene, tos-1, that exhibited three of the four major types of alternative splicing: intron retention, exon skipping, and, in the presence of U2AF large subunit mutations, the use of alternative 3′ splice sites. Mutations in the splicing factors U2AF large subunit and SF1/BBP altered the splicing of tos-1. 3′ splice sites of the retained intron or before the skipped exon regulate the splicing pattern of tos-1. Our study provides in vivo evidence that intron retention and exon skipping can be regulated largely by the identities of 3′ splice sites. PMID:22033331

  4. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.

    PubMed

    Zhou, Mi; Yan, Jun; Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.

  5. Effective suppression of dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain.

    PubMed

    Carter, James R; Keith, James H; Fraser, Tresa S; Dawson, James L; Kucharski, Cheryl A; Horne, Kate M; Higgs, Stephen; Fraser, Malcolm J

    2014-06-13

    Approximately 100 million confirmed infections and 20,000 deaths are caused by Dengue virus (DENV) outbreaks annually. Global warming and rapid dispersal have resulted in DENV epidemics in formally non-endemic regions. Currently no consistently effective preventive measures for DENV exist, prompting development of transgenic and paratransgenic vector control approaches. Production of transgenic mosquitoes refractory for virus infection and/or transmission is contingent upon defining antiviral genes that have low probability for allowing escape mutations, and are equally effective against multiple serotypes. Previously we demonstrated the effectiveness of an anti-viral group I intron targeting U143 of the DENV genome in mediating trans-splicing and expression of a marker gene with the capsid coding domain. In this report we examine the effectiveness of coupling expression of ΔN Bax to trans-splicing U143 intron activity as a means of suppressing DENV infection of mosquito cells. Targeting the conserved DENV circularization sequence (CS) by U143 intron trans-splicing activity appends a 3' exon RNA encoding ΔN Bax to the capsid coding region of the genomic RNA, resulting in a chimeric protein that induces premature cell death upon infection. TCID50-IFA analyses demonstrate an enhancement of DENV suppression for all DENV serotypes tested over the identical group I intron coupled with the non-apoptotic inducing firefly luciferase as the 3' exon. These cumulative results confirm the increased effectiveness of this αDENV-U143-ΔN Bax group I intron as a sequence specific antiviral that should be useful for suppression of DENV in transgenic mosquitoes. Annexin V staining, caspase 3 assays, and DNA ladder observations confirm DCA-ΔN Bax fusion protein expression induces apoptotic cell death. This report confirms the relative effectiveness of an anti-DENV group I intron coupled to an apoptosis-inducing ΔN Bax 3' exon that trans-splices conserved sequences of the 5' CS

  6. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development.

    PubMed

    Rocchi, V; Janni, M; Bellincampi, D; Giardina, T; D'Ovidio, R

    2012-03-01

    Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    PubMed

    Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  8. Multi-Species Comparative Analysis of the Equine ACE Gene Identifies a Highly Conserved Potential Transcription Factor Binding Site in Intron 16

    PubMed Central

    Hamilton, Natasha A.; Tammen, Imke; Raadsma, Herman W.

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism. PMID:23408978

  9. Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives.

    PubMed

    Schröder, Christiane; Bleidorn, Christoph; Hartmann, Stefanie; Tiedemann, Ralph

    2009-12-15

    Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (dog-like carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony-informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.

  10. Emotional facilitation of sensory processing in the visual cortex.

    PubMed

    Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2003-01-01

    A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.

  11. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc

    PubMed Central

    Kaasalainen, Ulla; Olsson, Sanna; Rikkinen, Jouko

    2015-01-01

    The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies. PMID:26098760

  12. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.

    PubMed

    Kaasalainen, Ulla; Olsson, Sanna; Rikkinen, Jouko

    2015-01-01

    The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies.

  13. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences.

    PubMed

    Bergman, C M; Kreitman, M

    2001-08-01

    Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.

  14. Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences.

    PubMed

    Schwaiger, F W; Buitkamp, J; Weyers, E; Epplen, J T

    1993-02-01

    An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.

  15. A few nucleotide polymorphisms are sufficient to recruit nuclear factors differentially to the intron 1 of HPV-16 intratypic variants.

    PubMed

    López-Urrutia, Eduardo; Valdés, Jesús; Bonilla-Moreno, Raúl; Martínez-Salazar, Martha; Martínez-Garcia, Martha; Berumen, Jaime; Villegas-Sepúlveda, Nicolás

    2012-06-01

    The HPV-16 E6/E7 genes, which contain intron 1, are processed by alternative splicing and its transcripts are detected with a heterogeneous profile in tumours cells. Frequently, the HPV-16 positive carcinoma cells bear viral variants that contain single nucleotide polymorphisms into its DNA sequence. We were interested in analysing the contribution of this polymorphism to the heterogeneity in the pattern of the E6/E7 spliced transcripts. Using the E6/E7 sequences from three closely related HPV-16 variants, we have shown that a few nucleotide changes are sufficient to produce heterogeneity in the splicing profile. Furthermore, using mutants that contained a single SNP, we also showed that one nucleotide change was sufficient to reproduce the heterogeneous splicing profile. Additionally, a difference of two or three SNPs among these viral sequences was sufficient to recruit differentially several splicing factors to the polymorphic E6/E7 transcripts. Moreover, only one SNP was sufficient to alter the binding site of at least one splicing factor, changing the ability of splicing factors to bind the transcript. Finally, the factors that were differentially bound to the short form of intron 1 of one of these E6/E7 variants were identified as TIA1 and/or TIAR and U1-70k, while U2AF65, U5-52k and PTB were preferentially bound to the transcript of the other variants. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Facilitation and interference in naming: A consequence of the same learning process?

    PubMed

    Hughes, Julie W; Schnur, Tatiana T

    2017-08-01

    Our success with naming depends on what we have named previously, a phenomenon thought to reflect learning processes. Repeatedly producing the same name facilitates language production (i.e., repetition priming), whereas producing semantically related names hinders subsequent performance (i.e., semantic interference). Semantic interference is found whether naming categorically related items once (continuous naming) or multiple times (blocked cyclic naming). A computational model suggests that the same learning mechanism responsible for facilitation in repetition creates semantic interference in categorical naming (Oppenheim, Dell, & Schwartz, 2010). Accordingly, we tested the predictions that variability in semantic interference is correlated across categorical naming tasks and is caused by learning, as measured by two repetition priming tasks (picture-picture repetition priming, Exp. 1; definition-picture repetition priming, Exp. 2, e.g., Wheeldon & Monsell, 1992). In Experiment 1 (77 subjects) semantic interference and repetition priming effects were robust, but the results revealed no relationship between semantic interference effects across contexts. Critically, learning (picture-picture repetition priming) did not predict semantic interference effects in either task. We replicated these results in Experiment 2 (81 subjects), finding no relationship between semantic interference effects across tasks or between semantic interference effects and learning (definition-picture repetition priming). We conclude that the changes underlying facilitatory and interfering effects inherent to lexical access are the result of distinct learning processes where multiple mechanisms contribute to semantic interference in naming. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells.

    PubMed

    Kung, M H; Lee, Y J; Hsu, J T; Huang, M C; Ju, Y T

    2015-06-01

    Goat β-casein (CSN2) promoter has been extensively used to derive expression of recombinant therapeutic protein in transgenic goats; however, little direct evidence exists for signaling molecules and the cis-elements of goat CSN2 promoter in response to lactogenic hormone stimulation in goat mammary epithelial cells. Here, we use an immortalized caprine mammary epithelial cell line (CMC) to search for evidence of the above. Serial 5'-flanking regions deleted of promoter and intron 1 in goat CSN2 (-4,047 to +2,054) driven by firefly luciferase reporter gene were constructed and applied to measure promoter activity in CMC. The intron 1 region (+393 to +501) significantly decreased basal activity of the promoter. This finding contradicts other studies of the role of intron 1. The signal transducer and activator of transcription (STAT)5a played a significant role in activating promoter activity by prolactin stimulation. Hydrocortisone enhanced and prolonged the activity of STAT5a and promoter in CMC, but was independent of the glucocorticoid receptor response element. The minimum length of the CSN2 promoter segment in response to lactogenic stimulation was confirmed by 5' serial deletions. A cis-element located from -300 to -90 in proximal goat CSN2 promoter that is absent in bovine and human CSN2 promoter was newly identified. We demonstrated the presence of a STAT5a binding site (-102 to -82) and preservation of the guanosine nucleotide at position -90 based on responses to the presence of lactogenic hormone using internal deletions and point mutations of the predicted STAT5a binding site, and chromatin immunoprecipitation assay. Together, these findings demonstrate that the proximal -300 bp of goat CSN2 promoter containing the STAT5a binding site (-102 to -82) is the response element for lactogenic hormone stimulation. Additionally, intron 1 may be required for tissue or developmental stage-specific expression in mammary gland. The role of the far-distal regions of

  18. The presence of the NOS3 gene polymorphism for intron 4 mitigates the beneficial effects of exercise training on ambulatory blood pressure monitoring in adults.

    PubMed

    Sponton, Carlos H; Esposti, Rodrigo; Rodovalho, Cynara M; Ferreira, Maycon J; Jarrete, Aline P; Anaruma, Chadi P; Bacci, Mauricio; Zanesco, Angelina

    2014-06-15

    The number of studies that have evaluated exercise training (ET) and nitric oxide synthase (NOS)3 gene polymorphisms is scarce. The present study was designed to evaluate the relationship between exercise training and NOS3 polymorphisms at -786T>C, 894G>T, and intron 4b/a on blood pressure (BP) using 24-h ambulatory BP monitoring (ABPM), nitrate/nitrite levels (NOx), and redox state. Eighty-six volunteers (51 ± 0.6 yr old) were genotyped into nonpolymorphic and polymorphic groups for each of the three positions of NOS3 polymorphisms. Auscultatory BP, ABPM, SOD activity, catalase activity, NOx levels, and malondialdehyde levels were measured. DNA was extracted from leukocytes, and PCR followed by sequencing was applied for genotype analysis. Aerobic ET consisted of 24 sessions for 3 days/wk for 40 min at moderate intensity. This study was performed in a double-blind and crossover format. ET was effective in lowering office BP (systolic BP: 3.2% and diastolic BP: 3%) as well as ABPM (systolic BP: 2% and diastolic BP: 1.3%). Increased SOD and catalase activity (42.6% and 15.1%, respectively) were also observed. The NOS3 polymorphism for intron 4 mitigated the beneficial effect of ET for systolic BP (nonpolymorphic group: -3.0% and polymorphic group: -0.6%) and diastolic BP (nonpolymorphic group: -3.2% and polymorphic group: -0.5%), but it was not associated with NOx level and redox state. Paradoxical responses were found for positions T786-C and G894T for the NOS3 gene. Consistently, the presence of the polymorphism for intron 4 blunted the beneficial effects of ET in middle-aged adults. Possibly, this effect might be as consequence of intron 4 acting as a short intronic repeat RNA controlling endothelial NOS activity epigenetically. Copyright © 2014 the American Physiological Society.

  19. Collaboration among eldercare workers: barriers, facilitators and supporting processes.

    PubMed

    Jakobsen, Louise M; Albertsen, Karen; Jorgensen, Anette F B; Greiner, Birgit A; Rugulies, Reiner

    2018-05-03

    To retain qualified care workers and to ensure high-quality care for residents in eldercare homes, well-functioning collaboration among care workers is pivotal. This study aims to identify barriers and facilitators of collaboration among eldercare workers and to describe the processes leading to well-functioning collaboration. We collected focus group data from 33 eldercare workers from seven Danish eldercare homes. We found that collaboration was hampered by a number of formal and informal divisions among care workers. To ensure well-functioning collaboration, social and professional relations among care workers needed to be dealt with actively by care workers and by managers. The analysis showed that managers are essential for creating a well-functioning framework around the collaboration between care workers by providing guidelines and procedures for working across various divisions, by being attentive to care workers and taking decisive action when needed and by dealing with conflicts in the workgroups. © 2018 Nordic College of Caring Science.

  20. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements

    PubMed Central

    Gogarten, J Peter; Hilario, Elena

    2006-01-01

    Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones

  1. Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales.

    PubMed

    Nadimi, Maryam; Beaudet, Denis; Forget, Lise; Hijri, Mohamed; Lang, B Franz

    2012-09-01

    Gigaspora rosea is a member of the arbuscular mycorrhizal fungi (AMF; Glomeromycota) and a distant relative of Glomus species that are beneficial to plant growth. To allow for a better understanding of Glomeromycota, we have sequenced the mitochondrial DNA of G. rosea. A comparison with Glomus mitochondrial genomes reveals that Glomeromycota undergo insertion and loss of mitochondrial plasmid-related sequences and exhibit considerable variation in introns. The gene order between the two species is almost completely reshuffled. Furthermore, Gigaspora has fragmented cox1 and rns genes, and an unorthodox initiator tRNA that is tailored to decoding frequent UUG initiation codons. For the fragmented cox1 gene, we provide evidence that its RNA is joined via group I-mediated trans-splicing, whereas rns RNA remains in pieces. According to our model, the two cox1 precursor RNA pieces are brought together by flanking cox1 exon sequences that form a group I intron structure, potentially in conjunction with the nad5 intron 3 sequence. Finally, we present analyses that address the controversial phylogenetic association of Glomeromycota within fungi. According to our results, Glomeromycota are not a separate group of paraphyletic zygomycetes but branch together with Mortierellales, potentially also Harpellales.

  2. A Middle School's Response-to-Intervention Journey: Building Systematic Processes of Facilitation, Collaboration, and Implementation

    ERIC Educational Resources Information Center

    Dulaney, Shannon K.

    2013-01-01

    This article discusses a qualitative case study examining one middle school's response to intervention (RtI) efforts. Study participants included the principal, assistant principal, and members of the school's leadership team. A description of the RtI consensus and infrastructure-building processes, consideration of the RtI facilitators, and a…

  3. Partial androgen insensitivity syndrome caused by a deep intronic mutation creating an alternative splice acceptor site of the AR gene.

    PubMed

    Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu

    2018-02-02

    Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.

  4. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment1

    PubMed Central

    Johnson, Matthew G.; Gardner, Elliot M.; Liu, Yang; Medina, Rafael; Goffinet, Bernard; Shaw, A. Jonathan; Zerega, Nyree J. C.; Wickett, Norman J.

    2016-01-01

    Premise of the study: Using sequence data generated via target enrichment for phylogenetics requires reassembly of high-throughput sequence reads into loci, presenting a number of bioinformatics challenges. We developed HybPiper as a user-friendly platform for assembly of gene regions, extraction of exon and intron sequences, and identification of paralogous gene copies. We test HybPiper using baits designed to target 333 phylogenetic markers and 125 genes of functional significance in Artocarpus (Moraceae). Methods and Results: HybPiper implements parallel execution of sequence assembly in three phases: read mapping, contig assembly, and target sequence extraction. The pipeline was able to recover nearly complete gene sequences for all genes in 22 species of Artocarpus. HybPiper also recovered more than 500 bp of nontargeted intron sequence in over half of the phylogenetic markers and identified paralogous gene copies in Artocarpus. Conclusions: HybPiper was designed for Linux and Mac OS X and is freely available at https://github.com/mossmatters/HybPiper. PMID:27437175

  5. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2006-01-01

    Prediction of microRNA (miRNA) candidates using computer programming has identified hundreds and hundreds of genomic hairpin sequences, of which, the functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene-silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem, and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, this intronic miRNA biogenesis system has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA-expressing system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafish, chicken embryos, and adult mice. Based on the strand complementarity between the designed miRNA and its target gene sequence, we have also developed a miRNA isolation protocol to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proof- of-principle method, we now have the knowledge to design pre

  6. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2013-01-01

    Computer programming has identified hundreds of genomic hairpin sequences, many with functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem by inserting a hairpin-like pre-miRNA structure into the intron region of a gene and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. This intronic miRNA biogenesis has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA generation system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafishes, chicken embryos, and adult mice. We have also developed an miRNA isolation protocol, based on the complementarity between the designed miRNA and its target gene sequence, to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proven-of-principle method, we now have full knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic mi

  7. A Novel Pathway for Sensory-Mediated Arousal Involves Splicing of an Intron in the period Clock Gene

    PubMed Central

    Cao, Weihuan; Edery, Isaac

    2015-01-01

    Study Objectives: D. melanogaster is an excellent animal model to study how the circadian (≅ 24-h) timing system and sleep regulate daily wake-sleep cycles. Splicing of a temperature-sensitive 3'-terminal intron (termed dmpi8) from the circadian clock gene period (per) regulates the distribution of daily activity in Drosophila. The role of dmpi8 splicing on daily behavior was further evaluated by analyzing sleep. Design: Transgenic flies of the same genetic background but expressing either a wild-type recombinant per gene or one where the efficiency of dmpi8 splicing was increased were exposed to different temperatures in daily light-dark cycles and sleep parameters measured. In addition, transgenic flies were briefly exposed to a variety of sensory-mediated stimuli to measure arousal responses. Results: Surprisingly, we show that the effect of dmpi8 splicing on daytime activity levels does not involve a circadian role for per but is linked to adjustments in sensory-dependent arousal and sleep behavior. Genetically altered flies with high dmpi8 splicing efficiency remain aroused longer following short treatments with light and non-photic cues such as mechanical stimulation. Conclusions: We propose that the thermal regulation of dmpi8 splicing acts as a temperature-calibrated rheostat in a novel arousal mechanism, so that on warm days the inefficient splicing of the dmpi8 intron triggers an increase in quiescence by decreasing sensory-mediated arousal, thus ensuring flies minimize being active during the hot midday sun despite the presence of light in the environment, which is usually a strong arousal cue for diurnal animals. Citation: Cao W, Edery I. A novel pathway for sensory-mediated arousal involves splicing of an intron in the period clock gene. SLEEP 2015;38(1):41–51. PMID:25325457

  8. RNA editing in the anticodon of tRNA Leu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue.

    PubMed

    Miyata, Y; Sugita, C; Maruyama, K; Sugita, M

    2008-03-01

    RNA editing of cytidine (C) to uridine (U) transitions occurs in plastids and mitochondria of most land plants. In this study, we amplified and sequenced the group I intron-containing tRNA Leu gene, trnL-CAA, from Takakia lepidozioides, a moss. DNA sequence analysis revealed that the T. lepidozioides tRNA Leu gene consisted of a 35-bp 5' exon, a 469-bp group I intron and a 50-bp 3' exon. The intron was inserted between the first and second position of the tRNA Leu anticodon. In general, plastid tRNA Leu genes with a group I intron code for a TAA anticodon in most land plants. This strongly suggests that the first nucleotide of the CAA anticodon could be edited in T. lepidozioides plastids. To investigate this possibility, we analysed cDNAs derived from the trnL-CAA transcripts. We demonstrated that the first nucleotide C of the anticodon was edited to create a canonical UAA anticodon in T. lepidozioides plastids. cDNA sequencing analyses of the spliced or unspliced tRNA Leu transcripts revealed that, while the spliced tRNA was completely edited, editing in the unspliced tRNAs were only partial. This is the first experimental evidence that the anticodon editing of tRNA occurs before RNA splicing in plastids. This suggests that this editing is a prerequisite to splicing of pre-tRNA Leu.

  9. Isolation, structural determination, synthesis and quantitative determination of impurities in Intron-A, leached from a silicone tubing.

    PubMed

    Chan, Tze-Ming; Pramanik, Birendra; Aslanian, Robert; Gullo, Vincent; Patel, Mahesh; Cronin, Bart; Boyce, Chris; McCormick, Kevin; Berlin, Mike; Zhu, Xiaohong; Buevich, Alexei; Heimark, Larry; Bartner, Peter; Chen, Guodong; Pu, Haiyan; Hegde, Vinod

    2009-02-20

    Investigation of unexpected levels of impurities in Intron product has revealed the presence of low levels of impurities leached from the silicone tubing (Rehau RAU-SIK) on the Bosch filling line. In order to investigate the effect of these compounds (1a, 1b and 2) on humans, they were isolated identified and synthesized. They were extracted from the tubing by stirring in Intron placebo at room temperature for 72 h and were enriched on a reverse phase CHP-20P column, eluting with gradient aqueous ACN and were separated by HPLC. Structural elucidation of 1a, 1b and 2 by MS and NMR studies demonstrated them to be halogenated biphenyl carboxylic acids. The structures were confirmed by independent synthesis. Levels of extractable impurities in first filled vials of actual production are estimated to be in the range of 0.01-0.55 microg/vial for each leached impurity. Potential toxicity of these extractables does not represent a risk for patients under the conditions of clinical use.

  10. Myostatin-2 gene structure and polymorphism of the promoter and first intron in the marine fish Sparus aurata: evidence for DNA duplications and/or translocations.

    PubMed

    Nadjar-Boger, Elisabeth; Funkenstein, Bruria

    2011-02-01

    Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. Fish express at least two genes for MSTN: MSTN-1 and MSTN-2. To date, MSTN-2 promoters have been cloned only from salmonids and zebrafish. Here we described the cloning and sequence analysis of MSTN-2 gene and its 5' flanking region in the marine fish Sparus aurata (saMSTN-2). We demonstrate the existence of three alleles of the promoter and three alleles of the first intron. Sequence comparison of the promoter region in the three alleles revealed that although the sequences of the first 1050 bp upstream of the translation start site are almost identical in the three alleles, a substantial sequence divergence is seen further upstream. Careful sequence analysis of the region upstream of the first 1050 bp in the three alleles identified several elements that appear to be repeated in some or all sequences, at different positions. This suggests that the promoter region of saMSTN-2 has been subjected to various chromosomal rearrangements during the course of evolution, reflecting either insertion or deletion events. Screening of several genomic DNA collections indicated differences in allele frequency, with allele 'b' being the most abundant, followed by allele 'c', whereas allele 'a' is relatively rare. Sequence analysis of saMSTN-2 gene also revealed polymorphism in the first intron, identifying three alleles. The length difference in alleles '1R' and '2R' of the first intron is due to the presence of one or two copies of a repeated block of approximately 150 bp, located at the 5' end of the first intron. The third allele, '4R', has an additional insertion of 323 bp located 116 bp upstream of the 3' end of the first intron. Analysis of several DNA collections showed that the '2R' allele is the most common, followed by the '4R' allele, whereas the '1R' allele is relatively rare. Progeny analysis of a

  11. Using dual-process theory and analogical transfer to explain facilitation on a hypothetico-deductive reasoning task.

    PubMed

    Koenig, Cynthia S; Platt, Richard D; Griggs, Richard A

    2007-07-01

    Using the analogical transfer paradigm, the present study investigated the competing explanations of Girotto and Legrenzi (Psychological Research 51: 129-135, 1993) and Griggs, Platt, Newstead, and Jackson (Thinking and Reasoning 4: 1-14, 1998) for facilitation on the SARS version of the THOG problem, a hypothetico-deductive reasoning task. Girotto and Legrenzi argue that facilitation is based on logical analysis of the task [System 2 reasoning in Evans's (Trends in Cognitive Sciences 7: 454-459, 2003) dual-process account of reasoning] while Griggs et al. maintain that facilitation is due to an attentional heuristic produced by the wording of the problem (System 1 reasoning). If Girotto and Legrenzi are correct, then System 2 reasoning, which is volitional and responsible for deductive reasoning, should be elicited, and participants should comprehend the solution principle of the THOG task and exhibit analogical transfer. However, if Griggs et al. are correct, then System 1 reasoning, which is responsible for heuristic problem solving strategies such as an attentional heuristic, should occur, and participants should not abstract the solution principle and transfer should not occur. Significant facilitation (68 and 82% correct) was only observed for the two SARS source problems, but significant analogical transfer did not occur. This lack of transfer suggests that System 1 reasoning was responsible for the facilitation observed in the SARS problem, supporting Griggs et al.'s attentional heuristic explanation. The present results also underscore the explanatory value of using analogical transfer rather than facilitation as the criterion for problem understanding.

  12. Comparative and Evolutionary Analysis of the HES/HEY Gene Family Reveal Exon/Intron Loss and Teleost Specific Duplication Events

    PubMed Central

    Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and

  13. Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles.

    PubMed

    Vigentini, Ileana; De Lorenzis, Gabriella; Picozzi, Claudia; Imazio, Serena; Merico, Annamaria; Galafassi, Silvia; Piškur, Jure; Foschino, Roberto

    2012-06-15

    In enology, "Brett" character refers to the wine spoilage caused by the yeast Dekkera/Brettanomyces bruxellensis and its production of volatile phenolic off-flavours. However, the spoilage potential of this yeast is strain-dependent. Therefore, a rapid and reliable recognition at the strain level is a key point to avoid serious economic losses. The present work provides an operative tool to assess the genetic intraspecific variation in this species through the use of introns as molecular targets. Firstly, the available partial D./B. bruxellensis genome sequence was investigated in order to build primers annealing to introns 5' splice site sequence (ISS). This analysis allowed the detection of a non-random vocabulary flanking the site and, exploiting this feature, the creation of specific probes for strain discrimination. Secondly, the separation of the intron splice site PCR fragments was obtained throughout the set up of a capillary electrophoresis protocol, giving a 94% repeatability threshold in our experimental conditions. The comparison of results obtained with ISS-PCR/CE versus the ones performed by mtDNA RFLP revealed that the former protocol is more discriminating and allowed a reliable identification at strain level. Actually sixty D./B. bruxellensis isolates were recognised as unique strains, showing a level of similarity below 79% and confirming the high genetic polymorphism existing within the species. Two main clusters were grouped at similarity levels of about 46% and 47%, respectively, showing a poor correlation with the geographic area of isolation. Moreover, from the evolutionary point of view, the proposed technique could determine the frequency of the genome rearrangements that can occur in D./B. bruxellesis populations. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Gene encoding the human. beta. -hexosaminidase. beta. chain: Extensive homology of intron placement in the. alpha. - and. beta. -chain genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proia, R.L.

    1988-03-01

    Lysosomal {beta}-hexosaminidase is composed of two structurally similar chains, {alpha} and {beta}, that are the products of different genes. Mutations in either gene causing {beta}-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the {alpha} and {beta} chains, the {beta}-chain gene was isolated, and its organization was characterized. The {beta}-chain coding region is divided into 14 exons distributed over {approx}40 kilobases of DNA. Comparison with the {alpha}-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions.more » This extensive sharing of intron placement demonstrates that the {alpha} and {beta} chains evolved by way of the duplication of a common ancestor.« less

  15. Facilitating Employees' and Students' Process towards Nascent Entrepreneurship

    ERIC Educational Resources Information Center

    Hietanen, Lenita

    2015-01-01

    Purpose: The purpose of this paper is to investigate a model for facilitating employees' and full-time, non-business students' entrepreneurial capabilities during their optional entrepreneurship studies at one Finnish Open University. Design/methodology/approach: The case study investigates the course in which transitions from employees or…

  16. Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region.

    PubMed

    Li, Guisheng; Cui, Yan; Wang, Hongtao; Kwon, Woo-Saeng; Yang, Deok-Chun

    2017-07-01

    Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. The mitochondrial NADH dehydrogenase subunit 7 ( nad 7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad 7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.

  17. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.

  18. Virtual OD: Facilitating Groups Online

    ERIC Educational Resources Information Center

    Milton, Judy; Watkins, Karen E.; Daley, Barbara J.

    2005-01-01

    This study examined the role of facilitators in nine virtual action learning groups. A qualitative analysis of the facilitators' interventions across all groups resulted in a typology that included group management, group process, and support interventions. A model showing the relationship among these categories proposes that effective…

  19. The Essential Elements of Facilitation.

    ERIC Educational Resources Information Center

    Priest, Simon; Gass, Michael; Gillis, Lee

    Most organizations find it difficult to implement change, and only about 10 percent of learning from training and development experiences is actually applied in the workplace. This book advocates facilitation as a means of enhancing change and increasing productivity. Facilitation engages employees by enhancing the processes associated with their…

  20. Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis

    PubMed Central

    Cronin, Simon; Greenway, Matthew J; Prehn, Jochen H M; Hardiman, Orla

    2007-01-01

    Background The paraoxonases, PON1–3, play a major protective role both against environmental toxins and as part of the antioxidant defence system. Recently, non‐synonymous coding single nucleotide polymorphisms (SNPs), known to lower serum PON activity, have been associated with sporadic ALS (SALS) in a Polish population. A separate trio based study described a detrimental allele at the PON3 intronic variant INS2+3651 (rs10487132). Association between PON gene cluster variants and SALS requires external validation in an independent dataset. Aims To examine the association of the promoter SNPs PON1−162G>A and PON1−108T>C; the non‐synonymous functional SNPs PON1Q192R and L55M and PON2C311S and A148G; and the intronic marker PON3INS2+3651A>G, with SALS in a genetically homogenous population. Methods 221 Irish patients with SALS and 202 unrelated control subjects were genotyped using KASPar chemistries. Statistical analyses and haplotype estimations were conducted using Haploview and Unphased software. Multiple permutation testing, as implemented in Unphased, was applied to haplotype p values to correct for multiple hypotheses. Results Two of the seven SNPs were associated with SALS in the Irish population: PON155M (OR 1.52, p = 0.006) and PON3INS2+3651 G (OR 1.36, p = 0.03). Two locus haplotype analysis showed association only when both of these risk alleles were present (OR 1.7, p = 0.005), suggesting a potential effect modification. Low functioning promoter variants were observed to influence this effect when compared with wild‐type. Conclusions These data provide additional evidence that genetic variation across the paroxanase loci may be common susceptibility factors for SALS. PMID:17702780

  1. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.

    PubMed

    Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin

    2017-05-01

    Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the

  2. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs

    PubMed Central

    Wang, D; Guo, Y; Wrighton, SA; Cooke, GE; Sadee, W

    2011-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes ~50% of all clinically used drugs. Although CYP3A4 expression varies widely between individuals, the contribution of genetic factors remains uncertain. In this study, we measured allelic CYP3A4 heteronuclear RNA (hnRNA) and mRNA expression in 76 human liver samples heterozygous for at least one of eight marker SNPs and found marked allelic expression imbalance (1.6–6.3-fold) in 10/76 liver samples (13%). This was fully accounted for by an intron 6 SNP (rs35599367, C>T), which also affected mRNA expression in cell culture on minigene transfections. CYP3A4 mRNA level and enzyme activity in livers with CC genotype were 1.7- and 2.5-fold, respectively, greater than in CT and TT carriers. In 235 patients taking stable doses of atorvastatin, simvastatin, or lovastatin for lipid control, carriers of the T allele required significantly lower statin doses (0.2–0.6-fold, P=0.019) than non-T carriers for optimal lipid control. These results indicate that intron 6 SNP rs35599367 markedly affects expression of CYP3A4 and could serve as a biomarker for predicting response to CYP3A4-metabolized drugs. PMID:20386561

  3. An SNP in the MyoD1 gene intron 2 associated with growth and carcass traits in three duck populations.

    PubMed

    Wu, Y; Pi, J S; Pan, A L; Pu, Y J; Du, J P; Shen, J; Liang, Z H; Zhang, J R

    2012-12-01

    Myogenic differentiation 1 (MyoD1) genes belong to the MyoD gene family and play key roles in growth and muscle development. This study was designed to investigate the effects of variants in the MyoD1 gene on duck growth and carcass traits. Three duck populations (Cherry Valley, Jingjiang, and Muscovy) were sampled, their growth and carcass traits were measured, and they were genotyped using the PCR-RFLP method. The results showed one novel polymorphism, an alteration in intron 2 of the MyoD1 gene (A to T). It was associated with the traits of weight at 8 weeks, carcass weight, breast muscle weight, leg muscle weight, eviscerated percentage, percentage of leg muscle weight, dressing percentage, and lean meat percentage. This alteration in intron 2 of MyoD1 may be linked with potential major loci or genes affecting some growth and carcass traits.

  4. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae)

    PubMed Central

    Gu, Cuihua; Tembrock, Luke R.; Johnson, Nels G.; Simmons, Mark P.; Wu, Zhiqiang

    2016-01-01

    Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701

  5. On the nature of extraversion: variation in conditioned contextual activation of dopamine-facilitated affective, cognitive, and motor processes

    PubMed Central

    Depue, Richard A.; Fu, Yu

    2013-01-01

    Research supports an association between extraversion and dopamine (DA) functioning. DA facilitates incentive motivation and the conditioning and incentive encoding of contexts that predict reward. Therefore, we assessed whether extraversion is related to the efficacy of acquiring conditioned contextual facilitation of three processes that are dependent on DA: motor velocity, positive affect, and visuospatial working memory. We exposed high and low extraverts to three days of association of drug reward (methylphenidate, MP) with a particular laboratory context (Paired group), a test day of conditioning, and three days of extinction in the same laboratory. A Placebo group and an Unpaired group (that had MP in a different laboratory context) served as controls. Conditioned contextual facilitation was assessed by (i) presenting video clips that varied in their pairing with drug and laboratory context and in inherent incentive value, and (ii) measuring increases from day 1 to Test day on the three processes above. Results showed acquisition of conditioned contextual facilitation across all measures to video clips that had been paired with drug and laboratory context in the Paired high extraverts, but no conditioning in the Paired low extraverts (nor in either of the control groups). Increases in the Paired high extraverts were correlated across the three measures. Also, conditioned facilitation was evident on the first day of extinction in Paired high extraverts, despite the absence of the unconditioned effects of MP. By the last day of extinction, responding returned to day 1 levels. The findings suggest that extraversion is associated with variation in the acquisition of contexts that predict reward. Over time, this variation may lead to differences in the breadth of networks of conditioned contexts. Thus, individual differences in extraversion may be maintained by activation of differentially encoded central representations of incentive contexts that predict reward

  6. Rhetorical features facilitate prosodic processing while handicapping ease of semantic comprehension.

    PubMed

    Menninghaus, Winfried; Bohrn, Isabel C; Knoop, Christine A; Kotz, Sonja A; Schlotz, Wolff; Jacobs, Arthur M

    2015-10-01

    Studies on rhetorical features of language have reported both enhancing and adverse effects on ease of processing. We hypothesized that two explanations may account for these inconclusive findings. First, the respective gains and losses in ease of processing may apply to different dimensions of language processing (specifically, prosodic and semantic processing) and different types of fluency (perceptual vs. conceptual) and may well allow for an integration into a more comprehensive framework. Second, the effects of rhetorical features may be sensitive to interactions with other rhetorical features; employing a feature separately or in combination with others may then predict starkly different effects. We designed a series of experiments in which we expected the same rhetorical features of the very same sentences to exert adverse effects on semantic (conceptual) fluency and enhancing effects on prosodic (perceptual) fluency. We focused on proverbs that each employ three rhetorical features: rhyme, meter, and brevitas (i.e., artful shortness). The presence of these target features decreased ease of conceptual fluency (semantic comprehension) while enhancing perceptual fluency as reflected in beauty and succinctness ratings that were mainly driven by prosodic features. The rhetorical features also predicted choices for persuasive purposes, yet only for the sentence versions featuring all three rhetorical features; the presence of only one or two rhetorical features had an adverse effect on the choices made. We suggest that the facilitating effects of a combination of rhyme, meter, and rhetorical brevitas on perceptual (prosodic) fluency overcompensated for their adverse effects on conceptual (semantic) fluency, thus resulting in a total net gain both in processing ease and in choices for persuasive purposes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Long; Pintel, David J., E-mail: pinteld@missouri.edu

    2012-04-25

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained inmore » unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.« less

  8. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention.

    PubMed

    Pendleton, Kathryn E; Chen, Beibei; Liu, Kuanqing; Hunter, Olga V; Xie, Yang; Tu, Benjamin P; Conrad, Nicholas K

    2017-05-18

    Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N 6 -adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Using normalisation process theory to understand barriers and facilitators to implementing mindfulness-based stress reduction for people with multiple sclerosis.

    PubMed

    Simpson, Robert; Simpson, Sharon; Wood, Karen; Mercer, Stewart W; Mair, Frances S

    2018-01-01

    Objectives To study barriers and facilitators to implementation of mindfulness-based stress reduction for people with multiple sclerosis. Methods Qualitative interviews were used to explore barriers and facilitators to implementation of mindfulness-based stress reduction, including 33 people with multiple sclerosis, 6 multiple sclerosis clinicians and 2 course instructors. Normalisation process theory provided the underpinning conceptual framework. Data were analysed deductively using normalisation process theory constructs (coherence, cognitive participation, collective action and reflexive monitoring). Results Key barriers included mismatched stakeholder expectations, lack of knowledge about mindfulness-based stress reduction, high levels of comorbidity and disability and skepticism about embedding mindfulness-based stress reduction in routine multiple sclerosis care. Facilitators to implementation included introducing a pre-course orientation session; adaptations to mindfulness-based stress reduction to accommodate comorbidity and disability and participants suggested smaller, shorter classes, shortened practices, exclusion of mindful-walking and more time with peers. Post-mindfulness-based stress reduction booster sessions may be required, and objective and subjective reports of benefit would increase clinician confidence in mindfulness-based stress reduction. Discussion Multiple sclerosis patients and clinicians know little about mindfulness-based stress reduction. Mismatched expectations are a barrier to participation, as is rigid application of mindfulness-based stress reduction in the context of disability. Course adaptations in response to patient needs would facilitate uptake and utilisation. Rendering access to mindfulness-based stress reduction rapid and flexible could facilitate implementation. Embedded outcome assessment is desirable.

  10. Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast

    PubMed Central

    Bergkessel, Megan; Whitworth, Gregg B.; Guthrie, Christine

    2011-01-01

    Gene expression in eukaryotic cells is profoundly influenced by the post-transcriptional processing of mRNAs, including the splicing of introns in the nucleus and both nuclear and cytoplasmic degradation pathways. These processes have the potential to affect both the steady-state levels and the kinetics of changes to levels of intron-containing transcripts. Here we report the use of a splicing isoform-specific microarray platform to investigate the effects of diverse stress conditions on pre-mRNA processing. Interestingly, we find that diverse stresses cause distinct patterns of changes at this level. The responses we observed are most dramatic for the RPGs and can be categorized into three major classes. The first is characterized by accumulation of RPG pre-mRNA and is seen in multiple types of amino acid starvation regimes; the magnitude of splicing inhibition correlates with the severity of the stress. The second class is characterized by a rapid decrease in both pre- and mature RPG mRNA and is seen in many stresses that inactivate the TORC1 kinase complex. These decreases depend on nuclear turnover of the intron-containing pre-RNAs. The third class is characterized by a decrease in RPG pre-mRNA, with only a modest reduction in the mature species; this response is observed in hyperosmotic and cation-toxic stresses. We show that casein kinase 2 (CK2) makes important contributions to the changes in pre-mRNA processing, particularly for the first two classes of stress responses. In total, our data suggest that complex post-transcriptional programs cooperate to fine-tune expression of intron-containing transcripts in budding yeast. PMID:21697354

  11. Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast.

    PubMed

    Bergkessel, Megan; Whitworth, Gregg B; Guthrie, Christine

    2011-08-01

    Gene expression in eukaryotic cells is profoundly influenced by the post-transcriptional processing of mRNAs, including the splicing of introns in the nucleus and both nuclear and cytoplasmic degradation pathways. These processes have the potential to affect both the steady-state levels and the kinetics of changes to levels of intron-containing transcripts. Here we report the use of a splicing isoform-specific microarray platform to investigate the effects of diverse stress conditions on pre-mRNA processing. Interestingly, we find that diverse stresses cause distinct patterns of changes at this level. The responses we observed are most dramatic for the RPGs and can be categorized into three major classes. The first is characterized by accumulation of RPG pre-mRNA and is seen in multiple types of amino acid starvation regimes; the magnitude of splicing inhibition correlates with the severity of the stress. The second class is characterized by a rapid decrease in both pre- and mature RPG mRNA and is seen in many stresses that inactivate the TORC1 kinase complex. These decreases depend on nuclear turnover of the intron-containing pre-RNAs. The third class is characterized by a decrease in RPG pre-mRNA, with only a modest reduction in the mature species; this response is observed in hyperosmotic and cation-toxic stresses. We show that casein kinase 2 (CK2) makes important contributions to the changes in pre-mRNA processing, particularly for the first two classes of stress responses. In total, our data suggest that complex post-transcriptional programs cooperate to fine-tune expression of intron-containing transcripts in budding yeast.

  12. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    PubMed Central

    2011-01-01

    Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh) were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based on LCNGs in Pyrus

  13. Integrating Human Factors Engineering and Information Processing Approaches to Facilitate Evaluations in Criminal Justice Technology Research.

    PubMed

    Salvemini, Anthony V; Piza, Eric L; Carter, Jeremy G; Grommon, Eric L; Merritt, Nancy

    2015-06-01

    Evaluations are routinely conducted by government agencies and research organizations to assess the effectiveness of technology in criminal justice. Interdisciplinary research methods are salient to this effort. Technology evaluations are faced with a number of challenges including (1) the need to facilitate effective communication between social science researchers, technology specialists, and practitioners, (2) the need to better understand procedural and contextual aspects of a given technology, and (3) the need to generate findings that can be readily used for decision making and policy recommendations. Process and outcome evaluations of technology can be enhanced by integrating concepts from human factors engineering and information processing. This systemic approach, which focuses on the interaction between humans, technology, and information, enables researchers to better assess how a given technology is used in practice. Examples are drawn from complex technologies currently deployed within the criminal justice system where traditional evaluations have primarily focused on outcome metrics. Although this evidence-based approach has significant value, it is vulnerable to fully account for human and structural complexities that compose technology operations. Guiding principles for technology evaluations are described for identifying and defining key study metrics, facilitating communication within an interdisciplinary research team, and for understanding the interaction between users, technology, and information. The approach posited here can also enable researchers to better assess factors that may facilitate or degrade the operational impact of the technology and answer fundamental questions concerning whether the technology works as intended, at what level, and cost. © The Author(s) 2015.

  14. Identification of processed Chinese medicinal materials using DNA mini-barcoding.

    PubMed

    Song, Ming; Dong, Gang-Qiang; Zhang, Ya-Qin; Liu, Xia; Sun, Wei

    2017-07-01

    Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psbA-trnH, rbcL, matK, trnL (UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL (UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%-20% of the processed samples, while the amplification rates of the trnL (UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL (UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  15. Amino acid substitutions and intron polymorphism of acetylcholinesterase1 associated with mevinphos resistance in diamondback moth, Plutella xylostella (L.).

    PubMed

    Yeh, Shih-Chia; Lin, Chia-Li; Chang, Cheng; Feng, Hai-Tung; Dai, Shu-Mei

    2014-06-01

    The diamondback moth, Plutella xylostella L., is the most destructive insect pest of Brassica crops in the world. It has developed resistance rapidly to almost every insecticide used for its control. Mevinphos, a fast degrading and slow resistance evocating organophosphorus insecticide, has been recommended for controlling P. xylostella in Taiwan for more than 40years. SHM strain of P. xylostella, with ca. 22-fold resistance to this chemical, has been established from a field SH strain by selecting with mevinphos since 1997. Three mutations, i.e., G892T, G971C, and T1156T/G leading to A298S, G324A, and F386F/V amino acid substitutions in acetylcholinesterase1 (AChE1), were identified in these two strains; along with three haplotype pairs and a polymorphic intron in AChE1 gene (ace1). Two genetically pure lines, i.e., an SHggt wild type with intron AS and an SHMTCN mutant carrying G892T, G971C, T1156T/G mutations and intron AR in ace1, were established by single pair mating and haplotype determination. The F1 of SHMTCN strain had 52-fold resistance to mevinphos in comparison with the F1 of SHggt strain. In addition, AChE1 of this SHMTCN population, which exhibited lower maximum velocity (Vmax) and affinity (Km), was less susceptible to the inhibition of mevinphos, with an I50 32-fold higher than that of the SHggt F1 population. These results imply that amino acid substitutions in AChE1 of SHMTCN strain are associated with mevinphos resistance in this insect pest, and this finding is important for insecticide resistance management of P. xylostella in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Facilitation of learning: part 1.

    PubMed

    Warburton, Tyler; Trish, Houghton; Barry, Debbie

    2016-04-06

    This article, the fourth in a series of 11, discusses the context for the facilitation of learning. It outlines the main principles and theories for understanding the process of learning, including examples which link these concepts to practice. The practical aspects of using these theories in a practice setting will be discussed in the fifth article of this series. Together, these two articles will provide mentors and practice teachers with knowledge of the learning process, which will enable them to meet the second domain of the Nursing and Midwifery Council's Standards to Support Learning and Assessment in Practice on facilitation of learning.

  17. Structure of the 5' region of the Hst70 gene transcription unit: presence of an intron and multiple transcription initiation sites.

    PubMed Central

    Scieglinska, D; Widłak, W; Konopka, W; Poutanen, M; Rahman, N; Huhtaniemi, I; Krawczyk, Z

    2001-01-01

    The rat Hst70 gene and its mouse counterpart Hsp70.2 belong to the family of Hsp70 heat shock genes and are specifically expressed in male germ cells. Previous studies regarding the structure of the 5' region of the transcription unit of these genes as well as localization of the 'cis' elements conferring their testis-specific expression gave contradictory results [Widlak, Markkula, Krawczyk, Kananen and Huhtaniemi (1995) Biochim. Biophys. Acta 1264, 191-200; Dix, Rosario-Herrle, Gotoh, Mori, Goulding, Barret and Eddy (1996) Dev. Biol. 174, 310-321]. In the present paper we solve these controversies and show that the 5' untranslated region (UTR) of the Hst70 gene contains an intron which is localized similar to that of the mouse Hsp70.2 gene. Reverse transcriptase-mediated PCR, Northern blotting and RNase protection analysis revealed that the transcription initiation of both genes starts at two main distant sites, and one of them is localized within the intron. As a result two populations of Hst70 gene transcripts with similar sizes but different 5' UTR structures can be detected in total testicular RNA. Functional analysis of the Hst70 gene promoter in transgenic mice and transient transfection assays proved that the DNA fragment of approx. 360 bp localized upstream of the ATG transcription start codon is the minimal promoter required for testis-specific expression of the HST70/chloramphenicol acetyltransferase transgene. These experiments also suggest that the expression of the gene may depend on 'cis' regulatory elements localized within exon 1 and the intron sequences. PMID:11563976

  18. A novel intronic mutation in the DDP1 gene in a family with X-linked dystonia-deafness syndrome.

    PubMed

    Ezquerra, Mario; Campdelacreu, Jaume; Muñoz, Esteban; Tolosa, Eduardo; Martí, María J

    2005-02-01

    X-linked dystonia-deafness syndrome (Mohr-Tranebjaerg syndrome) is a rare neurodegenerative disease characterized by hearing loss and dystonia. So far, 7 mutations in the coding region of the DDP1 gene have been described. They consist of frameshift, nonsense, missense mutations or deletions. To investigate the presence of mutations in the DDP1 gene in a family with dystonia-deafness syndrome. Seven members belonging to 2 generations of a family with 2 affected subjects underwent genetic analysis. Mutational screening in the DDP1 gene was made through DNA direct sequencing. We found an intronic mutation in the DDP1 gene. It consists of an A-to-C substitution in the position -23 in reference to the first nucleotide of exon 2 (IVS1-23A>C). The mutation was present in 2 affected men and their respective unaffected mothers, whereas it was absent in the healthy men from this family and in 90 healthy controls. Intronic mutations in the DDP1 gene can also cause X-linked dystonia-deafness syndrome. In our case, the effect of the mutation could be due to a splicing alteration.

  19. Intron Definition and a Branch Site Adenosine at nt 385 Control RNA Splicing of HPV16 E6*I and E7 Expression

    PubMed Central

    Ajiro, Masahiko; Jia, Rong; Zhang, Lifang; Liu, Xuefeng; Zheng, Zhi-Ming

    2012-01-01

    HPV16 E6 and E7, two viral oncogenes, are expressed from a single bicistronic pre-mRNA. In this report, we provide the evidence that the bicistronic pre-mRNA intron 1 contains three 5′ splice sites (5′ ss) and three 3′ splice sites (3′ ss) normally used in HPV16+ cervical cancer and its derived cell lines. The choice of two novel alternative 5′ ss (nt 221 5′ ss and nt 191 5′ ss) produces two novel isoforms of E6E7 mRNAs (E6*V and E6*VI). The nt 226 5′ ss and nt 409 3′ ss is preferentially selected over the other splice sites crossing over the intron to excise a minimal length of the intron in RNA splicing. We identified AACAAAC as the preferred branch point sequence (BPS) and an adenosine at nt 385 (underlined) in the BPS as a branch site to dictate the selection of the nt 409 3′ ss for E6*I splicing and E7 expression. Introduction of point mutations into the mapped BPS led to reduced U2 binding to the BPS and thereby inhibition of the second step of E6E7 splicing at the nt 409 3′ ss. Importantly, the E6E7 bicistronic RNA with a mutant BPS and inefficient splicing makes little or no E7 and the resulted E6 with mutations of 91QYNK94 to 91PSFW94 displays attenuate activity on p53 degradation. Together, our data provide structural basis of the E6E7 intron 1 for better understanding of how viral E6 and E7 expression is regulated by alternative RNA splicing. This study elucidates for the first time a mapped branch point in HPV16 genome involved in viral oncogene expression. PMID:23056301

  20. Biochemical and proteomic analysis of spliceosome factors interacting with intron-1 of human papillomavirus type-16.

    PubMed

    Martínez-Salazar, Martha; López-Urrutia, Eduardo; Arechaga-Ocampo, Elena; Bonilla-Moreno, Raul; Martínez-Castillo, Macario; Díaz-Hernández, Job; Del Moral-Hernández, Oscar; Cedillo-Barrón, Leticia; Martines-Juarez, Víctor; De Nova-Ocampo, Monica; Valdes, Jesús; Berumen, Jaime; Villegas-Sepúlveda, Nicolás

    2014-12-05

    The human papillomavirus type 16 (HPV-16) E6/E7 spliced transcripts are heterogeneously expressed in cervical carcinoma. The heterogeneity of the E6/E7 splicing profile might be in part due to the intrinsic variation of splicing factors in tumor cells. However, the splicing factors that bind the E6/E7 intron 1 (In-1) have not been defined. Therefore, we aimed to identify these factors; we used HeLa nuclear extracts (NE) for in vitro spliceosome assembly. The proteins were allowed to bind to an RNA/DNA hybrid formed by the In-1 transcript and a 5'-biotinylated DNA oligonucleotide complementary to the upstream exon sequence, which prevented interference in protein binding to the intron. The hybrid probes bound with the nuclear proteins were coupled to streptavidin magnetic beads for chromatography affinity purification. Proteins were eluted and identified by mass spectrometry (MS). Approximately 170 proteins were identified by MS, 80% of which were RNA binding proteins, including canonical spliceosome core components, helicases and regulatory splicing factors. The canonical factors were identified as components of the spliceosomal B-complex. Although 35-40 of the identified factors were cognate splicing factors or helicases, they have not been previously detected in spliceosome complexes that were assembled using in vivo or in vitro models. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Galnon Facilitates Extinction of Morphine-Conditioned Place Preference but Also Potentiates the Consolidation Process

    PubMed Central

    Zhao, Xiaojie; Yun, Keming; Seese, Ronald R.; Wang, Zhenyuan

    2013-01-01

    Learning and memory systems are intimately involved in drug addiction. Previous studies suggest that galanin, a neuropeptide that binds G-protein coupled receptors, plays essential roles in the encoding of memory. In the present study, we tested the function of galnon, a galanin receptor 1 and 2 agonist, in reward-associated memory, using conditioned place preference (CPP), a widely used paradigm in drug-associated memory. Either before or following CPP-inducing morphine administration, galnon was injected at four different time points to test the effects of galanin activation on different reward-associated memory processes: 15 min before CPP training (acquisition), immediately after CPP training (consolidation), 15 min before the post-conditioning test (retrieval), and multiple injection after post-tests (reconsolidation and extinction). Galnon enhanced consolidation and extinction processes of morphine-induced CPP memory, but the compound had no effect on acquisition, retrieval, or reconsolidation processes. Our findings demonstrate that a galanin receptor 1 and 2 agonist, galnon, may be used as a viable compound to treat drug addiction by facilitating memory extinction process. PMID:24146862

  2. Galnon facilitates extinction of morphine-conditioned place preference but also potentiates the consolidation process.

    PubMed

    Zhao, Xiaojie; Yun, Keming; Seese, Ronald R; Wang, Zhenyuan

    2013-01-01

    Learning and memory systems are intimately involved in drug addiction. Previous studies suggest that galanin, a neuropeptide that binds G-protein coupled receptors, plays essential roles in the encoding of memory. In the present study, we tested the function of galnon, a galanin receptor 1 and 2 agonist, in reward-associated memory, using conditioned place preference (CPP), a widely used paradigm in drug-associated memory. Either before or following CPP-inducing morphine administration, galnon was injected at four different time points to test the effects of galanin activation on different reward-associated memory processes: 15 min before CPP training (acquisition), immediately after CPP training (consolidation), 15 min before the post-conditioning test (retrieval), and multiple injection after post-tests (reconsolidation and extinction). Galnon enhanced consolidation and extinction processes of morphine-induced CPP memory, but the compound had no effect on acquisition, retrieval, or reconsolidation processes. Our findings demonstrate that a galanin receptor 1 and 2 agonist, galnon, may be used as a viable compound to treat drug addiction by facilitating memory extinction process.

  3. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test.

    PubMed

    Petr, Miroslav; Stastny, Petr; Št'astný, Petr; Pecha, Ondřej; Šteffl, Michal; Šeda, Ondřej; Kohlíková, Eva

    2014-01-01

    To date, polymorphisms in several genes have been associated with a strength/power performance including alpha 3 actinin, ciliary neurotrophic factor, vitamin D receptor, or angiotensin I converting enzyme, underlining the importance of genetic component of the multifactorial strength/power-related phenotypes. The single nucleotide variation in peroxisome proliferator-activated receptor alpha gene (PPARA) intron 7 G/C (rs4253778; g.46630634G>C) has been repeatedly found to play a significant role in response to different types of physical activity. We investigated the effect of PPARA intron 7 G/C polymorphism specifically on anaerobic power output in a group of 77 elite male Czech ice hockey players (18-36 y). We determined the relative peak power per body weight (Pmax.kg(-1)) and relative peak power per fat free mass (W.kg(-1)FFM) during the 30-second Wingate Test (WT30) on bicycle ergometer (Monark 894E Peak bike, MONARK, Sweden). All WT30s were performed during the hockey season. Overall genotype frequencies were 50.6% GG homozygotes, 40.3% CG heterozygotes, and 9.1% CC homozygotes. We found statistically significant differences in Pmax.kg(-1) and marginally significant differences in Pmax.kg(-1)FFM values in WT30 between carriers and non-carriers for C allele (14.6 ± 0.2 vs. 13.9 ± 0.3 W.kg(-1) and 15.8 ± 0.2 vs. 15.2 ± 0.3 W.kg(-1)FFM, P = 0.036 and 0.12, respectively). Furthermore, Pmax.kg(-1)FFM strongly positively correlated with the body weight only in individuals with GG genotypes (R = 0.55; p<0.001). Our results indicate that PPARA 7C carriers exhibited higher speed strength measures in WT30. We hypothesize that C allele carriers within the cohort of trained individuals may possess a metabolic advantage towards anaerobic metabolism.

  4. Polymorphism of intron-1 in the voltage-gated sodium channel gene of Anopheles gambiae s.s. populations from Cameroon with emphasis on insecticide knockdown resistance mutations.

    PubMed

    Etang, Josiane; Vicente, Jose L; Nwane, Philippe; Chouaibou, Mouhamadou; Morlais, Isabelle; Do Rosario, Virgilio E; Simard, Frederic; Awono-Ambene, Parfait; Toto, Jean Claude; Pinto, Joao

    2009-07-01

    Sequence variation at the intron-1 of the voltage-gated sodium channel gene in Anopheles gambiae M- and S-forms from Cameroon was assessed to explore the number of mutational events originating knockdown resistance (kdr) alleles. Mosquitoes were sampled between December 2005 and June 2006 from three geographical areas: (i) Magba in the western region; (ii) Loum, Tiko, Douala, Kribi, and Campo along the Atlantic coast; and (iii) Bertoua, in the eastern continental plateau. Both 1014S and 1014F kdr alleles were found in the S-form with overall frequencies of 14% and 42% respectively. Only the 1014F allele was found in the M-form at lower frequency (11%). Analysis of a 455 bp region of intron-1 upstream the kdr locus revealed four independent mutation events originating kdr alleles, here named MS1 -1014F, S1-1014S and S2-1014S kdr-intron-1 haplotypes in S-form and MS3-1014F kdr-intron-1 haplotype in the M-form. Furthermore, there was evidence for mutual introgression of kdr 1014F allele between the two molecular forms, MS1 and MS3 being widely shared by them. Although no M/S hybrid was observed in analysed samples, this wide distribution of haplotypes MS1 and MS3 suggests inter-form hybridizing at significant level and emphasizes the rapid diffusion of the kdr alleles in Africa. The mosaic of genetic events found in Cameroon is representative of the situation in the West-Central African region and highlights the importance of evaluating the spatial and temporal evolution of kdr alleles for a better management of insecticide resistance.

  5. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples.

    PubMed

    Ciarlo, Eleonora; Massone, Sara; Penna, Ilaria; Nizzari, Mario; Gigoni, Arianna; Dieci, Giorgio; Russo, Claudio; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo

    2013-03-01

    Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.

  6. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de; Bhandari, Anita; Sarde, Sandeep J.

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical propertiesmore » and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.« less

  7. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.

    PubMed

    Bordonaro, Michael

    2013-01-01

    RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit

  8. Facilitating access to pre-processed research evidence in public health

    PubMed Central

    2010-01-01

    Background Evidence-informed decision making is accepted in Canada and worldwide as necessary for the provision of effective health services. This process involves: 1) clearly articulating a practice-based issue; 2) searching for and accessing relevant evidence; 3) appraising methodological rigor and choosing the most synthesized evidence of the highest quality and relevance to the practice issue and setting that is available; and 4) extracting, interpreting, and translating knowledge, in light of the local context and resources, into practice, program and policy decisions. While the public health sector in Canada is working toward evidence-informed decision making, considerable barriers, including efficient access to synthesized resources, exist. Methods In this paper we map to a previously developed 6 level pyramid of pre-processed research evidence, relevant resources that include public health-related effectiveness evidence. The resources were identified through extensive searches of both the published and unpublished domains. Results Many resources with public health-related evidence were identified. While there were very few resources dedicated solely to public health evidence, many clinically focused resources include public health-related evidence, making tools such as the pyramid, that identify these resources, particularly helpful for public health decisions makers. A practical example illustrates the application of this model and highlights its potential to reduce the time and effort that would be required by public health decision makers to address their practice-based issues. Conclusions This paper describes an existing hierarchy of pre-processed evidence and its adaptation to the public health setting. A number of resources with public health-relevant content that are either freely accessible or requiring a subscription are identified. This will facilitate easier and faster access to pre-processed, public health-relevant evidence, with the intent of

  9. Ribosomal DNA sequence divergence and group I introns within the Leucostoma species L. cinctum, L. persoonii, and L. parapersoonii sp. nov., ascomycetes that cause Cytospora canker of fruit trees.

    PubMed

    Adams, Gerard C; Surve-Iyer, Rupa S; Iezzoni, Amy F

    2002-01-01

    the small subunit (SSU) of the nuclear rDNA of L. cinctum were identified as Group 1 introns; intron 1 at position 943 and intron 2 at position 1199. The two introns were found to be consistently present in isolates of L. cinctum PG 4 and PG 5 and absent from L. cinctum PG 6 isolates, despite the similarity of the ITS sequence and teleomorph morphology. Intron 1 was of subgroup 1C1 whereas intron 2 was of an unknown subgroup. RFLP patterns and presence/absence of introns were useful characters for expediting the identification of cultures of Leucostoma isolated from stone and pome fruit cankers. RFLP patterns from 13 endonucleases provided an effective method for selecting an array of diverse PG 1 isolates useful in screening plant germplasm for disease-resistance.

  10. Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron

    PubMed Central

    Hiesel, Rudolf; Brennicke, Axel

    1983-01-01

    The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484

  11. The relationship between RNA catalytic processes

    NASA Astrophysics Data System (ADS)

    Cedergren, Robert; Lang, B. Franz; Gravel, Denis

    1988-09-01

    Proposals that an RNA-based genetic system preceeded DNA, stem from the ability of RNA to store genetic information and to promote simple catalysis. However, to be a valid basis for the RNA world, RNA catalysis must demonstrate or be related to intrinsic chemical properties which could have existed in primordial times. We analyze this question by first classifying RNA catalysis and related processes according to their mechanism. We define: (A) thedisjunct nucleophile class which leads to 5'-phosphates. These include Group I and II intron splicing, nuclear mRNA splicing and RNase P reactions. Although Group I introns and its excision mechanism is likely to have existed in primordial times, present-day examples have arisen independently in different phyla much more recently. Comparative methodology indicates that RNase P catalysis originated before the divergence of the major kingdoms. In addition, alldisjunct nucleophile reactions can be interrelated by a proposed mechanism involving a distant 2-OH nucleophile. (B) theconjunct nucleophile class leading to 3'-phosphates. This class is composed of self-cleaving RNAs found in plant viruses and the newt. We propose that tRNA splicing is related to this mechanism rather than the previous one. The presence of introns in tRNA genes of eukaryotes and archaebacteria supports the idea that tRNA splicing predates the divergence of these cell types.

  12. TLR7 single-nucleotide polymorphisms in the 3' untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study

    PubMed Central

    2011-01-01

    Introduction The Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3' untranslated region (3' UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population. Methods A case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls. Results In addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3' UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3' UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3' UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE. Conclusions The TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of

  13. Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples

    PubMed Central

    2013-01-01

    Background Alternative splicing (AS) is a major mechanism for modulating gene expression of an organism, allowing the synthesis of several structurally and functionally distinct mRNAs and protein isoforms from a unique gene. Related to AS is the Transcription Induced Chimerism (TIC) or Tandem Chimerism, by which chimeric RNAs between adjacent genes can be found, increasing combinatorial complexity of the proteome. The Ly6g5b gene presents particular behaviours in its expression, involving an intron retention event and being capable to form RNA chimera transcripts with the upstream gene Csnk2b. We wanted to characterise these events more deeply in four tissues in six different mammals and analyse their protein products. Results While canonical Csnk2b isoform was widely expressed, Ly6g5b canonical isoform was less ubiquitous, although the Ly6g5b first intron retained transcript was present in all the tissues and species analysed. Csnk2b-Ly6g5b chimeras were present in all the samples analysed, but with restricted expression patterns. Some of these chimeric transcripts maintained correct structural domains from Csnk2b and Ly6g5b. Moreover, we found Csnk2b, Ly6g5b, and Csnk2b-Ly6g5b transcripts that present exon skipping, alternative 5' and 3' splice site and intron retention events. These would generate truncated or aberrant proteins whose role remains unknown. Some chimeric transcripts would encode CSNK2B proteins with an altered C-terminus, which could affect its biological function broadening its substrate specificity. Over-expression of human CSNK2B, LY6G5B, and CSNK2B-LY6G5B proteins, show different patterns of post-translational modifications and cell distribution. Conclusions Ly6g5b intron retention and Csnk2b-Ly6g5b transcript chimerism are broadly distributed in tissues of different mammals. PMID:23521802

  14. Nonsense mutation in the phosphofructokinase muscle subunit gene associated with retention of intron 10 in one of the isolated transcripts in Ashkenazi Jewish patients with Tarui disease.

    PubMed Central

    Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G

    1995-01-01

    Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776

  15. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  16. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  17. EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies.

    PubMed

    Li, Chenhong; Riethoven, Jean-Jack M; Naylor, Gavin J P

    2012-09-01

    Recent innovations in next-generation sequencing have lowered the cost of genome projects. Nevertheless, sequencing entire genomes for all representatives in a study remains expensive and unnecessary for most studies in ecology, evolution and conservation. It is still more cost-effective and efficient to target and sequence single-copy nuclear gene markers for such studies. Many tools have been developed for identifying nuclear markers, but most of these have focused on particular taxonomic groups. We have built a searchable database, EvolMarkers, for developing single-copy coding sequence (CDS) and exon-primed-intron-crossing (EPIC) markers that is designed to work across a broad range of phylogenetic divergences. The database is made up of single-copy CDS derived from BLAST searches of a variety of metazoan genomes. Users can search the database for different types of markers (CDS or EPIC) that are common to different sets of input species with different divergence characteristics. EvolMarkers can be applied to any taxonomic group for which genome data are available for two or more species. We included 82 genomes in the first version of EvolMarkers and have found the methods to be effective across Placozoa, Cnidaria, Arthropod, Nematoda, Annelida, Mollusca, Echinodermata, Hemichordata, Chordata and plants. We demonstrate the effectiveness of searching for CDS markers within annelids and show how to find potentially useful intronic markers within the lizard Anolis. © 2012 Blackwell Publishing Ltd.

  18. The occurrence of spring forms in tetraploid Timopheevi wheat is associated with variation in the first intron of the VRN-A1 gene.

    PubMed

    Shcherban, Andrey Borisovich; Schichkina, Aleksandra Aleksandrovna; Salina, Elena Artemovna

    2016-11-16

    Triticum araraticum and Triticum timopheevii are tetraploid species of the Timopheevi group. The former includes both winter and spring forms with a predominance of winter forms, whereas T. timopheevii is considered a spring species. In order to clarify the origin of the spring growth habit in T. timopheevii, allelic variability of the VRN-1 gene was investigated in a set of accessions of both tetraploid species, together with the diploid species Ae. speltoides, presumed donor of the G genome to these tetraploids. The promoter region of the VRN-A1 locus in all studied tetraploid accessions of both T. araraticum and T. timopheevii represents the previously described allele VRN-A1f with a 50 bp deletion near the start codon. Three additional alleles were identified namely, VRN-A1f-del, VRN-A1f-ins and VRN-A1f-del/ins, which contained large mutations in the first (1 st ) intron of VRN-A1. The first allele, carrying a deletion of 2.7 kb in a central part of intron 1, occurred in a few accessions of T. araraticum and no accessions of T. timopheevii. The VRN-A1f-ins allele, containing the insertion of a 0.4 kb MITE element about 0.4 kb upstream from the start of intron 1, and allele VRN-A1f-del/ins having this insertion coupled with a deletion of 2.7 kb are characteristic only for T. timopheevii. Allelic variation at the VRN-G1 locus includes the previously described allele VRN-G1a (with the insertion of a 0.2 kb MITE in the promoter) found in a few accessions of both tetraploid species. We showed that alleles VRN-A1f-del and VRN-G1a have no association with the spring growth habit, while in all accessions of T. timopheevii this habit was associated with the dominant VRN-A1f-ins and VRN-A1f-del/ins alleles. None of the Ae. speltoides accessions included in this study had changes in the promoter or 1 st intron regions of VRN-1 which might confer a spring growth habit. The VRN-1 promoter sequences analyzed herein and downloaded from databases have been used to

  19. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs

    PubMed Central

    Wu, Yong; Hu, Zhiqing; Li, Zhuo; Pang, Jialun; Feng, Mai; Hu, Xuyun; Wang, Xiaolin; Lin-Peng, Siyuan; Liu, Bo; Chen, Fangping; Wu, Lingqian; Liang, Desheng

    2016-01-01

    Nearly half of severe Hemophilia A (HA) cases are caused by F8 intron 22 inversion (Inv22). This 0.6-Mb inversion splits the 186-kb F8 into two parts with opposite transcription directions. The inverted 5′ part (141 kb) preserves the first 22 exons that are driven by the intrinsic F8 promoter, leading to a truncated F8 transcript due to the lack of the last 627 bp coding sequence of exons 23–26. Here we describe an in situ genetic correction of Inv22 in patient-specific induced pluripotent stem cells (iPSCs). By using TALENs, the 627 bp sequence plus a polyA signal was precisely targeted at the junction of exon 22 and intron 22 via homologous recombination (HR) with high targeting efficiencies of 62.5% and 52.9%. The gene-corrected iPSCs retained a normal karyotype following removal of drug selection cassette using a Cre-LoxP system. Importantly, both F8 transcription and FVIII secretion were rescued in the candidate cell types for HA gene therapy including endothelial cells (ECs) and mesenchymal stem cells (MSCs) derived from the gene-corrected iPSCs. This is the first report of an efficient in situ genetic correction of the large inversion mutation using a strategy of targeted gene addition. PMID:26743572

  20. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs.

    PubMed

    Wu, Yong; Hu, Zhiqing; Li, Zhuo; Pang, Jialun; Feng, Mai; Hu, Xuyun; Wang, Xiaolin; Lin-Peng, Siyuan; Liu, Bo; Chen, Fangping; Wu, Lingqian; Liang, Desheng

    2016-01-08

    Nearly half of severe Hemophilia A (HA) cases are caused by F8 intron 22 inversion (Inv22). This 0.6-Mb inversion splits the 186-kb F8 into two parts with opposite transcription directions. The inverted 5' part (141 kb) preserves the first 22 exons that are driven by the intrinsic F8 promoter, leading to a truncated F8 transcript due to the lack of the last 627 bp coding sequence of exons 23-26. Here we describe an in situ genetic correction of Inv22 in patient-specific induced pluripotent stem cells (iPSCs). By using TALENs, the 627 bp sequence plus a polyA signal was precisely targeted at the junction of exon 22 and intron 22 via homologous recombination (HR) with high targeting efficiencies of 62.5% and 52.9%. The gene-corrected iPSCs retained a normal karyotype following removal of drug selection cassette using a Cre-LoxP system. Importantly, both F8 transcription and FVIII secretion were rescued in the candidate cell types for HA gene therapy including endothelial cells (ECs) and mesenchymal stem cells (MSCs) derived from the gene-corrected iPSCs. This is the first report of an efficient in situ genetic correction of the large inversion mutation using a strategy of targeted gene addition.

  1. Development and utilization of novel intron length polymorphic markers in foxtail millet (Setaria italica (L.) P. Beauv.).

    PubMed

    Gupta, Sarika; Kumari, Kajal; Das, Jyotirmoy; Lata, Charu; Puranik, Swati; Prasad, Manoj

    2011-07-01

    Introns are noncoding sequences in a gene that are transcribed to precursor mRNA but spliced out during mRNA maturation and are abundant in eukaryotic genomes. The availability of codominant molecular markers and saturated genetic linkage maps have been limited in foxtail millet (Setaria italica (L.) P. Beauv.). Here, we describe the development of 98 novel intron length polymorphic (ILP) markers in foxtail millet using sequence information of the model plant rice. A total of 575 nonredundant expressed sequence tag (EST) sequences were obtained, of which 327 and 248 unique sequences were from dehydration- and salinity-stressed suppression subtractive hybridization libraries, respectively. The BLAST analysis of 98 EST sequences suggests a nearly defined function for about 64% of them, and they were grouped into 11 different functional categories. All 98 ILP primer pairs showed a high level of cross-species amplification in two millets and two nonmillets species ranging from 90% to 100%, with a mean of ∼97%. The mean observed heterozygosity and Nei's average gene diversity 0.016 and 0.171, respectively, established the efficiency of the ILP markers for distinguishing the foxtail millet accessions. Based on 26 ILP markers, a reasonable dendrogram of 45 foxtail millet accessions was constructed, demonstrating the utility of ILP markers in germplasm characterizations and genomic relationships in millets and nonmillets species.

  2. An Intron 9 CYP19 Gene Variant (IVS9+5G>A), Present in an Aromatase-Deficient Girl, Affects Normal Splicing and Is Also Present in Normal Human Steroidogenic Tissues.

    PubMed

    Saraco, Nora; Nesi-Franca, Suzana; Sainz, Romina; Marino, Roxana; Marques-Pereira, Rosana; La Pastina, Julia; Perez Garrido, Natalia; Sandrini, Romolo; Rivarola, Marco Aurelio; de Lacerda, Luiz; Belgorosky, Alicia

    2015-01-01

    Splicing CYP19 gene variants causing aromatase deficiency in 46,XX disorder of sexual development (DSD) patients have been reported in a few cases. A misbalance between normal and aberrant splicing variants was proposed to explain spontaneous pubertal breast development but an incomplete sex maturation progress. The aim of this study was to functionally characterize a novel CYP19A1 intronic homozygote mutation (IVS9+5G>A) in a 46,XX DSD girl presenting spontaneous breast development and primary amenorrhea, and to evaluate similar splicing variant expression in normal steroidogenic tissues. Genomic DNA analysis, splicing prediction programs, splicing assays, and in vitro protein expression and enzyme activity analyses were carried out. CYP19A1 mRNA expression in human steroidogenic tissues was also studied. A novel IVS9+5G>A homozygote mutation was found. In silico analysis predicts the disappearance of the splicing donor site in intron 9, confirmed by patient peripheral leukocyte cP450arom and in vitro studies. Protein analysis showed a shorter and inactive protein. The intron 9 transcript variant was also found in human steroidogenic tissues. The mutation IVS9+5G>A generates a splicing variant that includes intron 9 which is also present in normal human steroidogenic tissues, suggesting that a misbalance between normal and aberrant splicing variants might occur in target tissues, explaining the clinical phenotype in the affected patient. © 2015 S. Karger AG, Basel.

  3. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    PubMed

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other

  4. Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies

    PubMed Central

    2010-01-01

    Background Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. Methods We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. Results A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. Conclusions Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes. PMID:20302629

  5. TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the Brazilian population to Graves' disease and Graves' ophthalmopathy.

    PubMed

    Bufalo, N E; Dos Santos, R B; Marcello, M A; Piai, R P; Secolin, R; Romaldini, J H; Ward, L S

    2015-05-01

    Intronic thyroid-stimulating hormone receptor polymorphisms have been associated with the risk for both Graves' disease and Graves' ophthalmopathy, but results have been inconsistent among different populations. We aimed to investigate the influence of thyroid-stimulating hormone receptor intronic polymorphisms in a large well-characterized population of GD patients. We studied 279 Graves' disease patients (231 females and 48 males, 39.80 ± 11.69 years old), including 144 with Graves' ophthalmopathy, matched to 296 healthy control individuals. Thyroid-stimulating hormone receptor genotypes of rs179247 and rs12885526 were determined by Real Time PCR TaqMan(®) SNP Genotyping. A multivariate analysis showed that the inheritance of the thyroid-stimulating hormone receptor AA genotype for rs179247 increased the risk for Graves' disease (OR = 2.821; 95 % CI 1.595-4.990; p = 0.0004), whereas the thyroid-stimulating hormone receptor GG genotype for rs12885526 increased the risk for Graves' ophthalmopathy (OR = 2.940; 95 % CI 1.320-6.548; p = 0.0083). Individuals with Graves' ophthalmopathy also presented lower mean thyrotropin receptor antibodies levels (96.3 ± 143.9 U/L) than individuals without Graves' ophthalmopathy (98.3 ± 201.9 U/L). We did not find any association between the investigated polymorphisms and patients clinical features or outcome. We demonstrate that thyroid-stimulating hormone receptor intronic polymorphisms are associated with the susceptibility to Graves' disease and Graves' ophthalmopathy in the Brazilian population, but do not appear to influence the disease course.

  6. ATP-binding cassette subfamily A, member 4 intronic variants c.4773+3A>G and c.5461-10T>C cause Stargardt disease due to defective splicing.

    PubMed

    Jonsson, Frida; Westin, Ida Maria; Österman, Lennart; Sandgren, Ola; Burstedt, Marie; Holmberg, Monica; Golovleva, Irina

    2018-02-20

    Inherited retinal dystrophies (IRDs) represent a group of progressive conditions affecting the retina. There is a great genetic heterogeneity causing IRDs, and to date, more than 260 genes are associated with IRDs. Stargardt disease, type 1 (STGD1) or macular degeneration with flecks, STGD1 represents a disease with early onset, central visual impairment, frequent appearance of yellowish flecks and mutations in the ATP-binding cassette subfamily A, member 4 (ABCA4) gene. A large number of intronic sequence variants in ABCA4 have been considered pathogenic although their functional effect was seldom demonstrated. In this study, we aimed to reveal how intronic variants present in patients with Stargardt from the same Swedish family affect splicing. The splicing of the ABCA4 gene was studied in human embryonic kidney cells, HEK293T, and in human retinal pigment epithelium cells, ARPE-19, using a minigene system containing variants c.4773+3A>G and c.5461-10T>C. We showed that both ABCA4 variants, c.4773+3A>G and c.5461-10T>C, cause aberrant splicing of the ABCA4 minigene resulting in exon skipping. We also demonstrated that splicing of ABCA4 has different outcomes depending on transfected cell type. Two intronic variants c.4773+3A>G and c.5461-10T>C, both predicted to affect splicing, are indeed disease-causing mutations due to skipping of exons 33, 34, 39 and 40 of ABCA4 gene. The experimental proof that ABCA4 mutations in STGD patients affect protein function is crucial for their inclusion to future clinical trials; therefore, functional testing of all ABCA4 intronic variants associated with Stargardt disease by minigene technology is desirable. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Identification of the Rare, Four Repeat Allele of IL-4 Intron-3 VNTR Polymorphism in Indian Populations.

    PubMed

    Verma, Henu Kumar; Jha, Aditya Nath; Khodiar, Prafulla Kumar; Patra, Pradeep Kumar; Bhaskar, Lakkakula Venkata Kameswara Subrahmanya

    2016-06-01

    Cytokines are cell signaling molecules which upon release by cells facilitate the recruitment of immune-modulatory cells towards the sites of inflammation. Genetic variations in cytokine genes are shown to regulate their production and affect the risk of infectious as well as autoimmune diseases. Intron-3 of interleukin-4 gene (IL-4) harbors 70-bp variable number of tandem repeats (VNTR) that may alter the expression level of IL-4 gene. To determine the distribution of IL-4 70-bp VNTR polymorphism in seven genetically heterogeneous populations of Chhattisgarh, India and their comparison with the finding of other Indian and world populations. A total of 371 healthy unrelated individuals from 5 caste and 2 tribal populations were included in the present study. The IL-4 70-bp VNTR genotyping was carried out using PCR and electrophoresis. Overall, 3 alleles of IL-4 70-bp VNTR (a2, a3 and a4) were detected. The results demonstrated the variability of the IL-4 70-bp VNTR polymorphism in Chhattisgarh populations. Allele a3 was the most common allele at the 70-bp VNTR locus in all populations followed by a2 allele. This study reports the presence four repeat allele a4 at a low frequency in the majority of the Chhattisgarh populations studied. Further, the frequency of the minor allele (a2) in Chhattisgarh populations showed similarity with the frequencies of European populations but not with the East Asian populations where the a2 allele is a major allele. Our study provides a baseline for future research into the role of the IL-4 locus in diseases linked to inflammation in Indian populations.

  8. Facilitating and debilitating trait anxiety, situational anxiety, and coping with an anticipated stressor: a process analysis.

    PubMed

    Raffety, B D; Smith, R E; Ptacek, J T

    1997-04-01

    Participants completed anxiety and coping diaries during 10 periods that began 7 days before an academic stressor and continued through the evening after the stressor. Profile analysis was used to examine the anxiety and coping processes in relation to 2 trait anxiety grouping variables: debilitating and facilitating test anxiety (D-TA and F-TA). Anxiety and coping changed over time, and high and low levels of D-TA and F-TA were associated with different daily patterns of anxiety and coping. Participants with a debilitative, as opposed to facilitative, trait anxiety style had lower examination scores, higher anxiety, and less problem-solving coping. Covarying F-TA, high D-TA was associated with a pattern of higher levels of tension, worry, distraction, and avoidant coping, as well as lower levels of proactive coping. Covarying D-TA, high F-TA was associated with higher levels of tension (but not worry or distraction), support seeking, proactive and problem-solving coping.

  9. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation

    PubMed Central

    Kesari, Ravi; Lasky, Jesse R.; Villamor, Joji Grace; Des Marais, David L.; Chen, Ying-Jiun C.; Liu, Tzu-Wen; Juenger, Thomas E.; Verslues, Paul E.

    2012-01-01

    Drought-induced proline accumulation is widely observed in plants but its regulation and adaptive value are not as well understood. Proline accumulation of the Arabidopsis accession Shakdara (Sha) was threefold less than that of Landsberg erecta (Ler) and quantitative trait loci mapping identified a reduced function allele of the proline synthesis enzyme Δ1-pyrroline-5-carboxylate synthetase1 (P5CS1) as a basis for the lower proline of Sha. Sha P5CS1 had additional TA repeats in intron 2 and a G-to-T transversion in intron 3 that were sufficient to promote alternative splicing and production of a nonfunctional transcript lacking exon 3 (exon 3-skip P5CS1). In Sha, and additional accessions with the same intron polymorphisms, the nonfunctional exon 3-skip P5CS1 splice variant constituted as much as half of the total P5CS1 transcript. In a larger panel of Arabidopsis accessions, low water potential-induced proline accumulation varied by 10-fold and variable production of exon 3-skip P5CS1 among accessions was an important, but not the sole, factor underlying variation in proline accumulation. Population genetic analyses suggest that P5CS1 may have evolved under positive selection, and more extensive correlation of exon 3-skip P5CS1 production than proline abundance with climate conditions of natural accessions also suggest a role of P5CS1 in local adaptation to the environment. These data identify a unique source of alternative splicing in plants, demonstrate a role of exon 3-skip P5CS1 in natural variation of proline metabolism, and suggest an association of P5CS1 and its alternative splicing with environmental adaptation. PMID:22615385

  10. Facilitating North-South Partnerships for Sustainable Agriculture

    ERIC Educational Resources Information Center

    Termeer, C. J. A. M.; Hilhorst, T.; Oorthuizen, J.

    2010-01-01

    The increased number of development cooperation and sustainable agriculture partnerships brings with it new challenges for professionals who are asked to facilitate these partnering processes. In this article we shed more light on the world of development cooperation and we explore questions that facilitators working with North-South partnerships…

  11. A Model of Small Group Facilitator Competencies

    ERIC Educational Resources Information Center

    Kolb, Judith A.; Jin, Sungmi; Song, Ji Hoon

    2008-01-01

    This study used small group theory, quantitative and qualitative data collected from experienced practicing facilitators at three points of time, and a building block process of collection, analysis, further collection, and consolidation to develop a model of small group facilitator competencies. The proposed model has five components:…

  12. An open reading frame in intron seven of the sea urchin DNA-methyltransferase gene codes for a functional AP1 endonuclease.

    PubMed

    Cioffi, Anna Valentina; Ferrara, Diana; Cubellis, Maria Vittoria; Aniello, Francesco; Corrado, Marcella; Liguori, Francesca; Amoroso, Alessandro; Fucci, Laura; Branno, Margherita

    2002-08-01

    Analysis of the genome structure of the Paracentrotus lividus (sea urchin) DNA methyltransferase (DNA MTase) gene showed the presence of an open reading frame, named METEX, in intron 7 of the gene. METEX expression is developmentally regulated, showing no correlation with DNA MTase expression. In fact, DNA MTase transcripts are present at high concentrations in the early developmental stages, while METEX is expressed at late stages of development. Two METEX cDNA clones (Met1 and Met2) that are different in the 3' end have been isolated in a cDNA library screening. The putative translated protein from Met2 cDNA clone showed similarity with Escherichia coli endonuclease III on the basis of sequence and predictive three-dimensional structure. The protein, overexpressed in E. coli and purified, had functional properties similar to the endonuclease specific for apurinic/apyrimidinic (AP) sites on the basis of the lyase activity. Therefore the open reading frame, present in intron 7 of the P. lividus DNA MTase gene, codes for a functional AP endonuclease designated SuAP1.

  13. Why (we think) facilitation works: insights from organizational learning theory.

    PubMed

    Berta, Whitney; Cranley, Lisa; Dearing, James W; Dogherty, Elizabeth J; Squires, Janet E; Estabrooks, Carole A

    2015-10-06

    Facilitation is a guided interactional process that has been popularized in health care. Its popularity arises from its potential to support uptake and application of scientific knowledge that stands to improve clinical and managerial decision-making, practice, and ultimately patient outcomes and organizational performance. While this popular concept has garnered attention in health services research, we know that both the content of facilitation and its impact on knowledge implementation vary. The basis of this variation is poorly understood, and understanding is hampered by a lack of conceptual clarity. In this paper, we argue that our understanding of facilitation and its effects is limited in part by a lack of clear theoretical grounding. We propose a theoretical home for facilitation in organizational learning theory. Referring to extant literature on facilitation and drawing on theoretical literature, we discuss the features of facilitation that suggest its role in contributing to learning capacity. We describe how facilitation may contribute to generating knowledge about the application of new scientific knowledge in health-care organizations. Facilitation's promise, we suggest, lies in its potential to stimulate higher-order learning in organizations through experimenting with, generating learning about, and sustaining small-scale adaptations to organizational processes and work routines. The varied effectiveness of facilitation observed in the literature is associated with the presence or absence of factors known to influence organizational learning, since facilitation itself appears to act as a learning mechanism. We offer propositions regarding the relationships between facilitation processes and key organizational learning concepts that have the potential to guide future work to further our understanding of the role that facilitation plays in learning and knowledge generation.

  14. Modeling study on the cleavage step of the self-splicing reaction in group I introns

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1993-01-01

    A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.

  15. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology.

    PubMed

    Collins, Kathleen; Nilsen, Timothy W

    2013-08-01

    Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.

  16. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna

    PubMed Central

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as “ecosystem engineers” are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a “space-for-time” substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by

  17. Intronic sequences are required for AINTEGUMENTA-LIKE6 expression in Arabidopsis flowers.

    PubMed

    Krizek, Beth A

    2015-10-12

    The AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots. AIL6 encodes an AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor that is expressed in the root stem cell niche, the peripheral region of the shoot apical meristem and young lateral organ primordia. In flowers, AIL6 acts redundantly with AINTEGUMENTA (ANT) to regulate floral organ positioning, growth, identity and patterning. Experiments were undertaken to define the genomic regions required for AIL6 function and expression in flowers. Transgenic plants expressing a copy of the coding region of AIL6 in the context of 7.7 kb of 5' sequence and 919 bp of 3' sequence (AIL6:cAIL6-3') fail to fully complement AIL6 function when assayed in the ant-4 ail6-2 double mutant background. In contrast, a genomic copy of AIL6 with the same amount of 5' and 3' sequence (AIL6:gAIL6-3') can fully complement ant-4 ail6-2. In addition, a genomic copy of AIL6 with 590 bp of 5' sequence and 919 bp of 3' sequence (AIL6m:gAIL6-3') complements ant-4 ail6-2 and contains all regulatory elements needed to confer normal AIL6 expression in inflorescences. Efforts to map cis-regulatory elements reveal that the third intron of AIL6 contains enhancer elements that confer expression in young flowers but in a broader pattern than that of AIL6 mRNA in wild-type flowers. Some AIL6:gAIL6-3' and AIL6m:gAIL6-3' lines confer an over-rescue phenotype in the ant-4 ail6-2 background that is correlated with higher levels of AIL6 mRNA accumulation. The results presented here indicate that AIL6 intronic sequences serve as transcriptional enhancer elements. In addition, the results show that increased expression of AIL6 can partially compensate for loss of ANT function in flowers.

  18. A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves.

    PubMed

    Wu, Hui-Wen; Deng, Shulin; Xu, Haiying; Mao, Hui-Zhu; Liu, Jun; Niu, Qi-Wen; Wang, Huan; Chua, Nam-Hai

    2018-06-04

    Dispersed H3K27 trimethylation (H3K27me3) of the AGAMOUS (AG) genomic locus is mediated by CURLY LEAF (CLF), a component of the Polycomb Repressive Complex (PRC) 2. Previous reports have shown that the AG second intron, which confers AG tissue-specific expression, harbors sequences targeted by several positive and negative regulators. Using RACE reverse transcription polymerase chain reaction, we found that the AG intron 2 encodes several noncoding RNAs. RNAi experiment showed that incRNA4 is needed for CLF repressive activity. AG-incRNA4RNAi lines showed increased leaf AG mRNA levels associated with a decrease of H3K27me3 levels; these plants displayed AG overexpression phenotypes. Genetic and biochemical analyses demonstrated that the AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through H3K27me3-mediated repression and to autoregulate its own expression level. The mechanism of AG-incRNA4-mediated repression may be relevant to investigations on tissue-specific expression of Arabidopsis MADS-box genes. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  19. Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity

    PubMed Central

    Gao, Zhongshan; Weg, Eric W van de; Matos, Catarina I; Arens, Paul; Bolhaar, Suzanne THP; Knulst, Andre C; Li, Yinghui; Hoffmann-Sommergruber, Karin; Gilissen, Luud JWJ

    2008-01-01

    Background Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS) in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing Mal d 1 genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping. Protein variant constitutions were subsequently compared with Skin Prick Test (SPT) responses to study the association of deduced protein variants with allergenicity in a set of 14 cultivars. Results From the seven intron-containing Mal d 1 genes investigated, Mal d 1.01 and Mal d 1.02 were highly conserved, as nine out of ten cultivars coded for the same protein variant, while only one cultivar coded for a second variant. Mal d 1.04, Mal d 1.05 and Mal d 1.06 A, B and C were more variable, coding for three to six different protein variants. Comparison of Mal d 1 allelic composition between the high-allergenic cultivar Golden Delicious and the low-allergenic cultivars Santana and Priscilla, which are linked in pedigree, showed an association between the protein variants coded by the Mal d 1.04 and -1.06A genes (both located on linkage group 16) with allergenicity. This association was confirmed in 10 other cultivars. In addition, Mal d 1.06A allele dosage effects associated with the degree of allergenicity based on prick to prick testing. Conversely, no associations were observed for the protein variants coded by the Mal d 1.01 (on linkage group 13), -1.02, -1.06B, -1.06C genes (all on linkage group 16), nor by the Mal d 1.05 gene (on linkage group 6). Conclusion Protein variant compositions of Mal d 1.04 and -1.06A and, in case of Mal d 1.06A, allele doses are associated with the differences in allergenicity among fourteen apple cultivars. This information indicates the involvement of

  20. Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students

    NASA Astrophysics Data System (ADS)

    Gómez Puente, S. M.; van Eijck, M.; Jochems, W.

    2013-11-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL literature as important in facilitating learning processes and student supervision are present in current DBL engineering practices. Sample: The sample (N=16) consisted of teachers and supervisors in two engineering study programs at a university of technology: mechanical and electrical engineering. We selected randomly teachers from freshman and second-year bachelor DBL projects responsible for student supervision and assessment. Design and method: Interviews with teachers, and interviews and observations of supervisors were used to examine how supervision and facilitation actions are applied according to the DBL framework. Results: Major findings indicate that formulating questions is the most common practice seen in facilitating learning in open-ended engineering design environments. Furthermore, other DBL actions we expected to see based upon the literature were seldom observed in the coaching practices within these two programs. Conclusions: Professionalization of teachers in supervising students need to include methods to scaffold learning by supporting students in reflecting and in providing formative feedback.

  1. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    PubMed Central

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  2. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    PubMed

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  3. Phylogeographic analysis of introns and mitochondrial DNA in the clam Ruditapes decussatus uncovers the effects of Pleistocene glaciations and endogenous barriers to gene flow.

    PubMed

    Cordero, David; Peña, Juan B; Saavedra, Carlos

    2014-02-01

    Studies on the phylogeography of species inhabiting the Mediterranean and the nearby coasts of the NE Atlantic Ocean (MEDAT) have found subdivision and/or phylogeographic structure in one or more of the Atlantic, western Mediterranean and eastern Mediterranean basins. This structure has been explained as the result of past population fragmentation caused by Pleistocene sea level changes and current patterns of marine circulation. However, the increasing use of nuclear markers has revealed that these two factors alone are not enough to explain the phylogeographic patterns, and an additional role has been suggested for endogenous barriers to gene flow or natural selection. In this article we examined the role of these factors in Ruditapes decussatus, a commercial clam species native to MEDAT. A genetic analysis of 11 populations was carried out by examining 6 introns with a PCR-RFLP technique. We found subdivision in three regions: Atlantic (ATL), western Mediterranean plus Tunisia (WMED), and Aegean and Adriatic seas (AEGAD). Two introns (Ech and Tbp) showed alleles that were restricted to AEGAD. Sequencing a subsample of individuals for these introns indicated that AEGAD-specific alleles were separate clades, thus revealing a phylogeographic brake at the WMED-AEGAD boundary. Sequencing of the mitochondrial COI locus confirmed this phylogeographic break. Dating of the AEGAD mitochondrial haplotypes and nuclear alleles with a Bayesian MCMC method revealed that they shared common ancestors in the Pleistocene. These results can be explained in the framework of Pleistocene sea level drops and patterns of gene flow in MEDAT. An additional observation was a lack of differentiation at COI between the ATL and WMED, in sharp contrast with 4 introns that showed clear genetic subdivision. Neutrality tests did not support the hypothesis of a selective sweep acting on mtDNA to explain the contrasting levels of differentiation between mitochondrial and nuclear markers across the

  4. Facilitative Strategies in Action.

    ERIC Educational Resources Information Center

    Fuller, Thara M. A.; Haugabrook, Adrian K.

    2001-01-01

    Describes campus-based strategies to facilitate collaboration by examining the process of restructuring a division of student affairs as an educational partner with academic affairs. Describes three collaborative efforts at the University of Massachusetts Boston: the Beacon Leadership Project, the Diversity Research Initiative, and the Beacon…

  5. Phylogenetic relationships among morphotypes of Caesalpinia echinata Lam. (Caesalpinioideae: Leguminosae) evidenced by trnL intron sequences

    NASA Astrophysics Data System (ADS)

    Juchum, Fabrício Sacramento; Costa, Marco Antônio; Amorim, André Márcio; Corrêa, Ronan Xavier

    2008-11-01

    Caesalpinia echinata (brazilwood or Pernambuco wood) comprises a complex of three morphological leaf variants, characterized by differences in the number and size of the pinnae and leaflets, and occurring in allopatric and sympatric populations. The present study evaluates the utility of the chloroplast DNA trnL intron in a phylogenetic analysis of the three leaf variants along with other species of Caesalpinia and generic relatives. Our study supports the hypothesis that the name C. echinata designates a species complex and provides evidence that one of the forms, the highly divergent C. echinata large-leafleted variant, represents a distinct taxon.

  6. Prevalent Exon-Intron Structural Changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-Box Gene Subfamilies Provide New Insights into Their Evolution

    PubMed Central

    Yu, Xianxian; Duan, Xiaoshan; Zhang, Rui; Fu, Xuehao; Ye, Lingling; Kong, Hongzhi; Xu, Guixia; Shan, Hongyan

    2016-01-01

    AP1/FUL, SEP, AGL6, and FLC subfamily genes play important roles in flower development. The phylogenetic relationships among them, however, have been controversial, which impedes our understanding of the origin and functional divergence of these genes. One possible reason for the controversy may be the problems caused by changes in the exon-intron structure of genes, which, according to recent studies, may generate non-homologous sites and hamper the homology-based sequence alignment. In this study, we first performed exon-by-exon alignments of these and three outgroup subfamilies (SOC1, AG, and STK). Phylogenetic trees reconstructed based on these matrices show improved resolution and better congruence with species phylogeny. In the context of these phylogenies, we traced evolutionary changes of exon-intron structures in each subfamily. We found that structural changes have occurred frequently following gene duplication and speciation events. Notably, exons 7 and 8 (if present) suffered more structural changes than others. With the knowledge of exon-intron structural changes, we generated more reasonable alignments containing all the focal subfamilies. The resulting trees showed that the SEP subfamily is sister to the monophyletic group formed by AP1/FUL and FLC subfamily genes and that the AGL6 subfamily forms a sister group to the three abovementioned subfamilies. Based on this topology, we inferred the evolutionary history of exon-intron structural changes among different subfamilies. Particularly, we found that the eighth exon originated before the divergence of AP1/FUL, FLC, SEP, and AGL6 subfamilies and degenerated in the ancestral FLC-like gene. These results provide new insights into the origin and evolution of the AP1/FUL, FLC, SEP, and AGL6 subfamilies. PMID:27200066

  7. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes

    PubMed Central

    Wörheide, Gert

    2017-01-01

    Abstract One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. PMID:28633296

  8. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.

    PubMed

    Rath, Matthias; Jenssen, Sönke E; Schwefel, Konrad; Spiegler, Stefanie; Kleimeier, Dana; Sperling, Christian; Kaderali, Lars; Felbor, Ute

    2017-09-01

    Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can cause headaches, seizures and hemorrhagic stroke. Disease-associated mutations have been identified in three genes: CCM1/KRIT1, CCM2 and CCM3/PDCD10. The precise proportion of deep-intronic variants in these genes and their clinical relevance is yet unknown. Here, a long-range PCR (LR-PCR) approach for target enrichment of the entire genomic regions of the three genes was combined with next generation sequencing (NGS) to screen for coding and non-coding variants. NGS detected all six CCM1/KRIT1, two CCM2 and four CCM3/PDCD10 mutations that had previously been identified by Sanger sequencing. Two of the pathogenic variants presented here are novel. Additionally, 20 stringently selected CCM index cases that had remained mutation-negative after conventional sequencing and exclusion of copy number variations were screened for deep-intronic mutations. The combination of bioinformatics filtering and transcript analyses did not reveal any deep-intronic splice mutations in these cases. Our results demonstrate that target enrichment by LR-PCR combined with NGS can be used for a comprehensive analysis of the entire genomic regions of the CCM genes in a research context. However, its clinical utility is limited as deep-intronic splice mutations in CCM1/KRIT1, CCM2 and CCM3/PDCD10 seem to be rather rare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Facilitating a More Efficient Commercial Review Process for Pediatric Drugs and Biologics

    PubMed Central

    Rykhus, Ryan D.; Shepard, Zachary V.; Young, Alix; Frisby, Hadley; Calder, Kailee A.; Coon, Collin M.; Falk, Justin A.; McAndrews, Sydney R.; Turner, Aspen; Chang, Christina; Michelsohn, Johanna; Petch, Raegan; Dieker, Sarah M.; Markworth, Benjamin H.; Alamo-Perez, Kevin; Hosack, Aaron J.; Berg, Jacob M.; Schmidt, Christian; Storsberg, Joachim; Brown, Mark A.

    Over the past two decades, the biopharmaceutical industry has seen unprecedented expansion and innovation in concert with significant technological advancements. While the industry has experienced marked growth, the regulatory system in the United States still operates at a capacity much lower than the influx of new drug and biologic candidates. As a result, it has become standard for months or even years of waiting for commercial approval by the U.S. Food and Drug Administration. These regulatory delays have generated a system that stifles growth and innovation due to the exorbitant costs associated with awaiting approval from the nation’s sole regulatory agency. The recent re-emergence of diseases that impact pediatric demographics represents one particularly acute reason for developing a regulatory system that facilitates a more efficient commercial review process. Herein, we present a range of initiatives that could represent early steps toward alleviating the delays in approving life-saving therapeutics. PMID:29271878

  10. Facilitating Facilitators: Enhancing PBL through a Structured Facilitator Development Program

    ERIC Educational Resources Information Center

    Salinitri, Francine D.; Wilhelm, Sheila M.; Crabtree, Brian L.

    2015-01-01

    With increasing adoption of the problem-based learning (PBL) model, creative approaches to enhancing facilitator training and optimizing resources to maintain effective learning in small groups is essential. We describe a theoretical framework for the development of a PBL facilitator training program that uses the constructivist approach as the…

  11. The evaluation of angiotensin-converting enzyme (ACE) gene I/D and IL-4 gene intron 3 VNTR polymorphisms in coronary artery disease.

    PubMed

    Basol, Nursah; Celik, Atac; Karakus, Nevin; Ozturk, Sibel Demir; Ozsoy, Sibel Demir; Yigit, Serbulent

    2014-01-01

    Genetic polymorphism is a strong risk factor for coronary artery disease (CAD). In the present study, our aim was to evaluate angiotensin-converting enzyme (ACE) gene I/D polymorphism and interleukin-4 (IL-4) gene Intron 3 variable number of tandem repeat (VNTR) polymorphism in CAD. One hundred and twenty-four CAD patients and one hundred and twenty-three controls were enrolled. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) analyses. The risk associated with inheriting the combined genotypes for the two polymorphisms were evaluated and it was found that the individuals who were P2P2-homozygous at IL-4 gene intron 3 VNTR and DD-homozygous at ACE gene I/D have a higher risk of developing CAD. Although, there is no correlation between IL4 VNTR polymorphism and ACE gene polymorphism and CAD, there is a strong association between CAD and co-existence of IL-4 VNTR and ACE gene polymorphisms in the Turkish population. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Asymmetry of intronic pre-miRNA structures in functional RISC assembly

    PubMed Central

    Lin, Shi-Lung; Chang, Donald; Ying, Shao-Yao

    2006-01-01

    The two oligonucleotide strands of a siRNA duplex are functionally asymmetric in assembling the RNAi effector, RNA-induced gene silencing complex (RISC). Based on this asymmetric RISC assembly model in vitro, formation of a microRNA (miRNA) and complementary miRNA (miRNA*) duplex was proposed to be an essential step for the assembly of miRNA-associated RISC (miRISC). We observed here that a strong structural bias exists in the selection of a mature miRNA strand for RISC assembly in zebrafish using an intronic miRNA-like vector to target EGFP mRNA for regulation. The position of the stemloop in a precursor miRNA (pre-miRNA) was involved in the determination of miRNA–miRNA* asymmetry of the pre-miRNA stemarm, leading to different miRNA maturation during miRISC assembly. These findings suggest that the miRISC assembly is likely different from the RISC assembly model of siRNA in zebrafish, providing the first in vivo evidence for asymmetric miRISC assembly. PMID:16005165

  13. Maf1 Protein, Repressor of RNA Polymerase III, Indirectly Affects tRNA Processing*

    PubMed Central

    Karkusiewicz, Iwona; Turowski, Tomasz W.; Graczyk, Damian; Towpik, Joanna; Dhungel, Nripesh; Hopper, Anita K.; Boguta, Magdalena

    2011-01-01

    Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner. PMID:21940626

  14. Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing.

    PubMed

    Karkusiewicz, Iwona; Turowski, Tomasz W; Graczyk, Damian; Towpik, Joanna; Dhungel, Nripesh; Hopper, Anita K; Boguta, Magdalena

    2011-11-11

    Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.

  15. Volta phase plate data collection facilitates image processing and cryo-EM structure determination.

    PubMed

    von Loeffelholz, Ottilie; Papai, Gabor; Danev, Radostin; Myasnikov, Alexander G; Natchiar, S Kundhavai; Hazemann, Isabelle; Ménétret, Jean-François; Klaholz, Bruno P

    2018-06-01

    A current bottleneck in structure determination of macromolecular complexes by cryo electron microscopy (cryo-EM) is the large amount of data needed to obtain high-resolution 3D reconstructions, including through sorting into different conformations and compositions with advanced image processing. Additionally, it may be difficult to visualize small ligands that bind in sub-stoichiometric levels. Volta phase plates (VPP) introduce a phase shift in the contrast transfer and drastically increase the contrast of the recorded low-dose cryo-EM images while preserving high frequency information. Here we present a comparative study to address the behavior of different data sets during image processing and quantify important parameters during structure refinement. The automated data collection was done from the same human ribosome sample either as a conventional defocus range dataset or with a Volta phase plate close to focus (cfVPP) or with a small defocus (dfVPP). The analysis of image processing parameters shows that dfVPP data behave more robustly during cryo-EM structure refinement because particle alignments, Euler angle assignments and 2D & 3D classifications behave more stably and converge faster. In particular, less particle images are required to reach the same resolution in the 3D reconstructions. Finally, we find that defocus range data collection is also applicable to VPP. This study shows that data processing and cryo-EM map interpretation, including atomic model refinement, are facilitated significantly by performing VPP cryo-EM, which will have an important impact on structural biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Facilitation can increase the phylogenetic diversity of plant communities.

    PubMed

    Valiente-Banuet, Alfonso; Verdú, Miguel

    2007-11-01

    With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity.

  17. Can Questions Facilitate Learning from Illustrated Science Texts?

    ERIC Educational Resources Information Center

    Iding, Marie K.

    1997-01-01

    Examines the effectiveness of using questions to facilitate processing of diagrams in science texts. Investigates three different elements in experiments on college students. Finds that questions about illustrations do not facilitate learning. Discusses findings with reference to cognitive load theory, the dual coding perspective, and the…

  18. Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm.

    PubMed

    Szucs, Dénes; Soltész, Fruzsina

    2007-11-05

    In the numerical Stroop paradigm (NSP) participants compare simultaneously presented Arabic digits based on either their numerical or on their physical size dimension. Responses are faster when the numerical and size dimensions are congruent with each other (facilitation), and responses are slower when the numerical and size dimensions are incongruent with each other (interference). We aimed to find out whether facilitation and interference appears during the course of perceptual or response processing. To this end, facilitation and interference effects in the amplitude of event-related brain potentials (ERPs) were examined. The onset of motor preparation was determined by monitoring the lateralized readiness potential. In numerical comparison one facilitation effect was related to perceptual processing at the level of the magnitude representation. A second facilitation effect and interference effects appeared during response processing. In size comparison facilitation and interference appeared exclusively during response processing. In both tasks, ERP interference effects were probably related to contextual analysis and to the conflict monitoring and selection for action activity of the anterior cingulate cortex. The results demonstrate that facilitation and interference effects in the NSP appear during multiple stages of processing, and that they are related to different cognitive processes. Therefore these effects should be clearly separated in studies of the NSP. A model of the processes involved in the NSP is provided and implications for studies of the NSP are drawn.

  19. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide.

    PubMed

    Bienert, Gerd P; Chaumont, François

    2014-05-01

    Hydrogen peroxide (H2O2) is an important signaling compound that has recently been identified as a new substrate for several members of the aquaporin superfamily in various organisms. Evidence is emerging about the physiological significance of aquaporin-facilitated H2O2 diffusion. This review summarizes current knowledge about aquaporin-facilitated H2O2 diffusion across cellular membranes. It focuses on physicochemical and experimental evidence demonstrating the involvement of aquaporins in the transport of this redox signaling compound and discusses the regulation and structural prerequisites of these channels to transmit this signal. It also provides perspectives about the potential importance of aquaporin-facilitated H2O2 diffusion processes and places this knowledge in the context of the current understanding of transmembrane redox signaling processes. Specific aquaporin isoforms facilitate the passive diffusion of H2O2 across biological membranes and control H2O2 membrane permeability and signaling in living organisms. Redox signaling is a very important process regulating the physiology of cells and organisms in a similar way to the well-characterized hormonal and calcium signaling pathways. Efficient transmembrane diffusion of H2O2, a key molecule in the redox signaling network, requires aquaporins and makes these channels important players in this signaling process. Channel-mediated membrane transport allows the fine adjustment of H2O2 levels in the cytoplasm, intracellular organelles, the apoplast, and the extracellular space, which are essential for it to function as a signal molecule. This article is part of a Special Issue entitled Aquaporins. © 2013.

  20. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor.

    PubMed

    Li, Ying; Bor, Yeou-Cherng; Fitzgerald, Mark P; Lee, Kevin S; Rekosh, David; Hammarskjold, Marie-Louise

    2016-12-01

    The Nxf1 protein is a major nuclear export receptor for the transport of mRNA, and it also is essential for export of retroviral mRNAs with retained introns. In the latter case, it binds to RNA elements known as constitutive transport elements (CTEs) and functions in conjunction with a cofactor known as Nxt1. The NXF1 gene also regulates expression of its own intron-containing RNA through the use of a functional CTE within intron 10. mRNA containing this intron is exported to the cytoplasm, where it can be translated into the 356-amino acid short Nxf1(sNxf1) protein, despite the fact that it is a prime candidate for nonsense-mediated decay (NMD). Here we demonstrate that sNxf1 is highly expressed in nuclei and dendrites of hippocampal and neocortical neurons in rodent brain. Additionally, we show that sNxf1 localizes in RNA granules in neurites of differentiated N2a mouse neuroblastoma cells, where it shows partial colocalization with Staufen2 isoform SS, a protein known to play a role in dendritic mRNA trafficking. We also show that sNxf1 forms heterodimers in conjunction with the full-length Nxf1 and that sNxf1 can replace Nxt1 to enhance the expression of CTE-containing mRNA and promote its association with polyribosomes. © 2016 Li et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Two similar but distinct second intron fragments from tobacco AGAMOUS homologs confer identical floral organ-specific expression sufficient for generating complete sterility in plants

    USDA-ARS?s Scientific Manuscript database

    The carpel- and stamen-specific AtAGIP promoter derived from the Arabidopsis AGAMOUS (AG) second intron/enhancer is ideal for engineering complete sterility, but it is highly host-specific. To ascertain that a chimeric promoter with similar tissue specificity can be created for species other than A...

  2. A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea

    PubMed Central

    Ford, Kathryn L.; Baumgartner, Kendra; Henricot, Béatrice; Bailey, Andy M.; Foster, Gary D.

    2016-01-01

    Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled using yeast-based recombination methods. These have been designed to allow easy exchange of promoters and inclusion of introns. The vectors were first tested by transformation into basidiomycete Clitopilus passeckerianus to ascertain vector functionality then used to transform A. mellea. We show that heterologous promoters from the basidiomycetes Agaricus bisporus and Phanerochaete chrysosporium that were used successfully to control the hygromycin resistance cassette were not able to support expression of mRFP or GFP in A. mellea. The endogenous A. mellea gpd promoter delivered efficient expression, and we show that inclusion of an intron was also required for transgene expression. GFP and mRFP expression was stable in mycelia and fluorescence was visible in transgenic fruiting bodies and GFP was detectable in planta. Use of these vectors has been successful in giving expression of the fluorescent proteins GFP and mRFP in A. mellea, providing an additional molecular tool for this pathogen. PMID:27384974

  3. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.

    PubMed

    Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao

    2016-03-01

    Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications. © FASEB.

  4. Association analysis of the functional MAOA gene promoter and MAOB gene intron 13 polymorphisms in tension type headache patients.

    PubMed

    Edgnülü, Tuba G; Özge, Aynur; Erdal, Nurten; Kuru, Oktay; Erdal, Mehmet E

    2014-01-01

    Monoamine oxidase (MAO) enzymes play an important role in the etiology of many neurological diseases. Tension type headache (TTH) treatments contain inhibitors for selective re-uptake of serotonin and monoamine oxidase inhibitors. MAO (EC 1.4.3.4) has two isoenzymes known as MAOA and MAOB. A promoter polymorphism of a variable number of tandem repeats (VNTR) in the MAOA gene seems to affect MAOA transcriptional activity in vitro. Also, G/A polymorphism in intron 13 (rs1799836) of the MAOB gene have been previously found to be associated with the variability of MAOB enzyme activity. The aim of our study was to investigate a possible association of monoamine oxidase (MAOA and MAOB) gene polymorphisms in tension type headache. MAO gene polymorphisms were examined in a group of 120 TTH patients and in another 168 unrelated healthy volunteers (control group). MAOA promoter and MAOB intron 13 polymorphisms were genotyped using PCR-based methods. An overall comparison between the genotype of MAOA and MAOB genes and allele frequencies of the patients and the control group did not reveal any statistically significant difference between the patients and the control group (p=0.162). Factors like estrogen dosage, the limited number of male patients and other genes' neurotransmitters involved in the etiology of TTH could be responsible for our non-significant results.

  5. Facilitation or disengagement? Attention bias in facial affect processing after short-term violent video game exposure

    PubMed Central

    Liu, Yanling; Lan, Haiying; Teng, Zhaojun; Guo, Cheng; Yao, Dezhong

    2017-01-01

    Previous research has been inconsistent on whether violent video games exert positive and/or negative effects on cognition. In particular, attentional bias in facial affect processing after violent video game exposure continues to be controversial. The aim of the present study was to investigate attentional bias in facial recognition after short term exposure to violent video games and to characterize the neural correlates of this effect. In order to accomplish this, participants were exposed to either neutral or violent video games for 25 min and then event-related potentials (ERPs) were recorded during two emotional search tasks. The first search task assessed attentional facilitation, in which participants were required to identify an emotional face from a crowd of neutral faces. In contrast, the second task measured disengagement, in which participants were required to identify a neutral face from a crowd of emotional faces. Our results found a significant presence of the ERP component, N2pc, during the facilitation task; however, no differences were observed between the two video game groups. This finding does not support a link between attentional facilitation and violent video game exposure. Comparatively, during the disengagement task, N2pc responses were not observed when participants viewed happy faces following violent video game exposure; however, a weak N2pc response was observed after neutral video game exposure. These results provided only inconsistent support for the disengagement hypothesis, suggesting that participants found it difficult to separate a neutral face from a crowd of emotional faces. PMID:28249033

  6. Facilitation or disengagement? Attention bias in facial affect processing after short-term violent video game exposure.

    PubMed

    Liu, Yanling; Lan, Haiying; Teng, Zhaojun; Guo, Cheng; Yao, Dezhong

    2017-01-01

    Previous research has been inconsistent on whether violent video games exert positive and/or negative effects on cognition. In particular, attentional bias in facial affect processing after violent video game exposure continues to be controversial. The aim of the present study was to investigate attentional bias in facial recognition after short term exposure to violent video games and to characterize the neural correlates of this effect. In order to accomplish this, participants were exposed to either neutral or violent video games for 25 min and then event-related potentials (ERPs) were recorded during two emotional search tasks. The first search task assessed attentional facilitation, in which participants were required to identify an emotional face from a crowd of neutral faces. In contrast, the second task measured disengagement, in which participants were required to identify a neutral face from a crowd of emotional faces. Our results found a significant presence of the ERP component, N2pc, during the facilitation task; however, no differences were observed between the two video game groups. This finding does not support a link between attentional facilitation and violent video game exposure. Comparatively, during the disengagement task, N2pc responses were not observed when participants viewed happy faces following violent video game exposure; however, a weak N2pc response was observed after neutral video game exposure. These results provided only inconsistent support for the disengagement hypothesis, suggesting that participants found it difficult to separate a neutral face from a crowd of emotional faces.

  7. Phylogeny of lion tamarins (Leontopithecus spp) based on interphotoreceptor retinol binding protein intron sequences.

    PubMed

    Mundy, N I; Kelly, J

    2001-05-01

    The evolutionary relationships of the lion tamarins (Leontopithecus) were investigated using nuclear interphotoreceptor retinol binding protein (IRBP) intron sequences. Phylogenetic reconstructions strongly support the monophyly of the genus, and a sister relationship between the golden lion tamarin, Leontopithecus rosalia, and the black lion tamarin, L. chrysopygus, to the exclusion of the golden-headed lion tamarin, L. chrysomelas. The most parsimonious evolutionary reconstruction suggests that the ancestral lion tamarin and the common ancestor of L. rosalia and L. chrysopygus had predominantly black coats. This reconstruction is not consistent with a theory of orthogenetic evolution of coat color that was based on coat color evolution in marmosets and tamarins. An alternative reconstruction that is consistent with metachromism requires that ancestral lion tamarins had agouti hairs. Copyright 2001 Wiley-Liss, Inc.

  8. Regulation of plasma factor XIII levels in healthy individuals; a major impact by subunit B intron K c.1952+144 C>G polymorphism.

    PubMed

    Mezei, Zoltán A; Katona, Éva; Kállai, Judit; Bereczky, Zsuzsanna; Molnár, Éva; Kovács, Bettina; Ajzner, Éva; Bagoly, Zsuzsa; Miklós, Tünde; Muszbek, László

    2016-12-01

    The regulation of plasma factor XIII (FXIII) levels in healthy individuals has been only partially explored. The identification of major non-genetic and genetic regulatory factors might provide important information on the contribution of FXIII to the risk of cardio/cerebrovascular diseases. To determine the effect of age, smoking, BMI, fibrinogen concentration on plasma FXIII activity, complex FXIII antigen (FXIII-A 2 B 2 ) and total FXIII-B subunit (tFXIII-B) level, to correlate FXIII-B level with the other two FXIII parameters and to assess the variation of FXIII levels in carriers of major FXIII subunit polymorphisms. 268 healthy individuals were enrolled in the study. FXIII activity was measured by the ammonia release assay; FXIII-A 2 B 2 and tFXIII-B were determined by ELISAs. FXIII-A p.Val34Leu, FXIII-B p.His95Arg and FXIII-B intron K c.1952+144 C>G polymorphisms were identified by RT-PCR using melting point analysis with fluorescence resonance energy transfer detection. All investigated FXIII parameters showed significant positive correlation with age and fibrinogen level; gender and BMI influenced only tFXIII-B. A highly significant positive correlation was demonstrated between tFXIII-B and the other FXIII parameters. FXIII-A p.Val34Leu polymorphism had only slight, if any effect on FXIII levels. The FXIII-B Arg95 allele moderately increased all three FXIII parameters, but the effect became statistically significant only after adjustment. The FXIII-B intron K G allele drastically decreased FXIII levels, and it seemed to be in synergism with the FXIII-A Leu34 allele. Plasma FXIII levels are subjected to multifactorial regulation, in which age, fibrinogen level and FXIII-B intron K polymorphism are major determinants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The 253-kb inversion and deep intronic mutations in UNC13D are present in North American patients with familial hemophagocytic lymphohistiocytosis 3.

    PubMed

    Qian, Yaping; Johnson, Judith A; Connor, Jessica A; Valencia, C Alexander; Barasa, Nathaniel; Schubert, Jeffery; Husami, Ammar; Kissell, Diane; Zhang, Ge; Weirauch, Matthew T; Filipovich, Alexandra H; Zhang, Kejian

    2014-06-01

    The mutations in UNC13D are responsible for familial hemophagocytic lymphohistiocytosis (FHL) type 3. A 253-kb inversion and two deep intronic mutations, c.118-308C > T and c.118-307G > A, in UNC13D were recently reported in European and Asian FHL3 patients. We sought to determine the prevalence of these three non-coding mutations in North American FHL patients and evaluate the significance of examining these new mutations in genetic testing. We performed DNA sequencing of UNC13D and targeted analysis of these three mutations in 1,709 North American patients with a suspected clinical diagnosis of hemophagocytic lymphohistiocytosis (HLH). The 253-kb inversion, intronic mutations c.118-308C > T and c.118-307G > A were found in 11, 15, and 4 patients, respectively, in which the genetic basis (bi-allelic mutations) explained 25 additional patients. Taken together with previously diagnosed FHL3 patients in our HLH patient registry, these three non-coding mutations were found in 31.6% (25/79) of the FHL3 patients. The 253-kb inversion, c.118-308C > T and c.118-307G > A accounted for 7.0%, 8.9%, and 1.3% of mutant alleles, respectively. Significantly, eight novel mutations in UNC13D are being reported in this study. To further evaluate the expression level of the newly reported intronic mutation c.118-307G > A, reverse transcription PCR and Western blot analysis revealed a significant reduction of both RNA and protein levels suggesting that the c.118-307G > A mutation affects transcription. These specified non-coding mutations were found in a significant number of North American patients and inclusion of them in mutation analysis will improve the molecular diagnosis of FHL3. © 2014 Wiley Periodicals, Inc.

  10. Barriers to and facilitators of implementing complex workplace dietary interventions: process evaluation results of a cluster controlled trial.

    PubMed

    Fitzgerald, Sarah; Geaney, Fiona; Kelly, Clare; McHugh, Sheena; Perry, Ivan J

    2016-04-21

    Ambiguity exists regarding the effectiveness of workplace dietary interventions. Rigorous process evaluation is vital to understand this uncertainty. This study was conducted as part of the Food Choice at Work trial which assessed the comparative effectiveness of a workplace environmental dietary modification intervention and an educational intervention both alone and in combination versus a control workplace. Effectiveness was assessed in terms of employees' dietary intakes, nutrition knowledge and health status in four large manufacturing workplaces. The study aimed to examine barriers to and facilitators of implementing complex workplace interventions, from the perspectives of key workplace stakeholders and researchers involved in implementation. A detailed process evaluation monitored and evaluated intervention implementation. Interviews were conducted at baseline (27 interviews) and at 7-9 month follow-up (27 interviews) with a purposive sample of workplace stakeholders (managers and participating employees). Topic guides explored factors which facilitated or impeded implementation. Researchers involved in recruitment and data collection participated in focus groups at baseline and at 7-9 month follow-up to explore their perceptions of intervention implementation. Data were imported into NVivo software and analysed using a thematic framework approach. Four major themes emerged; perceived benefits of participation, negotiation and flexibility of the implementation team, viability and intensity of interventions and workplace structures and cultures. The latter three themes either positively or negatively affected implementation, depending on context. The implementation team included managers involved in coordinating and delivering the interventions and the researchers who collected data and delivered intervention elements. Stakeholders' perceptions of the benefits of participating, which facilitated implementation, included managers' desire to improve company

  11. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes.

    PubMed

    Francis, Warren R; Wörheide, Gert

    2017-06-01

    One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. An exploration of tutors' experiences of facilitating problem-based learning. Part 2--implications for the facilitation of problem based learning.

    PubMed

    Haith-Cooper, Melanie

    2003-01-01

    This paper is the second of two parts exploring a study that was undertaken to investigate the role of the tutor in facilitating problem-based learning (PBL). The first part focussed on the methodological underpinnings of the study. This paper aims to focus on the findings of the study and their implications for the facilitation of PBL. Six essential themes emerged from the findings that described the facilitation role. The tutors believed that their facilitation role was essentially structured around the decision of when to intervene and how to intervene in the PBL process. Modelling and non-verbal communication were seen as essential strategies for the facilitator. Underpinning these decisions was the need to trust in the philosophy of PBL. However, within many of the themes, there was a divergence of opinion as to how the role should actually be undertaken. Despite this, these findings have implications for the future role of PBL facilitators in Health Professional Education.

  13. SWI/SNF interacts with cleavage and polyadenylation factors and facilitates pre-mRNA 3' end processing.

    PubMed

    Yu, Simei; Jordán-Pla, Antonio; Gañez-Zapater, Antoni; Jain, Shruti; Rolicka, Anna; Östlund Farrants, Ann-Kristin; Visa, Neus

    2018-05-31

    SWI/SNF complexes associate with genes and regulate transcription by altering the chromatin at the promoter. It has recently been shown that these complexes play a role in pre-mRNA processing by associating at alternative splice sites. Here, we show that SWI/SNF complexes are involved also in pre-mRNA 3' end maturation by facilitating 3' end cleavage of specific pre-mRNAs. Comparative proteomics show that SWI/SNF ATPases interact physically with subunits of the cleavage and polyadenylation complexes in fly and human cells. In Drosophila melanogaster, the SWI/SNF ATPase Brahma (dBRM) interacts with the CPSF6 subunit of cleavage factor I. We have investigated the function of dBRM in 3' end formation in S2 cells by RNA interference, single-gene analysis and RNA sequencing. Our data show that dBRM facilitates pre-mRNA cleavage in two different ways: by promoting the association of CPSF6 to the cleavage region and by stabilizing positioned nucleosomes downstream of the cleavage site. These findings show that SWI/SNF complexes play a role also in the cleavage of specific pre-mRNAs in animal cells.

  14. The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription.

    PubMed

    Akay, Alper; Di Domenico, Tomas; Suen, Kin M; Nabih, Amena; Parada, Guillermo E; Larance, Mark; Medhi, Ragini; Berkyurek, Ahmet C; Zhang, Xinlian; Wedeles, Christopher J; Rudolph, Konrad L M; Engelhardt, Jan; Hemberg, Martin; Ma, Ping; Lamond, Angus I; Claycomb, Julie M; Miska, Eric A

    2017-08-07

    Small RNAs play a crucial role in genome defense against transposable elements and guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. However, the molecular basis of this process remains unknown. Here, we identify the conserved RNA helicase Aquarius/EMB-4 as a direct and essential link between small RNA pathways and the transcriptional machinery in Caenorhabditis elegans. Aquarius physically interacts with the germline Argonaute HRDE-1. Aquarius is required to initiate small-RNA-induced heritable gene silencing. HRDE-1 and Aquarius silence overlapping sets of genes and transposable elements. Surprisingly, removal of introns from a target gene abolishes the requirement for Aquarius, but not HRDE-1, for small RNA-dependent gene silencing. We conclude that Aquarius allows small RNA pathways to compete for access to nascent transcripts undergoing co-transcriptional splicing in order to detect and silence transposable elements. Thus, Aquarius and HRDE-1 act as gatekeepers coordinating gene expression and genome defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Separate introns gained within short and long soluble peridinin-chlorophyll a-protein genes during radiation of Symbiodinium (Dinophyceae) clade A and B lineages - PLoS One

    EPA Science Inventory

    Here we document introns in two Symbiodinium clades that were most likely gained following divergence of this genus from other peridinin-containing dinoflagellate lineages. Soluble peridinin-chlorophyll a-proteins (sPCP) occur in short and long forms in different species, and all...

  16. Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions.

    PubMed

    Hu, Jiehui; Qi, Song; Becker, Benjamin; Luo, Lizhu; Gao, Shan; Gong, Qiyong; Hurlemann, René; Kendrick, Keith M

    2015-06-01

    In male Caucasian subjects, learning is facilitated by receipt of social compared with non-social feedback, and the neuropeptide oxytocin (OXT) facilitates this effect. In this study, we have first shown a cultural difference in that male Chinese subjects actually perform significantly worse in the same reinforcement associated learning task with social (emotional faces) compared with non-social feedback. Nevertheless, in two independent double-blind placebo (PLC) controlled between-subject design experiments we found OXT still selectively facilitated learning with social feedback. Similar to Caucasian subjects this OXT effect was strongest with feedback using female rather than male faces. One experiment performed in conjunction with functional magnetic resonance imaging showed that during the response, but not feedback phase of the task, OXT selectively increased activity in the amygdala, hippocampus, parahippocampal gyrus and putamen during the social feedback condition, and functional connectivity between the amygdala and insula and caudate. Therefore, OXT may be increasing the salience and reward value of anticipated social feedback. In the PLC group, response times and state anxiety scores during social feedback were associated with signal changes in these same regions but not in the OXT group. OXT may therefore have also facilitated learning by reducing anxiety in the social feedback condition. Overall our results provide the first evidence for cultural differences in social facilitation of learning per se, but a similar selective enhancement of learning with social feedback under OXT. This effect of OXT may be associated with enhanced responses and functional connectivity in emotional memory and reward processing regions. © 2015 Wiley Periodicals, Inc.

  17. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria

    PubMed Central

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-01-01

    Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986

  18. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria.

    PubMed

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-09-14

    The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.

  19. A 3.0-kb deletion including an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene in an individual with the Bm phenotype.

    PubMed

    Sano, R; Kuboya, E; Nakajima, T; Takahashi, Y; Takahashi, K; Kubo, R; Kominato, Y; Takeshita, H; Yamao, H; Kishida, T; Isa, K; Ogasawara, K; Uchikawa, M

    2015-04-01

    We developed a sequence-specific primer PCR (SSP-PCR) for detection of a 5.8-kb deletion (B(m) 5.8) involving an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene. Using this SSP-PCR, we performed genetic analysis of 382 individuals with Bm or ABm. The 5.8-kb deletion was found in 380 individuals, and disruption of the GATA motif in the regulatory element was found in one individual. Furthermore, a novel 3.0-kb deletion involving the element (B(m) 3.0) was demonstrated in the remaining individual. Comparisons of single-nucleotide polymorphisms and microsatellites in intron 1 between B(m) 5.8 and B(m) 3.0 suggested that these deletions occurred independently. © 2014 International Society of Blood Transfusion.

  20. A base substitution in the donor site of intron 12 of KIT gene is responsible for the dominant white coat colour of blue fox (Alopex lagopus).

    PubMed

    Yan, S Q; Hou, J N; Bai, C Y; Jiang, Y; Zhang, X J; Ren, H L; Sun, B X; Zhao, Z H; Sun, J H

    2014-04-01

    The dominant white coat colour of farmed blue fox is inherited as a monogenic autosomal dominant trait and is suggested to be embryonic lethal in the homozygous state. In this study, the transcripts of KIT were identified by RT-PCR for a dominant white fox and a normal blue fox. Sequence analysis showed that the KIT transcript in normal blue fox contained the full-length coding sequence of 2919 bp (GenBank Acc. No KF530833), but in the dominant white individual, a truncated isoform lacking the entire exon 12 specifically co-expressed with the normal transcript. Genomic DNA sequencing revealed that a single nucleotide polymorphism (c.1867+1G>T) in intron 12 appeared only in the dominant white individuals and a 1-bp ins/del polymorphism in the same intron showed in individuals representing two different coat colours. Genotyping results of the SNP with PCR-RFLP in 185 individuals showed all 90 normal blue foxes were homozygous for the G allele, and all dominant white individuals were heterozygous. Due to the truncated protein with a deletion of 35 amino acids and an amino acid replacement (p.Pro623Ala) located in the conserved ATP binding domain, we propose that the mutant receptor had absent tyrosine kinase activity. These findings reveal that the base substitution at the first nucleotide of intron 12 of KIT gene, resulting in skipping of exon 12, is a causative mutation responsible for the dominant white phenotype of blue fox. © 2013 Stichting International Foundation for Animal Genetics.

  1. Animated-simulation modeling facilitates clinical-process costing.

    PubMed

    Zelman, W N; Glick, N D; Blackmore, C C

    2001-09-01

    Traditionally, the finance department has assumed responsibility for assessing process costs in healthcare organizations. To enhance process-improvement efforts, however, many healthcare providers need to include clinical staff in process cost analysis. Although clinical staff often use electronic spreadsheets to model the cost of specific processes, PC-based animated-simulation tools offer two major advantages over spreadsheets: they allow clinicians to interact more easily with the costing model so that it more closely represents the process being modeled, and they represent cost output as a cost range rather than as a single cost estimate, thereby providing more useful information for decision making.

  2. Functional characterization of the novel intronic nucleotide change c.288+9C>T within the BCKDHA gene: understanding a variant presentation of maple syrup urine disease.

    PubMed

    Fernández-Guerra, Paula; Navarrete, Rosa; Weisiger, Kara; Desviat, Lourdes R; Packman, Seymour; Ugarte, Magdalena; Rodríguez-Pombo, Pilar

    2010-12-01

    Mutations in any of the three different genes--BCKDHA, BCKDHB, and DBT--encoding for the E1α, E1β, and E2 catalytic components of the branched-chain α-ketoacid dehydrogenase complex can cause maple syrup urine disease (MSUD). Disease severity ranges from the classic to the mildest variant types and precise genotypes, mostly based on missense mutations, have been associated to the less severe presentations of the disease. Herein, we examine the consequences at the messenger RNA (mRNA) level of the novel intronic alteration c.288+9C>T found in heterozygous fashion in a BCKDHA variant MSUD patient who also carries the nucleotide change c.745G>A (p.Gly249Ser), previously described as a severe change. Direct analysis of the processed transcripts from the patient showed--in addition to a low but measurable level of normal mRNA product--an aberrantly spliced mRNA containing a 7-bp fragment of intron 2, which could be rescued when the patient's cells were treated with emetine. This aberrant transcript with a premature stop codon would be unstable, supporting the possible activation of nonsense-mediated mRNA decay pathway. Consistent with this finding, minigene splicing assays demonstrated that the point mutation c.288+9C>T is sufficient to create a cryptic splice site and cause the observed 7-bp insertion. Furthermore, our results strongly suggest that the c.288+9C>T allele in the patient generates both normal and aberrant transcripts that could sustain the variant presentation of the disease, highlighting the importance of correct genotyping to establish genotype-phenotype correlations and as basis for the development of therapeutic interventions.

  3. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3’ untranslated region and intronic cis-elements

    PubMed Central

    Muhle, Rebecca A.; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J.; Muhle, Michael E.; Fidock, David A.

    2009-01-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitized erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilizing the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var sub-telomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronized parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may well result from the integrated UpsA promoter being largely silenced by the neighboring cg6 promoter. Our analyses also revealed that the DownsA 3’ untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyze promoter activity of Group A var genes which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of

  4. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization.

    PubMed

    Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L

    2002-07-24

    mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.

  5. The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns.

    PubMed

    Pelin, Adrian; Pombert, Jean-François; Salvioli, Alessandra; Bonen, Linda; Bonfante, Paola; Corradi, Nicolas

    2012-05-01

    • Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms that benefit ecosystems through the establishment of an association with the roots of most plants: the mycorrhizal symbiosis. Despite their ecological importance, however, these fungi have been poorly studied at the genome level. • In this study, total DNA from the AMF Gigaspora margarita was subjected to a combination of 454 and Illumina sequencing, and the resulting reads were used to assemble its mitochondrial genome de novo. This genome was annotated and compared with those of other relatives to better comprehend the evolution of the AMF lineage. • The mitochondrial genome of G. margarita is unique in many ways, exhibiting a large size (97 kbp) and elevated GC content (45%). This genome also harbors molecular events that were previously unknown to occur in fungal mitochondrial genomes, including trans-splicing of group I introns from two different genes coding for the first subunit of the cytochrome oxidase and for the small subunit of the rRNA. • This study reports the second published genome from an AMF organelle, resulting in relevant DNA sequence information from this poorly studied fungal group, and providing new insights into the frequency, origin and evolution of trans-spliced group I introns found across the mitochondrial genomes of distantly related organisms. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region.

    PubMed

    Chaw, Shu-Miaw; Walters, Terrence W; Chang, Chien-Chang; Hu, Shu-Hsuan; Chen, Shin-Hsiao

    2005-10-01

    Phylogenetic relationships among the three families and 12 living genera of cycads were reconstructed by distance and parsimony criteria using three markers: the chloroplast matK gene, the chloroplast trnK intron and the nuclear ITS/5.8S rDNA sequence. All datasets indicate that Cycadaceae (including only the genus Cycas) is remotely related to other cycads, in which Dioon was resolved as the basal-most clade, followed by Bowenia and a clade containing the remaining nine genera. Encephalartos and Lepidozamia are closer to each other than to Macrozamia. The African genus Stangeria is embedded within the New World subfamily Zamiodeae. Therefore, Bowenia is an unlikely sister to Stangeria, contrary to the view that they form the Stangeriaceae. The generic status of Dyerocycas and Chigua is unsupportable as they are paraphyletic with Cycas and the Zamia, respectively. Nonsense mutations in the matK gene and indels in the other two datasets lend evidence to reinforce the above conclusions. According to the phylogenies, the past geography of the genera of cycads and the evolution of character states are hypothesized and discussed. Within the suborder Zamiieae, Stangeria, and the tribe Zamieae evolved significantly faster than other genera. The matK gene and ITS/5.8S region contain more useful information than the trnK intron in addressing phylogeny. Redelimitations of Zamiaceae, Stangeriaceae, subfamily Encephalartoideae and subtribe Macrozamiineae are necessary.

  7. Transcription Factor KLF5 Binds a Cyclin E1 Polymorphic Intronic Enhancer to Confer Increased Bladder Cancer Risk

    PubMed Central

    Pattison, Jillian M.; Posternak, Valeriya; Cole, Michael D.

    2016-01-01

    It is well established that environmental toxins, such as exposure to arsenic, are risk factors in the development of urinary bladder cancer, yet recent genome-wide association studies (GWAS) provide compelling evidence that there is a strong genetic component associated with disease predisposition. A single nucleotide polymorphism (SNP), rs8102137, was identified on chromosome 19q12, residing 6 kb upstream of the important cell cycle regulator and proto-oncogene, Cyclin E1 (CCNE1). However, the functional role of this variant in bladder cancer predisposition has been unclear since it lies within a non-coding region of the genome. Here, it is demonstrated that bladder cancer cells heterozygous for this SNP exhibit biased allelic expression of CCNE1 with 1.5-fold more transcription occurring from the risk allele. Furthermore, using chromatin immunoprecipitation assays, a novel enhancer element was identified within the first intron of CCNE1 that binds Kruppel-like Factor 5 (KLF5), a known transcriptional activator in bladder cancer. Moreover, the data reveal that the presence of rs200996365, a SNP in high linkage disequilibrium with rs8102137 residing in the center of a KLF5 motif, alters KLF5 binding to this genomic region. Through luciferase assays and CRISPR-Cas9 genome editing, a novel polymorphic intronic regulatory element controlling CCNE1 transcription is characterized. These studies uncover how a cancer-associated polymorphism mechanistically contributes to an increased predisposition for bladder cancer development. Implications A polymorphic KLF5 binding site near the CCNE1 gene explains genetic risk identified through genome wide association studies. PMID:27514407

  8. Intronic variants in the dopa decarboxylase (DDC) gene are associated with smoking behavior in European-Americans and African-Americans.

    PubMed

    Yu, Yi; Panhuysen, Carolien; Kranzler, Henry R; Hesselbrock, Victor; Rounsaville, Bruce; Weiss, Roger; Brady, Kathleen; Farrer, Lindsay A; Gelernter, Joel

    2006-07-15

    We report here a study considering association of alleles and haplotypes at the DOPA decarboxylase (DDC) locus with the DSM-IV diagnosis of nicotine dependence (ND) or a quantitative measure for ND using the Fagerstrom Test for Nicotine Dependence (FTND). We genotyped 18 single nucleotide polymorphisms (SNPs) spanning a region of approximately 210 kb that includes DDC and the genes immediately flanking DDC in 1,590 individuals from 621 families of African-American (AA) or European-American (EA) ancestry. Evidence of association (family-based tests) was observed with several SNPs for both traits (0.0002intron as the splice site for a neuronal isoform of human DDC lacking exons 10-15. Haplotype analysis did not reveal any SNP combination with stronger evidence for association than rs12718541 alone. Although sequence analysis suggests that rs12718541 may be an intronic splicing enhancer, further studies are needed to determine whether a direct link exists between an alternatively spliced form of DDC and predisposition to ND. These findings confirm a previous report of association of DDC with ND, localize the causative variants to the 3' end of the coding region and extend the association to multiple population groups.

  9. Facilitating Problem Framing in Project-Based Learning

    ERIC Educational Resources Information Center

    Svihla, Vanessa; Reeve, Richard

    2016-01-01

    While problem solving is a relatively well understood process, problem framing is less well understood, particularly with regard to supporting students to learn as they frame problems. Project-based learning classrooms are an ideal setting to investigate how teachers facilitate this process. Using participant observation, this study investigated…

  10. Value of Collaboration With Standardized Patients and Patient Facilitators in Enhancing Reflection During the Process of Building a Simulation.

    PubMed

    Stanley, Claire; Lindsay, Sally; Parker, Kathryn; Kawamura, Anne; Samad Zubairi, Mohammad

    2018-05-09

    We previously reported that experienced clinicians find the process of collectively building and participating in simulations provide (1) a unique reflective opportunity; (2) a venue to identify different perspectives through discussion and action in a group; and (3) a safe environment for learning. No studies have assessed the value of collaborating with standardized patients (SPs) and patient facilitators (PFs) in the process. In this work, we describe this collaboration in building a simulation and the key elements that facilitate reflection. Three simulation scenarios surrounding communication were built by teams of clinicians, a PF, and SPs. Six build sessions were audio recorded, transcribed, and thematically analyzed through an iterative process to (1) describe the steps of building a simulation scenario and (2) identify the key elements involved in the collaboration. The five main steps to build a simulation scenario were (1) storytelling and reflection; (2) defining objectives and brainstorming ideas; (3) building a stem and creating a template; (4) refining the scenario with feedback from SPs; and (5) mock run-throughs with follow-up discussion. During these steps, the PF shared personal insights, challenging participants to reflect deeper to better understand and consider the patient's perspective. The SPs provided unique outside perspective to the group. In addition, the interaction between the SPs and the PF helped refine character roles. A collaborative approach incorporating feedback from PFs and SPs to create a simulation scenario is a valuable method to enhance reflective practice for clinicians.

  11. Analysis and recognition of 5′ UTR intron splice sites in human pre-mRNA

    PubMed Central

    Eden, E.; Brunak, S.

    2004-01-01

    Prediction of splice sites in non-coding regions of genes is one of the most challenging aspects of gene structure recognition. We perform a rigorous analysis of such splice sites embedded in human 5′ untranslated regions (UTRs), and investigate correlations between this class of splice sites and other features found in the adjacent exons and introns. By restricting the training of neural network algorithms to ‘pure’ UTRs (not extending partially into protein coding regions), we for the first time investigate the predictive power of the splicing signal proper, in contrast to conventional splice site prediction, which typically relies on the change in sequence at the transition from protein coding to non-coding. By doing so, the algorithms were able to pick up subtler splicing signals that were otherwise masked by ‘coding’ noise, thus enhancing significantly the prediction of 5′ UTR splice sites. For example, the non-coding splice site predicting networks pick up compositional and positional bias in the 3′ ends of non-coding exons and 5′ non-coding intron ends, where cytosine and guanine are over-represented. This compositional bias at the true UTR donor sites is also visible in the synaptic weights of the neural networks trained to identify UTR donor sites. Conventional splice site prediction methods perform poorly in UTRs because the reading frame pattern is absent. The NetUTR method presented here performs 2–3-fold better compared with NetGene2 and GenScan in 5′ UTRs. We also tested the 5′ UTR trained method on protein coding regions, and discovered, surprisingly, that it works quite well (although it cannot compete with NetGene2). This indicates that the local splicing pattern in UTRs and coding regions is largely the same. The NetUTR method is made publicly available at www.cbs.dtu.dk/services/NetUTR. PMID:14960723

  12. The Role of the Facilitator on Total Quality Management Teams.

    ERIC Educational Resources Information Center

    Eakin, William L.

    1993-01-01

    As Total Quality Management teams work to improve organizational processes, several types of facilitators emerge: the director, the workhorse, and the cheerleader. Experience at the University of Kansas illustrates how different facilitator styles can affect team learning. (MSE)

  13. Multiple splicing defects in an intronic false exon.

    PubMed

    Sun, H; Chasin, L A

    2000-09-01

    Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.

  14. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells

    PubMed Central

    Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian

    2015-01-01

    ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural

  15. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

    PubMed

    Herzel, Lydia; Straube, Korinna; Neugebauer, Karla M

    2018-06-14

    Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2 , the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3' end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation. © 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.

  16. VA residential substance use disorder treatment program providers' perceptions of facilitators and barriers to performance on pre-admission processes.

    PubMed

    Ellerbe, Laura S; Manfredi, Luisa; Gupta, Shalini; Phelps, Tyler E; Bowe, Thomas R; Rubinsky, Anna D; Burden, Jennifer L; Harris, Alex H S

    2017-04-04

    these domains. Efficient screening processes, effective patient flow, and available beds were perceived to facilitate shorter wait times, while lack of beds, poor staffing levels, and lengths of stay of existing patients were thought to lengthen wait times. Accessible outpatient services, strong patient outreach, and strong encouragement of pre-admission outpatient treatment emerged as facilitators of engagement while waiting; poor staffing levels, socioeconomic barriers, and low patient motivation were viewed as barriers. Metrics for pre-admission processes can be helpful for monitoring residential SUD treatment programs. Interviewing program management and staff about drivers of performance metrics can play a complementary role by identifying innovative and other strong practices, as well as high-value targets for quality improvement. Key facilitators of high-performing facilities may offer programs with lower performance useful strategies to improve specific pre-admission processes.

  17. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing ofmore » an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.« less

  18. Facilitating classroom based interprofessional learning: a grounded theory study of university educators' perceptions of their role adequacy as facilitators.

    PubMed

    Derbyshire, Julie A; Machin, Alison I; Crozier, Suzanne

    2015-01-01

    The provision of inter professional learning (IPL) within undergraduate programmes is now well established within many Higher Education Institutions (HEIs). IPL aims to better equip nurses and other health professionals with effective collaborative working skills and knowledge to improve the quality of patient care. Although there is still ambiguity in relation to the optimum timing and method for delivering IPL, effective facilitation is seen as essential. This paper reports on a grounded theory study of university educators' perceptions of the knowledge and skills needed for their role adequacy as IPL facilitators. Data was collected using semi structured interviews with nine participants who were theoretically sampled from a range of professional backgrounds, with varied experiences of education and involvement in facilitating IPL. Constant comparative analysis was used to generate four data categories: creating and sustaining an IPL group culture through transformational IPL leadership (core category), readiness for IPL facilitation, drawing on past interprofessional learning and working experiences and role modelling an interprofessional approach. The grounded theory generated from this study, although propositional, suggests that role adequacy for IPL facilitation is dependent on facilitator engagement in a process of 'transformational interprofessional learning leadership' to create and sustain a group culture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Navigating change: how outreach facilitators can help clinicians improve patient outcomes.

    PubMed

    Laferriere, Dianne; Liddy, Clare; Nash, Kate; Hogg, William

    2012-01-01

    The objective of this study was to describe outreach facilitation as an effective method of assisting and supporting primary care practices to improve processes and delivery of care. We spent 4 years working with 83 practices in Eastern Ontario, Canada, on the Improved Delivery of Cardiovascular Care through the Outreach Facilitation program. Primary care practices, even if highly motivated, face multiple challenges when providing quality patient care. Outreach facilitation can be an effective method of assisting and supporting practices to make the changes necessary to improve processes and delivery of care. Multiple jurisdictions use outreach facilitation for system redesign, improved efficiencies, and advanced access. The development and implementation of quality improvement programs using practice facilitation can be challenging. Our research team has learned valuable lessons in developing tools, finding resources, and assisting practices to reach their quality improvement goals. These lessons can lead to improved experiences for the practices and overall improved outcomes for the patients they serve.

  20. Genome Sequencing of the Phytoseiid Predatory Mite Metaseiulus occidentalis Reveals Completely Atomized Hox Genes and Superdynamic Intron Evolution

    PubMed Central

    Hoy, Marjorie A.; Waterhouse, Robert M.; Wu, Ke; Estep, Alden S.; Ioannidis, Panagiotis; Palmer, William J.; Pomerantz, Aaron F.; Simão, Felipe A.; Thomas, Jainy; Jiggins, Francis M.; Murphy, Terence D.; Pritham, Ellen J.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Gibbs, Richard A.; Richards, Stephen

    2016-01-01

    Metaseiulus occidentalis is an eyeless phytoseiid predatory mite employed for the biological control of agricultural pests including spider mites. Despite appearances, these predator and prey mites are separated by some 400 Myr of evolution and radically different lifestyles. We present a 152-Mb draft assembly of the M. occidentalis genome: Larger than that of its favored prey, Tetranychus urticae, but considerably smaller than those of many other chelicerates, enabling an extremely contiguous and complete assembly to be built—the best arachnid to date. Aided by transcriptome data, genome annotation cataloged 18,338 protein-coding genes and identified large numbers of Helitron transposable elements. Comparisons with other arthropods revealed a particularly dynamic and turbulent genomic evolutionary history. Its genes exhibit elevated molecular evolution, with strikingly high numbers of intron gains and losses, in stark contrast to the deer tick Ixodes scapularis. Uniquely among examined arthropods, this predatory mite’s Hox genes are completely atomized, dispersed across the genome, and it encodes five copies of the normally single-copy RNA processing Dicer-2 gene. Examining gene families linked to characteristic biological traits of this tiny predator provides initial insights into processes of sex determination, development, immune defense, and how it detects, disables, and digests its prey. As the first reference genome for the Phytoseiidae, and for any species with the rare sex determination system of parahaploidy, the genome of the western orchard predatory mite improves genomic sampling of chelicerates and provides invaluable new resources for functional genomic analyses of this family of agriculturally important mites. PMID:26951779

  1. What can we learn from facilitator and student perceptions of facilitation skills and roles in the first year of a problem-based learning curriculum?

    PubMed Central

    McLean, Michelle

    2003-01-01

    Background The small group tutorial is a cornerstone of problem-based learning. By implication, the role of the facilitator is of pivotal importance. The present investigation canvassed perceptions of facilitators with differing levels of experience regarding their roles and duties in the tutorial. Methods In January 2002, one year after problem-based learning implementation at the Nelson R. Mandela School of Medicine, facilitators with the following experience were canvassed: trained and about to facilitate, facilitated once only and facilitated more than one six-week theme. Student comments regarding facilitator skills were obtained from a 2001 course survey. Results While facilitators generally agreed that the three-day training workshop provided sufficient insight into the facilitation process, they become more comfortable with increasing experience. Many facilitators experienced difficulty not providing content expertise. Again, this improved with increasing experience. Most facilitators saw students as colleagues. They agreed that they should be role models, but were less enthusiastic about being mentors. Students were critical of facilitators who were not up to date with curriculum implementation or who appeared disinterested. While facilitator responses suggest that there was considerable intrinsic motivation, this might in fact not be the case. Conclusions Even if they had facilitated on all six themes, facilitators could still be considered as novices. Faculty support is therefore critical for the first few years of problem-based learning, particularly for those who had facilitated once only. Since student and facilitator expectations in the small group tutorial may differ, roles and duties of facilitators must be explicit for both parties from the outset. PMID:14585108

  2. What can we learn from facilitator and student perceptions of facilitation skills and roles in the first year of a problem-based learning curriculum?

    PubMed

    McLean, Michelle

    2003-10-30

    The small group tutorial is a cornerstone of problem-based learning. By implication, the role of the facilitator is of pivotal importance. The present investigation canvassed perceptions of facilitators with differing levels of experience regarding their roles and duties in the tutorial. In January 2002, one year after problem-based learning implementation at the Nelson R. Mandela School of Medicine, facilitators with the following experience were canvassed: trained and about to facilitate, facilitated once only and facilitated more than one six-week theme. Student comments regarding facilitator skills were obtained from a 2001 course survey. While facilitators generally agreed that the three-day training workshop provided sufficient insight into the facilitation process, they become more comfortable with increasing experience. Many facilitators experienced difficulty not providing content expertise. Again, this improved with increasing experience. Most facilitators saw students as colleagues. They agreed that they should be role models, but were less enthusiastic about being mentors. Students were critical of facilitators who were not up to date with curriculum implementation or who appeared disinterested. While facilitator responses suggest that there was considerable intrinsic motivation, this might in fact not be the case. Even if they had facilitated on all six themes, facilitators could still be considered as novices. Faculty support is therefore critical for the first few years of problem-based learning, particularly for those who had facilitated once only. Since student and facilitator expectations in the small group tutorial may differ, roles and duties of facilitators must be explicit for both parties from the outset.

  3. Stem loop recognition by DDX17 facilitates miRNA processing and antiviral defense

    PubMed Central

    Moy, Ryan H.; Cole, Brian S.; Yasunaga, Ari; Gold, Beth; Shankarling, Ganesh; Varble, Andrew; Molleston, Jerome M.; tenOever, Benjamin R.; Lynch, Kristen W.; Cherry, Sara

    2014-01-01

    DEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using cross-linking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing, and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous miRNA biogenesis and in the cytoplasm for surveillance against structured non-self elements. PMID:25126784

  4. G to A substitution in 5{prime} donor splice site of introns 18 and 48 of COL1A1 gene of type I collagen results in different splicing alternatives in osteogenesis imperfecta type I cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.; Deschenes, S.

    We have identified a G to A substitution in the 5{prime} donor splice site of intron 18 of one COL1A1 allele in two unrelated families with osteogenesis imperfecta (OI) type I. A third OI type I family has a G to A substitution at the identical position in intron 48 of one COL1A1 allele. Both mutations abolish normal splicing and lead to reduced steady-state levels of mRNA from the mutant COL1A1 allele. The intron 18 mutation leads to both exon 18 skipping in the mRNA and to utilization of a single alternative splice site near the 3{prime} end of exonmore » 18. The latter results in deletion of the last 8 nucleotides of exon 18 from the mRNA, a shift in the translational reading-frame, and the creation of a premature termination codon in exon 19. Of the potential alternative 5{prime} splice sites in exon 18 and intron 18, the one utilized has a surrounding nucleotide sequence which most closely resembles that of the natural splice site. Although a G to A mutation was detected at the identical position in intron 48 of one COL1A1 allele in another OI type I family, nine complex alternative splicing patterns were identified by sequence analysis of cDNA clones derived from fibroblast mRNA from this cell strain. All result in partial or complete skipping of exon 48, with in-frame deletions of portions of exons 47 and/or 49. The different patterns of RNA splicing were not explained by their sequence homology with naturally occuring 5{prime} splice sites, but rather by recombination between highly homologous exon sequences, suggesting that we may not have identified the major splicing alternative(s) in this cell strain. Both G to A mutations result in decreased production of type I collagen, the common biochemical correlate of OI type I.« less

  5. Facilitating the Feedback Process on a Clinical Clerkship Using a Smartphone Application.

    PubMed

    Joshi, Aditya; Generalla, Jenilee; Thompson, Britta; Haidet, Paul

    2017-10-01

    This pilot study evaluated the effects of a smartphone-triggered method of feedback delivery on students' perceptions of the feedback process. An interactive electronic feedback form was made available to students through a smartphone app. Students were asked to evaluate various aspects of the feedback process. Responses from a previous year served as control. In the first three quarters of academic year 2014-2015 (pre-implementation), only 65% of responders reported receiving oral feedback and 40% reported receiving written feedback. During the pilot phase (transition), these increased to 80% for both forms. Following full implementation in academic year 2015-2016 (post-implementation), 97% reported receiving oral feedback, and 92% reported receiving written feedback. A statistically significant difference was noted pre- to post-implementation for both oral and written feedback (p < 0.01). A significant increase from pre-implementation to transition was noted for written feedback (p < 0.01) and from transition to post-implementation for oral feedback (p < 0.01). Ninety-one and 94% of responders reported ease of access and timeliness of the feedback, 75% perceived the quality of the feedback to be good to excellent; 64% felt receiving feedback via the app improved their performance; 69% indicated the feedback method as better compared to other methods. Students acknowledged the facilitation of conversation with supervisors and the convenience of receiving feedback, as well as the promptness with which feedback was provided. The use of a drop-down menu was thought to limit the scope of conversation. These data point to the effectiveness of this method to cue supervisors to provide feedback to students.

  6. Transpersonal Psychology: Facilitating Transformation in Outdoor Experiential Education.

    ERIC Educational Resources Information Center

    Brown, Michael H.

    1989-01-01

    Explores how outdoor experiential education can facilitate personal growth and transformation by balancing adventure-based activities with inner-directed processes. Discusses transpersonal psychology and research on consciousness and brain functions relevant to the process of transformation. Describes a specific technique to access deeper levels…

  7. Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia.

    PubMed

    Zhang, Jiaqi; Guo, Cong; Liu, Guofeng; Li, Zhineng; Li, Xiaomei; Bao, Manzhu

    2011-03-01

    Flower development has been extensively characterized in the model species Arabidopsis thaliana and Antirrhinum majus. However, there have been few studies in woody species. Here, we report the isolation and characterization of five PISTILLATA (PI) homoeologous genes (PaPI1-to-5) from the London Plane tree (Platanus acerifolia Willd). PaPI1 and PaPI2 show a similar genomic structure to other known PI homoeologs, but PaPI3/4/5 lack intron sequences. In addition, PaPI5 lacks the third, fourth and fifth exons which encode the K-domain. These altered gene copies may have originated as 'processed' retrogenes. PaPI2 appears micro-regulated by alternative splicing, displaying three splice forms (PaPI2a, PaPI2b and PaPI2c). RT-PCR analysis showed different expression profiles and transcript abundance for the five PaPI genes. PaPI transcripts encoding full-length polypeptides were expressed predominantly in male/female inflorescences and PaPI2a was the most abundant transcript (59%) indicating that PaPI2 may be the major functional PI-homoeolog in London Plane. Phenotypic characterization in a heterologous expression system demonstrated that the full-length PaPI product functions as a B class gene. By contrast the PaPI5 form, which lacks the K-domain, had no apparent effect on flower development. In vitro studies also demonstrated that the K-domain is required to form PaPI/PaAP3 heterodimers. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Development of an interprofessional lean facilitator assessment scale.

    PubMed

    Bravo-Sanchez, Cindy; Dorazio, Vincent; Denmark, Robert; Heuer, Albert J; Parrott, J Scott

    2018-05-01

    High reliability is important for optimising quality and safety in healthcare organisations. Reliability efforts include interprofessional collaborative practice (IPCP) and Lean quality/process improvement strategies, which require skilful facilitation. Currently, no validated Lean facilitator assessment tool for interprofessional collaboration exists. This article describes the development and pilot evaluation of such a tool; the Interprofessional Lean Facilitator Assessment Scale (ILFAS), which measures both technical and 'soft' skills, which have not been measured in other instruments. The ILFAS was developed using methodologies and principles from Lean/Shingo, IPCP, metacognition research and Bloom's Taxonomy of Learning Domains. A panel of experts confirmed the initial face validity of the instrument. Researchers independently assessed five facilitators, during six Lean sessions. Analysis included quantitative evaluation of rater agreement. Overall inter-rater agreement of the assessment of facilitator performance was high (92%), and discrepancies in the agreement statistics were analysed. Face and content validity were further established, and usability was evaluated, through primary stakeholder post-pilot feedback, uncovering minor concerns, leading to tool revision. The ILFAS appears comprehensive in the assessment of facilitator knowledge, skills, abilities, and may be useful in the discrimination between facilitators of different skill levels. Further study is needed to explore instrument performance and validity.

  9. Practice Facilitators' and Leaders' Perspectives on a Facilitated Quality Improvement Program.

    PubMed

    McHugh, Megan; Brown, Tiffany; Liss, David T; Walunas, Theresa L; Persell, Stephen D

    2018-04-01

    Practice facilitation is a promising approach to helping practices implement quality improvements. Our purpose was to describe practice facilitators' and practice leaders' perspectives on implementation of a practice facilitator-supported quality improvement program and describe where their perspectives aligned and diverged. We conducted interviews with practice leaders and practice facilitators who participated in a program that included 35 improvement strategies aimed at the ABCS of heart health (aspirin use in high-risk individuals, blood pressure control, cholesterol management, and smoking cessation). Rapid qualitative analysis was used to collect, organize, and analyze the data. We interviewed 17 of the 33 eligible practice leaders, and the 10 practice facilitators assigned to those practices. Practice leaders and practice facilitators both reported value in the program's ability to bring needed, high-quality resources to practices. Practice leaders appreciated being able to set the schedule for facilitation and select among the 35 interventions. According to practice facilitators, however, relying on practice leaders to set the pace of the intervention resulted in a lower level of program intensity than intended. Practice leaders preferred targeted assistance, particularly electronic health record documentation guidance and linkages to state smoking cessation programs. Practice facilitators reported that the easiest interventions were those that did not alter care practices. The dual perspectives of practice leaders and practice facilitators provide a more holistic picture of enablers and barriers to program implementation. There may be greater opportunities to assist small practices through simple, targeted practice facilitator-supported efforts rather than larger, comprehensive quality improvement projects. © 2018 Annals of Family Medicine, Inc.

  10. Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns.

    PubMed

    Movassat, Maliheh; Crabb, Tara L; Busch, Anke; Yao, Chengguo; Reynolds, Derrick J; Shi, Yongsheng; Hertel, Klemens J

    2016-07-02

    Alternative polyadenylation has been implicated as an important regulator of gene expression. In some cases, alternative polyadenylation is known to couple with alternative splicing to influence last intron removal. However, it is unknown whether alternative polyadenylation events influence alternative splicing decisions at upstream exons. Knockdown of the polyadenylation factors CFIm25 or CstF64 in HeLa cells was used as an approach in identifying alternative polyadenylation and alternative splicing events on a genome-wide scale. Although hundreds of alternative splicing events were found to be differentially spliced in the knockdown of CstF64, genes associated with alternative polyadenylation did not exhibit an increased incidence of alternative splicing. These results demonstrate that the coupling between alternative polyadenylation and alternative splicing is usually limited to defining the last exon. The striking influence of CstF64 knockdown on alternative splicing can be explained through its effects on UTR selection of known splicing regulators such as hnRNP A2/B1, thereby indirectly influencing splice site selection. We conclude that changes in the expression of the polyadenylation factor CstF64 influences alternative splicing through indirect effects.

  11. Molecular Phylogenetic Analysis of Archaeal Intron-Containing Genes Coding for rRNA Obtained from a Deep-Subsurface Geothermal Water Pool

    PubMed Central

    Takai, Ken; Horikoshi, Koki

    1999-01-01

    Molecular phylogenetic analysis of a naturally occurring microbial community in a deep-subsurface geothermal environment indicated that the phylogenetic diversity of the microbial population in the environment was extremely limited and that only hyperthermophilic archaeal members closely related to Pyrobaculum were present. All archaeal ribosomal DNA sequences contained intron-like sequences, some of which had open reading frames with repeated homing-endonuclease motifs. The sequence similarity analysis and the phylogenetic analysis of these homing endonucleases suggested the possible phylogenetic relationship among archaeal rRNA-encoded homing endonucleases. PMID:10584021

  12. Connectivity of Learning in MOOCs: Facilitators' Experiences in Team Teaching

    ERIC Educational Resources Information Center

    Mercado-Varela, Martin Alonso; Beltran, Jesus; Perez, Marisol Villegas; Vazquez, Nohemi Rivera; Ramirez-Montoya, Maria-Soledad

    2017-01-01

    The role of facilitators in distance learning environments is of substantial importance in supporting the learning process. This article specifically discusses the role of the facilitator in Massive Open Online Courses (MOOC), which are characterized by their stimulation of learning connections. The study analyzes the experiences of 135…

  13. Evolutionary relevance facilitates visual information processing.

    PubMed

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  14. The application of reduced-processing decision support systems to facilitate the acquisition of decision-making skills.

    PubMed

    Perry, Nathan C; Wiggins, Mark W; Childs, Merilyn; Fogarty, Gerard

    2013-06-01

    The study was designed to examine whether the availability of reduced-processing decision support system interfaces could improve the decision making of inexperienced personnel in the context of Although research into reduced-processing decision support systems has demonstrated benefits in minimizing cognitive load, these benefits have not typically translated into direct improvements in decision accuracy because of the tendency for inexperienced personnel to focus on less-critical information. The authors investigated whether reduced-processing interfaces that direct users' attention toward the most critical cues for decision making can produce improvements in decision-making performance. Novice participants made incident command-related decisions in experimental conditions that differed according to the amount of information that was available within the interface, the level of control that they could exert over the presentation of information, and whether they had received decision training. The results revealed that despite receiving training, participants improved in decision accuracy only when they were provided with an interface that restricted information access to the most critical cues. It was concluded that an interface that restricts information access to only the most critical cues in the scenario can facilitate improvements in decision performance. Decision support system interfaces that encourage the processing of the most critical cues have the potential to improve the accuracy and timeliness of decisions made by inexperienced personnel.

  15. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    PubMed

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  16. Facilitated transport of small molecules and ions for energy-efficient membranes.

    PubMed

    Li, Yifan; Wang, Shaofei; He, Guangwei; Wu, Hong; Pan, Fusheng; Jiang, Zhongyi

    2015-01-07

    In nature, the biological membrane can selectively transport essential small molecules/ions through facilitated diffusion via carrier proteins. Intrigued by this phenomenon and principle, membrane researchers have successfully employed synthetic carriers and carrier-mediated reversible reactions to enhance the separation performance of synthetic membranes. However, the existing facilitated transport membranes as well as the relevant facilitated transport theories have scarcely been comprehensively reviewed in the literature. This tutorial review primarily covers the two aspects of facilitated transport theories: carrier-mediated transport mechanisms and facilitated transport chemistries, including the design and fabrication of facilitated transport membranes. The applications of facilitated transport membranes in energy-intensive membrane processes (gas separation, pervaporation, and proton exchange membrane fuel cells) have also been discussed. Hopefully, this review will provide guidelines for the future research and development of facilitated transport membranes with high energy efficiency.

  17. Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence.

    PubMed

    Roncaglia-Denissen, Maria Paula; Schmidt-Kassow, Maren; Kotz, Sonja A

    2013-01-01

    In the current event-related potential (ERP) study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first). Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing.

  18. Speech Rhythm Facilitates Syntactic Ambiguity Resolution: ERP Evidence

    PubMed Central

    Roncaglia-Denissen, Maria Paula; Schmidt-Kassow, Maren; Kotz, Sonja A.

    2013-01-01

    In the current event-related potential (ERP) study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first). Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing. PMID:23409109

  19. Facilitating professional liaison in collaborative care for depression in UK primary care; a qualitative study utilising normalisation process theory.

    PubMed

    Coupe, Nia; Anderson, Emma; Gask, Linda; Sykes, Paul; Richards, David A; Chew-Graham, Carolyn

    2014-05-01

    Collaborative care (CC) is an organisational framework which facilitates the delivery of a mental health intervention to patients by case managers in collaboration with more senior health professionals (supervisors and GPs), and is effective for the management of depression in primary care. However, there remains limited evidence on how to successfully implement this collaborative approach in UK primary care. This study aimed to explore to what extent CC impacts on professional working relationships, and if CC for depression could be implemented as routine in the primary care setting. This qualitative study explored perspectives of the 6 case managers (CMs), 5 supervisors (trial research team members) and 15 general practitioners (GPs) from practices participating in a randomised controlled trial of CC for depression. Interviews were transcribed verbatim and data was analysed using a two-step approach using an initial thematic analysis, and a secondary analysis using the Normalisation Process Theory concepts of coherence, cognitive participation, collective action and reflexive monitoring with respect to the implementation of CC in primary care. Supervisors and CMs demonstrated coherence in their understanding of CC, and consequently reported good levels of cognitive participation and collective action regarding delivering and supervising the intervention. GPs interviewed showed limited understanding of the CC framework, and reported limited collaboration with CMs: barriers to collaboration were identified. All participants identified the potential or experienced benefits of a collaborative approach to depression management and were able to discuss ways in which collaboration can be facilitated. Primary care professionals in this study valued the potential for collaboration, but GPs' understanding of CC and organisational barriers hindered opportunities for communication. Further work is needed to address these organisational barriers in order to facilitate

  20. Inter-species competition-facilitation in stochastic riparian vegetation dynamics.

    PubMed

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2013-02-07

    Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data. Copyright © 2012 Elsevier Ltd. All rights reserved.