Sample records for facilitates memory formation

  1. Fasting launches CRTC to facilitate long-term memory formation in Drosophila.

    PubMed

    Hirano, Yukinori; Masuda, Tomoko; Naganos, Shintaro; Matsuno, Motomi; Ueno, Kohei; Miyashita, Tomoyuki; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-25

    Canonical aversive long-term memory (LTM) formation in Drosophila requires multiple spaced trainings, whereas appetitive LTM can be formed after a single training. Appetitive LTM requires fasting prior to training, which increases motivation for food intake. However, we found that fasting facilitated LTM formation in general; aversive LTM formation also occurred after single-cycle training when mild fasting was applied before training. Both fasting-dependent LTM (fLTM) and spaced training-dependent LTM (spLTM) required protein synthesis and cyclic adenosine monophosphate response element-binding protein (CREB) activity. However, spLTM required CREB activity in two neural populations--mushroom body and DAL neurons--whereas fLTM required CREB activity only in mushroom body neurons. fLTM uses the CREB coactivator CRTC, whereas spLTM uses the coactivator CBP. Thus, flies use distinct LTM machinery depending on their hunger state.

  2. Nogo receptor 1 regulates formation of lasting memories.

    PubMed

    Karlén, Alexandra; Karlsson, Tobias E; Mattsson, Anna; Lundströmer, Karin; Codeluppi, Simone; Pham, Therese M; Bäckman, Cristina M; Ogren, Sven Ove; Aberg, Elin; Hoffman, Alexander F; Sherling, Michael A; Lupica, Carl R; Hoffer, Barry J; Spenger, Christian; Josephson, Anna; Brené, Stefan; Olson, Lars

    2009-12-01

    Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction.

  3. Nogo receptor 1 regulates formation of lasting memories

    PubMed Central

    Karlén, Alexandra; Karlsson, Tobias E.; Mattsson, Anna; Lundströmer, Karin; Codeluppi, Simone; Pham, Therese M.; Bäckman, Cristina M.; Ögren, Sven Ove; Åberg, Elin; Hoffman, Alexander F.; Sherling, Michael A.; Lupica, Carl R.; Hoffer, Barry J.; Spenger, Christian; Josephson, Anna; Brené, Stefan; Olson, Lars

    2009-01-01

    Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction. PMID:19915139

  4. Audiovisual integration supports face-name associative memory formation.

    PubMed

    Lee, Hweeling; Stirnberg, Rüdiger; Stöcker, Tony; Axmacher, Nikolai

    2017-10-01

    Prior multisensory experience influences how we perceive our environment, and hence how memories are encoded for subsequent retrieval. This study investigated if audiovisual (AV) integration and associative memory formation rely on overlapping or distinct processes. Our functional magnetic resonance imaging results demonstrate that the neural mechanisms underlying AV integration and associative memory overlap substantially. In particular, activity in anterior superior temporal sulcus (STS) is increased during AV integration and also determines the success of novel AV face-name association formation. Dynamic causal modeling results further demonstrate how the anterior STS interacts with the associative memory system to facilitate successful memory formation for AV face-name associations. Specifically, the connection of fusiform gyrus to anterior STS is enhanced while the reverse connection is reduced when participants subsequently remembered both face and name. Collectively, our results demonstrate how multisensory associative memories can be formed for subsequent retrieval.

  5. Audiovisual integration facilitates monkeys' short-term memory.

    PubMed

    Bigelow, James; Poremba, Amy

    2016-07-01

    Many human behaviors are known to benefit from audiovisual integration, including language and communication, recognizing individuals, social decision making, and memory. Exceptionally little is known about the contributions of audiovisual integration to behavior in other primates. The current experiment investigated whether short-term memory in nonhuman primates is facilitated by the audiovisual presentation format. Three macaque monkeys that had previously learned an auditory delayed matching-to-sample (DMS) task were trained to perform a similar visual task, after which they were tested with a concurrent audiovisual DMS task with equal proportions of auditory, visual, and audiovisual trials. Parallel to outcomes in human studies, accuracy was higher and response times were faster on audiovisual trials than either unisensory trial type. Unexpectedly, two subjects exhibited superior unimodal performance on auditory trials, a finding that contrasts with previous studies, but likely reflects their training history. Our results provide the first demonstration of a bimodal memory advantage in nonhuman primates, lending further validation to their use as a model for understanding audiovisual integration and memory processing in humans.

  6. Latent memory facilitates relearning through molecular signaling mechanisms that are distinct from original learning.

    PubMed

    Menges, Steven A; Riepe, Joshua R; Philips, Gary T

    2015-09-01

    A highly conserved feature of memory is that it can exist in a latent, non-expressed state which is revealed during subsequent learning by its ability to significantly facilitate (savings) or inhibit (latent inhibition) subsequent memory formation. Despite the ubiquitous nature of latent memory, the mechanistic nature of the latent memory trace and its ability to influence subsequent learning remains unclear. The model organism Aplysia californica provides the unique opportunity to make strong links between behavior and underlying cellular and molecular mechanisms. Using Aplysia, we have studied the mechanisms of savings due to latent memory for a prior, forgotten experience. We previously reported savings in the induction of three distinct temporal domains of memory: short-term (10min), intermediate-term (2h) and long-term (24h). Here we report that savings memory formation utilizes molecular signaling pathways that are distinct from original learning: whereas the induction of both original intermediate- and long-term memory in naïve animals requires mitogen activated protein kinase (MAPK) activation and ongoing protein synthesis, 2h savings memory is not disrupted by inhibitors of MAPK or protein synthesis, and 24h savings memory is not dependent on MAPK activation. Collectively, these findings reveal that during forgetting, latent memory for the original experience can facilitate relearning through molecular signaling mechanisms that are distinct from original learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Pre-stimulus thalamic theta power predicts human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Emotion processing facilitates working memory performance.

    PubMed

    Lindström, Björn R; Bohlin, Gunilla

    2011-11-01

    The effect of emotional stimulus content on working memory performance has been investigated with conflicting results, as both emotion-dependent facilitation and impairments are reported in the literature. To clarify this issue, 52 adult participants performed a modified visual 2-back task with highly arousing positive stimuli (sexual scenes), highly arousing negative stimuli (violent death) and low-arousal neutral stimuli. Emotional stimulus processing was found to facilitate task performance relative to that of neutral stimuli, both in regards to response accuracy and reaction times. No emotion-dependent differences in false-alarm rates were found. These results indicate that emotional information can have a facilitating effect on working memory maintenance and processing of information.

  9. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    PubMed Central

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  10. Interaction of Inhibitory and Facilitatory Effects of Conditioning Trials on Long-Term Memory Formation

    ERIC Educational Resources Information Center

    Hosono, Shouhei; Matsumoto, Yukihisa; Mizunami, Makoto

    2016-01-01

    Animals learn through experience and consolidate the memories into long-time storage. Conditioning parameters to induce protein synthesis-dependent long-term memory (LTM) have been the subject of extensive studies in many animals. Here we found a case in which a conditioning trial inhibits or facilitates LTM formation depending on the intervals…

  11. How mood challenges emotional memory formation: an fMRI investigation.

    PubMed

    Fitzgerald, Daniel A; Arnold, Jennifer F; Becker, Eni S; Speckens, Anne E M; Rinck, Mike; Rijpkema, Mark; Fernández, Guillén; Tendolkar, Indira

    2011-06-01

    Experimental mood manipulations and functional magnetic resonance imaging (fMRI) provide a unique opportunity for examining the neural correlates of mood-congruent memory formation. While prior studies in mood-disorder patients point to the medial temporal lobe in the genesis of mood-congruent memory (MCM) bias, the interaction between mood and emotional memory formation has not been investigated in healthy participants. In particular it remains unclear how regulatory structures in the pre-frontal cortex may be involved in mediating this phenomenon. In this study, event-related fMRI was performed on 20 healthy participants using a full-factorial, within-subjects repeated-measures design to examine how happy and sad moods impact memory for valenced stimuli (positive, negative and neutral words). Main effects of mood, stimulus valence and memory were examined as was activity related to successful memory formation during congruent and in-congruent moods. Behavioral results confirm an MCM bias while imaging results show amygdala and hippocampal engagement in a global mood and successful recall, respectively. MCM formation was characterized by increased activity during mood-congruent encoding of negative words in the orbito-frontal cortex (OFC) and for mood-incongruent processing of negative words in medial- and inferior-frontal gyri (MFG/IFG). These findings indicate that different pre-frontal regions facilitate mood-congruent and incongruent encoding of successfully recalled negative words at the time of learning, with OFC enhancing congruency and the left IFG and MFG helping overcome semantic incongruities between mood and stimulus valence. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Differential effects of ongoing EEG beta and theta power on memory formation

    PubMed Central

    Scholz, Sebastian; Schneider, Signe Luisa

    2017-01-01

    Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459

  13. Externalising the autobiographical self: sharing personal memories online facilitated memory retention.

    PubMed

    Wang, Qi; Lee, Dasom; Hou, Yubo

    2017-07-01

    Internet technology provides a new means of recalling and sharing personal memories in the digital age. What is the mnemonic consequence of posting personal memories online? Theories of transactive memory and autobiographical memory would make contrasting predictions. In the present study, college students completed a daily diary for a week, listing at the end of each day all the events that happened to them on that day. They also reported whether they posted any of the events online. Participants received a surprise memory test after the completion of the diary recording and then another test a week later. At both tests, events posted online were significantly more likely than those not posted online to be recalled. It appears that sharing memories online may provide unique opportunities for rehearsal and meaning-making that facilitate memory retention.

  14. Piracetam, an AMPAkine drug, facilitates memory consolidation in the day-old chick.

    PubMed

    Samartgis, Jodi R; Schachte, Leslie; Hazi, Agnes; Crowe, Simon F

    2012-12-01

    Piracetam is an AMPAkine drug that may have a range of different mechanisms at the cellular level, and which has been shown to facilitate memory, amongst its other effects. This series of experiments demonstrated that a 10mg/kg dose of piracetam facilitated memory consolidation in the day-old chick when injected from immediately until 120min after weak training (i.e. using a 20% v/v concentration of methyl anthranilate) with the passive avoidance learning task. Administration of piracetam immediately after training led to memory facilitation which lasted for up to 24h following training. This dose of the AMPAkine was not shown to facilitate memory reconsolidation. These findings support the contention that application of the AMPAkine piracetam facilitates memory using a weak training task, and extend the range of actions previously noted with NMDA-related agents to those which also facilitate the AMPA receptor. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Metaplasticity contributes to memory formation in the hippocampus.

    PubMed

    Crestani, Ana P; Krueger, Jamie N; Barragan, Eden V; Nakazawa, Yuki; Nemes, Sonya E; Quillfeldt, Jorge A; Gray, John A; Wiltgen, Brian J

    2018-05-16

    Prior learning can modify the plasticity mechanisms that are used to encode new information. For example, NMDA receptor (NMDAR) activation is typically required for new spatial and contextual learning in the hippocampus. However, once animals have acquired this information, they can learn new tasks even if NMDARs are blocked. This finding suggests that behavioral training alters cellular plasticity mechanisms such that NMDARs are not required for subsequent learning. The mechanisms that mediate this change are currently unknown. To address this issue, we tested the idea that changes in intrinsic excitability (induced by learning) facilitate the encoding of new memories via metabotropic glutamate receptor (mGluR) activation. Consistent with this hypothesis, hippocampal neurons exhibited increases in intrinsic excitability after learning that lasted for several days. This increase was selective and only observed in neurons that were activated by the learning event. When animals were trained on a new task during this period, excitable neurons were reactivated and memory formation required the activation of mGluRs instead of NMDARs. These data suggest that increases in intrinsic excitability may serve as a metaplastic mechanism for memory formation.

  16. Inhibition of histone deacetylase 3 via RGFP966 facilitates cortical plasticity underlying unusually accurate auditory associative cue memory for excitatory and inhibitory cue-reward associations.

    PubMed

    Shang, Andrea; Bylipudi, Sooraz; Bieszczad, Kasia M

    2018-05-31

    Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription has been shown to enable memory formation. Indeed, HDAC inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However, less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors. Published by Elsevier B.V.

  17. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation.

    PubMed

    Cambon, Karine; Hansen, Stine M; Venero, Cesar; Herrero, A Isabel; Skibo, Galina; Berezin, Vladimir; Bock, Elisabeth; Sandi, Carmen

    2004-04-28

    The neural cell adhesion molecule (NCAM) plays a critical role in development and plasticity of the nervous system and is involved in the mechanisms of learning and memory. Here, we show that intracerebroventricular administration of the FG loop (FGL), a synthetic 15 amino acid peptide corresponding to the binding site of NCAM for the fibroblast growth factor receptor 1 (FGFR1), immediately after training rats in fear conditioning or water maze learning, induced a long-lasting improvement of memory. In primary cultures of hippocampal neurons, FGL enhanced the presynaptic function through activation of FGFR1 and promoted synapse formation. These results provide the first evidence for a memory-facilitating effect resulting from a treatment that mimics NCAM function. They suggest that increased efficacy of synaptic transmission and formation of new synapses probably mediate the cognition-enhancing properties displayed by the peptide.

  18. Chunk formation in immediate memory and how it relates to data compression.

    PubMed

    Chekaf, Mustapha; Cowan, Nelson; Mathy, Fabien

    2016-10-01

    This paper attempts to evaluate the capacity of immediate memory to cope with new situations in relation to the compressibility of information likely to allow the formation of chunks. We constructed a task in which untrained participants had to immediately recall sequences of stimuli with possible associations between them. Compressibility of information was used to measure the chunkability of each sequence on a single trial. Compressibility refers to the recoding of information in a more compact representation. Although compressibility has almost exclusively been used to study long-term memory, our theory suggests that a compression process relying on redundancies within the structure of the list materials can occur very rapidly in immediate memory. The results indicated a span of about three items when the list had no structure, but increased linearly as structure was added. The amount of information retained in immediate memory was maximal for the most compressible sequences, particularly when information was ordered in a way that facilitated the compression process. We discuss the role of immediate memory in the rapid formation of chunks made up of new associations that did not already exist in long-term memory, and we conclude that immediate memory is the starting place for the reorganization of information. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. On the formation of collective memories: the role of a dominant narrator.

    PubMed

    Cuc, Alexandru; Ozuru, Yasuhiro; Manier, David; Hirst, William

    2006-06-01

    To test our hypothesis that conversations can contribute to the formation of collective memory, we asked participants to study stories and to recall them individually (pregroup recollection), then as a group (group recounting), and then once again individually (postgroup recollection). One way that postgroup collective memories can be formed under these circumstances is if unshared pregroup recollections in the group recounting influences others' postgroup recollections. In the present research, we explored (using tests of recall and recognition) whether the presence of a dominant narrator can facilitate the emergence of unshared pregroup recollections in a group recounting and whether this emergence is associated with changes in postgroup recollections. We argue that the formation of a collective memory through conversation is not inevitable but is limited by cognitive factors, such as conditions for social contagion, and by situational factors, such as the presence of a narrator.

  20. The development of neural correlates for memory formation

    PubMed Central

    Ofen, Noa

    2012-01-01

    A growing body of literature considers the development of episodic memory systems in the brain; the majority are neuroimaging studies conducted during memory encoding in order to explore developmental trajectories in memory formation. This review considers evidence from behavioral studies of memory development, neural correlates of memory formation in adults, and structural brain development, all of which form the foundation of a developmental cognitive neuroscience approach to memory development. I then aim to integrate the current evidence from developmental functional neuroimaging studies of memory formation with respect to three hypotheses. First, memory development reflects the development in the use of memory strategies, linked to prefrontal cortex. Second, developmental effects within the medial temporal lobes are more complex, and correspond to current notions about the nature in which the MTL support the formation of memory. Third, neurocognitive changes in content representation influence memory. Open issues and current directions are discussed. PMID:22414608

  1. Part-set cueing impairment & facilitation in semantic memory.

    PubMed

    Kelley, Matthew R; Parihar, Sushmeena A

    2018-01-19

    The present study explored the influence of part-set cues in semantic memory using tests of "free" recall, reconstruction of order, and serial recall. Nine distinct categories of information were used (e.g., Zodiac signs, Harry Potter books, Star Wars films, planets). The results showed part-set cueing impairment for all three "free" recall sets, whereas part-set cueing facilitation was evident for five of the six ordered sets. Generally, the present results parallel those often observed across episodic tasks, which could indicate that similar mechanisms contribute to part-set cueing effects in both episodic and semantic memory. A novel anchoring explanation of part-set cueing facilitation in order and spatial tasks is provided.

  2. Sleep facilitates consolidation of emotional declarative memory.

    PubMed

    Hu, Peter; Stylos-Allan, Melinda; Walker, Matthew P

    2006-10-01

    Both sleep and emotion are known to modulate processes of memory consolidation, yet their interaction is poorly understood. We examined the influence of sleep on consolidation of emotionally arousing and neutral declarative memory. Subjects completed an initial study session involving arousing and neutral pictures, either in the evening or in the morning. Twelve hours later, after sleeping or staying awake, subjects performed a recognition test requiring them to discriminate between these original pictures and novel pictures by responding "remember,"know" (familiar), or "new." Selective sleep effects were observed for consolidation of emotional memory: Recognition accuracy for know judgments of arousing stimuli improved by 42% after sleep relative to wake, and recognition bias for remember judgments of these stimuli increased by 58% after sleep relative to wake (resulting in more conservative responding). These findings hold important implications for understanding of human memory processing, suggesting that the facilitation of memory for emotionally salient information may preferentially develop during sleep.

  3. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.

    PubMed

    Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A

    2018-06-01

    We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  4. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  5. Galectin-3 Negatively Regulates Hippocampus-Dependent Memory Formation through Inhibition of Integrin Signaling and Galectin-3 Phosphorylation

    PubMed Central

    Chen, Yan-Chu; Ma, Yun-Li; Lin, Cheng-Hsiung; Cheng, Sin-Jhong; Hsu, Wei-Lun; Lee, Eminy H.-Y.

    2017-01-01

    Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO) enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK) levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms. PMID:28744198

  6. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    PubMed

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity. SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for

  7. Body Posture Facilitates Retrieval of Autobiographical Memories

    ERIC Educational Resources Information Center

    Dijkstra, Katinka; Kaschak, Michael P.; Zwaan, Rolf A.

    2007-01-01

    We assessed potential facilitation of congruent body posture on access to and retention of autobiographical memories in younger and older adults. Response times were shorter when body positions during prompted retrieval of autobiographical events were similar to the body positions in the original events than when body position was incongruent.…

  8. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory.

    PubMed

    Penke, Zsuzsa; Morice, Elise; Veyrac, Alexandra; Gros, Alexandra; Chagneau, Carine; LeBlanc, Pascale; Samson, Nathalie; Baumgärtel, Karsten; Mansuy, Isabelle M; Davis, Sabrina; Laroche, Serge

    2014-01-05

    It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.

  9. Context memory formation requires activity-dependent protein degradation in the hippocampus.

    PubMed

    Cullen, Patrick K; Ferrara, Nicole C; Pullins, Shane E; Helmstetter, Fred J

    2017-11-01

    Numerous studies have indicated that the consolidation of contextual fear memories supported by an aversive outcome like footshock requires de novo protein synthesis as well as protein degradation mediated by the ubiquitin-proteasome system (UPS). Context memory formed in the absence of an aversive stimulus by simple exposure to a novel environment requires de novo protein synthesis in both the dorsal (dHPC) and ventral (vHPC) hippocampus. However, the role of UPS-mediated protein degradation in the consolidation of context memory in the absence of a strong aversive stimulus has not been investigated. In the present study, we used the context preexposure facilitation effect (CPFE) procedure, which allows for the dissociation of context learning from context-shock learning, to investigate the role of activity-dependent protein degradation in the dHPC and vHPC during the formation of a context memory. We report that blocking protein degradation with the proteasome inhibitor clasto-lactacystin β-lactone (βLac) or blocking protein synthesis with anisomycin (ANI) immediately after context preexposure significantly impaired context memory formation. Additionally, we examined 20S proteasome activity at different time points following context exposure and saw that the activity of proteasomes in the dHPC increases immediately after stimulus exposure while the vHPC exhibits a biphasic pattern of proteolytic activity. Taken together, these data suggest that the requirement of increased proteolysis during memory consolidation is not driven by processes triggered by the strong aversive outcome (i.e., shock) normally used to support fear conditioning. © 2017 Cullen et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.

    PubMed

    Mizunami, Makoto; Nemoto, Yuko; Terao, Kanta; Hamanaka, Yoshitaka; Matsumoto, Yukihisa

    2014-01-01

    Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+)/CaM and cAMP signaling participates in long-term memory (LTM) formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM). Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+) influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC) activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+) signaling and cAMP signaling for LTM formation, a new role of CaMKII in

  11. HDAC7 Ubiquitination by the E3 Ligase CBX4 Is Involved in Contextual Fear Conditioning Memory Formation.

    PubMed

    Jing, Xu; Sui, Wen-Hai; Wang, Shuai; Xu, Xu-Feng; Yuan, Rong-Rong; Chen, Xiao-Rong; Ma, Hui-Xian; Zhu, Ying-Xiao; Sun, Jin-Kai; Yi, Fan; Chen, Zhe-Yu; Wang, Yue

    2017-04-05

    Histone acetylation, an epigenetic modification, plays an important role in long-term memory formation. Recently, histone deacetylase (HDAC) inhibitors were demonstrated to promote memory formation, which raises the intriguing possibility that they may be used to rescue memory deficits. However, additional research is necessary to clarify the roles of individual HDACs in memory. In this study, we demonstrated that HDAC7, within the dorsal hippocampus of C57BL6J mice, had a late and persistent decrease after contextual fear conditioning (CFC) training (4-24 h), which was involved in long-term CFC memory formation. We also showed that HDAC7 decreased via ubiquitin-dependent degradation. CBX4 was one of the HDAC7 E3 ligases involved in this process. Nur77, as one of the target genes of HDAC7, increased 6-24 h after CFC training and, accordingly, modulated the formation of CFC memory. Finally, HDAC7 was involved in the formation of other hippocampal-dependent memories, including the Morris water maze and object location test. The current findings facilitate an understanding of the molecular and cellular mechanisms of HDAC7 in the regulation of hippocampal-dependent memory. SIGNIFICANCE STATEMENT The current findings demonstrated the effects of histone deacetylase 7 (HDAC7) on hippocampal-dependent memories. Moreover, we determined the mechanism of decreased HDAC7 in contextual fear conditioning (CFC) through ubiquitin-dependent protein degradation. We also verified that CBX4 was one of the HDAC7 E3 ligases. Finally, we demonstrated that Nur77, as one of the important targets for HDAC7, was involved in CFC memory formation. All of these proteins, including HDAC7, CBX4, and Nur77, could be potential therapeutic targets for preventing memory deficits in aging and neurological diseases. Copyright © 2017 the authors 0270-6474/17/373848-16$15.00/0.

  12. The epigenetic basis of memory formation and storage.

    PubMed

    Jarome, Timothy J; Thomas, Jasmyne S; Lubin, Farah D

    2014-01-01

    The formation of long-term memory requires a series of cellular and molecular changes that involve transcriptional regulation of gene expression. While these changes in gene transcription were initially thought to be largely regulated by the activation of transcription factors by intracellular signaling molecules, epigenetic mechanisms have emerged as an important regulator of transcriptional processes across multiple brain regions to form a memory circuit for a learned event or experience. Due to their self-perpetuating nature and ability to bidirectionally control gene expression, these epigenetic mechanisms have the potential to not only regulate initial memory formation but also modify and update memory over time. This chapter focuses on the established, but poorly understood, role for epigenetic mechanisms such as posttranslational modifications of histone proteins and DNA methylation at the different stages of memory storage. Additionally, this chapter emphasizes how these mechanisms interact to control the ideal epigenetic environment for memory formation and modification in neurons. The reader will gain insights into the limitations in our current understanding of epigenetic regulation of memory storage, especially in terms of their cell-type specificity and the lack of understanding in the interactions of various epigenetic modifiers to one another to impact gene expression changes during memory formation.

  13. Neuroscience of learning and memory for addiction medicine: from habit formation to memory reconsolidation.

    PubMed

    Torregrossa, Mary M; Taylor, Jane R

    2016-01-01

    Identifying effective pharmacological treatments for addictive disorders has remained an elusive goal. Many different classes of drugs have shown some efficacy in preclinical models, but the number of effective clinical therapeutics has remained stubbornly low. The persistence of drug use and the high frequency of relapse is at least partly attributable to the enduring ability of environmental stimuli associated with drug use to maintain behavioral patterns of drug use and induce craving during abstinence. We propose that stimuli associated with drug use exert such powerful control over behavior through the development of abnormally strong memories, and their ability to initiate subconscious sequences of motor actions (habits) that promote uncontrolled drug use. In this chapter, we will review the evidence suggesting that drugs of abuse strengthen associations with cues in the environment and facilitate habit formation. We will also discuss potential mechanisms for disrupting memories associated with drug use to help improve treatments for addiction. © 2016 Elsevier B.V. All rights reserved.

  14. Nicotine facilitates memory consolidation in perceptual learning.

    PubMed

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Predicting episodic memory formation for movie events

    PubMed Central

    Tang, Hanlin; Singer, Jed; Ison, Matias J.; Pivazyan, Gnel; Romaine, Melissa; Frias, Rosa; Meller, Elizabeth; Boulin, Adrianna; Carroll, James; Perron, Victoria; Dowcett, Sarah; Arellano, Marlise; Kreiman, Gabriel

    2016-01-01

    Episodic memories are long lasting and full of detail, yet imperfect and malleable. We quantitatively evaluated recollection of short audiovisual segments from movies as a proxy to real-life memory formation in 161 subjects at 15 minutes up to a year after encoding. Memories were reproducible within and across individuals, showed the typical decay with time elapsed between encoding and testing, were fallible yet accurate, and were insensitive to low-level stimulus manipulations but sensitive to high-level stimulus properties. Remarkably, memorability was also high for single movie frames, even one year post-encoding. To evaluate what determines the efficacy of long-term memory formation, we developed an extensive set of content annotations that included actions, emotional valence, visual cues and auditory cues. These annotations enabled us to document the content properties that showed a stronger correlation with recognition memory and to build a machine-learning computational model that accounted for episodic memory formation in single events for group averages and individual subjects with an accuracy of up to 80%. These results provide initial steps towards the development of a quantitative computational theory capable of explaining the subjective filtering steps that lead to how humans learn and consolidate memories. PMID:27686330

  16. Predicting episodic memory formation for movie events.

    PubMed

    Tang, Hanlin; Singer, Jed; Ison, Matias J; Pivazyan, Gnel; Romaine, Melissa; Frias, Rosa; Meller, Elizabeth; Boulin, Adrianna; Carroll, James; Perron, Victoria; Dowcett, Sarah; Arellano, Marlise; Kreiman, Gabriel

    2016-09-30

    Episodic memories are long lasting and full of detail, yet imperfect and malleable. We quantitatively evaluated recollection of short audiovisual segments from movies as a proxy to real-life memory formation in 161 subjects at 15 minutes up to a year after encoding. Memories were reproducible within and across individuals, showed the typical decay with time elapsed between encoding and testing, were fallible yet accurate, and were insensitive to low-level stimulus manipulations but sensitive to high-level stimulus properties. Remarkably, memorability was also high for single movie frames, even one year post-encoding. To evaluate what determines the efficacy of long-term memory formation, we developed an extensive set of content annotations that included actions, emotional valence, visual cues and auditory cues. These annotations enabled us to document the content properties that showed a stronger correlation with recognition memory and to build a machine-learning computational model that accounted for episodic memory formation in single events for group averages and individual subjects with an accuracy of up to 80%. These results provide initial steps towards the development of a quantitative computational theory capable of explaining the subjective filtering steps that lead to how humans learn and consolidate memories.

  17. Hippocampal Metaplasticity Is Required for the Formation of Temporal Associative Memories

    PubMed Central

    Xu, Jian; Antion, Marcia D.; Nomura, Toshihiro; Kraniotis, Stephen; Zhu, Yongling

    2014-01-01

    Metaplasticity regulates the threshold for modification of synaptic strength and is an important regulator of learning rules; however, it is not known whether these cellular mechanisms for homeostatic regulation of synapses contribute to particular forms of learning. Conditional ablation of mGluR5 in CA1 pyramidal neurons resulted in the inability of low-frequency trains of afferent activation to prime synapses for subsequent theta burst potentiation. Priming-induced metaplasticity requires mGluR5-mediated mobilization of endocannabinoids during the priming train to induce long-term depression of inhibition (I-LTD). Mice lacking priming-induced plasticity had no deficit in spatial reference memory tasks, but were impaired in an associative task with a temporal component. Conversely, enhancing endocannabinoid signaling facilitated temporal associative memory acquisition and, after training animals in these tasks, ex vivo I-LTD was partially occluded and theta burst LTP was enhanced. Together, these results suggest a link between metaplasticity mechanisms in the hippocampus and the formation of temporal associative memories. PMID:25505329

  18. Dopaminergic influences on formation of a motor memory.

    PubMed

    Flöel, Agnes; Breitenstein, Caterina; Hummel, Friedhelm; Celnik, Pablo; Gingert, Christian; Sawaki, Lumy; Knecht, Stefan; Cohen, Leonardo G

    2005-07-01

    The ability of the central nervous system to form motor memories, a process contributing to motor learning and skill acquisition, decreases with age. Dopaminergic activity, one of the mechanisms implicated in memory formation, experiences a similar decline with aging. It is possible that restoring dopaminergic function in elderly adults could lead to improved formation of motor memories with training. We studied the influence of a single oral dose of levodopa (100mg) administered preceding training on the ability to encode an elementary motor memory in the primary motor cortex of elderly and young healthy volunteers in a randomized, double-blind, placebo-controlled design. Attention to the task and motor training kinematics were comparable across age groups and sessions. In young subjects, encoding a motor memory under placebo was more prominent than in older subjects, and the encoding process was accelerated by intake of levodopa. In the elderly group, diminished motor memory encoding under placebo was enhanced by intake of levodopa to levels present in younger subjects. Therefore, upregulation of dopaminergic activity accelerated memory formation in young subjects and restored the ability to form a motor memory in elderly subjects; possible mechanisms underlying the beneficial effects of dopaminergic agents on motor learning in neurorehabilitation.

  19. Age differences and format effects in working memory.

    PubMed

    Foos, Paul W; Goolkasian, Paula

    2010-07-01

    Format effects refer to lower recall of printed words from working memory when compared to spoken words or pictures. These effects have been attributed to an attenuation of attention to printed words. The present experiment compares younger and older adults' recall of three or six items presented as pictures, spoken words, printed words, and alternating case WoRdS. The latter stimuli have been shown to increase attention to printed words and, thus, reduce format effects. The question of interest was whether these stimuli would also reduce format effects for older adults whose working memory capacity has fewer attentional resources to allocate. Results showed that older adults performed as well as younger adults with three items but less well with six and that format effects were reduced for both age groups, but more for young, when alternating case words were used. Other findings regarding executive control of working memory are discussed. The obtained differences support models of reduced capacity in older adult working memory.

  20. The Role of Ephs and Ephrins in Memory Formation.

    PubMed

    Dines, Monica; Lamprecht, Raphael

    2016-04-01

    The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  1. The Role of Ephs and Ephrins in Memory Formation

    PubMed Central

    Dines, Monica

    2016-01-01

    The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer’s disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases. PMID:26371183

  2. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation.

    PubMed

    Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli

    2018-05-07

    The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats.

    PubMed

    Graham, Bronwyn M; Richardson, Rick

    2010-06-01

    Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.

  4. Muscarinic Acetylcholine Receptors Act in Synergy to Facilitate Learning and Memory

    ERIC Educational Resources Information Center

    Leaderbrand, Katherine; Chen, Helen J.; Corcoran, Kevin A.; Guedea, Anita L.; Jovasevic, Vladimir; Wess, Jurgen; Radulovic, Jelena

    2016-01-01

    Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on…

  5. Consensus: “Can tDCS and TMS enhance motor learning and memory formation?”

    PubMed Central

    Reis, Janine; Robertson, Edwin; Krakauer, John W.; Rothwell, John; Marshall, Lisa; Gerloff, Christian; Wassermann, Eric; Pascual-Leone, Alvaro; Hummel, Friedhelm; Celnik, Pablo A.; Classen, Joseph; Floel, Agnes; Ziemann, Ulf; Paulus, Walter; Siebner, Hartwig R.; Born, Jan; Cohen, Leonardo G.

    2009-01-01

    Noninvasive brain stimulation has developed as a promising tool for cognitive neuroscientists. Transcranial magnetic (TMS) and direct current (tDCS) stimulation allow researchers to purposefully enhance or decrease excitability in focal areas of the brain. The purpose of this paper is to review information on the use of TMS and tDCS as research tools to facilitate motor memory formation, motor performance and motor learning in healthy volunteers. Studies implemented so far have mostly focused on the ability of TMS and tDCS to elicit relatively short lasting motor improvements and the mechanisms underlying these changes have been only partially investigated. Despite limitations including the scarcity of data, work that has been already accomplished raises the exciting hypothesis that currently available noninvasive transcranial stimulation techniques could modulate motor learning and memory formation in healthy humans and potentially in patients with neurological and psychiatric disorders. PMID:19802336

  6. Hippocampal metaplasticity is required for the formation of temporal associative memories.

    PubMed

    Xu, Jian; Antion, Marcia D; Nomura, Toshihiro; Kraniotis, Stephen; Zhu, Yongling; Contractor, Anis

    2014-12-10

    Metaplasticity regulates the threshold for modification of synaptic strength and is an important regulator of learning rules; however, it is not known whether these cellular mechanisms for homeostatic regulation of synapses contribute to particular forms of learning. Conditional ablation of mGluR5 in CA1 pyramidal neurons resulted in the inability of low-frequency trains of afferent activation to prime synapses for subsequent theta burst potentiation. Priming-induced metaplasticity requires mGluR5-mediated mobilization of endocannabinoids during the priming train to induce long-term depression of inhibition (I-LTD). Mice lacking priming-induced plasticity had no deficit in spatial reference memory tasks, but were impaired in an associative task with a temporal component. Conversely, enhancing endocannabinoid signaling facilitated temporal associative memory acquisition and, after training animals in these tasks, ex vivo I-LTD was partially occluded and theta burst LTP was enhanced. Together, these results suggest a link between metaplasticity mechanisms in the hippocampus and the formation of temporal associative memories. Copyright © 2014 the authors 0270-6474/14/3416762-12$15.00/0.

  7. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    ERIC Educational Resources Information Center

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  8. Epicatechin, a component of dark chocolate, enhances memory formation if applied during the memory consolidation period.

    PubMed

    Fernell, Maria; Swinton, Cayley; Lukowiak, Ken

    2016-01-01

    Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water.

  9. Epicatechin, a component of dark chocolate, enhances memory formation if applied during the memory consolidation period

    PubMed Central

    Fernell, Maria; Swinton, Cayley; Lukowiak, Ken

    2016-01-01

    ABSTRACT Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water. PMID:27574544

  10. Epigenetic Mechanisms of Memory Formation and Reconsolidation

    PubMed Central

    Jarome, Timothy J.; Lubin, Farah D.

    2014-01-01

    Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation. PMID:25130533

  11. The roles of Eph receptors in contextual fear conditioning memory formation.

    PubMed

    Dines, Monica; Grinberg, Svetlana; Vassiliev, Maria; Ram, Alon; Tamir, Tal; Lamprecht, Raphael

    2015-10-01

    Eph receptors regulate glutamate receptors functions, neuronal morphology and synaptic plasticity, cellular events believed to be involved in memory formation. In this study we aim to explore the roles of Eph receptors in learning and memory. Toward that end, we examined the roles of EphB2 and EphA4 receptors, key regulators of synaptic functions, in fear conditioning memory formation. We show that mice lacking EphB2 (EphB2(-/-)) are impaired in short- and long-term contextual fear conditioning memory. Mice that express a carboxy-terminally truncated form of EphB2 that lacks forward signaling, instead of the full EphB2, are impaired in long-term, but not short-term, contextual fear conditioning memory. Long-term contextual fear conditioning memory is attenuated in CaMKII-cre;EphA4(lx/-) mice where EphA4 is removed from all pyramidal neurons of the forebrain. Mutant mice with targeted kinase-dead EphA4 (EphA4(KD)) exhibit intact long-term contextual fear conditioning memory showing that EphA4 kinase-mediated forward signaling is not needed for contextual fear memory formation. The ability to form long-term conditioned taste aversion (CTA) memory is not impaired in the EphB2(-/-) and CaMKII-cre;EphA4(lx/-) mice. We conclude that EphB2 forward signaling is required for long-term contextual fear conditioning memory formation. In contrast, EphB2 mediates short-term contextual fear conditioning memory formation in a forward signaling-independent manner. EphA4 mediates long-term contextual fear conditioning memory formation in a kinase-independent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Memory formation during anaesthesia: plausibility of a neurophysiological basis

    PubMed Central

    Veselis, R. A.

    2015-01-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of ‘hidden’ memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. PMID:25735711

  13. Epigenetic mechanisms of memory formation and reconsolidation.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2014-11-01

    Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Epigenetic mechanisms: critical contributors to long-term memory formation.

    PubMed

    Lubin, Farah D; Gupta, Swati; Parrish, R Ryley; Grissom, Nicola M; Davis, Robin L

    2011-12-01

    Recent advances in chromatin biology have identified a role for epigenetic mechanisms in the regulation of neuronal gene expression changes, a necessary process for proper synaptic plasticity and memory formation. Experimental evidence for dynamic chromatin remodeling influencing gene transcription in postmitotic neurons grew from initial reports describing posttranslational modifications of histones, including phosphorylation and acetylation occurring in various brain regions during memory consolidation. An accumulation of recent studies, however, has also highlighted the importance of other epigenetic modifications, such as DNA methylation and histone methylation, as playing a role in memory formation. This present review examines learning-induced gene transcription by chromatin remodeling underlying long-lasting changes in neurons, with direct implications for the study of epigenetic mechanisms in long-term memory formation and behavior. Furthermore, the study of epigenetic gene regulation, in conjunction with transcription factor activation, can provide complementary lines of evidence to further understanding transcriptional mechanisms subserving memory storage.

  15. A facilitative effect of negative affective valence on working memory.

    PubMed

    Gotoh, Fumiko; Kikuchi, Tadashi; Olofsson, Ulrich

    2010-06-01

    Previous studies have shown that negatively valenced information impaired working memory performance due to an attention-capturing effect. The present study examined whether negative valence could also facilitate working memory. Affective words (negative, neutral, positive) were used as retro-cues in a working memory task that required participants to remember colors at different spatial locations on a computer screen. Following the cue, a target detection task was used to either shift attention to a different location or keep attention at the same location as the retro-cue. Finally, participants were required to discriminate the cued color from a set of distractors. It was found that negative cues yielded shorter response times (RTs) in the attention-shift condition and longer RTs in the attention-stay condition, compared with neutral and positive cues. The results suggest that negative affective valence may enhance working memory performance (RTs), provided that attention can be disengaged.

  16. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou Qiuling; Gao Xiang; Lu Qi

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involvedmore » in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation.« less

  17. Concurrent working memory load can facilitate selective attention: evidence for specialized load.

    PubMed

    Park, Soojin; Kim, Min-Shik; Chun, Marvin M

    2007-10-01

    Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference increased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors. (c) 2007 APA

  18. The role of working memory and declarative memory in trace conditioning

    PubMed Central

    Connor, David A.; Gould, Thomas J.

    2017-01-01

    Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory. PMID:27422017

  19. Verifying visual properties in sentence verification facilitates picture recognition memory.

    PubMed

    Pecher, Diane; Zanolie, Kiki; Zeelenberg, René

    2007-01-01

    According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. We investigated whether recognition memory for pictures of concepts was facilitated by earlier representation of visual properties of those concepts. During study, concept names (e.g., apple) were presented in a property verification task with a visual property (e.g., shiny) or with a nonvisual property (e.g., tart). Delayed picture recognition memory was better if the concept name had been presented with a visual property than if it had been presented with a nonvisual property. These results indicate that modality-specific simulations are used for concept representation.

  20. Memory formation during anaesthesia: plausibility of a neurophysiological basis.

    PubMed

    Veselis, R A

    2015-07-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of 'hidden' memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Chronic administration of sulbutiamine improves long term memory formation in mice: possible cholinergic mediation.

    PubMed

    Micheau, J; Durkin, T P; Destrade, C; Rolland, Y; Jaffard, R

    1985-08-01

    Thiamine deficiency in both man and animals is known to produce memory dysfunction and cognitive disorders which have been related to an impairment of cholinergic activity. The present experiment was aimed at testing whether, inversely, chronic administration of large doses of sulbutiamine would have a facilitative effect on memory and would induce changes in central cholinergic activity. Accordingly mice received 300 mg/kg of sulbutiamine daily for 10 days. They were then submitted to an appetitive operant level press conditioning test. When compared to control subjects, sulbutiamine treated mice learned the task at the same rate in a single session but showed greatly improved performance when tested 24 hr after partial acquisition of the same task. Parallel neurochemical investigations showed that the treatment induced a slight (+ 10%) but significant increase in hippocampal sodium-dependent high affinity choline uptake. The present findings and previous results suggest that sulbutiamine improves memory formation and that this behavioral effect could be mediated by an increase in hippocampal cholinergic activity.

  2. AMPK Signaling in the Dorsal Hippocampus Negatively Regulates Contextual Fear Memory Formation

    PubMed Central

    Han, Ying; Luo, Yixiao; Sun, Jia; Ding, Zengbo; Liu, Jianfeng; Yan, Wei; Jian, Min; Xue, Yanxue; Shi, Jie; Wang, Ji-Shi; Lu, Lin

    2016-01-01

    Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energy homeostasis. However, still unknown is its role in memory formation. In the present study, we found that AMPK is primarily expressed in neurons in the hippocampus, and then we demonstrated a time-dependent decrease in AMPK activity and increase in mammalian target of rapamycin complex 1 (mTORC1) activity after contextual fear conditioning in the CA1 but not CA3 area of the dorsal hippocampus. Using pharmacological methods and adenovirus gene transfer to bidirectionally regulate AMPK activity, we found that increasing AMPK activity in the CA1 impaired the formation of long-term fear memory, and decreasing AMPK activity enhanced fear memory formation. These findings were associated with changes in the phosphorylation of AMPK and p70s6 kinase (p70s6k) and expression of BDNF and membrane GluR1 and GluR2 in the CA1. Furthermore, the prior administration of an mTORC1 inhibitor blocked the enhancing effect of AMPK inhibition on fear memory formation, suggesting that this negative regulation of contextual fear memory by AMPK in the CA1 depends on the mTORC1 signaling pathway. Finally, we found that AMPK activity regulated hippocampal spine growth associated with memory formation. In summary, our results indicate that AMPK is a key negative regulator of plasticity and fear memory formation. PMID:26647974

  3. Neuromodulation: acetylcholine and memory consolidation.

    PubMed

    Hasselmo

    1999-09-01

    Clinical and experimental evidence suggests that hippocampal damage causes more severe disruption of episodic memories if those memories were encoded in the recent rather than the more distant past. This decrease in sensitivity to damage over time might reflect the formation of multiple traces within the hippocampus itself, or the formation of additional associative links in entorhinal and association cortices. Physiological evidence also supports a two-stage model of the encoding process in which the initial encoding occurs during active waking and deeper consolidation occurs via the formation of additional memory traces during quiet waking or slow-wave sleep. In this article I will describe the changes in cholinergic tone within the hippocampus in different stages of the sleep-wake cycle and will propose that these changes modulate different stages of memory formation. In particular, I will suggest that the high levels of acetylcholine that are present during active waking might set the appropriate dynamics for encoding new information in the hippocampus, by partially suppressing excitatory feedback connections and so facilitating encoding without interference from previously stored information. By contrast, the lower levels of acetylcholine that are present during quiet waking and slow-wave sleep might release this suppression and thereby allow a stronger spread of activity within the hippocampus itself and from the hippocampus to the entorhinal cortex, thus facilitating the process of consolidation of separate memory traces.

  4. Interaction of inhibitory and facilitatory effects of conditioning trials on long-term memory formation

    PubMed Central

    Hosono, Shouhei; Matsumoto, Yukihisa

    2016-01-01

    Animals learn through experience and consolidate the memories into long-time storage. Conditioning parameters to induce protein synthesis-dependent long-term memory (LTM) have been the subject of extensive studies in many animals. Here we found a case in which a conditioning trial inhibits or facilitates LTM formation depending on the intervals from preceding trials. We studied the effects of conditioning parameters on LTM formation in olfactory conditioning of maxillary-palpi extension response with sucrose reward in the cockroach Periplaneta americana. We found, at first, that translation- and transcription-dependent LTM forms 1 h after training, the fastest so far reported in insects. Second, we observed that multiple-trial training with an intertrial interval (ITI) of 20 or 30 sec, often called massed training, is more effective than spaced training for LTM formation, an observation that differs from the results of most studies in other animals. Third, we found that a conditioning trial inhibits LTM formation when the intervals from preceding trials were in the range of 10–16 min. This inhibitory effect is pairing-specific and is not due to decreased motivation for learning (overtraining effect). To our knowledge, no similar inhibition of LTM formation by a conditioning trial has been reported in any animals. We propose a model to account for the effects of trial number and ITIs on LTM formation. Olfactory conditioning in cockroaches should provide pertinent materials in which to study neuronal and molecular mechanisms underlying the inhibitory and facilitatory processes for LTM formation. PMID:27918270

  5. The effect of rearing environment on memory formation.

    PubMed

    Rothwell, Cailin M; Spencer, Gaynor E; Lukowiak, Ken

    2018-05-22

    Lymnaea stagnalis is a well-studied model system for determining how changes in the environment influence associative learning and memory formation. For example, some wild strains of L. stagnalis , collected from separate geographic locations, show superior memory-forming abilities compared with others. Here, we studied memory formation in two laboratory-bred L. stagnalis strains, derived from the same original population in The Netherlands. The two strains were reared in two different laboratories at the University of Calgary (C-strain) and at Brock University (B-strain) for many years and we found that they differed in their memory-forming ability. Specifically, the C-strain required only two training sessions to form long-term memory (LTM) whereas the B-strain required four sessions to form LTM. Additionally, the LTM formed by the B-strain persisted for a shorter amount of time than the memory formed by the C-strain. Thus, despite being derived from the same original population, the C- and B-strains have developed different memory-forming abilities. Next, we raised the two strains from embryos away from home (i.e. in the other laboratory) over two generations and assessed their memory-forming abilities. The B-strain reared and maintained at the University of Calgary demonstrated improved memory-forming ability within a single generation, while the C-strain reared at Brock University retained their normal LTM-forming ability across two subsequent generations. This suggests that local environmental factors may contribute to the behavioural divergence observed between these two laboratory-bred strains. © 2018. Published by The Company of Biologists Ltd.

  6. The neurobiological bases of memory formation: from physiological conditions to psychopathology.

    PubMed

    Bisaz, Reto; Travaglia, Alessio; Alberini, Cristina M

    2014-01-01

    The formation of long-term memories is a function necessary for an adaptive survival. In the last two decades, great progress has been made in the understanding of the biological bases of memory formation. The identification of mechanisms necessary for memory consolidation and reconsolidation, the processes by which the posttraining and postretrieval fragile memory traces become stronger and insensitive to disruption, has indicated new approaches for investigating and treating psychopathologies. In this review, we will discuss some key biological mechanisms found to be critical for memory consolidation and strengthening, the role/s and mechanisms of memory reconsolidation, and how the interference with consolidation and/or reconsolidation can modulate the retention and/or storage of memories that are linked to psychopathologies. © 2014 S. Karger AG, Basel.

  7. What Do They Understand? Using Technology to Facilitate Formative Assessment

    ERIC Educational Resources Information Center

    Mitten, Carolyn; Jacobbe, Tim; Jacobbe, Elizabeth

    2017-01-01

    Formative assessment is so important to inform teachers' planning. A discussion of the benefits of using technology to facilitate formative assessment explains how four primary school teachers adopted three different apps to make their formative assessment more meaningful and useful.

  8. Egocentric-updating during navigation facilitates episodic memory retrieval.

    PubMed

    Gomez, Alice; Rousset, Stéphane; Baciu, Monica

    2009-11-01

    Influential models suggest that spatial processing is essential for episodic memory [O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. London: Oxford University Press]. However, although several types of spatial relations exist, such as allocentric (i.e. object-to-object relations), egocentric (i.e. static object-to-self relations) or egocentric updated on navigation information (i.e. self-to-environment relations in a dynamic way), usually only allocentric representations are described as potentially subserving episodic memory [Nadel, L., & Moscovitch, M. (1998). Hippocampal contributions to cortical plasticity. Neuropharmacology, 37(4-5), 431-439]. This study proposes to confront the allocentric representation hypothesis with an egocentric updated with self-motion representation hypothesis. In the present study, we explored retrieval performance in relation to these two types of spatial processing levels during learning. Episodic remembering has been assessed through Remember responses in a recall and in a recognition task, combined with a "Remember-Know-Guess" paradigm [Gardiner, J. M. (2001). Episodic memory and autonoetic consciousness: A first-person approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1413), 1351-1361] to assess the autonoetic level of responses. Our results show that retrieval performance was significantly higher when encoding was performed in the egocentric-updated condition. Although egocentric updated with self-motion and allocentric representations are not mutually exclusive, these results suggest that egocentric updating processing facilitates remember responses more than allocentric processing. The results are discussed according to Burgess and colleagues' model of episodic memory [Burgess, N., Becker, S., King, J. A., & O'Keefe, J. (2001). Memory for events and their spatial context: models and experiments. Philosophical Transactions of the Royal Society of London. Series B

  9. Seeing Iconic Gestures While Encoding Events Facilitates Children's Memory of These Events.

    PubMed

    Aussems, Suzanne; Kita, Sotaro

    2017-11-08

    An experiment with 72 three-year-olds investigated whether encoding events while seeing iconic gestures boosts children's memory representation of these events. The events, shown in videos of actors moving in an unusual manner, were presented with either iconic gestures depicting how the actors performed these actions, interactive gestures, or no gesture. In a recognition memory task, children in the iconic gesture condition remembered actors and actions better than children in the control conditions. Iconic gestures were categorized based on how much of the actors was represented by the hands (feet, legs, or body). Only iconic hand-as-body gestures boosted actor memory. Thus, seeing iconic gestures while encoding events facilitates children's memory of those aspects of events that are schematically highlighted by gesture. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  10. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    PubMed Central

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  11. Working memory binding and episodic memory formation in aging, mild cognitive impairment, and Alzheimer's dementia.

    PubMed

    van Geldorp, Bonnie; Heringa, Sophie M; van den Berg, Esther; Olde Rikkert, Marcel G M; Biessels, Geert Jan; Kessels, Roy P C

    2015-01-01

    Recent studies indicate that in both normal and pathological aging working memory (WM) performance deteriorates, especially when associations have to be maintained. However, most studies typically do not assess the relationship between WM and episodic memory formation. In the present study, we examined WM and episodic memory formation in normal aging and in patients with early Alzheimer's disease (mild cognitive impairment, MCI; and Alzheimer's dementia, AD). In the first study, 26 young adults (mean age 29.6 years) were compared to 18 middle-aged adults (mean age 52.2 years) and 25 older adults (mean age 72.8 years). We used an associative delayed-match-to-sample WM task, which requires participants to maintain two pairs of faces and houses presented on a computer screen for short (3 s) or long (6 s) maintenance intervals. After the WM task, an unexpected subsequent associative memory task was administered (two-alternative forced choice). In the second study, 27 patients with AD and 19 patients with MCI were compared to 25 older controls, using the same paradigm as that in Experiment 1. Older adults performed worse than both middle-aged and young adults. No effect of delay was observed in the healthy adults, and pairs that were processed during long maintenance intervals were not better remembered in the subsequent memory task. In the MCI and AD patients, longer maintenance intervals hampered the task performance. Also, both patient groups performed significantly worse than controls on the episodic memory task as well as the associative WM task. Aging and AD present with a decline in WM binding, a finding that extends similar results in episodic memory. Longer delays in the WM task did not affect episodic memory formation. We conclude that WM deficits are found when WM capacity is exceeded, which may occur during associative processing.

  12. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    PubMed

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    PubMed Central

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  14. Memory for Lectures: How Lecture Format Impacts the Learning Experience

    PubMed Central

    Varao-Sousa, Trish L.; Kingstone, Alan

    2015-01-01

    The present study investigated what impact the presentation style of a classroom lecture has on memory, mind wandering, and the subjective factors of interest and motivation. We examined if having a professor lecturing live versus on video alters the learning experience of the students in the classroom. During the lectures, students were asked to report mind wandering and later complete a memory test. The lecture format was manipulated such that all the students received two lectures, one live and one a pre-recorded video. Results indicate that lecture format affected memory performance but not mind wandering, with enhanced memory in the live lectures. Additionally, students reported greater interest and motivation in the live lectures. Given that a single change to the classroom environment, professor presence, impacted memory performance, as well as motivation and interest, the present results have several key implications for technology-based integrations into higher education classrooms. PMID:26561235

  15. Memory for Lectures: How Lecture Format Impacts the Learning Experience.

    PubMed

    Varao-Sousa, Trish L; Kingstone, Alan

    2015-01-01

    The present study investigated what impact the presentation style of a classroom lecture has on memory, mind wandering, and the subjective factors of interest and motivation. We examined if having a professor lecturing live versus on video alters the learning experience of the students in the classroom. During the lectures, students were asked to report mind wandering and later complete a memory test. The lecture format was manipulated such that all the students received two lectures, one live and one a pre-recorded video. Results indicate that lecture format affected memory performance but not mind wandering, with enhanced memory in the live lectures. Additionally, students reported greater interest and motivation in the live lectures. Given that a single change to the classroom environment, professor presence, impacted memory performance, as well as motivation and interest, the present results have several key implications for technology-based integrations into higher education classrooms.

  16. Serotonin–mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila

    PubMed Central

    Lee, Pei-Tseng; Lin, Hsuan-Wen; Chang, Yu-Hsuan; Fu, Tsai-Feng; Dubnau, Josh; Hirsh, Jay; Lee, Tzumin; Chiang, Ann-Shyn

    2011-01-01

    Pavlovian olfactory learning in Drosophila produces two genetically distinct forms of intermediate-term memories: anesthesia-sensitive memory, which requires the amnesiac gene, and anesthesia-resistant memory (ARM), which requires the radish gene. Here, we report that ARM is specifically enhanced or inhibited in flies with elevated or reduced serotonin (5HT) levels, respectively. The requirement for 5HT was additive with the memory defect of the amnesiac mutation but was occluded by the radish mutation. This result suggests that 5HT and Radish protein act on the same pathway for ARM formation. Three supporting lines of evidence indicate that ARM formation requires 5HT released from only two dorsal paired medial (DPM) neurons onto the mushroom bodies (MBs), the olfactory learning and memory center in Drosophila: (i) DPM neurons were 5HT-antibody immunopositive; (ii) temporal inhibition of 5HT synthesis or release from DPM neurons, but not from other serotonergic neurons, impaired ARM formation; (iii) knocking down the expression of d5HT1A serotonin receptors in α/β MB neurons, which are innervated by DPM neurons, inhibited ARM formation. Thus, in addition to the Amnesiac peptide required for anesthesia-sensitive memory formation, the two DPM neurons also release 5HT acting on MB neurons for ARM formation. PMID:21808003

  17. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    PubMed

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Dissociation between Complete Hippocampal Context Memory Formation and Context Fear Acquisition

    ERIC Educational Resources Information Center

    Leake, Jessica; Zinn, Raphael; Corbit, Laura; Vissel, Bryce

    2017-01-01

    Rodents require a minimal time period to explore a context prior to footshock to display plateau-level context fear at test. To investigate whether this rapid fear plateau reflects complete memory formation within that short time-frame, we used the immediate-early gene product Arc as an indicator of hippocampal context memory formation-related…

  19. Tactile Ranschburg effects: facilitation and inhibitory repetition effects analogous to verbal memory.

    PubMed

    Roe, Daisy; Miles, Christopher; Johnson, Andrew J

    2017-07-01

    The present paper examines the effect of within-sequence item repetitions in tactile order memory. Employing an immediate serial recall procedure, participants reconstructed a six-item sequence tapped upon their fingers by moving those fingers in the order of original stimulation. In Experiment 1a, within-sequence repetition of an item separated by two-intervening items resulted in a significant reduction in recall accuracy for that repeated item (i.e., the Ranschburg effect). In Experiment 1b, within-sequence repetition of an adjacent item resulted in significant recall facilitation for that repeated item. These effects mirror those reported for verbal stimuli (e.g., Henson, 1998a . Item repetition in short-term memory: Ranschburg repeated. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(5), 1162-1181. doi:doi.org/10.1037/0278-7393.24.5.1162). These data are the first to demonstrate the Ranschburg effect with non-verbal stimuli and suggest further cross-modal similarities in order memory.

  20. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation

    PubMed Central

    Bechay, Kiro; Rusche, James R.; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M.; McGaugh, James L.

    2015-01-01

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  1. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation.

    PubMed

    Bieszczad, Kasia M; Bechay, Kiro; Rusche, James R; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M; McGaugh, James L; Wood, Marcelo A

    2015-09-23

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  2. Prolonged rote learning produces delayed memory facilitation and metabolic changes in the hippocampus of the ageing human brain.

    PubMed

    Roche, Richard Ap; Mullally, Sinéad L; McNulty, Jonathan P; Hayden, Judy; Brennan, Paul; Doherty, Colin P; Fitzsimons, Mary; McMackin, Deirdre; Prendergast, Julie; Sukumaran, Sunita; Mangaoang, Maeve A; Robertson, Ian H; O'Mara, Shane M

    2009-11-20

    Repeated rehearsal is one method by which verbal material may be transferred from short- to long-term memory. We hypothesised that extended engagement of memory structures through prolonged rehearsal would result in enhanced efficacy of recall and also of brain structures implicated in new learning. Twenty-four normal participants aged 55-70 (mean = 60.1) engaged in six weeks of rote learning, during which they learned 500 words per week every week (prose, poetry etc.). An extensive battery of memory tests was administered on three occasions, each six weeks apart. In addition, proton magnetic resonance spectroscopy (1H-MRS) was used to measure metabolite levels in seven voxels of interest (VOIs) (including hippocampus) before and after learning. Results indicate a facilitation of new learning that was evident six weeks after rote learning ceased. This facilitation occurred for verbal/episodic material only, and was mirrored by a metabolic change in left posterior hippocampus, specifically an increase in NAA/(Cr+Cho) ratio. Results suggest that repeated activation of memory structures facilitates anamnesis and may promote neuronal plasticity in the ageing brain, and that compliance is a key factor in such facilitation as the effect was confined to those who engaged fully with the training.

  3. Arp2/3 and VASP Are Essential for Fear Memory Formation in Lateral Amygdala.

    PubMed

    Basu, Sreetama; Kustanovich, Irina; Lamprecht, Raphael

    2016-01-01

    The actin cytoskeleton is involved in key neuronal functions such as synaptic transmission and morphogenesis. However, the roles and regulation of actin cytoskeleton in memory formation remain to be clarified. In this study, we unveil the mechanism whereby actin cytoskeleton is regulated to form memory by exploring the roles of the major actin-regulatory proteins Arp2/3, VASP, and formins in long-term memory formation. Inhibition of Arp2/3, involved in actin filament branching and neuronal morphogenesis, in lateral amygdala (LA) with the specific inhibitor CK-666 during fear conditioning impaired long-term, but not short-term, fear memory. The inactive isomer CK-689 had no effect on memory formation. We observed that Arp2/3 is colocalized with the actin-regulatory protein profilin in LA neurons of fear-conditioned rats. VASP binding to profilin is needed for profilin-mediated stabilization of actin cytoskeleton and dendritic spine morphology. Microinjection of poly-proline peptide [G(GP 5 ) 3 ] into LA, to interfere with VASP binding to profilin, impaired long-term but not short-term fear memory formation. Control peptide [G(GA 5 ) 3 ] had no effect. Inhibiting formins, which regulate linear actin elongation, in LA during fear conditioning by microinjecting the formin-specific inhibitor SMIFH2 into LA had no effect on long-term fear memory formation. We conclude that Arp2/3 and VASP, through the profilin binding site, are essential for the formation of long-term fear memory in LA and propose a model whereby these proteins subserve cellular events, leading to memory consolidation.

  4. Cognitive Processes Supporting Episodic Memory Formation in Childhood: The Role of Source Memory, Binding, and Executive Functioning

    ERIC Educational Resources Information Center

    Raj, Vinaya; Bell, Martha Ann

    2010-01-01

    Episodic memories contain various forms of contextual detail (e.g., perceptual, emotional, cognitive details) that need to become integrated. Each of these contextual features can be used to attribute a memory episode to its source, or origin of information. Memory for source information is one critical component in the formation of episodic…

  5. Hippocampal 5-HT Input Regulates Memory Formation and Schaffer Collateral Excitation.

    PubMed

    Teixeira, Catia M; Rosen, Zev B; Suri, Deepika; Sun, Qian; Hersh, Marc; Sargin, Derya; Dincheva, Iva; Morgan, Ashlea A; Spivack, Stephen; Krok, Anne C; Hirschfeld-Stoler, Tessa; Lambe, Evelyn K; Siegelbaum, Steven A; Ansorge, Mark S

    2018-06-06

    The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Regulation of Memory Formation by the Transcription Factor XBP1.

    PubMed

    Martínez, Gabriela; Vidal, René L; Mardones, Pablo; Serrano, Felipe G; Ardiles, Alvaro O; Wirth, Craig; Valdés, Pamela; Thielen, Peter; Schneider, Bernard L; Kerr, Bredford; Valdés, Jose L; Palacios, Adrian G; Inestrosa, Nibaldo C; Glimcher, Laurie H; Hetz, Claudio

    2016-02-16

    Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer's disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP), whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF), a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Level of Processing Modulates the Neural Correlates of Emotional Memory Formation

    ERIC Educational Resources Information Center

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2011-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…

  8. The differential role of cortical protein synthesis in taste memory formation and persistence

    NASA Astrophysics Data System (ADS)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  9. Inter-individual differences in trait negative affect moderate cortisol's effects on memory formation: preliminary findings from two studies.

    PubMed

    Abercrombie, Heather C; Wirth, Michelle M; Hoks, Roxanne M

    2012-05-01

    Acute emotional arousal moderates the effects of cortisol on memory. However, it is currently unknown how stable inter-individual differences (i.e., traits) moderate cortisol's effects on memory. In two studies using within-subjects designs - 31 healthy males in Study 1 and 42 healthy subjects (22 female) in Study 2 - we measured trait negative affect (NA) and presented emotional and neutral pictures. In Study 1, we manipulated endogenous cortisol levels using a speech stressor following encoding. In Study 2, using a randomized placebo-controlled design, we pharmacologically manipulated cortisol levels prior to encoding (0.1mg/kg hydrocortisone vs. saline infused over 30min). Free recall for pictures was subsequently assessed. Trait NA repeatedly moderated the relationship between cortisol and memory formation. Findings suggested the speculative conclusion that the direction of effects may vary by sex. In males, cortisol was related to memory facilitation in subjects with lower Trait NA. Conversely, females with higher Trait NA showed greater cortisol-related increases in memory. Trait NA may be a stable inter-individual difference predicting neurocognitive effects of cortisol during stressors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Facilitation of Memory Encoding in Primate Hippocampus by a Neuroprosthesis that Promotes Task Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2014-01-01

    Objective Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s’, aging and dementia resulting from impaired hippocampal function in medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach NHPs trained to perform a short-term delayed match to sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main Results The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for successful encoding of Sample phase information on more difficult DMS trials. This was validated by delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the Sample phase which facilitated task performance in the subsequent delayed Match phase on difficult trials that required more precise encoding of Sample information. Significance These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain. PMID:24216292

  11. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2013-12-01

    Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.

  12. Astrocyte-neuron lactate transport is required for long-term memory formation.

    PubMed

    Suzuki, Akinobu; Stern, Sarah A; Bozdagi, Ozlem; Huntley, George W; Walker, Ruth H; Magistretti, Pierre J; Alberini, Cristina M

    2011-03-04

    We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Astrocyte-neuron lactate transport is required for long-term memory formation

    PubMed Central

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M.

    2011-01-01

    SUMMARY We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation. PMID:21376239

  14. DNA methylation in memory formation: Emerging insights

    PubMed Central

    Heyward, Frankie D.; Sweatt, J. David

    2016-01-01

    The establishment of synaptic plasticity and long-term memory requires lasting cellular and molecular modifications that, as a whole, must endure despite the rapid turnover of their constituent parts. Such a molecular feat must be mediated by a stable, self-perpetuating, cellular information storage mechanism. DNA methylation, being the archetypal cellular information storage mechanism, has been heavily implicated as being necessary for stable activity-dependent transcriptional alterations within the central nervous system (CNS). This review details the foundational discoveries from both gene-targeted, as well as whole-genome sequencing, studies that have successfully brought DNA methylation to our attention as a chief regulator of activity- and experience-dependent transcriptional alterations within the CNS. We present a hypothetical framework with which the disparate experimental findings dealing with distinct manipulations of the DNA methylation, and their effect on memory, might be resolved while taking into account the unique impact activity-dependent alterations in DNA methylation potentially have on both memory promoting and memory-suppressing gene expression. And last, we discuss potential avenues for future inquiry into the role of DNA methylation during remote memory formation. PMID:25832671

  15. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition

    PubMed Central

    Chau, Lily S.; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities. PMID:23087626

  16. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition.

    PubMed

    Chau, Lily S; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities.

  17. Gene repressive mechanisms in the mouse brain involved in memory formation

    PubMed Central

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-01-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200] PMID:26949020

  18. Gene repressive mechanisms in the mouse brain involved in memory formation.

    PubMed

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].

  19. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    PubMed Central

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  20. Level of processing modulates the neural correlates of emotional memory formation

    PubMed Central

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176

  1. Level of processing modulates the neural correlates of emotional memory formation.

    PubMed

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  2. Stabilization of memory States by stochastic facilitating synapses.

    PubMed

    Miller, Paul

    2013-12-06

    Bistability within a small neural circuit can arise through an appropriate strength of excitatory recurrent feedback. The stability of a state of neural activity, measured by the mean dwelling time before a noise-induced transition to another state, depends on the neural firing-rate curves, the net strength of excitatory feedback, the statistics of spike times, and increases exponentially with the number of equivalent neurons in the circuit. Here, we show that such stability is greatly enhanced by synaptic facilitation and reduced by synaptic depression. We take into account the alteration in times of synaptic vesicle release, by calculating distributions of inter-release intervals of a synapse, which differ from the distribution of its incoming interspike intervals when the synapse is dynamic. In particular, release intervals produced by a Poisson spike train have a coefficient of variation greater than one when synapses are probabilistic and facilitating, whereas the coefficient of variation is less than one when synapses are depressing. However, in spite of the increased variability in postsynaptic input produced by facilitating synapses, their dominant effect is reduced synaptic efficacy at low input rates compared to high rates, which increases the curvature of neural input-output functions, leading to wider regions of bistability in parameter space and enhanced lifetimes of memory states. Our results are based on analytic methods with approximate formulae and bolstered by simulations of both Poisson processes and of circuits of noisy spiking model neurons.

  3. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link?

    PubMed

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel

    2015-08-01

    Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.

  4. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    PubMed

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Slow-Theta-to-Gamma Phase–Amplitude Coupling in Human Hippocampus Supports the Formation of New Episodic Memories

    PubMed Central

    Lega, Bradley; Burke, John; Jacobs, Joshua; Kahana, Michael J.

    2016-01-01

    Phase–amplitude coupling (PAC) has been proposed as a neural mechanism for coordinating information processing across brain regions. Here we sought to characterize PAC in the human hippocampus, and in temporal and frontal cortices, during the formation of new episodic memories. Intracranial recordings taken as 56 neurosurgical patients studied and recalled lists of words revealed significant hippocampal PAC, with slow-theta activity (2.5–5 Hz) modulating gamma band activity (34–130 Hz). Furthermore, a significant number of hippocampal electrodes exhibited greater PAC during successful than unsuccessful encoding, with the gamma activity at these sites coupled to the trough of the slow-theta oscillation. These same conditions facilitate LTP in animal models, providing a possible mechanism of action for this effect in human memory. Uniquely in the hippocampus, phase preference during item encoding exhibited a biphasic pattern. Overall, our findings help translate between the patterns identified during basic memory tasks in animals and those present during complex human memory encoding. We discuss the unique properties of human hippocampal PAC and how our findings relate to influential theories of information processing based on theta–gamma interactions. PMID:25316340

  6. Memory formation orchestrates the wiring of adult-born hippocampal neurons into brain circuits.

    PubMed

    Petsophonsakul, Petnoi; Richetin, Kevin; Andraini, Trinovita; Roybon, Laurent; Rampon, Claire

    2017-08-01

    During memory formation, structural rearrangements of dendritic spines provide a mean to durably modulate synaptic connectivity within neuronal networks. New neurons generated throughout the adult life in the dentate gyrus of the hippocampus contribute to learning and memory. As these neurons become incorporated into the network, they generate huge numbers of new connections that modify hippocampal circuitry and functioning. However, it is yet unclear as to how the dynamic process of memory formation influences their synaptic integration into neuronal circuits. New memories are established according to a multistep process during which new information is first acquired and then consolidated to form a stable memory trace. Upon recall, memory is transiently destabilized and vulnerable to modification. Using contextual fear conditioning, we found that learning was associated with an acceleration of dendritic spines formation of adult-born neurons, and that spine connectivity becomes strengthened after memory consolidation. Moreover, we observed that afferent connectivity onto adult-born neurons is enhanced after memory retrieval, while extinction training induces a change of spine shapes. Together, these findings reveal that the neuronal activity supporting memory processes strongly influences the structural dendritic integration of adult-born neurons into pre-existing neuronal circuits. Such change of afferent connectivity is likely to impact the overall wiring of hippocampal network, and consequently, to regulate hippocampal function.

  7. A Critical Role for the Nucleus Reuniens in Long-Term, But Not Short-Term Associative Recognition Memory Formation.

    PubMed

    Barker, Gareth R I; Warburton, Elizabeth Clea

    2018-03-28

    Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the

  8. Facilitation of Memory for Extinction of Drug-Induced Conditioned Reward: Role of Amygdala and Acetylcholine

    PubMed Central

    Schroeder, Jason P.; Packard, Mark G.

    2004-01-01

    These experiments examined the effects of posttrial peripheral and intra-amygdala injections of the cholinergic muscarinic receptor agonist oxotremorine on memory consolidation underlying extinction of amphetamine conditioned place preference (CPP) behavior. Male Long-Evans rats were initially trained and tested for an amphetamine (2 mg/kg) CPP. Rats were subsequently given limited extinction training, followed by immediate posttrial peripheral or intrabasolateral amygdala injections of oxotremorine. A second CPP test was then administered, and the amount of time spent in the previously amphetamine-paired and saline-paired apparatus compartments was recorded. Peripheral (0.07 or 0.01 mg/kg) or intra-amygdala (10 ηg/0.5μL) postextinction trial injections of oxotremorine facilitated CPP extinction. Oxotremorine injections that were delayed 2 h posttrial training did not enhance CPP extinction, indicating a time-dependent effect of the drug on memory consolidation processes. The findings indicate that memory consolidation for extinction of approach behavior to environmental stimuli previously paired with drug reward can be facilitated by posttrial peripheral or intrabasolateral amygdala administration of a cholinergic agonist. PMID:15466320

  9. Epigenetic Regulation of Memory Formation and Maintenance

    ERIC Educational Resources Information Center

    Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David

    2013-01-01

    Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural…

  10. Language Mediated Concept Activation in Bilingual Memory Facilitates Cognitive Flexibility

    PubMed Central

    Kharkhurin, Anatoliy V.

    2017-01-01

    This is the first attempt of empirical investigation of language mediated concept activation (LMCA) in bilingual memory as a cognitive mechanism facilitating divergent thinking. Russian–English bilingual and Russian monolingual college students were tested on a battery of tests including among others Abbreviated Torrance Tests for Adults assessing divergent thinking traits and translingual priming (TLP) test assessing the LMCA. The latter was designed as a lexical decision priming test, in which a prime and a target were not related in Russian (language of testing), but were related through their translation equivalents in English (spoken only by bilinguals). Bilinguals outperformed their monolingual counterparts on divergent thinking trait of cognitive flexibility, and bilinguals’ performance on this trait could be explained by their TLP effect. Age of second language acquisition and proficiency in this language were found to relate to the TLP effect, and therefore were proposed to influence the directionality and strength of connections in bilingual memory. PMID:28701981

  11. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  12. Emotion strengthens high priority memory traces but weakens low priority memory traces

    PubMed Central

    Sakaki, Michiko; Fryer, Kellie; Mather, Mara

    2014-01-01

    When encountering emotional events, memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotional image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by negative and positive pictures both showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation. PMID:24311478

  13. Emotion strengthens high-priority memory traces but weakens low-priority memory traces.

    PubMed

    Sakaki, Michiko; Fryer, Kellie; Mather, Mara

    2014-02-01

    When people encounter emotional events, their memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotionally arousing image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by both negative and positive pictures showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation.

  14. Neuropeptide S enhances memory and mitigates memory impairment induced by MK801, scopolamine or Aβ₁₋₄₂ in mice novel object and object location recognition tasks.

    PubMed

    Han, Ren-Wen; Zhang, Rui-San; Xu, Hong-Jiao; Chang, Min; Peng, Ya-Li; Wang, Rui

    2013-07-01

    Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The interaction of rhinal cortex and hippocampus in human declarative memory formation.

    PubMed

    Fell, Jürgen; Klaver, Peter; Elger, Christian E; Fernández, Guillén

    2002-01-01

    Human declarative memory formation crucially depends on processes within the medial temporal lobe (MTL). These processes can be monitored in real-time by recordings from depth electrodes implanted in the MTL of patients with epilepsy who undergo presurgical evaluation. In our studies, patients performed a word memorization task during depth EEG recording. Afterwards, the difference between event-related potentials (ERPs) corresponding to subsequently remembered versus forgotten words was analyzed. These kind of studies revealed that successful memory encoding is characterized by an early process generated by the rhinal cortex within 300 ms following stimulus onset. This rhinal process precedes a hippocampal process, which starts about 200 ms later. Further investigation revealed that the rhinal process seems to be a correlate of semantic preprocessing which supports memory formation, whereas the hippocampal process appears to be a correlate of an exclusively mnemonic operation. These studies yielded only indirect evidence for an interaction of rhinal cortex and hippocampus. Direct evidence for a memory related cooperation between both structures, however, has been found in a study analyzing so called gamma activity, EEG oscillations of around 40 Hz. This investigation showed that successful as opposed to unsuccessful memory formation is accompanied by an initial enhancement of rhinal-hippocampal phase synchronization, which is followed by a later desynchronization. Present knowledge about the function of phase synchronized gamma activity suggests that this phase coupling and decoupling initiates and later terminates communication between the two MTL structures. Phase synchronized rhinal-hippocampal gamma activity may, moreover, accomplish Hebbian synaptic modifications and thus provide an initial step of declarative memory formation on the synaptic level.

  16. Sleep deprivation increases formation of false memory.

    PubMed

    Lo, June C; Chong, Pearlynne L H; Ganesan, Shankari; Leong, Ruth L F; Chee, Michael W L

    2016-12-01

    Retrieving false information can have serious consequences. Sleep is important for memory, but voluntary sleep curtailment is becoming more rampant. Here, the misinformation paradigm was used to investigate false memory formation after 1 night of total sleep deprivation in healthy young adults (N = 58, mean age ± SD = 22.10 ± 1.60 years; 29 males), and 7 nights of partial sleep deprivation (5 h sleep opportunity) in these young adults and healthy adolescents (N = 54, mean age ± SD = 16.67 ± 1.03 years; 25 males). In both age groups, sleep-deprived individuals were more likely than well-rested persons to incorporate misleading post-event information into their responses during memory retrieval (P < 0.050). These findings reiterate the importance of adequate sleep in optimal cognitive functioning, reveal the vulnerability of adolescents' memory during sleep curtailment, and suggest the need to assess eyewitnesses' sleep history after encountering misleading information. © 2016 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  17. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    ERIC Educational Resources Information Center

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  18. Temporal binding function of dorsal CA1 is critical for declarative memory formation

    PubMed Central

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-01-01

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment. PMID:28874586

  19. Temporal binding function of dorsal CA1 is critical for declarative memory formation.

    PubMed

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-09-19

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.

  20. Epigenetic regulation of memory formation and maintenance

    PubMed Central

    Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David

    2013-01-01

    Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural and functional plasticity. This plasticity is dependent on a well-regulated program of neurotransmitter release, post-synaptic receptor activation, intracellular signaling cascades, gene transcription, and subsequent protein synthesis. In the last decade, epigenetic markers like DNA methylation and post-translational modifications of histone tails have emerged as important regulators of the memory process. Their ability to regulate gene transcription dynamically in response to neuronal activation supports the consolidation of long-term memory. Furthermore, the persistent and self-propagating nature of these mechanisms, particularly DNA methylation, suggests a molecular mechanism for memory maintenance. In this review, we will examine the evidence that supports a role of epigenetic mechanisms in learning and memory. In doing so, we hope to emphasize (1) the widespread involvement of these mechanisms across different behavioral paradigms and distinct brain regions, (2) the temporal and genetic specificity of these mechanisms in response to upstream signaling cascades, and (3) the functional outcome these mechanisms may have on structural and functional plasticity. Finally, we consider the future directions of neuroepigenetic research as it relates to neuronal storage of information. PMID:23322554

  1. A role for autophagy in long-term spatial memory formation in male rodents.

    PubMed

    Hylin, Michael J; Zhao, Jing; Tangavelou, Karthikeyan; Rozas, Natalia S; Hood, Kimberly N; MacGowan, Jacalyn S; Moore, Anthony N; Dash, Pramod K

    2018-03-01

    A hallmark of long-term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long-term memory formation without influencing short-term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long-term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc-51-like autophagy activating kinase-1 (Ulk-1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long-term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long-term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP-LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3-methyladenine (3-MA) or Spautin-1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT-Beclin-1) improved long-term memory. These results indicate that autophagy is not necessary for learning, but is required for long-term memory formation. © 2017 Wiley Periodicals, Inc.

  2. Interregional synaptic maps among engram cells underlie memory formation.

    PubMed

    Choi, Jun-Hyeok; Sim, Su-Eon; Kim, Ji-Il; Choi, Dong Il; Oh, Jihae; Ye, Sanghyun; Lee, Jaehyun; Kim, TaeHyun; Ko, Hyoung-Gon; Lim, Chae-Seok; Kaang, Bong-Kiun

    2018-04-27

    Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage. We found an increased number and size of spines on CA1 engram cells receiving input from CA3 engram cells. In contextual fear conditioning, this enhanced connectivity between engram cells encoded memory strength. CA3 engram to CA1 engram projections strongly occluded long-term potentiation. These results indicate that enhanced structural and functional connectivity between engram cells across two directly connected brain regions forms the synaptic correlate for memory formation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation.

    PubMed

    Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus

    2018-03-19

    Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.

  4. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees

    PubMed Central

    Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles

    2015-01-01

    DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238

  5. Synaptic clustering within dendrites: an emerging theory of memory formation

    PubMed Central

    Kastellakis, George; Cai, Denise J.; Mednick, Sara C.; Silva, Alcino J.; Poirazi, Panayiota

    2015-01-01

    It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function. PMID:25576663

  6. Brain STAT5 signaling modulates learning and memory formation.

    PubMed

    Furigo, Isadora C; Melo, Helen M; Lyra E Silva, Natalia M; Ramos-Lobo, Angela M; Teixeira, Pryscila D S; Buonfiglio, Daniella C; Wasinski, Frederick; Lima, Eliana R; Higuti, Eliza; Peroni, Cibele N; Bartolini, Paolo; Soares, Carlos R J; Metzger, Martin; de Felice, Fernanda G; Donato, Jose

    2018-06-01

    The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.

  7. Working Memory Capacity and Its Relation to Stroop Interference and Facilitation Effects in Individuals with Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Sung, Jee Eun; Kim, Jin Hee; Jeong, Jee Hyang; Kang, Heejin

    2012-01-01

    Purpose: The purposes of the study were to investigate (a) the task-specific differences in short-term memory (STM) and working memory capacity (WMC) in individuals with mild cognitive impairment (MCI) and normal elderly adults (NEAs), (b) the Stroop interference and facilitation effects, and (c) the relationship of STM and WMC to the Stroop…

  8. The effect of Twitter exposure on false memory formation.

    PubMed

    Fenn, Kimberly M; Griffin, Nicholas R; Uitvlugt, Mitchell G; Ravizza, Susan M

    2014-12-01

    Social media sites such as Facebook and Twitter have increased drastically in popularity. However, information on these sites is not verified and may contain inaccuracies. It is well-established that false information encountered after an event can lead to memory distortion. Therefore, social media may be particularly harmful for autobiographical memory. Here, we tested the effect of Twitter on false memory. We presented participants with a series of images that depicted a story and then presented false information about the images in a scrolling feed that bore either a low or high resemblance to a Twitter feed. Confidence for correct information was similar across the groups, but confidence for suggested information was significantly lower when false information was presented in a Twitter format. We propose that individuals take into account the medium of the message when integrating information into memory.

  9. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory

    PubMed Central

    Ko, Hyoung-Gon; Jang, Deok-Jin; Son, Junehee; Kwak, Chuljung; Choi, Jun-Hyeok; Ji, Young-Hoon; Lee, Yun-Sil; Son, Hyeon; Kaang, Bong-Kiun

    2009-01-01

    Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the possibility that hippocampal neurogenesis may play a critical role in the formation and extinction of hippocampus-dependent contextual fear memory. By methylazoxymethanol acetate (MAM) or gamma-ray irradiation, hippocampal neurogenesis was impaired in adult mice. Under our experimental conditions, only a severe impairment of hippocampal neurogenesis inhibited the formation of contextual fear memory. However, the extinction of contextual fear memory was not affected. These results suggest that although adult newborn neurons contribute to contextual fear memory, they may not be involved in the extinction or erasure of hippocampus-dependent contextual fear memory. PMID:19138433

  10. Why it's easier to remember seeing a face we already know than one we don't: preexisting memory representations facilitate memory formation.

    PubMed

    Reder, Lynne M; Victoria, Lindsay W; Manelis, Anna; Oates, Joyce M; Dutcher, Janine M; Bates, Jordan T; Cook, Shaun; Aizenstein, Howard J; Quinlan, Joseph; Gyulai, Ferenc

    2013-03-01

    In two experiments, we provided support for the hypothesis that stimuli with preexisting memory representations (e.g., famous faces) are easier to associate to their encoding context than are stimuli that lack long-term memory representations (e.g., unknown faces). Subjects viewed faces superimposed on different backgrounds (e.g., the Eiffel Tower). Face recognition on a surprise memory test was better when the encoding background was reinstated than when it was swapped with a different background; however, the reinstatement advantage was modulated by how many faces had been seen with a given background, and reinstatement did not improve recognition for unknown faces. The follow-up experiment added a drug intervention that inhibited the ability to form new associations. Context reinstatement did not improve recognition for famous or unknown faces under the influence of the drug. The results suggest that it is easier to associate context to faces that have a preexisting long-term memory representation than to faces that do not.

  11. Lactate release from astrocytes to neurons contributes to cocaine memory formation.

    PubMed

    Boury-Jamot, Benjamin; Halfon, Olivier; Magistretti, Pierre J; Boutrel, Benjamin

    2016-12-01

    The identification of neural substrates underlying the long lasting debilitating impact of drug cues is critical for developing novel therapeutic tools. Metabolic coupling has long been considered a key mechanism through which astrocytes and neurons actively interact in response of neuronal activity, but recent findings suggested that disrupting metabolic coupling may represent an innovative approach to prevent memory formation, in particular drug-related memories. Here, we review converging evidence illustrating how memory and addiction share neural circuitry and molecular mechanisms implicating lactate-mediated metabolic coupling between astrocytes and neurons. With several aspects of addiction depending on mnemonic processes elicited by drug experience, disrupting lactate transport involved in the formation of a pathological learning, linking the incentive, and motivational effects of drugs with drug-conditioned stimuli represent a promising approach to encourage abstinence. © 2016 WILEY Periodicals, Inc.

  12. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.

    PubMed

    Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin

    2014-04-14

    Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Formation of spatial and nonspatial memory in different condensed versions of short-term learning in Morris water maze.

    PubMed

    Zots, M A; Ivashkina, O I; Ivanova, A A; Anokhin, K V

    2014-03-01

    We studied the formation of spatial and nonspatial memory in mice during learning in three different condensed versions of Morris water maze task. Learning in combined version caused the formation of both spatial and nonspatial memory, whereas learning in condensed versions (spatial and nonspatial) led to memory formation specific for the version.

  14. Neural network communication facilitates verbal working memory.

    PubMed

    Kustermann, Thomas; Rockstroh, Brigitte; Miller, Gregory A; Popov, Tzvetan

    2018-05-28

    Oscillatory brain activity in the theta, alpha, and gamma frequency ranges has been associated with working memory (WM). In addition to alpha and theta activity associated with WM retention, and gamma band activity with item encoding, activity in the alpha band is related to the deployment of attention resources and information. The present study sought to specify distinct roles of neuromagnetic 4-7 Hz theta, 9-13 Hz alpha, and 50-70 Hz gamma power modulation and communication in fronto-parietal networks during cued, hemifield-specific item presentation in a modified Sternberg verbal WM task in 14 student volunteers. Lateralized posterior alpha and gamma power during encoding suggest a preparatory role of alpha oscillations. Bilateral alpha power increases during maintenance reflect information retention for the non-lateralized probe response. Lateralized alpha power increase during encoding was apparently driven by a monotonic increase in fronto-parietal 6 Hz phase, suggesting a mechanism facilitating WM encoding and successful performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice.

    PubMed

    Brinks, V; de Kloet, E R; Oitzl, M S

    2009-04-01

    Corticosterone, the naturally occurring glucocorticoid of rodents is secreted in response to stressors and is known for its facilitating and detrimental effects on emotional learning and memory. The large variability in the action of corticosterone on processing of emotional memories is postulated to depend on genetic background and the spatio-temporal domain in which the hormone operates. To address this hypothesis, mice of two strains with distinct corticosterone secretory patterns and behavioural phenotype (BALB/c and C57BL/6J) were treated with corticosterone (250 microg/kg, i.p.), either 5 min before or directly after acquisition in a fear conditioning task. As the paradigm allowed assessing in one experimental procedure both context- and cue-related fear behaviour, we were able to detect generalization and specificity of fear. BALB/c showed generalized strong fear memory, while C57BL/6J mice discriminated between freezing during context- and cue episodes. Corticosterone had opposite effects on fear memory depending on the strain and time of injection. Corticosterone after acquisition did not affect C57BL/6J mice, but destabilized consolidation and facilitated extinction in BALB/c. Corticosterone 5 min before acquisition strengthened stress-associated signals: BALB/c no longer showed lower fear memory, while C57BL/6J mice displayed increased fear memory and impaired extinction in cue episodes. We propose that corticosterone-induced facilitation of fear memory in C57BL/6J mice can be used to study the development of fear memories, corticosterone administration in BALB/c mice presents a model to examine treatment. We conclude that genetic background and time of corticosterone action are modifiers of fear memory with interesting translational implications for anxiety-related diseases.

  16. CREB binding protein is required for both short-term and long-term memory formation.

    PubMed

    Chen, Guiquan; Zou, Xiaoyan; Watanabe, Hirotaka; van Deursen, Jan M; Shen, Jie

    2010-09-29

    CREB binding protein (CBP) is a transcriptional coactivator with histone acetyltransferase activity. Our prior study suggested that CBP might be a key target of presenilins in the regulation of memory formation and neuronal survival. To elucidate the role of CBP in the adult brain, we generated conditional knock-out (cKO) mice in which CBP is completely inactivated in excitatory neurons of the postnatal forebrain. Histological analysis revealed normal neuronal morphology and absence of age-dependent neuronal degeneration in the CBP cKO cerebral cortex. CBP cKO mice exhibited robust impairment in the formation of spatial, associative, and object-recognition memory. In addition to impaired long-term memory, CBP cKO mice also displayed deficits in short-term associative and object-recognition memory. Administration of a histone deacetylase inhibitor, trichostatin A, rescued the reduction of acetylated histones in the CBP cKO cortex but failed to rescue either short- or long-term memory deficits, suggesting that the memory impairment may not be caused by general reduction of histone acetyltransferase activity in CBP cKO mice. Further microarray and Western analysis showed decreased expression of calcium-calmodulin-dependent kinase isoforms and NMDA and AMPA receptor subunits in the cerebral cortex of CBP cKO mice. Collectively, these findings suggest a crucial role for CBP in the formation of both short- and long-term memory.

  17. The differential effects of emotional salience on direct associative and relational memory during a nap.

    PubMed

    Alger, Sara E; Payne, Jessica D

    2016-12-01

    Relational memories are formed from shared components between directly learned memory associations, flexibly linking learned information to better inform future judgments. Sleep has been found to facilitate both direct associative and relational memories. However, the impact of incorporating emotionally salient information into learned material and the interaction of emotional salience and sleep in facilitating both types of memory is unknown. Participants encoded two sets of picture pairs, with either emotionally negative or neutral objects paired with neutral faces. The same objects were present in both sets, paired with two different faces across the sets. Baseline memory for these directly paired associates was tested immediately after encoding, followed by either a 90-min nap opportunity or wakefulness. Five hours after learning, a surprise test assessed relational memory, the indirect association between two faces paired with the same object during encoding, followed by a retest of direct associative memory. Overall, negative information was remembered better than neutral for directly learned pairs. A nap facilitated both preservation of direct associative memories and formation of relational memories, compared to remaining awake. Interestingly, however, this sleep benefit was observed specifically for neutral directly paired associates, while both neutral and negative relational associations benefitted from a nap. Finally, REM sleep played opposing roles in neutral direct and relational associative memory formation, with more REM sleep leading to forgetting of direct associations but promoting relational associations, suggesting that, while not benefitting memory consolidation for directly learned details, REM sleep may foster the memory reorganization needed for relational memory.

  18. Brain oscillations track the formation of episodic memories in the real world.

    PubMed

    Griffiths, Benjamin; Mazaheri, Ali; Debener, Stefan; Hanslmayr, Simon

    2016-12-01

    Despite the well-known influence of environmental context on episodic memory, little has been done to increase contextual richness within the lab. This leaves a blind spot lingering over the neuronal correlates of episodic memory formation in day-to-day life. To address this, we presented participants with a series of words to memorise along a pre-designated route across campus while a mobile EEG system acquired ongoing neural activity. Replicating lab-based subsequent memory effects (SMEs), we identified significant low to mid frequency power decreases (<30Hz), including beta power decreases over the left inferior frontal gyrus. When investigating the oscillatory correlates of temporal and spatial context binding, we found that items strongly bound to spatial context exhibited significantly greater theta power decreases than items strongly bound to temporal context. These findings expand upon lab-based studies by demonstrating the influence of real world contextual factors that underpin memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The human hippocampal formation mediates short-term memory of colour-location associations.

    PubMed

    Finke, Carsten; Braun, Mischa; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Kopp, Ute; Ploner, Christoph J

    2008-01-31

    The medial temporal lobe (MTL) has long been considered essential for declarative long-term memory, whereas the fronto-parietal cortex is generally seen as the anatomical substrate of short-term memory. This traditional dichotomy is questioned by recent studies suggesting a possible role of the MTL for short-term memory. In addition, there is no consensus on a possible specialization of MTL sub-regions for memory of associative information. Here, we investigated short-term memory for single features and feature associations in three humans with post-surgical lesions affecting the right hippocampal formation and in 10 healthy controls. We used three delayed-match-to-sample tasks with two delays (900/5000 ms) and three set sizes (2/4/6 items). Subjects were instructed to remember either colours, locations or colour-location associations. In colour-only and location-only conditions, performance of patients did not differ from controls. By contrast, a significant group difference was found in the association condition at 5000 ms delay. This difference was largely independent of set size, thus suggesting that it cannot be explained by the increased complexity of the association condition. These findings show that the hippocampal formation plays a significant role for short-term memory of simple visuo-spatial associations, and suggest a specialization of MTL sub-regions for associative memory.

  20. Stress in the zoo: Tracking the impact of stress on memory formation over time.

    PubMed

    Vogel, Susanne; Schwabe, Lars

    2016-09-01

    Although stress is well known to modulate human memory, precisely how memory formation is altered by a stressful encounter remains unclear. Stress effects on cognition are mainly mediated by the rapidly acting sympathetic nervous system, resulting in the release of catecholamines, and the slower acting hypothalamus-pituitary-adrenal axis secreting cortisol, which induces its effects on cognition through fast, non-genomic actions and delayed, genomic actions. Importantly, these different waves of the physiological stress response are thought to dynamically alter neural processing in brain regions important for memory such as the amygdala and the hippocampus. However, the precise time course of stress effects on memory formation is still unclear. To track the development of stress effects on memory over time, we tested individuals who underwent a stressful experience or a control procedure before a 2-h walk through a zoo, while an automatic camera continuously photographed the events they encoded. In a recognition memory test one week later, participants were presented with target photographs of their own zoo tour and lure photographs from an alternate tour. Stressed participants showed better memory for the experimental treatment than control participants, and this memory enhancement for the stressful encounter itself was directly linked to the sympathetic stress response. Moreover, stress enhanced memory for events encoded 41-65min after stressor onset, which was associated with the cortisol stress response, most likely arising from non-genomic cortisol actions. However, memory for events encoded long after the stressor, when genomic cortisol actions had most likely developed, remained unchanged. Our findings provide novel insights into how stress effects on memory formation develop over time, depending on the activity of major physiological stress response systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Prospection and emotional memory: how expectation affects emotional memory formation following sleep and wake

    PubMed Central

    Cunningham, Tony J.; Chambers, Alexis M.; Payne, Jessica D.

    2014-01-01

    Successful prospective memory is necessarily driven by an expectation that encoded information will be relevant in the future, leading to its preferential placement in memory storage. Like expectation, emotional salience is another type of cue that benefits human memory formation. Although separate lines of research suggest that both emotional information and information explicitly expected to be important in the future benefit memory consolidation, it is unknown how expectation affects the processing of emotional information and whether sleep, which is known to maximize memory consolidation, plays a critical role. The purpose of this study was to investigate how expectation would impact the consolidation of emotionally salient content, and whether this impact would differ across delays of sleep and wake. Participants encoded scenes containing an emotionally charged negative or neutral foreground object placed on a plausible neutral background. After encoding, half of the participants were informed they would later be tested on the scenes (expected condition), while the other half received no information about the test (unexpected condition). At recognition, following a 12-h delay of sleep or wakefulness, the scene components (objects and backgrounds) were presented separately and one at a time, and participants were asked to determine if each component was old or new. Results revealed a greater disparity for memory of negative objects over their paired neutral backgrounds for both the sleep and wake groups when the memory test was expected compared to when it was unexpected, while neutral memory remained unchanged. Analyzing each group separately, the wake group showed a threefold increase in the magnitude of this object/background trade-off for emotional scenes when the memory test was expected compared to when it was unexpected, while those who slept performed similarly across conditions. These results suggest that emotional salience and expectation cues

  2. The time course of ventrolateral prefrontal cortex involvement in memory formation.

    PubMed

    Machizawa, Maro G; Kalla, Roger; Walsh, Vincent; Otten, Leun J

    2010-03-01

    Human neuroimaging studies have implicated a number of brain regions in long-term memory formation. Foremost among these is ventrolateral prefrontal cortex. Here, we used double-pulse transcranial magnetic stimulation (TMS) to assess whether the contribution of this part of cortex is crucial for laying down new memories and, if so, to examine the time course of this process. Healthy adult volunteers performed an incidental encoding task (living/nonliving judgments) on sequences of words. In separate series, the task was performed either on its own or while TMS was applied to one of two sites of experimental interest (left/right anterior inferior frontal gyrus) or a control site (vertex). TMS pulses were delivered at 350, 750, or 1,150 ms following word onset. After a delay of 15 min, memory for the items was probed with a recognition memory test including confidence judgments. TMS to all three sites nonspecifically affected the speed and accuracy with which judgments were made during the encoding task. However, only TMS to prefrontal cortex affected later memory performance. Stimulation of left or right inferior frontal gyrus at all three time points reduced the likelihood that a word would later be recognized by a small, but significant, amount (approximately 4%). These findings indicate that bilateral ventrolateral prefrontal cortex plays an essential role in memory formation, exerting its influence between > or = 350 and 1,150 ms after an event is encountered.

  3. Epigenetic mechanisms in experience-driven memory formation and behavior.

    PubMed

    Puckett, Rosemary E; Lubin, Farah D

    2011-10-01

    Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior.

  4. Contextual consistency facilitates long-term memory of perceptual detail in barely seen images.

    PubMed

    Gronau, Nurit; Shachar, Meytal

    2015-08-01

    It is long known that contextual information affects memory for an object's identity (e.g., its basic level category), yet it is unclear whether schematic knowledge additionally enhances memory for the precise visual appearance of an item. Here we investigated memory for visual detail of merely glimpsed objects. Participants viewed pairs of contextually related and unrelated stimuli, presented for an extremely brief duration (24 ms, masked). They then performed a forced-choice memory-recognition test for the precise perceptual appearance of 1 of 2 objects within each pair (i.e., the "memory-target" item). In 3 experiments, we show that memory-target stimuli originally appearing within contextually related pairs are remembered better than targets appearing within unrelated pairs. These effects are obtained whether the target is presented at test with its counterpart pair object (i.e., when reiterating the original context at encoding) or whether the target is presented alone, implying that the contextual consistency effects are mediated predominantly by processes occurring during stimulus encoding, rather than during stimulus retrieval. Furthermore, visual detail encoding is improved whether object relations involve implied action or not, suggesting that, contrary to some prior suggestions, action is not a necessary component for object-to-object associative "grouping" processes. Our findings suggest that during a brief glimpse, but not under long viewing conditions, contextual associations may play a critical role in reducing stimulus competition for attention selection and in facilitating rapid encoding of sensory details. Theoretical implications with respect to classic frame theories are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  5. Early memory formation disrupted by atypical PKC inhibitor ZIP in the medial prefrontal cortex but not hippocampus

    PubMed Central

    Evuarherhe, Obaro; Barker, Gareth R. I.; Savalli, Giorgia; Warburton, Elizabeth C.; Brown, Malcolm W.

    2014-01-01

    Atypical isoforms of protein kinase C (aPKCs; particularly protein kinase M zeta: PKMζ) have been hypothesised to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long term memory by maintaining postsynaptic AMPA receptors via the GluR2 subunit. A myristoylated PKMζ pseudosubstrate peptide (ZIP) blocks PKMζ activity. We examined the actions of ZIP in medial prefrontal cortex (mPFC) and hippocampus in associative recognition memory in rats during early memory formation and memory maintenance. ZIP infusion in either hippocampus or mPFC impaired memory maintenance. However, early memory formation was impaired by ZIP in mPFC but not hippocampus; and blocking GluR2-dependent removal of AMPA receptors did not affect this impairment caused by ZIP in the mPFC. The findings indicate: (i) a difference in the actions of ZIP in hippocampus and medial prefrontal cortex, and (ii) a GluR2-independent target of ZIP (possibly PKCλ) in the mPFC during early memory formation. PMID:24729442

  6. Sleep-dependent facilitation of episodic memory details.

    PubMed

    van der Helm, Els; Gujar, Ninad; Nishida, Masaki; Walker, Matthew P

    2011-01-01

    While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  7. Differential effects of beta-adrenergic receptor blockade in the medial prefrontal cortex during aversive and incidental taste memory formation.

    PubMed

    Reyes-López, J; Nuñez-Jaramillo, L; Morán-Guel, E; Miranda, M I

    2010-08-11

    The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC beta-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the beta-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that beta-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Continuing the search for the engram: examining the mechanism of fear memories.

    PubMed

    Josselyn, Sheena A

    2010-07-01

    The goal of my research is to gain insight using rodent models into the fundamental molecular, cellular and systems that make up the base of memory formation. My work focuses on fear memories. Aberrant fear and/or anxiety may be at the heart of many psychiatric disorders. In this article, I review the results of my research group; these results show that particular neurons in the lateral amygdala, a brain region important for fear, are specifically involved in particular fear memories. We started by showing that the transcription factor CREB (cAMP/Ca(2+) response element binding protein) plays a key role in the formation of fear memories. Next, we used viral vectors to overexpress CREB in a subset of lateral amygdala neurons. This not only facilitated fear memory formation but also "drove" the memory into the neurons with relatively increased CREB function. Finally, we showed that selective ablation of the neurons overexpressing CREB in the lateral amygdala selectively erased the fear memory. These findings are the first to show disruption of a specific memory by disrupting select neurons within a distributed network.

  9. Kisspeptin-13 enhances memory and mitigates memory impairment induced by Aβ1-42 in mice novel object and object location recognition tasks.

    PubMed

    Jiang, J H; He, Z; Peng, Y L; Jin, W D; Wang, Z; Han, R W; Chang, M; Wang, R

    2015-09-01

    Kisspeptin (KP), the endogenous ligand of GPR54, is a recently discovered neuropeptide shown to be involved in regulating reproductive system, anxiety-related behavior, locomotion, food intake, and suppression of metastasis across a range of cancers. KP is transcribed within the hippocampus, and GPR54 has been found in the amygdala and hippocampus, suggesting that KP might be involved in mediating learning and memory. However, the role of KP in cognition was largely unclear. Here, we investigated the role of KP-13, one of the endogenous active isoforms, in memory processes, and determined whether KP-13 could mitigate memory impairment induced by Aβ1-42 in mice, using novel object recognition (NOR) and object location recognition (OLR) tasks. Intracerebroventricular (i.c.v.) infusion of KP-13 (2μg) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-improving effects of KP-13 could be blocked by the GPR54 receptor antagonist, kisspeptin-234 (234), and GnRH receptors antagonist, Cetrorelix, suggesting pharmacological specificity. Then the memory-enhancing effects were also presented after infusion of KP-13 into the hippocampus. Moreover, we found that i.c.v. injection of KP-13 was able to reverse the memory impairment induced by Aβ1-42, which was inhibited by 234. To sum up, the results of our work indicate that KP-13 could facilitate memory formation and prolong memory retention through activation of the GPR54 and GnRH receptors, and suppress memory-impairing effect of Aβ1-42 through activation of the GPR54, suggesting that KP-13 may be a potential drug for enhancing memory and treating Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Memory and cognitive control circuits in mathematical cognition and learning

    PubMed Central

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  11. Rapid formation and flexible expression of memories of subliminal word pairs.

    PubMed

    Reber, Thomas P; Henke, Katharina

    2011-01-01

    Our daily experiences are incidentally and rapidly encoded as episodic memories. Episodic memories consist of numerous associations (e.g., who gave what to whom where and when) that can be expressed flexibly in new situations. Key features of episodic memory are speed of encoding, its associative nature, and its representational flexibility. Another defining feature of human episodic memory has been consciousness of encoding/retrieval. Here, we show that humans can rapidly form associations between subliminal words and minutes later retrieve these associations even if retrieval words were conceptually related to, but different from encoding words. Because encoding words were presented subliminally, associative encoding, and retrieval were unconscious. Unconscious association formation and retrieval were dependent on a preceding understanding of task principles. We conclude that key computations underlying episodic memory - rapid encoding and flexible expression of associations - can operate outside consciousness.

  12. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory

    PubMed Central

    Hales, J. B.

    2011-01-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance. PMID:21248058

  13. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    PubMed Central

    White, André O.; Wood, Marcelo A.

    2013-01-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. PMID:24149059

  14. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory.

    PubMed

    Pravosudov, Vladimir V

    2003-12-22

    It is widely assumed that chronic stress and corresponding chronic elevations of glucocorticoid levels have deleterious effects on animals' brain functions such as learning and memory. Some animals, however, appear to maintain moderately elevated levels of glucocorticoids over long periods of time under natural energetically demanding conditions, and it is not clear whether such chronic but moderate elevations may be adaptive. I implanted wild-caught food-caching mountain chickadees (Poecile gambeli), which rely at least in part on spatial memory to find their caches, with 90-day continuous time-release corticosterone pellets designed to approximately double the baseline corticosterone levels. Corticosterone-implanted birds cached and consumed significantly more food and showed more efficient cache recovery and superior spatial memory performance compared with placebo-implanted birds. Thus, contrary to prevailing assumptions, long-term moderate elevations of corticosterone appear to enhance spatial memory in food-caching mountain chickadees. These results suggest that moderate chronic elevation of corticosterone may serve as an adaptation to unpredictable environments by facilitating feeding and food-caching behaviour and by improving cache-retrieval efficiency in food-caching birds.

  15. Cholinergic dependence of taste memory formation: evidence of two distinct processes.

    PubMed

    Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico

    2003-11-01

    Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.

  16. Rapid Formation and Flexible Expression of Memories of Subliminal Word Pairs

    PubMed Central

    Reber, Thomas P.; Henke, Katharina

    2011-01-01

    Our daily experiences are incidentally and rapidly encoded as episodic memories. Episodic memories consist of numerous associations (e.g., who gave what to whom where and when) that can be expressed flexibly in new situations. Key features of episodic memory are speed of encoding, its associative nature, and its representational flexibility. Another defining feature of human episodic memory has been consciousness of encoding/retrieval. Here, we show that humans can rapidly form associations between subliminal words and minutes later retrieve these associations even if retrieval words were conceptually related to, but different from encoding words. Because encoding words were presented subliminally, associative encoding, and retrieval were unconscious. Unconscious association formation and retrieval were dependent on a preceding understanding of task principles. We conclude that key computations underlying episodic memory – rapid encoding and flexible expression of associations – can operate outside consciousness. PMID:22125545

  17. Synaptic scaling enables dynamically distinct short- and long-term memory formation.

    PubMed

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin

    2013-10-01

    Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

  18. Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin

    2013-01-01

    Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes. PMID:24204240

  19. The facilitative effects of glucose ingestion on memory retrieval in younger and older adults: is task difficulty or task domain critical?

    PubMed

    Riby, Leigh M; McMurtrie, Hazel; Smallwood, Jonathan; Ballantyne, Carrie; Meikle, Andrew; Smith, Emily

    2006-02-01

    The ingestion of a glucose-containing drink has been shown to improve cognitive performance, particularly memory functioning. However, it remains unclear as to the extent to which task domain and task difficulty moderate the glucose enhancement effect. The aim of this research was to determine whether boosts in performance are restricted to particular classes of memory (episodic v. semantic) or to tasks of considerable cognitive load. A repeated measures (25 g glucose v. saccharin), counterbalanced, double-blind design was used with younger and older adults. Participants performed a battery of episodic (e.g. paired associate learning) and semantic memory (e.g. category verification) tasks under low and high cognitive load. Electrophysiological measures (heart rate and galvanic skin response) of arousal and mental effort were also gathered. The results indicated that whilst glucose appeared to aid episodic remembering, cognitive load did not exaggerate the facilitative effect. For semantic memory, there was little evidence to suggest that glucose can boost semantic memory retrieval even when the load was manipulated. One exception was that glucose facilitated performance during the difficult category fluency task. Regardless, the present findings are consistent with the domain-specific account in which glucose acts primarily on the hippocampal region, which is known to support episodic memory. The possible contribution of the hippocampus in semantic memory processing is also discussed.

  20. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala.

    PubMed

    Skelly, M J; Ariwodola, O J; Weiner, J L

    2017-02-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1-and β3-AR agonists (1 μM A61603 and 10 μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1 μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline

  1. Fear Conditioning Selectively Disrupts Noradrenergic Facilitation of GABAergic Inhibition in the Basolateral Amygdala

    PubMed Central

    Skelly, M. J.; Ariwodola, O. J.; Weiner, J. L.

    2016-01-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1- and β3-AR agonists (1μM A61603 and 10μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline. PMID

  2. Cobalt germanide nanostructure formation and memory characteristic enhancement in silicon oxide films

    NASA Astrophysics Data System (ADS)

    Joo, Beom Soo; Kim, Hyunseung; Jang, Seunghun; Han, Dongwoo; Han, Moonsup

    2018-08-01

    We investigated nano-floating gate memory having a charge trap layer (CTL) composed of cobalt germanide nanostructure (ns-CoGe). A tunneling oxide layer; a CTL containing Co, Ge, and Si; and a blocking oxide layer were sequentially deposited on a p-type silicon substrate by RF magnetron sputtering and low-pressure chemical vapor deposition. We optimized the CTL formation conditions by rapid thermal annealing at a somewhat low temperature (about 830 °C) by considering the differences in Gibbs free energy and chemical enthalpy among the components. To characterize the charge storage properties, capacitance-voltage (C-V) measurements were performed. Further, we used X-ray photoelectron spectroscopy for chemical analysis of the CTL. In this work, we not only report that the C-V measurement shows a remarkable opening of the memory window for the ns-CoGe compared with those of nanostructures composed of Co or Ge alone, but also clarify that the improvement in the memory characteristics originates in the nanostructure formation, which consists mainly of Co-Ge bonds. We expect ns-CoGe to be a strong candidate for fabrication of next-generation memory devices.

  3. Addiction memory as a specific, individually learned memory imprint.

    PubMed

    Böning, J

    2009-05-01

    The construct of "addiction memory" (AM) and its importance for relapse occurrence has been the subject of discussion for the past 30 years. Neurobiological findings from "social neuroscience" and biopsychological learning theory, in conjunction with construct-valid behavioral pharmacological animal models, can now also provide general confirmation of addiction memory as a pathomorphological correlate of addiction disorders. Under multifactorial influences, experience-driven neuronal learning and memory processes of emotional and cognitive processing patterns in the specific individual "set" and "setting" play an especially pivotal role in this connection. From a neuropsychological perspective, the episodic (biographical) memory, located at the highest hierarchical level, is of central importance for the formation of the AM in certain structural and functional areas of the brain and neuronal networks. Within this context, neuronal learning and conditioning processes take place more or less unconsciously and automatically in the preceding long-term-memory systems (in particular priming and perceptual memory). They then regulate the individually programmed addiction behavior implicitly and thus subsequently stand for facilitated recollection of corresponding, previously stored cues or context situations. This explains why it is so difficult to treat an addiction memory, which is embedded above all in the episodic memory, from the molecular carrier level via the neuronal pattern level through to the psychological meaning level, and has thus meanwhile become a component of personality.

  4. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    PubMed Central

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  5. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J.; Nau, S.

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filamentsmore » and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.« less

  6. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    PubMed

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    PubMed

    White, André O; Wood, Marcelo A

    2014-07-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Electrolytic lesions of the bilateral ventrolateral orbital cortex inhibit methamphetamine-associated contextual memory formation in rats.

    PubMed

    Zhao, Yan; Liu, Peng; Chu, Zheng; Liu, Fei; Han, Wei; Xun, Xi; Dang, Yong-Hui

    2015-10-22

    The memories that are formed between rewarding and drug-associated contextual cues have been suggested to contribute to drug addiction relapse. Recent evidence has indicated that the ventrolateral orbital cortex (VLO) plays important roles in reward-based learning and reversal learning. However, whether the VLO is required for methamphetamine-induced contextual memory formation is not well understood. In the present study, a three-phase methamphetamine-induced conditioned place preference (CPP) model was used to investigate the effects of VLO lesions on the formation of drug-associated contextual memories in rats. We found that the VLO lesions themselves elicited no observable effects on place preferences. However, the VLO lesions delayed the acquisition and extinction phases of CPP without affecting the expression level. Furthermore, the VLO lesions did not have an obvious influence on CPP reinstatement. These results indicate that electrolytic lesions of the bilateral ventrolateral orbital cortex can inhibit the formation of methamphetamine-induced contextual memories in rats. Moreover, VLO may not be critically involved in memory storage and retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Formation of model-free motor memories during motor adaptation depends on perturbation schedule

    PubMed Central

    Lefèvre, Philippe

    2015-01-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124–136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. PMID:25673736

  10. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  11. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    ERIC Educational Resources Information Center

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  12. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation

    PubMed Central

    Steinman, Michael Q.; Gao, Virginia; Alberini, Cristina M.

    2016-01-01

    Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual’s identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation. PMID:26973477

  13. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  14. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    PubMed

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  15. Self-initiated encoding facilitates object working memory in schizophrenia: implications for the etiology of working memory deficit.

    PubMed

    Kim, Jejoong; Park, Sohee; Shin, Yong-Wook; Jin Lee, Kyung; Kwon, Jun Soo

    2006-02-15

    Working memory (WM) deficit is present in a majority of patients with schizophrenia but it is unclear which components of WM are impaired. Past studies suggest that encoding may be compromised. One important determinant of encoding is the deployment of selective attention to the target stimulus. In addition, attention and encoding are modulated by motivational factors. In this study, we investigated the effects of self-initiated encoding (i.e., voluntary attention) on WM. 19 patients with schizophrenia and 19 matched control subjects participated in visual WM and control tasks. Encoding was manipulated by asking subjects to select from two face targets and memorize 1) one of the two identical faces (Non-preference condition), 2) one that is marked (Non-choice condition), and 3) one they prefer (Preference condition). WM accuracy for both location (spatial) and identity (object) was measured. Overall, patients with schizophrenia were less accurate and slower than the control subjects but the deficit was greater for object WM. However, patients were more accurate in object WM when they selected a preferred face as their target during encoding (preference condition) compared with the other two conditions. This effect was not significant for spatial WM. These results suggest that voluntary, self-initiated attention may facilitate object encoding especially if the selection of the target involves affective choice, and that attention may play different roles in encoding 'what' versus 'where' in WM. Since encoding affects all forms of memory, these results may have a more general implication for memory.

  16. Attentional influences on memory formation: A tale of a not-so-simple story.

    PubMed

    Ortiz-Tudela, J; Milliken, B; Jiménez, L; Lupiáñez, J

    2018-05-01

    Is there a learning mechanism triggered by mere expectation violation? Is there some form of memory enhancement inherent to an event mismatching our predictions? Across seven experiments, we explore this issue by means of a validity paradigm. Although our manipulation clearly succeeded in generating an expectation and breaking it, the memory consequences of that expectation mismatch are not so obvious. We report here evidence of a null effect of expectation on memory formation. Our results (1) show that enhanced memory for unexpected events is not easily achieved and (2) call for a reevaluation of previous accounts of memory enhancements based on prediction error or difficulty of processing. Limitations of this study and possible implications for the field are discussed in detail.

  17. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    PubMed

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  18. Face format at encoding affects the other-race effect in face memory.

    PubMed

    Zhao, Mintao; Hayward, William G; Bülthoff, Isabelle

    2014-08-07

    Memory of own-race faces is generally better than memory of other-races faces. This other-race effect (ORE) in face memory has been attributed to differences in contact, holistic processing, and motivation to individuate faces. Since most studies demonstrate the ORE with participants learning and recognizing static, single-view faces, it remains unclear whether the ORE can be generalized to different face learning conditions. Using an old/new recognition task, we tested whether face format at encoding modulates the ORE. The results showed a significant ORE when participants learned static, single-view faces (Experiment 1). In contrast, the ORE disappeared when participants learned rigidly moving faces (Experiment 2). Moreover, learning faces displayed from four discrete views produced the same results as learning rigidly moving faces (Experiment 3). Contact with other-race faces was correlated with the magnitude of the ORE. Nonetheless, the absence of the ORE in Experiments 2 and 3 cannot be readily explained by either more frequent contact with other-race faces or stronger motivation to individuate them. These results demonstrate that the ORE is sensitive to face format at encoding, supporting the hypothesis that relative involvement of holistic and featural processing at encoding mediates the ORE observed in face memory. © 2014 ARVO.

  19. The Roles of MAPK Cascades in Synaptic Plasticity and Memory in "Aplysia": Facilitatory Effects and Inhibitory Constraints

    ERIC Educational Resources Information Center

    Sharma, Shiv K.; Carew, Thomas J.

    2004-01-01

    Synaptic plasticity is thought to contribute to memory formation. Serotonin-induced facilitation of sensory-motor (SN-MN) synapses in "Aplysia" is an extensively studied cellular analog of memory for sensitization. Serotonin, a modulatory neurotransmitter, is released in the CNS during sensitization training, and induces three temporally and…

  20. Inferential Costs of Trait Centrality in Impression Formation: Organization in Memory and Misremembering

    PubMed Central

    Nunes, Ludmila D.; Garcia-Marques, Leonel; Ferreira, Mário B.; Ramos, Tânia

    2017-01-01

    An extension of the DRM paradigm was used to study the impact of central traits (Asch, 1946) in impression formation. Traits corresponding to the four clusters of the implicit theory of personality—intellectual, positive and negative; and social, positive and negative (Rosenberg et al., 1968)—were used to develop lists containing several traits of one cluster and one central trait prototypical of the opposite cluster. Participants engaging in impression formation relative to participants engaging in memorization not only produced higher levels of false memories corresponding to the same cluster of the list traits but, under response time pressure at retrieval, also produced more false memories of the cluster corresponding to the central trait. We argue that the importance of central traits stems from their ability to activate their corresponding semantic space within a specialized associative memory structure underlying the implicit theory of personality. PMID:28878708

  1. NF-κB mediates Gadd45β expression and DNA demethylation in the hippocampus during fear memory formation.

    PubMed

    Jarome, Timothy J; Butler, Anderson A; Nichols, Jessica N; Pacheco, Natasha L; Lubin, Farah D

    2015-01-01

    Gadd45-mediated DNA demethylation mechanisms have been implicated in the process of memory formation. However, the transcriptional mechanisms involved in the regulation of Gadd45 gene expression during memory formation remain unexplored. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) controls transcription of genes in neurons and is a critical regulator of synaptic plasticity and memory formation. In silico analysis revealed several NF-κB (p65/RelA and cRel) consensus sequences within the Gadd45β gene promoter. Whether NF-κB activity regulates Gadd45 expression and associated DNA demethylation in neurons during memory formation is unknown. Here, we found that learning in a fear conditioning paradigm increased Gadd45β gene expression and brain-derivedneurotrophic factor (BDNF) DNA demethylation in area CA1 of the hippocampus, both of which were prevented with pharmacological inhibition of NF-κB activity. Further experiments found that conditional mutations in p65/RelA impaired fear memory formation but did not alter changes in Gadd45β expression. The learning-induced increases in Gadd45β mRNA levels, Gadd45β binding at the BDNF gene and BDNF DNA demethylation were blocked in area CA1 of the c-rel knockout mice. Additionally, local siRNA-mediated knockdown of c-rel in area CA1 prevented fear conditioning-induced increases in Gadd45β expression and BDNF DNA demethylation, suggesting that c-Rel containing NF-κB transcription factor complex is responsible for Gadd45β regulation during memory formation. Together, these results support a novel transcriptional role for NF-κB in regulation of Gadd45β expression and DNA demethylation in hippocampal neurons during fear memory.

  2. Negative affect impairs associative memory but not item memory.

    PubMed

    Bisby, James A; Burgess, Neil

    2013-12-17

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine the effects of emotion on memory for items and their associations. By presenting neutral and negative items with background contexts, Experiment 1 demonstrated that item memory was facilitated by emotional affect, whereas memory for an associated context was reduced. In Experiment 2, arousal was manipulated independently of the memoranda, by a threat of shock, whereby encoding trials occurred under conditions of threat or safety. Memory for context was equally impaired by the presence of negative affect, whether induced by threat of shock or a negative item, relative to retrieval of the context of a neutral item in safety. In Experiment 3, participants were presented with neutral and negative items as paired associates, including all combinations of neutral and negative items. The results showed both above effects: compared to a neutral item, memory for the associate of a negative item (a second item here, context in Experiments 1 and 2) is impaired, whereas retrieval of the item itself is enhanced. Our findings suggest that negative affect impairs associative memory while recognition of a negative item is enhanced. They support dual-processing models in which negative affect or stress impairs hippocampal-dependent associative memory while the storage of negative sensory/perceptual representations is spared or even strengthened.

  3. Learned Interval Time Facilitates Associate Memory Retrieval

    ERIC Educational Resources Information Center

    van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter

    2017-01-01

    The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…

  4. Does working memory load facilitate target detection?

    PubMed

    Fruchtman-Steinbok, Tom; Kessler, Yoav

    2016-02-01

    Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Pretreatment with β-adrenergic receptor agonists facilitates induction of LTP and sharp wave ripple complexes in rodent hippocampus.

    PubMed

    Ul Haq, Rizwan; Anderson, Marlene; Liotta, Agustin; Shafiq, Maria; Sherkheli, Muhammad Azhar; Heinemann, Uwe

    2016-12-01

    Norepinephrine, is involved in the enhancement of learning and memory formation by regulating synaptic mechanisms through its ability to activate pre- and post-synaptic adrenergic receptors. Here we show that β-agonists of norepinephrine facilitate the induction of both associational LTP and sharp wave ripples (SPW-Rs) in acute slices of rat hippocampus in area CA3. Surprisingly, this facilitating effect persists when slices are only pretreated with β-receptor agonists followed by wash out and application of the unspecific β-adrenoreceptor (βAR) antagonist propranolol. During application of βAR agonists repeated stimulation resulted in facilitated induction of SPW-Rs. Since SPW-Rs are thought to be involved in memory replay we studied the effects of βAR-agonists on spontaneous SPW-Rs in murine hippocampus and found that amplitude and incidence of SPW-Rs increased. These effects involve cyclic-AMP and the activation of protein kinase A and suggest a supportive role in memory consolidation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia.

    PubMed

    Xu, Aizhang; Bhanumathy, Kalpana Kalyanasundaram; Wu, Jie; Ye, Zhenmin; Freywald, Andrew; Leary, Scot C; Li, Rongxiu; Xiang, Jim

    2016-01-01

    Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8(+) effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL

  7. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion.

    PubMed

    Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter

    2015-01-01

    This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.

  8. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    PubMed

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  9. Motivational valence alters memory formation without altering exploration of a real-life spatial environment.

    PubMed

    Chiew, Kimberly S; Hashemi, Jordan; Gans, Lee K; Lerebours, Laura; Clement, Nathaniel J; Vu, Mai-Anh T; Sapiro, Guillermo; Heller, Nicole E; Adcock, R Alison

    2018-01-01

    Volitional exploration and learning are key to adaptive behavior, yet their characterization remains a complex problem for cognitive science. Exploration has been posited as a mechanism by which motivation promotes memory, but this relationship is not well-understood, in part because novel stimuli that motivate exploration also reliably elicit changes in neuromodulatory brain systems that directly alter memory formation, via effects on neural plasticity. To deconfound interrelationships between motivation, exploration, and memory formation we manipulated motivational state prior to entering a spatial context, measured exploratory responses to the context and novel stimuli within it, and then examined motivation and exploration as predictors of memory outcomes. To elicit spontaneous exploration, we used the physical space of an art exhibit with affectively rich content; we expected motivated exploration and memory to reflect multiple factors, including not only motivational valence, but also individual differences. Motivation was manipulated via an introductory statement framing exhibit themes in terms of Promotion- or Prevention-oriented goals. Participants explored the exhibit while being tracked by video. They returned 24 hours later for recall and spatial memory tests, followed by measures of motivation, personality, and relevant attitude variables. Promotion and Prevention condition participants did not differ in terms of group-level exploration time or memory metrics, suggesting similar motivation to explore under both framing contexts. However, exploratory behavior and memory outcomes were significantly more closely related under Promotion than Prevention, indicating that Prevention framing disrupted expected depth-of-encoding effects. Additionally, while trait measures predicted exploration similarly across framing conditions, traits interacted with motivational framing context and facial affect to predict memory outcomes. This novel characterization of

  10. Motivational valence alters memory formation without altering exploration of a real-life spatial environment

    PubMed Central

    Hashemi, Jordan; Gans, Lee K.; Lerebours, Laura; Clement, Nathaniel J.; Vu, Mai-Anh T.; Sapiro, Guillermo; Heller, Nicole E.; Adcock, R. Alison

    2018-01-01

    Volitional exploration and learning are key to adaptive behavior, yet their characterization remains a complex problem for cognitive science. Exploration has been posited as a mechanism by which motivation promotes memory, but this relationship is not well-understood, in part because novel stimuli that motivate exploration also reliably elicit changes in neuromodulatory brain systems that directly alter memory formation, via effects on neural plasticity. To deconfound interrelationships between motivation, exploration, and memory formation we manipulated motivational state prior to entering a spatial context, measured exploratory responses to the context and novel stimuli within it, and then examined motivation and exploration as predictors of memory outcomes. To elicit spontaneous exploration, we used the physical space of an art exhibit with affectively rich content; we expected motivated exploration and memory to reflect multiple factors, including not only motivational valence, but also individual differences. Motivation was manipulated via an introductory statement framing exhibit themes in terms of Promotion- or Prevention-oriented goals. Participants explored the exhibit while being tracked by video. They returned 24 hours later for recall and spatial memory tests, followed by measures of motivation, personality, and relevant attitude variables. Promotion and Prevention condition participants did not differ in terms of group-level exploration time or memory metrics, suggesting similar motivation to explore under both framing contexts. However, exploratory behavior and memory outcomes were significantly more closely related under Promotion than Prevention, indicating that Prevention framing disrupted expected depth-of-encoding effects. Additionally, while trait measures predicted exploration similarly across framing conditions, traits interacted with motivational framing context and facial affect to predict memory outcomes. This novel characterization of

  11. Distinct circuits for the formation and retrieval of an imprinted olfactory memory

    PubMed Central

    Jin, Xin; Pokala, Navin; Bargmann, Cornelia I.

    2016-01-01

    Summary Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. Here we show that exposing newly-hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage, and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted but not for adult-learned aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning. PMID:26871629

  12. Sleeping on the rubber-hand illusion: Memory reactivation during sleep facilitates multisensory recalibration.

    PubMed

    Honma, Motoyasu; Plass, John; Brang, David; Florczak, Susan M; Grabowecky, Marcia; Paller, Ken A

    2016-01-01

    Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.

  13. Binding Facilitates Attention Switching within Working Memory

    ERIC Educational Resources Information Center

    Bao, Min; Li, Zhi-Hao; Zhang, Da-Ren

    2007-01-01

    The authors investigated the units of selective attention within working memory. In Experiment 1, a group of participants kept 1 count and 1 location in working memory and updated them repeatedly in random order. Another group of participants were instructed to achieve the same goal by memorizing the verbal and spatial information in an…

  14. Connected Classroom Technology Facilitates Multiple Components of Formative Assessment Practice

    NASA Astrophysics Data System (ADS)

    Shirley, Melissa L.; Irving, Karen E.

    2015-02-01

    Formative assessment has been demonstrated to result in increased student achievement across a variety of educational contexts. When using formative assessment strategies, teachers engage students in instructional tasks that allow the teacher to uncover levels of student understanding so that the teacher may change instruction accordingly. Tools that support the implementation of formative assessment strategies are therefore likely to enhance student achievement. Connected classroom technologies (CCTs) include a family of devices that show promise in facilitating formative assessment. By promoting the use of interactive student tasks and providing both teachers and students with rapid and accurate data on student learning, CCT can provide teachers with necessary evidence for making instructional decisions about subsequent lessons. In this study, the experiences of four middle and high school science teachers in their first year of implementing the TI-Navigator™ system, a specific type of CCT, are used to characterize the ways in which CCT supports the goals of effective formative assessment. We present excerpts of participant interviews to demonstrate the alignment of CCT with several main phases of the formative assessment process. CCT was found to support implementation of a variety of instructional tasks that generate evidence of student learning for the teacher. The rapid aggregation and display of student learning evidence provided teachers with robust data on which to base subsequent instructional decisions.

  15. Overexpression of SIRT6 in the hippocampal CA1 impairs the formation of long-term contextual fear memory

    PubMed Central

    Yin, Xi; Gao, Yuan; Shi, Hai-Shui; Song, Li; Wang, Jie-Chao; Shao, Juan; Geng, Xu-Hong; Xue, Gai; Li, Jian-Li; Hou, Yan-Ning

    2016-01-01

    Histone modifications have been implicated in learning and memory. Our previous transcriptome data showed that expression of sirtuins 6 (SIRT6), a member of Histone deacetylases (HDACs) family in the hippocampal cornu ammonis 1 (CA1) was decreased after contextual fear conditioning. However, the role of SIRT6 in the formation of memory is still elusive. In the present study, we found that contextual fear conditioning inhibited translational expression of SIRT6 in the CA1. Microinfusion of lentiviral vector-expressing SIRT6 into theCA1 region selectively enhanced the expression of SIRT6 and impaired the formation of long-term contextual fear memory without affecting short-term fear memory. The overexpression of SIRT6 in the CA1 had no effect on anxiety-like behaviors or locomotor activity. Also, we also found that SIRT6 overexpression significantly inhibited the expression of insulin-like factor 2 (IGF2) and amounts of proteins and/or phosphoproteins (e.g. Akt, pAkt, mTOR and p-mTOR) related to the IGF2 signal pathway in the CA1. These results demonstrate that the overexpression of SIRT6 in the CA1 impaired the formation of long-term fear memory, and SIRT6 in the CA1 may negatively modulate the formation of contextual fear memory via inhibiting the IGF signaling pathway. PMID:26732053

  16. Visual working memory simultaneously guides facilitation and inhibition during visual search.

    PubMed

    Dube, Blaire; Basciano, April; Emrich, Stephen M; Al-Aidroos, Naseem

    2016-07-01

    During visual search, visual working memory (VWM) supports the guidance of attention in two ways: It stores the identity of the search target, facilitating the selection of matching stimuli in the search array, and it maintains a record of the distractors processed during search so that they can be inhibited. In two experiments, we investigated whether the full contents of VWM can be used to support both of these abilities simultaneously. In Experiment 1, participants completed a preview search task in which (a) a subset of search distractors appeared before the remainder of the search items, affording participants the opportunity to inhibit them, and (b) the search target varied from trial to trial, requiring the search target template to be maintained in VWM. We observed the established signature of VWM-based inhibition-reduced ability to ignore previewed distractors when the number of distractors exceeds VWM's capacity-suggesting that VWM can serve this role while also representing the target template. In Experiment 2, we replicated Experiment 1, but added to the search displays a singleton distractor that sometimes matched the color (a task-irrelevant feature) of the search target, to evaluate capture. We again observed the signature of VWM-based preview inhibition along with attentional capture by (and, thus, facilitation of) singletons matching the target template. These findings indicate that more than one VWM representation can bias attention at a time, and that these representations can separately affect selection through either facilitation or inhibition, placing constraints on existing models of the VWM-based guidance of attention.

  17. Effects of lentivirus-mediated CREB expression in the dorsolateral striatum: memory enhancement and evidence for competitive and cooperative interactions with the hippocampus.

    PubMed

    Kathirvelu, Balachandar; Colombo, Paul J

    2013-11-01

    Neural systems specialized for memory may interact during memory formation or recall, and the results of interactions are important determinants of how systems control behavioral output. In two experiments, we used lentivirus-mediated expression of the transcription factor CREB (LV-CREB) to test if localized manipulations of cellular plasticity influence interactions between the hippocampus and dorsolateral striatum. In Experiment 1, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for response learning, and impairs memory for place learning. LV-CREB in the dorsolateral striatum had no effect on response learning, but impaired place memory; a finding consistent with competition between the striatum and hippocampus. In Experiment 2, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for cue learning, and impairs memory for contextual fear conditioning. LV-CREB in the dorsolateral striatum enhanced memory for cue learning and, in contrast to our prediction, also enhanced memory for contextual fear conditioning, consistent with a cooperative interaction between the striatum and hippocampus. Overall, the current experiments demonstrate that infusion of LV-CREB in the dorsolateral striatum (1) increases levels of CREB protein locally, (2) does not alter acquisition of place, response, cue, or contextual fear conditioning, (3) facilitates memory for cue learning and contextual fear conditioning, and (4) impairs memory for place learning. Taken together, the present results provide evidence that LV-CREB in the dorsolateral striatum can enhance memory formation and cause both competitive and cooperative interactions with the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  18. The Effect of Midazolam and Propranolol on Fear Memory Reconsolidation in Ethanol-Withdrawn Rats: Influence of D-Cycloserine

    PubMed Central

    Ortiz, Vanesa; Giachero, Marcelo; Espejo, Pablo Javier; Molina, Víctor Alejandro

    2015-01-01

    Background: Withdrawal from chronic ethanol facilitates the formation of contextual fear memory and delays the onset to extinction, with its retrieval promoting an increase in ethanol consumption. Consequently, manipulations aimed to reduce these aversive memories, may be beneficial in the treatment of alcohol discontinuation symptoms. Related to this, pharmacological memory reconsolidation blockade has received greater attention due to its therapeutic potential. Methods: Here, we examined the effect of post-reactivation amnestic treatments such as Midazolam (MDZ, 3 mg/kg i.p) and Propranolol (PROP, 5 mg/kg i.p) on contextual fear memory reconsolidation in ethanol- withdrawn (ETOH) rats. Next, we examined whether the activation of N-methyl-D-aspartate (NMDA) receptors induced by d-cycloserine (DCS, 5 mg/kg i.p., a NMDA partial agonist) before memory reactivation can facilitate the disruptive effect of PROP and MDZ on fear memory in ETOH rats. Results: We observed a resistance to the disruptive effect of both MDZ and PROP following memory reactivation. Although intra-basolateral amygdala (BLA; 1.25 ug/side) and systemic PROP administration attenuated fear memory in DCS pre-treated ETOH rats, DCS/MDZ treatment did not affect memory in these animals. Finally, a decrease of both total and surface protein expression of the α1 GABAA receptor (GABAA-R) subunit in BLA was found in the ETOH rats. Conclusions: Ethanol withdrawal facilitated the formation of fear memory resistant to labilization post-reactivation. DCS administration promoted the disruptive effect of PROP on memory reconsolidation in ETOH rats. The resistance to MDZ’s disruptive effect on fear memory reconsolidation may be, at least in part, associated with changes in the GABAA-R composition induced by chronic ethanol administration/withdrawal. PMID:25617327

  19. Effects of Acute Methamphetamine on Emotional Memory Formation in Humans: Encoding vs Consolidation

    PubMed Central

    Ballard, Michael E.; Weafer, Jessica; Gallo, David A.; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982

  20. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research

    PubMed Central

    Michel, Maximilian; Lyons, Lisa C.

    2014-01-01

    Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry. PMID:25136297

  1. Aquaporin-4 deficiency facilitates fear memory extinction in the hippocampus through excessive activation of extrasynaptic GluN2B-containing NMDA receptors.

    PubMed

    Wu, Xin; Zhang, Jie-Ting; Li, Di; Zhou, Jun; Yang, Jun; Zheng, Hui-Ling; Chen, Jian-Guo; Wang, Fang

    2017-01-01

    Aquaporin-4 (AQP-4) is the predominant water channel in the brain and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. A growing number of evidence shows that AQP-4 plays a potential role in the regulation of astrocyte function. However, little is known about the function of AQP-4 for synaptic plasticity in the hippocampus. Therefore, we evaluated long-term depression (LTD) in the hippocampus and the extinction of fear memory of AQP-4 knockout (KO) and wild-type (WT) mice. We found that AQP-4 deficiency facilitated fear memory extinction and NMDA receptors (NMDARs)-dependent LTD in the CA3-CA1 pathway. Furthermore, AQP-4 deficiency selectively increased GluN2B-NMDAR-mediated excitatory postsynaptic currents (EPSCs). The excessive activation of extrasynaptic GluN2B-NMDAR contributed to the facilitation of NMDAR-dependent LTD and enhancement of fear memory extinction in AQP-4 KO mice. Thus, it appears that AQP-4 may be a potential target for intervention in fear memory extinction. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Activation of Midbrain Structures by Associative Novelty and the Formation of Explicit Memory in Humans

    ERIC Educational Resources Information Center

    Schott, Bjorn H.; Sellner, Daniela B.; Lauer, Corinna-J.; Habib, Reza; Frey, Julietta U.; Guderian, Sebastian; Heinze, Hans-Jochen; Duzel, Emrah

    2004-01-01

    Recent evidence suggests a close functional relationship between memory formation in the hippocampus and dopaminergic neuromodulation originating in the ventral tegmental area and medial substantia nigra of the midbrain. Here we report midbrain activation in two functional MRI studies of visual memory in healthy young adults. In the first study,…

  3. Hippocampal Sleep Features: Relations to Human Memory Function

    PubMed Central

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  4. RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation.

    PubMed

    Nakayama, Kei; Ohashi, Rie; Shinoda, Yo; Yamazaki, Maya; Abe, Manabu; Fujikawa, Akihiro; Shigenobu, Shuji; Futatsugi, Akira; Noda, Masaharu; Mikoshiba, Katsuhiko; Furuichi, Teiichi; Sakimura, Kenji; Shiina, Nobuyuki

    2017-11-21

    Local regulation of synaptic efficacy is thought to be important for proper networking of neurons and memory formation. Dysregulation of global translation influences long-term memory in mice, but the relevance of the regulation specific for local translation by RNA granules remains elusive. Here, we demonstrate roles of RNG105/caprin1 in long-term memory formation. RNG105 deletion in mice impaired synaptic strength and structural plasticity in hippocampal neurons. Furthermore, RNG105-deficient mice displayed unprecedentedly severe defects in long-term memory formation in spatial and contextual learning tasks. Genome-wide profiling of mRNA distribution in the hippocampus revealed an underlying mechanism: RNG105 deficiency impaired the asymmetric somato-dendritic localization of mRNAs. Particularly, RNG105 deficiency reduced the dendritic localization of mRNAs encoding regulators of AMPAR surface expression, which was consistent with attenuated homeostatic AMPAR scaling in dendrites and reduced synaptic strength. Thus, RNG105 has an essential role, as a key regulator of dendritic mRNA localization, in long-term memory formation.

  5. Chronic transcranial focal stimulation from tripolar concentric ring electrodes does not disrupt memory formation in rats.

    PubMed

    Luby, Matthew D; Makeyev, Oleksandr; Besio, Walter G

    2014-01-01

    Non-invasive electrical brain stimulation has shown potential utility as a treatment for seizures in epilepsy patients. Transcranial focal stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been effective in reducing seizure severity in acute rodent models, but it has yet to be determined whether or not it will serve as a viable long-term treatment strategy. Prior experiments indicate that a single dose of TFS via TCRE does not impact short- or long-term memory formation. The present study investigated if five daily doses of TFS via a TCRE on the scalp affected the memory. The spontaneous object recognition (SOR) test was used to evaluate the memory. Sham and TFS-treated groups were evaluated and both showed comparable levels of preference for novel objects, indicating successful memory formation. More work on repeated dosage strategies is important for establishing the safety and efficacy of TFS as a putative treatment.

  6. Memory reactivation and consolidation during sleep

    PubMed Central

    Paller, Ken A.; Voss, Joel L.

    2004-01-01

    Do our memories remain static during sleep, or do they change? We argue here that memory change is not only a natural result of sleep cognition, but further, that such change constitutes a fundamental characteristic of declarative memories. In general, declarative memories change due to retrieval events at various times after initial learning and due to the formation and elaboration of associations with other memories, including memories formed after the initial learning episode. We propose that declarative memories change both during waking and during sleep, and that such change contributes to enhancing binding of the distinct representational components of some memories, and thus to a gradual process of cross-cortical consolidation. As a result of this special form of consolidation, declarative memories can become more cohesive and also more thoroughly integrated with other stored information. Further benefits of this memory reprocessing can include developing complex networks of interrelated memories, aligning memories with long-term strategies and goals, and generating insights based on novel combinations of memory fragments. A variety of research findings are consistent with the hypothesis that cross-cortical consolidation can progress during sleep, although further support is needed, and we suggest some potentially fruitful research directions. Determining how processing during sleep can facilitate memory storage will be an exciting focus of research in the coming years. PMID:15576883

  7. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism.

    PubMed

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M; Salton, Stephen R

    2015-07-15

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive

  8. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism

    PubMed Central

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M.

    2015-01-01

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. SIGNIFICANCE STATEMENT Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a

  9. Protein Phosphatase-1 Inhibitor-2 Is a Novel Memory Suppressor.

    PubMed

    Yang, Hongtian; Hou, Hailong; Pahng, Amanda; Gu, Hua; Nairn, Angus C; Tang, Ya-Ping; Colombo, Paul J; Xia, Houhui

    2015-11-11

    Reversible phosphorylation, a fundamental regulatory mechanism required for many biological processes including memory formation, is coordinated by the opposing actions of protein kinases and phosphatases. Type I protein phosphatase (PP1), in particular, has been shown to constrain learning and memory formation. However, how PP1 might be regulated in memory is still not clear. Our previous work has elucidated that PP1 inhibitor-2 (I-2) is an endogenous regulator of PP1 in hippocampal and cortical neurons (Hou et al., 2013). Contrary to expectation, our studies of contextual fear conditioning and novel object recognition in I-2 heterozygous mice suggest that I-2 is a memory suppressor. In addition, lentiviral knock-down of I-2 in the rat dorsal hippocampus facilitated memory for tasks dependent on the hippocampus. Our data indicate that I-2 suppresses memory formation, probably via negatively regulating the phosphorylation of cAMP/calcium response element-binding protein (CREB) at serine 133 and CREB-mediated gene expression in dorsal hippocampus. Surprisingly, the data from both biochemical and behavioral studies suggest that I-2, despite its assumed action as a PP1 inhibitor, is a positive regulator of PP1 function in memory formation. We found that inhibitor-2 acts as a memory suppressor through its positive functional influence on type I protein phosphatase (PP1), likely resulting in negative regulation of cAMP/calcium response element-binding protein (CREB) and CREB-activated gene expression. Our studies thus provide an interesting example of a molecule with an in vivo function that is opposite to its in vitro function. PP1 plays critical roles in many essential physiological functions such as cell mitosis and glucose metabolism in addition to its known role in memory formation. PP1 pharmacological inhibitors would thus not be able to serve as good therapeutic reagents because of its many targets. However, identification of PP1 inhibitor-2 as a critical

  10. S-Adenosylmethionine Prevents Mallory Denk Body Formation in Drug-Primed Mice by Inhibiting the Epigenetic Memory

    PubMed Central

    Li, Jun; Bardag-Gorce, Fawzia; Dedes, Jennifer; French, Barbara Alan; Amidi, Fataneh; Oliva, Joan; French, Samuel William

    2010-01-01

    In previous studies, microarray analysis of livers from mice fed diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridine decarboxylate (DDC) for 10 weeks followed by 1 month of drug withdrawal (drug-primed mice) and then 7 days of drug refeeding showed an increase in the expression of numerous genes referred to here as the molecular cellular memory. This memory predisposes the liver to Mallory Denk body formation in response to drug refeeding. In the current study, drug-primed mice were refed DDC with or without a daily dose of S-adenosylmethionine (SAMe; 4 g/kg of body weight). The livers were studied for evidence of oxidative stress and changes in gene expression with microarray analysis. SAMe prevented Mallory Denk body formation in vivo. The molecular cellular memory induced by DDC refeeding lasted for 4 months after drug withdrawal and was not manifest when SAMe was added to the diet in the in vivo experiment. Liver cells from drug-primed mice spontaneously formed Mallory Denk bodies in primary tissue cultures. SAMe prevented Mallory Denk bodies when it was added to the culture medium. Conclusion SAMe treatment prevented Mallory Denk body formation in vivo and in vitro by preventing the expression of a molecular cellular memory induced by prior DDC feeding. No evidence for the involvement of oxidative stress in induction of the memory was found. The molecular memory included the up-regulation of the expression of genes associated with the development of liver cell preneoplasia. PMID:18098314

  11. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.

    PubMed

    Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo

    2018-06-18

    Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.

  12. Maternal intake of cashew nuts accelerates reflex maturation and facilitates memory in the offspring.

    PubMed

    de Melo, Marília Ferreira Frazão Tavares; Pereira, Diego Elias; Sousa, Morgana Moura; Medeiros, Dilian Maise Ferreira; Lemos, Leanderson Tulio Marques; Madruga, Marta Suely; Santos, Nayane Medeiros; de Oliveira, Maria Elieidy Gomes; de Menezes, Camila Carolina; Soares, Juliana Késsia Barbosa

    2017-10-01

    Essential fatty acids, being indispensable during the stages of pregnancy, lactation and infancy influence the transmission of nerve impulses and brain function, and cashew nuts are a good source of these fatty acids. The objective of this study was to evaluate the effects of cashew nut consumption on reflex development, memory and profile of fatty acids of rat offspring treated during pregnancy and lactation. The animals were divided into three groups: Control (CONT), treated with 7% lipid derived from soybean oil; Normolipidic (NL) treated with 7% lipids derived from cashew nuts; and Hyperlipidic (HL) treated with 20% lipids derived from cashew nuts. Reflex ontogeny, Open-field habituation test and the Object Recognition Test (ORT) were assessed. The profile of fatty acids in the brain was carried out when the animals were zero, 21 and 60days old. Accelerated reflex maturation was observed in animals treated with cashew nuts (p<0.05). NL presented better memory in the Open-field habituation test; the NL and HL showed improvement of short-term memory in the ORT, but long term damage in HL (p<0.05). The results of the lipid profile of the brain at the end of the experiment showed an increase in levels of saturated fatty acids and less Docosahexaenoic acid (DHA) in animals of the HL. The data showed that maternal consumption of cashew nuts can accelerate reflex maturation and facilitate memory in offspring when offered in adequate quantities. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. GPR30 activation improves memory and facilitates DHPG-induced LTD in the hippocampal CA3 of middle-aged mice.

    PubMed

    Xu, Wen; Cao, Jian; Zhou, Yan; Wang, Lina; Zhu, Guoqi

    2018-03-01

    Reduced estrogen levels and decreased expression of related receptors are typical cerebral features of aging. The G protein-coupled estrogen receptor 1 (GPER1, also known as GPR30) is considered a novel therapeutic target for neurodegenerative diseases. In this study, we demonstrated that hippocampal GPR30 expression was reduced in middle-aged mice compared with young adult mice. GPR30 agonist G1 improved both fear and spatial memory in both male and female middle-aged mice, but not in young adult mice, which were blocked by the GPR30 antagonist G15. Interestingly, a group I metabotropic glutamate receptor (mGluR) agonist, 3,5-dihydroxyphenylglycine (DHPG)-induced long-term depression (LTD) in mossy fiber-cornu ammonis 3 (MF-CA3) synapses but not Schaffer collateral-CA1 (SC-CA1) synapses was facilitated in brain slices from G1-treated middle-aged mice. Long-term potentiation (LTP) in SC-CA1 synapses was not affected in slices from G1-treated mice. The effects of GPR30 activation on memory and DHPG-LTD in MF-CA3 synapses were further confirmed by viral expression of GPR30 in the CA3. The regulation of hippocampal synaptic plasticity by G1 treatment might be related to brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling, as G15 also blocked G1-induced activation of the BDNF-TrkB pathway. Moreover, we found that DHPG triggered GluA internalization in slices from G1-treated mice but not control mice. Pharmacological experiments showed that G1-mediated facilitation of DHPG-induced LTD in MF-CA3 synapses was dependent on protein kinase B (Akt), mammalian target of rapamycin (mTor), and TrkB signaling. In conclusion, our results indicate that GPR30 activation improves memory in middle-aged mice, likely through facilitating synaptic plasticity in the CA3. This study provides novel evidence that GPR30 activation can improve memory in middle-aged animals. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Tracking down the path of memory: eye scanpaths facilitate retrieval of visuospatial information.

    PubMed

    Bochynska, Agata; Laeng, Bruno

    2015-09-01

    Recent research points to a crucial role of eye fixations on the same spatial locations where an item appeared when learned, for the successful retrieval of stored information (e.g., Laeng et al. in Cognition 131:263-283, 2014. doi: 10.1016/j.cognition.2014.01.003 ). However, evidence about whether the specific temporal sequence (i.e., scanpath) of these eye fixations is also relevant for the accuracy of memory remains unclear. In the current study, eye fixations were recorded while looking at a checkerboard-like pattern. In a recognition session (48 h later), animations were shown where each square that formed the pattern was presented one by one, either according to the same, idiosyncratic, temporal sequence in which they were originally viewed by each participant or in a shuffled sequence although the squares were, in both conditions, always in their correct positions. Afterward, participants judged whether they had seen the same pattern before or not. Showing the elements serially according to the original scanpath's sequence yielded a significantly better recognition performance than the shuffled condition. In a forced fixation condition, where the gaze was maintained on the center of the screen, the advantage of memory accuracy for same versus shuffled scanpaths disappeared. Concluding, gaze scanpaths (i.e., the order of fixations and not simply their positions) are functional to visual memory and physical reenacting of the original, embodied, perception can facilitate retrieval.

  15. In sync: gamma oscillations and emotional memory.

    PubMed

    Headley, Drew B; Paré, Denis

    2013-11-21

    Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.

  16. Olfactory memory formation and the influence of reward pathway during appetitive learning by honey bees.

    PubMed

    Wright, Geraldine A; Mustard, Julie A; Kottcamp, Sonya M; Smith, Brian H

    2007-11-01

    Animals possess the ability to assess food quality via taste and via changes in state that occur after ingestion. Here, we investigate the extent to which a honey bee's ability to assess food quality affected the formation of association with an odor stimulus and the retention of olfactory memories associated with reward. We used three different conditioning protocols in which the unconditioned stimulus (food) was delivered as sucrose stimulation to the proboscis (mouthparts), the antennae or to both proboscis and antennae. All means of delivery of the unconditioned stimulus produced robust associative conditioning with an odor. However, the memory of a conditioned odor decayed at a significantly greater rate for subjects experiencing antennal-only stimulation after either multiple- or single-trial conditioning. Finally, to test whether the act of feeding on a reward containing sucrose during conditioning affected olfactory memory formation, we conditioned honey bees to associate an odor with antennal stimulation with sucrose followed by feeding on a water droplet. We observed that a honey bee's ability to recall the conditioned odor was not significantly different from that of subjects conditioned with an antennal-only sucrose stimulus. Our results show that stimulation of the sensory receptors on the proboscis and/or ingestion of the sucrose reward during appetitive olfactory conditioning are necessary for long-term memory formation.

  17. Interactions of nitric oxide with α2 -adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine.

    PubMed

    Shelkar, Gajanan P; Gakare, Sukanya G; Chakraborty, Suwarna; Dravid, Shashank M; Ugale, Rajesh R

    2016-09-01

    Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand of imidazoline receptors, agmatine exhibits high affinity for α-adrenoceptors, NOS and NMDA receptors. These substrates within the locus coeruleus (LC) are critically involved in learning and memory processes. The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or intra-LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor S-nitrosoglutathione, non-specific (L-NAME) and specific NOS inhibitors (L-NIL, 7-NI, L-NIO), the α2 -adrenoceptor antagonist (yohimbine) or the corresponding agonist (clonidine) were injected intra-LC before agmatine. Intra-hippocampal injections of the NMDA antagonist, MK-801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically. Agmatine (intra-LC or i.p.) facilitated memory retrieval in the IA test. S-nitrosoglutathione potentiated, while L-NAME and L-NIO decreased, these effects of agmatine. L-NIL and 7-NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clonidine attenuated, effects of agmatine within the LC. The effects of agmatine, S-nitrosoglutathione and yohimbine were blocked by intra-hippocampal MK-801. Agmatine increased the population of TH- and eNOS-immunoreactive elements in the LC. The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and noradrenergic pathways in the LC. © 2016 The British Pharmacological Society.

  18. Structural plasticity in hippocampal cells related to the facilitative effect of intracranial self-stimulation on a spatial memory task.

    PubMed

    Chamorro-López, Jacobo; Miguéns, Miguel; Morgado-Bernal, Ignacio; Kastanauskaite, Asta; Selvas, Abraham; Cabané-Cucurella, Alberto; Aldavert-Vera, Laura; DeFelipe, Javier; Segura-Torres, Pilar

    2015-12-01

    Posttraining intracranial self-stimulation (SS) in the lateral hypothalamus facilitates the acquisition and retention of several implicit and explicit memory tasks. Here, intracellular injections of Lucifer yellow were used to assess morphological changes in hippocampal neurons that might be specifically related to the facilitative posttraining SS effect upon the acquisition and retention of a distributed spatial task in the Morris water maze. We examined the structure, size and branching complexity of cornus ammonis 1 (CA1) cells, and the spine density of CA1 pyramidal neurons and granular cells of the dentate gyrus (DG). Animals that received SS after each acquisition session performed faster and better than Sham ones--an improvement that was also evident in a probe trial 3 days after the last training session. The neuromorphological analysis revealed an increment in the size and branching complexity in apical CA1 dendritic arborization in SS-treated subjects as compared with Sham animals. Furthermore, increased spine density was observed in the CA1 field in SS animals, whereas no effects were observed in DG cells. Our results support the hypothesis that the facilitating effect of SS on the acquisition and retention of a spatial memory task could be related to structural plasticity in CA1 hippocampal cells. (c) 2015 APA, all rights reserved).

  19. Processes Underlying Developmental Reversals in False-Memory Formation: Comment on Brainerd, Reyna, and Ceci (2008)

    ERIC Educational Resources Information Center

    Ghetti, Simona

    2008-01-01

    C. J. Brainerd, V. F. Reyna, and S. J. Ceci (2008) reviewed compelling evidence of developmental reversals in false-memory formation (i.e., younger children exhibit lower false-memory rates than do older children and adults) and proposed that this phenomenon depends on the development of gist processing (i.e., the ability to identify and process…

  20. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  1. Lesions affecting the right hippocampal formation differentially impair short-term memory of spatial and nonspatial associations.

    PubMed

    Braun, Mischa; Weinrich, Christiane; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Ploner, Christoph J

    2011-03-01

    Converging evidence from behavioral and imaging studies suggests that within the human medial temporal lobe (MTL) the hippocampal formation may be particularly involved in recognition memory of associative information. However, it is unclear whether the hippocampal formation processes all types of associations or whether there is a specialization for processing of associations involving spatial information. Here, we investigated this issue in six patients with postsurgical lesions of the right MTL affecting the hippocampal formation and in ten healthy controls. Subjects performed a battery of delayed match-to-sample tasks with two delays (900/5,000 ms) and three set sizes. Subjects were requested to remember either single features (colors, locations, shapes, letters) or feature associations (color-location, color-shape, color-letter). In the single-feature conditions, performance of patients did not differ from controls. In the association conditions, a significant delay-dependent deficit in memory of color-location associations was found. This deficit was largely independent of set size. By contrast, performance in the color-shape and color-letter conditions was normal. These findings support the hypothesis that a region within the right MTL, presumably the hippocampal formation, does not equally support all kinds of visual memory but rather has a bias for processing of associations involving spatial information. Recruitment of this region during memory tasks appears to depend both on processing type (associative/nonassociative) and to-be-remembered material (spatial/nonspatial). Copyright © 2010 Wiley-Liss, Inc.

  2. Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch

    NASA Astrophysics Data System (ADS)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Nayak, Alpana; Tsuruoka, Tohru; Gimzewski, James K.; Aono, Masakazu

    2011-11-01

    Memorization caused by the change in conductance in a Ag2S gap-type atomic switch was investigated as a function of the amplitude and width of input voltage pulses (Vin). The conductance changed little for the first few Vin, but the information of the input was stored as a redistribution of Ag-ions in the Ag2S, indicating the formation of sensory memory. After a certain number of Vin, the conductance increased abruptly followed by a gradual decrease, indicating the formation of short-term memory (STM). We found that the probability of STM formation depends strongly on the amplitude and width of Vin, which resembles the learning behavior of the human brain.

  3. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    PubMed Central

    Phan, Mimi L.; Bieszczad, Kasia M.

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129

  4. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    PubMed

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation.

    PubMed

    Liu, Ji-Hong; You, Qiang-Long; Wei, Mei-Dan; Wang, Qian; Luo, Zheng-Yi; Lin, Song; Huang, Lang; Li, Shu-Ji; Li, Xiao-Wen; Gao, Tian-Ming

    2015-12-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.

  6. NMDA receptor- and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation.

    PubMed

    Gupta-Agarwal, Swati; Jarome, Timothy J; Fernandez, Jordan; Lubin, Farah D

    2014-07-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory consolidation. Here we found increases in histone H3 lysine 9 dimethylation (H3K9me2) levels in the LA at 1 h following auditory fear conditioning, which continued to be temporally regulated up to 25 h following behavioral training. Additionally, we demonstrate that inhibiting the H3K9me2 histone lysine methyltransferase G9a (H/KMTs-G9a) in the LA impaired fear memory, while blocking the H3K9me2 histone lysine demethylase LSD1 (H/KDM-LSD1) enhanced fear memory, suggesting that H3K9me2 in the LA can bidirectionally regulate fear memory formation. Furthermore, we show that NMDAR activity differentially regulated the recruitment of H/KMT-G9a, H/KDM-LSD1, and subsequent H3K9me2 levels at a target gene promoter. This was largely regulated by GluN2B- but not GluN2A-containing NMDARs via ERK activation. Moreover, fear memory deficits associated with NMDAR or ERK blockade were successfully rescued through pharmacologically inhibiting LSD1, suggesting that enhancements of H3K9me2 levels within the LA can rescue fear memory impairments that result from hypofunctioning NMDARs or loss of ERK signaling. Together, the present study suggests that histone lysine methylation regulation in the LA via NMDAR-ERK-dependent signaling is involved in fear memory formation. © 2014 Gupta-Agarwal et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Exploring the influence of encoding format on subsequent memory.

    PubMed

    Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha

    2017-05-01

    Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.

  8. Genome-wide chromatin and gene expression profiling during memory formation and maintenance in adult mice.

    PubMed

    Centeno, Tonatiuh Pena; Shomroni, Orr; Hennion, Magali; Halder, Rashi; Vidal, Ramon; Rahman, Raza-Ur; Bonn, Stefan

    2016-10-11

    Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results. The data provides a blueprint of the gene regulatory network underlying short- and long-term memory formation and maintenance. This 'healthy' gene regulatory network of learning can now be compared to changes in neurological or psychiatric diseases, providing mechanistic insights into brain disorders and highlighting potential therapeutic avenues.

  9. Sex-Dependent Up-Regulation of Two Splicing Factors, Psf and Srp20, during Hippocampal Memory Formation

    ERIC Educational Resources Information Center

    Antunes-Martins, Ana; Mizuno, Keiko; Irvine, Elaine E.; Lepicard, Eve M.; Giese, K. Peter

    2007-01-01

    Gene transcription is required for long-term memory (LTM) formation. LTM formation is impaired in a male-specific manner in mice lacking either of the two Ca[superscript 2+] / calmodulin-dependent kinase kinase ("Camkk") genes. Since altered transcription was suggested to cause these impairments in LTM formation, we used microarrays to screen for…

  10. The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    PubMed Central

    Lim, Sung-Joo; Wöstmann, Malte; Geweke, Frederik; Obleser, Jonas

    2018-01-01

    Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities. PMID:29520246

  11. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells.

    PubMed

    Law, Robert; Levin, Michael

    2015-10-15

    Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for

  12. Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory.

    PubMed

    Friedrich, Anke; Thomas, Ulf; Müller, Uli

    2004-05-05

    Learning and memory formation in intact animals is generally studied under defined parameters, including the control of feeding. We used associative olfactory conditioning of the proboscis extension response in honeybees to address effects of feeding status on processes of learning and memory formation. Comparing groups of animals with different but defined feeding status at the time of conditioning reveals new and characteristic features in memory formation. In animals fed 18 hr earlier, three-trial conditioning induces a stable memory that consists of different phases: a mid-term memory (MTM), translation-dependent early long-term memory (eLTM; 1-2 d), and a transcription-dependent late LTM (lLTM; > or =3 d). Additional feeding of a small amount of sucrose 4 hr before conditioning leads to a loss of all of these memory phases. Interestingly, the basal activity of the cAMP-dependent protein kinase A (PKA), a key player in LTM formation, differs in animals with different satiation levels. Pharmacological rescue of the low basal PKA activity in animals fed 4 hr before conditioning points to a specific function of cAMP-PKA cascade in mediating satiation-dependent memory formation. An increase in PKA activity during conditioning rescues only transcription-dependent lLTM; acquisition, MTM, and eLTM are still impaired. Thus, during conditioning, the cAMP-PKA cascade mediates the induction of the transcription-dependent lLTM, depending on the satiation level. This result provides the first evidence for a central and distinct function of the cAMP-PKA cascade connecting satiation level with learning.

  13. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.)

    PubMed Central

    Iino, Shiori; Kubo, Takeo

    2018-01-01

    ABSTRACT Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe), whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC) in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect. PMID:29330349

  14. Learning Induces Sonic Hedgehog Signaling in the Amygdala which Promotes Neurogenesis and Long-Term Memory Formation

    PubMed Central

    Hung, Hui-Chi; Hsiao, Ya-Hsin

    2015-01-01

    Background: It is known that neurogenesis occurs throughout the life mostly in the subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle. We investigated whether neurogenesis occurred in the amygdala and its function in fear memory formation. Methods: For detection of newborn neurons, mice were injected intraperitoneally with 5-bromo-2’-deoxyuridine (BrdU) 2h before receiving 15 tone–footshock pairings, and newborn neurons were analyzed 14 and 42 days after training. To determine the relationship between neurogenesis and memory formation, mice were given a proliferation inhibitor methylazoxymethanol (MAM) or a DNA synthesis inhibitor cytosine arabinoside (Ara-C). To test whether sonic hedgehog (Shh) signaling was required for neurogenesis, Shh-small hairpin–interfering RNA (shRNA) was inserted into a retroviral vector (Retro-Shh-shRNA). Results: The number of BrdU+/Neuronal nuclei (NeuN)+ cells was significantly higher in the conditioned mice, suggesting that association of tone with footshock induced neurogenesis. MAM and Ara-C markedly reduced neurogenesis and impaired fear memory formation. Shh, its receptor patched 1 (Ptc1), and transcription factor Gli1 protein levels increased at 1 day and returned to baseline at 7 days after fear conditioning. Retro-Shh-shRNA, which knocked down Shh specifically in the mitotic neurons, reduced the number of BrdU+/NeuN+ cells and decreased freezing responses. Conclusions: These results suggest that fear learning induces Shh signaling activation in the amygdala, which promotes neurogenesis and fear memory formation. PMID:25522410

  15. A kinase-dependent feedforward loop affects CREBB stability and long term memory formation.

    PubMed

    Lee, Pei-Tseng; Lin, Guang; Lin, Wen-Wen; Diao, Fengqiu; White, Benjamin H; Bellen, Hugo J

    2018-02-23

    In Drosophila , long-term memory (LTM) requires the cAMP-dependent transcription factor CREBB, expressed in the mushroom bodies (MB) and phosphorylated by PKA. To identify other kinases required for memory formation, we integrated Trojan exons encoding T2A-GAL4 into genes encoding putative kinases and selected for genes expressed in MB. These lines were screened for learning/memory deficits using UAS-RNAi knockdown based on an olfactory aversive conditioning assay. We identified a novel, conserved kinase, Meng-Po ( MP , CG11221 , SBK1 in human), the loss of which severely affects 3 hr memory and 24 hr LTM, but not learning. Remarkably, memory is lost upon removal of the MP protein in adult MB but restored upon its reintroduction. Overexpression of MP in MB significantly increases LTM in wild-type flies showing that MP is a limiting factor for LTM. We show that PKA phosphorylates MP and that both proteins synergize in a feedforward loop to control CREBB levels and LTM. key words: Drosophila, Mushroom bodies, SBK1, deGradFP, T2A-GAL4, MiMIC.

  16. Impact of exogenous cortisol on the formation of intrusive memories in healthy women.

    PubMed

    Rombold, Felicitas; Wingenfeld, Katja; Renneberg, Babette; Schwarzkopf, Friederike; Hellmann-Regen, Julian; Otte, Christian; Roepke, Stefan

    2016-12-01

    Stress hormones such as cortisol are involved in modulating emotional memory. However, little is known about the influence of cortisol on the formation of intrusive memories after a traumatic event. The aim of this study was to examine whether cortisol levels during encoding and consolidation of an intrusion-inducing trauma film paradigm would influence subsequent intrusion formation. In an experimental, double-blind, placebo-controlled study a trauma film paradigm was used to induce intrusions in 60 healthy women. Participants received a single dose of either 20 mg hydrocortisone or placebo before watching a trauma film. Salivary cortisol and alpha-amylase as well as blood pressure were measured during the experiment. The consecutive number of intrusions, the vividness of intrusions, and the degree of distress evoked by the intrusions resulting from the trauma film were assessed throughout the following seven days. Hydrocortisone administration before the trauma film resulted in increased salivary cortisol levels but did not affect the consecutive number of intrusions, the vividness of intrusions, and the degree of distress evoked by the intrusions throughout the following week. These results indicate that pharmacologically increased cortisol levels during an experimental trauma film paradigm do not influence consecutive intrusive memories. Current data do not support a prominent role of exogenous cortisol on intrusive memories, at least in healthy young women after a relatively mild trauma equivalent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Interactions of nitric oxide with α2‐adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine

    PubMed Central

    Shelkar, Gajanan P; Gakare, Sukanya G; Chakraborty, Suwarna; Dravid, Shashank M

    2016-01-01

    Background and Purpose Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand of imidazoline receptors, agmatine exhibits high affinity for α‐adrenoceptors, NOS and NMDA receptors. These substrates within the locus coeruleus (LC) are critically involved in learning and memory processes. Experimental Approach The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or intra‐LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor S‐nitrosoglutathione, non‐specific (L‐NAME) and specific NOS inhibitors (L‐NIL, 7‐NI, L‐NIO), the α2‐adrenoceptor antagonist (yohimbine) or the corresponding agonist (clonidine) were injected intra‐LC before agmatine. Intra‐hippocampal injections of the NMDA antagonist, MK‐801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically. Key Results Agmatine (intra‐LC or i.p.) facilitated memory retrieval in the IA test. S‐nitrosoglutathione potentiated, while L‐NAME and L‐NIO decreased, these effects of agmatine. L‐NIL and 7‐NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clonidine attenuated, effects of agmatine within the LC. The effects of agmatine, S‐nitrosoglutathione and yohimbine were blocked by intra‐hippocampal MK‐801. Agmatine increased the population of TH‐ and eNOS‐immunoreactive elements in the LC. Conclusions and Implications The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and noradrenergic pathways in the LC. PMID:27273730

  18. Trichostatin A (TSA) facilitates formation of partner preference in male prairie voles (Microtus ochrogaster).

    PubMed

    Duclot, F; Wang, H; Youssef, C; Liu, Y; Wang, Z; Kabbaj, M

    2016-05-01

    In the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) genes expression in the nucleus accumbens (NAcc). In the present study, we tested the hypothesis that TSA treatment also facilitates partner preference formation and alters OTR and V1aR genes expression in the NAcc in male prairie voles. We thus observed that central injection of TSA dose-dependently promoted the formation of partner preference in the absence of mating in male prairie voles. Interestingly, TSA treatment up-regulated OTR, but not V1aR, gene expression in the NAcc similarly as they were affected by mating - an essential process for naturally occurring partner preference. These data, together with others, not only indicate the involvement of epigenetic events but also the potential role of NAcc oxytocin in the regulation of partner preference in both male and female prairie voles. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. How memory of direct animal interactions can lead to territorial pattern formation.

    PubMed

    Potts, Jonathan R; Lewis, Mark A

    2016-05-01

    Mechanistic home range analysis (MHRA) is a highly effective tool for understanding spacing patterns of animal populations. It has hitherto focused on populations where animals defend their territories by communicating indirectly, e.g. via scent marks. However, many animal populations defend their territories using direct interactions, such as ritualized aggression. To enable application of MHRA to such populations, we construct a model of direct territorial interactions, using linear stability analysis and energy methods to understand when territorial patterns may form. We show that spatial memory of past interactions is vital for pattern formation, as is memory of 'safe' places, where the animal has visited but not suffered recent territorial encounters. Additionally, the spatial range over which animals make decisions to move is key to understanding the size and shape of their resulting territories. Analysis using energy methods, on a simplified version of our system, shows that stability in the nonlinear system corresponds well to predictions of linear analysis. We also uncover a hysteresis in the process of territory formation, so that formation may depend crucially on initial space-use. Our analysis, in one dimension and two dimensions, provides mathematical groundwork required for extending MHRA to situations where territories are defended by direct encounters. © 2016 The Author(s).

  20. Shaping memory consolidation via targeted memory reactivation during sleep.

    PubMed

    Cellini, Nicola; Capuozzo, Alessandra

    2018-05-15

    Recent studies have shown that the reactivation of specific memories during sleep can be modulated using external stimulation. Specifically, it has been reported that matching a sensory stimulus (e.g., odor or sound cue) with target information (e.g., pairs of words, pictures, and motor sequences) during wakefulness, and then presenting the cue alone during sleep, facilitates memory of the target information. Thus, presenting learned cues while asleep may reactivate related declarative, procedural, and emotional material, and facilitate the neurophysiological processes underpinning memory consolidation in humans. This paradigm, which has been named targeted memory reactivation, has been successfully used to improve visuospatial and verbal memories, strengthen motor skills, modify implicit social biases, and enhance fear extinction. However, these studies also show that results depend on the type of memory investigated, the task employed, the sensory cue used, and the specific sleep stage of stimulation. Here, we present a review of how memory consolidation may be shaped using noninvasive sensory stimulation during sleep. © 2018 New York Academy of Sciences.

  1. The 'missing man' formation concluded the memorial for the STS 51-L crew

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The 'missing man' formation concluded the memorial services at JSC for the STS 51-L crew. Four NASA T-38 jet aircraft were used for the symbolic flight. A small portion of the crowd is visible in the bottom portion of the frame.

  2. Slow oscillations orchestrating fast oscillations and memory consolidation.

    PubMed

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Smad4 SUMOylation is essential for memory formation through upregulation of the skeletal myopathy gene TPM2.

    PubMed

    Hsu, Wei L; Ma, Yun L; Liu, Yen C; Lee, Eminy H Y

    2017-11-28

    Smad4 is a critical effector of TGF-β signaling that regulates a variety of cellular functions. However, its role in the brain has rarely been studied. Here, we examined the molecular mechanisms underlying the post-translational regulation of Smad4 function by SUMOylation, and its role in spatial memory formation. In the hippocampus, Smad4 is SUMOylated by the E3 ligase PIAS1 at Lys-113 and Lys-159. Both spatial training and NMDA injection enhanced Smad4 SUMOylation. Inhibition of Smad4 SUMOylation impaired spatial learning and memory in rats by downregulating TPM2, a gene associated with skeletal myopathies. Similarly, knockdown of TPM2 expression impaired spatial learning and memory, while TPM2 mRNA and protein expression increased after spatial training. Among the TPM2 mutations associated with skeletal myopathies, the TPM2E122K mutation was found to reduce TPM2 expression and impair spatial learning and memory in rats. We have identified a novel role of Smad4 SUMOylation and TPM2 in learning and memory formation. These results suggest that patients with skeletal myopathies who carry the TPM2E122K mutation may also have deficits in learning and memory functions.

  4. Stimulation of the noradrenergic system during memory formation impairs extinction learning but not the disruption of reconsolidation.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2012-04-01

    The noradrenergic system plays a critical role in the 'consolidation' of emotional memory. If we are to target 'reconsolidation' in patients with anxiety disorders, the noradrenergic strengthening of fear memory should not impair the disruption of reconsolidation. In Experiment I, we addressed this issue using a differential fear conditioning procedure allowing selective reactivation of one of two fear associations. First, we strengthened fear memory by administering an α(2)-adrenergic receptor antagonist (ie, yohimbine HCl; double-blind placebo-controlled study) 30 min before acquisition (time for peak value yohimbine HCl <1 h). Next, the reconsolidation of one of the fear associations was manipulated by administering a β-adrenergic receptor antagonist (ie, propranolol HCl) 90 min before its selective reactivation (time for peak value propranolol HCl <2 h). In Experiment II, we administered propranolol HCl after reactivation of the memory to rule out a possible effect of the pharmacological manipulation on the memory retrieval itself. The excessive release of noradrenaline during memory formation not only delayed the process of extinction 48 h later, but also triggered broader fear generalization. Yet, the β-adrenergic receptor blocker during reconsolidation selectively 'neutralized' the fear-arousing aspects of the noradrenergic-strengthened memory and undermined the generalization of fear. We observed a similar reduction in fear responding when propranolol HCl was administered after reactivation of the memory. The present findings demonstrate the involvement of noradrenergic modulation in the formation as well as generalization of human fear memory. Given that the noradrenergic strengthening of fear memory impaired extinction learning but not the disruption of reconsolidation, our findings may have implications for the treatment of anxiety disorders.

  5. In sync: gamma oscillations and emotional memory

    PubMed Central

    Headley, Drew B.; Paré, Denis

    2013-01-01

    Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35–120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory. PMID:24319416

  6. Microstructural changes in memory and reticular formation neural pathway after simple concussion☆

    PubMed Central

    Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming

    2012-01-01

    Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions. PMID:25538741

  7. Microstructural changes in memory and reticular formation neural pathway after simple concussion.

    PubMed

    Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming

    2012-10-05

    Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions.

  8. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.

    PubMed

    Jiang, Hao; Stewart, Derek A

    2017-05-17

    Introducing dopants is an important way to tailor and improve electronic properties of transition metal oxides used as high-k dielectric thin films and resistance switching layers in leading memory technologies, such as dynamic and resistive random access memory (ReRAM). Ta 2 O 5 has recently received increasing interest because Ta 2 O 5 -based ReRAM demonstrates high switching speed, long endurance, and low operating voltage. However, advances in optimizing device characteristics with dopants have been hindered by limited and contradictory experiments in this field. We report on a systematic study on how various metal dopants affect oxygen vacancy formation in crystalline and amorphous Ta 2 O 5 from first principles. We find that isoelectronic dopants and weak n-type dopants have little impact on neutral vacancy formation energy and that p-type dopants can lower the formation energy significantly by introducing holes into the system. In contrast, n-type dopants have a deleterious effect and actually increase the formation energy for charged oxygen vacancies. Given the similar doping trend reported for other binary transition metal oxides, this doping trend should be universally valid for typical binary transition metal oxides. Based on this guideline, we propose that p-type dopants (Al, Hf, Zr, and Ti) can lower the forming/set voltage and improve retention properties of Ta 2 O 5 ReRAM.

  9. CD22 is required for formation of memory B cell precursors within germinal centers.

    PubMed

    Chappell, Craig P; Draves, Kevin E; Clark, Edward A

    2017-01-01

    CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens.

  10. CD22 is required for formation of memory B cell precursors within germinal centers

    PubMed Central

    Chappell, Craig P.; Draves, Kevin E.

    2017-01-01

    CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens. PMID:28346517

  11. Mental Schemas Hamper Memory Storage of Goal-Irrelevant Information

    PubMed Central

    Sweegers, C. C. G.; Coleman, G. A.; van Poppel, E. A. M.; Cox, R.; Talamini, L. M.

    2015-01-01

    Mental schemas exert top-down control on information processing, for instance by facilitating the storage of schema-related information. However, given capacity-limits and competition in neural network processing, schemas may additionally exert their effects by suppressing information with low momentary relevance. In particular, when existing schemas suffice to guide goal-directed behavior, this may actually reduce encoding of the redundant sensory input, in favor of gaining efficiency in task performance. The present experiment set out to test this schema-induced shallow encoding hypothesis. Our approach involved a memory task in which faces had to be coupled to homes. For half of the faces the responses could be guided by a pre-learned schema, for the other half of the faces such a schema was not available. Memory storage was compared between schema-congruent and schema-incongruent items. To characterize putative schema effects, memory was assessed both with regard to visual details and contextual aspects of each item. The depth of encoding was also assessed through an objective neural measure: the parietal old/new ERP effect. This ERP effect, observed between 500–800 ms post-stimulus onset, is thought to reflect the extent of recollection: the retrieval of a vivid memory, including various contextual details from the learning episode. We found that schema-congruency induced substantial impairments in item memory and even larger ones in context memory. Furthermore, the parietal old/new ERP effect indicated higher recollection for the schema-incongruent than the schema-congruent memories. The combined findings indicate that, when goals can be achieved using existing schemas, this can hinder the in-depth processing of novel input, impairing the formation of perceptually detailed and contextually rich memory traces. Taking into account both current and previous findings, we suggest that schemas can both positively and negatively bias the processing of sensory

  12. Does scene context always facilitate retrieval of visual object representations?

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2011-04-01

    An object-to-scene binding hypothesis maintains that visual object representations are stored as part of a larger scene representation or scene context, and that scene context facilitates retrieval of object representations (see, e.g., Hollingworth, Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 58-69, 2006). Support for this hypothesis comes from data using an intentional memory task. In the present study, we examined whether scene context always facilitates retrieval of visual object representations. In two experiments, we investigated whether the scene context facilitates retrieval of object representations, using a new paradigm in which a memory task is appended to a repeated-flicker change detection task. Results indicated that in normal scene viewing, in which many simultaneous objects appear, scene context facilitation of the retrieval of object representations-henceforth termed object-to-scene binding-occurred only when the observer was required to retain much information for a task (i.e., an intentional memory task).

  13. Reward signal in a recurrent circuit drives appetitive long-term memory formation.

    PubMed

    Ichinose, Toshiharu; Aso, Yoshinori; Yamagata, Nobuhiro; Abe, Ayako; Rubin, Gerald M; Tanimoto, Hiromu

    2015-11-17

    Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity.

  14. Rottlerin impairs the formation and maintenance of psychostimulant-supported memory.

    PubMed

    Liao, Tien You; Tzeng, Wen-Yu; Wu, Hsin-Hua; Cherng, Chianfang G; Wang, Ching-Yi; Hu, Sherry S-J; Yu, Lung

    2016-04-01

    Since brain proteins such as protein kinase C (PKC), brain-derived neurotrophic factor (BDNF), and mammalian target of rapamycin (mTOR) are involved in the establishment and maintenance of psychostimulant memory, we sought to determine if systemic treatment with rottlerin, a natural compound affecting all these proteins, may modulate stimulant-supported memory. Stimulant-induced conditioned place preference (CPP) was used in modeling stimulant-supported memory. Three cocaine (10 mg/kg; COC) or three methamphetamine (1 mg/kg; MA) conditioning trials reliably established the drug-induced CPP in male C57BL/6 mice. An intra-peritoneal rottlerin injection (5 mg/kg) at least 24 h prior to the first COC or first MA conditioning trial prevented the establishment of CPP. Following the establishment of the COC- or MA-induced CPP, saline conditioning trial was used to extinguish the CPP. Rottlerin (5 mg/kg, intra-peritoneal (i.p.)) administered 20 h prior to the first saline conditioning trial diminished subsequent drug- and stressor-primed reinstatement of the extinguished CPP. Rottlerin (5 mg/kg, i.p.) produced a fast-onset and long-lasting increase in hippocampal BDNF levels. However, treatment with a BDNF tropomyosin receptor kinase B (TrkB) receptor antagonist, K252a (5 μg/kg), did not affect rottlerin's suppressing effect on COC-induced CPP and treatment with 7,8-dihydroxyflavone (10 mg/kg x 6, 7,8-DHF), a selective TrkB agonist, prior to each conditioning trial did not affect COC-induced CPP. These results suggest that systemic rottlerin treatment may impair the formation of COC- and MA-supported memory. Importantly, such a treatment may advance our understanding of the underlying mechanism through which extinction training resulted in the "forgetting" of the COC- and MA-supported memory.

  15. Picornavirus 2A protease regulates stress granule formation to facilitate viral translation

    PubMed Central

    Yang, Xiaodan; Hu, Zhulong; Fan, Shanshan; Zhang, Qiang; Zhong, Yi; Guo, Dong; Qin, Yali

    2018-01-01

    Stress granules (SGs) contain stalled messenger ribonucleoprotein complexes and are related to the regulation of mRNA translation. Picornavirus infection can interfere with the formation of SGs. However, the detailed molecular mechanisms and functions of picornavirus-mediated regulation of SG formation are not clear. Here, we found that the 2A protease of a picornavirus, EV71, induced atypical stress granule (aSG), but not typical stress granule (tSG), formation via cleavage of eIF4GI. Furthermore, 2A was required and sufficient to inhibit tSGs induced by EV71 infection, sodium arsenite, or heat shock. Infection of 2A protease activity-inactivated recombinant EV71 (EV71-2AC110S) failed to induce aSG formation and only induced tSG formation, which is PKR and eIF2α phosphorylation-dependent. By using a Renilla luciferase mRNA reporter system and RNA fluorescence in situ hybridization assay, we found that EV71-induced aSGs were beneficial to viral translation through sequestering only cellular mRNAs, but not viral mRNAs. In addition, we found that the 2A protease of other picornaviruses such as poliovirus and coxsackievirus also induced aSG formation and blocked tSG formation. Taken together, our results demonstrate that, on one hand, EV71 infection induces tSG formation via the PKR-eIF2α pathway, and on the other hand, 2A, but not 3C, blocks tSG formation. Instead, 2A induces aSG formation by cleaving eIF4GI to sequester cellular mRNA but release viral mRNA, thereby facilitating viral translation. PMID:29415027

  16. How the bimodal format of presentation affects working memory: an overview.

    PubMed

    Mastroberardino, Serena; Santangelo, Valerio; Botta, Fabiano; Marucci, Francesco S; Olivetti Belardinelli, Marta

    2008-03-01

    The best format in which information that has to be recalled is presented has been investigated in several studies, which focused on the impact of bimodal stimulation on working memory performance. An enhancement of participant's performance in terms of correct recall has been repeatedly found, when bimodal formats of presentation (i.e., audiovisual) were compared to unimodal formats (i.e, either visual or auditory), in providing implications for multimedial learning. Several theoretical frameworks have been suggested in order to account for the bimodal advantage, ranging from those emphasizing early stages of processing (such as automatic alerting effects or multisensory integration processes) to those centred on late stages of processing (as postulated by the dual coding theory). The aim of this paper is to review previous contributions to this topic, providing a comprehensive theoretical framework, which is updated by the latest empirical studies.

  17. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.

    PubMed

    Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M

    2016-11-15

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Benefits from an autobiographical memory facilitation programme in relapsing-remitting multiple sclerosis patients: a clinical and neuroimaging study.

    PubMed

    Ernst, Alexandra; Sourty, Marion; Roquet, Daniel; Noblet, Vincent; Gounot, Daniel; Blanc, Frédéric; de Seze, Jérôme; Manning, Liliann

    2016-10-09

    While the efficacy of mental visual imagery (MVI) to alleviate autobiographical memory (AM) impairment in multiple sclerosis (MS) patients has been documented, nothing is known about the brain changes sustaining that improvement. To explore this issue, 20 relapsing-remitting MS patients showing AM impairment were randomly assigned to two groups, experimental (n = 10), who underwent the MVI programme, and control (n = 10), who followed a sham verbal programme. Besides the stringent AM assessment, the patients underwent structural and functional MRI sessions, consisting in retrieving personal memories, within a pre-/post-facilitation study design. Only the experimental group showed a significant AM improvement in post-facilitation, accompanied by changes in brain activation (medial and lateral frontal regions), functional connectivity (posterior brain regions), and grey matter volume (parahippocampal gyrus). Minor activations and functional connectivity changes were observed in the control group. The MVI programme improved AM in MS patients leading to functional and structural changes reflecting (1) an increase reliance on brain regions sustaining a self-referential process; (2) a decrease of those reflecting an effortful research process; and (3) better use of neural resources in brain regions sustaining MVI. Functional changes reported in the control group likely reflected ineffective attempts to use the sham strategy in AM.

  19. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    PubMed

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p < 0.001) time to navigate the maze over the three trials thereby showing an improvement with training. In both sound-stimulated groups, the total time taken to reach the target decreased significantly (p < 0.01) in comparison to the unstimulated control group, indicating the facilitation of spatial learning. However, this decline was more at 24 h than at later posthatch ages. When tested for memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p < 0.001) time to traverse the maze, suggesting a temporary impairment in their retention of the learnt task. In both sound-stimulated groups at 24 h, the plasma corticosterone levels were significantly decreased (p < 0.001) and increased thereafter at 72 h (p < 0.001) and 120 h which may contribute to the differential response in spatial learning. Thus, prenatal auditory stimulation with either species-specific or complex rhythmic music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  20. Autophagy is essential for effector CD8 T cell survival and memory formation

    PubMed Central

    Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi

    2014-01-01

    The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489

  1. Does pointing facilitate the recall of serial positions in visuospatial working memory?

    PubMed

    Spataro, Pietro; Marques, Valeria R S; Longobardi, Emiddia; Rossi-Arnaud, Clelia

    2015-09-01

    The present study examined the question of whether pointing enhances the serial recall of visuospatial positions. Thirty-six participants were presented with 40 target arrays varying in length from five to eight items, with each position appearing sequentially in red for 1 s. The task was to reproduce the order of presentation of the positions on a blank matrix. Results showed that, for five-, six-, and seven-item arrays, order memory was significantly better in the passive view than in the pointing condition, and the serial position curves displayed both recency and priority effects. Interestingly, the advantage of the passive-view condition was more pronounced in the early than in the late positions. For eight-item arrays, no significant differences were found between the passive view and the pointing conditions. Overall, the present data provide no evidence in support of the view that pointing facilitates the recall of serial positions.

  2. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.

    PubMed

    Rogers, Jake; Churilov, Leonid; Hannan, Anthony J; Renoir, Thibault

    2017-03-01

    Using a Matlab classification algorithm, we demonstrate that a highly salient distal cue array is required for significantly increased likelihoods of spatial search strategy selection during Morris water maze spatial learning. We hypothesized that increased spatial search strategy selection during spatial learning would be the key measure demonstrating the formation of an allocentric map to the escape location. Spatial memory, as indicated by quadrant preference for the area of the pool formally containing the hidden platform, was assessed as the main measure that this allocentric map had formed during spatial learning. Our C57BL/6J wild-type (WT) mice exhibit quadrant preference in the highly salient cue paradigm but not the low, corresponding with a 120% increase in the odds of a spatial search strategy selection during learning. In contrast, quadrant preference remains absent in serotonin 1A receptor (5-HT 1A R) knockout (KO) mice, who exhibit impaired search strategy selection during spatial learning. Additionally, we also aimed to assess the impact of the quality of the distal cue array on the spatial learning curves of both latency to platform and path length using mixed-effect regression models and found no significant associations or interactions. In contrast, we demonstrated that the spatial learning curve for search strategy selection was absent during training in the low saliency paradigm. Therefore, we propose that allocentric search strategy selection during spatial learning is the learning parameter in mice that robustly indicates the formation of a cognitive map for the escape goal location. These results also suggest that both latency to platform and path length spatial learning curves do not discriminate between allocentric and egocentric spatial learning and do not reliably predict spatial memory formation. We also show that spatial memory, as indicated by the absolute time in the quadrant formerly containing the hidden platform alone (without

  3. Neuroanatomy of episodic and semantic memory in humans: a brief review of neuroimaging studies.

    PubMed

    García-Lázaro, Haydée G; Ramirez-Carmona, Rocio; Lara-Romero, Ruben; Roldan-Valadez, Ernesto

    2012-01-01

    One of the most basic functions in every individual and species is memory. Memory is the process by which information is saved as knowledge and retained for further use as needed. Learning is a neurobiological phenomenon by which we acquire certain information from the outside world and is a precursor to memory. Memory consists of the capacity to encode, store, consolidate, and retrieve information. Recently, memory has been defined as a network of connections whose function is primarily to facilitate the long-lasting persistence of learned environmental cues. In this review, we present a brief description of the current classifications of memory networks with a focus on episodic memory and its anatomical substrate. We also present a brief review of the anatomical basis of memory systems and the most commonly used neuroimaging methods to assess memory, illustrated with magnetic resonance imaging images depicting the hippocampus, temporal lobe, and hippocampal formation, which are the main brain structures participating in memory networks.

  4. Influence of reward motivation on human declarative memory.

    PubMed

    Miendlarzewska, Ewa A; Bavelier, Daphne; Schwartz, Sophie

    2016-02-01

    Motivational relevance can prioritize information for memory encoding and consolidation based on reward value. In this review, we pinpoint the possible psychological and neural mechanisms by which reward promotes learning, from guiding attention to enhancing memory consolidation. We then discuss how reward value can spill-over from one conditioned stimulus to a non-conditioned stimulus. Such generalization can occur across perceptually similar items or through more complex relations, such as associative or logical inferences. Existing evidence suggests that the neurotransmitter dopamine boosts the formation of declarative memory for rewarded information and may also control the generalization of reward values. In particular, temporally-correlated activity in the hippocampus and in regions of the dopaminergic circuit may mediate value-based decisions and facilitate cross-item integration. Given the importance of generalization in learning, our review points to the need to study not only how reward affects later memory but how learned reward values may generalize to related representations and ultimately alter memory structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants

    PubMed Central

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang

    2015-01-01

    Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. PMID:25904854

  6. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation.

    PubMed

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano; Alviña, Karina; Zhang, Yuxiang; Dushko, Margaret; Ku, Taeyun; Zemoura, Khaled; Rich, David; Garcia-Dominguez, Dario; Hung, Matthew; Yelhekar, Tushar D; Sørensen, Andreas Toft; Xu, Weifeng; Chung, Kwanghun; Castillo, Pablo E; Lin, Yingxi

    2018-03-07

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    PubMed Central

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  8. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    PubMed

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  9. β-Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways

    PubMed Central

    Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M

    2017-01-01

    Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations. PMID:27762270

  10. β-Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways.

    PubMed

    Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M

    2017-03-01

    Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations.

  11. Involvement of the Anterior Cingulate Cortex in Formation, Consolidation, and Reconsolidation of Recent and Remote Contextual Fear Memory

    ERIC Educational Resources Information Center

    Einarsson, Einar O.; Nader, Karim

    2012-01-01

    It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that…

  12. Well, slap my thigh: expression of surprise facilitates memory of surprising material.

    PubMed

    Parzuchowski, Michal; Szymkow-Sudziarska, Aleksandra

    2008-06-01

    Two studies examined the general prediction that one's emotional expression should facilitate memory for material that matches the expression. The authors focused on specific facial expressions of surprise. In the first study, participants who were mimicking a surprised expression showed better recall for the surprising words and worse recall for neutral words, relative to those who were mimicking a neutral expression. Study 2 replicated the results of Study 1, showing that participants who mimicked a surprised expression recalled more words spoken in a surprising manner compared with those that sounded neutral or sad. Conversely, participants who mimicked sad facial expressions showed greater recall for sad than neutral or surprising words. The results provide evidence of the importance of matching the emotional valence of the recall content to the facial expression of the recaller during the memorization period. (PsycINFO Database Record (c) 2008 APA, all rights reserved). (Copyright) 2008 APA, all rights reserved.

  13. CASK and CaMKII function in the mushroom body α'/β' neurons during Drosophila memory formation.

    PubMed

    Malik, Bilal R; Gillespie, John Michael; Hodge, James J L

    2013-01-01

    Ca(2+)/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch to a calcium (Ca(2+)) independent constitutively active state after autophosphorylation at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM) binding region once autophosphorylated, prevent subsequent CaM binding and inactivates the kinase during synaptic plasticity and memory. Recently a synaptic molecule called Ca(2+)/CaM-dependent serine protein kinase (CASK) has been shown to control both sets of CaMKII autophosphorylation events and hence is well poised to be a key regulator of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α'/β' subset of mushroom body neurons being required for memory. Likewise directly changing the levels of CaMKII autophosphorylation in these neurons removed MTM and LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental as their manipulation just in the adult α'/β' neurons was sufficient to remove memory. Overexpression of CASK or CaMKII in the α'/β' neurons also occluded MTM and LTM. Overexpression of either Drosophila or human CASK in the α'/β' neurons of the CASK mutant completely rescued memory, confirming that CASK signaling in α'/β' neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. At the cellular level CaMKII overexpression in the α'/β' neurons increased activity dependent Ca(2+) responses while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a phosphomimetic CaMKII T287D transgene in the α'/β' similarly decreased Ca(2+) signaling. Our results are consistent with CASK regulating CaMKII autophosphorylation in a pathway required for

  14. Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.

    PubMed

    Lubin, Farah D

    2011-07-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The mysteries of remote memory.

    PubMed

    Albo, Zimbul; Gräff, Johannes

    2018-03-19

    Long-lasting memories form the basis of our identity as individuals and lie central in shaping future behaviours that guide survival. Surprisingly, however, our current knowledge of how such memories are stored in the brain and retrieved, as well as the dynamics of the circuits involved, remains scarce despite seminal technical and experimental breakthroughs in recent years. Traditionally, it has been proposed that, over time, information initially learnt in the hippocampus is stored in distributed cortical networks. This process-the standard theory of memory consolidation-would stabilize the newly encoded information into a lasting memory, become independent of the hippocampus, and remain essentially unmodifiable throughout the lifetime of the individual. In recent years, several pieces of evidence have started to challenge this view and indicate that long-lasting memories might already ab ovo be encoded, and subsequently stored in distributed cortical networks, akin to the multiple trace theory of memory consolidation. In this review, we summarize these recent findings and attempt to identify the biologically plausible mechanisms based on which a contextual memory becomes remote by integrating different levels of analysis: from neural circuits to cell ensembles across synaptic remodelling and epigenetic modifications. From these studies, remote memory formation and maintenance appear to occur through a multi-trace, dynamic and integrative cellular process ranging from the synapse to the nucleus, and represent an exciting field of research primed to change quickly as new experimental evidence emerges.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'. © 2018 The Authors.

  16. The mysteries of remote memory

    PubMed Central

    2018-01-01

    Long-lasting memories form the basis of our identity as individuals and lie central in shaping future behaviours that guide survival. Surprisingly, however, our current knowledge of how such memories are stored in the brain and retrieved, as well as the dynamics of the circuits involved, remains scarce despite seminal technical and experimental breakthroughs in recent years. Traditionally, it has been proposed that, over time, information initially learnt in the hippocampus is stored in distributed cortical networks. This process—the standard theory of memory consolidation—would stabilize the newly encoded information into a lasting memory, become independent of the hippocampus, and remain essentially unmodifiable throughout the lifetime of the individual. In recent years, several pieces of evidence have started to challenge this view and indicate that long-lasting memories might already ab ovo be encoded, and subsequently stored in distributed cortical networks, akin to the multiple trace theory of memory consolidation. In this review, we summarize these recent findings and attempt to identify the biologically plausible mechanisms based on which a contextual memory becomes remote by integrating different levels of analysis: from neural circuits to cell ensembles across synaptic remodelling and epigenetic modifications. From these studies, remote memory formation and maintenance appear to occur through a multi-trace, dynamic and integrative cellular process ranging from the synapse to the nucleus, and represent an exciting field of research primed to change quickly as new experimental evidence emerges. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’. PMID:29352028

  17. The full-length form of the Drosophila amyloid precursor protein is involved in memory formation.

    PubMed

    Bourdet, Isabelle; Preat, Thomas; Goguel, Valérie

    2015-01-21

    The APP plays a central role in AD, a pathology that first manifests as a memory decline. Understanding the role of APP in normal cognition is fundamental in understanding the progression of AD, and mammalian studies have pointed to a role of secreted APPα in memory. In Drosophila, we recently showed that APPL, the fly APP ortholog, is required for associative memory. In the present study, we aimed to characterize which form of APPL is involved in this process. We show that expression of a secreted-APPL form in the mushroom bodies, the center for olfactory memory, is able to rescue the memory deficit caused by APPL partial loss of function. We next assessed the impact on memory of the Drosophila α-secretase kuzbanian (KUZ), the enzyme initiating the nonamyloidogenic pathway that produces secreted APPLα. Strikingly, KUZ overexpression not only failed to rescue the memory deficit caused by APPL loss of function, it exacerbated this deficit. We further show that in addition to an increase in secreted-APPL forms, KUZ overexpression caused a decrease of membrane-bound full-length species that could explain the memory deficit. Indeed, we observed that transient expression of a constitutive membrane-bound mutant APPL form is sufficient to rescue the memory deficit caused by APPL reduction, revealing for the first time a role of full-length APPL in memory formation. Our data demonstrate that, in addition to secreted APPL, the noncleaved form is involved in memory, raising the possibility that secreted and full-length APPL act together in memory processes. Copyright © 2015 the authors 0270-6474/15/351043-09$15.00/0.

  18. Change in the relative contributions of habit and working memory facilitates serial reversal learning expertise in rhesus monkeys.

    PubMed

    Hassett, Thomas C; Hampton, Robert R

    2017-05-01

    Functionally distinct memory systems likely evolved in response to incompatible demands placed on learning by distinct environmental conditions. Working memory appears adapted, in part, for conditions that change frequently, making rapid acquisition and brief retention of information appropriate. In contrast, habits form gradually over many experiences, adapting organisms to contingencies of reinforcement that are stable over relatively long intervals. Serial reversal learning provides an opportunity to simultaneously examine the processes involved in adapting to rapidly changing and relatively stable contingencies. In serial reversal learning, selecting one of the two simultaneously presented stimuli is positively reinforced, while selection of the other is not. After a preference for the positive stimulus develops, the contingencies of reinforcement reverse. Naïve subjects adapt to such reversals gradually, perseverating in selection of the previously rewarded stimulus. Experts reverse rapidly according to a win-stay, lose-shift response pattern. We assessed whether a change in the relative control of choice by habit and working memory accounts for the development of serial reversal learning expertise. Across three experiments, we applied manipulations intended to attenuate the contribution of working memory but leave the contribution of habit intact. We contrasted performance following long and short intervals in Experiments 1 and 2, and we interposed a competing cognitive load between trials in Experiment 3. These manipulations slowed the acquisition of reversals in expert subjects, but not naïve subjects, indicating that serial reversal learning expertise is facilitated by a shift in the control of choice from passively acquired habit to actively maintained working memory.

  19. Low-power resistive random access memory by confining the formation of conducting filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien

    2016-06-15

    Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less

  20. Learning and memory under stress: implications for the classroom

    NASA Astrophysics Data System (ADS)

    Vogel, Susanne; Schwabe, Lars

    2016-06-01

    Exams, tight deadlines and interpersonal conflicts are just a few examples of the many events that may result in high levels of stress in both students and teachers. Research over the past two decades identified stress and the hormones and neurotransmitters released during and after a stressful event as major modulators of human learning and memory processes, with critical implications for educational contexts. While stress around the time of learning is thought to enhance memory formation, thus leading to robust memories, stress markedly impairs memory retrieval, bearing, for instance, the risk of underachieving at exams. Recent evidence further indicates that stress may hamper the updating of memories in the light of new information and induce a shift from a flexible, 'cognitive' form of learning towards rather rigid, 'habit'-like behaviour. Together, these stress-induced changes may explain some of the difficulties of learning and remembering under stress in the classroom. Taking these insights from psychology and neuroscience into account could bear the potential to facilitate processes of education for both students and teachers.

  1. Growth Factor Signaling and Memory Formation: Temporal and Spatial Integration of a Molecular Network

    ERIC Educational Resources Information Center

    Kopec, Ashley M.; Carew, Thomas J.

    2013-01-01

    Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g.,…

  2. The role of rewarding and novel events in facilitating memory persistence in a separate spatial memory task.

    PubMed

    Salvetti, Beatrice; Morris, Richard G M; Wang, Szu-Han

    2014-01-15

    Many insignificant events in our daily life are forgotten quickly but can be remembered for longer when other memory-modulating events occur before or after them. This phenomenon has been investigated in animal models in a protocol in which weak memories persist longer if exploration in a novel context is introduced around the time of memory encoding. This study aims to understand whether other types of rewarding or novel tasks, such as rewarded learning in a T-maze and novel object recognition, can also be effective memory-modulating events. Rats were trained in a delayed matching-to-place task to encode and retrieve food locations in an event arena. Weak encoding with only one food pellet at the sample location induced memory encoding but forgetting over 24 h. When this same weak encoding was followed by a rewarded task in a T-maze, the memory persisted for 24 h. Moreover, the same persistence of memory over 24 h could be achieved by exploration in a novel box or by a rewarded T-maze task after a "non-rewarded" weak encoding. When the one-pellet weak encoding was followed by novel object exploration, the memory did not persist at 24 h. Together, the results confirm that place encoding is possible without explicit reward, and that rewarded learning in a separate task lacking novelty can be an effective memory-modulating event. The behavioral and neurobiological implications are discussed.

  3. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity.

    PubMed

    López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther

    2014-07-05

    Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ant workers exhibit specialization and memory during raft formation.

    PubMed

    Avril, Amaury; Purcell, Jessica; Chapuisat, Michel

    2016-06-01

    By working together, social insects achieve tasks that are beyond the reach of single individuals. A striking example of collective behaviour is self-assembly, a process in which individuals link their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into how individual behavioural variation affects the formation of self-assemblages, we investigated the presence of task specialization and the role of past experience in the construction of ant rafts. We subjected groups of Formica selysi workers to two consecutive floods and monitored the position of individuals in rafts. Workers showed specialization in their positions when rafting, with the same individuals consistently occupying the top, middle, base or side position in the raft. The presence of brood modified workers' position and raft shape. Surprisingly, workers' experience in the first rafting trial with brood influenced their behaviour and raft shape in the subsequent trial without brood. Overall, this study sheds light on the importance of workers' specialization and memory in the formation of self-assemblages.

  5. Ant workers exhibit specialization and memory during raft formation

    NASA Astrophysics Data System (ADS)

    Avril, Amaury; Purcell, Jessica; Chapuisat, Michel

    2016-06-01

    By working together, social insects achieve tasks that are beyond the reach of single individuals. A striking example of collective behaviour is self-assembly, a process in which individuals link their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into how individual behavioural variation affects the formation of self-assemblages, we investigated the presence of task specialization and the role of past experience in the construction of ant rafts. We subjected groups of Formica selysi workers to two consecutive floods and monitored the position of individuals in rafts. Workers showed specialization in their positions when rafting, with the same individuals consistently occupying the top, middle, base or side position in the raft. The presence of brood modified workers' position and raft shape. Surprisingly, workers' experience in the first rafting trial with brood influenced their behaviour and raft shape in the subsequent trial without brood. Overall, this study sheds light on the importance of workers' specialization and memory in the formation of self-assemblages.

  6. Rapid effects of estrogens on short-term memory: Possible mechanisms.

    PubMed

    Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena

    2018-06-01

    Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Spatial part-set cuing facilitation.

    PubMed

    Kelley, Matthew R; Parasiuk, Yuri; Salgado-Benz, Jennifer; Crocco, Megan

    2016-07-01

    Cole, Reysen, and Kelley [2013. Part-set cuing facilitation for spatial information. Journal of Experimental Psychology: Learning, Memory, & Cognition, 39, 1615-1620] reported robust part-set cuing facilitation for spatial information using snap circuits (a colour-coded electronics kit designed for children to create rudimentary circuit boards). In contrast, Drinkwater, Dagnall, and Parker [2006. Effects of part-set cuing on experienced and novice chess players' reconstruction of a typical chess midgame position. Perceptual and Motor Skills, 102(3), 645-653] and Watkins, Schwartz, and Lane [1984. Does part-set cuing test for memory organization? Evidence from reconstructions of chess positions. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 38(3), 498-503] showed no influence of part-set cuing for spatial information when using chess boards. One key difference between the two procedures was that the snap circuit stimuli were explicitly connected to one another, whereas chess pieces were not. Two experiments examined the effects of connection type (connected vs. unconnected) and cue type (cued vs. uncued) on memory for spatial information. Using chess boards (Experiment 1) and snap circuits (Experiment 2), part-set cuing facilitation only occurred when the stimuli were explicitly connected; there was no influence of cuing with unconnected stimuli. These results are potentially consistent with the retrieval strategy disruption hypothesis, as well as the two- and three-mechanism accounts of part-set cuing.

  8. Memory states influence value-based decisions.

    PubMed

    Duncan, Katherine D; Shohamy, Daphna

    2016-11-01

    Using memory to guide decisions allows past experience to improve future outcomes. However, the circumstances that modulate how and when memory influences decisions are not well understood. Here, we report that the use of memories to guide decisions depends on the context in which these decisions are made. We show that decisions made in the context of familiar images are more likely to be influenced by past events than are decisions made in the context of novel images (Experiment 1), that this bias persists even when a temporal gap is introduced between the image presentation and the decision (Experiment 2), and that contextual novelty facilitates value learning whereas familiarity facilitates the retrieval and use of previously learned values (Experiment 3). These effects are consistent with neurobiological and computational models of memory, which propose that familiar images evoke a lingering "retrieval state" that facilitates the recollection of other episodic memories. Together, these experiments highlight the importance of episodic memory for decision-making and provide an example of how computational and neurobiological theories can lead to new insights into how and when different types of memories guide our choices. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Modulation of neuronal signal transduction and memory formation by synaptic zinc.

    PubMed

    Sindreu, Carlos; Storm, Daniel R

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.

  10. Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc

    PubMed Central

    Sindreu, Carlos; Storm, Daniel R.

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630

  11. Stress Strengthens Memory of First Impressions of Others' Positive Personality Traits

    PubMed Central

    Lass-Hennemann, Johanna; Kuehl, Linn K.; Schulz, André; Oitzl, Melly S.; Schachinger, Hartmut

    2011-01-01

    Encounters with strangers bear potential for social conflict and stress, but also allow the formation of alliances. First impressions of other people play a critical role in the formation of alliances, since they provide a learned base to infer the other's future social attitude. Stress can facilitate emotional memories but it is unknown whether stress strengthens our memory for newly acquired impressions of other people's personality traits. To answer this question, we subjected 60 students (37 females, 23 males) to an impression-formation task, viewing portraits together with brief positive vs. negative behavior descriptions, followed by a 3-min cold pressor stress test or a non-stressful control procedure. The next day, novel and old portraits were paired with single trait adjectives, the old portraits with a trait adjective matching the previous day's behavior description. After a filler task, portraits were presented again and subjects were asked to recall the trait adjective. Cued recall was higher for old (previously implied) than the novel portraits' trait adjectives, indicating validity of the applied test procedures. Overall, recall rate of implied trait adjectives did not differ between the stress and the control group. However, while the control group showed a better memory performance for others' implied negative personality traits, the stress group showed enhanced recall for others' implied positive personality traits. This result indicates that post-learning stress affects consolidation of first impressions in a valence-specific manner. We propose that the stress-induced strengthening of memory of others' positive traits forms an important cue for the formation of alliances in stressful conditions. PMID:21298099

  12. Stress strengthens memory of first impressions of others' positive personality traits.

    PubMed

    Lass-Hennemann, Johanna; Kuehl, Linn K; Schulz, André; Oitzl, Melly S; Schachinger, Hartmut

    2011-01-26

    Encounters with strangers bear potential for social conflict and stress, but also allow the formation of alliances. First impressions of other people play a critical role in the formation of alliances, since they provide a learned base to infer the other's future social attitude. Stress can facilitate emotional memories but it is unknown whether stress strengthens our memory for newly acquired impressions of other people's personality traits. To answer this question, we subjected 60 students (37 females, 23 males) to an impression-formation task, viewing portraits together with brief positive vs. negative behavior descriptions, followed by a 3-min cold pressor stress test or a non-stressful control procedure. The next day, novel and old portraits were paired with single trait adjectives, the old portraits with a trait adjective matching the previous day's behavior description. After a filler task, portraits were presented again and subjects were asked to recall the trait adjective. Cued recall was higher for old (previously implied) than the novel portraits' trait adjectives, indicating validity of the applied test procedures. Overall, recall rate of implied trait adjectives did not differ between the stress and the control group. However, while the control group showed a better memory performance for others' implied negative personality traits, the stress group showed enhanced recall for others' implied positive personality traits. This result indicates that post-learning stress affects consolidation of first impressions in a valence-specific manner. We propose that the stress-induced strengthening of memory of others' positive traits forms an important cue for the formation of alliances in stressful conditions.

  13. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE).

    PubMed

    Heroux, Nicholas A; Osborne, Brittany F; Miller, Lauren A; Kawan, Malak; Buban, Katelyn N; Rosen, Jeffrey B; Stanton, Mark E

    2018-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases (context preexposure, immediate-shock training, and retention). The current study examined changes in the expression of plasticity-associated immediate early genes (IEGs) during context and contextual fear memory formation on the preexposure and training days of the CPFE, respectively. Using adolescent Long-Evans rats, preexposure and training day expression of the IEGs c-Fos, Arc, Egr-1, and Npas4 in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (BLA) was analyzed using qPCR as an extension of previous studies from our lab examining Egr-1 via in situ hybridization (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014). In Expt. 1, context preexposure induced expression of c-Fos, Arc, Egr-1 and Npas4 significantly above that of home-cage (HC) controls in all three regions. In Expt. 2, immediate-shock was followed by a post-shock freezing test, resulting in increased mPFC c-Fos expression in a group preexposed to the training context but not a control group preexposed to an alternate context, indicating expression related to associative learning. This was not seen with other IEGs in mPFC or with any IEG in dHPC or BLA. Finally, when the post-shock freezing test was omitted in Expt. 3, training-related increases were observed in prefrontal c-Fos, Arc, Egr-1, and Npas4, hippocampal c-Fos, and amygdalar Egr-1 expression. These results indicate that context exposure in a post-shock freezing test re-engages IEG expression that may obscure associatively-induced expression during contextual fear conditioning. Additionally, these studies suggest a key role for long-term synaptic plasticity in the mPFC in supporting the

  14. The "memory kinases": roles of PKC isoforms in signal processing and memory formation.

    PubMed

    Sun, Miao-Kun; Alkon, Daniel L

    2014-01-01

    The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias. © 2014 Elsevier Inc. All rights reserved.

  15. Inhibition of long-term memory formation by anti-ependymin antisera after active shock-avoidance learning in goldfish.

    PubMed

    Piront, M L; Schmidt, R

    1988-02-23

    Ependymins are acidic glycoprotein constituents of goldfish brain cytoplasm and extracellular fluid which are known to participate in biochemical reactions of long-term memory formation. In earlier experiments, anti-ependymin antisera were found to cause amnesia when injected into goldfish brain ventricles after the acquisition of a vestibulomotoric training task. To investigate whether they also inhibit memory consolidation after other learning events the anti-ependymin antisera were injected after an active shock-avoidance learning paradigm, as follows: goldfish were trained in a shuttle-box to cross a barrier in order to avoid electric shocks (unconditioned stimulus) applied shortly after a light signal (conditioned stimulus). Anti-ependymin antisera blocked retention of the learned avoidance when injected 0.5, 4.5 or 24 h after acquisition of the new behavior. They had no effect, however, when injected 72 h after learning. Apparently, long-term memory was already consolidated at this point. Antisera injected 0.5 or 72 h prior to training, also did not influence learning or memory. Thirteen percent of the goldfish fled the light stimulus spontaneously. These fish therefore did not experience the unconditioned stimulus and thus were unable to learn the task. When they were treated with the anti-ependymin antisera and tested 3 days later, the spontaneous escape reaction was not affected (active control group). The ability of anti-ependymin antisera to inhibit memory consolidation and their efficacy after administration at specific time intervals are very similar for the active shock-avoidance learning and for the vestibulomotoric training. We conclude that ependymins are not task-specific, but serve a general function in biochemical reactions essential for long-term memory formation.

  16. Cell-adhesion molecules in memory formation.

    PubMed

    Schmidt, R

    1995-01-23

    After learning events the CNS of higher organisms selects, which acquired informations are permanently stored as a memory trace. This period of memory consolidation is susceptible to interference by biochemical inhibitors of transcription and translation. Ependymin is a specific CNS glycoprotein functionally involved in memory consolidation in goldfish: after active shock-avoidance conditioning ependymin mRNA is rapidly induced in meningeal fibroblasts followed by enhanced synthesis and secretion of several closely related forms of the protein. Intracranial injections of anti-ependymin antisera or antisense oligodeoxynucleotides interfere specifically with memory consolidation, indicating that only de novo synthesized ependymin molecules are involved. Ependymin is capable of directing the growth of central axons in vitro and participates in neuronal regeneration in situ, presumably by its HNK-1 cell-adhesion epitope. Experiments reviewed in this article suggest a model that involves two regulation mechanisms for the function of ependymin in behavioural plasticity: while hormones appear to determine, how much of this cell adhesion molecule is synthesized after learning, local changes of metal cation concentrations in the micro-environment of activated neurons may polymerize ependymin at those synapses, that have to be consolidated to improve their efficacy for future use.

  17. Memory vs memory-like: The different facets of CD8+ T-cell memory in HCV infection.

    PubMed

    Hofmann, Maike; Wieland, Dominik; Pircher, Hanspeter; Thimme, Robert

    2018-05-01

    Memory CD8 + T cells are essential in orchestrating protection from re-infection. Hallmarks of virus-specific memory CD8 + T cells are the capacity to mount recall responses with rapid induction of effector cell function and antigen-independent survival. Growing evidence reveals that even chronic infection does not preclude virus-specific CD8 + T-cell memory formation. However, whether this kind of CD8 + T-cell memory that is established during chronic infection is indeed functional and provides protection from re-infection is still unclear. Human chronic hepatitis C virus infection represents a unique model system to study virus-specific CD8 + T-cell memory formation during and after cessation of persisting antigen stimulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. DNA methylation regulates neurophysiological spatial representation in memory formation

    PubMed Central

    Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David

    2015-01-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947

  19. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica).

    PubMed

    Toccalino, Danielle C; Sun, Herie; Sakata, Jon T

    2016-01-01

    Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (<30 s) exposure to a female led to the formation of a short-term memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the

  20. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica)

    PubMed Central

    Toccalino, Danielle C.; Sun, Herie; Sakata, Jon T.

    2016-01-01

    Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (<30 s) exposure to a female led to the formation of a short-term memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the

  1. c-Rel, an NF-[kappa]B Family Transcription Factor, Is Required for Hippocampal Long-Term Synaptic Plasticity and Memory Formation

    ERIC Educational Resources Information Center

    Ahn, Hyung Jin; Hernandez, Caterina M.; Levenson, Jonathan M.; Lubin, Farah D.; Liou, Hsiou-Chi; Sweatt, J. David

    2008-01-01

    Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-[kappa]B transcription factor family, c-Rel, during…

  2. Increase in posterior alpha activity during rehearsal predicts successful long-term memory formation of word sequences.

    PubMed

    Meeuwissen, Esther B; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole

    2011-12-01

    It is becoming increasingly clear that demanding cognitive tasks rely on an extended network engaging task-relevant areas and, importantly, disengaging task-irrelevant areas. Given that alpha activity (8-12 Hz) has been shown to reflect the disengagement of task-irrelevant regions in attention and working memory tasks, we here ask if alpha activity plays a related role for long-term memory formation. Subjects were instructed to encode and maintain the order of word sequences while the ongoing brain activity was recorded using magnetoencephalography (MEG). In each trial, three words were presented followed by a 3.4 s rehearsal interval. Considering the good temporal resolution of MEG this allowed us to investigate the word presentation and rehearsal interval separately. The sequences were grouped in trials where word order either could be tested immediately (working memory trials; WM) or later (LTM trials) according to instructions. Subjects were tested on their ability to retrieve the order of the three words. The data revealed that alpha power in parieto-occipital regions was lower during word presentation compared to rehearsal. Our key finding was that parieto-occipital alpha power during the rehearsal period was markedly stronger for successfully than unsuccessfully encoded LTM sequences. This subsequent memory effect demonstrates that high posterior alpha activity creates an optimal brain state for successful LTM formation possibly by actively reducing parieto-occipital activity that might interfere with sequence encoding. Copyright © 2010 Wiley Periodicals, Inc.

  3. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.

    PubMed

    Gibbs, M E; Johnston, G A R

    2005-01-01

    The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.

  4. Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind

    PubMed Central

    Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke

    2017-01-01

    In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823

  5. Roles of α- and β-estrogen receptors in mouse social recognition memory: effects of gender and the estrous cycle.

    PubMed

    Sánchez-Andrade, G; Kendrick, K M

    2011-01-01

    Establishing clear effects of gender and natural hormonal changes during female ovarian cycles on cognitive function has often proved difficult. Here we have investigated such effects on the formation and long-term (24 h) maintenance of social recognition memory in mice together with the respective involvement of α- and β-estrogen receptors using α- and β-estrogen receptor knockout mice and wildtype controls. Results in wildtype animals showed that while females successfully formed a memory in the context of a habituation/dishabituation paradigm at all stages of their ovarian cycle, only when learning occurred during proestrus (when estrogen levels are highest) was it retained after 24 h. In α-receptor knockout mice (which showed no ovarian cycles) both formation and maintenance of this social recognition memory were impaired, whereas β-receptor knockouts showed no significant deficits and exhibited the same proestrus-dependent retention of memory at 24 h. To investigate possible sex differences, male α- and β-estrogen receptor knockout mice were also tested and showed similar effects to females excepting that α-receptor knockouts had normal memory formation and only exhibited a 24 h retention deficit. This indicates a greater dependence in females on α-receptor expression for memory formation in this task. Since non-specific motivational and attentional aspects of the task were unaffected, our findings suggest a general α-receptor dependent facilitation of memory formation by estrogen as well as an enhanced long-term retention during proestrus. Results are discussed in terms of the differential roles of the two estrogen receptors, the neural substrates involved and putative interactions with oxytocin. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    ERIC Educational Resources Information Center

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  7. Sleep-Based Memory Processing Facilitates Grammatical Generalization: Evidence from Targeted Memory Reactivation

    PubMed Central

    Batterink, Laura J.; Paller, Ken A.

    2015-01-01

    Generalization — the ability to abstract regularities from specific examples and apply them to novel instances — is an essential component of language acquisition. Generalization not only depends on exposure to input during wake, but may also improve offline during sleep. Here we examined whether targeted memory reactivation during sleep can influence grammatical generalization. Participants gradually acquired the grammatical rules of an artificial language through an interactive learning procedure. Then, phrases from the language (experimental group) or stimuli from an unrelated task (control group) were covertly presented during an afternoon nap. Compared to control participants, participants re-exposed to the language during sleep showed larger gains in grammatical generalization. Sleep cues produced a bias, not necessarily a pure gain, suggesting that the capacity for memory replay during sleep is limited. We conclude that grammatical generalization was biased by auditory cueing during sleep, and by extension, that sleep likely influences grammatical generalization in general. PMID:26443322

  8. Subjective memory complaints are associated with brain activation supporting successful memory encoding.

    PubMed

    Hayes, Jessica M; Tang, Lingfei; Viviano, Raymond P; van Rooden, Sanneke; Ofen, Noa; Damoiseaux, Jessica S

    2017-12-01

    Subjective memory complaints, the perceived decline in cognitive abilities in the absence of clinical deficits, may precede Alzheimer's disease. Individuals with subjective memory complaints show differential brain activation during memory encoding; however, whether such differences contribute to successful memory formation remains unclear. Here, we investigated how subsequent memory effects, activation which is greater for hits than misses during an encoding task, differed between healthy older adults aged 50 to 85 years with (n = 23) and without (n = 41) memory complaints. Older adults with memory complaints, compared to those without, showed lower subsequent memory effects in the occipital lobe, superior parietal lobe, and posterior cingulate cortex. In addition, older adults with more memory complaints showed a more negative subsequent memory effects in areas of the default mode network, including the posterior cingulate cortex, precuneus, and ventromedial prefrontal cortex. Our findings suggest that for successful memory formation, older adults with subjective memory complaints rely on distinct neural mechanisms which may reflect an overall decreased task-directed attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The influence of self-awareness on emotional memory formation: an fMRI study

    PubMed Central

    Wing, Erik A.; Cabeza, Roberto

    2016-01-01

    Evidence from functional neuroimaging studies of emotional perception shows that when attention is focused on external features of emotional stimuli (external perceptual orienting—EPO), the amygdala is primarily engaged, but when attention is turned inwards towards one’s own emotional state (interoceptive self-orienting—ISO), regions of the salience network, such as the anterior insula (AI) and the dorsal anterior cingulate cortex (dACC), also play a major role. Yet, it is unknown if ISO boosts the contributions of AI and dACC not only to emotional ‘perception’ but also to emotional ‘memory’. To investigate this issue, participants were scanned with functional magnetic resonance imaging (fMRI) while viewing emotional and neutral pictures under ISO or EPO, and memory was tested several days later. The study yielded three main findings: (i) emotion boosted perception-related activity in the amygdala during both ISO and EPO and in the right AI exclusively during ISO; (ii) emotion augmented activity predicting subsequent memory in AI and dACC during ISO but not during EPO and (iii) high confidence memory was associated with increased amygdala–dACC connectivity, selectively for ISO encoding. These findings show, for the first time, that ISO promotes emotional memory formation via regions associated with interoceptive awareness of emotional experience, such as AI and dACC. PMID:26645274

  10. CASK and CaMKII function in the mushroom body α′/β′ neurons during Drosophila memory formation

    PubMed Central

    Malik, Bilal R.; Gillespie, John Michael; Hodge, James J. L.

    2013-01-01

    Ca2+/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch to a calcium (Ca2+) independent constitutively active state after autophosphorylation at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM) binding region once autophosphorylated, prevent subsequent CaM binding and inactivates the kinase during synaptic plasticity and memory. Recently a synaptic molecule called Ca2+/CaM-dependent serine protein kinase (CASK) has been shown to control both sets of CaMKII autophosphorylation events and hence is well poised to be a key regulator of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α′/β′ subset of mushroom body neurons being required for memory. Likewise directly changing the levels of CaMKII autophosphorylation in these neurons removed MTM and LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental as their manipulation just in the adult α′/β′ neurons was sufficient to remove memory. Overexpression of CASK or CaMKII in the α′/β′ neurons also occluded MTM and LTM. Overexpression of either Drosophila or human CASK in the α′/β′ neurons of the CASK mutant completely rescued memory, confirming that CASK signaling in α′/β′ neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. At the cellular level CaMKII overexpression in the α′/β′ neurons increased activity dependent Ca2+ responses while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a phosphomimetic CaMKII T287D transgene in the α′/β′ similarly decreased Ca2+ signaling. Our results are consistent with CASK regulating CaMKII autophosphorylation in a

  11. Oversimplification in the study of emotional memory

    PubMed Central

    Bennion, Kelly A.; Ford, Jaclyn H.; Murray, Brendan D.; Kensinger, Elizabeth A.

    2014-01-01

    This Short Review critically evaluates three hypotheses about the effects of emotion on memory: First, emotion usually enhances memory. Second, when emotion does not enhance memory, this can be understood by the magnitude of physiological arousal elicited, with arousal benefiting memory to a point but then having a detrimental influence. Third, when emotion facilitates the processing of information, this also facilitates the retention of that same information. For each of these hypotheses, we summarize the evidence consistent with it, present counter-evidence suggesting boundary conditions for the effect, and discuss the implications for future research. PMID:24007950

  12. Resting state EEG correlates of memory consolidation.

    PubMed

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (<1Hz), in concert with reduced alpha (8-12Hz) activity. Mindwandering during the retention interval was also associated with improved memory. These observations suggest that a short period of quiet rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Stress Disrupts Context-Dependent Memory

    ERIC Educational Resources Information Center

    Schwabe, Lars; Bohringer, Andreas; Wolf, Oliver T.

    2009-01-01

    Memory is facilitated when the retrieval context resembles the learning context. The brain structures underlying contextual influences on memory are susceptible to stress. Whether stress interferes with context-dependent memory is still unknown. We exposed healthy adults to stress or a control procedure before they learned an object-location task…

  14. Negative Affect Impairs Associative Memory but Not Item Memory

    ERIC Educational Resources Information Center

    Bisby, James A.; Burgess, Neil

    2014-01-01

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine…

  15. Age Differences in the Contribution of Recollection and Familiarity to False-Memory Formation: A New Paradigm to Examine Developmental Reversals

    ERIC Educational Resources Information Center

    Lyons, Kristen E.; Ghetti, Simona; Cornoldi, Cesare

    2010-01-01

    Using a new method for studying the development of false-memory formation, we examined developmental differences in the rates at which 6-, 7-, 9-, 10-, and 18-year-olds made two types of memory errors: backward causal-inference errors (i.e. falsely remembering having viewed the non-viewed cause of a previously viewed effect), and gap-filling…

  16. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  17. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps

    PubMed Central

    Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968

  18. Opiate exposure state controls dopamine D3 receptor and cdk5/calcineurin signaling in the basolateral amygdala during reward and withdrawal aversion memory formation.

    PubMed

    Rosen, Laura G; Rushlow, Walter J; Laviolette, Steven R

    2017-10-03

    The dopamine (DA) D3 receptor (D3R) is highly expressed in the basolateral nucleus of the amygdala (BLA), a neural region critical for processing opiate-related reward and withdrawal aversion-related memories. Functionally, D3R transmission is linked to downstream Cdk5 and calcineurin signaling, both of which regulate D3R activity states and play critical roles in memory-related synaptic plasticity. Previous evidence links D3R transmission to opiate-related memory processing, however little is known regarding how chronic opiate exposure may alter D3R-dependent memory mechanisms. Using conditioned place preference (CPP) and withdrawal aversion (conditioned place aversion; CPA) procedures in rats, combined with molecular analyses of BLA protein expression, we examined the effects of chronic opiate exposure on the functional role of intra-BLA D3R transmission during the acquisition of opiate reward or withdrawal aversion memories. Remarkably, we report that the state of opiate exposure during behavioural conditioning (opiate-naïve/non-dependent vs. chronically exposed and in withdrawal) controlled the functional role of intra-BLA D3R transmission during the acquisition of both opiate reward memories and withdrawal-aversion associative memories. Thus, whereas intra-BLA D3R blockade had no effect on opiate reward memory formation in the non-dependent state, blockade of intra-BLA D3R transmission prevented the formation of opiate reward and withdrawal aversion memory in the chronically exposed state. This switch in the functional role of D3R transmission corresponded to significant increases in Cdk5 phosphorylation and total expression levels of calcineurin, and a corresponding decrease in intra-BLA D3R expression. Inhibition of either intra-BLA Cdk5 or calcineurin reversed these effects, switching intra-BLA associative memory formation back to a D3R-independent mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Narrative organisation at encoding facilitated children's long-term episodic memory.

    PubMed

    Wang, Qi; Bui, Van-Kim; Song, Qingfang

    2015-01-01

    This study examined the effect of narrative organisation at encoding on long-term episodic memory in a sample of five- to seven-year-old children (N = 113). At an initial interview, children were asked to narrate a story from a picture book. Six months later, they were interviewed again and asked to recall the story and answer a series of direct questions about the story. Children who initially encoded more information in narrative and produced more complete, complex, cohesive and coherent narratives remembered the story in greater detail and accuracy following the six-month interval, independent of age and verbal skills. The relation between narrative organisation and memory was consistent across culture and gender. These findings provide new insight into the critical role of narrative in episodic memory.

  20. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce.

    PubMed

    Yakovlev, Igor A; Carneros, Elena; Lee, YeonKyeong; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2016-05-01

    A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory. As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.

  1. Contextualization: Memory Formation and Retrieval in a Nested Environment

    NASA Astrophysics Data System (ADS)

    Piefke, Martina; Markowitsch, Hans J.

    Episodic memory functions are highly context-dependent. This is true for both experimental and autobiographical episodic memory. We here review neuropsychological and neuroimaging evidence for effects of differential encoding and retrieval contexts on episodic memory performance as well as the underlying neurofunctional mechanisms. In studies of laboratory episodic memory, the influence of context parameters can be assessed by experimental manipulations. Such experiments suggest that contextual variables mainly affect prefrontal functions supporting executive processes involved in episodic learning and retrieval. Context parameters affecting episodic autobiographical memory are far more complex and cannot easily be controlled. Data support the view that not only prefrontal, but also further medial temporal and posterior parietal regions mediating the re-experience and emotional evaluation of personal memories are highly influenced by changing contextual variables of memory encoding and retrieval. Based on our review of available data, we thus suggest that experimental and autobiographical episodic memories are influenced by both overlapping and differential context parameters.

  2. Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density

    PubMed Central

    Luine, Victoria N.; Frankfurt, Maya

    2012-01-01

    Estrogens exert sustained, genomically mediated effects on memory throughout the female life cycle, but here we review new studies documenting rapid effects of estradiol on memory, which are exerted through membrane-mediated mechanisms. Use of recognition memory tasks in rats, shows that estrogens enhance memory consolidation within one hour. 17α-estradiol is more potent than 17β-estradiol, and the dose response relationship between estrogens and memory is an inverted U shape. Use of specific estrogen receptor (ER) agonists suggests mediation by an ERβ-like membrane receptor. Enhanced memory is associated with increased spine density and altered noradrenergic activity in the medial prefrontal cortex and hippocampus within 30 min. of administration. The environmental chemical, bisphenol-A, rapidly antagonizes enhancements in memory in both sexes possibly through actions on spines. Thus, estradiol and related compounds exert rapid alterations in cognition through non-genomic mechanisms, a finding which may provide a basis for better understanding and treating memory impairments. PMID:22981654

  3. Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation.

    PubMed

    Tambini, Arielle; Nee, Derek Evan; D'Esposito, Mark

    2018-06-19

    The hippocampus plays a critical role in episodic memory, among other cognitive functions. However, few tools exist to causally manipulate hippocampal function in healthy human participants. Recent work has targeted hippocampal-cortical networks by performing TMS to a region interconnected with the hippocampus, posterior inferior parietal cortex (pIPC). Such hippocampal-targeted TMS enhances associative memory and influences hippocampal functional connectivity. However, it is currently unknown which stages of mnemonic processing (encoding or retrieval) are affected by hippocampal-targeted TMS. Here, we examined whether hippocampal-targeted TMS influences the initial encoding of associations (vs. items) into memory. To selectively influence encoding and not retrieval, we performed continuous theta-burst TMS before participants encoded object-location associations and assessed memory after the direct effect of stimulation dissipated. Relative to control TMS and baseline memory, pIPC TMS enhanced associative memory success and confidence. Item memory was unaffected, demonstrating a selective influence on associative versus item memory. The strength of hippocampal-pIPC functional connectivity predicted TMS-related memory benefits, which was mediated by parahippocampal and retrosplenial cortices. Our findings indicate that hippocampal-targeted TMS can specifically modulate the encoding of new associations into memory without directly influencing retrieval processes and suggest that the ability to influence associative memory may be related to the fidelity of hippocampal TMS targeting. Our results support the notion that pIPC TMS may serve as a potential tool for manipulating hippocampal function in healthy participants. Nonetheless, future work combining hippocampal-targeted continuous theta-burst TMS with neuroimaging is needed to better understand the neural basis of TMS-induced memory changes.

  4. Categorizing words through semantic memory navigation

    NASA Astrophysics Data System (ADS)

    Borge-Holthoefer, J.; Arenas, A.

    2010-03-01

    Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.

  5. [Spatial Cognition and Episodic Memory Formation in the Limbic Cortex].

    PubMed

    Kobayashi, Yasushi

    2017-04-01

    The limbic lobe defined by Broca is a cortical region with highly diverse structure and functions, and comprises the paleo-, archi-, and neocortices as well as their transitional zones. In the limbic lobe, Brodmann designated areas 27, 28, 34, 35, and 36 adjacent to the hippocampus, and areas 23, 24, 25, 26, 29, 30, 31, 32, and 33 around the corpus callosum. In the current literature, areas 27 and 28 correspond to the presubiculum and entorhinal cortex, respectively. Area 34 represents the cortico-medial part of the amygdaloid complex. Areas 35 and 36 roughly cover the perirhinal and parahippocampal cortices. Areas 24, 25, 32, and 33 belong to the anterior cingulate gyrus, while areas 23, 26, 29, 30, and 31 to the posterior cingulate gyrus. Areas 25, 32, and the anteroinferior portion of area 24 are deeply involved in emotional responses, particularly in their autonomic functions, through reciprocal connections with the amygdaloid complex, anterior thalamus and projections to the brainstem and spinal visceral centers. Areas 29 and 30 have dense reciprocal connections with areas 23 and 31, the dorsolateral prefrontal areas, and the regions related to the hippocampus. They play pivotal roles in mediating spatial cognition, working memory processing, and episodic memory formation.

  6. Roles of Aminergic Neurons in Formation and Recall of Associative Memory in Crickets

    PubMed Central

    Mizunami, Makoto; Matsumoto, Yukihisa

    2010-01-01

    We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned stimulus (US) and aversive US, respectively. Our work suggested that this is applicable to olfactory, visual pattern, and color learning in crickets, indicating that this feature is ubiquitous in learning of various sensory stimuli. We also showed that aversive memory decayed much faster than did appetitive memory, and we proposed that this feature is common in insects and humans. Our study also suggested that activation of OA- or DA-ergic neurons is needed for appetitive or aversive memory recall, respectively. To account for this finding, we proposed a model in which it is assumed that two types of synaptic connections are strengthened by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus (CS) to neurons inducing conditioned response and the other being connections from neurons representing CS to OA- or DA-ergic neurons representing appetitive or aversive US, respectively. The former is called stimulus–response (S–R) connection and the latter is called stimulus–stimulus (S–S) connection by theorists studying classical conditioning in vertebrates. Results of our studies using a second-order conditioning procedure supported our model. We propose that insect classical conditioning involves the formation of S–S connection and its activation for memory recall, which are often called cognitive processes. PMID:21119781

  7. Neural Correlates of Conceptual Implicit Memory and Their Contamination of Putative Neural Correlates of Explicit Memory

    ERIC Educational Resources Information Center

    Voss, Joel L.; Paller, Ken A.

    2007-01-01

    During episodic recognition tests, meaningful stimuli such as words can engender both conscious retrieval (explicit memory) and facilitated access to meaning that is distinct from the awareness of remembering (conceptual implicit memory). Neuroimaging investigations of one type of memory are frequently subject to the confounding influence of the…

  8. Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation.

    PubMed

    Colomb, J; Kaiser, L; Chabaud, M-A; Preat, T

    2009-06-01

    Distinct forms of memory can be highlighted using different training protocols. In Drosophila olfactory aversive learning, one conditioning session triggers memory formation independently of protein synthesis, while five spaced conditioning sessions lead to the formation of long-term memory (LTM), a long-lasting memory dependent on de novo protein synthesis. In contrast, one session of odour-sugar association appeared sufficient for the fly to form LTM. We designed and tuned an apparatus that facilitates repeated discriminative conditioning by alternate presentations of two odours, one being associated with sugar, as well as a new paradigm to test sugar responsiveness (SR). Our results show that both SR and short-term memory (STM) scores increase with starvation length before conditioning. The protein dependency of appetitive LTM is independent of the repetition and the spacing of training sessions, on the starvation duration and on the strength of the unconditioned stimulus. In contrast to a recent report, our test measures an abnormal SR of radish mutant flies, which might initiate their STM and LTM phenotypes. In addition, our work shows that crammer and tequila mutants, which are deficient for aversive LTM, present both an SR and an appetitive STM defect. Using the MB247-P[switch] system, we further show that tequila is required in the adult mushroom bodies for normal sugar motivation.

  9. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    ERIC Educational Resources Information Center

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  10. Noise facilitation in associative memories of exponential capacity.

    PubMed

    Karbasi, Amin; Salavati, Amir Hesam; Shokrollahi, Amin; Varshney, Lav R

    2014-11-01

    Recent advances in associative memory design through structured pattern sets and graph-based inference algorithms have allowed reliable learning and recall of an exponential number of patterns that satisfy certain subspace constraints. Although these designs correct external errors in recall, they assume neurons that compute noiselessly, in contrast to the highly variable neurons in brain regions thought to operate associatively, such as hippocampus and olfactory cortex. Here we consider associative memories with boundedly noisy internal computations and analytically characterize performance. As long as the internal noise level is below a specified threshold, the error probability in the recall phase can be made exceedingly small. More surprising, we show that internal noise improves the performance of the recall phase while the pattern retrieval capacity remains intact: the number of stored patterns does not reduce with noise (up to a threshold). Computational experiments lend additional support to our theoretical analysis. This work suggests a functional benefit to noisy neurons in biological neuronal networks.

  11. Human hippocampus associates information in memory

    PubMed Central

    Henke, Katharina; Weber, Bruno; Kneifel, Stefan; Wieser, Heinz Gregor; Buck, Alfred

    1999-01-01

    The hippocampal formation, one of the most complex and vulnerable brain structures, is recognized as a crucial brain area subserving human long-term memory. Yet, its specific functions in memory are controversial. Recent experimental results suggest that the hippocampal contribution to human memory is limited to episodic memory, novelty detection, semantic (deep) processing of information, and spatial memory. We measured the regional cerebral blood flow by positron-emission tomography while healthy volunteers learned pairs of words with different learning strategies. These led to different forms of learning, allowing us to test the degree to which they challenge hippocampal function. Neither novelty detection nor depth of processing activated the hippocampal formation as much as semantically associating the primarily unrelated words in memory. This is compelling evidence for another function of the human hippocampal formation in memory: establishing semantic associations. PMID:10318979

  12. Facilitated giga-seal formation with a just originated glass surface.

    PubMed

    Böhle, T; Benndorf, K

    1994-07-01

    A simple technique of tip preparation in patch pipettes is described, which facilitates giga-seal formation. The pipettes were fabricated from thick-walled borosilicate glass tubing (external diameter 2.0 mm, internal diameter 0.5 mm) and the tips could be repeatedly broken in the bath. The pipette resistance correspondingly fell in steps of 3-20 M omega from about 80 M omega to about 2 M omega (double concentrated Tyrode). Scanning electron microscopy showed that the tip obtained after breaking was fairly plain. These broken tips were especially appropriate for patch-clamping. In cardiac myocytes in 11 out of 26 patches with Na+ channel activity, giga-seals developed spontaneously, i.e. without suction. In these patches the amplitude of the mean current with depolarizing pulses to -40 mV was significantly higher in comparison with patches formed under negative pressure. It is concluded that spontaneously sealed patches are most likely of planar configuration and the Na+ channel activity exceeds that in suction-induced patches.

  13. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  14. Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation

    PubMed Central

    Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R.

    2013-01-01

    “Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical

  15. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words

    PubMed Central

    Otten, Leun J.; Sveen, Josefin; Quayle, Angela H.

    2008-01-01

    Research into the neural underpinnings of memory formation has focused on the encoding of familiar verbal information. Here, we address how the brain supports the encoding of novel information that does not have meaning. Electrical brain activity was recorded from the scalps of healthy young adults while they performed an incidental encoding task (syllable judgments) on separate series of words and ‘nonwords’ (nonsense letter strings that are orthographically legal and pronounceable). Memory for the items was then probed with a recognition memory test. For words as well as nonwords, event-related potentials differed depending on whether an item would subsequently be remembered or forgotten. However, the polarity and timing of the effect varied across item type. For words, subsequently remembered items showed the usually observed positive-going, frontally-distributed modulation from around 600 ms after word onset. For nonwords, by contrast, a negative-going, spatially widespread modulation predicted encoding success from 1000 ms onwards. Nonwords also showed a modulation shortly after item onset. These findings imply that the brain supports the encoding of familiar and unfamiliar letter strings in qualitatively different ways, including the engagement of distinct neural activity at different points in time. The processing of semantic attributes plays an important role in the encoding of words and the associated positive frontal modulation. PMID:17958481

  16. A Robust Method of Measuring Other-Race and Other-Ethnicity Effects: The Cambridge Face Memory Test Format

    PubMed Central

    McKone, Elinor; Stokes, Sacha; Liu, Jia; Cohan, Sarah; Fiorentini, Chiara; Pidcock, Madeleine; Yovel, Galit; Broughton, Mary; Pelleg, Michel

    2012-01-01

    Other-race and other-ethnicity effects on face memory have remained a topic of consistent research interest over several decades, across fields including face perception, social psychology, and forensic psychology (eyewitness testimony). Here we demonstrate that the Cambridge Face Memory Test format provides a robust method for measuring these effects. Testing the Cambridge Face Memory Test original version (CFMT-original; European-ancestry faces from Boston USA) and a new Cambridge Face Memory Test Chinese (CFMT-Chinese), with European and Asian observers, we report a race-of-face by race-of-observer interaction that was highly significant despite modest sample size and despite observers who had quite high exposure to the other race. We attribute this to high statistical power arising from the very high internal reliability of the tasks. This power also allows us to demonstrate a much smaller within-race other ethnicity effect, based on differences in European physiognomy between Boston faces/observers and Australian faces/observers (using the CFMT-Australian). PMID:23118912

  17. Dissociation of spatial memory systems in Williams syndrome.

    PubMed

    Bostelmann, Mathilde; Fragnière, Emilie; Costanzo, Floriana; Di Vara, Silvia; Menghini, Deny; Vicari, Stefano; Lavenex, Pierre; Lavenex, Pamela Banta

    2017-11-01

    Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities. © 2017 Wiley Periodicals, Inc.

  18. The false memory syndrome: Experimental studies and comparison to confabulations

    PubMed Central

    Mendez, M.F.; Fras, I.A.

    2011-01-01

    False memories, or recollections that are factually incorrect but strongly believed, remain a source of confusion for both psychiatrists and neurologists. We propose model for false memories based on recent experimental investigations, particularly when analyzed in comparison to confabulations, which are the equivalent of false memories from neurological disease. Studies using the Deese/Roedinger–McDermott experimental paradigm indicate that false memories are associated with the need for complete and integrated memories, self-relevancy, imagination and wish fulfillment, familiarity, emotional facilitation, suggestibility, and sexual content. In comparison, confabulations are associated with the same factors except for emotional facilitation, suggestibility, and sexual content. Both false memories and confabulations have an abnormal sense of certainty for their recollections, and neuroanatomical findings implicate decreased activity in the ventromedial frontal lobe in this certainty. In summary, recent studies of false memories in comparison to confabulations support a model of false memories as internally-generated but suggestible and emotionally-facilitated fantasies or impulses, rather than repressed memories of real events. Furthermore, like confabulations, in order for false memories to occur there must be an attenuation of the normal, nonconscious, right frontal “doubt tag” regarding their certainty. PMID:21177042

  19. A Novel Cysteine-Rich Neurotrophic Factor in "Aplysia" Facilitates Growth, MAPK Activation, and Long-Term Synaptic Facilitation

    ERIC Educational Resources Information Center

    Pu, Lu; Kopec, Ashley M.; Boyle, Heather D.; Carew, Thomas J.

    2014-01-01

    Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in "Aplysia" showed that a TrkB ligand is required for MAPK…

  20. Decreasing temperature shifts hippocampal function from memory formation to modulation of hibernation bout duration in Syrian hamsters.

    PubMed

    Arant, Ryan J; Goo, Marisa S; Gill, Phoebe D; Nguyen, Yen; Watson, Katherine D; Hamilton, Jock S; Horowitz, John M; Horwitz, Barbara A

    2011-08-01

    Previous studies in hibernating species have characterized two forms of neural plasticity in the hippocampus, long-term potentiation (LTP) and its reversal, depotentiation, but not de novo long-term depression (LTD), which is also associated with memory formation. Studies have also shown that histamine injected into the hippocampus prolonged hibernation bout duration. However, spillover into the ventricles may have affected brain stem regions, not the hippocampus. Here, we tested the hypothesis that decreased brain temperature shifts the major function of the hippocampus in the Syrian hamster (Mesocricetus auratus) from one of memory formation (via LTP, depotentiation, and de novo LTD) to increasing hibernation bout duration. We found reduced evoked responses in hippocampal CA1 pyramidal neurons following low-frequency stimulation in young (<30 days old) and adult (>60 days old) hamsters, indicating that de novo LTD was generated in hippocampal slices from both pups and adults at temperatures >20°C. However, at temperatures below 20°C, synchronization of neural assemblies (a requirement for LTD generation) was markedly degraded, implying that de novo LTD cannot be generated in hibernating hamsters. Nonetheless, even at temperatures below 16°C, pyramidal neurons could still generate action potentials that may traverse a neural pathway, suppressing the ascending arousal system (ARS). In addition, histamine increased the excitability of these pyramidal cells. Taken together, these findings are consistent with the hypothesis that hippocampal circuits remain operational at low brain temperatures in Syrian hamsters and suppress the ARS to prolong bout duration, even though memory formation is muted at these low temperatures.

  1. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex

    PubMed Central

    Romberg, Carola; Yang, Sujeong; Melani, Riccardo; Andrews, Melissa R.; Horner, Alexa E.; Spillantini, Maria G.; Bussey, Timothy J.; Fawcett, James W.; Pizzorusso, Tommaso; Saksida, Lisa M.

    2013-01-01

    Perineuronal nets are extracellular matrix structures surrounding cortical neuronal cell bodies and proximal dendrites, and are involved in the control of brain plasticity and the closure of critical periods. Expression of the link protein Crtl1/Hapln1 in neurons has recently been identified as the key event triggering the formation of perineuronal nets. Here we show that the genetic attenuation of perineuronal nets in adult brain Crtl1 knockout mice enhances long term object recognition memory and facilitates long-term depression in the perirhinal cortex, a neural correlate of object recognition memory. Identical prolongation of memory follows localised digestion of perineuronal nets with chondroitinase ABC, an enzyme that degrades the chondroitin sulphate proteoglycans (CSPGs) components of PNNs. The memory-enhancing effect of chondroitinase ABC treatment attenuated over time, suggesting that regeneration of PNNs gradually restored control plasticity levels. Our findings indicate that perineuronal nets regulate both memory and experience-driven synaptic plasticity in adulthood. PMID:23595763

  2. Singing can facilitate foreign language learning.

    PubMed

    Ludke, Karen M; Ferreira, Fernanda; Overy, Katie

    2014-01-01

    This study presents the first experimental evidence that singing can facilitate short-term paired-associate phrase learning in an unfamiliar language (Hungarian). Sixty adult participants were randomly assigned to one of three "listen-and-repeat" learning conditions: speaking, rhythmic speaking, or singing. Participants in the singing condition showed superior overall performance on a collection of Hungarian language tests after a 15-min learning period, as compared with participants in the speaking and rhythmic speaking conditions. This superior performance was statistically significant (p < .05) for the two tests that required participants to recall and produce spoken Hungarian phrases. The differences in performance were not explained by potentially influencing factors such as age, gender, mood, phonological working memory ability, or musical ability and training. These results suggest that a "listen-and-sing" learning method can facilitate verbatim memory for spoken foreign language phrases.

  3. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    ERIC Educational Resources Information Center

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  4. Usage of semantic representations in recognition memory.

    PubMed

    Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun

    2017-11-01

    Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.

  5. How Memory Replay in Sleep Boosts Creative Problem-Solving.

    PubMed

    Lewis, Penelope A; Knoblich, Günther; Poe, Gina

    2018-06-01

    Creative thought relies on the reorganisation of existing knowledge. Sleep is known to be important for creative thinking, but there is a debate about which sleep stage is most relevant, and why. We address this issue by proposing that rapid eye movement sleep, or 'REM', and non-REM sleep facilitate creativity in different ways. Memory replay mechanisms in non-REM can abstract rules from corpuses of learned information, while replay in REM may promote novel associations. We propose that the iterative interleaving of REM and non-REM across a night boosts the formation of complex knowledge frameworks, and allows these frameworks to be restructured, thus facilitating creative thought. We outline a hypothetical computational model which will allow explicit testing of these hypotheses. Copyright © 2018. Published by Elsevier Ltd.

  6. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms

    PubMed Central

    Kim, Jaekyoon; Szinte, Julia S.; Boulware, Marissa I.

    2016-01-01

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate

  7. Working memory dependence of spatial contextual cueing for visual search.

    PubMed

    Pollmann, Stefan

    2018-05-10

    When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.

  8. Neuroticism and conscientiousness respectively constrain and facilitate short-term plasticity within the working memory neural network.

    PubMed

    Dima, Danai; Friston, Karl J; Stephan, Klaas E; Frangou, Sophia

    2015-10-01

    Individual differences in cognitive efficiency, particularly in relation to working memory (WM), have been associated both with personality dimensions that reflect enduring regularities in brain configuration, and with short-term neural plasticity, that reflects task-related changes in brain connectivity. To elucidate the relationship of these two divergent mechanisms, we tested the hypothesis that personality dimensions, which reflect enduring aspects of brain configuration, inform about the neurobiological framework within which short-term, task-related plasticity, as measured by effective connectivity, can be facilitated or constrained. As WM consistently engages the dorsolateral prefrontal (DLPFC), parietal (PAR), and anterior cingulate cortex (ACC), we specified a WM network model with bidirectional, ipsilateral, and contralateral connections between these regions from a functional magnetic resonance imaging dataset obtained from 40 healthy adults while performing the 3-back WM task. Task-related effective connectivity changes within this network were estimated using Dynamic Causal Modelling. Personality was evaluated along the major dimensions of Neuroticism, Extraversion, Openness to Experience, Agreeableness, and Conscientiousness. Only two dimensions were relevant to task-dependent effective connectivity. Neuroticism and Conscientiousness respectively constrained and facilitated neuroplastic responses within the WM network. These results suggest individual differences in cognitive efficiency arise from the interplay between enduring and short-term plasticity in brain configuration. © 2015 Wiley Periodicals, Inc.

  9. Memory Enhancement by Targeting Cdk5 Regulation of NR2B

    PubMed Central

    Plattner, Florian; Hernandéz, Adan; Kistler, Tara M.; Pozo, Karine; Zhong, Ping; Yuen, Eunice Y.; Tan, Chunfeng; Hawasli, Ammar H.; Cooke, Sam F.; Nishi, Akinori; Guo, Ailan; Wiederhold, Thorsten; Yan, Zhen; Bibb, James A.

    2014-01-01

    SUMMARY Many psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers due to its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when over-expressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor’s cell surface expression. Disrupting NR2B-Cdk5 interaction using a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a novel regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers. PMID:24607229

  10. The hard fall effect: high working memory capacity leads to a higher, but less robust short-term memory performance.

    PubMed

    Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc

    2015-01-01

    Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.

  11. The Role of Long-Term Memory in a Test of Visual Working Memory: Proactive Facilitation but No Proactive Interference

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Awh, Edward; Sutterer, David W.

    2017-01-01

    We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3…

  12. Reconsolidation of Declarative Memory in Humans

    ERIC Educational Resources Information Center

    Forcato, Cecilia; Burgos, Valeria L.; Argibay, Pablo F.; Molina, Victor A.; Pedreira, Maria E.; Maldonado, Hector

    2007-01-01

    The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not…

  13. LRP8-Reelin-regulated Neuronal (LRN) Enhancer Signature Underlying Learning and Memory Formation

    PubMed Central

    Telese, Francesca; Ma, Qi; Perez, Patricia Montilla; Notani, Dimple; Oh, Soohwan; Li, Wenbo; Comoletti, Davide; Ohgi, Kenneth A.; Taylor, Havilah; Rosenfeld, Michael G.

    2015-01-01

    Summary One of the exceptional properties of the brain is its ability to acquire new knowledge through learning and to store that information through memory. The epigenetic mechanisms linking changes in neuronal transcriptional programs to behavioral plasticity remain largely unknown. Here, we identify the epigenetic signature of the neuronal enhancers required for transcriptional regulation of synaptic plasticity genes during memory formation, linking this to Reelin signaling. The binding of Reelin to its receptor, LRP8, triggers activation of this cohort of LRP8-Reelin-regulated-Neuronal (LRN) enhancers that serve as the ultimate convergence point of a novel synapse-to-nucleus pathway. Reelin simultaneously regulates NMDA-receptor transmission, which reciprocally permits the required, γ-secretase-dependent cleavage of LRP8, revealing an unprecedented role for its intracellular domain in the regulation of synaptically generated signals. These results uncover an in vivo enhancer code serving as a critical molecular component of cognition and relevant to psychiatric disorders linked to defects in Reelin signaling. PMID:25892301

  14. Exploring age differences in visual working memory capacity: is there a contribution of memory for configuration?

    PubMed

    Cowan, Nelson; Saults, J Scott; Clark, Katherine M

    2015-07-01

    Recent research has shown marked developmental increases in the apparent capacity of working memory. This recent research is based largely on performance on tasks in which a visual array is to be retained briefly for comparison with a subsequent probe display. Here we examined a possible theoretical alternative (or supplement) to a developmental increase in working memory in which children could improve in the ability to combine items in an array to form a coherent configuration. Elementary school children and adults received, on each trial, an array of colored spots to be remembered. On some trials, we provided structure in the probe display to facilitate the formation of a mental representation in which a coherent configuration is encoded. This stimulus structure in the probe display helped younger children, and thus reduced the developmental trend, but only on trials in which the participants were held responsible for the locations of items in the array. We conclude that, in addition to the development of the ability to form precise spatial configurations from items, the evidence is consistent with the existence of an actual developmental increase in working memory capacity for objects in an array. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The Cambridge Car Memory Test: a task matched in format to the Cambridge Face Memory Test, with norms, reliability, sex differences, dissociations from face memory, and expertise effects.

    PubMed

    Dennett, Hugh W; McKone, Elinor; Tavashmi, Raka; Hall, Ashleigh; Pidcock, Madeleine; Edwards, Mark; Duchaine, Bradley

    2012-06-01

    Many research questions require a within-class object recognition task matched for general cognitive requirements with a face recognition task. If the object task also has high internal reliability, it can improve accuracy and power in group analyses (e.g., mean inversion effects for faces vs. objects), individual-difference studies (e.g., correlations between certain perceptual abilities and face/object recognition), and case studies in neuropsychology (e.g., whether a prosopagnosic shows a face-specific or object-general deficit). Here, we present such a task. Our Cambridge Car Memory Test (CCMT) was matched in format to the established Cambridge Face Memory Test, requiring recognition of exemplars across view and lighting change. We tested 153 young adults (93 female). Results showed high reliability (Cronbach's alpha = .84) and a range of scores suitable both for normal-range individual-difference studies and, potentially, for diagnosis of impairment. The mean for males was much higher than the mean for females. We demonstrate independence between face memory and car memory (dissociation based on sex, plus a modest correlation between the two), including where participants have high relative expertise with cars. We also show that expertise with real car makes and models of the era used in the test significantly predicts CCMT performance. Surprisingly, however, regression analyses imply that there is an effect of sex per se on the CCMT that is not attributable to a stereotypical male advantage in car expertise.

  16. Retrieval during Learning Facilitates Subsequent Memory Encoding

    ERIC Educational Resources Information Center

    Pastotter, Bernhard; Schicker, Sabine; Niedernhuber, Julia; Bauml, Karl-Heinz T.

    2011-01-01

    In multiple-list learning, retrieval during learning has been suggested to improve recall of the single lists by enhancing list discrimination and, at test, reducing interference. Using electrophysiological, oscillatory measures of brain activity, we examined to what extent retrieval during learning facilitates list encoding. Subjects studied 5…

  17. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  18. Analysis of Memory Formation during General Anesthesia (Propofol/Remifentanil) for Elective Surgery Using the Process-dissociation Procedure.

    PubMed

    Hadzidiakos, Daniel; Horn, Nadja; Degener, Roland; Buchner, Axel; Rehberg, Benno

    2009-08-01

    There have been reports of memory formation during general anesthesia. The process-dissociation procedure has been used to determine if these are controlled (explicit/conscious) or automatic (implicit/unconscious) memories. This study used the process-dissociation procedure with the original measurement model and one which corrected for guessing to determine if more accurate results were obtained in this setting. A total of 160 patients scheduled for elective surgery were enrolled. Memory for words presented during propofol and remifentanil general anesthesia was tested postoperatively by using a word-stem completion task in a process-dissociation procedure. To assign possible memory effects to different levels of anesthetic depth, the authors measured depth of anesthesia using the BIS XP monitor (Aspect Medical Systems, Norwood, MA). Word-stem completion performance showed no evidence of memory for intraoperatively presented words. Nevertheless, an evaluation of these data using the original measurement model for process-dissociation data suggested an evidence of controlled (C = 0.05; 95% confidence interval [CI] 0.02-0.08) and automatic (A = 0.11; 95% CI 0.09-0.12) memory processes (P < 0.01). However, when the data were evaluated with an extended measurement model taking base rates into account adequately, no evidence for controlled (C = 0.00; 95% CI -0.04 to 0.04) or automatic (A = 0.00; 95% CI -0.02 to 0.02) memory processes was obtained. The authors report and discuss parallel findings for published data sets that were generated by using the process-dissociation procedure. Patients had no memories for auditory information presented during propofol/remifentanil anesthesia after midazolam premedication. The use of the process-dissociation procedure with the original measurement model erroneously detected memories, whereas the extended model, corrected for guessing, correctly revealed no memory.

  19. Influence of controlled encoding and retrieval facilitation on memory performance in patients with different profiles of mild cognitive impairment.

    PubMed

    Perri, Roberta; Monaco, Marco; Fadda, Lucia; Serra, Laura; Marra, Camillo; Caltagirone, Carlo; Bruni, Amalia C; Curcio, Sabrina; Bozzali, M; Carlesimo, Giovanni A

    2015-01-01

    Memory tests able to differentiate encoding and retrieval processes from the memoranda storing ones should be used to differentiate patients in a very early phase of AD. In fact, individuals with mild cognitive impairment (MCI) can be characterized by two different memory profiles: a pure amnestic one (with poor learning and retrieval and poor improvement when encoding is assisted and retrieval is facilitated) and a dysexecutive one (with inefficient encoding and/or poor retrieval strategies and improvement with assisted encoding and retrieval). The amnestic profile characterizes subjects affected by medio-temporal atrophy typical of AD. In this study, a Grober-Buschke memory procedure was used to evaluate normal controls and MCI patients with different cognitive profiles: pure amnestic (aMCIsd), amnestic plus other cognitive impairments (aMCImd) and non-amnestic (naMCI). An index of sensitivity of cueing (ISC) measured the advantage passing from free to cued recall. Results showed that both strategic and consolidation abilities were impaired in the aMCIsd and aMCImd groups and were preserved in the naMCI group. aMCImd, however, compensated the memory deficit with assisted encoding and retrieval, but aMCIsd performed very poorly. When MCI subjects were defined according to the ISC value, subjects with poor ISC were primarily in the aMCIsd group and, to a lesser extent, in the aMCImd group and the naMCI group. Finally, patients with a poor ISC showed cerebral atrophy documented in the precocious phase of AD and the retrosplenial cerebral areas seemed to be the most useful areas for identifying patients in the early phase of AD.

  20. The Role of Rewarding and Novel Events in Facilitating Memory Persistence in a Separate Spatial Memory Task

    ERIC Educational Resources Information Center

    Salvetti, Beatrice; Morris, Richard G. M.; Wang, Szu-Han

    2014-01-01

    Many insignificant events in our daily life are forgotten quickly but can be remembered for longer when other memory-modulating events occur before or after them. This phenomenon has been investigated in animal models in a protocol in which weak memories persist longer if exploration in a novel context is introduced around the time of memory…

  1. Episodic memories.

    PubMed

    Conway, Martin A

    2009-09-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of episodic elements, summary records of experience often in the form of visual images, associated to a conceptual frame that provides a conceptual context. Episodic memories are embedded in a more complex conceptual system in which they can become the basis of autobiographical memories. However, the function of episodic memories is to keep a record of progress with short-term goals and access to most episodic memories is lost soon after their formation. Finally, it is suggested that developmentally episodic memories form the basis of the conceptual system and it is from sets of episodic memories that early non-verbal conceptual knowledge is abstracted.

  2. The Regulation of Transcription in Memory Consolidation

    PubMed Central

    Alberini, Cristina M.; Kandel, Eric R.

    2015-01-01

    De novo transcription of DNA is a fundamental requirement for the formation of long-term memory. It is required during both consolidation and reconsolidation, the posttraining and postreactivation phases that change the state of the memory from a fragile into a stable and long-lasting form. Transcription generates both mRNAs that are translated into proteins, which are necessary for the growth of new synaptic connections, as well as noncoding RNA transcripts that have regulatory or effector roles in gene expression. The result is a cascade of events that ultimately leads to structural changes in the neurons that mediate long-term memory storage. The de novo transcription, critical for synaptic plasticity and memory formation, is orchestrated by chromatin and epigenetic modifications. The complexity of transcription regulation, its temporal progression, and the effectors produced all contribute to the flexibility and persistence of long-term memory formation. In this article, we provide an overview of the mechanisms contributing to this transcriptional regulation underlying long-term memory formation. PMID:25475090

  3. Divided attention can enhance memory encoding: the attentional boost effect in implicit memory.

    PubMed

    Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia

    2013-07-01

    Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute facilitation was obtained in 2 perceptual implicit tasks (lexical decision and word fragment completion) but not in a conceptual implicit task (semantic classification). In the case of recognition memory, the facilitation was relative, bringing accuracy in the divided attention condition up to the level of accuracy in the full attention condition. The findings follow from the hypothesis that the attentional boost effect reflects enhanced visual encoding of the study stimulus consequent to the transient orienting response to the dual-task target. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Object properties and cognitive load in the formation of associative memory during precision lifting.

    PubMed

    Li, Yong; Randerath, Jennifer; Bauer, Hans; Marquardt, Christian; Goldenberg, Georg; Hermsdörfer, Joachim

    2009-01-03

    When we manipulate familiar objects in our daily life, our grip force anticipates the physical demands right from the moment of contact with the object, indicating the existence of a memory for relevant object properties. This study explores the formation and consolidation of the memory processes that associate either familiar (size) or arbitrary object features (color) with object weight. In the general task, participants repetitively lifted two differently weighted objects (580 and 280 g) in a pseudo-random order. Forty young healthy adults participated in this study and were randomly distributed into four groups: Color Cue Single task (CCS, blue and red, 9.8(3)cm(3)), Color Cue Dual task (CCD), No Cue (NC) and Size Cue (SC, 9.8(3) and 6(3)cm(3)) group. All groups performed a repetitive precision grasp-lift task and were retested with the same protocol after a 5-min pause. The CCD group was also required to simultaneously perform a memory task during each lift of differently weighted objects coded by color. The results show that groups lifting objects with arbitrary or familiar features successfully formed the association between object weight and manipulated object features and incorporated this into grip force programming, as observed in the different scaling of grip force and grip force rate for different object weights. An arbitrary feature, i.e., color, can be sufficiently associated with object weight, however with less strength than the familiar feature of size. The simultaneous memory task impaired anticipatory force scaling during repetitive object lifting but did not jeopardize the learning process and the consolidation of the associative memory.

  5. Memory-Guided Attention: Independent Contributions of the Hippocampus and Striatum.

    PubMed

    Goldfarb, Elizabeth V; Chun, Marvin M; Phelps, Elizabeth A

    2016-01-20

    Memory can strongly influence how attention is deployed in future encounters. Though memory dependent on the medial temporal lobes has been shown to drive attention, how other memory systems could concurrently and comparably enhance attention is less clear. Here, we demonstrate that both reinforcement learning and context memory facilitate attention in a visual search task. Using functional magnetic resonance imaging, we dissociate the mechanisms by which these memories guide attention: trial by trial, the hippocampus (not the striatum) predicted attention benefits from context memory, while the striatum (not the hippocampus) predicted facilitation from rewarded stimulus-response associations. Responses in these regions were also distinctly correlated with individual differences in each type of memory-guided attention. This study provides novel evidence for the role of the striatum in guiding attention, dissociable from hippocampus-dependent context memory.

  6. Spatial pattern formation facilitates eradication of infectious diseases

    PubMed Central

    Eisinger, Dirk; Thulke, Hans-Hermann

    2008-01-01

    Control of animal-born diseases is a major challenge faced by applied ecologists and public health managers. To improve cost-effectiveness, the effort required to control such pathogens needs to be predicted as accurately as possible. In this context, we reviewed the anti-rabies vaccination schemes applied around the world during the past 25 years. We contrasted predictions from classic approaches based on theoretical population ecology (which governs rabies control to date) with a newly developed individual-based model. Our spatially explicit approach allowed for the reproduction of pattern formation emerging from a pathogen's spread through its host population. We suggest that a much lower management effort could eliminate the disease than that currently in operation. This is supported by empirical evidence from historic field data. Adapting control measures to the new prediction would save one-third of resources in future control programmes. The reason for the lower prediction is the spatial structure formed by spreading infections in spatially arranged host populations. It is not the result of technical differences between models. Synthesis and applications. For diseases predominantly transmitted by neighbourhood interaction, our findings suggest that the emergence of spatial structures facilitates eradication. This may have substantial implications for the cost-effectiveness of existing disease management schemes, and suggests that when planning management strategies consideration must be given to methods that reflect the spatial nature of the pathogen–host system. PMID:18784795

  7. Methylene Blue Facilitates Memory Retention in Zebrafish in a Dose-Dependent Manner.

    PubMed

    Echevarria, David J; Caramillo, Erika M; Gonzalez-Lima, Francisco

    2016-12-01

    Methylene blue (MB) is an FDA-grandfathered drug with memory-enhancing effects at low doses, but opposite effects at high doses. We investigated the effects of four MB doses (0.1, 0.5, 5.0, or 10.0 μM) on zebrafish memory retention in the T-maze task. After training fish to swim into a certain arm of the T-maze, the fish were placed into a tank containing one of the four MB doses or a control tank containing blue food dye. Subsequently, fish were placed into the T-maze for memory retention testing. Results indicated that MB produced hormetic dose-response effects on memory. Fish that received the 0.5 μM dose performed significantly better at the T-maze than those that received higher doses. Fish who received 5.0 μM did not exhibit a significant difference in performance from control fish, and the fish that received the 10.0 μM dose performed significantly worse than lower doses. These findings support the utility of zebrafish in comparative research and their potential value for testing of MB and other neuropsychopharmacological treatments in animal models of memory disorders.

  8. Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions.

    PubMed

    Hu, Jiehui; Qi, Song; Becker, Benjamin; Luo, Lizhu; Gao, Shan; Gong, Qiyong; Hurlemann, René; Kendrick, Keith M

    2015-06-01

    In male Caucasian subjects, learning is facilitated by receipt of social compared with non-social feedback, and the neuropeptide oxytocin (OXT) facilitates this effect. In this study, we have first shown a cultural difference in that male Chinese subjects actually perform significantly worse in the same reinforcement associated learning task with social (emotional faces) compared with non-social feedback. Nevertheless, in two independent double-blind placebo (PLC) controlled between-subject design experiments we found OXT still selectively facilitated learning with social feedback. Similar to Caucasian subjects this OXT effect was strongest with feedback using female rather than male faces. One experiment performed in conjunction with functional magnetic resonance imaging showed that during the response, but not feedback phase of the task, OXT selectively increased activity in the amygdala, hippocampus, parahippocampal gyrus and putamen during the social feedback condition, and functional connectivity between the amygdala and insula and caudate. Therefore, OXT may be increasing the salience and reward value of anticipated social feedback. In the PLC group, response times and state anxiety scores during social feedback were associated with signal changes in these same regions but not in the OXT group. OXT may therefore have also facilitated learning by reducing anxiety in the social feedback condition. Overall our results provide the first evidence for cultural differences in social facilitation of learning per se, but a similar selective enhancement of learning with social feedback under OXT. This effect of OXT may be associated with enhanced responses and functional connectivity in emotional memory and reward processing regions. © 2015 Wiley Periodicals, Inc.

  9. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  10. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    ERIC Educational Resources Information Center

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  11. Autoradiographic study of serotonin transporter during memory formation.

    PubMed

    Tellez, Ruth; Rocha, Luisa; Castillo, Carlos; Meneses, Alfredo

    2010-09-01

    Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Iconic Gestures Facilitate Discourse Comprehension in Individuals With Superior Immediate Memory for Body Configurations.

    PubMed

    Wu, Ying Choon; Coulson, Seana

    2015-11-01

    To understand a speaker's gestures, people may draw on kinesthetic working memory (KWM)-a system for temporarily remembering body movements. The present study explored whether sensitivity to gesture meaning was related to differences in KWM capacity. KWM was evaluated through sequences of novel movements that participants viewed and reproduced with their own bodies. Gesture sensitivity was assessed through a priming paradigm. Participants judged whether multimodal utterances containing congruent, incongruent, or no gestures were related to subsequent picture probes depicting the referents of those utterances. Individuals with low KWM were primarily inhibited by incongruent speech-gesture primes, whereas those with high KWM showed facilitation-that is, they were able to identify picture probes more quickly when preceded by congruent speech and gestures than by speech alone. Group differences were most apparent for discourse with weakly congruent speech and gestures. Overall, speech-gesture congruency effects were positively correlated with KWM abilities, which may help listeners match spatial properties of gestures to concepts evoked by speech. © The Author(s) 2015.

  13. Holding multiple items in short term memory: a neural mechanism.

    PubMed

    Rolls, Edmund T; Dempere-Marco, Laura; Deco, Gustavo

    2013-01-01

    Human short term memory has a capacity of several items maintained simultaneously. We show how the number of short term memory representations that an attractor network modeling a cortical local network can simultaneously maintain active is increased by using synaptic facilitation of the type found in the prefrontal cortex. We have been able to maintain 9 short term memories active simultaneously in integrate-and-fire simulations where the proportion of neurons in each population, the sparseness, is 0.1, and have confirmed the stability of such a system with mean field analyses. Without synaptic facilitation the system can maintain many fewer memories active in the same network. The system operates because of the effectively increased synaptic strengths formed by the synaptic facilitation just for those pools to which the cue is applied, and then maintenance of this synaptic facilitation in just those pools when the cue is removed by the continuing neuronal firing in those pools. The findings have implications for understanding how several items can be maintained simultaneously in short term memory, how this may be relevant to the implementation of language in the brain, and suggest new approaches to understanding and treating the decline in short term memory that can occur with normal aging.

  14. Holding Multiple Items in Short Term Memory: A Neural Mechanism

    PubMed Central

    Rolls, Edmund T.; Dempere-Marco, Laura; Deco, Gustavo

    2013-01-01

    Human short term memory has a capacity of several items maintained simultaneously. We show how the number of short term memory representations that an attractor network modeling a cortical local network can simultaneously maintain active is increased by using synaptic facilitation of the type found in the prefrontal cortex. We have been able to maintain 9 short term memories active simultaneously in integrate-and-fire simulations where the proportion of neurons in each population, the sparseness, is 0.1, and have confirmed the stability of such a system with mean field analyses. Without synaptic facilitation the system can maintain many fewer memories active in the same network. The system operates because of the effectively increased synaptic strengths formed by the synaptic facilitation just for those pools to which the cue is applied, and then maintenance of this synaptic facilitation in just those pools when the cue is removed by the continuing neuronal firing in those pools. The findings have implications for understanding how several items can be maintained simultaneously in short term memory, how this may be relevant to the implementation of language in the brain, and suggest new approaches to understanding and treating the decline in short term memory that can occur with normal aging. PMID:23613789

  15. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference.

    PubMed

    Ellenbogen, Jeffrey M; Hulbert, Justin C; Stickgold, Robert; Dinges, David F; Thompson-Schill, Sharon L

    2006-07-11

    Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.

  16. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipation as Revealed by a Biologically Plausible Computational Model.

    PubMed

    Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie

    2017-01-01

    Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of

  17. Working memory capacity and redundant information processing efficiency.

    PubMed

    Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R

    2015-01-01

    Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

  18. WWC Review of the Report "Benefits of Practicing 4 = 2 + 2: Nontraditional Problem Formats Facilitate Children's Understanding of Mathematical Equivalence." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    The 2011 study, "Benefits of Practicing 4 = 2 + 2: Nontraditional Problem Formats Facilitate Children's Understanding of Mathematical Equivalence," examined the effects of addition practice using nontraditional problem formats on students' understanding of mathematical equivalence. In nontraditional problem formats, operations appear on…

  19. Memory-Guided Attention: Independent Contributions of the Hippocampus and Striatum

    PubMed Central

    Goldfarb, Elizabeth V.; Chun, Marvin M.; Phelps, Elizabeth A.

    2015-01-01

    SUMMARY Memory can strongly influence how attention is deployed in future encounters. Though memory dependent on the medial temporal lobes has been shown to drive attention, how other memory systems could concurrently and comparably enhance attention is less clear. Here, we demonstrate that both reinforcement learning and context memory facilitate attention in a visual search task. Using functional magnetic resonance imaging, we dissociate the mechanisms by which these memories guide attention: trial by trial, the hippocampus (not the striatum) predicted attention benefits from context memory, while the striatum (not the hippocampus) predicted facilitation from rewarded stimulus-response associations. Responses in these regions were also distinctly correlated with individual differences in each type of memory-guided attention. This study provides novel evidence for the role of the striatum in guiding attention, dissociable from hippocampus-dependent context memory. PMID:26777274

  20. Affect influences feature binding in memory: Trading between richness and strength of memory representations.

    PubMed

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2016-10-01

    Research has shown that long-term memory representations of objects are formed as a natural product of perception even without any intentional memorization. It is not known, however, how rich these representations are in terms of the number of bound object features. In particular, because feature binding rests on resource-limited processes, there may be a context-dependent trade-off between the quantity of stored features and their memory strength. The authors examined whether affective state may bring about such a trade-off. Participants incidentally encoded pictures of real-world objects while experiencing positive or negative affect, and the authors later measured memory for 2 features. Results showed that participants traded between richness and strength of memory representations as a function of affect, with positive affect tuning memory formation toward richness and negative affect tuning memory formation toward strength. These findings demonstrate that memory binding is a flexible process that is modulated by affective state. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Flashbulb Memories

    PubMed Central

    Hirst, William; Phelps, Elizabeth A.

    2015-01-01

    We review and analyze the key theories, debates, findings, and omissions of the existing literature on flashbulb memories (FBMs), including what factors affect their formation, retention, and degree of confidence. We argue that FBMs do not require special memory mechanisms and are best characterized as involving both forgetting and mnemonic distortions, despite a high level of confidence. Factual memories for FBM-inducing events generally follow a similar pattern. Although no necessary and sufficient factors straightforwardly account for FBM retention, media attention particularly shapes memory for the events themselves. FBMs are best characterized in term of repetitions, even of mnemonic distortions, whereas event memories evidence corrections. The bearing of this literature on social identity and traumatic memories is also discussed. PMID:26997762

  2. The Influences of Emotion on Learning and Memory

    PubMed Central

    Tyng, Chai M.; Amin, Hafeez U.; Saad, Mohamad N. M.; Malik, Aamir S.

    2017-01-01

    Emotion has a substantial influence on the cognitive processes in humans, including perception, attention, learning, memory, reasoning, and problem solving. Emotion has a particularly strong influence on attention, especially modulating the selectivity of attention as well as motivating action and behavior. This attentional and executive control is intimately linked to learning processes, as intrinsically limited attentional capacities are better focused on relevant information. Emotion also facilitates encoding and helps retrieval of information efficiently. However, the effects of emotion on learning and memory are not always univalent, as studies have reported that emotion either enhances or impairs learning and long-term memory (LTM) retention, depending on a range of factors. Recent neuroimaging findings have indicated that the amygdala and prefrontal cortex cooperate with the medial temporal lobe in an integrated manner that affords (i) the amygdala modulating memory consolidation; (ii) the prefrontal cortex mediating memory encoding and formation; and (iii) the hippocampus for successful learning and LTM retention. We also review the nested hierarchies of circular emotional control and cognitive regulation (bottom-up and top-down influences) within the brain to achieve optimal integration of emotional and cognitive processing. This review highlights a basic evolutionary approach to emotion to understand the effects of emotion on learning and memory and the functional roles played by various brain regions and their mutual interactions in relation to emotional processing. We also summarize the current state of knowledge on the impact of emotion on memory and map implications for educational settings. In addition to elucidating the memory-enhancing effects of emotion, neuroimaging findings extend our understanding of emotional influences on learning and memory processes; this knowledge may be useful for the design of effective educational curricula to provide a

  3. Task-selective memory effects for successfully implemented encoding strategies.

    PubMed

    Leshikar, Eric D; Duarte, Audrey; Hertzog, Christopher

    2012-01-01

    Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies--visual imagery and sentence generation--facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study.

  4. Task-Selective Memory Effects for Successfully Implemented Encoding Strategies

    PubMed Central

    Leshikar, Eric D.; Duarte, Audrey; Hertzog, Christopher

    2012-01-01

    Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies–visual imagery and sentence generation–facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study. PMID:22693593

  5. Differential role of calpain-dependent protein cleavage in intermediate and long-term operant memory in Aplysia.

    PubMed

    Lyons, Lisa C; Gardner, Jacob S; Lentsch, Cassidy T; Gandour, Catherine E; Krishnan, Harini C; Noakes, Eric J

    2017-01-01

    In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Formation and Stability of Recognition Memory: What Happens Upon Recall?

    PubMed Central

    Davis, Sabrina; Renaudineau, Sophie; Poirier, Roseline; Poucet, Bruno; Save, Etienne; Laroche, Serge

    2010-01-01

    The idea that an already consolidated memory can become destabilized after recall and requires a process of reconsolidation to maintain it for subsequent use has gained much credence over the past decade. Experimental studies in rodents have shown pharmacological, genetic, or injurious manipulation at the time of memory reactivation can disrupt the already consolidated memory. Despite the force of experimental data showing this phenomenon, a number of questions have remained unanswered and no consensus has emerged as to the conditions under which a memory can be disrupted following reactivation. To date most rodent studies of reconsolidation are based on negatively reinforced memories, in particular fear-associated memories, while the storage and stability of forms of memory that do not rely on explicit reinforcement have been less often studied. In this review, we focus on recognition memory, a paradigm widely used in humans to probe declarative memory. We briefly outline recent advances in our understanding of the processes and brain circuits involved in recognition memory and review the evidence that recognition memory can undergo reconsolidation upon reactivation. We also review recent findings suggesting that some molecular mechanisms underlying consolidation of recognition memory are similarly recruited after recall to ensure memory stability, while others are more specifically engaged in consolidation or reconsolidation. Finally, we provide novel data on the role of Rsk2, a mental retardation gene, and of the transcription factor zif268/egr1 in reconsolidation of object-location memory, and offer suggestions as to how assessing the activation of certain molecular mechanisms following recall in recognition memory may help understand the relative importance of different aspects of remodeling or updating long-lasting memories. PMID:21120149

  7. Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory.

    PubMed

    Chen, Mingchen; Zheng, Weihua; Wolynes, Peter G

    2016-05-03

    Aplysia cytoplasmic polyadenylation element binding (CPEB) protein, a translational regulator that recruits mRNAs and facilitates translation, has been shown to be a key component in the formation of long-term memory. Experimental data show that CPEB exists in at least a low-molecular weight coiled-coil oligomeric form and an amyloid fiber form involving the Q-rich domain (CPEB-Q). Using a coarse-grained energy landscape model, we predict the structures of the low-molecular weight oligomeric form and the dynamics of their transitions to the β-form. Up to the decamer, the oligomeric structures are predicted to be coiled coils. Free energy profiles confirm that the coiled coil is the most stable form for dimers and trimers. The structural transition from α to β is shown to be concentration dependent, with the transition barrier decreasing with increased concentration. We observe that a mechanical pulling force can facilitate the α-helix to β-sheet (α-to-β) transition by lowering the free energy barrier between the two forms. Interactome analysis of the CPEB protein suggests that its interactions with the cytoskeleton could provide the necessary mechanical force. We propose that, by exerting mechanical forces on CPEB oligomers, an active cytoskeleton can facilitate fiber formation. This mechanical catalysis makes possible a positive feedback loop that would help localize the formation of CPEB fibers to active synapse areas and mark those synapses for forming a long-term memory after the prion form is established. The functional role of the CPEB helical oligomers in this mechanism carries with it implications for targeting such species in neurodegenerative diseases.

  8. Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase.

    PubMed

    Murakami, Satoshi; Minami-Ohtsubo, Maki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Tabata, Tetsuya

    2017-05-31

    Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact. SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila , Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N

  9. Memory and pattern storage in neural networks with activity dependent synapses

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  10. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans.

    PubMed

    Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan

    2013-02-01

    New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.

  11. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms.

    PubMed

    Kim, Jaekyoon; Szinte, Julia S; Boulware, Marissa I; Frick, Karyn M

    2016-03-16

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female

  12. Learning From Tests: Facilitation of Delayed Recall by Initial Recognition Alternatives.

    ERIC Educational Resources Information Center

    Whitten, William B., II; Leonard, Janet Mauriello

    1980-01-01

    Two experiments were designed to determine the effects of multiple-choice recognition test alternatives on subsequent memory for the correct answers. Results of both experiments are interpreted as demonstrations of the principle that long-term retention is facilitated such that memory evaluation occurs during initial recognition tests. (Author/RD)

  13. Learning and memory: Steroids and epigenetics.

    PubMed

    Colciago, Alessandra; Casati, Lavinia; Negri-Cesi, Paola; Celotti, Fabio

    2015-06-01

    Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dissociation of rapid response learning and facilitation in perceptual and conceptual networks of person recognition.

    PubMed

    Valt, Christian; Klein, Christoph; Boehm, Stephan G

    2015-08-01

    Repetition priming is a prominent example of non-declarative memory, and it increases the accuracy and speed of responses to repeatedly processed stimuli. Major long-hold memory theories posit that repetition priming results from facilitation within perceptual and conceptual networks for stimulus recognition and categorization. Stimuli can also be bound to particular responses, and it has recently been suggested that this rapid response learning, not network facilitation, provides a sound theory of priming of object recognition. Here, we addressed the relevance of network facilitation and rapid response learning for priming of person recognition with a view to advance general theories of priming. In four experiments, participants performed conceptual decisions like occupation or nationality judgments for famous faces. The magnitude of rapid response learning varied across experiments, and rapid response learning co-occurred and interacted with facilitation in perceptual and conceptual networks. These findings indicate that rapid response learning and facilitation in perceptual and conceptual networks are complementary rather than competing theories of priming. Thus, future memory theories need to incorporate both rapid response learning and network facilitation as individual facets of priming. © 2014 The British Psychological Society.

  15. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer's disease mice.

    PubMed

    Perusini, Jennifer N; Cajigas, Stephanie A; Cohensedgh, Omid; Lim, Sean C; Pavlova, Ina P; Donaldson, Zoe R; Denny, Christine A

    2017-10-01

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. APPswe/PS1dE9 (APP/PS1) mice have been developed as an AD model and are characterized by plaque formation at 4-6 months of age. Here, we sought to better understand AD-related cognitive decline by characterizing various types of memory. In order to better understand how memory declines with AD, APP/PS1 mice were bred with ArcCreER T2 mice. In this line, neural ensembles activated during memory encoding can be indelibly tagged and directly compared with neural ensembles activated during memory retrieval (i.e., memory traces/engrams). We first administered a battery of tests examining depressive- and anxiety-like behaviors, as well as spatial, social, and cognitive memory to APP/PS1 × ArcCreER T2 × channelrhodopsin (ChR2)-enhanced yellow fluorescent protein (EYFP) mice. Dentate gyrus (DG) neural ensembles were then optogenetically stimulated in these mice to improve memory impairment. AD mice had the most extensive differences in fear memory, as assessed by contextual fear conditioning (CFC), which was accompanied by impaired DG memory traces. Optogenetic stimulation of DG neural ensembles representing a CFC memory increased memory retrieval in the appropriate context in AD mice when compared with control (Ctrl) mice. Moreover, optogenetic stimulation facilitated reactivation of the neural ensembles that were previously activated during memory encoding. These data suggest that activating previously learned DG memory traces can rescue cognitive impairments and point to DG manipulation as a potential target to treat memory loss commonly seen in AD. © 2017 Wiley Periodicals, Inc.

  16. Concurrent Working Memory Load Can Facilitate Selective Attention: Evidence for Specialized Load

    ERIC Educational Resources Information Center

    Park, Soojin; Kim, Min-Shik; Chun, Marvin M.

    2007-01-01

    Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding, see record 2004-17825-003). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not.…

  17. Dancing your moves away: How memory retrieval shapes complex motor action.

    PubMed

    Tempel, Tobias; Loran, Igor; Frings, Christian

    2015-09-01

    Human memory is subject to continuous change. Besides the accumulation of contents as a consequence of encoding new information, the accessing of memory influences later accessibility. The authors investigated how retrieval-related memory-shaping processes affect intentionally acquired complex motion patterns. Dance figures served as the material to be learned. The authors found that selectively retrieving a subset of dance moves facilitated later recall of the retrieved dance figures, whereas figures that were related to these but that did not receive selective practice suffered from forgetting. These opposing effects were shown in experiments with different designs involving either the learning of only 1 set of body movements or 2 sets of movements categorized into 2 dances. A 3rd experiment showed that selective restudy also entailed a recall benefit for restudied dance figures but did not induce forgetting for related nonrestudied dance figures. The results suggest that motor programs representing the motion patterns in a format closely corresponding to parameters of movement execution were affected. The reported experiments demonstrate how retrieval determines motor memory plasticity and emphasize the importance of separating restudy and retrieval practice when teaching people new movements. (c) 2015 APA, all rights reserved).

  18. [The effect of encoding on false memory: examination on levels of processing and list presentation format].

    PubMed

    Hamajima, Hideki

    2004-04-01

    Using the Deese/Roediger-McDermott paradigm, the effects of lists presentation format (blocked/random) and levels of processing of critical nonpresented lures were examined. A levels-of-processing effect in a blocked presentation order was not observed for lures. Rates of false recognition and remember judgments for lures in a shallow level of processing were significantly lower than those in a deep level of processing when items from various themes were inter-mixed instead of blocked. Results showed an interaction between levels of processing and list presentation format. It is thus concluded that encoding of each word and whole list should be both considered in understanding false memory.

  19. Adults' Memories of Childhood: True and False Reports

    ERIC Educational Resources Information Center

    Qin, Jianjian; Ogle, Christin M.; Goodman, Gail S.

    2008-01-01

    In 3 experiments, the authors examined factors that, according to the source-monitoring framework, might influence false memory formation and true/false memory discernment. In Experiment 1, combined effects of warning and visualization on false childhood memory formation were examined, as were individual differences in true and false childhood…

  20. [Neuroscience and collective memory: memory schemas linking brain, societies and cultures].

    PubMed

    Legrand, Nicolas; Gagnepain, Pierre; Peschanski, Denis; Eustache, Francis

    2015-01-01

    During the last two decades, the effect of intersubjective relationships on cognition has been an emerging topic in cognitive neurosciences leading through a so-called "social turn" to the formation of new domains integrating society and cultures to this research area. Such inquiry has been recently extended to collective memory studies. Collective memory refers to shared representations that are constitutive of the identity of a group and distributed among all its members connected by a common history. After briefly describing those evolutions in the study of human brain and behaviors, we review recent researches that have brought together cognitive psychology, neuroscience and social sciences into collective memory studies. Using the reemerging concept of memory schema, we propose a theoretical framework allowing to account for collective memories formation with a specific focus on the encoding process of historical events. We suggest that (1) if the concept of schema has been mainly used to describe rather passive framework of knowledge, such structure may also be implied in more active fashions in the understanding of significant collective events. And, (2) if some schema researches have restricted themselves to the individual level of inquiry, we describe a strong coherence between memory and cultural frameworks. Integrating the neural basis and properties of memory schema to collective memory studies may pave the way toward a better understanding of the reciprocal interaction between individual memories and cultural resources such as media or education. © Société de Biologie, 2016.

  1. Antibodies Mediate Formation of Neutrophil Extracellular Traps in the Middle Ear and Facilitate Secondary Pneumococcal Otitis Media

    PubMed Central

    Short, Kirsty R.; von Köckritz-Blickwede, Maren; Langereis, Jeroen D.; Chew, Keng Yih; Job, Emma R.; Armitage, Charles W.; Hatcher, Brandon; Fujihashi, Kohtaro; Reading, Patrick C.; Hermans, Peter W.

    2014-01-01

    Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease. PMID:24191297

  2. A mega-analysis of memory reports from eight peer-reviewed false memory implantation studies.

    PubMed

    Scoboria, Alan; Wade, Kimberley A; Lindsay, D Stephen; Azad, Tanjeem; Strange, Deryn; Ost, James; Hyman, Ira E

    2017-02-01

    Understanding that suggestive practices can promote false beliefs and false memories for childhood events is important in many settings (e.g., psychotherapeutic, medical, and legal). The generalisability of findings from memory implantation studies has been questioned due to variability in estimates across studies. Such variability is partly due to false memories having been operationalised differently across studies and to differences in memory induction techniques. We explored ways of defining false memory based on memory science and developed a reliable coding system that we applied to reports from eight published implantation studies (N = 423). Independent raters coded transcripts using seven criteria: accepting the suggestion, elaboration beyond the suggestion, imagery, coherence, emotion, memory statements, and not rejecting the suggestion. Using this scheme, 30.4% of cases were classified as false memories and another 23% were classified as having accepted the event to some degree. When the suggestion included self-relevant information, an imagination procedure, and was not accompanied by a photo depicting the event, the memory formation rate was 46.1%. Our research demonstrates a useful procedure for systematically combining data that are not amenable to meta-analysis, and provides the most valid estimate of false memory formation and associated moderating factors within the implantation literature to date.

  3. Retrospective attention in short-term memory has a lasting effect on long-term memory across age.

    PubMed

    Strunk, Jonathan; Morgan, Lauren; Reaves, Sarah; Verhaeghen, Paul; Duarte, Audrey

    2018-04-13

    Declines in both short- and long-term memory are typical of healthy aging. Recent findings suggest that retrodictive attentional cues ("retro-cues") that indicate the location of to-be-probed items in short-term memory (STM) have a lasting impact on long-term memory (LTM) performance in young adults. Whether older adults can also use retro-cues to facilitate both STM and LTM is unknown. Young and older adults performed a visual STM task in which spatially informative retro-cues or non-informative neutral-cues were presented during STM maintenance of real-world objects. We tested participants' memory at both STM and LTM delays for objects that were previously cued with retrodictive or neutral cues during STM order to measure the lasting impact of retrospective attention on LTM. Older adults showed reduced STM and LTM capacity compared to young adults. However, they showed similar magnitude retro-cue memory benefits as young adults at both STM and LTM delays. To the best of our knowledge, this is the first study to investigate whether retro-cues in STM facilitate the encoding of objects into LTM such that they are more likely to be subsequently retrieved by older adults. Our results support the idea that retrospective attention can be an effective means by which older adults can improve their short and long-term memory performance, even in the context of reduced memory capacity.

  4. Structural Components of Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.

    2015-01-01

    Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321

  5. Lysophosphatidic acid-induced increase in adult hippocampal neurogenesis facilitates the forgetting of cocaine-contextual memory.

    PubMed

    Ladrón de Guevara-Miranda, David; Moreno-Fernández, Román Darío; Gil-Rodríguez, Sara; Rosell-Valle, Cristina; Estivill-Torrús, Guillermo; Serrano, Antonia; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Santín, Luis J; Castilla-Ortega, Estela

    2018-02-26

    Erasing memories of cocaine-stimuli associations might have important clinical implications for addiction therapy. Stimulating hippocampal plasticity by enhancing adult hippocampal neurogenesis (AHN) is a promising strategy because the addition of new neurons may not only facilitate new learning but also modify previous connections and weaken retrograde memories. To investigate whether increasing AHN prompted the forgetting of previous contextual cocaine associations, mice trained in a cocaine-induced conditioned place preference (CPP) paradigm were administered chronic intracerebroventricular infusions of lysophosphatidic acid (LPA, an endogenous lysophospholipid with pro-neurogenic actions), ki16425 (an LPA 1/3 receptor antagonist) or a vehicle solution, and they were tested 23 days later for CPP retention and extinction. The results of immunohistochemical experiments showed that the LPA-treated mice exhibited reduced long-term CPP retention and an approximately twofold increase in the number of adult-born hippocampal cells that differentiated into mature neurons. Importantly, mediation analyses confirmed a causal role of AHN in reducing CPP maintenance. In contrast, the ki16425-treated mice displayed aberrant responses, with initially decreased CPP retention that progressively increased across the extinction sessions, leading to no effect on AHN. The pharmacological treatments did not affect locomotion or general exploratory or anxiety-like responses. In a second experiment, normal and LPA 1 -receptor-deficient mice were acutely infused with LPA, which revealed that LPA 1 -mediated signaling was required for LPA-induced proliferative actions. These results suggest that the LPA/LPA 1 pathway acts as a potent in vivo modulator of AHN and highlight the potential usefulness of pro-AHN strategies to treat aberrant cognition in those addicted to cocaine. © 2018 Society for the Study of Addiction.

  6. Transient medial prefrontal perturbation reduces false memory formation.

    PubMed

    Berkers, Ruud M W J; van der Linden, Marieke; de Almeida, Rafael F; Müller, Nils C J; Bovy, Leonore; Dresler, Martin; Morris, Richard G M; Fernández, Guillén

    2017-03-01

    Knowledge extracted across previous experiences, or schemas, benefit encoding and retention of congruent information. However, they can also reduce specificity and augment memory for semantically related, but false information. A demonstration of the latter is given by the Deese-Roediger-McDermott (DRM) paradigm, where the studying of words that fit a common semantic schema are found to induce false memories for words that are congruent with the given schema, but were not studied. The medial prefrontal cortex (mPFC) has been ascribed the function of leveraging prior knowledge to influence encoding and retrieval, based on imaging and patient studies. Here, we used transcranial magnetic stimulation (TMS) to transiently perturb ongoing mPFC processing immediately before participants performed the DRM-task. We observed the predicted reduction in false recall of critical lures after mPFC perturbation, compared to two control groups, whereas veridical recall and recognition memory performance remained similar across groups. These data provide initial causal evidence for a role of the mPFC in biasing the assimilation of new memories and their consolidation as a function of prior knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Intracranial recordings and human memory.

    PubMed

    Johnson, Elizabeth L; Knight, Robert T

    2015-04-01

    Recent work involving intracranial recording during human memory performance provides superb spatiotemporal resolution on mnemonic processes. These data demonstrate that the cortical regions identified in neuroimaging studies of memory fall into temporally distinct networks and the hippocampal theta activity reported in animal memory literature also plays a central role in human memory. Memory is linked to activity at multiple interacting frequencies, ranging from 1 to 500Hz. High-frequency responses and coupling between different frequencies suggest that frontal cortex activity is critical to human memory processes, as well as a potential key role for the thalamus in neocortical oscillations. Future research will inform unresolved questions in the neuroscience of human memory and guide creation of stimulation protocols to facilitate function in the damaged brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Facilitating the use of implicit memory and learning in the physical therapy management of individuals with Alzheimer disease: a case series.

    PubMed

    White, Laura; Ford, Matthew P; Brown, Cynthia J; Peel, Claire; Triebel, Kristen L

    2014-01-01

    Physical rehabilitation of individuals with Alzheimer disease (AD) is often complicated by impairments in explicit memory and learning. Rehabilitation strategies that facilitate the use of the preserved implicit memory system may be effective in treating patients with AD. The purpose of this case series is to describe the application of these strategies, including high-repetition practice, errorless learning (EL), and spaced retrieval, to the physical therapy management of individuals with moderate AD. Three women aged 89 to 95 years with moderate AD who resided in an assisted living facility participated in physical therapy to address their mobility limitations. Twelve physical therapy sessions were scheduled over a period of 4 weeks. Interventions were individually designed to address the mobility needs of each patient, and rehabilitation strategies based on implicit learning principles were integrated into the interventions. All patients participated in at least 10 of the 12 physical therapy sessions. Improvements in performance of objective measures of balance were observed in all patients, although only 1 patient's balance score exceeded the minimal detectable change. No significant clinical change was observed in any patients on the Timed Up and Go Test or self-selected gait speed. Principles of implicit learning were integrated into the interventions for these patients with moderate AD. However, the feasibility of applying the EL paradigm was limited. Further research on the effectiveness of EL, spaced retrieval, and other rehabilitation strategies that facilitate implicit learning of mobility skills in patients with AD is needed to promote optimal physical therapy outcomes in this patient population.

  9. Durable fear memories require PSD-95

    PubMed Central

    Fitzgerald, Paul J.; Pinard, Courtney R.; Camp, Marguerite C.; Feyder, Michael; Sah, Anupam; Bergstrom, Hadley; Graybeal, Carolyn; Liu, Yan; Schlüter, Oliver; Grant, Seth G.N.; Singewald, Nicolas; Xu, Weifeng; Holmes, Andrew

    2014-01-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. While overly persistent fear memories underlie anxiety disorders such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Post-synaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Employing a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95GK), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95GK mice to retrieve remote cued fear memories was associated with hypoactivation of the infralimbic cortex (IL) (not anterior cingulate (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated PSD-95 virus-mediated knockdown in the IL, not ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  10. Emotion processing in the criminal psychopath: the role of attention in emotion-facilitated memory.

    PubMed

    Glass, Samantha J; Newman, Joseph P

    2009-02-01

    The response modulation hypothesis specifies that low-anxious psychopathic individuals have difficulty processing information outside their primary attentional focus. To evaluate the applicability of this model to affective processing, the authors had 239 offenders, classified with the Psychopathy Checklist--Revised (R. D. Hare, 2003) and the Welsh Anxiety Scale (G. Welsh, 1956), perform 1 of 3 emotion memory tasks that examined the effects of emotion on memory for primary and contextual information. Regardless of anxiety level, psychopathic and control offenders demonstrated a significant and comparable memory bias for emotional over neutral words in the primary conditions. However, psychopathic individuals showed significantly less memory bias than did controls in the contextual conditions. Results indicate that the impact of emotion on memory is moderated by attentional factors.

  11. The Importance of Memory Specificity and Memory Coherence for the Self: Linking Two Characteristics of Autobiographical Memory

    PubMed Central

    Vanderveren, Elien; Bijttebier, Patricia; Hermans, Dirk

    2017-01-01

    Autobiographical memory forms a network of memories about personal experiences that defines and supports well-being and effective functioning of the self in various ways. During the last three decades, there have been two characteristics of autobiographical memory that have received special interest regarding their role in psychological well-being and psychopathology, namely memory specificity and memory coherence. Memory specificity refers to the extent to which retrieved autobiographical memories are specific (i.e., memories about a particular experience that happened on a particular day). Difficulty retrieving specific memories interferes with effective functioning of the self and is related to depression and post-traumatic stress disorder. Memory coherence refers to the narrative expression of the overall structure of autobiographical memories. It has likewise been related to psychological well-being and the occurrence of psychopathology. Research on memory specificity and memory coherence has developed as two largely independent research domains, even though they show much overlap. This raises some important theoretical questions. How do these two characteristics of autobiographical memory relate to each other, both theoretically and empirically? Additionally, how can the integration of these two facilitate our understanding of the importance of autobiographical memory for the self? In this article, we give a critical overview of memory specificity and memory coherence and their relation to the self. We link both features of autobiographical memory by describing some important similarities and by formulating hypotheses about how they might relate to each other. By situating both memory specificity and memory coherence within Conway and Pleydell-Pearce’s Self-Memory System, we make a first attempt at a theoretical integration. Finally, we suggest some new and exciting research possibilities and explain how both research fields could benefit from integration

  12. Post-encoding emotional arousal enhances consolidation of item memory, but not reality-monitoring source memory.

    PubMed

    Wang, Bo; Sun, Bukuan

    2017-03-01

    The current study examined whether the effect of post-encoding emotional arousal on item memory extends to reality-monitoring source memory and, if so, whether the effect depends on emotionality of learning stimuli and testing format. In Experiment 1, participants encoded neutral words and imagined or viewed their corresponding object pictures. Then they watched a neutral, positive, or negative video. The 24-hour delayed test showed that emotional arousal had little effect on both item memory and reality-monitoring source memory. Experiment 2 was similar except that participants encoded neutral, positive, and negative words and imagined or viewed their corresponding object pictures. The results showed that positive and negative emotional arousal induced after encoding enhanced consolidation of item memory, but not reality-monitoring source memory, regardless of emotionality of learning stimuli. Experiment 3, identical to Experiment 2 except that participants were tested only on source memory for all the encoded items, still showed that post-encoding emotional arousal had little effect on consolidation of reality-monitoring source memory. Taken together, regardless of emotionality of learning stimuli and regardless of testing format of source memory (conjunction test vs. independent test), the facilitatory effect of post-encoding emotional arousal on item memory does not generalize to reality-monitoring source memory.

  13. Dreaming and Offline Memory Consolidation

    PubMed Central

    Wamsley, Erin J.

    2015-01-01

    Converging evidence suggests that dreaming is influenced by the consolidation of memory during sleep. Following encoding, recently formed memory traces are gradually stabilized and reorganized into a more permanent form of long-term storage. Sleep provides an optimal neurophysiological state to facilitate this process, allowing memory networks to be repeatedly reactivated in the absence of new sensory input. The process of memory reactivation and consolidation in the sleeping brain appears to influence conscious experience during sleep, contributing to dream content recalled on awakening. This article outlines several lines of evidence in support of this hypothesis, and responds to some common objections. PMID:24477388

  14. The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC.

    PubMed

    Wang, Weisheng; Ju, Yun-Yue; Zhou, Qi-Xin; Tang, Jian-Xin; Li, Meng; Zhang, Lei; Kang, Shuo; Chen, Zhong-Guo; Wang, Yu-Jun; Ji, Hui; Ding, Yu-Qiang; Xu, Lin; Liu, Jing-Gen

    2017-07-26

    Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABA A receptor (GABA A R) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABA A R endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABA A R endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABA A R endocytosis and CPA extinction. The crucial role of GABA A R endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABA A R endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABA A R endocytosis. SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories. Copyright © 2017 the authors 0270-6474/17/377096-15$15.00/0.

  15. SODR Memory Control Buffer Control ASIC

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  16. Unforgettable film music: the role of emotion in episodic long-term memory for music.

    PubMed

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2008-05-28

    Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better. Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval.

  17. Memory consolidation within the central amygdala is not necessary for modulation of cerebellar learning.

    PubMed

    Steinmetz, Adam B; Ng, Ka H; Freeman, John H

    2017-06-01

    Amygdala lesions impair, but do not prevent, acquisition of cerebellum-dependent eyeblink conditioning suggesting that the amygdala modulates cerebellar learning. Two-factor theories of eyeblink conditioning posit that a fast-developing memory within the amygdala facilitates slower-developing memory within the cerebellum. The current study tested this hypothesis by impairing memory consolidation within the amygdala with inhibition of protein synthesis, transcription, and NMDA receptors in rats. Rats given infusions of anisomycin or DRB into the central amygdala (CeA) immediately after each eyeblink conditioning session were severely impaired in contextual and cued fear conditioning, but were completely unimpaired in eyeblink conditioning. Rats given the NMDA antagonist ifenprodil into the CeA before each eyeblink conditioning session also showed impaired fear conditioning, but no deficit in eyeblink conditioning. The results indicate that memory formation within the CeA is not necessary for its modulation of cerebellar learning mechanisms. The CeA may modulate cerebellar learning and retention through an attentional mechanism that develops within the training sessions. © 2017 Steinmetz et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Updating in working memory predicts greater emotion reactivity to and facilitated recovery from negative emotion-eliciting stimuli

    PubMed Central

    Pe, Madeline L.; Koval, Peter; Houben, Marlies; Erbas, Yasemin; Champagne, Dominique; Kuppens, Peter

    2015-01-01

    That emotions change in response to emotion-eliciting events is a natural part of human life. However, it is equally important for emotions to return to baseline once the emotion-eliciting events have passed. This suggests that the ability to emotionally react to and recover from emotion-eliciting events is critical for healthy psychological functioning. But why do individuals differ in their emotion reactivity and recovery? The present work postulates that the ability to update emotional information in working memory (WM) may explain individual differences in emotion reactivity and recovery. Two studies are presented, which examined whether updating ability was related to emotion reactivity and recovery. In Study 1, we assessed participants' self-reported affect as they viewed negative and positive films. Our results revealed that better updating ability was related to greater emotion reactivity and facilitated (i.e., quicker) recovery from watching negative films. In Study 2, participants recalled a recent angering event, and were then instructed to either ruminate about or reappraise the event. Results revealed that updating ability was again related to greater emotion reactivity and facilitated (i.e., successful) emotion recovery in response to the angering event, and that this was unrelated to the emotion regulation strategy used. These findings identify the ability to update emotional information in WM as a possible mechanism in emotion responding. PMID:25914655

  19. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms.

    PubMed

    Alberini, Cristina M; Cruz, Emmanuel; Descalzi, Giannina; Bessières, Benjamin; Gao, Virginia

    2018-06-01

    Memory, the ability to retain learned information, is necessary for survival. Thus far, molecular and cellular investigations of memory formation and storage have mainly focused on neuronal mechanisms. In addition to neurons, however, the brain comprises other types of cells and systems, including glia and vasculature. Accordingly, recent experimental work has begun to ask questions about the roles of non-neuronal cells in memory formation. These studies provide evidence that all types of glial cells (astrocytes, oligodendrocytes, and microglia) make important contributions to the processing of encoded information and storing memories. In this review, we summarize and discuss recent findings on the critical role of astrocytes as providers of energy for the long-lasting neuronal changes that are necessary for long-term memory formation. We focus on three main findings: first, the role of glucose metabolism and the learning- and activity-dependent metabolic coupling between astrocytes and neurons in the service of long-term memory formation; second, the role of astrocytic glucose metabolism in arousal, a state that contributes to the formation of very long-lasting and detailed memories; and finally, in light of the high energy demands of the brain during early development, we will discuss the possible role of astrocytic and neuronal glucose metabolisms in the formation of early-life memories. We conclude by proposing future directions and discussing the implications of these findings for brain health and disease. Astrocyte glycogenolysis and lactate play a critical role in memory formation. Emotionally salient experiences form strong memories by recruiting astrocytic β2 adrenergic receptors and astrocyte-generated lactate. Glycogenolysis and astrocyte-neuron metabolic coupling may also play critical roles in memory formation during development, when the energy requirements of brain metabolism are at their peak. © 2017 Wiley Periodicals, Inc.

  20. Early stages of memory formation in filial imprinting: Fos-like immunoreactivity and behavior in the domestic chick.

    PubMed

    Suge, R; McCabe, B J

    2004-01-01

    Early stages of memory formation in filial imprinting were studied in domestic chicks. Chicks trained for 15 min showed strong imprinting, demonstrated by a strong preference for their training stimulus, and the time course of this preference over 2 days after training was similar to that of chicks trained for 60 min. The chicks therefore learned characteristics of the training stimulus very early during training. The intermediate and medial hyperstriatum ventrale (IMHV) is a part of the chick forebrain that is crucial for imprinting. Previous experiments have shown a learning-specific increase in Fos-like immunoreactivity, used as a marker of neuronal activity, in the IMHV after training for 60 min. The time course of Fos expression in the IMHV was measured after training for 15 min and 60 min. The same pattern of expression was found for both training times, showing a peak 120 min after the start of training. The time course of expression was stimulus-dependent. Fos expression in the IMHV, but not the hippocampus, was significantly correlated with strength of imprinting. It is concluded that the learning-specific change in Fos expression in the IMHV is associated with very early components of memory formation.

  1. Durable fear memories require PSD-95.

    PubMed

    Fitzgerald, P J; Pinard, C R; Camp, M C; Feyder, M; Sah, A; Bergstrom, H C; Graybeal, C; Liu, Y; Schlüter, O M; Grant, S G; Singewald, N; Xu, W; Holmes, A

    2015-07-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. Although overly persistent fear memories underlie anxiety disorders, such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Postsynaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Using a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95(GK)), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown (KD) approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95(GK) mice to retrieve remote cued fear memory was associated with hypoactivation of the infralimbic (IL) cortex (but not the anterior cingulate cortex (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated virus-mediated PSD-95 KD in the IL, but not the ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories.

  2. No functional role of attention-based rehearsal in maintenance of spatial working memory representations.

    PubMed

    Belopolsky, Artem V; Theeuwes, Jan

    2009-10-01

    The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology--Human Perception and Performance, 24(3), 780-790]. Three main issues were examined. First, Experiments 1-3 demonstrated that inhibition and not facilitation of visual processing is often observed at the memorized location during the retention interval. This inhibition was caused by keeping a location in memory and not by the exogenous nature of the memory cue. Second, Experiment 4 showed that inhibition of the memorized location does not lead to any significant impairment in memory accuracy. Finally, Experiment 5 connected current results to the previous findings and demonstrated facilitation of processing at the memorized location. Importantly, facilitation of processing did not lead to more accurate memory performance. The present results challenge the functional role of attention in maintenance of spatial working memory representations.

  3. Memory strategy training in children with cerebral infarcts related to sickle cell disease.

    PubMed

    Yerys, Benjamin E; White, Desirée A; Salorio, Cynthia F; McKinstry, Robert; Moinuddin, Asif; DeBaun, Michael

    2003-06-01

    Cerebral infarcts occur in approximately 30% of children with sickle cell disease (SCD), but little information exists regarding remediation of associated cognitive deficits. The authors examined the benefits of training children with infarcts to use memory strategies. Six children with SCD-related infarcts received academic tutoring; three of these children received additional training in memory strategies (silent rehearsal to facilitate short-term memory and semantic organization to facilitate long-term memory). The performance of children receiving strategy training appeared to improve more than that of children receiving only tutoring. Memory in children with SCD-related infarcts may be enhanced through strategy training.

  4. Voluntary running depreciates the requirement of Ca2+-stimulated cAMP signaling in synaptic potentiation and memory formation

    PubMed Central

    Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung

    2016-01-01

    Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term potentiation (LTP) and memory formation in mice lacking type 1 adenylyl cyclase (AC1), a neurospecific synaptic enzyme that contributes to Ca2+-stimulated cAMP production. Following 1 mo of voluntary running-wheel exercise, the impaired LTP and object recognition memory in AC1 knockout (KO) mice were significantly attenuated. Running up-regulated exon II mRNA level of BDNF (brain-derived neurotrophic factor), though it failed to increase exon I and IV mRNAs in the hippocampus of AC1 KO mice. Intrahippocampal infusion of recombinant BDNF was sufficient to rescue LTP and object recognition memory defects in AC1 KO mice. Therefore, voluntary running and exogenous BDNF application overcome the defective Ca2+-stimulated cAMP signaling. Our results also demonstrate that alteration in Ca2+-stimulated cAMP can affect the molecular outcome of physical exercise. PMID:27421897

  5. Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters.

    PubMed

    Jiang, Haiteng; van Gerven, Marcel A J; Jensen, Ole

    2015-03-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.

  6. Part-Set Cuing Facilitation for Spatial Information

    ERIC Educational Resources Information Center

    Cole, Sydni M.; Reysen, Matthew B.; Kelley, Matthew R.

    2013-01-01

    Part-set cuing "inhibition" refers to the counterintuitive finding that hints--specifically, part of the set of to-be-remembered information--often impair memory performance in free recall tasks. Although inhibition is the most commonly reported result, part-set cuing "facilitation" has been shown with serial order tasks. The…

  7. Tetrahydrobiopterin improves hippocampal nitric oxide-linked long-term memory.

    PubMed

    Latini, Alexandra; de Bortoli da Silva, Lucila; da Luz Scheffer, Débora; Pires, Ananda Christina Staats; de Matos, Filipe José; Nesi, Renata T; Ghisoni, Karina; de Paula Martins, Roberta; de Oliveira, Paulo Alexandre; Prediger, Rui D; Ghersi, Marisa; Gabach, Laura; Pérez, Mariela Fernanda; Rubiales-Barioglio, Susana; Raisman-Vozari, Rita; Mongeau, Raymond; Lanfumey, Laurence; Aguiar, Aderbal Silva

    2018-06-11

    Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Importance of stimulation paradigm in determining facilitation and effects of neuromodulation.

    PubMed

    Crider, M E; Cooper, R L

    1999-09-25

    Evoked synaptic activity within the CNS and at the neuromuscular junction in most in vivo preparations studied occurs not with single isolated stimuli, but with trains, or bursts, of stimuli. Although for ease in studying the mechanisms of vesicular synaptic transmission one often uses single discrete stimuli, the true mechanisms in the animal may be far more complex. When repetitive stimuli are present at a nerve terminal, often a heightened (i.e., facilitated) postsynaptic potential can be as a result. Facilitation is commonly used as an index of synaptic function and plasticity induced by chronic stimulation or by neuromodulation. The mechanisms that give rise to facilitation are thought to be the same that may underlie short-term learning and memory [C.H. Bailey, E.R. Kandel, Structural changes accompanying memory storage. Annu. Rev. Physiol. 55 (1993) 397-426.]. Differences in short term facilitation (STF) are seen depending on the conventional stimulation paradigm (twin pulse, train, or continuous) used to induce facilitation. Thus, a battery of paradigms should be used to characterize synaptic function to obtain a closer understanding of the possible in vivo conditions.

  9. Neural dynamics associated with semantic and episodic memory for faces: evidence from multiple frequency bands.

    PubMed

    Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo

    2010-02-01

    Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident in several EEG frequency bands: theta (4-8 Hz), alpha (9-13 Hz), and gamma (40-100 Hz). Activity in these bands was differentially modulated by preexisting semantic knowledge and by episodic memory, implicating their different functional roles in memory. More specifically, theta activity and alpha suppression were larger for old compared to new faces at test regardless of fame, but were both larger for famous faces during study. This pattern of selective semantic effects suggests that the theta and alpha responses, which are primarily associated with episodic memory, reflect utilization of semantic information only when it is beneficial for task performance. In contrast, gamma activity decreased between the first (study) and second (test) presentation of a face, but overall was larger for famous than nonfamous faces. Hence, the gamma rhythm seems to be primarily related to activation of preexisting neural representations that may contribute to the formation of new episodic traces. Taken together, these data provide new insights into the complex interaction between semantic and episodic memory for faces and the neural dynamics associated with mnemonic processes.

  10. The interhemispheric CA1 circuit governs rapid generalisation but not fear memory.

    PubMed

    Zhou, Heng; Xiong, Gui-Jing; Jing, Liang; Song, Ning-Ning; Pu, De-Lin; Tang, Xun; He, Xiao-Bing; Xu, Fu-Qiang; Huang, Jing-Fei; Li, Ling-Jiang; Richter-Levin, Gal; Mao, Rong-Rong; Zhou, Qi-Xin; Ding, Yu-Qiang; Xu, Lin

    2017-12-19

    Encoding specificity theory predicts most effective recall by the original conditions at encoding, while generalization endows recall flexibly under circumstances which deviate from the originals. The CA1 regions have been implicated in memory and generalization but whether and which locally separated mechanisms are involved is not clear. We report here that fear memory is quickly formed, but generalization develops gradually over 24 h. Generalization but not fear memory is impaired by inhibiting ipsilateral (ips) or contralateral (con) CA1, and by optogenetic silencing of the ipsCA1 projections onto conCA1. By contrast, in vivo fEPSP recordings reveal that ipsCA1-conCA1 synaptic efficacy is increased with delay over 24 h when generalization is formed but it is unchanged if generalization is disrupted. Direct excitation of ipsCA1-conCA1 synapses using chemogenetic hM3Dq facilitates generalization formation. Thus, rapid generalization is an active process dependent on bilateral CA1 regions, and encoded by gradual synaptic learning in ipsCA1-conCA1 circuit.

  11. Active retrieval facilitates across-episode binding by modulating the content of memory

    PubMed Central

    Bridge, Donna J.; Voss, Joel L.

    2014-01-01

    The contents of memory can be updated when information from the current episode is bound with content retrieved from previous episodes. Little is known regarding factors that determine the memory content that is subject to this across-episode binding. We tested whether across-episode binding preferentially occurs for memory content that is currently “active” and identified relevant neural correlates. After studying objects at specific locations on scene backgrounds, subjects performed one of two retrieval tasks for the objects on different scene backgrounds. In an active condition, subjects recalled object locations, whereas subjects merely dragged objects to predetermined locations in a passive condition. Immediately following each object-location retrieval event, a novel face appeared on a blank screen. We hypothesized that the original episode content would be active in memory during face encoding in the active condition, but not in the passive condition (despite seeing the same content in both conditions). A ramification of the active condition would thus be preferential binding of original episode content to novel faces, with no such across-episode binding in the passive condition. Indeed, memory for faces was better when tested on the original background scenes in the active relative to passive condition, indicating that original episode content was bound with the active condition faces, whereas this occurred to a lesser extent for the passive condition faces. Likewise, early-onset negative ERP effects reflected binding of the face to the original episode content in the active but not the passive condition. In contrast, binding in the passive condition occurred only when faces were physically displayed on the original scenes during recognition testing, and a very similar early-onset negative ERP effect signaled binding in this condition. ERP correlates of binding were thus similar for across-episode and within-episode binding (and were distinct from other

  12. Active retrieval facilitates across-episode binding by modulating the content of memory.

    PubMed

    Bridge, Donna J; Voss, Joel L

    2014-10-01

    The contents of memory can be updated when information from the current episode is bound with content retrieved from previous episodes. Little is known regarding factors that determine the memory content that is subject to this across-episode binding. We tested whether across-episode binding preferentially occurs for memory content that is currently "active" and identified relevant neural correlates. After studying objects at specific locations on scene backgrounds, subjects performed one of two retrieval tasks for the objects on different scene backgrounds. In an active condition, subjects recalled object locations, whereas subjects merely dragged objects to predetermined locations in a passive condition. Immediately following each object-location retrieval event, a novel face appeared on a blank screen. We hypothesized that the original episode content would be active in memory during face encoding in the active condition, but not in the passive condition (despite seeing the same content in both conditions). A ramification of the active condition would thus be preferential binding of original episode content to novel faces, with no such across-episode binding in the passive condition. Indeed, memory for faces was better when tested on the original background scenes in the active relative to passive condition, indicating that original episode content was bound with the active condition faces, whereas this occurred to a lesser extent for the passive condition faces. Likewise, early-onset negative ERP effects reflected binding of the face to the original episode content in the active but not the passive condition. In contrast, binding in the passive condition occurred only when faces were physically displayed on the original scenes during recognition testing, and a very similar early-onset negative ERP effect signaled binding in this condition. ERP correlates of binding were thus similar for across-episode and within-episode binding (and were distinct from other

  13. Semantic processes leading to true and false memory formation in schizophrenia.

    PubMed

    Paz-Alonso, Pedro M; Ghetti, Simona; Ramsay, Ian; Solomon, Marjorie; Yoon, Jong; Carter, Cameron S; Ragland, J Daniel

    2013-07-01

    Encoding semantic relationships between items on word lists (semantic processing) enhances true memories, but also increases memory distortions. Episodic memory impairments in schizophrenia (SZ) are strongly driven by failures to process semantic relations, but the exact nature of these relational semantic processing deficits is not well understood. Here, we used a false memory paradigm to investigate the impact of implicit and explicit semantic processing manipulations on episodic memory in SZ. Thirty SZ and 30 demographically matched healthy controls (HC) studied Deese/Roediger-McDermott (DRM) lists of semantically associated words. Half of the lists had strong implicit semantic associations and the remainder had low strength associations. Similarly, half of the lists were presented under "standard" instructions and the other half under explicit "relational processing" instructions. After study, participants performed recall and old/new recognition tests composed of targets, critical lures, and unrelated lures. HC exhibited higher true memories and better discriminability between true and false memory compared to SZ. High, versus low, associative strength increased false memory rates in both groups. However, explicit "relational processing" instructions positively improved true memory rates only in HC. Finally, true and false memory rates were associated with severity of disorganized and negative symptoms in SZ. These results suggest that reduced processing of semantic relationships during encoding in SZ may stem from an inability to implement explicit relational processing strategies rather than a fundamental deficit in the implicit activation and retrieval of word meanings from patients' semantic lexicon. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The role of sleep in declarative memory consolidation--direct evidence by intracranial EEG.

    PubMed

    Axmacher, Nikolai; Haupt, Sven; Fernández, Guillén; Elger, Christian E; Fell, Juergen

    2008-03-01

    Two step theories of memory formation assume that an initial learning phase is followed by a consolidation stage. Memory consolidation has been suggested to occur predominantly during sleep. Very recent findings, however, suggest that important steps in memory consolidation occur also during waking state but may become saturated after some time awake. Sleep, in this model, specifically favors restoration of synaptic plasticity and accelerated memory consolidation while asleep and briefly afterwards. To distinguish between these different views, we recorded intracranial electroencephalograms from the hippocampus and rhinal cortex of human subjects while they retrieved information acquired either before or after a "nap" in the afternoon or on a control day without nap. Reaction times, hippocampal event-related potentials, and oscillatory gamma activity indicated a temporal gradient of hippocampal involvement in information retrieval on the control day, suggesting hippocampal-neocortical information transfer during waking state. On the day with nap, retrieval of recent items that were encoded briefly after the nap did not involve the hippocampus to a higher degree than retrieval of items encoded before the nap. These results suggest that sleep facilitates rapid processing through the hippocampus but is not necessary for information transfer into the neocortex per se.

  15. Effects of saccadic bilateral eye movements on episodic and semantic autobiographical memory fluency.

    PubMed

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.

  16. Effects of Saccadic Bilateral Eye Movements on Episodic and Semantic Autobiographical Memory Fluency

    PubMed Central

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance. PMID:24133435

  17. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    PubMed

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  18. Examining the influence of a spatially irrelevant working memory load on attentional allocation.

    PubMed

    McDonnell, Gerald P; Dodd, Michael D

    2013-08-01

    The present study examined the influence of holding task-relevant gaze cues in working memory during a target detection task. Gaze cues shift attention in gaze-consistent directions, even when they are irrelevant to a primary detection task. It is unclear, however, whether gaze cues need to be perceived online to elicit these effects, or how these effects may be moderated if the gaze cues are relevant to a secondary task. In Experiment 1, participants encoded a face for a subsequent memory task, after which they performed an unrelated target detection task. Critically, gaze direction was irrelevant to the target detection task, but memory for the perceived face was tested at trial conclusion. Surprisingly, participants exhibited inhibition-of-return (IOR) and not facilitation, with slower response times for the gazed-at location. In Experiments 2, presentation duration and cue-target stimulus-onset asynchrony were manipulated and we continued to observe IOR with no early facilitation. Experiment 3 revealed facilitation but not IOR when the memory task was removed; Experiment 4 also revealed facilitation when the gaze cue memory task was replaced with arrows cues. The present experiments provide an important dissociation between perceiving cues online versus holding them in memory as it relates to attentional allocation. 2013 APA, all rights reserved

  19. Memory for conversation and the development of common ground.

    PubMed

    McKinley, Geoffrey L; Brown-Schmidt, Sarah; Benjamin, Aaron S

    2017-11-01

    Efficient conversation is guided by the mutual knowledge, or common ground, that interlocutors form as a conversation progresses. Characterized from the perspective of commonly used measures of memory, efficient conversation should be closely associated with item memory-what was said-and context memory-who said what to whom. However, few studies have explicitly probed memory to evaluate what type of information is maintained following a communicative exchange. The current study examined how item and context memory relate to the development of common ground over the course of a conversation, and how these forms of memory vary as a function of one's role in a conversation as speaker or listener. The process of developing common ground was positively related to both item and context memory. In addition, content that was spoken was remembered better than content that was heard. Our findings illustrate how memory assessments can complement language measures by revealing the impact that basic conversational processes have on memory for what has been discussed. By taking this approach, we show that not only does the process of forming common ground facilitate communication in the present, but it also promotes an enduring record of that event, facilitating conversation into the future.

  20. Long-term potentiation and memory processes in the psychological works of Sigmund Freud and in the formation of neuropsychiatric symptoms.

    PubMed

    Centonze, D; Siracusano, A; Calabresi, P; Bernardi, G

    2005-01-01

    Far from disproving the model of mind functioning proposed by psychoanalysis, the recent advances in neuropsychiatrical research confirmed the crucial ideas of Sigmund Freud. The hypothesis that the origin of mental illnesses lies in the impossibility for a subject to erase the long-term effects of a remote adverse event is in tune with the view that several psychiatric disturbances reflect the activation of aberrant unconscious memory processes. Freud's insights did not stop here, but went on to describe in an extremely precise manner the neural mechanisms of memory formation almost a century before the description of long-term synaptic potentiation.

  1. The Role of Long-Term Memory in a Test of Visual Working Memory: Proactive Facilitation but no Proactive Interference

    PubMed Central

    Oberauer, Klaus; Awh, Edward; Sutterer, David W.

    2016-01-01

    We report four experiments examining whether associations in visual working memory are subject to proactive interference from long term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of three concrete objects in an array. Each array in the WM test consisted of one old (previously learned) object with a new color (old-mismatch), one old object with its old color (old-match), and one new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from long term memory. In the old mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. PMID:27685018

  2. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test

    PubMed Central

    Rogel-Salazar, G; Luna-Munguía, H; Stevens, KE; Besio, WG

    2013-01-01

    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development by Besio as an alternative/complementary therapy for seizure control. TFS has shown efficacy attenuating penicillin, pilocarpine, and pentylenetetrazole– induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. The short and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. Independent groups were used: naïve, control (without TFS), and TFS (treated). Naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. TFS via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs. PMID:23419871

  3. Identification of a novel protein for memory regulation in the hippocampus.

    PubMed

    Zhang, Xue-Han; Zhang, Hui; Tu, Yanyang; Gao, Xiang; Zhou, Changfu; Jin, Meilei; Zhao, Guoping; Jing, Naihe; Li, Bao-Ming; Yu, Lei

    2005-08-26

    Memory formation, maintenance, and retrieval are a dynamic process, reflecting a combined outcome of new memory formation on one hand, and older memory suppression/clearance on the other. Although much knowledge has been gained regarding new memory formation, less is known about the molecular components and processes that serve the function of memory suppression/clearance. Here, we report the identification of a novel protein, termed hippyragranin (HGN), that is expressed in the rat hippocampus and its expression is reduced by hippocampal denervation. Inhibition of HGN by antisense oligonucleotide in area CA1 results in enhanced performance in Morris water maze, as well as elevated long-term potentiation. These results suggest that HGN is involved in negative memory regulation.

  4. Computer memory management system

    DOEpatents

    Kirk, III, Whitson John

    2002-01-01

    A computer memory management system utilizing a memory structure system of "intelligent" pointers in which information related to the use status of the memory structure is designed into the pointer. Through this pointer system, The present invention provides essentially automatic memory management (often referred to as garbage collection) by allowing relationships between objects to have definite memory management behavior by use of coding protocol which describes when relationships should be maintained and when the relationships should be broken. In one aspect, the present invention system allows automatic breaking of strong links to facilitate object garbage collection, coupled with relationship adjectives which define deletion of associated objects. In another aspect, The present invention includes simple-to-use infinite undo/redo functionality in that it has the capability, through a simple function call, to undo all of the changes made to a data model since the previous `valid state` was noted.

  5. Working memory facilitates insight instead of hindering it: Comment on DeCaro, Van Stockum, and Wieth (2016).

    PubMed

    Chuderski, Adam; Jastrzębski, Jan

    2017-12-01

    The "nothing-special" account of insight predicts positive correlations of insight problem solving and working memory capacity (WMC), whereas the "special-process" account expects no, or even negative, correlations. In the latter vein, DeCaro, Van Stockum Jr., and Wieth (2016) have recently reported weak negative WMC correlations with 2 constraint relaxation matchstick problems and 3 insight problems, and thus they claim that WM hinders insight. Here, we report on 3 studies that investigated WMC and various matchstick and classical problems (including 1 study that precisely replicated DeCaro et al.'s procedure). All 3 studies yielded moderate positive correlations of WMC with both the constraint relaxation and the classical problems. WMC explained 10% variance in problem solving, no matter what problems were used or how they were applied. Thus, DeCaro et al.'s claim that WM hinders insight is unwarranted. The opposite is true: WM facilitates insight. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Habitat stability, predation risk and 'memory syndromes'.

    PubMed

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  7. [Supposed role of "metabolic memory" in formation of response reaction to stress-factors in young and adult organisms].

    PubMed

    Bozhkov, A I; Dlubovskaia, V L; Dmitriev, Iu V; Meshaĭkina, N I; Maleev, V A; Klimova, E M

    2009-01-01

    The influence of the combined long-lasted influences of sulfur sulfate and diet restriction in young (3 month age) and adult (21 month age) Vistar rats on activity of glucose-6-phospatase, alaninaminotranspherase (ALT), aspartataminotranspherase (AST), and on phosphorilating activity of liver mitochondria was studied to investigate the role of metabolic memory on the peculiarities of response reaction. The young animals not differed from adult ones in the possibility of inducing activity of glucose-6-phospatase, ALT, and on phosphorilating activity after the influence of sulfur sulfate and diet restriction. The age-related differences in glucose-6-phospatase and transpherases and phosphorilating activity existing in control disappeared after the long-lasted action of sulfur sulfate and diet restriction. The answer reaction in enzyme activity to stress factors applied many times depends upon the metabolic memory formed in the process of adaptation, and the age of animals have no influence on it. In some relation the ontogenesis may be considered as a result of adaptation genesis. The metabolic memory can change the answer of the system to the stress influence. There are three types of modification of the answer to stress factors: the answer remains unchanged (metabolic memory), "paradox answer" formation, and super activation of the metabolic system.

  8. High-performance flexible resistive memory devices based on Al2O3:GeOx composite

    NASA Astrophysics Data System (ADS)

    Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh

    2018-05-01

    In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.

  9. Involuntary conscious memory facilitates cued recall performance: further evidence that chaining occurs during voluntary recall.

    PubMed

    Mace, John H

    2009-01-01

    Recent studies have shown that conscious recollection of the past occurs spontaneously when subjects voluntarily recall their own past experiences or a list of previously studied words. Naturalistic diary studies and laboratory studies of this phenomenon, often called involuntary conscious memory (ICM), show that it occurs in 2 ways. One is direct ICM retrieval, which occurs when a cue spontaneously triggers a conscious memory; the other is chained ICM retrieval, which occurs when a retrieved conscious memory spontaneously triggers another. Laboratory studies investigating ICM show that chained ICM retrieval occurs on voluntary autobiographical memory tasks. The present results show that chained ICM retrieval also occurs on a voluntary word list memory task (cued recall). These results are among a handful suggesting that ICM retrieval routinely occurs during voluntary recall.

  10. A shared resource between declarative memory and motor memory.

    PubMed

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  11. A shared resource between declarative memory and motor memory

    PubMed Central

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  12. Statistical Computations Underlying the Dynamics of Memory Updating

    PubMed Central

    Gershman, Samuel J.; Radulescu, Angela; Norman, Kenneth A.; Niv, Yael

    2014-01-01

    Psychophysical and neurophysiological studies have suggested that memory is not simply a carbon copy of our experience: Memories are modified or new memories are formed depending on the dynamic structure of our experience, and specifically, on how gradually or abruptly the world changes. We present a statistical theory of memory formation in a dynamic environment, based on a nonparametric generalization of the switching Kalman filter. We show that this theory can qualitatively account for several psychophysical and neural phenomena, and present results of a new visual memory experiment aimed at testing the theory directly. Our experimental findings suggest that humans can use temporal discontinuities in the structure of the environment to determine when to form new memory traces. The statistical perspective we offer provides a coherent account of the conditions under which new experience is integrated into an old memory versus forming a new memory, and shows that memory formation depends on inferences about the underlying structure of our experience. PMID:25375816

  13. Long-Term Memory Biases Auditory Spatial Attention

    ERIC Educational Resources Information Center

    Zimmermann, Jacqueline F.; Moscovitch, Morris; Alain, Claude

    2017-01-01

    Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants…

  14. Unforgettable film music: The role of emotion in episodic long-term memory for music

    PubMed Central

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2008-01-01

    Background Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance. Results Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better. Conclusion Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval. PMID:18505596

  15. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    PubMed

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.

  16. [Voix d'Or, an audio tool to revive memories].

    PubMed

    Braunschweig, Lina

    2010-01-01

    Voix d'Or is an audio tool designed to awaken the affective memory of elderly people and particularly those suffering from Alzheimer's disease. Every month it offers new radio programmes to initiate or facilitate leisure and entertainment activities, memory workshops or provide the basis of quiet moments. The tool has a double objective: to procure well-being, boost the individual's self-esteem and recognise his/her history and to facilitate exchange and communication between the residents and the staff of a care home.

  17. The effects of intersensory redundancy on attention and memory: infants' long-term memory for orientation in audiovisual events.

    PubMed

    Flom, Ross; Bahrick, Lorraine E

    2010-03-01

    This research examined the effects of bimodal audiovisual and unimodal visual stimulation on infants' memory for the visual orientation of a moving toy hammer following a 5-min, 2-week, or 1-month retention interval. According to the intersensory redundancy hypothesis (L. E. Bahrick & R. Lickliter, 2000; L. E. Bahrick, R. Lickliter, & R. Flom, 2004) detection of and memory for nonredundantly specified properties, including the visual orientation of an event, are facilitated in unimodal stimulation and attenuated in bimodal stimulation in early development. Later in development, however, nonredundantly specified properties can be perceived and remembered in both multimodal and unimodal stimulation. The current study extended tests of these predictions to the domain of memory in infants of 3, 5, and 9 months of age. Consistent with predictions of the intersensory redundancy hypothesis, in unimodal stimulation, memory for visual orientation emerged by 5 months and remained stable across age, whereas in bimodal stimulation, memory did not emerge until 9 months of age. Memory for orientation was evident even after a 1-month delay and was expressed as a shifting preference, from novelty to null to familiarity, across increasing retention time, consistent with Bahrick and colleagues' four-phase model of attention. Together, these findings indicate that infant memory for nonredundantly specified properties of events is a consequence of selective attention to those event properties and is facilitated in unimodal stimulation. Memory for nonredundantly specified properties thus emerges in unimodal stimulation, is later extended to bimodal stimulation, and lasts across a period of at least 1 month.

  18. Memory for media: investigation of false memories for negatively and positively charged public events.

    PubMed

    Porter, Stephen; Taylor, Kristian; Ten Brinke, Leanne

    2008-01-01

    Despite a large body of false memory research, little has addressed the potential influence of an event's emotional content on susceptibility to false recollections. The Paradoxical Negative Emotion (PNE) hypothesis predicts that negative emotion generally facilitates memory but also heightens susceptibility to false memories. Participants were asked whether they could recall 20 "widely publicised" public events (half fictitious) ranging in emotional valence, with or without visual cues. Participants recalled a greater number of true negative events (M=3.31/5) than true positive (M=2.61/5) events. Nearly everyone (95%) came to recall at least one false event (M=2.15 false events recalled). Further, more than twice as many participants recalled any false negative (90%) compared to false positive (41.7%) events. Negative events, in general, were associated with more detailed memories and false negative event memories were more detailed than false positive event memories. Higher dissociation scores were associated with false recollections of negative events, specifically.

  19. Hippocampal SSTR4 somatostatin receptors control the selection of memory strategies.

    PubMed

    Gastambide, François; Viollet, Cécile; Lepousez, Gabriel; Epelbaum, Jacques; Guillou, Jean-Louis

    2009-01-01

    Somatostatin (SS14) has been implicated in various cognitive disorders, and converging evidence from animal studies suggests that SS14 neurons differentially regulate hippocampal- and striatal-dependent memory formation. Four SS14 receptor subtypes (SSTR1-4) are expressed in the hippocampus, but their respective roles in memory processes remain to be determined. In the present study, effects of selective SSTR1-4 agonists on memory formation were assessed in a water-maze task which can engage either hippocampus-dependent "place" and/or striatum-dependent "cue" memory formation. Mice received an intrahippocampal injection of one of each of the selective agonists and were then trained to locate an escape platform based on either distal cues (place memory) or a visible proximal cue (cue memory). Retention was tested 24 h later on probe trials aimed at identifying which memory strategy was preferentially retained. Both SS14 and the SSTR4 agonist (L-803,087) dramatically impaired place memory formation in a dose-dependent manner, whereas SSTR1 (L-797,591), SSTR2 (L-779,976), or SSTR3 (L-796,778) agonists did not yield any behavioral effects. However, unlike SS14, the SSTR4 agonist also dose-dependently enhanced cue-based memory formation. This effect was confirmed in another striatal-dependent memory task, the bar-pressing task, where L-803,087 improved memory of the instrumental response, whereas SS14 was once again ineffective. These data suggest that hippocampal SSTR4 are selectively involved in the selection of memory strategies by switching from the use of hippocampus-based multiple associations to the use of simple dorsal striatum-based behavioral responses. Possible neural mechanisms and functional implications are discussed.

  20. Inductive reasoning and implicit memory: evidence from intact and impaired memory systems.

    PubMed

    Girelli, Luisa; Semenza, Carlo; Delazer, Margarete

    2004-01-01

    In this study, we modified a classic problem solving task, number series completion, in order to explore the contribution of implicit memory to inductive reasoning. Participants were required to complete number series sharing the same underlying algorithm (e.g., +2), differing in both constituent elements (e.g., 2468 versus 57911) and correct answers (e.g., 10 versus 13). In Experiment 1, reliable priming effects emerged, whether primes and targets were separated by four or ten fillers. Experiment 2 provided direct evidence that the observed facilitation arises at central stages of problem solving, namely the identification of the algorithm and its subsequent extrapolation. The observation of analogous priming effects in a severely amnesic patient strongly supports the hypothesis that the facilitation in number series completion was largely determined by implicit memory processes. These findings demonstrate that the influence of implicit processes extends to higher level cognitive domain such as induction reasoning.

  1. Gestures make memories, but what kind? Patients with impaired procedural memory display disruptions in gesture production and comprehension

    PubMed Central

    Klooster, Nathaniel B.; Cook, Susan W.; Uc, Ergun Y.; Duff, Melissa C.

    2015-01-01

    Hand gesture, a ubiquitous feature of human interaction, facilitates communication. Gesture also facilitates new learning, benefiting speakers and listeners alike. Thus, gestures must impact cognition beyond simply supporting the expression of already-formed ideas. However, the cognitive and neural mechanisms supporting the effects of gesture on learning and memory are largely unknown. We hypothesized that gesture's ability to drive new learning is supported by procedural memory and that procedural memory deficits will disrupt gesture production and comprehension. We tested this proposal in patients with intact declarative memory, but impaired procedural memory as a consequence of Parkinson's disease (PD), and healthy comparison participants with intact declarative and procedural memory. In separate experiments, we manipulated the gestures participants saw and produced in a Tower of Hanoi (TOH) paradigm. In the first experiment, participants solved the task either on a physical board, requiring high arching movements to manipulate the discs from peg to peg, or on a computer, requiring only flat, sideways movements of the mouse. When explaining the task, healthy participants with intact procedural memory displayed evidence of their previous experience in their gestures, producing higher, more arching hand gestures after solving on a physical board, and smaller, flatter gestures after solving on a computer. In the second experiment, healthy participants who saw high arching hand gestures in an explanation prior to solving the task subsequently moved the mouse with significantly higher curvature than those who saw smaller, flatter gestures prior to solving the task. These patterns were absent in both gesture production and comprehension experiments in patients with procedural memory impairment. These findings suggest that the procedural memory system supports the ability of gesture to drive new learning. PMID:25628556

  2. Facilitative Effects of Forgetting from Short-Term Memory on Growth of Long-Term Memory in Retardates

    ERIC Educational Resources Information Center

    Sperber, Richard D.

    1976-01-01

    Competing explanations of the beneficial effect of spacing in retardate discrimination learning were tested. Results are inconsistent with consolidation and rehearsal theories but support the prediction of the Geber, Greenfield, and House spacing model that forgetting from short-term memory facilities retardate learning. (Author/SB)

  3. Children's episodic memory.

    PubMed

    Ghetti, Simona; Lee, Joshua

    2011-07-01

    Episodic memory develops during childhood and adolescence. This trajectory depends on several underlying processes. In this article, we first discuss the development of the basic binding processes (e.g., the processes by which elements are bound together to form a memory episode) and control processes (e.g., reasoning and metamemory processes) involved in episodic remembering. Then, we discuss the role of these processes in false-memory formation. In the subsequent sections, we examine the neural substrates of the development of episodic memory. Finally, we discuss atypical development of episodic memory. As we proceed through the article, we suggest potential avenues for future research. WIREs Cogni Sci 2011 2 365-373 DOI: 10.1002/wcs.114 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Memory Dysfunction

    PubMed Central

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  5. Working memory, long-term memory, and medial temporal lobe function

    PubMed Central

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  6. Stress within a Restricted Time Window Selectively Affects the Persistence of Long-Term Memory

    PubMed Central

    Fang, Qin; Chai, Ning; Zhao, Li-Yan; Xue, Yan-Xue; Luo, Yi-Xiao; Jian, Min; Han, Ying; Shi, Hai-Shui; Lu, Lin; Wu, Ping; Wang, Ji-Shi

    2013-01-01

    The effects of stress on emotional memory are distinct and depend on the stages of memory. Memory undergoes consolidation and reconsolidation after acquisition and retrieval, respectively. Stress facilitates the consolidation but disrupts the reconsolidation of emotional memory. Previous research on the effects of stress on memory have focused on long-term memory (LTM) formation (tested 24 h later), but the effects of stress on the persistence of LTM (tested at least 1 week later) are unclear. Recent findings indicated that the persistence of LTM requires late-phase protein synthesis in the dorsal hippocampus. The present study investigated the effect of stress (i.e., cold water stress) during the late phase after the acquisition and retrieval of contextual fear memory in rats. We found that stress and corticosterone administration during the late phase (12 h) after acquisition, referred to as late consolidation, selectively enhanced the persistence of LTM, whereas stress during the late phase (12 h) after retrieval, referred to as late reconsolidation, selectively disrupted the restabilized persistence of LTM. Moreover, the effects of stress on the persistence of LTM were blocked by the corticosterone synthesis inhibitor metyrapone, which was administered before stress, suggesting that the glucocorticoid system is involved in the effects of stress on the persistence of LTM. We conclude that stress within a restricted time window after acquisition or retrieval selectively affects the persistence of LTM and depends on the glucocorticoid system. PMID:23544051

  7. Facilitators in Ambivalence

    ERIC Educational Resources Information Center

    Karlsson, Mikael R.; Erlandson, Peter

    2018-01-01

    This is part of a larger ethnographical study concerning how school development in a local educational context sets cultural and social life in motion. The main data "in this article" consists of semi-structural interviews with teachers (facilitators) who have the responsibility of carrying out a project about formative assessment in…

  8. Effects of Serial Rehearsal Training on Memory Search

    ERIC Educational Resources Information Center

    McCauley, Charley; And Others

    1976-01-01

    Half the subjects were trained to use a serial rehearsal strategy during target set storage and half were given no strategy training. The results indicate that the rate of memory search is IQ-related, and that serial rehearsal training facilitates memory search when rehearsal is covert. (Author/BW)

  9. Dynorphins regulate the strength of social memory.

    PubMed

    Bilkei-Gorzo, A; Mauer, D; Michel, K; Zimmer, A

    2014-02-01

    Emotionally arousing events like encounter with an unfamiliar con-species produce strong and vivid memories, whereby the hippocampus and amygdala play a crucial role. It is less understood, however, which neurotransmitter systems regulate the strength of social memories, which have a strong emotional component. It was shown previously that dynorphin signalling is involved in the formation and extinction of fear memories, therefore we asked if it influences social memories as well. Mice with a genetic deletion of the prodynorphin gene Pdyn (Pdyn(-/-)) showed a superior partner recognition ability, whereas their performance in the object recognition test was identical as in wild-type mice. Pharmacological blockade of kappa opioid receptors (KORs) led to an enhanced social memory in wild-type animals, whereas activation of KORs reduced the recognition ability of Pdyn(-/-) mice. Partner recognition test situation induced higher elevation in dynorphin A levels in the central and basolateral amygdala as well as in the hippocampus, and also higher dynorphin B levels in the hippocampus than the object recognition test situation. Our result suggests that dynorphin system activity is increased in emotionally arousing situation and it decreases the formation of social memories. Thus, dynorphin signalling is involved in the formation of social memories by diminishing the emotional component of the experience. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation.

    PubMed

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-05-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.

  11. Homolog of protein kinase Mζ maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix

    PubMed Central

    Balaban, Pavel M.; Roshchin, Matvey; Timoshenko, Alia Kh.; Zuzina, Alena B.; Lemak, Maria; Ierusalimsky, Victor N.; Aseyev, Nikolay A.; Malyshev, Aleksey Y.

    2015-01-01

    It has been shown that a variety of long-term memories in different regions of the brain and in different species are quickly erased by local inhibition of protein kinase Mζ (PKMζ), a persistently active protein kinase. Using antibodies to mammalian PKMζ, we describe in the present study the localization of immunoreactive molecules in the nervous system of the terrestrial snail Helix lucorum. Presence of a homolog of PKMζ was confirmed with transcriptomics. We have demonstrated in behavioral experiments that contextual fear memory disappeared under a blockade of PKMζ with a selective peptide blocker of PKMζ zeta inhibitory peptide (ZIP), but not with scrambled ZIP. If ZIP was combined with a “reminder” (20 min in noxious context), no impairment of the long-term contextual memory was observed. In electrophysiological experiments we investigated whether PKMζ takes part in the maintenance of long-term facilitation (LTF) in the neural circuit mediating tentacle withdrawal. LTF of excitatory synaptic inputs to premotor interneurons was induced by high-frequency nerve stimulation combined with serotonin bath applications and lasted at least 4 h. We found that bath application of 2 × 10−6 M ZIP at the 90th min after the tetanization reduced the EPSP amplitude to the non-tetanized EPSP values. Applications of the scrambled ZIP peptide at a similar time and concentration didn’t affect the EPSP amplitudes. In order to test whether effects of ZIP are specific to the synapses, we performed experiments with LTF of somatic membrane responses to local glutamate applications. It was shown earlier that serotonin application in such an “artificial synapse” condition elicits LTF of responses to glutamate. It was found that ZIP had no effect on LTF in these conditions, which may be explained by the very low concentration of PKMζ molecules in somata of these identified neurons, as evidenced by immunochemistry. Obtained results suggest that the Helix homolog of PKM

  12. Memory dynamics under stress.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  13. Age differences in memory for meaningful and arbitrary associations: A memory retrieval account.

    PubMed

    Amer, Tarek; Giovanello, Kelly S; Grady, Cheryl L; Hasher, Lynn

    2018-02-01

    Older adults typically show poor associative memory performance relative to younger adults. This age-related effect, however, is mediated by the meaningfulness of the materials used, such that age differences are minimized with the use of information that is consistent with prior knowledge. While this effect has been interpreted as facilitative learning through schematic support, the role of memory retrieval on this effect has yet to be explored. Using an associative memory paradigm that varied the extent of controlled retrieval for previously studied meaningful or arbitrary associations, older and younger adults in the present study retrieved realistic and unrealistic grocery item prices in a speeded, or in a slow, more control-based retrieval condition. There were no age differences in memory for realistic (meaningful) prices in either condition; however, younger adults showed better memory than older adults for unrealistic prices in the controlled retrieval condition only. These results suggest that age differences in memory for arbitrary associations can, at least partly, be accounted for by age reductions in strategic, controlled retrieval. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Molecular brake pad hypothesis: pulling off the brakes for emotional memory

    PubMed Central

    Vogel-Ciernia, Annie

    2015-01-01

    Under basal conditions histone deacetylases (HDACs) and their associated co-repressor complexes serve as molecular ‘brake pads’ to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation. Inhibition of HDACs increases histone acetylation, extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories. PMID:23096102

  15. Evidences for vertical charge dipole formation in charge-trapping memories and its impact on reliability

    NASA Astrophysics Data System (ADS)

    Padovani, Andrea; Arreghini, Antonio; Vandelli, Luca; Larcher, Luca; bosch, Geert Van den; Houdt, Jan Van

    2012-07-01

    We demonstrate the formation of a vertical charge dipole in the nitride layer of TaN/Al2O3/Si3N4/SiO2/Si memories and use dedicated experiments and device simulations to investigate its dependence on program and erase conditions. We show that the polarity of the dipole depends on the program/erase operation sequence and demonstrate that it is at the origin of the charge losses observed during retention. This dipole severely affects the retention of mildly programmed and erased states, representing a serious reliability concern especially for multi-level applications.

  16. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    ERIC Educational Resources Information Center

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  17. [Effects of the neurogenesis stimulator Ro 25-6981 upon formation of spatial skill in adult rats depend on the term of its administration and the animals' ability to learn].

    PubMed

    Solov'eva, O A; Storozheva, Z I; Proshin, A T; Sherstnev, V V

    2011-02-01

    Effect of administration of selective N-methyl-D-aspartate (NMDA) receptor antagonist Ro 25-6981 on learning and memory in a dose which is known to stimulate neoneurogenesis was assessed in adult rats with different abilities to formation of spatial skills in different time periods after the antagonist injection. Wistar male rats were trained to find hidden platform in the Morris water maze for 5 consecutive days. Rats' learning ability for spatial skill formation was evaluated depending on platform speed achievements. In re-training sessions (cues and platform location changed), it was found that all rats received Ro 25-6981 13 days before the re-training demonstrated impaired spatial memory. At the same time the inhibitor injected 29 days before re-training selectively facilitated the formation of spatial skill in animals with initially low learning abilities.

  18. Source memory enhancement for emotional words.

    PubMed

    Doerksen, S; Shimamura, A P

    2001-03-01

    The influence of emotional stimuli on source memory was investigated by using emotionally valenced words. The words were colored blue or yellow (Experiment 1) or surrounded by a blue or yellow frame (Experiment 2). Participants were asked to associate the words with the colors. In both experiments, emotionally valenced words elicited enhanced free recall compared with nonvalenced words; however, recognition memory was not affected. Source memory for the associated color was also enhanced for emotional words, suggesting that even memory for contextual information is benefited by emotional stimuli. This effect was not due to the ease of semantic clustering of emotional words because semantically related words were not associated with enhanced source memory, despite enhanced recall (Experiment 3). It is suggested that enhancement resulted from facilitated arousal or attention, which may act to increase organization processes important for source memory.

  19. Cognitive control over memory - individual differences in memory performance for emotional and neutral material.

    PubMed

    Wierzba, M; Riegel, M; Wypych, M; Jednoróg, K; Grabowska, A; Marchewka, A

    2018-02-28

    It is widely accepted that people differ in memory performance. The ability to control one's memory depends on multiple factors, including the emotional properties of the memorized material. While it was widely demonstrated that emotion can facilitate memory, it is unclear how emotion modifies our ability to suppress memory. One of the reasons for the lack of consensus among researchers is that individual differences in memory performance were largely neglected in previous studies. We used the directed forgetting paradigm in an fMRI study, in which subjects viewed neutral and emotional words, which they were instructed to remember or to forget. Subsequently, subjects' memory of these words was tested. Finally, they assessed the words on scales of valence, arousal, sadness and fear. We found that memory performance depended on instruction as reflected in the engagement of the lateral prefrontal cortex (lateral PFC), irrespective of emotional properties of words. While the lateral PFC engagement did not differ between neutral and emotional conditions, it correlated with behavioural performance when emotional - as opposed to neutral - words were presented. A deeper understanding of the underlying brain mechanisms is likely to require a study of individual differences in cognitive abilities to suppress memory.

  20. Staging memory for massively parallel processor

    NASA Technical Reports Server (NTRS)

    Batcher, Kenneth E. (Inventor)

    1988-01-01

    The invention herein relates to a computer organization capable of rapidly processing extremely large volumes of data. A staging memory is provided having a main stager portion consisting of a large number of memory banks which are accessed in parallel to receive, store, and transfer data words simultaneous with each other. Substager portions interconnect with the main stager portion to match input and output data formats with the data format of the main stager portion. An address generator is coded for accessing the data banks for receiving or transferring the appropriate words. Input and output permutation networks arrange the lineal order of data into and out of the memory banks.

  1. Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.

    PubMed

    Luna-Munguía, Hiram; Meneses, Alfredo; Peña-Ortega, Fernando; Gaona, Andres; Rocha, Luisa

    2012-01-01

    Hippocampal high frequency electrical stimulation (HFS) at 130 Hz has been proposed as a therapeutical strategy to control neurological disorders such as intractable temporal lobe epilepsy (TLE). This study was carried out to determine the effects of hippocampal HFS on the memory process and the probable involvement of amino acids. Using the autoshaping task, we found that animals receiving hippocampal HFS showed augmented short-term, but not long-term memory formation, an effect blocked by bicuculline pretreatment and associated with enhanced tissue levels of amino acids in hippocampus. In addition, microdialysis experiments revealed high extracellular levels of glutamate, aspartate, glycine, taurine, and alanine during the application of hippocampal HFS. In contrast, GABA release augmented during HFS and remained elevated for more than 1 h after the stimulation was ended. HFS had minimal effects on glutamine release. The present results suggest that HFS has an activating effect on specific amino acids in normal hippocampus that may be involved in the enhanced short-term memory formation. These data further provide experimental support for the concept that hippocampus may be a promising target for focal stimulation to treat intractable seizures in humans. Copyright © 2010 Wiley Periodicals, Inc., Inc.

  2. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test.

    PubMed

    Rogel-Salazar, G; Luna-Munguía, H; Stevens, K E; Besio, W G

    2013-04-01

    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development as an alternative/complementary therapy for seizure control. Transcranial focal electrical stimulation has shown efficacy in attenuating penicillin-, pilocarpine-, and pentylenetetrazole-induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. Short- and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. The following independent groups were used: naïve, control (without TFS), and TFS (treated). The naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. Transcranial focal electrical stimulation via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Working Memory Underpins Cognitive Development, Learning, and Education

    ERIC Educational Resources Information Center

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…

  4. Circadian modulation of short-term memory in Drosophila.

    PubMed

    Lyons, Lisa C; Roman, Gregg

    2009-01-01

    Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively reinforced olfactory-learning paradigm in Drosophila melanogaster. We found that memory formation was regulated in a circadian manner. The peak performance in short-term memory (STM) occurred during the early subjective night with a twofold performance amplitude after a single pairing of conditioned and unconditioned stimuli. This rhythm in memory is eliminated in both timeless and period mutants and is absent during constant light conditions. Circadian gating of sensory perception does not appear to underlie the rhythm in short-term memory as evidenced by the nonrhythmic shock avoidance and olfactory avoidance behaviors. Moreover, central brain oscillators appear to be responsible for the modulation as cryptochrome mutants, in which the antennal circadian oscillators are nonfunctional, demonstrate robust circadian rhythms in short-term memory. Together these data suggest that central, rather than peripheral, circadian oscillators modulate the formation of short-term associative memory and not the perception of the stimuli.

  5. Emotional memory in schizophrenia.

    PubMed

    Herbener, Ellen S

    2008-09-01

    Emotional memories play an important role in our day-to-day experience, informing many of our minute-to-minute decisions (eg, where to go for dinner, what are the likely consequences of not attending a meeting), as well as our long-term goal setting. Individuals with schizophrenia appear to be impaired in memory for emotional experiences, particularly over longer delay periods, which may contribute to deficits in goal-related behavior and symptoms of amotivation and anhedonia. This article reviews factors that are known to influence emotional memory in healthy subjects, applies these factors to results from emotional memory studies with individuals with schizophrenia, and then uses extant neurobiological models of emotional memory formation to develop hypotheses about biological processes that might particularly contribute to emotional memory impairment in schizophrenia.

  6. Positive feelings facilitate working memory and complex decision making among older adults.

    PubMed

    Carpenter, Stephanie M; Peters, Ellen; Västfjäll, Daniel; Isen, Alice M

    2013-01-01

    The impact of induced mild positive feelings on working memory and complex decision making among older adults (aged 63-85) was examined. Participants completed a computer administered card task in which participants could win money if they chose from "gain" decks and lose money if they chose from "loss" decks. Individuals in the positive-feeling condition chose better than neutral-feeling participants and earned more money overall. Participants in the positive-feeling condition also demonstrated improved working-memory capacity. These effects of positive-feeling induction have implications for affect theory, as well as, potentially, practical implications for people of all ages dealing with complex decisions.

  7. The effects of study task on prestimulus subsequent memory effects in the hippocampus.

    PubMed

    de Chastelaine, Marianne; Rugg, Michael D

    2015-11-01

    Functional magnetic resonance imaging (fMRI) was employed to examine the effects of a study task manipulation on pre-stimulus activity in the hippocampus predictive of later successful recollection. Eighteen young participants were scanned while making either animacy or syllable judgments on visually presented study words. Cues presented before each word denoted which judgment should be made. Following the study phase, a surprise recognition memory test was administered in which each test item had to be endorsed as "Remembered," "Known," or "New." As expected, "deep" animacy judgments led to better memory for study items than did "shallow" syllable judgments. In both study tasks, pre-stimulus subsequent recollection effects were evident in the interval between the cue and the study item in bilateral anterior hippocampus. However, the direction of the effects differed according to the study task: whereas pre-stimulus hippocampal activity on animacy trials was greater for later recollected items than items judged old on the basis of familiarity (replicating prior findings), these effects reversed for syllable trials. We propose that the direction of pre-stimulus hippocampal subsequent memory effects depends on whether an optimal pre-stimulus task set facilitates study processing that is conducive or unconducive to the formation of contextually rich episodic memories. © 2015 Wiley Periodicals, Inc.

  8. Working Memory Underpins Cognitive Development, Learning, and Education

    PubMed Central

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585

  9. Children's Memory for Words Under Self-Reported and Induced Imagery Strategies.

    ERIC Educational Resources Information Center

    Filan, Gary L.; Sullivan, Howard J.

    The effectiveness of the use of self-reported imagery strategies on children's subsequent memory performance was studied, and the coding redundancy hypothesis that memory is facilitated by using an encoding procedure in both words and images was tested. The two levels of reported memory strategy (imagize, verbalize) were crossed with "think…

  10. Effects of Insulin and Octreotide on Memory and Growth Hormone in Alzheimer's Disease

    PubMed Central

    Watson, G. Stennis; Baker, Laura D.; Cholerton, Brenna A.; Rhoads, Kristoffer W.; Merriam, George R.; Schellenberg, Gerard D.; Asthana, PhD;Sanjay; Cherrier, Monique; Craft, Suzanne

    2009-01-01

    Both insulin alone and the somatostatin analogue octreotide alone facilitate memory in patients with Alzheimer's disease (AD). Since octreotide inhibits endogenous insulin secretion, the cognitive effects of insulin and octreotide may not be independent. This study tested the individual and interactive effects of insulin and octreotide on memory and plasma growth hormone (GH) levels in older adults. Participants were 16 memory-impaired (AD=7, amnestic mild cognitive impairment=9; apolipoprotein E [APOE] ε4- [no ε4 alleles]=9, ε4+ [1-2 ε4 alleles]=7) and 19 cognitively-intact older adults (APOE ε4-=17, ε4+=1). On separate days, fasting participants received counterbalanced infusions of (1) insulin (1 mU·kg-1·min-1) and dextrose to maintain euglycemia, (2) octreotide (150 μg/h), (3) insulin, dextrose, and octreotide, or (4) saline. Story recall was the principal endpoint. Insulin alone facilitated delayed recall for ε4-patients, relative to ε4+ patients (P=0.0012). Furthermore, ε4- patients with higher Mattis Dementia Rating Scale (DRS) scores had greater octreotide-induced memory facilitation (P=0.0298). For healthy adults, octreotide facilitated memory (P=0.0122). Unexpectedly, hyperinsulinemia with euglycemia increased GH levels in healthy controls (P=0.0299). Thus, insulin and octreotide appear to regulate memory in older adults. APOE ε4 genotype modulates responses to insulin and octreotide. Finally, insulin may regulate GH levels during euglycemia. PMID:19625744

  11. Stress-Induced Out-of-Context Activation of Memory

    PubMed Central

    Ježek, Karel; Lee, Benjamin B.; Kelemen, Eduard; McCarthy, Katharine M.; McEwen, Bruce S.; Fenton, André A.

    2010-01-01

    Inappropriate recollections and responses in stressful conditions are hallmarks of post-traumatic stress disorder and other anxiety and mood disorders, but how stress contributes to the disorders is unclear. Here we show that stress itself reactivates memories even if the memory is unrelated to the stressful experience. Forced-swim stress one day after learning enhanced memory recall. One-day post-learning amnestic treatments were ineffective unless administered soon after the swim, indicating that a stressful experience itself can reactivate unrelated consolidated memories. The swim also triggered inter-hemispheric transfer of a lateralized memory, confirming stress reactivates stable memories. These novel effects of stress on memory required the hippocampus although the memories themselves did not, indicating hippocampus-dependent modulation of extrahippocampal memories. These findings that a stressful experience itself can activate memory suggest the novel hypothesis that traumatic stress reactivates pre-trauma memories, linking them to memory for the trauma and pathological facilitation of post-traumatic recall. PMID:21203585

  12. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.

    PubMed

    Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech

    2017-12-15

    Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.

  13. Dopaminergic neurons write and update memories with cell-type-specific rules

    PubMed Central

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388

  14. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  15. Age-Appropriate Cues Facilitate Source-Monitoring and Reduce Suggestibility in 3- To 7-Year-Olds

    ERIC Educational Resources Information Center

    Bright-Paul, A.; Jarrold, C.; Wright, D.B.

    2005-01-01

    Providing cues to facilitate the recovery of source information can reduce postevent misinformation effects in adults, implying that errors in source-monitoring contribute to suggestibility (e.g., [Lindsay, D. S., & Johnson, M. K. (1989). The eyewitness suggestibility effect and memory for source. Memory & Cognition, 17, 349-358]). The present…

  16. Why Narrating Changes Memory: A Contribution to an Integrative Model of Memory and Narrative Processes.

    PubMed

    Smorti, Andrea; Fioretti, Chiara

    2016-06-01

    This paper aims to reflect on the relation between autobiographical memory (ME) and autobiographical narrative (NA), examining studies on the effects of narrating on the narrator and showing how studying these relations can make more comprehensible both memory's and narrating's way of working. Studies that address explicitly on ME and NA are scarce and touch this issue indirectly. Authors consider different trends of studies of ME and NA: congruency vs incongruency hypotheses on retrieving, the way of organizing memories according to gist or verbatim format and their role in organizing positive and negative emotional experiences, the social roots of ME and NA, the rules of conversation based on narrating. Analysis of investigations leads the Authors to point out three basic results of their research. Firstly, NA transforms ME because it narrativizes memories according to a narrative format. This means that memories, when are narrated, are transformed in stories (verbal language) and socialised. Secondly, the narrativization process is determined by the act of telling something within a communicative situation. Thus, relational situation of narrating act, by modifying the story, modifies also memories. The Authors propose the RE.NA.ME model (RElation, NArration, MEmory) to understand and study ME and NA. Finally, this study claims that ME and NA refer to two different types of processes having a wide area of overlapping. This is due to common social, developmental and cultural roots that make NA to include part of ME (narrative of memory) and ME to include part of NA (memory of personal events that have been narrated).

  17. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae

    PubMed Central

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.

    2016-01-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692

  18. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    PubMed

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S

    2016-10-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  19. Rapid, experience-dependent translation of neurogranin enables memory encoding.

    PubMed

    Jones, Kendrick J; Templet, Sebastian; Zemoura, Khaled; Kuzniewska, Bozena; Pena, Franciso X; Hwang, Hongik; Lei, Ding J; Haensgen, Henny; Nguyen, Shannon; Saenz, Christopher; Lewis, Michael; Dziembowska, Magdalena; Xu, Weifeng

    2018-06-19

    Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3'UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding. Copyright © 2018 the Author(s). Published by PNAS.

  20. Rapid, experience-dependent translation of neurogranin enables memory encoding

    PubMed Central

    Jones, Kendrick J.; Templet, Sebastian; Zemoura, Khaled; Pena, Franciso X.; Hwang, Hongik; Lei, Ding J.; Haensgen, Henny; Nguyen, Shannon; Saenz, Christopher; Lewis, Michael; Dziembowska, Magdalena

    2018-01-01

    Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3′UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding. PMID:29880715