Science.gov

Sample records for facilitates object recognition

  1. Training facilitates object recognition in cubist paintings.

    PubMed

    Wiesmann, Martin; Ishai, Alumit

    2010-01-01

    To the naïve observer, cubist paintings contain geometrical forms in which familiar objects are hardly recognizable, even in the presence of a meaningful title. We used fMRI to test whether a short training session about Cubism would facilitate object recognition in paintings by Picasso, Braque and Gris. Subjects, who had no formal art education, were presented with titled or untitled cubist paintings and scrambled images, and performed object recognition tasks. Relative to the control group, trained subjects recognized more objects in the paintings, their response latencies were significantly shorter, and they showed enhanced activation in the parahippocampal cortex, with a parametric increase in the amplitude of the fMRI signal as a function of the number of recognized objects. Moreover, trained subjects were slower to report not recognizing any familiar objects in the paintings and these longer response latencies were correlated with activation in a fronto-parietal network. These findings suggest that trained subjects adopted a visual search strategy and used contextual associations to perform the tasks. Our study supports the proactive brain framework, according to which the brain uses associations to generate predictions. PMID:20224810

  2. Early recurrent feedback facilitates visual object recognition under challenging conditions

    PubMed Central

    Wyatte, Dean; Jilk, David J.; O'Reilly, Randall C.

    2014-01-01

    Standard models of the visual object recognition pathway hold that a largely feedforward process from the retina through inferotemporal cortex leads to object identification. A subsequent feedback process originating in frontoparietal areas through reciprocal connections to striate cortex provides attentional support to salient or behaviorally-relevant features. Here, we review mounting evidence that feedback signals also originate within extrastriate regions and begin during the initial feedforward process. This feedback process is temporally dissociable from attention and provides important functions such as grouping, associational reinforcement, and filling-in of features. Local feedback signals operating concurrently with feedforward processing are important for object identification in noisy real-world situations, particularly when objects are partially occluded, unclear, or otherwise ambiguous. Altogether, the dissociation of early and late feedback processes presented here expands on current models of object identification, and suggests a dual role for descending feedback projections. PMID:25071647

  3. A Genetic-Algorithm-Based Explicit Description of Object Contour and its Ability to Facilitate Recognition.

    PubMed

    Wei, Hui; Tang, Xue-Song

    2015-11-01

    Shape representation is an extremely important and longstanding problem in the field of pattern recognition. Closed contour, which refers to shape contour, plays a crucial role in the comparison of shapes. Because shape contour is the most stable, distinguishable, and invariable feature of an object, it is useful to incorporate it into the recognition process. This paper proposes a method based on genetic algorithms. The proposed method can be used to identify the most common contour fragments, which can be used to represent the contours of a shape category. The common fragments clarify the particular logics included in the contours. This paper shows that the explicit representation of the shape contour contributes significantly to shape representation and object recognition.

  4. Sign Facilitation in Word Recognition.

    ERIC Educational Resources Information Center

    Wauters, Loes N.; Knoors, Harry E. T.; Vervloed, Mathijs P. J.; Aarnoutse, Cor A. J.

    2001-01-01

    This study examined whether use of sign language would facilitate reading word recognition by 16 deaf children (6- to 1 years-old) in the Netherlands. Results indicated that if words were learned through speech, accompanied by the relevant sign, accuracy of word recognition was greater than if words were learned solely through speech. (Contains…

  5. Cognitive object recognition system (CORS)

    NASA Astrophysics Data System (ADS)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  6. A smoothness constraint on the development of object recognition.

    PubMed

    Wood, Justin N

    2016-08-01

    Understanding how the brain learns to recognize objects is one of the ultimate goals in the cognitive sciences. To date, however, we have not yet characterized the environmental factors that cause object recognition to emerge in the newborn brain. Here, I present the results of a high-throughput controlled-rearing experiment that examined whether the development of object recognition requires experience with temporally smooth visual objects. When newborn chicks (Gallus gallus) were raised with virtual objects that moved smoothly over time, the chicks developed accurate color recognition, shape recognition, and color-shape binding abilities. In contrast, when newborn chicks were raised with virtual objects that moved non-smoothly over time, the chicks' object recognition abilities were severely impaired. These results provide evidence for a "smoothness constraint" on newborn object recognition. Experience with temporally smooth objects facilitates the development of object recognition. PMID:27208825

  7. Method and System for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)

    2012-01-01

    A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.

  8. Recognition of movement object collision

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao Tsu; Sun, Geng-tian; Zhang, Yan

    1991-03-01

    The paper explores the collision recognition of two objects in both crisscross and revolution motions A mathematical model has been established based on the continuation theory. The objects of any shape may be regarded as being built of many 3siniplexes or their convex hulls. Therefore the collision problem of two object in motion can be reduced to the collision of two corresponding 3siinplexes on two respective objects accordingly. Thus an optimized algorithm is developed for collision avoidance which is suitable for computer control and eliminating the need for vision aid. With this algorithm computation time has been reduced significantly. This algorithm is applicable to the path planning of mobile robots And also is applicable to collision avoidance of the anthropomorphic arms grasping two complicated shaped objects. The algorithm is realized using LISP language on a VAX8350 minicomputer.

  9. Object recognition by active fusion

    NASA Astrophysics Data System (ADS)

    Prantl, Manfred; Kopp-Borotschnig, Hermann; Ganster, Harald; Sinclair, David; Pinz, Axel J.

    1996-10-01

    Today's computer vision applications often have to deal with multiple, uncertain, and incomplete visual information. In this paper, we apply a new method, termed 'active fusion', to the problem of generic object recognition. Active fusion provides a common framework for active selection and combination of information from multiple sources in order to arrive at a reliable result at reasonable costs. In our experimental setup we use a camera mounted on a 2m by 1.5m x/z-table observing objects placed on a rotating table. Zoom, pan, tilt, and aperture setting of the camera can be controlled by the system. We follow a part-based approach, trying to decompose objects into parts, which are modeled as geons. The active fusion system starts from an initial view of the objects placed on the table and is continuously trying to refine its current object hypotheses by requesting additional views. The implementation of active fusion on the basis of probability theory, Dempster-Shafer's theory of evidence and fuzzy set theory is discussed. First results demonstrating segmentation improvements by active fusion are presented.

  10. Geometric hashing and object recognition

    NASA Astrophysics Data System (ADS)

    Stiller, Peter F.; Huber, Birkett

    1999-09-01

    We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly determine a small subset of the images that potentially contain a view of the given object (or a small set of objects that potentially match the item in the image). Since this must be accomplished independent of the pose of the object, the objects and images, which are characterized by configurations of geometric features such as points, lines and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry and its 'residual' in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of generating equations for the ideal of this correspondence gives a complete characterization of the view of independent relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine. Several potential directions for improving this scheme are also discussed. Finally, in a brief appendix, we discuss an alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions and arrive at invariant equations (in the Plucker coordinates) that are more numerically robust in applications.

  11. Recurrent Processing during Object Recognition

    PubMed Central

    O’Reilly, Randall C.; Wyatte, Dean; Herd, Seth; Mingus, Brian; Jilk, David J.

    2013-01-01

    How does the brain learn to recognize objects visually, and perform this difficult feat robustly in the face of many sources of ambiguity and variability? We present a computational model based on the biology of the relevant visual pathways that learns to reliably recognize 100 different object categories in the face of naturally occurring variability in location, rotation, size, and lighting. The model exhibits robustness to highly ambiguous, partially occluded inputs. Both the unified, biologically plausible learning mechanism and the robustness to occlusion derive from the role that recurrent connectivity and recurrent processing mechanisms play in the model. Furthermore, this interaction of recurrent connectivity and learning predicts that high-level visual representations should be shaped by error signals from nearby, associated brain areas over the course of visual learning. Consistent with this prediction, we show how semantic knowledge about object categories changes the nature of their learned visual representations, as well as how this representational shift supports the mapping between perceptual and conceptual knowledge. Altogether, these findings support the potential importance of ongoing recurrent processing throughout the brain’s visual system and suggest ways in which object recognition can be understood in terms of interactions within and between processes over time. PMID:23554596

  12. Relations among Early Object Recognition Skills: Objects and Letters

    ERIC Educational Resources Information Center

    Augustine, Elaine; Jones, Susan S.; Smith, Linda B.; Longfield, Erica

    2015-01-01

    Human visual object recognition is multifaceted and comprised of several domains of expertise. Developmental relations between young children's letter recognition and their 3-dimensional object recognition abilities are implicated on several grounds but have received little research attention. Here, we ask how preschoolers' success in recognizing…

  13. Infant Visual Attention and Object Recognition

    PubMed Central

    Reynolds, Greg D.

    2015-01-01

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. PMID:25596333

  14. Relations among early object recognition skills: Objects and letters

    PubMed Central

    Augustine, Elaine; Jones, Susan S.; Smith, Linda B.; Longfield, Erica

    2014-01-01

    Human visual object recognition is multifaceted, with several domains of expertise. Developmental relations between young children's letter recognition and their 3-dimensional object recognition abilities are implicated on several grounds but have received little research attention. Here, we ask how preschoolers’ success in recognizing letters relates to their ability to recognize 3-dimensional objects from sparse shape information alone. A relation is predicted because perception of the spatial relations is critical in both domains. Seventy-three 2 ½- to 4-year-old children completed a Letter Recognition task, measuring the ability to identify a named letter among 3 letters with similar shapes, and a “Shape Caricature Recognition” task, measuring recognition of familiar objects from sparse, abstract information about their part shapes and the spatial relations among those parts. Children also completed a control “Shape Bias” task, in which success depends on recognition of overall object shape but not of relational structure. Children's success in letter recognition was positively related to their shape caricature recognition scores, but not to their shape bias scores. The results suggest that letter recognition builds upon developing skills in attending to and representing the relational structure of object shape, and that these skills are common to both 2-dimensional and 3-dimensional object perception. PMID:25969673

  15. Visual object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)

    2010-01-01

    This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.

  16. Object Recognition Memory and the Rodent Hippocampus

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  17. The Role of Object Recognition in Young Infants' Object Segregation.

    ERIC Educational Resources Information Center

    Carey, Susan; Williams, Travis

    2001-01-01

    Discusses Needham's findings by asserting that they extend understanding of infant perception by showing that the memory representations infants draw upon have bound together information about shape, color, and pattern. Considers the distinction between two senses of "recognition" and asks in which sense object recognition contributes to object…

  18. Neural-Network Object-Recognition Program

    NASA Technical Reports Server (NTRS)

    Spirkovska, L.; Reid, M. B.

    1993-01-01

    HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.

  19. A neuromorphic system for video object recognition.

    PubMed

    Khosla, Deepak; Chen, Yang; Kim, Kyungnam

    2014-01-01

    Automated video object recognition is a topic of emerging importance in both defense and civilian applications. This work describes an accurate and low-power neuromorphic architecture and system for real-time automated video object recognition. Our system, Neuormorphic Visual Understanding of Scenes (NEOVUS), is inspired by computational neuroscience models of feed-forward object detection and classification pipelines for processing visual data. The NEOVUS architecture is inspired by the ventral (what) and dorsal (where) streams of the mammalian visual pathway and integrates retinal processing, object detection based on form and motion modeling, and object classification based on convolutional neural networks. The object recognition performance and energy use of the NEOVUS was evaluated by the Defense Advanced Research Projects Agency (DARPA) under the Neovision2 program using three urban area video datasets collected from a mix of stationary and moving platforms. These datasets are challenging and include a large number of objects of different types in cluttered scenes, with varying illumination and occlusion conditions. In a systematic evaluation of five different teams by DARPA on these datasets, the NEOVUS demonstrated the best performance with high object recognition accuracy and the lowest energy consumption. Its energy use was three orders of magnitude lower than two independent state of the art baseline computer vision systems. The dynamic power requirement for the complete system mapped to commercial off-the-shelf (COTS) hardware that includes a 5.6 Megapixel color camera processed by object detection and classification algorithms at 30 frames per second was measured at 21.7 Watts (W), for an effective energy consumption of 5.45 nanoJoules (nJ) per bit of incoming video. These unprecedented results show that the NEOVUS has the potential to revolutionize automated video object recognition toward enabling practical low-power and mobile video processing

  20. A neuromorphic system for video object recognition

    PubMed Central

    Khosla, Deepak; Chen, Yang; Kim, Kyungnam

    2014-01-01

    Automated video object recognition is a topic of emerging importance in both defense and civilian applications. This work describes an accurate and low-power neuromorphic architecture and system for real-time automated video object recognition. Our system, Neuormorphic Visual Understanding of Scenes (NEOVUS), is inspired by computational neuroscience models of feed-forward object detection and classification pipelines for processing visual data. The NEOVUS architecture is inspired by the ventral (what) and dorsal (where) streams of the mammalian visual pathway and integrates retinal processing, object detection based on form and motion modeling, and object classification based on convolutional neural networks. The object recognition performance and energy use of the NEOVUS was evaluated by the Defense Advanced Research Projects Agency (DARPA) under the Neovision2 program using three urban area video datasets collected from a mix of stationary and moving platforms. These datasets are challenging and include a large number of objects of different types in cluttered scenes, with varying illumination and occlusion conditions. In a systematic evaluation of five different teams by DARPA on these datasets, the NEOVUS demonstrated the best performance with high object recognition accuracy and the lowest energy consumption. Its energy use was three orders of magnitude lower than two independent state of the art baseline computer vision systems. The dynamic power requirement for the complete system mapped to commercial off-the-shelf (COTS) hardware that includes a 5.6 Megapixel color camera processed by object detection and classification algorithms at 30 frames per second was measured at 21.7 Watts (W), for an effective energy consumption of 5.45 nanoJoules (nJ) per bit of incoming video. These unprecedented results show that the NEOVUS has the potential to revolutionize automated video object recognition toward enabling practical low-power and mobile video processing

  1. A neuromorphic system for video object recognition.

    PubMed

    Khosla, Deepak; Chen, Yang; Kim, Kyungnam

    2014-01-01

    Automated video object recognition is a topic of emerging importance in both defense and civilian applications. This work describes an accurate and low-power neuromorphic architecture and system for real-time automated video object recognition. Our system, Neuormorphic Visual Understanding of Scenes (NEOVUS), is inspired by computational neuroscience models of feed-forward object detection and classification pipelines for processing visual data. The NEOVUS architecture is inspired by the ventral (what) and dorsal (where) streams of the mammalian visual pathway and integrates retinal processing, object detection based on form and motion modeling, and object classification based on convolutional neural networks. The object recognition performance and energy use of the NEOVUS was evaluated by the Defense Advanced Research Projects Agency (DARPA) under the Neovision2 program using three urban area video datasets collected from a mix of stationary and moving platforms. These datasets are challenging and include a large number of objects of different types in cluttered scenes, with varying illumination and occlusion conditions. In a systematic evaluation of five different teams by DARPA on these datasets, the NEOVUS demonstrated the best performance with high object recognition accuracy and the lowest energy consumption. Its energy use was three orders of magnitude lower than two independent state of the art baseline computer vision systems. The dynamic power requirement for the complete system mapped to commercial off-the-shelf (COTS) hardware that includes a 5.6 Megapixel color camera processed by object detection and classification algorithms at 30 frames per second was measured at 21.7 Watts (W), for an effective energy consumption of 5.45 nanoJoules (nJ) per bit of incoming video. These unprecedented results show that the NEOVUS has the potential to revolutionize automated video object recognition toward enabling practical low-power and mobile video processing

  2. Object recognition by artificial cortical maps.

    PubMed

    Plebe, Alessio; Domenella, Rosaria Grazia

    2007-09-01

    Object recognition is one of the most important functions of the human visual system, yet one of the least understood, this despite the fact that vision is certainly the most studied function of the brain. We understand relatively well how several processes in the cortical visual areas that support recognition capabilities take place, such as orientation discrimination and color constancy. This paper proposes a model of the development of object recognition capability, based on two main theoretical principles. The first is that recognition does not imply any sort of geometrical reconstruction, it is instead fully driven by the two dimensional view captured by the retina. The second assumption is that all the processing functions involved in recognition are not genetically determined or hardwired in neural circuits, but are the result of interactions between epigenetic influences and basic neural plasticity mechanisms. The model is organized in modules roughly related to the main visual biological areas, and is implemented mainly using the LISSOM architecture, a recent neural self-organizing map model that simulates the effects of intercortical lateral connections. This paper shows how recognition capabilities, similar to those found in brain ventral visual areas, can develop spontaneously by exposure to natural images in an artificial cortical model.

  3. Object recognition memory and the rodent hippocampus.

    PubMed

    Broadbent, Nicola J; Gaskin, Stephane; Squire, Larry R; Clark, Robert E

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR task. Rats received 12 5-min exposures to two identical objects and then received either bilateral lesions of the hippocampus or sham surgery 1 d, 4 wk, or 8 wk after the final exposure. On a retention test 2 wk after surgery, the 1-d and 4-wk hippocampal lesion groups exhibited impaired object recognition memory. In contrast, the 8-wk hippocampal lesion group performed similarly to controls, and both groups exhibited a preference for the novel object. These same rats were then given four postoperative tests using unique object pairs and a 3-h delay between the exposure phase and the test phase. Hippocampal lesions produced moderate and reliable memory impairment. The results suggest that the hippocampus is important for object recognition memory.

  4. Integration trumps selection in object recognition.

    PubMed

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  5. Integration trumps selection in object recognition

    PubMed Central

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  6. L2 Gender Facilitation and Inhibition in Spoken Word Recognition

    ERIC Educational Resources Information Center

    Behney, Jennifer N.

    2011-01-01

    This dissertation investigates the role of grammatical gender facilitation and inhibition in second language (L2) learners' spoken word recognition. Native speakers of languages that have grammatical gender are sensitive to gender marking when hearing and recognizing a word. Gender facilitation refers to when a given noun that is preceded by an…

  7. Pyroelectric linear array sensor for object recognition

    NASA Astrophysics Data System (ADS)

    Chari, Srikant; Jacobs, Eddie L.; Choudhary, Divya

    2014-02-01

    This paper presents a proof of concept sensor system based on a linear array of pyroelectric detectors for recognition of moving objects. The utility of this prototype sensor is demonstrated by its use in trail monitoring and perimeter protection applications for classifying humans against animals with object motion transverse to the field of view of the sensor array. Data acquisition using the system was performed under varied terrains and using a wide variety of animals and humans. With the objective of eventually porting the algorithms onto a low resource computational platform, simple signal processing, feature extraction, and classification techniques are used. The object recognition algorithm uses a combination of geometrical and texture features to provide limited insensitivity to range and speed. Analysis of system performance shows its effectiveness in discriminating humans and animals with high classification accuracy.

  8. Examining object location and object recognition memory in mice.

    PubMed

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-10-08

    This unit is designed to provide sufficient instruction for the setup and execution of tests for object location and object recognition in adult mice. This task is ideally suited for the study of a variety of mouse models that examine disease mechanisms and novel therapeutic targets. By altering several key parameters, the experimenter can investigate short-term or long-term memory and look for either memory impairments or enhancements. Object location and object recognition memory tasks rely on a rodent's innate preference for novelty, and can be conducted sequentially in the same cohort of animals. These two tasks avoid the inherent stress induced with other common measures of rodent memory such as fear conditioning and the Morris water maze. This protocol covers detailed instructions on conducting both tasks, as well as key points concerning data collection, analysis, and interpretation.

  9. Object recognition with hierarchical discriminant saliency networks

    PubMed Central

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  10. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  11. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  12. Object and event recognition for stroke rehabilitation

    NASA Astrophysics Data System (ADS)

    Ghali, Ahmed; Cunningham, Andrew S.; Pridmore, Tony P.

    2003-06-01

    Stroke is a major cause of disability and health care expenditure around the world. Existing stroke rehabilitation methods can be effective but are costly and need to be improved. Even modest improvements in the effectiveness of rehabilitation techniques could produce large benefits in terms of quality of life. The work reported here is part of an ongoing effort to integrate virtual reality and machine vision technologies to produce innovative stroke rehabilitation methods. We describe a combined object recognition and event detection system that provides real time feedback to stroke patients performing everyday kitchen tasks necessary for independent living, e.g. making a cup of coffee. The image plane position of each object, including the patient"s hand, is monitored using histogram-based recognition methods. The relative positions of hand and objects are then reported to a task monitor that compares the patient"s actions against a model of the target task. A prototype system has been constructed and is currently undergoing technical and clinical evaluation.

  13. Category-specificity in visual object recognition.

    PubMed

    Gerlach, Christian

    2009-06-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been demonstrated in neurologically intact subjects, but the findings are contradictory and there is no agreement as to why category-effects arise. This article presents a pre-semantic account of category-effects (PACE) in visual object recognition. PACE assumes two processing stages: shape configuration (the binding of shape elements into elaborate shape descriptions) and selection (among competing representations in visual long-term memory), which are held to be differentially affected by the structural similarity between objects. Drawing on evidence from clinical studies, experimental studies with neurologically intact subjects and functional imaging studies, it is argued that PACE can account for category-effects at both behavioural and neural levels in patients and neurologically intact subjects. The theory also accounts for the way in which category-effects are affected by different task parameters (the degree of perceptual differentiation called for), stimulus characteristics (whether stimuli are presented as silhouettes, full line-drawings, or fragmented forms), stimulus presentation (stimulus exposure duration and position) as well as interactions between these parameters.

  14. Examining Object Location and Object Recognition Memory in Mice

    PubMed Central

    Vogel-Ciernia, Annie; Wood, Marcelo A.

    2014-01-01

    Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location

  15. Touching and Hearing Unseen Objects: Multisensory Effects on Scene Recognition

    PubMed Central

    van Lier, Rob

    2016-01-01

    In three experiments, we investigated the influence of object-specific sounds on haptic scene recognition without vision. Blindfolded participants had to recognize, through touch, spatial scenes comprising six objects that were placed on a round platform. Critically, in half of the trials, object-specific sounds were played when objects were touched (bimodal condition), while sounds were turned off in the other half of the trials (unimodal condition). After first exploring the scene, two objects were swapped and the task was to report, which of the objects swapped positions. In Experiment 1, geometrical objects and simple sounds were used, while in Experiment 2, the objects comprised toy animals that were matched with semantically compatible animal sounds. In Experiment 3, we replicated Experiment 1, but now a tactile-auditory object identification task preceded the experiment in which the participants learned to identify the objects based on tactile and auditory input. For each experiment, the results revealed a significant performance increase only after the switch from bimodal to unimodal. Thus, it appears that the release of bimodal identification, from audio-tactile to tactile-only produces a benefit that is not achieved when having the reversed order in which sound was added after having experience with haptic-only. We conclude that task-related factors other than mere bimodal identification cause the facilitation when switching from bimodal to unimodal conditions. PMID:27698985

  16. Visual appearance interacts with conceptual knowledge in object recognition

    PubMed Central

    Cheung, Olivia S.; Gauthier, Isabel

    2014-01-01

    Objects contain rich visual and conceptual information, but do these two types of information interact? Here, we examine whether visual and conceptual information interact when observers see novel objects for the first time. We then address how this interaction influences the acquisition of perceptual expertise. We used two types of novel objects (Greebles), designed to resemble either animals or tools, and two lists of words, which described non-visual attributes of people or man-made objects. Participants first judged if a word was more suitable for describing people or objects while ignoring a task-irrelevant image, and showed faster responses if the words and the unfamiliar objects were congruent in terms of animacy (e.g., animal-like objects with words that described human). Participants then learned to associate objects and words that were either congruent or not in animacy, before receiving expertise training to rapidly individuate the objects. Congruent pairing of visual and conceptual information facilitated observers' ability to become a perceptual expert, as revealed in a matching task that required visual identification at the basic or subordinate levels. Taken together, these findings show that visual and conceptual information interact at multiple levels in object recognition. PMID:25120509

  17. Touching and Hearing Unseen Objects: Multisensory Effects on Scene Recognition

    PubMed Central

    van Lier, Rob

    2016-01-01

    In three experiments, we investigated the influence of object-specific sounds on haptic scene recognition without vision. Blindfolded participants had to recognize, through touch, spatial scenes comprising six objects that were placed on a round platform. Critically, in half of the trials, object-specific sounds were played when objects were touched (bimodal condition), while sounds were turned off in the other half of the trials (unimodal condition). After first exploring the scene, two objects were swapped and the task was to report, which of the objects swapped positions. In Experiment 1, geometrical objects and simple sounds were used, while in Experiment 2, the objects comprised toy animals that were matched with semantically compatible animal sounds. In Experiment 3, we replicated Experiment 1, but now a tactile-auditory object identification task preceded the experiment in which the participants learned to identify the objects based on tactile and auditory input. For each experiment, the results revealed a significant performance increase only after the switch from bimodal to unimodal. Thus, it appears that the release of bimodal identification, from audio-tactile to tactile-only produces a benefit that is not achieved when having the reversed order in which sound was added after having experience with haptic-only. We conclude that task-related factors other than mere bimodal identification cause the facilitation when switching from bimodal to unimodal conditions.

  18. Global invariant methods for object recognition

    NASA Astrophysics Data System (ADS)

    Stiller, Peter F.

    2001-11-01

    The general problem of single-view recognition is central to man image understanding and computer vision tasks; so central, that it has been characterized as the holy grail of computer vision. In previous work, we have shown how to approach the general problem of recognizing three dimensional geometric configurations (such as arrangements of lines, points, and conics) from a single two dimensional view, in a manner that is view independent. Our methods make use of advanced mathematical techniques from algebraic geometry, notably the theory of correspondences, and a novel equivariant geometric invariant theory. The machinery gives us a way to understand the relationship that exists between the 3D geometry and its residual in a 2D image. This relationship is shown to be a correspondence in the technical sense of algebraic geometry. Exploiting this, one can compute a set of fundamental equations in 3D and 2D invariants which generate the ideal of the correspondence, and which completely describe the mutual 3D/2D constraints. We have chosen to call these equations object/image equations. They can be exploited in a number of ways. For example, from a given 2D configuration, we can determine a set of non-linear constraints on the geometric invariants of a 3D configurations capable of imaging to the given 2D configuration (features on an object), we can derive a set of equations that constrain the images of that object; helping us to determine if that particular object appears in various images. One previous difficulty has been that the usual numerical geometric invariants get expressed as rational functions of the geometric parameters. As such they are not always defined. This leads to degeneracies in algorithms based on these invariants. We show how to replace these invariants by certain toric subvarieties of Grassmannians where the object/image equations become resultant like expressions for the existence of a non- trivial intersection of these subvarieties with

  19. Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.

    ERIC Educational Resources Information Center

    Biederman, Irving; Cooper, Eric E.

    1991-01-01

    Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…

  20. Dissociation of rapid response learning and facilitation in perceptual and conceptual networks of person recognition.

    PubMed

    Valt, Christian; Klein, Christoph; Boehm, Stephan G

    2015-08-01

    Repetition priming is a prominent example of non-declarative memory, and it increases the accuracy and speed of responses to repeatedly processed stimuli. Major long-hold memory theories posit that repetition priming results from facilitation within perceptual and conceptual networks for stimulus recognition and categorization. Stimuli can also be bound to particular responses, and it has recently been suggested that this rapid response learning, not network facilitation, provides a sound theory of priming of object recognition. Here, we addressed the relevance of network facilitation and rapid response learning for priming of person recognition with a view to advance general theories of priming. In four experiments, participants performed conceptual decisions like occupation or nationality judgments for famous faces. The magnitude of rapid response learning varied across experiments, and rapid response learning co-occurred and interacted with facilitation in perceptual and conceptual networks. These findings indicate that rapid response learning and facilitation in perceptual and conceptual networks are complementary rather than competing theories of priming. Thus, future memory theories need to incorporate both rapid response learning and network facilitation as individual facets of priming.

  1. Spinal Anesthesia Facilitates the Early Recognition of TUR Syndrome

    PubMed Central

    McGowan-Smyth, Sam; Vasdev, Nikhil; Gowrie-Mohan, Shan

    2016-01-01

    . Conclusion The features most associated with the early presentation of TUR syndrome require the patient to be conscious for detection. The use of spinal anaesthesia is therefore desirable to facilitate its early recognition. PMID:27390576

  2. Fast neuromimetic object recognition using FPGA outperforms GPU implementations.

    PubMed

    Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph

    2013-08-01

    Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.

  3. An Efficient Bayesian Approach to Exploit the Context of Object-Action Interaction for Object Recognition

    PubMed Central

    Yoon, Sungbaek; Park, Hyunjin; Yi, Juneho

    2016-01-01

    This research features object recognition that exploits the context of object-action interaction to enhance the recognition performance. Since objects have specific usages, and human actions corresponding to these usages can be associated with these objects, human actions can provide effective information for object recognition. When objects from different categories have similar appearances, the human action associated with each object can be very effective in resolving ambiguities related to recognizing these objects. We propose an efficient method that integrates human interaction with objects into a form of object recognition. We represent human actions by concatenating poselet vectors computed from key frames and learn the probabilities of objects and actions using random forest and multi-class AdaBoost algorithms. Our experimental results show that poselet representation of human actions is quite effective in integrating human action information into object recognition. PMID:27347977

  4. Object recognition and localization: the role of tactile sensors.

    PubMed

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  5. Object Recognition and Localization: The Role of Tactile Sensors

    PubMed Central

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  6. Object recognition and localization: the role of tactile sensors.

    PubMed

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments.

  7. Plastic modifications induced by object recognition memory processing

    PubMed Central

    Clarke, Julia Rosauro; Cammarota, Martín; Gruart, Agnès; Izquierdo, Iván; Delgado-García, José María

    2010-01-01

    Long-term potentiation (LTP) phenomenon is widely accepted as a cellular model of memory consolidation. Object recognition (OR) is a particularly useful way of studying declarative memory in rodents because it makes use of their innate preference for novel over familiar objects. In this study, mice had electrodes implanted in the hippocampal Schaffer collaterals–pyramidal CA1 pathway and were trained for OR. Field EPSPs evoked at the CA3-CA1 synapse were recorded at the moment of training and at different times thereafter. LTP-like synaptic enhancement was found 6 h posttraining. A testing session was conducted 24 h after training, in the presence of one familiar and one novel object. Hippocampal synaptic facilitation was observed during exploration of familiar and novel objects. A short depotentiation period was observed early after the test and was followed by a later phase of synaptic efficacy enhancement. Here, we show that OR memory consolidation is accompanied by transient potentiation in the hippocampal CA3-CA1 synapses, while reconsolidation of this memory requires a short-lasting phase of depotentiation that could account for its well described vulnerability. The late synaptic enhancement phase, on the other hand, would be a consequence of memory restabilization. PMID:20133798

  8. Plastic modifications induced by object recognition memory processing.

    PubMed

    Clarke, Julia Rosauro; Cammarota, Martín; Gruart, Agnès; Izquierdo, Iván; Delgado-García, José María

    2010-02-01

    Long-term potentiation (LTP) phenomenon is widely accepted as a cellular model of memory consolidation. Object recognition (OR) is a particularly useful way of studying declarative memory in rodents because it makes use of their innate preference for novel over familiar objects. In this study, mice had electrodes implanted in the hippocampal Schaffer collaterals-pyramidal CA1 pathway and were trained for OR. Field EPSPs evoked at the CA3-CA1 synapse were recorded at the moment of training and at different times thereafter. LTP-like synaptic enhancement was found 6 h posttraining. A testing session was conducted 24 h after training, in the presence of one familiar and one novel object. Hippocampal synaptic facilitation was observed during exploration of familiar and novel objects. A short depotentiation period was observed early after the test and was followed by a later phase of synaptic efficacy enhancement. Here, we show that OR memory consolidation is accompanied by transient potentiation in the hippocampal CA3-CA1 synapses, while reconsolidation of this memory requires a short-lasting phase of depotentiation that could account for its well described vulnerability. The late synaptic enhancement phase, on the other hand, would be a consequence of memory restabilization.

  9. An ERP Study on Self-Relevant Object Recognition

    ERIC Educational Resources Information Center

    Miyakoshi, Makoto; Nomura, Michio; Ohira, Hideki

    2007-01-01

    We performed an event-related potential study to investigate the self-relevance effect in object recognition. Three stimulus categories were prepared: SELF (participant's own objects), FAMILIAR (disposable and public objects, defined as objects with less-self-relevant familiarity), and UNFAMILIAR (others' objects). The participants' task was to…

  10. Infants' Recognition of Objects Using Canonical Color

    ERIC Educational Resources Information Center

    Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.

    2010-01-01

    We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…

  11. Reader error, object recognition, and visual search

    NASA Astrophysics Data System (ADS)

    Kundel, Harold L.

    2004-05-01

    Small abnormalities such as hairline fractures, lung nodules and breast tumors are missed by competent radiologists with sufficient frequency to make them a matter of concern to the medical community; not only because they lead to litigation but also because they delay patient care. It is very easy to attribute misses to incompetence or inattention. To do so may be placing an unjustified stigma on the radiologists involved and may allow other radiologists to continue a false optimism that it can never happen to them. This review presents some of the fundamentals of visual system function that are relevant to understanding the search for and the recognition of small targets embedded in complicated but meaningful backgrounds like chests and mammograms. It presents a model for visual search that postulates a pre-attentive global analysis of the retinal image followed by foveal checking fixations and eventually discovery scanning. The model will be used to differentiate errors of search, recognition and decision making. The implications for computer aided diagnosis and for functional workstation design are discussed.

  12. Mechanisms of object recognition: what we have learned from pigeons

    PubMed Central

    Soto, Fabian A.; Wasserman, Edward A.

    2014-01-01

    Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784

  13. Eye movements during object recognition in visual agnosia.

    PubMed

    Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe

    2012-07-01

    This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape.

  14. Automatic Recognition of Object Names in Literature

    NASA Astrophysics Data System (ADS)

    Bonnin, C.; Lesteven, S.; Derriere, S.; Oberto, A.

    2008-08-01

    SIMBAD is a database of astronomical objects that provides (among other things) their bibliographic references in a large number of journals. Currently, these references have to be entered manually by librarians who read each paper. To cope with the increasing number of papers, CDS develops a tool to assist the librarians in their work, taking advantage of the Dictionary of Nomenclature of Celestial Objects, which keeps track of object acronyms and of their origin. The program searches for object names directly in PDF documents by comparing the words with all the formats stored in the Dictionary of Nomenclature. It also searches for variable star names based on constellation names and for a large list of usual names such as Aldebaran or the Crab. Object names found in the documents often correspond to several astronomical objects. The system retrieves all possible matches, displays them with their object type given by SIMBAD, and lets the librarian make the final choice. The bibliographic reference can then be automatically added to the object identifiers in the database. Besides, the systematic usage of the Dictionary of Nomenclature, which is updated manually, permitted to automatically check it and to detect errors and inconsistencies. Last but not least, the program collects some additional information such as the position of the object names in the document (in the title, subtitle, abstract, table, figure caption...) and their number of occurrences. In the future, this will permit to calculate the 'weight' of an object in a reference and to provide SIMBAD users with an important new information, which will help them to find the most relevant papers in the object reference list.

  15. Category-Specificity in Visual Object Recognition

    ERIC Educational Resources Information Center

    Gerlach, Christian

    2009-01-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been demonstrated in neurologically intact subjects, but the…

  16. A Taxonomy of 3D Occluded Objects Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh

    2016-03-01

    The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

  17. Hydrodynamic Object Recognition: When Multipoles Count

    NASA Astrophysics Data System (ADS)

    Sichert, Andreas B.; Bamler, Robert; van Hemmen, J. Leo

    2009-02-01

    The lateral-line system is a unique mechanosensory facility of aquatic animals that enables them not only to localize prey, predator, obstacles, and conspecifics, but also to recognize hydrodynamic objects. Here we present an explicit model explaining how aquatic animals such as fish can distinguish differently shaped submerged moving objects. Our model is based on the hydrodynamic multipole expansion and uses the unambiguous set of multipole components to identify the corresponding object. Furthermore, we show that within the natural range of one fish length the velocity field contains far more information than that due to a dipole. Finally, the model we present is easy to implement both neuronally and technically, and agrees well with available neuronal, physiological, and behavioral data on the lateral-line system.

  18. The subjective experience of object recognition: comparing metacognition for object detection and object categorization.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J

    2014-05-01

    Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection).

  19. The subjective experience of object recognition: comparing metacognition for object detection and object categorization.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J

    2014-05-01

    Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection). PMID:24554231

  20. Semantic information can facilitate covert face recognition in congenital prosopagnosia.

    PubMed

    Rivolta, Davide; Schmalzl, Laura; Coltheart, Max; Palermo, Romina

    2010-11-01

    People with congenital prosopagnosia have never developed the ability to accurately recognize faces. This single case investigation systematically investigates covert and overt face recognition in "C.," a 69 year-old woman with congenital prosopagnosia. Specifically, we: (a) describe the first assessment of covert face recognition in congenital prosopagnosia using multiple tasks; (b) show that semantic information can contribute to covert recognition; and (c) provide a theoretical explanation for the mechanisms underlying covert face recognition.

  1. Object Recognition and Random Image Structure Evolution

    ERIC Educational Resources Information Center

    Sadr, Jvid; Sinha, Pawan

    2004-01-01

    We present a technique called Random Image Structure Evolution (RISE) for use in experimental investigations of high-level visual perception. Potential applications of RISE include the quantitative measurement of perceptual hysteresis and priming, the study of the neural substrates of object perception, and the assessment and detection of subtle…

  2. Crowding: a cortical constraint on object recognition.

    PubMed

    Pelli, Denis G

    2008-08-01

    The external world is mapped retinotopically onto the primary visual cortex (V1). We show here that objects in the world, unless they are very dissimilar, can be recognized only if they are sufficiently separated in visual cortex: specifically, in V1, at least 6mm apart in the radial direction (increasing eccentricity) or 1mm apart in the circumferential direction (equal eccentricity). Objects closer together than this critical spacing are perceived as an unidentifiable jumble. This is called 'crowding'. It severely limits visual processing, including speed of reading and searching. The conclusion about visual cortex rests on three findings. First, psychophysically, the necessary 'critical' spacing, in the visual field, is proportional to (roughly half) the eccentricity of the objects. Second, the critical spacing is independent of the size and kind of object. Third, anatomically, the representation of the visual field on the cortical surface is such that the position in V1 (and several other areas) is the logarithm of eccentricity in the visual field. Furthermore, we show that much of this can be accounted for by supposing that each 'combining field', defined by the critical spacing measurements, is implemented by a fixed number of cortical neurons.

  3. Parallel and distributed computation for fault-tolerant object recognition

    NASA Technical Reports Server (NTRS)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  4. Acquired prosopagnosia with spared within-class object recognition but impaired recognition of degraded basic-level objects.

    PubMed

    Rezlescu, Constantin; Pitcher, David; Duchaine, Brad

    2012-01-01

    We present a new case of acquired prosopagnosia resulting from extensive lesions predominantly in the right occipitotemporal cortex. Functional brain imaging revealed atypical activation of all core face areas in the right hemisphere, with reduced signal difference between faces and objects compared to controls. In contrast, Herschel's lateral occipital complex showed normal activation to objects. Behaviourally, Herschel is severely impaired with the recognition of familiar faces, discrimination between unfamiliar identities, and the perception of facial expression and gender. Notably, his visual recognition deficits are largely restricted to faces, suggesting that the damaged mechanisms are face-specific. He showed normal recognition memory for a wide variety of object classes in several paradigms, normal ability to discriminate between highly similar items within a novel object category, and intact ability to name basic objects (except four-legged animals). Furthermore, Herschel displayed a normal face composite effect and typical global advantage and global interference effects in the Navon task, suggesting spared integration of both face and nonface information. Nevertheless, he failed visual closure tests requiring recognition of basic objects from degraded images. This abnormality in basic object recognition is at odds with his spared within-class recognition and presents a challenge to hierarchical models of object perception.

  5. Integrating task-directed planning with reactive object recognition

    NASA Astrophysics Data System (ADS)

    Dickinson, Sven J.; Stevenson, Suzanne; Amdur, Eugene; Tsotsos, John K.; Olsson, Lars

    1993-08-01

    We describe a robot vision system that achieves complex object recognition with two layers of behaviors, performing the tasks of planning and object recognition, respectively. The recognition layer is a pipeline in which successive stages take in images from a stereo head, recover relevant features, build intermediate representations, and deposit 3-D objects into a world model. Each stage is an independent process that reacts automatically to output from the previous stage. This reactive system operates continuously and autonomously to construct the robot's 3-D model of the environment. Sitting above the recognition pipeline is the planner which is responsible for populating the world model with objects that satisfy the high-level goals of the system. For example, upon examination of the world model, the planner can decide to direct the head to another location, gating new images into the recognition pipeline, causing new objects to be deposited into the world model. Alternatively, the planner can alter the recognition behavior of the pipeline so that objects of a certain type or at a certain location appear in the world model.

  6. Developmental Commonalities between Object and Face Recognition in Adolescence

    PubMed Central

    Jüttner, Martin; Wakui, Elley; Petters, Dean; Davidoff, Jules

    2016-01-01

    In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains. PMID:27014176

  7. Visual Object Recognition and Tracking of Tools

    NASA Technical Reports Server (NTRS)

    English, James; Chang, Chu-Yin; Tardella, Neil

    2011-01-01

    A method has been created to automatically build an algorithm off-line, using computer-aided design (CAD) models, and to apply this at runtime. The object type is discriminated, and the position and orientation are identified. This system can work with a single image and can provide improved performance using multiple images provided from videos. The spatial processing unit uses three stages: (1) segmentation; (2) initial type, pose, and geometry (ITPG) estimation; and (3) refined type, pose, and geometry (RTPG) calculation. The image segmentation module files all the tools in an image and isolates them from the background. For this, the system uses edge-detection and thresholding to find the pixels that are part of a tool. After the pixels are identified, nearby pixels are grouped into blobs. These blobs represent the potential tools in the image and are the product of the segmentation algorithm. The second module uses matched filtering (or template matching). This approach is used for condensing synthetic images using an image subspace that captures key information. Three degrees of orientation, three degrees of position, and any number of degrees of freedom in geometry change are included. To do this, a template-matching framework is applied. This framework uses an off-line system for calculating template images, measurement images, and the measurements of the template images. These results are used online to match segmented tools against the templates. The final module is the RTPG processor. Its role is to find the exact states of the tools given initial conditions provided by the ITPG module. The requirement that the initial conditions exist allows this module to make use of a local search (whereas the ITPG module had global scope). To perform the local search, 3D model matching is used, where a synthetic image of the object is created and compared to the sensed data. The availability of low-cost PC graphics hardware allows rapid creation of synthetic images

  8. Shape and Color Features for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.

    2012-01-01

    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.

  9. Stochastic Process Underlying Emergent Recognition of Visual Objects Hidden in Degraded Images

    PubMed Central

    Murata, Tsutomu; Hamada, Takashi; Shimokawa, Tetsuya; Tanifuji, Manabu; Yanagida, Toshio

    2014-01-01

    When a degraded two-tone image such as a “Mooney” image is seen for the first time, it is unrecognizable in the initial seconds. The recognition of such an image is facilitated by giving prior information on the object, which is known as top-down facilitation and has been intensively studied. Even in the absence of any prior information, however, we experience sudden perception of the emergence of a salient object after continued observation of the image, whose processes remain poorly understood. This emergent recognition is characterized by a comparatively long reaction time ranging from seconds to tens of seconds. In this study, to explore this time-consuming process of emergent recognition, we investigated the properties of the reaction times for recognition of degraded images of various objects. The results show that the time-consuming component of the reaction times follows a specific exponential function related to levels of image degradation and subject's capability. Because generally an exponential time is required for multiple stochastic events to co-occur, we constructed a descriptive mathematical model inspired by the neurophysiological idea of combination coding of visual objects. Our model assumed that the coincidence of stochastic events complement the information loss of a degraded image leading to the recognition of its hidden object, which could successfully explain the experimental results. Furthermore, to see whether the present results are specific to the task of emergent recognition, we also conducted a comparison experiment with the task of perceptual decision making of degraded images, which is well known to be modeled by the stochastic diffusion process. The results indicate that the exponential dependence on the level of image degradation is specific to emergent recognition. The present study suggests that emergent recognition is caused by the underlying stochastic process which is based on the coincidence of multiple stochastic events

  10. Testing conditions for viewpoint invariance in object recognition.

    PubMed

    Hayward, W G; Tarr, M J

    1997-10-01

    Based on the geon structural description approach, I. Biederman and P.C. Gerhardstein (1993) proposed 3 conditions under which object recognition is predicted to be viewpoint invariant. Two experiments are reported that satisfied all 3 criteria yet revealed performance that was clearly viewpoint dependent. Experiment 1 demonstrated that for both sequential matching and naming tasks, recognition of qualitatively distinct objects became progressively longer and less accurate as the viewpoint difference between study and test viewpoints increased. Experiment 2 demonstrated that for single-part objects, larger effects of viewpoint occurred when there was a change in the visible structure, indicating sensitivity to qualitative features in the image, not geon structural descriptions. These results suggest that the conditions proposed by I. Biederman and P.C. Gerhardstein are not generally applicable, the recognition of qualitatively distinct objects often relies on viewpoint-dependent mechanisms, and the molar features of view-based mechanisms appear to be image features rather than geons. PMID:9411023

  11. Spontaneous Object Recognition Memory in Aged Rats: Complexity versus Similarity

    ERIC Educational Resources Information Center

    Gamiz, Fernando; Gallo, Milagros

    2012-01-01

    Previous work on the effect of aging on spontaneous object recognition (SOR) memory tasks in rats has yielded controversial results. Although the results at long-retention intervals are consistent, conflicting results have been reported at shorter delays. We have assessed the potential relevance of the type of object used in the performance of…

  12. The Neural Regions Sustaining Episodic Encoding and Recognition of Objects

    ERIC Educational Resources Information Center

    Hofer, Alex; Siedentopf, Christian M.; Ischebeck, Anja; Rettenbacher, Maria A.; Widschwendter, Christian G.; Verius, Michael; Golaszewski, Stefan M.; Koppelstaetter, Florian; Felber, Stephan; Wolfgang Fleischhacker, W.

    2007-01-01

    In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral…

  13. Orthographic Facilitation in Chinese Spoken Word Recognition: An ERP Study

    ERIC Educational Resources Information Center

    Zou, Lijuan; Desroches, Amy S.; Liu, Youyi; Xia, Zhichao; Shu, Hua

    2012-01-01

    Orthographic influences in spoken word recognition have been previously examined in alphabetic languages. However, it is unknown whether orthographic information affects spoken word recognition in Chinese, which has a clean dissociation between orthography (O) and phonology (P). The present study investigated orthographic effects using event…

  14. Affective and contextual values modulate spatial frequency use in object recognition

    PubMed Central

    Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno

    2014-01-01

    Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514

  15. Model Based Object Recognition Using LORD LTS-300 Touch Sensor

    NASA Astrophysics Data System (ADS)

    Roach, J. W.; Paripati, P. K.; Wade, M.

    1988-03-01

    This paper reports the result of a model driven touch sensor recognition experiment. The touch sensor employed is a large field tactile array. Object features appropriate for touch sensor recognition are extracted from a geometric model of an object, the dual spherical image. Both geometric and dynamic features are used to identify objects and their position and orientation on the touch sensor. Experiments show that geometric features extracted from the model are effective but that dynamic features must be determined empirically. Correct object identification rates even for very similar objects exceed ninety percent, a success rate much higher than we would have expected from only two-dimensional contact patterns. Position and orientation of objects once identified are very reliable. We conclude that large field tactile sensors could prove very useful in the automatic palletizing problem when object models (from a CAD system, for example) can be utilized.

  16. Spatiotemporal information during unsupervised learning enhances viewpoint invariant object recognition.

    PubMed

    Tian, Moqian; Grill-Spector, Kalanit

    2015-01-01

    Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples.

  17. Sensor agnostic object recognition using a map seeking circuit

    NASA Astrophysics Data System (ADS)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  18. Hypnotizability and haptics: visual recognition of unimanually explored 'nonmeaningful' objects.

    PubMed

    Castellani, E; Carli, G; Santarcangelo, E L

    2012-08-01

    The cognitive trait of hypnotizability modulates sensorimotor integration and mental imagery. In particular, earlier results show that visual recognition of 'nonmeaningful', unfamiliar objects bimanually explored is faster and more accurate in subjects with high (Highs) than with low hypnotizability (Lows). The present study was aimed at investigating whether Highs exhibit a similar advantage after unimanual exploration. Recognition frequency (RF) and Recognition time (RT) of correct recognitions of the explored objects were recorded. The results showed the absence of any hypnotizability-related difference in recognition frequencies. In addition, RF of the right and left hand was comparable in Highs as in Lows, while slight differences were found in RT. We suggest that hemispheric co-operation played a key role in the better performance of Highs in the bimanual task previously studied. In the unimanual exploration, the task's characteristics (favoring the left hand), hypnotizability-related cerebral asymmetry (favoring the right hand in Highs) and the possible preferential verbal style of recognition in Lows (favoring the right hand in this group) antagonize each other and prevent the occurrence of major differences between the performance of Highs and Lows.

  19. Neural representation for object recognition in inferotemporal cortex.

    PubMed

    Lehky, Sidney R; Tanaka, Keiji

    2016-04-01

    We suggest that population representation of objects in inferotemporal cortex lie on a continuum between a purely structural, parts-based description and a purely holistic description. The intrinsic dimensionality of object representation is estimated to be around 100, perhaps with lower dimensionalities for object representations more toward the holistic end of the spectrum. Cognitive knowledge in the form of semantic information and task information feed back to inferotemporal cortex from perirhinal and prefrontal cortex respectively, providing high-level multimodal-based expectations that assist in the interpretation of object stimuli. Integration of object information across eye movements may also contribute to object recognition through a process of active vision. PMID:26771242

  20. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  1. Object Manipulation Facilitates Kind-Based Object Individuation of Shape-Similar Objects

    ERIC Educational Resources Information Center

    Kingo, Osman S.; Krojgaard, Peter

    2011-01-01

    Five experiments investigated the importance of shape and object manipulation when 12-month-olds were given the task of individuating objects representing exemplars of kinds in an event-mapping design. In Experiments 1 and 2, results of the study from Xu, Carey, and Quint (2004, Experiment 4) were partially replicated, showing that infants were…

  2. 3-D object recognition using 2-D views.

    PubMed

    Li, Wenjing; Bebis, George; Bourbakis, Nikolaos G

    2008-11-01

    We consider the problem of recognizing 3-D objects from 2-D images using geometric models and assuming different viewing angles and positions. Our goal is to recognize and localize instances of specific objects (i.e., model-based) in a scene. This is in contrast to category-based object recognition methods where the goal is to search for instances of objects that belong to a certain visual category (e.g., faces or cars). The key contribution of our work is improving 3-D object recognition by integrating Algebraic Functions of Views (AFoVs), a powerful framework for predicting the geometric appearance of an object due to viewpoint changes, with indexing and learning. During training, we compute the space of views that groups of object features can produce under the assumption of 3-D linear transformations, by combining a small number of reference views that contain the object features using AFoVs. Unrealistic views (e.g., due to the assumption of 3-D linear transformations) are eliminated by imposing a pair of rigidity constraints based on knowledge of the transformation between the reference views of the object. To represent the space of views that an object can produce compactly while allowing efficient hypothesis generation during recognition, we propose combining indexing with learning in two stages. In the first stage, we sample the space of views of an object sparsely and represent information about the samples using indexing. In the second stage, we build probabilistic models of shape appearance by sampling the space of views of the object densely and learning the manifold formed by the samples. Learning employs the Expectation-Maximization (EM) algorithm and takes place in a "universal," lower-dimensional, space computed through Random Projection (RP). During recognition, we extract groups of point features from the scene and we use indexing to retrieve the most feasible model groups that might have produced them (i.e., hypothesis generation). The likelihood

  3. A novel multi-view object recognition in complex background

    NASA Astrophysics Data System (ADS)

    Chang, Yongxin; Yu, Huapeng; Xu, Zhiyong; Fu, Chengyu; Gao, Chunming

    2015-02-01

    Recognizing objects from arbitrary aspects is always a highly challenging problem in computer vision, and most existing algorithms mainly focus on a specific viewpoint research. Hence, in this paper we present a novel recognizing framework based on hierarchical representation, part-based method and learning in order to recognize objects from different viewpoints. The learning evaluates the model's mistakes and feeds it back the detector to avid the same mistakes in the future. The principal idea is to extract intrinsic viewpoint invariant features from the unseen poses of object, and then to take advantage of these shared appearance features to support recognition combining with the improved multiple view model. Compared with other recognition models, the proposed approach can efficiently tackle multi-view problem and promote the recognition versatility of our system. For an quantitative valuation The novel algorithm has been tested on several benchmark datasets such as Caltech 101 and PASCAL VOC 2010. The experimental results validate that our approach can recognize objects more precisely and the performance outperforms others single view recognition methods.

  4. What are the Visual Features Underlying Rapid Object Recognition?

    PubMed Central

    Crouzet, Sébastien M.; Serre, Thomas

    2011-01-01

    Research progress in machine vision has been very significant in recent years. Robust face detection and identification algorithms are already readily available to consumers, and modern computer vision algorithms for generic object recognition are now coping with the richness and complexity of natural visual scenes. Unlike early vision models of object recognition that emphasized the role of figure-ground segmentation and spatial information between parts, recent successful approaches are based on the computation of loose collections of image features without prior segmentation or any explicit encoding of spatial relations. While these models remain simplistic models of visual processing, they suggest that, in principle, bottom-up activation of a loose collection of image features could support the rapid recognition of natural object categories and provide an initial coarse visual representation before more complex visual routines and attentional mechanisms take place. Focusing on biologically plausible computational models of (bottom-up) pre-attentive visual recognition, we review some of the key visual features that have been described in the literature. We discuss the consistency of these feature-based representations with classical theories from visual psychology and test their ability to account for human performance on a rapid object categorization task. PMID:22110461

  5. Speckle-learning-based object recognition through scattering media.

    PubMed

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-12-28

    We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning. PMID:26832049

  6. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits

    PubMed Central

    Vieira-Brock, Paula L.; McFadden, Lisa M.; Nielsen, Shannon M.; Smith, Misty D.; Hanson, Glen R.

    2015-01-01

    Background: Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. Methods: Adolescent or adult male Sprague-Dawley rats received either nicotine water (10–75 μg/mL) or tap water for several weeks. Methamphetamine (4×7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. Results: Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. Conclusions: Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which

  7. Invariant visual object recognition and shape processing in rats

    PubMed Central

    Zoccolan, Davide

    2015-01-01

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  8. Priming for novel object associations: Neural differences from object item priming and equivalent forms of recognition.

    PubMed

    Gomes, Carlos Alexandre; Figueiredo, Patrícia; Mayes, Andrew

    2016-04-01

    The neural substrates of associative and item priming and recognition were investigated in a functional magnetic resonance imaging study over two separate sessions. In the priming session, participants decided which object of a pair was bigger during both study and test phases. In the recognition session, participants saw different object pairs and performed the same size-judgement task followed by an associative recognition memory task. Associative priming was accompanied by reduced activity in the right middle occipital gyrus as well as in bilateral hippocampus. Object item priming was accompanied by reduced activity in extensive priming-related areas in the bilateral occipitotemporofrontal cortex, as well as in the perirhinal cortex, but not in the hippocampus. Associative recognition was characterized by activity increases in regions linked to recollection, such as the hippocampus, posterior cingulate cortex, anterior medial frontal gyrus and posterior parahippocampal cortex. Item object priming and recognition recruited broadly overlapping regions (e.g., bilateral middle occipital and prefrontal cortices, left fusiform gyrus), even though the BOLD response was in opposite directions. These regions along with the precuneus, where both item priming and recognition were accompanied by activation, have been found to respond to object familiarity. The minimal structural overlap between object associative priming and recollection-based associative recognition suggests that they depend on largely different stimulus-related information and that the different directions of the effects indicate distinct retrieval mechanisms. In contrast, item priming and familiarity-based recognition seemed mainly based on common memory information, although the extent of common processing between priming and familiarity remains unclear. Further implications of these findings are discussed. PMID:26418396

  9. Object Recognition using Feature- and Color-Based Methods

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Duong, Vu; Stubberud, Allen

    2008-01-01

    An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.

  10. Comparison of Object Recognition Behavior in Human and Monkey

    PubMed Central

    Rajalingham, Rishi; Schmidt, Kailyn

    2015-01-01

    Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to

  11. Feature based recognition of submerged objects in holographic imagery

    NASA Astrophysics Data System (ADS)

    Ratto, Christopher R.; Beagley, Nathaniel; Baldwin, Kevin C.; Shipley, Kara R.; Sternberger, Wayne I.

    2014-05-01

    The ability to autonomously sense and characterize underwater objects in situ is desirable in applications of unmanned underwater vehicles (UUVs). In this work, underwater object recognition was explored using a digital holographic system. Two experiments were performed in which several objects of varying size, shape, and material were submerged in a 43,000 gallon test tank. Holograms were collected from each object at multiple distances and orientations, with the imager located either outside the tank (looking through a porthole) or submerged (looking downward). The resultant imagery from these holograms was preprocessed to improve dynamic range, mitigate speckle, and segment out the image of the object. A collection of feature descriptors were then extracted from the imagery to characterize various object properties (e.g., shape, reflectivity, texture). The features extracted from images of multiple objects, collected at different imaging geometries, were then used to train statistical models for object recognition tasks. The resulting classification models were used to perform object classification as well as estimation of various parameters of the imaging geometry. This information can then be used to inform the design of autonomous sensing algorithms for UUVs employing holographic imagers.

  12. Communicative Signals Promote Object Recognition Memory and Modulate the Right Posterior STS.

    PubMed

    Redcay, Elizabeth; Ludlum, Ruth S; Velnoskey, Kayla R; Kanwal, Simren

    2016-01-01

    Detection of communicative signals is thought to facilitate knowledge acquisition early in life, but less is known about the role these signals play in adult learning or about the brain systems supporting sensitivity to communicative intent. The current study examined how ostensive gaze cues and communicative actions affect adult recognition memory and modulate neural activity as measured by fMRI. For both the behavioral and fMRI experiments, participants viewed a series of videos of an actress acting on one of two objects in front of her. Communicative context in the videos was manipulated in a 2 × 2 design in which the actress either had direct gaze (Gaze) or wore a visor (NoGaze) and either pointed at (Point) or reached for (Reach) one of the objects (target) in front of her. Participants then completed a recognition memory task with old (target and nontarget) objects and novel objects. Recognition memory for target objects in the Gaze conditions was greater than NoGaze, but no effects of gesture type were seen. Similarly, the fMRI video-viewing task revealed a significant effect of Gaze within right posterior STS (pSTS), but no significant effects of Gesture. Furthermore, pSTS sensitivity to Gaze conditions was related to greater memory for objects viewed in Gaze, as compared with NoGaze, conditions. Taken together, these results demonstrate that the ostensive, communicative signal of direct gaze preceding an object-directed action enhances recognition memory for attended items and modulates the pSTS response to object-directed actions. Thus, establishment of a communicative context through ostensive signals remains an important component of learning and memory into adulthood, and the pSTS may play a role in facilitating this type of social learning.

  13. Trajectory Recognition as the Basis for Object Individuation: A Functional Model of Object File Instantiation and Object-Token Encoding

    PubMed Central

    Fields, Chris

    2011-01-01

    The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599

  14. Temporal scales of auditory objects underlying birdsong vocal recognition

    PubMed Central

    Gentner, Timothy Q.

    2008-01-01

    Vocal recognition is common among songbirds, and provides an excellent model system to study the perceptual and neurobiological mechanisms for processing natural vocal communication signals. Male European starlings, a species of songbird, learn to recognize the songs of multiple conspecific males by attending to stereotyped acoustic patterns, and these learned patterns elicit selective neuronal responses in auditory forebrain neurons. The present study investigates the perceptual grouping of spectrotemporal acoustic patterns in starling song at multiple temporal scales. The results show that permutations in sequencing of submotif acoustic features have significant effects on song recognition, and that these effects are specific to songs that comprise learned motifs. The observations suggest that (1) motifs form auditory objects embedded in a hierarchy of acoustic patterns, (2) that object-based song perception emerges without explicit reinforcement, and (3) that multiple temporal scales within the acoustic pattern hierarchy convey information about the individual identity of the singer. The authors discuss the results in the context of auditory object formation and talker recognition. PMID:18681620

  15. Asymptotic analysis of pattern-theoretic object recognition

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew L.; Srivastava, Anuj

    2000-08-01

    Automated target recognition (ATR) is a problem of great importance in a wide variety of applications: from military target recognition to recognizing flow-patterns in fluid- dynamics to anatomical shape-studies. The basic goal is to utilize observations (images, signals) from remote sensors (such as videos, radars, MRI or PET) to identify the objects being observed. In a statistical framework, probability distributions on parameters representing the object unknowns are derived an analyzed to compute inferences (please refer to [1] for a detailed introduction). An important challenge in ATR is to determine efficient mathematical models for the tremendous variability of object appearance which lend themselves to reasonable inferences. This variation may be due to differences in object shapes, sensor-mechanisms or scene- backgrounds. To build models for object variabilities, we employ deformable templates. In brief, the object occurrences are described through their typical representatives (called templates) and transformations/deformations which particularize the templates to the observed objects. Within this pattern-theoretic framework, ATR becomes a problem of selecting appropriate templates and estimating deformations. For an object (alpha) (epsilon) A, let I(alpha ) denote a template (for example triangulated CAD-surface) and let s (epsilon) S be a particular transformation, then denote the transformed template by sI(alpha ). Figure 1 shows instances of the template for a T62 tank at several different orientations. For the purpose of object classification, the unknown transformation s is considered a nuisance parameter, leading to a classical formulation of Bayesian hypothesis- testing in presence of unknown, random nuisance parameters. S may not be a vector-space, but it often has a group structure. For rigid objects, the variation in translation and rotation can be modeled through the action of special Euclidean group SE(n). For flexible objects, such as

  16. Object detection by optical correlator and intelligence recognition surveillance systems

    NASA Astrophysics Data System (ADS)

    Sheng, Yunlong

    2013-09-01

    We report a recent work on robust object detection in high-resolution aerial imagery in urban environment for Intelligence, Surveillance and Recognition (ISR) missions. Our approaches used the simple linear iterative clustering (SLIC) algorithm, which combines regional and edge information to form the superpixels. The irregularity in size and shape of the superpixels measured with the Hausdorff distance served to determine the salient regions in the very large aerial images. Then, the car detection was performed with both the component-based approach and the featurebased approaches. We merged the superpixels with the statistical region merging (SRM) algorithm. The regions were described by the radiometric, geometrical moments and shape features, and classified using the Support Vector Machine (SVM). The cast shadow were detected and removed by a radiometry based tricolor attenuation model (TAM). Detection of object parts is less sensitive to occlusion, rotation, and changes in scale, view angle and illumination than detection of the object as whole. The object parts were combined to the object according to their unique spatial relations. On the other hand, we used the invariant scale invariant feature transform (SIFT) features to describe superpixels and classed them by the SVM as belong or not to the object. All along our recent work we still trace the brilliant ideas in early days by H. John Caulfield and other pioneers of optical pattern recognition, for improving the discrimination of the matched spatial filter with linear combinations of cross-correlations, which have been inherited transformed and reinvented to achieve tremendous progress.

  17. A hybrid learning approach for better recognition of visual objects

    SciTech Connect

    Imam, I.F.; Gutta, S.

    1996-12-31

    Real world images often contain similar objects but with different rotations, noise, or other visual alterations. Vision systems should be able to recognize objects regardless of these visual alterations. This paper presents a novel approach for learning optimized structures of classifiers for recognizing visual objects regardless of certain types of visual alterations. The approach consists of two phases. The first phase is concerned with learning classifications of a set of standard and altered objects. The second phase is concerned with discovering an optimized structure of classifiers for recognizing objects from unseen images. This paper presents an application of this approach to a domain of 15 classes of hand gestures. The experimental results show significant improvement in the recognition rate rather than using a single classifier or multiple classifiers with thresholds.

  18. How does the brain solve visual object recognition?

    PubMed Central

    Zoccolan, Davide; Rust, Nicole C.

    2012-01-01

    Mounting evidence suggests that “core object recognition,” the ability to rapidly recognize objects despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However, the algorithm that produces this solution remains little-understood. Here we review evidence ranging from individual neurons, to neuronal populations, to behavior, to computational models. We propose that understanding this algorithm will require using neuronal and psychophysical data to sift through many computational models, each based on building blocks of small, canonical sub-networks with a common functional goal. PMID:22325196

  19. Methylphenidate restores novel object recognition in DARPP-32 knockout mice.

    PubMed

    Heyser, Charles J; McNaughton, Caitlyn H; Vishnevetsky, Donna; Fienberg, Allen A

    2013-09-15

    Previously, we have shown that Dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32) knockout mice required significantly more trials to reach criterion than wild-type mice in an operant reversal-learning task. The present study was conducted to examine adult male and female DARPP-32 knockout mice and wild-type controls in a novel object recognition test. Wild-type and knockout mice exhibited comparable behavior during the initial exploration trials. As expected, wild-type mice exhibited preferential exploration of the novel object during the substitution test, demonstrating recognition memory. In contrast, knockout mice did not show preferential exploration of the novel object, instead exhibiting an increase in exploration of all objects during the test trial. Given that the removal of DARPP-32 is an intracellular manipulation, it seemed possible to pharmacologically restore some cellular activity and behavior by stimulating dopamine receptors. Therefore, a second experiment was conducted examining the effect of methylphenidate. The results show that methylphenidate increased horizontal activity in both wild-type and knockout mice, though this increase was blunted in knockout mice. Pretreatment with methylphenidate significantly impaired novel object recognition in wild-type mice. In contrast, pretreatment with methylphenidate restored the behavior of DARPP-32 knockout mice to that observed in wild-type mice given saline. These results provide additional evidence for a functional role of DARPP-32 in the mediation of processes underlying learning and memory. These results also indicate that the behavioral deficits in DARPP-32 knockout mice may be restored by the administration of methylphenidate.

  20. Objective 3D face recognition: Evolution, approaches and challenges.

    PubMed

    Smeets, Dirk; Claes, Peter; Vandermeulen, Dirk; Clement, John Gerald

    2010-09-10

    Face recognition is a natural human ability and a widely accepted identification and authentication method. In modern legal settings, a lot of credence is placed on identifications made by eyewitnesses. Consequently these are based on human perception which is often flawed and can lead to situations where identity is disputed. Therefore, there is a clear need to secure identifications in an objective way based on anthropometric measures. Anthropometry has existed for many years and has evolved with each advent of new technology and computing power. As a result of this, face recognition methodology has shifted from a purely 2D image-based approach to the use of 3D facial shape. However, one of the main challenges still remaining is the non-rigid structure of the face, which can change permanently over varying time-scales and briefly with facial expressions. The majority of face recognition methods have been developed by scientists with a very technical background such as biometry, pattern recognition and computer vision. This article strives to bridge the gap between these communities and the forensic science end-users. A concise review of face recognition using 3D shape is given. Methods using 3D shape applied to data embodying facial expressions are tabulated for reference. From this list a categorization of different strategies to deal with expressions is presented. The underlying concepts and practical issues relating to the application of each strategy are given, without going into technical details. The discussion clearly articulates the justification to establish archival, reference databases to compare and evaluate different strategies. PMID:20395086

  1. Objective 3D face recognition: Evolution, approaches and challenges.

    PubMed

    Smeets, Dirk; Claes, Peter; Vandermeulen, Dirk; Clement, John Gerald

    2010-09-10

    Face recognition is a natural human ability and a widely accepted identification and authentication method. In modern legal settings, a lot of credence is placed on identifications made by eyewitnesses. Consequently these are based on human perception which is often flawed and can lead to situations where identity is disputed. Therefore, there is a clear need to secure identifications in an objective way based on anthropometric measures. Anthropometry has existed for many years and has evolved with each advent of new technology and computing power. As a result of this, face recognition methodology has shifted from a purely 2D image-based approach to the use of 3D facial shape. However, one of the main challenges still remaining is the non-rigid structure of the face, which can change permanently over varying time-scales and briefly with facial expressions. The majority of face recognition methods have been developed by scientists with a very technical background such as biometry, pattern recognition and computer vision. This article strives to bridge the gap between these communities and the forensic science end-users. A concise review of face recognition using 3D shape is given. Methods using 3D shape applied to data embodying facial expressions are tabulated for reference. From this list a categorization of different strategies to deal with expressions is presented. The underlying concepts and practical issues relating to the application of each strategy are given, without going into technical details. The discussion clearly articulates the justification to establish archival, reference databases to compare and evaluate different strategies.

  2. Manipulability and object recognition: is manipulability a semantic feature?

    PubMed

    Campanella, Fabio; Shallice, Tim

    2011-02-01

    Several lines of evidence exist, coming from neuropsychology, neuroimaging and behavioural investigations on healthy subjects, suggesting that an interaction might exist between the systems devoted to object identification and those devoted to online object-directed actions and that the way an object is acted upon (manipulability) might indeed influence object recognition. In this series of experiments on speeded word-to-picture-matching tasks, it is shown how the presentation of pairs of objects sharing similar manipulation causes greater interference with respect to objects sharing only visual similarity (experiment 1). Moreover, (experiment 2) it is shown how the repeated presentation of pairs of objects sharing a similar type of manipulation leads to a 'negative' serial position effect, with the number of errors increasing across presentations, a behaviour that is typically found in patients with access deficits to semantic representations. By contrast, the repeated presentation of pairs of objects sharing only visual similarity leads to an opposite 'positive' serial position effect, with errors decreasing across presentations. It is argued that a negative serial position effect is linked to interference occurring within the semantic system, and therefore that the way an object is manipulated is indeed a semantic feature, critical in defining manipulable object properties at a semantic level. To our knowledge, this constitutes the first direct evidence of manipulability being a semantic dimension. The results are discussed in the light of current models of semantic memory organization.

  3. Object recognition by triaural perception on a mobile robot

    NASA Astrophysics Data System (ADS)

    Peremans, Herbert; Van Campenhout, Jan M.

    1993-05-01

    To overcome some of the problems associated with the use of ultrasonic sensors for navigation purposes, we propose a measurement system composed of three ultrasonic sensors, one transmitting and three receiving, placed on a moving vehicle. By triangulation this tri-aural sensor is able to determine the position, both distance and bearing, of the objects in the field of view. In this paper, we derive a statistical test which combines consecutive sightings by the moving sensor, of the same object to determine whether it is an edge, a plane or a corner. This test is formulated as a sequential test which guarantees that the object will be recognized after the minimal number of measurements given predetermined error probabilities. We include experimental data showing the object recognition capabilities of the system.

  4. Multiple-View Object Recognition in Smart Camera Networks

    NASA Astrophysics Data System (ADS)

    Yang, Allen Y.; Maji, Subhransu; Christoudias, C. Mario; Darrell, Trevor; Malik, Jitendra; Sastry, S. Shankar

    We study object recognition in low-power, low-bandwidth smart camera networks. The ability to perform robust object recognition is crucial for applications such as visual surveillance to track and identify objects of interest, and overcome visual nuisances such as occlusion and pose variations between multiple camera views. To accommodate limited bandwidth between the cameras and the base-station computer, the method utilizes the available computational power on the smart sensors to locally extract SIFT-type image features to represent individual camera views. We show that between a network of cameras, high-dimensional SIFT histograms exhibit a joint sparse pattern corresponding to a set of shared features in 3-D. Such joint sparse patterns can be explicitly exploited to encode the distributed signal via random projections. At the network station, multiple decoding schemes are studied to simultaneously recover the multiple-view object features based on a distributed compressive sensing theory. The system has been implemented on the Berkeley CITRIC smart camera platform. The efficacy of the algorithm is validated through extensive simulation and experiment.

  5. Systemic administration of riluzole enhances recognition memory and facilitates extinction of fear memory in rats.

    PubMed

    Sugiyama, Azusa; Saitoh, Akiyoshi; Inagaki, Masatoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2015-10-01

    Strategies to enhance recognition memory and facilitate extinction of fear memory have attracted increasing attention for enhancing the effectiveness of exposure therapy for anxiety disorders. Previously, we demonstrated that systemic administration of riluzole has clear anxiolytic-like effects, without impairing memory, in rats. In the present study, we examined whether riluzole could have therapeutic potential for anxiety disorders when combined with exposure therapy. Both riluzole and D-cycloserine enhanced recognition memory in the novel object recognition test and facilitated extinction learning in the contextual fear conditioning in rats. Interestingly, the facilitatory effect of riluzole on extinction learning was clearly observed even after a short re-exposure to the context, while D-cycloserine was ineffective at facilitating extinction when a short duration exposure session was given. In contrast, diazepam impaired both recognition memory and the extinction of fear memory. Our findings strongly suggest that systemic administration of riluzole may have therapeutic efficacy when combined with exposure therapy for treating a range of anxiety disorders. Clinical trials to examine the efficacy of riluzole in combination with exposure therapy in these patients are warranted.

  6. Inflatable bladder to facilitate handling of heavy objects - A concept

    NASA Technical Reports Server (NTRS)

    Mc Goldrick, G. J.

    1969-01-01

    Inflatable bladder facilitates the removal of heavy, highly finished metal parts from tote boxes or shipping containers. The proposed concept permits removal without danger of damage to the parts or injury to handling personnel.

  7. Disentangling the contributions of grasp and action representations in the recognition of manipulable objects.

    PubMed

    McNair, Nicolas A; Harris, Irina M

    2012-07-01

    There is an increasing evidence that the action properties of manipulable objects can play a role in object recognition, as objects with similar action properties can facilitate each other's recognition [Helbig et al. Exp Brain Res 174:221-228, 2006]. However, it is unclear whether this modulation is driven by the actions involved in using the object or the grasps afforded by the objects, because these factors have been confounded in previous studies. Here, we attempted to disentangle the relative contributions of the action and grasp properties by using a priming paradigm in which action and grasp similarity between two objects were varied orthogonally. We found that target tools with similar grasp properties to the prime tool were named more accurately than those with dissimilar grasps. However, naming accuracy was not affected by the similarity of action properties between the prime and target tools. This suggests that knowledge about how an object is used is not automatically accessed when identifying a manipulable object. What are automatically accessed are the transformations necessary to interact directly with the object--i.e., the manner in which one grasps the object.

  8. Bayesian multi-target tracking and sequential object recognition

    NASA Astrophysics Data System (ADS)

    Armbruster, Walter

    2008-04-01

    The paper considers the following problem: given a 3D model of a reference target and a sequence of images of a 3D scene, identify the object in the scene most likely to be the reference target and determine its current pose. Finding the best match in each frame independently of previous decisions is not optimal, since past information is ignored. Our solution concept uses a novel Bayesian framework for multi target tracking and object recognition to define and sequentially update the probability that the reference target is any one of the tracked objects. The approach is applied to problems of automatic lock-on and missile guidance using a laser radar seeker. Field trials have resulted in high target hit probabilities despite low resolution imagery and temporarily highly occluded targets.

  9. Objective recognition of cough sound as biomarker for aerial pollutants.

    PubMed

    Van Hirtum, A; Berckmans, D

    2004-02-01

    A relationship among air quality, respiratory health, and comfort in man and animal is widely shown. In general, a state of respiratory discomfort is prevailed by an increase in acoustic audible symptoms. The general concept of sound analysis as an objective contactless non-invasive biomarker for aerial pollution is studied on free-field cough sound of 12 Belgian Landrace piglets. A citric-acid-induced cough sound recognition algorithm with recognition rate of 95% is applied to cough sounds registered in the presence of distinct types of aerial pollutants: irritating gas (ammonia), respirable particles (dust), and temperature. The recognition performance for all aerial pollutants was >90% and maintained 94% on average. It is concluded that sound analysis allows an effective biomarker for all three types of aerial pollution. The generality of the biomarker is hypothesized to be due to the common mechanism involved in protective cough. As a consequence, it is suggested to use sound analysis as a biomarker for respiratory state in studies of exposure to air pollutants.

  10. Spatially rearranged object parts can facilitate perception of intact whole objects

    PubMed Central

    Cacciamani, Laura; Ayars, Alisabeth A.; Peterson, Mary A.

    2014-01-01

    The familiarity of an object depends on the spatial arrangement of its parts; when the parts are spatially rearranged, they form a novel, unrecognizable configuration. Yet the same collection of parts comprises both the familiar and novel configuration. Is it possible that the collection of familiar parts activates a representation of the intact familiar configuration even when they are spatially rearranged? We presented novel configurations as primes before test displays that assayed effects on figure-ground perception from memories of intact familiar objects. In our test displays, two equal-area regions shared a central border; one region depicted a portion of a familiar object. Previous research with such displays has shown that participants are more likely to perceive the region depicting a familiar object as the figure and the abutting region as its ground when the familiar object is depicted in its upright orientation rather than upside down. The novel primes comprised either the same or a different collection of parts as the familiar object in the test display (part-rearranged and control primes, respectively). We found that participants were more likely to perceive the familiar region as figure in upright vs. inverted displays following part-rearranged primes but not control primes. Thus, priming with a novel configuration comprising the same familiar parts as the upcoming figure-ground display facilitated orientation-dependent effects of object memories on figure assignment. Similar results were obtained when the spatially rearranged collection of parts was suggested on the groundside of the prime's border, suggesting that familiar parts in novel configurations access the representation of their corresponding intact whole object before figure assignment. These data demonstrate that familiar parts access memories of familiar objects even when they are arranged in a novel configuration. PMID:24904495

  11. Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks

    PubMed Central

    Paris, Jason J; Frye, Cheryl A

    2008-01-01

    Ovarian hormone elevations are associated with enhanced learning/memory. During behavioral estrus or pregnancy, progestins, such as progesterone (P4) and its metabolite 5α-pregnan-3α-ol-20-one (3α,5α-THP), are elevated due, in part, to corpora luteal and placental secretion. During ‘pseudopregnancy’, the induction of corpora luteal functioning results in a hormonal milieu analogous to pregnancy, which ceases after about 12 days, due to the lack of placental formation. Multiparity is also associated with enhanced learning/memory, perhaps due to prior steroid exposure during pregnancy. Given evidence that progestins and/or parity may influence cognition, we investigated how natural alterations in the progestin milieu influence cognitive performance. In Experiment 1, virgin rats (nulliparous) or rats with two prior pregnancies (multiparous) were assessed on the object placement and recognition tasks, when in high-estrogen/P4 (behavioral estrus) or low-estrogen/P4 (diestrus) phases of the estrous cycle. In Experiment 2, primiparous or multiparous rats were tested in the object placement and recognition tasks when not pregnant, pseudopregnant, or pregnant (between gestational days (GDs) 6 and 12). In Experiment 3, pregnant primiparous or multiparous rats were assessed daily in the object placement or recognition tasks. Females in natural states associated with higher endogenous progestins (behavioral estrus, pregnancy, multiparity) outperformed rats in low progestin states (diestrus, non-pregnancy, nulliparity) on the object placement and recognition tasks. In earlier pregnancy, multiparous, compared with primiparous, rats had a lower corticosterone, but higher estrogen levels, concomitant with better object placement performance. From GD 13 until post partum, primiparous rats had higher 3α,5α-THP levels and improved object placement performance compared with multiparous rats. PMID:18390689

  12. Recognition of Simple 3D Geometrical Objects under Partial Occlusion

    NASA Astrophysics Data System (ADS)

    Barchunova, Alexandra; Sommer, Gerald

    In this paper we present a novel procedure for contour-based recognition of partially occluded three-dimensional objects. In our approach we use images of real and rendered objects whose contours have been deformed by a restricted change of the viewpoint. The preparatory part consists of contour extraction, preprocessing, local structure analysis and feature extraction. The main part deals with an extended construction and functionality of the classifier ensemble Adaptive Occlusion Classifier (AOC). It relies on a hierarchical fragmenting algorithm to perform a local structure analysis which is essential when dealing with occlusions. In the experimental part of this paper we present classification results for five classes of simple geometrical figures: prism, cylinder, half cylinder, a cube, and a bridge. We compare classification results for three classical feature extractors: Fourier descriptors, pseudo Zernike and Zernike moments.

  13. Neural substrates of view-invariant object recognition developed without experiencing rotations of the objects.

    PubMed

    Okamura, Jun-Ya; Yamaguchi, Reona; Honda, Kazunari; Wang, Gang; Tanaka, Keiji

    2014-11-01

    One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle.

  14. Covariation of Color and Luminance Facilitate Object Individuation in Infancy

    ERIC Educational Resources Information Center

    Woods, Rebecca J.; Wilcox, Teresa

    2010-01-01

    The ability to individuate objects is one of our most fundamental cognitive capacities. Recent research has revealed that when objects vary in color or luminance alone, infants fail to individuate those objects until 11.5 months. However, color and luminance frequently covary in the natural environment, thus providing a more salient and reliable…

  15. Selective attention affects conceptual object priming and recognition: a study with young and older adults.

    PubMed

    Ballesteros, Soledad; Mayas, Julia

    2014-01-01

    In the present study, we investigated the effects of selective attention at encoding on conceptual object priming (Experiment 1) and old-new recognition memory (Experiment 2) tasks in young and older adults. The procedures of both experiments included encoding and memory test phases separated by a short delay. At encoding, the picture outlines of two familiar objects, one in blue and the other in green, were presented to the left and to the right of fixation. In Experiment 1, participants were instructed to attend to the picture outline of a certain color and to classify the object as natural or artificial. After a short delay, participants performed a natural/artificial speeded conceptual classification task with repeated attended, repeated unattended, and new pictures. In Experiment 2, participants at encoding memorized the attended pictures and classify them as natural or artificial. After the encoding phase, they performed an old-new recognition memory task. Consistent with previous findings with perceptual priming tasks, we found that conceptual object priming, like explicit memory, required attention at encoding. Significant priming was obtained in both age groups, but only for those pictures that were attended at encoding. Although older adults were slower than young adults, both groups showed facilitation for attended pictures. In line with previous studies, young adults had better recognition memory than older adults. PMID:25628588

  16. Selective attention affects conceptual object priming and recognition: a study with young and older adults.

    PubMed

    Ballesteros, Soledad; Mayas, Julia

    2014-01-01

    In the present study, we investigated the effects of selective attention at encoding on conceptual object priming (Experiment 1) and old-new recognition memory (Experiment 2) tasks in young and older adults. The procedures of both experiments included encoding and memory test phases separated by a short delay. At encoding, the picture outlines of two familiar objects, one in blue and the other in green, were presented to the left and to the right of fixation. In Experiment 1, participants were instructed to attend to the picture outline of a certain color and to classify the object as natural or artificial. After a short delay, participants performed a natural/artificial speeded conceptual classification task with repeated attended, repeated unattended, and new pictures. In Experiment 2, participants at encoding memorized the attended pictures and classify them as natural or artificial. After the encoding phase, they performed an old-new recognition memory task. Consistent with previous findings with perceptual priming tasks, we found that conceptual object priming, like explicit memory, required attention at encoding. Significant priming was obtained in both age groups, but only for those pictures that were attended at encoding. Although older adults were slower than young adults, both groups showed facilitation for attended pictures. In line with previous studies, young adults had better recognition memory than older adults.

  17. Selective attention affects conceptual object priming and recognition: a study with young and older adults

    PubMed Central

    Ballesteros, Soledad; Mayas, Julia

    2015-01-01

    In the present study, we investigated the effects of selective attention at encoding on conceptual object priming (Experiment 1) and old–new recognition memory (Experiment 2) tasks in young and older adults. The procedures of both experiments included encoding and memory test phases separated by a short delay. At encoding, the picture outlines of two familiar objects, one in blue and the other in green, were presented to the left and to the right of fixation. In Experiment 1, participants were instructed to attend to the picture outline of a certain color and to classify the object as natural or artificial. After a short delay, participants performed a natural/artificial speeded conceptual classification task with repeated attended, repeated unattended, and new pictures. In Experiment 2, participants at encoding memorized the attended pictures and classify them as natural or artificial. After the encoding phase, they performed an old–new recognition memory task. Consistent with previous findings with perceptual priming tasks, we found that conceptual object priming, like explicit memory, required attention at encoding. Significant priming was obtained in both age groups, but only for those pictures that were attended at encoding. Although older adults were slower than young adults, both groups showed facilitation for attended pictures. In line with previous studies, young adults had better recognition memory than older adults. PMID:25628588

  18. Unsupervised learning of probabilistic object models (POMs) for object classification, segmentation, and recognition using knowledge propagation.

    PubMed

    Chen, Yuanhao; Zhu, Long Leo; Yuille, Alan; Zhang, Hongjiang

    2009-10-01

    We present a method to learn probabilistic object models (POMs) with minimal supervision, which exploit different visual cues and perform tasks such as classification, segmentation, and recognition. We formulate this as a structure induction and learning task and our strategy is to learn and combine elementary POMs that make use of complementary image cues. We describe a novel structure induction procedure, which uses knowledge propagation to enable POMs to provide information to other POMs and "teach them" (which greatly reduces the amount of supervision required for training and speeds up the inference). In particular, we learn a POM-IP defined on Interest Points using weak supervision [1], [2] and use this to train a POM-mask, defined on regional features, which yields a combined POM that performs segmentation/localization. This combined model can be used to train POM-edgelets, defined on edgelets, which gives a full POM with improved performance on classification. We give detailed experimental analysis on large data sets for classification and segmentation with comparison to other methods. Inference takes five seconds while learning takes approximately four hours. In addition, we show that the full POM is invariant to scale and rotation of the object (for learning and inference) and can learn hybrid objects classes (i.e., when there are several objects and the identity of the object in each image is unknown). Finally, we show that POMs can be used to match between different objects of the same category, and hence, enable objects recognition. PMID:19696447

  19. Declining object recognition performance in semantic dementia: A case for stored visual object representations.

    PubMed

    Tree, Jeremy J; Playfoot, David

    2015-01-01

    The role of the semantic system in recognizing objects is a matter of debate. Connectionist theories argue that it is impossible for a participant to determine that an object is familiar to them without recourse to a semantic hub; localist theories state that accessing a stored representation of the visual features of the object is sufficient for recognition. We examine this issue through the longitudinal study of two cases of semantic dementia, a neurodegenerative disorder characterized by a progressive degradation of the semantic system. The cases in this paper do not conform to the "common" pattern of object recognition performance in semantic dementia described by Rogers, T. T., Lambon Ralph, M. A., Hodges, J. R., & Patterson, K. (2004). Natural selection: The impact of semantic impairment on lexical and object decision. Cognitive Neuropsychology, 21, 331-352., and show no systematic relationship between severity of semantic impairment and success in object decision. We argue that these data are inconsistent with the connectionist position but can be easily reconciled with localist theories that propose stored structural descriptions of objects outside of the semantic system. PMID:27355607

  20. Facilitating Use of Speech Recognition Software for People with Disabilities: A Comparison of Three Treatments

    ERIC Educational Resources Information Center

    Hird, Kathryn; Hennessey, Neville W.

    2007-01-01

    This study examined the relative benefit of three interventions (i.e. physiological, behavioural, and pragmatic) designed to facilitate speech recognition software use. Participants were 15 adults with dysarthria associated with a variety of aetiological conditions, including cerebral palsy, Parkinson's disease, and motor neuron disease. Results…

  1. Visual object recognition for mobile tourist information systems

    NASA Astrophysics Data System (ADS)

    Paletta, Lucas; Fritz, Gerald; Seifert, Christin; Luley, Patrick; Almer, Alexander

    2005-03-01

    We describe a mobile vision system that is capable of automated object identification using images captured from a PDA or a camera phone. We present a solution for the enabling technology of outdoors vision based object recognition that will extend state-of-the-art location and context aware services towards object based awareness in urban environments. In the proposed application scenario, tourist pedestrians are equipped with GPS, W-LAN and a camera attached to a PDA or a camera phone. They are interested whether their field of view contains tourist sights that would point to more detailed information. Multimedia type data about related history, the architecture, or other related cultural context of historic or artistic relevance might be explored by a mobile user who is intending to learn within the urban environment. Learning from ambient cues is in this way achieved by pointing the device towards the urban sight, capturing an image, and consequently getting information about the object on site and within the focus of attention, i.e., the users current field of view.

  2. Exploring local regularities for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Tian, Huaiwen; Qin, Shengfeng

    2016-09-01

    In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness.

  3. Joint Tensor Feature Analysis For Visual Object Recognition.

    PubMed

    Wong, Wai Keung; Lai, Zhihui; Xu, Yong; Wen, Jiajun; Ho, Chu Po

    2015-11-01

    Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms. PMID:26470058

  4. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats.

    PubMed

    Rosselli, Federica B; Alemi, Alireza; Ansuini, Alessio; Zoccolan, Davide

    2015-01-01

    In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness). In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant) to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: (i) smaller and more scattered; (ii) only partially preserved across object views; and (iii) only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning. PMID:25814936

  5. Cross-modal conflicts in object recognition: determining the influence of object category.

    PubMed

    Vogler, Jessica N; Titchener, Kirsteen

    2011-10-01

    Previous research examining cross-modal conflicts in object recognition has often made use of animal vocalizations and images, which may be considered natural and ecologically valid, thus strengthening the association in the congruent condition. The current research tested whether the same cross-modal conflict would exist for man-made object sounds as well as comparing the speed and accuracy of auditory processing across the two object categories. Participants were required to attend to a sound paired with a visual stimulus and then respond to a verification item (e.g., "Dog?"). Sounds were congruent (same object), neutral (unidentifiable image), or incongruent (different object) with the images presented. In the congruent and neutral condition, animals were recognized significantly faster and with greater accuracy than man-made objects. It was hypothesized that in the incongruent condition, no difference in reaction time or error rate would be found between animals and man-made objects. This prediction was not supported, indicating that the association between an object's sound and image may not be that disparate when comparing animals to man-made objects. The findings further support cross-modal conflict research for both the animal and man-made object category. The most important finding, however, was that auditory processing is enhanced for living compared to nonliving objects, a difference only previously found in visual processing. Implications relevant to both the neuropsychological literature and sound research are discussed. PMID:21912929

  6. Cross-modal conflicts in object recognition: determining the influence of object category.

    PubMed

    Vogler, Jessica N; Titchener, Kirsteen

    2011-10-01

    Previous research examining cross-modal conflicts in object recognition has often made use of animal vocalizations and images, which may be considered natural and ecologically valid, thus strengthening the association in the congruent condition. The current research tested whether the same cross-modal conflict would exist for man-made object sounds as well as comparing the speed and accuracy of auditory processing across the two object categories. Participants were required to attend to a sound paired with a visual stimulus and then respond to a verification item (e.g., "Dog?"). Sounds were congruent (same object), neutral (unidentifiable image), or incongruent (different object) with the images presented. In the congruent and neutral condition, animals were recognized significantly faster and with greater accuracy than man-made objects. It was hypothesized that in the incongruent condition, no difference in reaction time or error rate would be found between animals and man-made objects. This prediction was not supported, indicating that the association between an object's sound and image may not be that disparate when comparing animals to man-made objects. The findings further support cross-modal conflict research for both the animal and man-made object category. The most important finding, however, was that auditory processing is enhanced for living compared to nonliving objects, a difference only previously found in visual processing. Implications relevant to both the neuropsychological literature and sound research are discussed.

  7. Anthropomorphic robot for recognition and drawing generalized object images

    NASA Astrophysics Data System (ADS)

    Ginzburg, Vera M.

    1998-10-01

    The process of recognition, for instance, understanding the text, written by different fonts, consists in the depriving of the individual attributes of the letters in the particular font. It is shown that such process, in Nature and technique, can be provided by the narrowing the spatial frequency of the object's image by its defocusing. In defocusing images remain only areas, so-called Informative Fragments (IFs), which all together form the generalized (stylized) image of many identical objects. It is shown that the variety of shapes of IFs is restricted and can be presented by `Geometrical alphabet'. The `letters' for this alphabet can be created using two basic `genetic' figures: a stripe and round spot. It is known from physiology that the special cells of visual cortex response to these particular figures. The prototype of such `genetic' alphabet has been made using Boolean algebra (Venn's diagrams). The algorithm for drawing the letter's (`genlet's') shape in this alphabet and generalized images of objects (for example, `sleeping cat'), are given. A scheme of an anthropomorphic robot is shown together with results of model computer experiment of the robot's action--`drawing' the generalized image.

  8. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and

  9. 3D video analysis of the novel object recognition test in rats.

    PubMed

    Matsumoto, Jumpei; Uehara, Takashi; Urakawa, Susumu; Takamura, Yusaku; Sumiyoshi, Tomiki; Suzuki, Michio; Ono, Taketoshi; Nishijo, Hisao

    2014-10-01

    The novel object recognition (NOR) test has been widely used to test memory function. We developed a 3D computerized video analysis system that estimates nose contact with an object in Long Evans rats to analyze object exploration during NOR tests. The results indicate that the 3D system reproducibly and accurately scores the NOR test. Furthermore, the 3D system captures a 3D trajectory of the nose during object exploration, enabling detailed analyses of spatiotemporal patterns of object exploration. The 3D trajectory analysis revealed a specific pattern of object exploration in the sample phase of the NOR test: normal rats first explored the lower parts of objects and then gradually explored the upper parts. A systematic injection of MK-801 suppressed changes in these exploration patterns. The results, along with those of previous studies, suggest that the changes in the exploration patterns reflect neophobia to a novel object and/or changes from spatial learning to object learning. These results demonstrate that the 3D tracking system is useful not only for detailed scoring of animal behaviors but also for investigation of characteristic spatiotemporal patterns of object exploration. The system has the potential to facilitate future investigation of neural mechanisms underlying object exploration that result from dynamic and complex brain activity. PMID:24991752

  10. Object Familiarity Facilitates Foreign Word Learning in Preschoolers

    ERIC Educational Resources Information Center

    Sera, Maria D.; Cole, Caitlin A.; Oromendia, Mercedes; Koenig, Melissa A.

    2014-01-01

    Studying how children learn words in a foreign language can shed light on how language learning changes with development. In one experiment, we examined whether three-, four-, and five-year-olds could learn and remember words for familiar and unfamiliar objects in their native English and a foreign language. All age groups could learn and remember…

  11. 3-D Object Recognition from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Smith, W.; Walker, A. S.; Zhang, B.

    2011-09-01

    The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case

  12. Attentional facilitation of detection of flicker on moving objects.

    PubMed

    Shioiri, Satoshi; Ogawa, Masayuki; Yaguchi, Hirohisa; Cavanagh, Patrick

    2015-01-01

    We investigated the influence of attention and motion on the sensitivity of flicker detection for a target among distractors. Experiment 1 showed that when the target and distractors were moving, detection performance plummeted compared to when they were not moving, suggesting that the most sensitive detectors were local, temporal frequency-tuned receptive fields. With the stimuli in motion, a qualitatively different strategy was required and this led to much reduced performance. Cueing, which specified the target location with 100% validity, had no effect for targets that had little or no motion, suggesting that the flicker was sufficiently salient in this case to attract attention to the target without requiring any search. For targets with medium to high speeds, however, cueing provided a strong increase in sensitivity over uncued performance. This suggests a significant advantage for localizing and tracking the target and so sampling the luminance changes from only one trajectory. Experiment 2 showed that effect of attention was to increase the efficiency and duration of signal integration for the moving target. Overall, the results show that flicker sensitivity for a moving target relies on a much less efficient process than detection of static flicker, and that this less efficient process is facilitated when attention can select the relevant trajectory and ignore the others.

  13. Attentional facilitation of detection of flicker on moving objects.

    PubMed

    Shioiri, Satoshi; Ogawa, Masayuki; Yaguchi, Hirohisa; Cavanagh, Patrick

    2015-01-01

    We investigated the influence of attention and motion on the sensitivity of flicker detection for a target among distractors. Experiment 1 showed that when the target and distractors were moving, detection performance plummeted compared to when they were not moving, suggesting that the most sensitive detectors were local, temporal frequency-tuned receptive fields. With the stimuli in motion, a qualitatively different strategy was required and this led to much reduced performance. Cueing, which specified the target location with 100% validity, had no effect for targets that had little or no motion, suggesting that the flicker was sufficiently salient in this case to attract attention to the target without requiring any search. For targets with medium to high speeds, however, cueing provided a strong increase in sensitivity over uncued performance. This suggests a significant advantage for localizing and tracking the target and so sampling the luminance changes from only one trajectory. Experiment 2 showed that effect of attention was to increase the efficiency and duration of signal integration for the moving target. Overall, the results show that flicker sensitivity for a moving target relies on a much less efficient process than detection of static flicker, and that this less efficient process is facilitated when attention can select the relevant trajectory and ignore the others. PMID:26448145

  14. Improving human object recognition performance using video enhancement techniques

    NASA Astrophysics Data System (ADS)

    Whitman, Lucy S.; Lewis, Colin; Oakley, John P.

    2004-12-01

    Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.

  15. Emerging technologies with potential for objectively evaluating speech recognition skills.

    PubMed

    Rawool, Vishakha Waman

    2016-01-01

    Work-related exposure to noise and other ototoxins can cause damage to the cochlea, synapses between the inner hair cells, the auditory nerve fibers, and higher auditory pathways, leading to difficulties in recognizing speech. Procedures designed to determine speech recognition scores (SRS) in an objective manner can be helpful in disability compensation cases where the worker claims to have poor speech perception due to exposure to noise or ototoxins. Such measures can also be helpful in determining SRS in individuals who cannot provide reliable responses to speech stimuli, including patients with Alzheimer's disease, traumatic brain injuries, and infants with and without hearing loss. Cost-effective neural monitoring hardware and software is being rapidly refined due to the high demand for neurogaming (games involving the use of brain-computer interfaces), health, and other applications. More specifically, two related advances in neuro-technology include relative ease in recording neural activity and availability of sophisticated analysing techniques. These techniques are reviewed in the current article and their applications for developing objective SRS procedures are proposed. Issues related to neuroaudioethics (ethics related to collection of neural data evoked by auditory stimuli including speech) and neurosecurity (preservation of a person's neural mechanisms and free will) are also discussed.

  16. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  17. Biological object recognition in μ-radiography images

    NASA Astrophysics Data System (ADS)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  18. Atypical Time Course of Object Recognition in Autism Spectrum Disorder

    PubMed Central

    Caplette, Laurent; Wicker, Bruno; Gosselin, Frédéric

    2016-01-01

    In neurotypical observers, it is widely believed that the visual system samples the world in a coarse-to-fine fashion. Past studies on Autism Spectrum Disorder (ASD) have identified atypical responses to fine visual information but did not investigate the time course of the sampling of information at different levels of granularity (i.e. Spatial Frequencies, SF). Here, we examined this question during an object recognition task in ASD and neurotypical observers using a novel experimental paradigm. Our results confirm and characterize with unprecedented precision a coarse-to-fine sampling of SF information in neurotypical observers. In ASD observers, we discovered a different pattern of SF sampling across time: in the first 80 ms, high SFs lead ASD observers to a higher accuracy than neurotypical observers, and these SFs are sampled differently across time in the two subject groups. Our results might be related to the absence of a mandatory precedence of global information, and to top-down processing abnormalities in ASD. PMID:27752088

  19. Crowding, grouping, and object recognition: A matter of appearance

    PubMed Central

    Herzog, Michael H.; Sayim, Bilge; Chicherov, Vitaly; Manassi, Mauro

    2015-01-01

    In crowding, the perception of a target strongly deteriorates when neighboring elements are presented. Crowding is usually assumed to have the following characteristics. (a) Crowding is determined only by nearby elements within a restricted region around the target (Bouma's law). (b) Increasing the number of flankers can only deteriorate performance. (c) Target-flanker interference is feature-specific. These characteristics are usually explained by pooling models, which are well in the spirit of classic models of object recognition. In this review, we summarize recent findings showing that crowding is not determined by the above characteristics, thus, challenging most models of crowding. We propose that the spatial configuration across the entire visual field determines crowding. Only when one understands how all elements of a visual scene group with each other, can one determine crowding strength. We put forward the hypothesis that appearance (i.e., how stimuli look) is a good predictor for crowding, because both crowding and appearance reflect the output of recurrent processing rather than interactions during the initial phase of visual processing. PMID:26024452

  20. Poka Yoke system based on image analysis and object recognition

    NASA Astrophysics Data System (ADS)

    Belu, N.; Ionescu, L. M.; Misztal, A.; Mazăre, A.

    2015-11-01

    Poka Yoke is a method of quality management which is related to prevent faults from arising during production processes. It deals with “fail-sating” or “mistake-proofing”. The Poka-yoke concept was generated and developed by Shigeo Shingo for the Toyota Production System. Poka Yoke is used in many fields, especially in monitoring production processes. In many cases, identifying faults in a production process involves a higher cost than necessary cost of disposal. Usually, poke yoke solutions are based on multiple sensors that identify some nonconformities. This means the presence of different equipment (mechanical, electronic) on production line. As a consequence, coupled with the fact that the method itself is an invasive, affecting the production process, would increase its price diagnostics. The bulky machines are the means by which a Poka Yoke system can be implemented become more sophisticated. In this paper we propose a solution for the Poka Yoke system based on image analysis and identification of faults. The solution consists of a module for image acquisition, mid-level processing and an object recognition module using associative memory (Hopfield network type). All are integrated into an embedded system with AD (Analog to Digital) converter and Zync 7000 (22 nm technology).

  1. Crowding, grouping, and object recognition: A matter of appearance.

    PubMed

    Herzog, Michael H; Sayim, Bilge; Chicherov, Vitaly; Manassi, Mauro

    2015-01-01

    In crowding, the perception of a target strongly deteriorates when neighboring elements are presented. Crowding is usually assumed to have the following characteristics. (a) Crowding is determined only by nearby elements within a restricted region around the target (Bouma's law). (b) Increasing the number of flankers can only deteriorate performance. (c) Target-flanker interference is feature-specific. These characteristics are usually explained by pooling models, which are well in the spirit of classic models of object recognition. In this review, we summarize recent findings showing that crowding is not determined by the above characteristics, thus, challenging most models of crowding. We propose that the spatial configuration across the entire visual field determines crowding. Only when one understands how all elements of a visual scene group with each other, can one determine crowding strength. We put forward the hypothesis that appearance (i.e., how stimuli look) is a good predictor for crowding, because both crowding and appearance reflect the output of recurrent processing rather than interactions during the initial phase of visual processing.

  2. Self-recognition in corals facilitates deep-sea habitat engineering.

    PubMed

    Hennige, S J; Morrison, C L; Form, A U; Büscher, J; Kamenos, N A; Roberts, J M

    2014-01-01

    The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no 'self-recognition' on a broad species level. This study reveals areas of 'flawless' skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of 'self' between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.

  3. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases

    PubMed Central

    Weiss, Craig; Disterhoft, John F.

    2015-01-01

    Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer’s disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially

  4. Regulation of object recognition and object placement by ovarian sex steroid hormones

    PubMed Central

    Tuscher, Jennifer J.; Fortress, Ashley M.; Kim, Jaekyoon; Frick, Karyn M.

    2014-01-01

    The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR 7and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone H3 acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that

  5. Object Function Facilitates Infants' Object Individuation in a Manual Search Task

    ERIC Educational Resources Information Center

    Kingo, Osman S.; Krojgaard, Peter

    2012-01-01

    This study investigates the importance of object function (action-object-outcome relations) on object individuation in infancy. Five experiments examined the ability of 9.5- and 12-month-old infants to individuate simple geometric objects in a manual search design. Experiments 1 through 4 (12-month-olds, N = 128) provided several combinations of…

  6. An investigation into IgE-facilitated allergen recognition and presentation by human dendritic cells

    PubMed Central

    2013-01-01

    Background Allergen recognition by dendritic cells (DCs) is a key event in the allergic cascade leading to production of IgE antibodies. C-type lectins, such as the mannose receptor and DC-SIGN, were recently shown to play an important role in the uptake of the house dust mite glycoallergen Der p 1 by DCs. In addition to mannose receptor (MR) and DC-SIGN the high and low affinity IgE receptors, namely FcϵRI and FcϵRII (CD23), respectively, have been shown to be involved in allergen uptake and presentation by DCs. Objectives This study aims at understanding the extent to which IgE- and IgG-facilitated Der p 1 uptake by DCs influence T cell polarisation and in particular potential bias in favour of Th2. We have addressed this issue by using two chimaeric monoclonal antibodies produced in our laboratory and directed against a previously defined epitope on Der p 1, namely human IgE 2C7 and IgG1 2C7. Results Flow cytometry was used to establish the expression patterns of IgE (FcϵRI and FcϵRII) and IgG (FcγRI) receptors in relation to MR on DCs. The impact of FcϵRI, FcϵRII, FcγRI and mannose receptor mediated allergen uptake on Th1/Th2 cell differentiation was investigated using DC/T cell co-culture experiments. Myeloid DCs showed high levels of FcϵRI and FcγRI expression, but low levels of CD23 and MR, and this has therefore enabled us to assess the role of IgE and IgG-facilitated allergen presentation in T cell polarisation with minimal interference by CD23 and MR. Our data demonstrate that DCs that have taken up Der p 1 via surface IgE support a Th2 response. However, no such effect was demonstrable via surface IgG. Conclusions IgE bound to its high affinity receptor plays an important role in Der p 1 uptake and processing by peripheral blood DCs and in Th2 polarisation of T cells. PMID:24330349

  7. It takes two-skilled recognition of objects engages lateral areas in both hemispheres.

    PubMed

    Bilalić, Merim; Kiesel, Andrea; Pohl, Carsten; Erb, Michael; Grodd, Wolfgang

    2011-01-01

    Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas. PMID:21283683

  8. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition

    PubMed Central

    Fang, Jian; Cheng, Jingdong; Wang, Jiaolong; Zhang, Qiao; Liu, Mengjie; Gong, Rui; Wang, Ping; Zhang, Xiaodan; Feng, Yangyang; Lan, Wenxian; Gong, Zhou; Tang, Chun; Wong, Jiemin; Yang, Huirong; Cao, Chunyang; Xu, Yanhui

    2016-01-01

    UHRF1 is an important epigenetic regulator for maintenance DNA methylation. UHRF1 recognizes hemi-methylated DNA (hm-DNA) and trimethylation of histone H3K9 (H3K9me3), but the regulatory mechanism remains unknown. Here we show that UHRF1 adopts a closed conformation, in which a C-terminal region (Spacer) binds to the tandem Tudor domain (TTD) and inhibits H3K9me3 recognition, whereas the SET-and-RING-associated (SRA) domain binds to the plant homeodomain (PHD) and inhibits H3R2 recognition. Hm-DNA impairs the intramolecular interactions and promotes H3K9me3 recognition by TTD–PHD. The Spacer also facilitates UHRF1–DNMT1 interaction and enhances hm-DNA-binding affinity of the SRA. When TTD–PHD binds to H3K9me3, SRA-Spacer may exist in a dynamic equilibrium: either recognizes hm-DNA or recruits DNMT1 to chromatin. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by URHF1. PMID:27045799

  9. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition

    NASA Astrophysics Data System (ADS)

    Fang, Jian; Cheng, Jingdong; Wang, Jiaolong; Zhang, Qiao; Liu, Mengjie; Gong, Rui; Wang, Ping; Zhang, Xiaodan; Feng, Yangyang; Lan, Wenxian; Gong, Zhou; Tang, Chun; Wong, Jiemin; Yang, Huirong; Cao, Chunyang; Xu, Yanhui

    2016-04-01

    UHRF1 is an important epigenetic regulator for maintenance DNA methylation. UHRF1 recognizes hemi-methylated DNA (hm-DNA) and trimethylation of histone H3K9 (H3K9me3), but the regulatory mechanism remains unknown. Here we show that UHRF1 adopts a closed conformation, in which a C-terminal region (Spacer) binds to the tandem Tudor domain (TTD) and inhibits H3K9me3 recognition, whereas the SET-and-RING-associated (SRA) domain binds to the plant homeodomain (PHD) and inhibits H3R2 recognition. Hm-DNA impairs the intramolecular interactions and promotes H3K9me3 recognition by TTD-PHD. The Spacer also facilitates UHRF1-DNMT1 interaction and enhances hm-DNA-binding affinity of the SRA. When TTD-PHD binds to H3K9me3, SRA-Spacer may exist in a dynamic equilibrium: either recognizes hm-DNA or recruits DNMT1 to chromatin. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by URHF1.

  10. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition.

    PubMed

    Fang, Jian; Cheng, Jingdong; Wang, Jiaolong; Zhang, Qiao; Liu, Mengjie; Gong, Rui; Wang, Ping; Zhang, Xiaodan; Feng, Yangyang; Lan, Wenxian; Gong, Zhou; Tang, Chun; Wong, Jiemin; Yang, Huirong; Cao, Chunyang; Xu, Yanhui

    2016-01-01

    UHRF1 is an important epigenetic regulator for maintenance DNA methylation. UHRF1 recognizes hemi-methylated DNA (hm-DNA) and trimethylation of histone H3K9 (H3K9me3), but the regulatory mechanism remains unknown. Here we show that UHRF1 adopts a closed conformation, in which a C-terminal region (Spacer) binds to the tandem Tudor domain (TTD) and inhibits H3K9me3 recognition, whereas the SET-and-RING-associated (SRA) domain binds to the plant homeodomain (PHD) and inhibits H3R2 recognition. Hm-DNA impairs the intramolecular interactions and promotes H3K9me3 recognition by TTD-PHD. The Spacer also facilitates UHRF1-DNMT1 interaction and enhances hm-DNA-binding affinity of the SRA. When TTD-PHD binds to H3K9me3, SRA-Spacer may exist in a dynamic equilibrium: either recognizes hm-DNA or recruits DNMT1 to chromatin. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by URHF1.

  11. A Temporal Same-Object Advantage in the Tunnel Effect: Facilitated Change Detection for Persisting Objects

    ERIC Educational Resources Information Center

    Flombaum, Jonathan I.; Scholl, Brian J.

    2006-01-01

    Meaningful visual experience requires computations that identify objects as the same persisting individuals over time, motion, occlusion, and featural change. This article explores these computations in the tunnel effect: When an object moves behind an occluder, and then an object later emerges following a consistent trajectory, observers…

  12. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    PubMed

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline.

  13. Remembering the object you fear: brain potentials during recognition of spiders in spider-fearful individuals.

    PubMed

    Michalowski, Jaroslaw M; Weymar, Mathias; Hamm, Alfons O

    2014-01-01

    In the present study we investigated long-term memory for unpleasant, neutral and spider pictures in 15 spider-fearful and 15 non-fearful control individuals using behavioral and electrophysiological measures. During the initial (incidental) encoding, pictures were passively viewed in three separate blocks and were subsequently rated for valence and arousal. A recognition memory task was performed one week later in which old and new unpleasant, neutral and spider pictures were presented. Replicating previous results, we found enhanced memory performance and higher confidence ratings for unpleasant when compared to neutral materials in both animal fearful individuals and controls. When compared to controls high animal fearful individuals also showed a tendency towards better memory accuracy and significantly higher confidence during recognition of spider pictures, suggesting that memory of objects prompting specific fear is also facilitated in fearful individuals. In line, spider-fearful but not control participants responded with larger ERP positivity for correctly recognized old when compared to correctly rejected new spider pictures, thus showing the same effects in the neural signature of emotional memory for feared objects that were already discovered for other emotional materials. The increased fear memory for phobic materials observed in the present study in spider-fearful individuals might result in an enhanced fear response and reinforce negative beliefs aggravating anxiety symptomatology and hindering recovery.

  14. Research on recognition methods of aphid objects in complex backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-Yan; Zhang, Ji-Hong

    2009-07-01

    In order to improve the recognition accuracy among the kinds of aphids in the complex backgrounds, the recognition method among kinds of aphids based on Dual-Tree Complex Wavelet Transform (DT-CWT) and Support Vector Machine (Libsvm) is proposed. Firstly the image is pretreated; secondly the aphid images' texture feature of three crops are extracted by DT-CWT in order to get the training parameters of training model; finally the training model could recognize aphids among the three kinds of crops. By contrasting to Gabor wavelet transform and the traditional extracting texture's methods based on Gray-Level Co-Occurrence Matrix (GLCM), the experiment result shows that the method has a certain practicality and feasibility and provides basic for aphids' recognition between the identification among same kind aphid.

  15. Experience moderates overlap between object and face recognition, suggesting a common ability.

    PubMed

    Gauthier, Isabel; McGugin, Rankin W; Richler, Jennifer J; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E

    2014-07-03

    Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience.

  16. Experience moderates overlap between object and face recognition, suggesting a common ability

    PubMed Central

    Gauthier, Isabel; McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E.

    2014-01-01

    Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. PMID:24993021

  17. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    ERIC Educational Resources Information Center

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  18. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  19. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    ERIC Educational Resources Information Center

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  20. Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert

    2010-01-01

    Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…

  1. An optical processor for object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Sloan, J.; Udomkesmalee, S.

    1987-01-01

    The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.

  2. Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than Within-Category Object Recognition

    ERIC Educational Resources Information Center

    Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi

    2004-01-01

    Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…

  3. Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object.

    PubMed

    Kim, Seung-Cheol; Park, Seok-Chan; Kim, Eun-Soo

    2009-12-01

    In this paper, we propose a novel computational integral-imaging reconstruction (CIIR)-based three-dimensional (3-D) image correlator system for the recognition of 3-D volumetric objects by employing a 3-D reference object. That is, a number of plane object images (POIs) computationally reconstructed from the 3-D reference object are used for the 3-D volumetric target recognition. In other words, simultaneous 3-D image correlations between two sets of target and reference POIs, which are depth-dependently reconstructed by using the CIIR method, are performed for effective recognition of 3-D volumetric objects in the proposed system. Successful experiments with this CIIR-based 3-D image correlator confirmed the feasibility of the proposed method.

  4. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    PubMed

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently.

  5. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    PubMed

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. PMID:23644160

  6. Recognition of Single and Overlay of Objects on a Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Savicheva, S. V.

    2015-05-01

    Proposed a method for detection of flat objects when they overlap condition. The method is based on two separate recognition algorithms flat objects. The first algorithm is based on a binary image of the signature of the object plane. The second algorithm is based on the values of the discrete points in the curvature contour of a binary image. The results of experimental studies of algorithms and a method of recognition of individual superimposed flat objects.

  7. On the facilitative effects of face motion on face recognition and its development

    PubMed Central

    Xiao, Naiqi G.; Perrotta, Steve; Quinn, Paul C.; Wang, Zhe; Sun, Yu-Hao P.; Lee, Kang

    2014-01-01

    For the past century, researchers have extensively studied human face processing and its development. These studies have advanced our understanding of not only face processing, but also visual processing in general. However, most of what we know about face processing was investigated using static face images as stimuli. Therefore, an important question arises: to what extent does our understanding of static face processing generalize to face processing in real-life contexts in which faces are mostly moving? The present article addresses this question by examining recent studies on moving face processing to uncover the influence of facial movements on face processing and its development. First, we describe evidence on the facilitative effects of facial movements on face recognition and two related theoretical hypotheses: the supplementary information hypothesis and the representation enhancement hypothesis. We then highlight several recent studies suggesting that facial movements optimize face processing by activating specific face processing strategies that accommodate to task requirements. Lastly, we review the influence of facial movements on the development of face processing in the first year of life. We focus on infants' sensitivity to facial movements and explore the facilitative effects of facial movements on infants' face recognition performance. We conclude by outlining several future directions to investigate moving face processing and emphasize the importance of including dynamic aspects of facial information to further understand face processing in real-life contexts. PMID:25009517

  8. On the facilitative effects of face motion on face recognition and its development.

    PubMed

    Xiao, Naiqi G; Perrotta, Steve; Quinn, Paul C; Wang, Zhe; Sun, Yu-Hao P; Lee, Kang

    2014-01-01

    For the past century, researchers have extensively studied human face processing and its development. These studies have advanced our understanding of not only face processing, but also visual processing in general. However, most of what we know about face processing was investigated using static face images as stimuli. Therefore, an important question arises: to what extent does our understanding of static face processing generalize to face processing in real-life contexts in which faces are mostly moving? The present article addresses this question by examining recent studies on moving face processing to uncover the influence of facial movements on face processing and its development. First, we describe evidence on the facilitative effects of facial movements on face recognition and two related theoretical hypotheses: the supplementary information hypothesis and the representation enhancement hypothesis. We then highlight several recent studies suggesting that facial movements optimize face processing by activating specific face processing strategies that accommodate to task requirements. Lastly, we review the influence of facial movements on the development of face processing in the first year of life. We focus on infants' sensitivity to facial movements and explore the facilitative effects of facial movements on infants' face recognition performance. We conclude by outlining several future directions to investigate moving face processing and emphasize the importance of including dynamic aspects of facial information to further understand face processing in real-life contexts. PMID:25009517

  9. Parts and Relations in Young Children's Shape-Based Object Recognition

    ERIC Educational Resources Information Center

    Augustine, Elaine; Smith, Linda B.; Jones, Susan S.

    2011-01-01

    The ability to recognize common objects from sparse information about geometric shape emerges during the same period in which children learn object names and object categories. Hummel and Biederman's (1992) theory of object recognition proposes that the geometric shapes of objects have two components--geometric volumes representing major object…

  10. Combining depth and color data for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Joergensen, Thomas M.; Linneberg, Christian; Andersen, Allan W.

    1997-09-01

    This paper describes the shape recognition system that has been developed within the ESPRIT project 9052 ADAS on automatic disassembly of TV-sets using a robot cell. Depth data from a chirped laser radar are fused with color data from a video camera. The sensor data is pre-processed in several ways and the obtained representation is used to train a RAM neural network (memory based reasoning approach) to detect different components within TV-sets. The shape recognizing architecture has been implemented and tested in a demonstration setup.

  11. Three-dimensional object representation and invariant recognition using continuous distance transform neural networks.

    PubMed

    Tseng, Y H; Hwang, J N; Sheehan, F H

    1997-01-01

    3D object recognition under partial object viewing is a difficult pattern recognition task. In this paper, we introduce a neural-network solution that is robust to partial viewing of objects and noise corruption. This method directly utilizes the acquired 3D data and requires no feature extraction. The object is first parametrically represented by a continuous distance transform neural network (CDTNN) trained by the surface points of the exemplar object. The CDTNN maps any 3D coordinate into a value that corresponds to the distance between the point and the nearest surface point of the object. Therefore, a mismatch between the exemplar object and an unknown object can be easily computed. When encountered with deformed objects, this mismatch information can be backpropagated through the CDTNN to iteratively determine the deformation in terms of affine transform. Application to 3D heart contour delineation and invariant recognition of 3D rigid-body objects is presented.

  12. How Does Using Object Names Influence Visual Recognition Memory?

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel

    2013-01-01

    Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…

  13. Symbolic Play Connects to Language through Visual Object Recognition

    ERIC Educational Resources Information Center

    Smith, Linda B.; Jones, Susan S.

    2011-01-01

    Object substitutions in play (e.g. using a box as a car) are strongly linked to language learning and their absence is a diagnostic marker of language delay. Classic accounts posit a symbolic function that underlies both words and object substitutions. Here we show that object substitutions depend on developmental changes in visual object…

  14. Recognition of 3-D Scene with Partially Occluded Objects

    NASA Astrophysics Data System (ADS)

    Lu, Siwei; Wong, Andrew K. C...

    1987-03-01

    This paper presents a robot vision system which is capable of recognizing objects in a 3-D scene and interpreting their spatial relation even though some objects in the scene may be partially occluded by other objects. An algorithm is developed to transform the geometric information from the range data into an attributed hypergraph representation (AHR). A hypergraph monomorphism algorithm is then used to compare the AHR of objects in the scene with a set of complete AHR's of prototypes. The capability of identifying connected components and interpreting various types of edges in the 3-D scene enables us to distinguish objects which are partially blocking each other in the scene. Using structural information stored in the primitive area graph, a heuristic hypergraph monomorphism algorithm provides an effective way for recognizing, locating, and interpreting partially occluded objects in the range image.

  15. Visual object recognition for automatic micropropagation of plants

    NASA Astrophysics Data System (ADS)

    Brendel, Thorsten; Schwanke, Joerg; Jensch, Peter F.

    1994-11-01

    Micropropagation of plants is done by cutting juvenile plants and placing them into special container-boxes with nutrient-solution where the pieces can grow up and be cut again several times. To produce high amounts of biomass it is necessary to do plant micropropagation by a robotic system. In this paper we describe parts of the vision system that recognizes plants and their particular cutting points. Therefore, it is necessary to extract elements of the plants and relations between these elements (for example root, stem, leaf). Different species vary in their morphological appearance, variation is also immanent in plants of the same species. Therefore, we introduce several morphological classes of plants from that we expect same recognition methods.

  16. Support plane method applied to ground objects recognition using modelled SAR images

    NASA Astrophysics Data System (ADS)

    Zherdev, Denis A.; Fursov, Vladimir A.

    2015-09-01

    In this study, the object recognition problem was solved using support plane method. The modelled SAR images were used as features vectors in the recognition algorithm. Radar signal backscattering of objects in different observing poses is presented in SAR images. For real time simulation, we used simple mixture model of Lambertian-specular reflectivity. To this end, an algorithm of ray tracing is extended for simulating SAR images of 3D man-made models. The suggested algorithm of support plane is very effective in objects recognition using SAR images and RCS diagrams.

  17. Resolving human object recognition in space and time.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-03-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively late. Using representational similarity analysis, we combined human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing with sources in V1 and IT. Finally, we correlated human MEG signals to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision.

  18. Resolving human object recognition in space and time

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-01-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044

  19. Fast and robust recognition and localization of 2D objects

    NASA Astrophysics Data System (ADS)

    Otterbach, Rainer; Gerdes, Rolf; Kammueller, R.

    1994-11-01

    The paper presents a vision system which provides a robust model-based identification and localization of 2-D objects in industrial scenes. A symbolic image description based on the polygonal approximation of the object silhouettes is extracted in video real time by the use of dedicated hardware. Candidate objects are selected from the model database using a time and memory efficient hashing algorithm. Any candidate object is submitted to the next computation stage which generates pose hypotheses by assigning model to image contours. Corresponding continuous measures of similarity are derived from the turning functions of the curves. Finally, the previous generated hypotheses are verified using a voting scheme in transformation space. Experimental results reveal the fault tolerance of the vision system with regard to noisy and split image contours as well as partial occlusion of objects. THe short cycle time and the easy adaptability of the vision system make it well suited for a wide variety of applications in industrial automation.

  20. Object Recognition with Severe Spatial Deficits in Williams Syndrome: Sparing and Breakdown

    ERIC Educational Resources Information Center

    Landau, Barbara; Hoffman, James E.; Kurz, Nicole

    2006-01-01

    Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system--object recognition. Children with WS, normal mental-age…

  1. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.

    PubMed

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-08-06

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.

  2. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    PubMed Central

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer’s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory. PMID:26246157

  3. Superior voice recognition in a patient with acquired prosopagnosia and object agnosia.

    PubMed

    Hoover, Adria E N; Démonet, Jean-François; Steeves, Jennifer K E

    2010-11-01

    Anecdotally, it has been reported that individuals with acquired prosopagnosia compensate for their inability to recognize faces by using other person identity cues such as hair, gait or the voice. Are they therefore superior at the use of non-face cues, specifically voices, to person identity? Here, we empirically measure person and object identity recognition in a patient with acquired prosopagnosia and object agnosia. We quantify person identity (face and voice) and object identity (car and horn) recognition for visual, auditory, and bimodal (visual and auditory) stimuli. The patient is unable to recognize faces or cars, consistent with his prosopagnosia and object agnosia, respectively. He is perfectly able to recognize people's voices and car horns and bimodal stimuli. These data show a reverse shift in the typical weighting of visual over auditory information for audiovisual stimuli in a compromised visual recognition system. Moreover, the patient shows selectively superior voice recognition compared to the controls revealing that two different stimulus domains, persons and objects, may not be equally affected by sensory adaptation effects. This also implies that person and object identity recognition are processed in separate pathways. These data demonstrate that an individual with acquired prosopagnosia and object agnosia can compensate for the visual impairment and become quite skilled at using spared aspects of sensory processing. In the case of acquired prosopagnosia it is advantageous to develop a superior use of voices for person identity recognition in everyday life.

  4. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  5. It’s all connected: Pathways in visual object recognition and early noun learning

    PubMed Central

    Smith, Linda B.

    2013-01-01

    A developmental pathway may be defined as the route, or chain of events, through which a new structure or function forms. For many human behaviors, including object name learning and visual object recognition, these pathways are often complex, multi-causal and include unexpected dependencies. This paper presents three principles of development that suggest the value of a developmental psychology that explicitly seeks to trace these pathways and uses empirical evidence on developmental dependencies between motor development, action on objects, visual object recognition and object name learning in 12 to 24 month old infants to make the case. The paper concludes with a consideration of the theoretical implications of this approach. PMID:24320634

  6. The relationship between protein synthesis and protein degradation in object recognition memory.

    PubMed

    Furini, Cristiane R G; Myskiw, Jociane de C; Schmidt, Bianca E; Zinn, Carolina G; Peixoto, Patricia B; Pereira, Luiza D; Izquierdo, Ivan

    2015-11-01

    For decades there has been a consensus that de novo protein synthesis is necessary for long-term memory. A second round of protein synthesis has been described for both extinction and reconsolidation following an unreinforced test session. Recently, it was shown that consolidation and reconsolidation depend not only on protein synthesis but also on protein degradation by the ubiquitin-proteasome system (UPS), a major mechanism responsible for protein turnover. However, the involvement of UPS on consolidation and reconsolidation of object recognition memory remains unknown. Here we investigate in the CA1 region of the dorsal hippocampus the involvement of UPS-mediated protein degradation in consolidation and reconsolidation of object recognition memory. Animals with infusion cannulae stereotaxically implanted in the CA1 region of the dorsal hippocampus, were exposed to an object recognition task. The UPS inhibitor β-Lactacystin did not affect the consolidation and the reconsolidation of object recognition memory at doses known to affect other forms of memory (inhibitory avoidance, spatial learning in a water maze) while the protein synthesis inhibitor anisomycin impaired the consolidation and the reconsolidation of the object recognition memory. However, β-Lactacystin was able to reverse the impairment caused by anisomycin on the reconsolidation process in the CA1 region of the hippocampus. Therefore, it is possible to postulate a direct link between protein degradation and protein synthesis during the reconsolidation of the object recognition memory.

  7. From neural-based object recognition toward microelectronic eyes

    NASA Technical Reports Server (NTRS)

    Sheu, Bing J.; Bang, Sa Hyun

    1994-01-01

    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.

  8. Do Simultaneously Viewed Objects Influence Scene Recognition Individually or as Groups? Two Perceptual Studies

    PubMed Central

    Gagne, Christopher R.; MacEvoy, Sean P.

    2014-01-01

    The ability to quickly categorize visual scenes is critical to daily life, allowing us to identify our whereabouts and to navigate from one place to another. Rapid scene categorization relies heavily on the kinds of objects scenes contain; for instance, studies have shown that recognition is less accurate for scenes to which incongruent objects have been added, an effect usually interpreted as evidence of objects' general capacity to activate semantic networks for scene categories they are statistically associated with. Essentially all real-world scenes contain multiple objects, however, and it is unclear whether scene recognition draws on the scene associations of individual objects or of object groups. To test the hypothesis that scene recognition is steered, at least in part, by associations between object groups and scene categories, we asked observers to categorize briefly-viewed scenes appearing with object pairs that were semantically consistent or inconsistent with the scenes. In line with previous results, scenes were less accurately recognized when viewed with inconsistent versus consistent pairs. To understand whether this reflected individual or group-level object associations, we compared the impact of pairs composed of mutually related versus unrelated objects; i.e., pairs, which, as groups, had clear associations to particular scene categories versus those that did not. Although related and unrelated object pairs equally reduced scene recognition accuracy, unrelated pairs were consistently less capable of drawing erroneous scene judgments towards scene categories associated with their individual objects. This suggests that scene judgments were influenced by the scene associations of object groups, beyond the influence of individual objects. More generally, the fact that unrelated objects were as capable of degrading categorization accuracy as related objects, while less capable of generating specific alternative judgments, indicates that the process

  9. Complementary Hemispheric Asymmetries in Object Naming and Recognition: A Voxel-Based Correlational Study

    ERIC Educational Resources Information Center

    Acres, K.; Taylor, K. I.; Moss, H. E.; Stamatakis, E. A.; Tyler, L. K.

    2009-01-01

    Cognitive neuroscientific research proposes complementary hemispheric asymmetries in naming and recognising visual objects, with a left temporal lobe advantage for object naming and a right temporal lobe advantage for object recognition. Specifically, it has been proposed that the left inferior temporal lobe plays a mediational role linking…

  10. Dissociating the Effects of Angular Disparity and Image Similarity in Mental Rotation and Object Recognition

    ERIC Educational Resources Information Center

    Cheung, Olivia S.; Hayward, William G.; Gauthier, Isabel

    2009-01-01

    Performance is often impaired linearly with increasing angular disparity between two objects in tasks that measure mental rotation or object recognition. But increased angular disparity is often accompanied by changes in the similarity between views of an object, confounding the impact of the two factors in these tasks. We examined separately the…

  11. Biologically Motivated Novel Localization Paradigm by High-Level Multiple Object Recognition in Panoramic Images

    PubMed Central

    Kim, Sungho; Shim, Min-Sheob

    2015-01-01

    This paper presents the novel paradigm of a global localization method motivated by human visual systems (HVSs). HVSs actively use the information of the object recognition results for self-position localization and for viewing direction. The proposed localization paradigm consisted of three parts: panoramic image acquisition, multiple object recognition, and grid-based localization. Multiple object recognition information from panoramic images is utilized in the localization part. High-level object information was useful not only for global localization, but also for robot-object interactions. The metric global localization (position, viewing direction) was conducted based on the bearing information of recognized objects from just one panoramic image. The feasibility of the novel localization paradigm was validated experimentally. PMID:26457323

  12. The relationship between change detection and recognition of centrally attended objects in motion pictures.

    PubMed

    Angelone, Bonnie L; Levin, Daniel T; Simons, Daniel J

    2003-01-01

    Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.

  13. Single prolonged stress impairs social and object novelty recognition in rats

    PubMed Central

    Eagle, Andrew L.; Fitzpatrick, Chris J.; Perrine, Shane A.

    2013-01-01

    Posttraumatic stress disorder (PTSD) results from exposure to a traumatic event and manifests as re-experiencing, arousal, avoidance, and negative cognition/mood symptoms. Avoidant symptoms, as well as the newly defined negative cognitions/mood, are a serious complication leading to diminished interest in once important or positive activities, such as social interaction; however, the basis of these symptoms remains poorly understood. PTSD patients also exhibit impaired object and social recognition, which may underlie the avoidance and symptoms of negative cognition, such as social estrangement or diminished interest in activities. Previous studies have demonstrated that single prolonged stress (SPS), models PTSD phenotypes, including impairments in learning and memory. Therefore, it was hypothesized that SPS would impair social and object recognition memory. Male Sprague Dawley rats were exposed to SPS then tested in the social choice test (SCT) or novel object recognition test (NOR). These tests measure recognition of novelty over familiarity, a natural preference of rodents. Results show that SPS impaired preference for both social and object novelty. In addition, SPS impairment in social recognition may be caused by impaired behavioral flexibility, or an inability to shift behavior during the SCT. These results demonstrate that traumatic stress can impair social and object recognition memory, which may underlie certain avoidant symptoms or negative cognition in PTSD and be related to impaired behavioral flexibility. PMID:24036168

  14. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  15. Neural network application for thermal image recognition of low-resolution objects

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Wu, Bo-Wen

    2007-02-01

    In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.

  16. Multi-class remote sensing object recognition based on discriminative sparse representation.

    PubMed

    Wang, Xin; Shen, Siqiu; Ning, Chen; Huang, Fengchen; Gao, Hongmin

    2016-02-20

    The automatic recognition of multi-class objects with various backgrounds is a big challenge in the field of remote sensing (RS) image analysis. In this paper, we propose a novel recognition framework for multi-class RS objects based on the discriminative sparse representation. In this framework, the recognition problem is implemented in two stages. In the first, or discriminative dictionary learning stage, considering the characterization of remote sensing objects, the scale-invariant feature transform descriptor is first combined with an improved bag-of-words model for multi-class objects feature extraction and representation. Then, information about each class of training samples is fused into the dictionary learning process; by using the K-singular value decomposition algorithm, a discriminative dictionary can be learned for sparse coding. In the second, or recognition, stage, to improve the computational efficiency, the phase spectrum of a quaternion Fourier transform model is applied to the test image to predict a small set of object candidate locations. Then, a multi-scale sliding window mechanism is utilized to scan the image over those candidate locations to obtain the object candidates (or objects of interest). Subsequently, the sparse coding coefficients of these candidates under the discriminative dictionary are mapped to the discriminative vectors that have a good ability to distinguish different classes of objects. Finally, multi-class object recognition can be accomplished by analyzing these vectors. The experimental results show that the proposed work outperforms a number of state-of-the-art methods for multi-class remote sensing object recognition.

  17. Multi-class remote sensing object recognition based on discriminative sparse representation.

    PubMed

    Wang, Xin; Shen, Siqiu; Ning, Chen; Huang, Fengchen; Gao, Hongmin

    2016-02-20

    The automatic recognition of multi-class objects with various backgrounds is a big challenge in the field of remote sensing (RS) image analysis. In this paper, we propose a novel recognition framework for multi-class RS objects based on the discriminative sparse representation. In this framework, the recognition problem is implemented in two stages. In the first, or discriminative dictionary learning stage, considering the characterization of remote sensing objects, the scale-invariant feature transform descriptor is first combined with an improved bag-of-words model for multi-class objects feature extraction and representation. Then, information about each class of training samples is fused into the dictionary learning process; by using the K-singular value decomposition algorithm, a discriminative dictionary can be learned for sparse coding. In the second, or recognition, stage, to improve the computational efficiency, the phase spectrum of a quaternion Fourier transform model is applied to the test image to predict a small set of object candidate locations. Then, a multi-scale sliding window mechanism is utilized to scan the image over those candidate locations to obtain the object candidates (or objects of interest). Subsequently, the sparse coding coefficients of these candidates under the discriminative dictionary are mapped to the discriminative vectors that have a good ability to distinguish different classes of objects. Finally, multi-class object recognition can be accomplished by analyzing these vectors. The experimental results show that the proposed work outperforms a number of state-of-the-art methods for multi-class remote sensing object recognition. PMID:26906591

  18. Toward a unified model of face and object recognition in the human visual system

    PubMed Central

    Wallis, Guy

    2013-01-01

    Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects. PMID:23966963

  19. Toward a unified model of face and object recognition in the human visual system.

    PubMed

    Wallis, Guy

    2013-01-01

    Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects. PMID:23966963

  20. Expertise modulates the neural basis of context dependent recognition of objects and their relations.

    PubMed

    Bilalić, Merim; Turella, Luca; Campitelli, Guillermo; Erb, Michael; Grodd, Wolfgang

    2012-11-01

    Recognition of objects and their relations is necessary for orienting in real life. We examined cognitive processes related to recognition of objects, their relations, and the patterns they form by using the game of chess. Chess enables us to compare experts with novices and thus gain insight in the nature of development of recognition skills. Eye movement recordings showed that experts were generally faster than novices on a task that required enumeration of relations between chess objects because their extensive knowledge enabled them to immediately focus on the objects of interest. The advantage was less pronounced on random positions where the location of chess objects, and thus typical relations between them, was randomized. Neuroimaging data related experts' superior performance to the areas along the dorsal stream-bilateral posterior temporal areas and left inferior parietal lobe were related to recognition of object and their functions. The bilateral collateral sulci, together with bilateral retrosplenial cortex, were also more sensitive to normal than random positions among experts indicating their involvement in pattern recognition. The pattern of activations suggests experts engage the same regions as novices, but also that they employ novel additional regions. Expert processing, as the final stage of development, is qualitatively different than novice processing, which can be viewed as the starting stage. Since we are all experts in real life and dealing with meaningful stimuli in typical contexts, our results underline the importance of expert-like cognitive processing on generalization of laboratory results to everyday life. PMID:21998070

  1. How basic-level objects facilitate question-asking in a categorization task

    PubMed Central

    Ruggeri, Azzurra; Feufel, Markus A.

    2015-01-01

    The ability to categorize information is essential to everyday tasks such as identifying the cause of an event given a set of likely explanations or pinpointing the correct from a set of possible diagnoses by sequentially probing questions. In three studies, we investigated how the level of inclusiveness at which objects are presented (basic-level vs. subordinate-level) influences children's (7- and 10-year-olds) and adults' performance in a sequential binary categorization task. Study 1 found a robust facilitating effect of basic-level objects on the ability to ask effective questions in a computerized version of the Twenty Questions game. Study 2 suggested that this facilitating effect might be due to the kinds of object-differentiating features participants generate when provided with basic-level as compared to subordinate-level objects. Study 3 ruled out the alternative hypothesis that basic-level objects facilitate the selection of the most efficient among a given set of features. PMID:26217262

  2. A chicken model for studying the emergence of invariant object recognition

    PubMed Central

    Wood, Samantha M. W.; Wood, Justin N.

    2015-01-01

    “Invariant object recognition” refers to the ability to recognize objects across variation in their appearance on the retina. This ability is central to visual perception, yet its developmental origins are poorly understood. Traditionally, nonhuman primates, rats, and pigeons have been the most commonly used animal models for studying invariant object recognition. Although these animals have many advantages as model systems, they are not well suited for studying the emergence of invariant object recognition in the newborn brain. Here, we argue that newly hatched chicks (Gallus gallus) are an ideal model system for studying the emergence of invariant object recognition. Using an automated controlled-rearing approach, we show that chicks can build a viewpoint-invariant representation of the first object they see in their life. This invariant representation can be built from highly impoverished visual input (three images of an object separated by 15° azimuth rotations) and cannot be accounted for by low-level retina-like or V1-like neuronal representations. These results indicate that newborn neural circuits begin building invariant object representations at the onset of vision and argue for an increased focus on chicks as an animal model for studying invariant object recognition. PMID:25767436

  3. Positive, but Not Negative, Facial Expressions Facilitate 3-Month-Olds' Recognition of an Individual Face

    ERIC Educational Resources Information Center

    Brenna, Viola; Proietti, Valentina; Montirosso, Rosario; Turati, Chiara

    2013-01-01

    The current study examined whether and how the presence of a positive or a negative emotional expression may affect the face recognition process at 3 months of age. Using a familiarization procedure, Experiment 1 demonstrated that positive (i.e., happiness), but not negative (i.e., fear and anger) facial expressions facilitate infants'…

  4. Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning

    PubMed Central

    Yee, Meagan; Jones, Susan S.; Smith, Linda B.

    2012-01-01

    Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015

  5. Two-dimensional object recognition through two-stage string matching.

    PubMed

    Wu, W Y; Wang, M J

    1999-01-01

    A two-stage string matching method for the recognition of two-dimensional (2-D) objects is proposed in this work. The first stage is a global cyclic string matching. The second stage is a local matching with local dissimilarity measure computing. The dissimilarity measure function of the input shape and the reference shape are obtained by combining the global matching cost and the local dissimilarity measure. The proposed method has the advantage that there is no need to set any parameter in the recognition process. Experimental results indicate that the hostage string matching approach significantly improves the recognition rates compared to the one-stage string matching method. PMID:18267511

  6. Young Children's Self-Generated Object Views and Object Recognition

    ERIC Educational Resources Information Center

    James, Karin H.; Jones, Susan S.; Smith, Linda B.; Swain, Shelley N.

    2014-01-01

    Two important and related developments in children between 18 and 24 months of age are the rapid expansion of object name vocabularies and the emergence of an ability to recognize objects from sparse representations of their geometric shapes. In the same period, children also begin to show a preference for planar views (i.e., views of objects held…

  7. Crowded and Sparse Domains in Object Recognition: Consequences for Categorization and Naming

    ERIC Educational Resources Information Center

    Gale, Tim M.; Laws, Keith R.; Foley, Kerry

    2006-01-01

    Some models of object recognition propose that items from structurally crowded categories (e.g., living things) permit faster access to superordinate semantic information than structurally dissimilar categories (e.g., nonliving things), but slower access to individual object information when naming items. We present four experiments that utilize…

  8. Modeling guidance and recognition in categorical search: Bridging human and computer object detection

    PubMed Central

    Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460

  9. Conscious intention to speak proactively facilitates lexical access during overt object naming.

    PubMed

    Strijkers, Kristof; Holcomb, Phillip J; Costa, Albert

    2012-11-01

    The present study explored when and how the top-down intention to speak influences the language production process. We did so by comparing the brain's electrical response for a variable known to affect lexical access, namely word frequency, during overt object naming and non-verbal object categorization. We found that during naming, the event-related brain potentials elicited for objects with low frequency names started to diverge from those with high frequency names as early as 152 ms after stimulus onset, while during non-verbal categorization the same frequency comparison appeared 200 ms later eliciting a qualitatively different brain response. Thus, only when participants had the conscious intention to name an object the brain rapidly engaged in lexical access. The data offer evidence that top-down intention to speak proactively facilitates the activation of words related to perceived objects.

  10. Conscious intention to speak proactively facilitates lexical access during overt object naming

    PubMed Central

    Strijkers, Kristof; Holcomb, Phillip J.; Costa, Albert

    2013-01-01

    The present study explored when and how the top-down intention to speak influences the language production process. We did so by comparing the brain’s electrical response for a variable known to affect lexical access, namely word frequency, during overt object naming and non-verbal object categorization. We found that during naming, the event-related brain potentials elicited for objects with low frequency names started to diverge from those with high frequency names as early as 152 ms after stimulus onset, while during non-verbal categorization the same frequency comparison appeared 200 ms later eliciting a qualitatively different brain response. Thus, only when participants had the conscious intention to name an object the brain rapidly engaged in lexical access. The data offer evidence that top-down intention to speak proactively facilitates the activation of words related to perceived objects. PMID:24039339

  11. Object recognition in clutter: cortical responses depend on the type of learning

    PubMed Central

    Hegdé, Jay; Thompson, Serena K.; Brady, Mark; Kersten, Daniel

    2012-01-01

    Theoretical studies suggest that the visual system uses prior knowledge of visual objects to recognize them in visual clutter, and posit that the strategies for recognizing objects in clutter may differ depending on whether or not the object was learned in clutter to begin with. We tested this hypothesis using functional magnetic resonance imaging (fMRI) of human subjects. We trained subjects to recognize naturalistic, yet novel objects in strong or weak clutter. We then tested subjects' recognition performance for both sets of objects in strong clutter. We found many brain regions that were differentially responsive to objects during object recognition depending on whether they were learned in strong or weak clutter. In particular, the responses of the left fusiform gyrus (FG) reliably reflected, on a trial-to-trial basis, subjects' object recognition performance for objects learned in the presence of strong clutter. These results indicate that the visual system does not use a single, general-purpose mechanism to cope with clutter. Instead, there are two distinct spatial patterns of activation whose responses are attributable not to the visual context in which the objects were seen, but to the context in which the objects were learned. PMID:22723774

  12. Grouping in object recognition: the role of a Gestalt law in letter identification.

    PubMed

    Pelli, Denis G; Majaj, Najib J; Raizman, Noah; Christian, Christopher J; Kim, Edward; Palomares, Melanie C

    2009-02-01

    The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws "prescribe for us what we are to recognize 'as one thing'" (Kohler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and "snakes in the grass" is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, "wiggle", to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping.

  13. Auto-associative segmentation for real-time object recognition in realistic outdoor images

    NASA Astrophysics Data System (ADS)

    Estevez, Leonardo W.; Kehtarnavaz, Nasser D.

    1998-04-01

    As digital signal processors (DSPs) become more advanced, many real-time recognition problems will be solved with completely integrated solutions. In this paper a methodology which is designed for today's DSP architectures and is capable of addressing applications in real-time color object recognition is presented. The methodology is integrated into a processing structure called raster scan video processing which requires a small amount of memory. The small amount of memory required enables the entire recognition system to be implemented on a single DSP. This auto-associative segmentation approach provides a means for desaturated color images to be segmented. The system is applied to the problem of stop sign recognition is realistically captured outdoor images.

  14. Spontaneous object recognition: a promising approach to the comparative study of memory

    PubMed Central

    Blaser, Rachel; Heyser, Charles

    2015-01-01

    Spontaneous recognition of a novel object is a popular measure of exploratory behavior, perception and recognition memory in rodent models. Because of its relative simplicity and speed of testing, the variety of stimuli that can be used, and its ecological validity across species, it is also an attractive task for comparative research. To date, variants of this test have been used with vertebrate and invertebrate species, but the methods have seldom been sufficiently standardized to allow cross-species comparison. Here, we review the methods necessary for the study of novel object recognition in mammalian and non-mammalian models, as well as the results of these experiments. Critical to the use of this test is an understanding of the organism’s initial response to a novel object, the modulation of exploration by context, and species differences in object perception and exploratory behaviors. We argue that with appropriate consideration of species differences in perception, object affordances, and natural exploratory behaviors, the spontaneous object recognition test can be a valid and versatile tool for translational research with non-mammalian models. PMID:26217207

  15. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  16. Combining feature- and correspondence-based methods for visual object recognition.

    PubMed

    Westphal, Günter; Würtz, Rolf P

    2009-07-01

    We present an object recognition system built on a combination of feature- and correspondence-based pattern recognizers. The feature-based part, called preselection network, is a single-layer feedforward network weighted with the amount of information contributed by each feature to the decision at hand. For processing arbitrary objects, we employ small, regular graphs whose nodes are attributed with Gabor amplitudes, termed parquet graphs. The preselection network can quickly rule out most irrelevant matches and leaves only the ambiguous cases, so-called model candidates, to be verified by a rudimentary version of elastic graph matching, a standard correspondence-based technique for face and object recognition. According to the model, graphs are constructed that describe the object in the input image well. We report the results of experiments on standard databases for object recognition. The method achieved high recognition rates on identity and pose. Unlike many other models, it can also cope with varying background, multiple objects, and partial occlusion.

  17. Fractional Fourier transform pre-processing for neural networks and its application to object recognition.

    PubMed

    Barshan, Billur; Ayrulu, Birsel

    2002-01-01

    This study investigates fractional Fourier transform pre-processing of input signals to neural networks. The fractional Fourier transform is a generalization of the ordinary Fourier transform with an order parameter a. Judicious choice of this parameter can lead to overall improvement of the neural network performance. As an illustrative example, we consider recognition and position estimation of different types of objects based on their sonar returns. Raw amplitude and time-of-flight patterns acquired from a real sonar system are processed, demonstrating reduced error in both recognition and position estimation of objects.

  18. Coincident orientation of objects and viewpoint-dependence in scene recognition.

    PubMed

    Li, Jing; Zhang, Kan

    2012-02-01

    Viewpoint-dependence is a well-known phenomenon in which participants' spatial memory is better for previously experienced points of view than for novel ones. In the current study, partial-scene-recognition was used to examine the effect of coincident orientation of all the objects on viewpoint-dependence in spatial memory. When objects in scenes had no clear orientations (e.g., balls), participants' recognition of experienced directions was better than that of novel ones, indicating that there was viewpoint-dependence. However, when the objects in scenes were toy bears with clear orientations, the coincident orientation of objects (315 degrees), which was not experienced, shared the advantage of the experienced direction (0 degrees), and participants were equally likely to choose either direction when reconstructing the spatial representation in memory. These findings suggest that coincident orientation of objects may affect egocentric representations in spatial memory. PMID:22582697

  19. Classification of fragments of objects by the Fourier masks pattern recognition system

    NASA Astrophysics Data System (ADS)

    Barajas-García, Carolina; Solorza-Calderón, Selene; Álvarez-Borrego, Josué

    2016-05-01

    The automation process of the pattern recognition for fragments of objects is a challenge to humanity. For humans it is relatively easy to classify the fragment of some object even if it is isolated and perhaps this identification could be more complicated if it is partially overlapped by other object. However, the emulation of the functions of the human eye and brain by a computer is not a trivial issue. This paper presents a pattern recognition digital system based on Fourier binary rings masks in order to classify fragments of objects. The system is invariant to position, scale and rotation, and it is robust in the classification of images that have noise. Moreover, it classifies images that present an occlusion or elimination of approximately 50% of the area of the object.

  20. Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice.

    PubMed

    Mesa-Gresa, Patricia; Pérez-Martinez, Asunción; Redolat, Rosa

    2013-01-01

    Environmental enrichment (EE) is an experimental paradigm in which rodents are housed in complex environments containing objects that provide stimulation, the effects of which are expected to improve the welfare of these subjects. EE has been shown to considerably improve learning and memory in rodents. However, knowledge about the effects of EE on social interaction is generally limited and rather controversial. Thus, our aim was to evaluate both novel object recognition and agonistic behavior in NMRI mice receiving EE, hypothesizing enhanced cognition and slightly enhanced agonistic interaction upon EE rearing. During a 4-week period half the mice (n = 16) were exposed to EE and the other half (n = 16) remained in a standard environment (SE). On PND 56-57, animals performed the object recognition test, in which recognition memory was measured using a discrimination index. The social interaction test consisted of an encounter between an experimental animal and a standard opponent. Results indicated that EE mice explored the new object for longer periods than SE animals (P < .05). During social encounters, EE mice devoted more time to sociability and agonistic behavior (P < .05) than their non-EE counterparts. In conclusion, EE has been shown to improve object recognition and increase agonistic behavior in adolescent/early adulthood mice. In the future we intend to extend this study on a longitudinal basis in order to assess in more depth the effect of EE and the consistency of the above-mentioned observations in NMRI mice.

  1. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.

    PubMed

    Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-01-15

    An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.

  2. Feature discovery in gray level imagery for one-class object recognition

    SciTech Connect

    Koch, M.W.; Moya, M.M.

    1993-12-31

    Feature extraction transforms an object`s image representation to an alternate reduced representation. In one-class object recognition, we would like this alternate representation to give improved discrimination between the object and all possible non-objects and improved generation between different object poses. Feature selection can be time-consuming and difficult to optimize so we have investigated unsupervised neural networks for feature discovery. We first discuss an inherent limitation in competitive type neural networks for discovering features in gray level images. We then show how Sanger`s Generalized Hebbian Algorithm (GHA) removes this limitation and describe a novel GHA application for learning object features that discriminate the object from clutter. Using a specific example, we show how these features are better at distinguishing the target object from other nontarget object with Carpenter`s ART 2-A as the pattern classifier.

  3. Effects of exposure to heavy particles and aging on object recognition memory in rats

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard; Joseph, James; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty; Shannahan, Ryan; Hering, Kathleen

    Exposure to HZE particles produces changes in neurocognitive performance. These changes, including deficits in spatial learning and memory, object recognition memory and operant responding, are also observed in the aged organism. As such, it has been proposed that exposure to heavy particles produces "accelerated aging". Because aging is an ongoing process, it is possible that there would be an interaction between the effects of exposure and the effects of aging, such that doses of HZE particles that do not affect the performance of younger organisms will affect the performance of organisms as they age. The present experiments were designed to test the hypothesis that young rats that had been exposed to HZE particles would show a progressive deterioration in object recognition memory as a function of the age of testing. Rats were exposed to 12 C, 28 S or 48 Ti particles at the N.A.S.A. Space Radiation Laboratory at Brookhaven National Laboratory. Following irradiation the rats were shipped to UMBC for behavioral testing. HZE particle-induced changes in object recognition memory were tested using a standard procedure: rats were placed in an open field and allowed to interact with two identical objects for up to 30 sec; twenty-four hrs later the rats were again placed in the open field, this time containing one familiar and one novel object. Non-irradiated control animals spent significantly more time with the novel object than with the familiar object. In contrast, the rats that been exposed to heavy particles spent equal amounts of time with both the novel and familiar object. The lowest dose of HZE particles which produced a disruption of object recognition memory was determined three months and eleven months following exposure. The threshold dose needed to disrupt object recognition memory three months following irradiation varied as a function of the specific particle and energy. When tested eleven months following irradiation, doses of HZE particles that did

  4. Recognition of 3D objects for autonomous mobile robot's navigation in automated shipbuilding

    NASA Astrophysics Data System (ADS)

    Lee, Hyunki; Cho, Hyungsuck

    2007-10-01

    Nowadays many parts of shipbuilding process are automated, but the painting process is not, because of the difficulty of automated on-line painting quality measurement, harsh painting environment and the difficulty of robot navigation. However, the painting automation is necessary, because it can provide consistent performance of painting film thickness. Furthermore, autonomous mobile robots are strongly required for flexible painting work. However, the main problem of autonomous mobile robot's navigation is that there are many obstacles which are not expressed in the CAD data. To overcome this problem, obstacle detection and recognition are necessary to avoid obstacles and painting work effectively. Until now many object recognition algorithms have been studied, especially 2D object recognition methods using intensity image have been widely studied. However, in our case environmental illumination does not exist, so these methods cannot be used. To overcome this, to use 3D range data must be used, but the problem of using 3D range data is high computational cost and long estimation time of recognition due to huge data base. In this paper, we propose a 3D object recognition algorithm based on PCA (Principle Component Analysis) and NN (Neural Network). In the algorithm, the novelty is that the measured 3D range data is transformed into intensity information, and then adopts the PCA and NN algorithm for transformed intensity information to reduce the processing time and make the data easy to handle which are disadvantages of previous researches of 3D object recognition. A set of experimental results are shown to verify the effectiveness of the proposed algorithm.

  5. Cross-modal object recognition and dynamic weighting of sensory inputs in a fish.

    PubMed

    Schumacher, Sarah; Burt de Perera, Theresa; Thenert, Johanna; von der Emde, Gerhard

    2016-07-01

    Most animals use multiple sensory modalities to obtain information about objects in their environment. There is a clear adaptive advantage to being able to recognize objects cross-modally and spontaneously (without prior training with the sense being tested) as this increases the flexibility of a multisensory system, allowing an animal to perceive its world more accurately and react to environmental changes more rapidly. So far, spontaneous cross-modal object recognition has only been shown in a few mammalian species, raising the question as to whether such a high-level function may be associated with complex mammalian brain structures, and therefore absent in animals lacking a cerebral cortex. Here we use an object-discrimination paradigm based on operant conditioning to show, for the first time to our knowledge, that a nonmammalian vertebrate, the weakly electric fish Gnathonemus petersii, is capable of performing spontaneous cross-modal object recognition and that the sensory inputs are weighted dynamically during this task. We found that fish trained to discriminate between two objects with either vision or the active electric sense, were subsequently able to accomplish the task using only the untrained sense. Furthermore we show that cross-modal object recognition is influenced by a dynamic weighting of the sensory inputs. The fish weight object-related sensory inputs according to their reliability, to minimize uncertainty and to enable an optimal integration of the senses. Our results show that spontaneous cross-modal object recognition and dynamic weighting of sensory inputs are present in a nonmammalian vertebrate. PMID:27313211

  6. Physical exercise during pregnancy improves object recognition memory in adult offspring.

    PubMed

    Robinson, A M; Bucci, D J

    2014-01-01

    Exercising during pregnancy has been shown to improve spatial learning and short-term memory, as well as increase brain-derived neurotrophic factor mRNA levels and hippocampal cell survival in juvenile offspring. However, it remains unknown if these effects endure into adulthood. In addition, few studies have considered how maternal exercise can impact cognitive functions that do not rely on the hippocampus. To address these issues, the present study tested the effects of maternal exercise during pregnancy on object recognition memory, which relies on the perirhinal cortex (PER), in adult offspring. Pregnant rats were given access to a running wheel throughout gestation and the adult male offspring were subsequently tested in an object recognition memory task at three different time points, each spaced 2-weeks apart, beginning at 60 days of age. At each time point, offspring from exercising mothers were able to successfully discriminate between novel and familiar objects in that they spent more time exploring the novel object than the familiar object. The offspring of non-exercising mothers were not able to successfully discriminate between objects and spent an equal amount of time with both objects. A subset of rats was euthanized 1h after the final object recognition test to assess c-FOS expression in the PER. The offspring of exercising mothers had more c-FOS expression in the PER than the offspring of non-exercising mothers. By comparison, c-FOS levels in the adjacent auditory cortex did not differ between groups. These results indicate that maternal exercise during pregnancy can improve object recognition memory in adult male offspring and increase c-FOS expression in the PER; suggesting that exercise during the gestational period may enhance brain function of the offspring. PMID:24157927

  7. Developmental Trajectories of Part-Based and Configural Object Recognition in Adolescence

    ERIC Educational Resources Information Center

    Juttner, Martin; Wakui, Elley; Petters, Dean; Kaur, Surinder; Davidoff, Jules

    2013-01-01

    Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar…

  8. Category Specificity in Normal Episodic Learning: Applications to Object Recognition and Category-Specific Agnosia

    ERIC Educational Resources Information Center

    Bukach, Cindy M.; Bub, Daniel N.; Masson, Michael E. J.; Lindsay, D. Stephen

    2004-01-01

    Studies of patients with category-specific agnosia (CSA) have given rise to multiple theories of object recognition, most of which assume the existence of a stable, abstract semantic memory system. We applied an episodic view of memory to questions raised by CSA in a series of studies examining normal observers' recall of newly learned attributes…

  9. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    ERIC Educational Resources Information Center

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  10. Developmental Changes in Visual Object Recognition between 18 and 24 Months of Age

    ERIC Educational Resources Information Center

    Pereira, Alfredo F.; Smith, Linda B.

    2009-01-01

    Two experiments examined developmental changes in children's visual recognition of common objects during the period of 18 to 24 months. Experiment 1 examined children's ability to recognize common category instances that presented three different kinds of information: (1) richly detailed and prototypical instances that presented both local and…

  11. A neural-network appearance-based 3-D object recognition using independent component analysis.

    PubMed

    Sahambi, H S; Khorasani, K

    2003-01-01

    This paper presents results on appearance-based three-dimensional (3-D) object recognition (3DOR) accomplished by utilizing a neural-network architecture developed based on independent component analysis (ICA). ICA has already been applied for face recognition in the literature with encouraging results. In this paper, we are exploring the possibility of utilizing the redundant information in the visual data to enhance the view based object recognition. The underlying premise here is that since ICA uses high-order statistics, it should in principle outperform principle component analysis (PCA), which does not utilize statistics higher than two, in the recognition task. Two databases of images captured by a CCD camera are used. It is demonstrated that ICA did perform better than PCA in one of the databases, but interestingly its performance was no better than PCA in the case of the second database. Thus, suggesting that the use of ICA may not necessarily always give better results than PCA, and that the application of ICA is highly data dependent. Various factors affecting the differences in the recognition performance using both methods are also discussed. PMID:18237997

  12. Blockade of Glutamatergic Transmission in Perirhinal Cortex Impairs Object Recognition Memory in Macaques

    PubMed Central

    Forcelli, Patrick A.; Wellman, Laurie L.; Dybdal, David; Dubach, Mark F.; Gale, Karen

    2015-01-01

    The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory. PMID:25810533

  13. Three-dimensional object recognition by monocular and multisensory perception: Space robotics application

    NASA Astrophysics Data System (ADS)

    Pampagnin, Luc-Henry

    Three dimensional object recognition by computer vision is studied with particular consideration to modelization and graph utilization. First a polyhedral object is identified and located from one intensity image; the model is known and the object is convex or not. The model consists of a geometrical model and the perspective projection aspect graph. Recognition was based on construction and utilization of the compatibility graph, expressing geometrical and visual constraints between matchings of high level entities (object faces). A multisensory system is described, whose main advantage is the complementarity of different kinds of information, which eliminates the limitations due to the use of one image. The system included a black and white camera and a pan and tilt scanning laser range finder.

  14. Progestogens’ effects and mechanisms for object recognition memory across the lifespan

    PubMed Central

    Walf, Alicia A.; Koonce, Carolyn J.; Frye, Cheryl A.

    2016-01-01

    This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan. PMID:26235328

  15. LASSBio-579, a prototype antipsychotic drug, and clozapine are effective in novel object recognition task, a recognition memory model.

    PubMed

    Antonio, Camila B; Betti, Andresa H; Herzfeldt, Vivian; Barreiro, Eliezer J; Fraga, Carlos A M; Rates, Stela M K

    2016-06-01

    Previous studies on the N-phenylpiperazine derivative LASSBio-579 have suggested that LASSBio-579 has an atypical antipsychotic profile. It binds to D2, D4 and 5-HT1A receptors and is effective in animal models of schizophrenia symptoms (prepulse inhibition disruption, apomorphine-induced climbing and amphetamine-induced stereotypy). In the current study, we evaluated the effect of LASSBio-579, clozapine (atypical antipsychotic) and haloperidol (typical antipsychotic) in the novel object recognition task, a recognition memory model with translational value. Haloperidol (0.01 mg/kg, orally) impaired the ability of the animals (CF1 mice) to recognize the novel object on short-term and long-term memory tasks, whereas LASSBio-579 (5 mg/kg, orally) and clozapine (1 mg/kg, orally) did not. In another set of experiments, animals previously treated with ketamine (10 mg/kg, intraperitoneally) or vehicle (saline 1 ml/100 g, intraperitoneally) received LASSBio-579, clozapine or haloperidol at different time-points: 1 h before training (encoding/consolidation); immediately after training (consolidation); or 1 h before long-term memory testing (retrieval). LASSBio-579 and clozapine protected against the long-term memory impairment induced by ketamine when administered at the stages of encoding, consolidation and retrieval of memory. These findings point to the potential of LASSBio-579 for treating cognitive symptoms of schizophrenia and other disorders.

  16. BDNF Expression in Perirhinal Cortex is Associated with Exercise-Induced Improvement in Object Recognition Memory

    PubMed Central

    Hopkins, Michael E.; Bucci, David J.

    2010-01-01

    Physical exercise induces widespread neurobiological adaptations and improves learning and memory. Most research in this field has focused on hippocampus-based spatial tasks and changes in brain-derived neurotrophic factor (BDNF) as a putative substrate underlying exercise-induced cognitive improvements. Chronic exercise can also be anxiolytic and causes adaptive changes in stress reactivity. The present study employed a perirhinal cortex-dependent object recognition task as well as the elevated plus maze to directly test for interactions between the cognitive and anxiolytic effects of exercise in male Long Evans rats. Hippocampal and perirhinal cortex tissue was collected to determine whether the relationship between BDNF and cognitive performance extends to this non-spatial and non-hippocampal-dependent task. We also examined whether the cognitive improvements persisted once the exercise regimen was terminated. Our data indicate that 4 weeks of voluntary exercise every-other-day improved object recognition memory. Importantly, BDNF expression in the perirhinal cortex of exercising rats was strongly correlated with object recognition memory. Exercise also decreased anxiety-like behavior, however there was no evidence to support a relationship between anxiety-like behavior and performance on the novel object recognition task. There was a trend for a negative relationship between anxiety-like behavior and hippocampal BDNF. Neither the cognitive improvements nor the relationship between cognitive function and perirhinal BDNF levels persisted after 2 weeks of inactivity. These are the first data demonstrating that region-specific changes in BDNF protein levels are correlated with exercise-induced improvements in non-spatial memory, mediated by structures outside the hippocampus and are consistent with the theory that, with regard to object recognition, the anxiolytic and cognitive effects of exercise may be mediated through separable mechanisms. PMID:20601027

  17. BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory.

    PubMed

    Hopkins, Michael E; Bucci, David J

    2010-09-01

    Physical exercise induces widespread neurobiological adaptations and improves learning and memory. Most research in this field has focused on hippocampus-based spatial tasks and changes in brain-derived neurotrophic factor (BDNF) as a putative substrate underlying exercise-induced cognitive improvements. Chronic exercise can also be anxiolytic and causes adaptive changes in stress-reactivity. The present study employed a perirhinal cortex-dependent object recognition task as well as the elevated plus maze to directly test for interactions between the cognitive and anxiolytic effects of exercise in male Long Evans rats. Hippocampal and perirhinal cortex tissue was collected to determine whether the relationship between BDNF and cognitive performance extends to this non-spatial and non-hippocampal-dependent task. We also examined whether the cognitive improvements persisted once the exercise regimen was terminated. Our data indicate that 4weeks of voluntary exercise every-other-day improved object recognition memory. Importantly, BDNF expression in the perirhinal cortex of exercising rats was strongly correlated with object recognition memory. Exercise also decreased anxiety-like behavior, however there was no evidence to support a relationship between anxiety-like behavior and performance on the novel object recognition task. There was a trend for a negative relationship between anxiety-like behavior and hippocampal BDNF. Neither the cognitive improvements nor the relationship between cognitive function and perirhinal BDNF levels persisted after 2weeks of inactivity. These are the first data demonstrating that region-specific changes in BDNF protein levels are correlated with exercise-induced improvements in non-spatial memory, mediated by structures outside the hippocampus and are consistent with the theory that, with regard to object recognition, the anxiolytic and cognitive effects of exercise may be mediated through separable mechanisms.

  18. Learning invariant object recognition from temporal correlation in a hierarchical network.

    PubMed

    Lessmann, Markus; Würtz, Rolf P

    2014-06-01

    Invariant object recognition, which means the recognition of object categories independent of conditions like viewing angle, scale and illumination, is a task of great interest that humans can fulfill much better than artificial systems. During the last years several basic principles were derived from neurophysiological observations and careful consideration: (1) Developing invariance to possible transformations of the object by learning temporal sequences of visual features that occur during the respective alterations. (2) Learning in a hierarchical structure, so basic level (visual) knowledge can be reused for different kinds of objects. (3) Using feedback to compare predicted input with the current one for choosing an interpretation in the case of ambiguous signals. In this paper we propose a network which implements all of these concepts in a computationally efficient manner which gives very good results on standard object datasets. By dynamically switching off weakly active neurons and pruning weights computation is sped up and thus handling of large databases with several thousands of images and a number of categories in a similar order becomes possible. The involved parameters allow flexible adaptation to the information content of training data and allow tuning to different databases relatively easily. Precondition for successful learning is that training images are presented in an order assuring that images of the same object under similar viewing conditions follow each other. Through an implementation with sparse data structures the system has moderate memory demands and still yields very good recognition rates. PMID:24657573

  19. Image quality analysis and improvement of Ladar reflective tomography for space object recognition

    NASA Astrophysics Data System (ADS)

    Wang, Jin-cheng; Zhou, Shi-wei; Shi, Liang; Hu, Yi-Hua; Wang, Yong

    2016-01-01

    Some problems in the application of Ladar reflective tomography for space object recognition are studied in this work. An analytic target model is adopted to investigate the image reconstruction properties with limited relative angle range, which are useful to verify the target shape from the incomplete image, analyze the shadowing effect of the target and design the satellite payloads against recognition via reflective tomography approach. We proposed an iterative maximum likelihood method basing on Bayesian theory, which can effectively compress the pulse width and greatly improve the image resolution of incoherent LRT system without loss of signal to noise ratio.

  20. Vision: are models of object recognition catching up with the brain?

    PubMed

    Poggio, Tomaso; Ullman, Shimon

    2013-12-01

    Object recognition has been a central yet elusive goal of computational vision. For many years, computer performance seemed highly deficient and unable to emulate the basic capabilities of the human recognition system. Over the past decade or so, computer scientists and neuroscientists have developed algorithms and systems-and models of visual cortex-that have come much closer to human performance in visual identification and categorization. In this personal perspective, we discuss the ongoing struggle of visual models to catch up with the visual cortex, identify key reasons for the relatively rapid improvement of artificial systems and models, and identify open problems for computational vision in this domain.

  1. Neural network techniques for invariant recognition and motion tracking of 3-D objects

    SciTech Connect

    Hwang, J.N.; Tseng, Y.H.

    1995-12-31

    Invariant recognition and motion tracking of 3-D objects under partial object viewing are difficult tasks. In this paper, we introduce a new neural network solution that is robust to noise corruption and partial viewing of objects. This method directly utilizes the acquired range data and requires no feature extraction. In the proposed approach, the object is first parametrically represented by a continuous distance transformation neural network (CDTNN) which is trained by the surface points of the exemplar object. When later presented with the surface points of an unknown object, this parametric representation allows the mismatch information to back-propagate through the CDTNN to gradually determine the best similarity transformation (translation and rotation) of the unknown object. The mismatch can be directly measured in the reconstructed representation domain between the model and the unknown object.

  2. Relating visual to verbal semantic knowledge: the evaluation of object recognition in prosopagnosia.

    PubMed

    Barton, Jason J S; Hanif, Hashim; Ashraf, Sohi

    2009-12-01

    Assessment of face specificity in prosopagnosia is hampered by difficulty in gauging pre-morbid expertise for non-face object categories, for which humans vary widely in interest and experience. In this study, we examined the correlation between visual and verbal semantic knowledge for cars to determine if visual recognition accuracy could be predicted from verbal semantic scores. We had 33 healthy subjects and six prosopagnosic patients first rated their own knowledge of cars. They were then given a test of verbal semantic knowledge that presented them with the names of car models, to which they were to match the manufacturer. Lastly, they were given a test of visual recognition, presenting them with images of cars to which they were to provide information at three levels of specificity: model, manufacturer and decade of make. In controls, while self-ratings were only moderately correlated with either visual recognition or verbal semantic knowledge, verbal semantic knowledge was highly correlated with visual recognition, particularly for more specific levels of information. Item concordance showed that less-expert subjects were more likely to provide the most specific information (model name) for the image when they could also match the manufacturer to its name. Prosopagnosic subjects showed reduced visual recognition of cars after adjusting for verbal semantic scores. We conclude that visual recognition is highly correlated with verbal semantic knowledge, that formal measures of verbal semantic knowledge are a more accurate gauge of expertise than self-ratings, and that verbal semantic knowledge can be used to adjust tests of visual recognition for pre-morbid expertise in prosopagnosia.

  3. Visual Crowding: a fundamental limit on conscious perception and object recognition

    PubMed Central

    Whitney, David; Levi, Dennis M.

    2011-01-01

    Crowding, the inability to recognize objects in clutter, sets a fundamental limit on conscious visual perception and object recognition throughout most of the visual field. Despite how widespread and essential it is to object recognition, reading, and visually guided action, a solid operational definition of what crowding is has only recently become clear. The goal of this review is to provide a broad-based synthesis of the most recent findings in this area, to define what crowding is and is not, and to set the stage for future work that will extend crowding well beyond low-level vision. Here we define five diagnostic criteria for what counts as crowding, and further describe factors that both escape and break crowding. All of these lead to the conclusion that crowding occurs at multiple stages in the visual hierarchy. PMID:21420894

  4. False recognition of objects in visual scenes: findings from a combined direct and indirect memory test.

    PubMed

    Weinstein, Yana; Nash, Robert A

    2013-01-01

    We report an extension of the procedure devised by Weinstein and Shanks (Memory & Cognition 36:1415-1428, 2008) to study false recognition and priming of pictures. Participants viewed scenes with multiple embedded objects (seen items), then studied the names of these objects and the names of other objects (read items). Finally, participants completed a combined direct (recognition) and indirect (identification) memory test that included seen items, read items, and new items. In the direct test, participants recognized pictures of seen and read items more often than new pictures. In the indirect test, participants' speed at identifying those same pictures was improved for pictures that they had actually studied, and also for falsely recognized pictures whose names they had read. These data provide new evidence that a false-memory induction procedure can elicit memory-like representations that are difficult to distinguish from "true" memories of studied pictures.

  5. Multiple degree of freedom object recognition using optical relational graph decision nets

    NASA Technical Reports Server (NTRS)

    Casasent, David P.; Lee, Andrew J.

    1988-01-01

    Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.

  6. Real-time concealed-object detection and recognition with passive millimeter wave imaging.

    PubMed

    Yeom, Seokwon; Lee, Dong-Su; Jang, Yushin; Lee, Mun-Kyo; Jung, Sang-Won

    2012-04-23

    Millimeter wave (MMW) imaging is finding rapid adoption in security applications such as concealed object detection under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, the imaging system often suffers from the diffraction limit and the low signal level. Therefore, suitable intelligent image processing algorithms would be required for automatic detection and recognition of the concealed objects. This paper proposes real-time outdoor concealed-object detection and recognition with a radiometric imaging system. The concealed object region is extracted by the multi-level segmentation. A novel approach is proposed to measure similarity between two binary images. Principal component analysis (PCA) regularizes the shape in terms of translation and rotation. A geometric-based feature vector is composed of shape descriptors, which can achieve scale and orientation-invariant and distortion-tolerant property. Class is decided by minimum Euclidean distance between normalized feature vectors. Experiments confirm that the proposed methods provide fast and reliable recognition of the concealed object carried by a moving human subject.

  7. Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition.

    PubMed

    Zhang, Baochang; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2007-01-01

    A novel object descriptor, histogram of Gabor phase pattern (HGPP), is proposed for robust face recognition. In HGPP, the quadrant-bit codes are first extracted from faces based on the Gabor transformation. Global Gabor phase pattern (GGPP) and local Gabor phase pattern (LGPP) are then proposed to encode the phase variations. GGPP captures the variations derived from the orientation changing of Gabor wavelet at a given scale (frequency), while LGPP encodes the local neighborhood variations by using a novel local XOR pattern (LXP) operator. They are both divided into the nonoverlapping rectangular regions, from which spatial histograms are extracted and concatenated into an extended histogram feature to represent the original image. Finally, the recognition is performed by using the nearest-neighbor classifier with histogram intersection as the similarity measurement. The features of HGPP lie in two aspects: 1) HGPP can describe the general face images robustly without the training procedure; 2) HGPP encodes the Gabor phase information, while most previous face recognition methods exploit the Gabor magnitude information. In addition, Fisher separation criterion is further used to improve the performance of HGPP by weighing the subregions of the image according to their discriminative powers. The proposed methods are successfully applied to face recognition, and the experiment results on the large-scale FERET and CAS-PEAL databases show that the proposed algorithms significantly outperform other well-known systems in terms of recognition rate.

  8. Some consonants sound curvy: effects of sound symbolism on object recognition.

    PubMed

    Aveyard, Mark E

    2012-01-01

    Two experiments explored the influence of consonant sound symbolism on object recognition. In Experiment 1, participants heard a word ostensibly from a foreign language (in reality, a pseudoword) followed by two objects on screen: a rectilinear object and a curvilinear object. The task involved judging which of the two objects was properly described by the unknown pseudoword. The results showed that congruent sound-symbolic pseudoword-object pairs produced higher task accuracy over three rounds of testing than did incongruent pairs, despite the fact that "hard" pseudowords (with three plosives) and "soft" pseudowords (with three nonplosives) were paired equally with rectilinear and curvilinear objects. Experiment 2 reduced awareness of the manipulation by including similar-shaped, target-related distractors. Sound symbolism effects still emerged, though the time course of these effects over three rounds differed from that in Experiment 1.

  9. A biologically inspired neural network model to transformation invariant object recognition

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  10. Neural mechanisms of infant learning: differences in frontal theta activity during object exploration modulate subsequent object recognition

    PubMed Central

    Begus, Katarina; Southgate, Victoria; Gliga, Teodora

    2015-01-01

    Investigating learning mechanisms in infancy relies largely on behavioural measures like visual attention, which often fail to predict whether stimuli would be encoded successfully. This study explored EEG activity in the theta frequency band, previously shown to predict successful learning in adults, to directly study infants' cognitive engagement, beyond visual attention. We tested 11-month-old infants (N = 23) and demonstrated that differences in frontal theta-band oscillations, recorded during infants' object exploration, predicted differential subsequent recognition of these objects in a preferential-looking test. Given that theta activity is modulated by motivation to learn in adults, these findings set the ground for future investigation into the drivers of infant learning. PMID:26018832

  11. Textons, visual pop-out effects, and object recognition in infancy.

    PubMed

    Rovee-Collier, C; Hankins, E; Bhatt, R

    1992-12-01

    Five experiments were conducted to determine whether primitive perceptual features, or textons, which Julesz (1984) identified in studies of texture segregation with adults, also affect object recognition early in development. Three-month-old infants discriminated Ts and Ls composed of overlapping line segments from +s but not from each other in a delayed-recognition test after 24 hr; however, Ts and Ls were discriminated from each other after only 1 hr. In a priming paradigm, Ts, Ls, and +s were discriminated from one another after 2 weeks. In succeeding experiments, infants exhibited adultlike visual pop-out effects in both delayed recognition and priming paradigms, detecting an L in the midst of 6 +s and vice versa; these effects were symmetrical. The pop-out effects apparently resulted from parallel search: Infants failed to detect 3 Ls among 4 +s. Clearly, some of the same primitive units that have been identified as the building blocks of adult visual perception underlie object recognition early in infancy. PMID:1431738

  12. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    PubMed

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory

  13. Line-Based Object Recognition using Hausdorff Distance: From Range Images to Molecular Secondary Structure

    SciTech Connect

    Guerra, C; Pascucci, V

    2004-12-13

    Object recognition algorithms are fundamental tools in automatic matching of geometric shapes within a background scene. Many approaches have been proposed in the past to solve the object recognition problem. Two of the key aspects that distinguish them in terms of their practical usability are: (i) the type of input model description and (ii) the comparison criteria used. In this paper we introduce a novel scheme for 3D object recognition based on line segment representation of the input shapes and comparison using the Hausdor distance. This choice of model representation provides the flexibility to apply the scheme in different application areas. We define several variants of the Hausdor distance to compare the models within the framework of well defined metric spaces. We present a matching algorithm that efficiently finds a pattern in a 3D scene. The algorithm approximates a minimization procedure of the Hausdor distance. The output error due to the approximation is guaranteed to be within a known constant bound. Practical results are presented for two classes of objects: (i) polyhedral shapes extracted from segmented range images and (ii) secondary structures of large molecules. In both cases the use of our approximate algorithm allows to match correctly the pattern in the background while achieving the efficiency necessary for practical use of the scheme. In particular the performance is improved substantially with minor degradation of the quality of the matching.

  14. Object Recognition System-on-Chip Using the Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Reyna-Rojas, Roberto; Houzet, Dominique; Dragomirescu, Daniela; Carlier, Florent; Ouadjaout, Salim

    2005-12-01

    The first aim of this work is to propose the design of a system-on-chip (SoC) platform dedicated to digital image and signal processing, which is tuned to implement efficiently multiply-and-accumulate (MAC) vector/matrix operations. The second aim of this work is to implement a recent promising neural network method, namely, the support vector machine (SVM) used for real-time object recognition, in order to build a vision machine. With such a reconfigurable and programmable SoC platform, it is possible to implement any SVM function dedicated to any object recognition problem. The final aim is to obtain an automatic reconfiguration of the SoC platform, based on the results of the learning phase on an objects' database, which makes it possible to recognize practically any object without manual programming. Recognition can be of any kind that is from image to signal data. Such a system is a general-purpose automatic classifier. Many applications can be considered as a classification problem, but are usually treated specifically in order to optimize the cost of the implemented solution. The cost of our approach is more important than a dedicated one, but in a near future, hundreds of millions of gates will be common and affordable compared to the design cost. What we are proposing here is a general-purpose classification neural network implemented on a reconfigurable SoC platform. The first version presented here is limited in size and thus in object recognition performances, but can be easily upgraded according to technology improvements.

  15. Promoting Spontaneous Facilitation in Online Discussions: Designing Object and Ground Rules

    ERIC Educational Resources Information Center

    Wang, Yu-mei; Chen, Der-Thanq

    2010-01-01

    Facilitation is a key factor in ensuring the success of class discussions. Traditionally, instructors are the ones who assume the role of facilitators in discussions. Online learning environments open opportunities for students to assume the role of facilitators. In well-designed online learning communities, spontaneous facilitation would likely…

  16. ROCIT : a visual object recognition algorithm based on a rank-order coding scheme.

    SciTech Connect

    Gonzales, Antonio Ignacio; Reeves, Paul C.; Jones, John J.; Farkas, Benjamin D.

    2004-06-01

    This document describes ROCIT, a neural-inspired object recognition algorithm based on a rank-order coding scheme that uses a light-weight neuron model. ROCIT coarsely simulates a subset of the human ventral visual stream from the retina through the inferior temporal cortex. It was designed to provide an extensible baseline from which to improve the fidelity of the ventral stream model and explore the engineering potential of rank order coding with respect to object recognition. This report describes the baseline algorithm, the model's neural network architecture, the theoretical basis for the approach, and reviews the history of similar implementations. Illustrative results are used to clarify algorithm details. A formal benchmark to the 1998 FERET fafc test shows above average performance, which is encouraging. The report concludes with a brief review of potential algorithmic extensions for obtaining scale and rotational invariance.

  17. Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task.

    PubMed

    Ahlfors, Seppo P; Jones, Stephanie R; Ahveninen, Jyrki; Hämäläinen, Matti S; Belliveau, John W; Bar, Moshe

    2015-01-12

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depend on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas.

  18. Multitask joint spatial pyramid matching using sparse representation with dynamic coefficients for object recognition

    NASA Astrophysics Data System (ADS)

    Hajigholam, Mohammad-Hossein; Raie, Abolghasem-Asadollah; Faez, Karim

    2016-03-01

    Object recognition is considered a necessary part in many computer vision applications. Recently, sparse coding methods, based on representing a sparse feature from an image, show remarkable results on several object recognition benchmarks, but the precision obtained by these methods is not yet sufficient. Such a problem arises where there are few training images available. As such, using multiple features and multitask dictionaries appears to be crucial to achieving better results. We use multitask joint sparse representation, using dynamic coefficients to connect these sparse features. In other words, we calculate the importance of each feature for each class separately. This causes the features to be used efficiently and appropriately for each class. Thus, we use variance of features and particle swarm optimization algorithms to obtain these dynamic coefficients. Experimental results of our work on Caltech-101 and Caltech-256 databases show more accuracy compared with state-of-the art ones on the same databases.

  19. 3D object recognition using kernel construction of phase wrapped images

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Su, Hongjun

    2011-06-01

    Kernel methods are effective machine learning techniques for many image based pattern recognition problems. Incorporating 3D information is useful in such applications. The optical profilometries and interforometric techniques provide 3D information in an implicit form. Typically phase unwrapping process, which is often hindered by the presence of noises, spots of low intensity modulation, and instability of the solutions, is applied to retrieve the proper depth information. In certain applications such as pattern recognition problems, the goal is to classify the 3D objects in the image, rather than to simply display or reconstruct them. In this paper we present a technique for constructing kernels on the measured data directly without explicit phase unwrapping. Such a kernel will naturally incorporate the 3D depth information and can be used to improve the systems involving 3D object analysis and classification.

  20. Multifeatural shape processing in rats engaged in invariant visual object recognition.

    PubMed

    Alemi-Neissi, Alireza; Rosselli, Federica Bianca; Zoccolan, Davide

    2013-04-01

    The ability to recognize objects despite substantial variation in their appearance (e.g., because of position or size changes) represents such a formidable computational feat that it is widely assumed to be unique to primates. Such an assumption has restricted the investigation of its neuronal underpinnings to primate studies, which allow only a limited range of experimental approaches. In recent years, the increasingly powerful array of optical and molecular tools that has become available in rodents has spurred a renewed interest for rodent models of visual functions. However, evidence of primate-like visual object processing in rodents is still very limited and controversial. Here we show that rats are capable of an advanced recognition strategy, which relies on extracting the most informative object features across the variety of viewing conditions the animals may face. Rat visual strategy was uncovered by applying an image masking method that revealed the features used by the animals to discriminate two objects across a range of sizes, positions, in-depth, and in-plane rotations. Noticeably, rat recognition relied on a combination of multiple features that were mostly preserved across the transformations the objects underwent, and largely overlapped with the features that a simulated ideal observer deemed optimal to accomplish the discrimination task. These results indicate that rats are able to process and efficiently use shape information, in a way that is largely tolerant to variation in object appearance. This suggests that their visual system may serve as a powerful model to study the neuronal substrates of object recognition.

  1. Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder.

    PubMed

    Kheradpisheh, Saeed R; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth) as well as their magnitude, which we call "variation level." We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group) on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research. PMID:27642281

  2. Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder

    PubMed Central

    Kheradpisheh, Saeed R.; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth) as well as their magnitude, which we call “variation level.” We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group) on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research. PMID:27642281

  3. Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder

    PubMed Central

    Kheradpisheh, Saeed R.; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth) as well as their magnitude, which we call “variation level.” We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group) on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research.

  4. Face Memory and Object Recognition in Children with High-Functioning Autism or Asperger Syndrome and in Their Parents

    ERIC Educational Resources Information Center

    Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma

    2011-01-01

    Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…

  5. Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats.

    PubMed

    Bechara, R G; Kelly, Á M

    2013-05-15

    Exercise and environmental enrichment are behavioural interventions that have been shown to improve learning and increase neurogenesis in rodents, possibly via neurotrophin-mediated mechanisms. However, many enrichment protocols incorporate exercise, which can itself be viewed as a source of cognitive stimulation in animals housed in standard laboratory conditions. In this experiment we investigate the effect of each intervention separately and in combination on object recognition memory, and analyse associated changes in the dentate gyrus: specifically, in BDNF expression and cell division. We show that both exercise and enrichment improve object recognition memory, but that BDNF mRNA expression and cell proliferation in the dentate gyrus of the hippocampus increase only in exercised rats. These results are in general agreement with recent studies suggesting that the exercise component is the major neurogenic and neurotrophic stimulus in environmental enrichment protocols. We add to the expanding literature several novel aspects including the finding that enrichment in the absence of exercise can improve object recognition memory, probably via mechanisms that are independent of BDNF upregulation and neurogenesis in the dentate gyrus.

  6. Attentional cueing by cross-modal congruency produces both facilitation and inhibition on short-term visual recognition.

    PubMed

    Makovac, Elena; Kwok, Sze Chai; Gerbino, Walter

    2014-10-01

    The attentional modulation of performance in a memory task, comparable to the one obtained in a perceptual task, is at the focus of contemporary research. We hypothesized that a biphasic effect (namely, facilitation followed by inhibition) can be obtained in visual working memory when attention is cued towards one item of the memorandum and participants must recognize a delayed probe as being identical to any item of the memorandum. In every trial, a delayed spiky/curvy probe appeared centrally, to be matched with the same-category shape maintained in visual working memory which could be either physically identical (positive trials) or only categorically similar (negative trials). To orient the participant's attention towards a selected portion of a two-item memorandum, a (tzk/wow) sound was played simultaneously with two lateral visual shapes (one spiky and one curved). Our results indicate that an exogenous attentional shift during perception of the memorandum, induced by a congruent audio-visual pairing, first facilitates and then inhibits the recognition of a cued item (but not of a non-cued item) stored in visual working memory. A coherent pattern of individual differences emerged, indicating that the amount of early facilitation in congruent-sound trials was negatively correlated with recognition sensitivity in no-sound trials (suggesting that the inverse effectiveness rule may also apply to memory) and positively correlated with later inhibition, as well as with the self-reported susceptibility to memory failures. PMID:25126752

  7. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory.

    PubMed

    Rossato, Janine I; Bevilaqua, Lia R M; Myskiw, Jociane C; Medina, Jorge H; Izquierdo, Iván; Cammarota, Martín

    2007-01-01

    Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in the consolidation and reconsolidation of different memories. Despite this fact, at present there are no studies about the consequences of hippocampal protein synthesis inhibition in the storage and post-retrieval persistence of object recognition memory. Here we report that infusion of the protein synthesis inhibitor anisomycin in the dorsal CA1 region immediately or 180 min but not 360 min after training impairs consolidation of long-term object recognition memory without affecting short-term memory, exploratory behavior, anxiety state, or hippocampal functionality. When given into CA1 after memory reactivation in the presence of familiar objects, ANI did not affect further retention. However, when administered into CA1 immediately after exposing animals to a novel and a familiar object, ANI impaired memory of both of them. The amnesic effect of ANI was long-lasting, did not happen after exposure to two novel objects, following exploration of the context alone, or in the absence of specific stimuli, suggesting that it was not reversible but was contingent on the reactivation of the consolidated trace in the presence of a salient, behaviorally relevant novel cue. Our results indicate that hippocampal protein synthesis is required during a limited post-training time window for consolidation of object recognition memory and show that the hippocampus is engaged during reconsolidation of this type of memory, maybe accruing new information into the original trace.

  8. Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance.

    PubMed

    McGugin, Rankin W; Van Gulick, Ana E; Gauthier, Isabel

    2016-02-01

    The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to nonface objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here, we show an effect of expertise with nonface objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. Whereas participants with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects but rather living and nonliving objects. PMID:26439272

  9. Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance.

    PubMed

    McGugin, Rankin W; Van Gulick, Ana E; Gauthier, Isabel

    2016-02-01

    The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to nonface objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here, we show an effect of expertise with nonface objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. Whereas participants with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects but rather living and nonliving objects.

  10. Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance

    PubMed Central

    McGugin, Rankin W.; Van Gulick, Ana E.; Gauthier, Isabel

    2016-01-01

    The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to non-face objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here we show an effect of expertise with non-face objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally-defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. While subjects with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects, but rather living and non-living objects. PMID:26439272

  11. A knowledge-based object recognition system for applications in the space station

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1988-01-01

    A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.

  12. Knowledge-based object recognition for different morphological classes of plants

    NASA Astrophysics Data System (ADS)

    Brendel, Thorsten; Schwanke, Joerg; Jensch, Peter F.; Megnet, Roland

    1995-01-01

    Micropropagation of plants is done by cutting juvenile plants and placing them into special container-boxes with nutrient-solution where the pieces can grow up and be cut again several times. To produce high amounts of biomass it is necessary to do plant micropropagation by a robotic syshoot. In this paper we describe parts of the vision syshoot that recognizes plants and their particular cutting points. Therefore, it is necessary to extract elements of the plants and relations between these elements (for example root, shoot, leaf). Different species vary in their morphological appearance, variation is also immanent in plants of the same species. Therefore, we introduce several morphological classes of plants from that we expect same recognition methods. As a result of our work we present rules which help users to create specific algorithms for object recognition of plant species.

  13. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGES

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; Kober, Vitaly; Trujillo, Leonardo

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  14. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    SciTech Connect

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; Kober, Vitaly; Trujillo, Leonardo

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, for a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.

  15. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications†

    PubMed Central

    Guenther, Dale C.; Anderson, Grace H.; Karmakar, Saswata; Anderson, Brooke A.; Didion, Bradley A.; Guo, Wei; Verstegen, John P.; Hrdlicka, Patrick J.

    2015-01-01

    Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Here, probes with different chemistries and architectures – varying in the position, number, and distance between the intercalator zippers – are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C50 < 1 μM), fast (t50 < 3h), kinetically stable (> 24h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology. PMID:26240741

  16. Naringin and Rutin Alleviates Episodic Memory Deficits in Two Differentially Challenged Object Recognition Tasks

    PubMed Central

    Ramalingayya, Grandhi Venkata; Nampoothiri, Madhavan; Nayak, Pawan G.; Kishore, Anoop; Shenoy, Rekha R.; Mallikarjuna Rao, Chamallamudi; Nandakumar, Krishnadas

    2016-01-01

    Background: Cognitive decline or dementia is a debilitating problem of neurological disorders such as Alzheimer's and Parkinson's disease, including special conditions like chemobrain. Dietary flavonoids proved to be efficacious in delaying the incidence of neurodegenerative diseases. Two such flavonoids, naringin (NAR) and rutin (RUT) were reported to have neuroprotective potential with beneficial effects on spatial and emotional memories in particular. However, the efficacy of these flavonoids is poorly understood on episodic memory, which comprises an important form of autobiographical memory. Objective: This study objective is to evaluate NAR and RUT to reverse time-delay-induced long-term and scopolamine-induced short-term episodic memory deficits in Wistar rats. Materials and Methods: We have evaluated both short-term and long-term episodic memory forms using novel object recognition task. Open field paradigm was used to assess locomotor activity for any confounding influence on memory assessment. Donepezil was used as positive control and was effective in both models at 1 mg/kg, i.p. Results: Animals treated with NAR and RUT at 50 and 100 mg/kg, p.o. spent significantly more time exploring novel object compared to familiar one, whereas control animals spent almost equal time with both objects in choice trial. NAR and RUT dose-dependently increased recognition and discriminative indices in time-induced long-term as well as scopolamine-induced short-term episodic memory deficit models without interfering with the locomotor activity. Conclusion: We conclude that, NAR and RUT averted both short- and long-term episodic memory deficits in Wistar rats, which may be potential interventions for neurodegenerative diseases as well as chemobrain condition. SUMMARY Incidence of Alzheimer's disease is increasing globally and the current therapy is only symptomatic. Curative treatment is a major lacuna. NAR and RUT are natural flavonoids proven for their pleiotropic

  17. An investigation into the cause of orientation-sensitivity in haptic object recognition.

    PubMed

    Lawson, Rebecca

    2011-01-01

    Object orientation influences visual and haptic recognition differently. This could be caused by the two modalities accessing different object representations or it could be due to differences in how each modality acquires information. These two alternatives were investigated using sequential haptic matching tasks. Matches presented the same object twice. Mismatches presented two similarly-shaped objects. Objects were either both placed at the same orientation or were rotated 90° in depth from each other. Experiment 1 manipulated exploration time to test if longer durations weakened orientation-sensitivity by allowing orientation-invariant representations to be extracted. This hypothesis was not supported. Experiment 2 investigated whether the same-orientation advantage resulted from general spatial or motor action cueing rather than the involvement of orientation-specific object representations. To distinguish between these two possibilities, people did a secondary task interleaved within the matching task. They reported the orientation of a fork or spoon which was presented in between the first and second objects. The main axis of the fork/spoon was the same as that of the final object, equating spatial and motor cueing across the same-orientation and orientation-change conditions. Nevertheless, matching remained orientation-sensitive. Together these results suggest that there are separate visual and haptic stored, orientation-specific perceptual representations of objects.

  18. Late development of metric part-relational processing in object recognition.

    PubMed

    Jüttner, Martin; Petters, Dean; Wakui, Elley; Davidoff, Jules

    2014-08-01

    Four experiments with unfamiliar objects examined the remarkably late consolidation of part-relational relative to part-based object recognition (Jüttner, Wakui, Petters, Kaur, & Davidoff, 2013). Our results indicate a particularly protracted developmental trajectory for the processing of metric part relations. Schoolchildren aged 7 to 14 years and adults were tested in 3-Alternative-Forced-Choice tasks to judge the correct appearance of upright and inverted newly learned multipart objects that had been manipulated in terms of individual parts or part relations. Experiment 1 showed that even the youngest tested children were close to adult levels of performance for recognizing categorical changes of individual parts and relative part position. By contrast, Experiment 2 demonstrated that performance for detecting metric changes of relative part position was distinctly reduced in young children compared with recognizing metric changes of individual parts, and did not approach the latter until 11 to 12 years. A similar developmental dissociation was observed in Experiment 3, which contrasted the detection of metric relative-size changes and metric part changes. Experiment 4 showed that manipulations of metric size that were perceived as part (rather than part-relational) changes eliminated this dissociation. Implications for theories of object recognition and similarities to the development of face perception are discussed.

  19. Principal component analysis in the wavelet domain: new features for underwater object recognition

    NASA Astrophysics Data System (ADS)

    Okimoto, Gordon S.; Lemonds, David W.

    1999-08-01

    Principal component analysis (PCA) in the wavelet domain provides powerful features for underwater object recognition applications. The multiresolution analysis of the Morlet wavelet transform (MWT) is used to pre-process echo returns from targets ensonified by biologically motivated broadband signal. PCA is then used to compress and denoise the resulting time-scale signal representation for presentation to a hierarchical neural network for object classification. Wavelet/PCA features combined with multi-aspect data fusion and neural networks have resulted in impressive underwater object recognition performance using backscatter data generated by simulate dolphin echolocation clicks and bat- like linear frequency modulated upsweeps. For example, wavelet/PCA features extracted from LFM echo returns have resulted in correct classification rates of 98.6 percent over a six target suite, which includes two mine simulators and four clutter objects. For the same data, ROC analysis of the two-class mine-like versus non-mine-like problem resulted in a probability of detection of 0.981 and a probability of false alarm of 0.032 at the 'optimal' operating point. The wavelet/PCA feature extraction algorithm is currently being implemented in VLSI for use in small, unmanned underwater vehicles designed for mine- hunting operations in shallow water environments.

  20. Object recognition memory and BDNF expression are reduced in young TgCRND8 mice

    PubMed Central

    Francis, Beverly M.; Kim, John; Barakat, Meredith E.; Fraenkl, Stephan; Yücel, Yeni H.; Peng, Shiyong; Michalski, Bernadeta; Fahnestock, Margaret; McLaurin, JoAnne; Mount, Howard T.J.

    2012-01-01

    The TgCRND8 mouse model of Alzheimer’s disease exhibits progressive cortical and hippocampal β-amyloid accumulation, resulting in plaque pathology and spatial memory impairment by 3 months of age. We tested whether TgCRND8 cognitive function is disrupted prior to the appearance of macroscopic plaques in an object recognition task. We found profound deficits in 8-week-old mice. Animals this age were not impaired on the Morris water maze task. TgCRND8 and littermate controls did not differ in their duration of object exploration or optokinetic responses. Thus, visual and motor dysfunction did not confound the phenotype. Object memory deficits point to the frontal cortex and hippocampus as early targets of functional disruption. Indeed, we observed altered levels of brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) in these brain regions of preplaque TgCRND8 mice. Our findings suggest that object recognition provides an early index of cognitive impairment associated with amyloid exposure and reduced brain-derived neurotrophic factor expression in the TgCRND8 mouse. PMID:20447730

  1. The evolution of meaning: spatio-temporal dynamics of visual object recognition.

    PubMed

    Clarke, Alex; Taylor, Kirsten I; Tyler, Lorraine K

    2011-08-01

    Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input. PMID:20617883

  2. Guppies Show Behavioural but Not Cognitive Sex Differences in a Novel Object Recognition Test.

    PubMed

    Lucon-Xiccato, Tyrone; Dadda, Marco

    2016-01-01

    The novel object recognition (NOR) test is a widely-used paradigm to study learning and memory in rodents. NOR performance is typically measured as the preference to interact with a novel object over a familiar object based on spontaneous exploratory behaviour. In rats and mice, females usually have greater NOR ability than males. The NOR test is now available for a large number of species, including fish, but sex differences have not been properly tested outside of rodents. We compared male and female guppies (Poecilia reticulata) in a NOR test to study whether sex differences exist also for fish. We focused on sex differences in both performance and behaviour of guppies during the test. In our experiment, adult guppies expressed a preference for the novel object as most rodents and other species do. When we looked at sex differences, we found the two sexes showed a similar preference for the novel object over the familiar object, suggesting that male and female guppies have similar NOR performances. Analysis of behaviour revealed that males were more inclined to swim in the proximity of the two objects than females. Further, males explored the novel object at the beginning of the experiment while females did so afterwards. These two behavioural differences are possibly due to sex differences in exploration. Even though NOR performance is not different between male and female guppies, the behavioural sex differences we found could affect the results of the experiments and should be carefully considered when assessing fish memory with the NOR test. PMID:27305102

  3. Guppies Show Behavioural but Not Cognitive Sex Differences in a Novel Object Recognition Test

    PubMed Central

    Lucon-Xiccato, Tyrone; Dadda, Marco

    2016-01-01

    The novel object recognition (NOR) test is a widely-used paradigm to study learning and memory in rodents. NOR performance is typically measured as the preference to interact with a novel object over a familiar object based on spontaneous exploratory behaviour. In rats and mice, females usually have greater NOR ability than males. The NOR test is now available for a large number of species, including fish, but sex differences have not been properly tested outside of rodents. We compared male and female guppies (Poecilia reticulata) in a NOR test to study whether sex differences exist also for fish. We focused on sex differences in both performance and behaviour of guppies during the test. In our experiment, adult guppies expressed a preference for the novel object as most rodents and other species do. When we looked at sex differences, we found the two sexes showed a similar preference for the novel object over the familiar object, suggesting that male and female guppies have similar NOR performances. Analysis of behaviour revealed that males were more inclined to swim in the proximity of the two objects than females. Further, males explored the novel object at the beginning of the experiment while females did so afterwards. These two behavioural differences are possibly due to sex differences in exploration. Even though NOR performance is not different between male and female guppies, the behavioural sex differences we found could affect the results of the experiments and should be carefully considered when assessing fish memory with the NOR test. PMID:27305102

  4. Phonological facilitation of object naming in agrammatic and logopenic primary progressive aphasia (PPA)

    PubMed Central

    Mack, Jennifer E.; Cho-Reyes, Soojin; Kloet, James D.; Weintraub, Sandra; Mesulam, M-Marsel; Thompson, Cynthia K.

    2013-01-01

    Phonological processing deficits are characteristic of both the agrammatic and logopenic subtypes of primary progressive aphasia (PPA-G and PPA-L). However, it is an open question which substages of phonological processing (i.e., phonological word form retrieval, phonological encoding) are impaired in these subtypes of PPA, as well as how phonological processing deficits contribute to anomia. In the present study, participants with PPA-G (n=7), PPA-L (n=7), and unimpaired controls (n=17) named objects as interfering written words (phonologically related/unrelated) were presented at different stimulus onset asynchronies (SOAs) of 0, +100, +300, and +500 ms. Phonological facilitation (PF) effects (faster naming times with phonologically related interfering words) were found for the controls and PPA-L group only at SOA=0 and +100 ms. However, the PPA-G group exhibited protracted PF effects (PF at SOA=0, +100, and +300 ms). These results may reflect deficits in phonological encoding in PPA-G, but not in PPA-L, supporting the neuropsychological reality of this substage of phonological processing and the distinction between these two PPA subtypes. PMID:24070176

  5. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  6. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  7. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.

    PubMed

    Macé, Marc J-M; Guivarch, Valérian; Denis, Grégoire; Jouffrais, Christophe

    2015-07-01

    Clinical trials with blind patients implanted with a visual neuroprosthesis showed that even the simplest tasks were difficult to perform with the limited vision restored with current implants. Simulated prosthetic vision (SPV) is a powerful tool to investigate the putative functions of the upcoming generations of visual neuroprostheses. Recent studies based on SPV showed that several generations of implants will be required before usable vision is restored. However, none of these studies relied on advanced image processing. High-level image processing could significantly reduce the amount of information required to perform visual tasks and help restore visuomotor behaviors, even with current low-resolution implants. In this study, we simulated a prosthetic vision device based on object localization in the scene. We evaluated the usability of this device for object recognition, localization, and reaching. We showed that a very low number of electrodes (e.g., nine) are sufficient to restore visually guided reaching movements with fair timing (10 s) and high accuracy. In addition, performance, both in terms of accuracy and speed, was comparable with 9 and 100 electrodes. Extraction of high level information (object recognition and localization) from video images could drastically enhance the usability of current visual neuroprosthesis. We suggest that this method-that is, localization of targets of interest in the scene-may restore various visuomotor behaviors. This method could prove functional on current low-resolution implants. The main limitation resides in the reliability of the vision algorithms, which are improving rapidly.

  8. ART-EMAP: A neural network architecture for object recognition by evidence accumulation.

    PubMed

    Carpenter, G A; Ross, W D

    1995-01-01

    A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3D object recognition from a series of ambiguous 2D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory. Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. PMID:18263371

  9. On the Relation between Face and Object Recognition in Developmental Prosopagnosia: No Dissociation but a Systematic Association

    PubMed Central

    Klargaard, Solja K.; Starrfelt, Randi

    2016-01-01

    There is an ongoing debate about whether face recognition and object recognition constitute separate domains. Clarification of this issue can have important theoretical implications as face recognition is often used as a prime example of domain-specificity in mind and brain. An important source of input to this debate comes from studies of individuals with developmental prosopagnosia, suggesting that face recognition can be selectively impaired. We put the selectivity hypothesis to test by assessing the performance of 10 individuals with developmental prosopagnosia on demanding tests of visual object processing involving both regular and degraded drawings. None of the individuals exhibited a clear dissociation between face and object recognition, and as a group they were significantly more affected by degradation of objects than control participants. Importantly, we also find positive correlations between the severity of the face recognition impairment and the degree of impaired performance with degraded objects. This suggests that the face and object deficits are systematically related rather than coincidental. We conclude that at present, there is no strong evidence in the literature on developmental prosopagnosia supporting domain-specific accounts of face recognition. PMID:27792780

  10. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex

    PubMed Central

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C.F.; Cassaday, Helen J.

    2015-01-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. PMID:26277743

  11. Kappa Opioid Receptor-Mediated Disruption of Novel Object Recognition: Relevance for Psychostimulant Treatment

    PubMed Central

    Paris, Jason J.; Reilley, Kate J.; McLaughlin, Jay P.

    2012-01-01

    Kappa opioid receptor (KOR) agonists are potentially valuable as therapeutics for the treatment of psychostimulant reward as they suppress dopamine signaling in reward circuitry to repress drug seeking behavior. However, KOR agonists are also associated with sedation and cognitive dysfunction. The extent to which learning and memory disruption or hypolocomotion underlie KOR agonists’ role in counteracting the rewarding effects of psychostimulants is of interest. C57BL/6J mice were pretreated with vehicle (saline, 0.9%), the KOR agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1- pyrrolidinyl)-cyclohexyl] benzeneacetamide (U50,488), or the peripherally-restricted agonist D-Phe-D-Phe-D-lle-D-Arg- NH2 (ffir-NH2), through central (i.c.v.) or peripheral (i.p.) routes of administration. Locomotor activity was assessed via activity monitoring chambers and rotorod. Cognitive performance was assessed in a novel object recognition task. Prolonged hypolocomotion was observed following administration of 1.0 and 10.0, but not 0.3 mg/kg U50,488. Central, but not peripheral, administration of ffir-NH2 (a KOR agonist that does not cross the blood-brain barrier) also reduced motor behavior. Systemic pretreatment with the low dose of U50,488 (0.3 mg/kg, i.p.) significantly impaired performance in the novel object recognition task. Likewise, ffir-NH2 significantly reduced novel object recognition after central (i.c.v.), but not peripheral (i.p.), administration. U50,488- and ffir-NH2-mediated deficits in novel object recognition were prevented by pretreatment with KOR antagonists. Cocaine-induced conditioned place preference was subsequently assessed and was reduced by pretreatment with U50,488 (0.3 mg/kg, i.p.). Together, these results suggest that the activation of centrally-located kappa opioid receptors may induce cognitive and mnemonic disruption independent of hypolocomotor effects which may contribute to the KOR-mediated suppression of psychostimulant reward. PMID:22900234

  12. The Role of Sensory-Motor Information in Object Recognition: Evidence from Category-Specific Visual Agnosia

    ERIC Educational Resources Information Center

    Wolk, D.A.; Coslett, H.B.; Glosser, G.

    2005-01-01

    The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more…

  13. Male mate recognition via cuticular hydrocarbons facilitates sexual isolation between sympatric leaf beetle sister species.

    PubMed

    Zhang, Bin; Xue, Huai-Jun; Song, Ke-Qing; Liu, Jie; Li, Wen-Zhu; Nie, Rui-E; Yang, Xing-Ke

    2014-11-01

    Chemical signals in insects have been documented to play an important role in mate recognition, and divergence in chemical signals can often cause sexual isolation between closely related species or populations within species. We investigated the role of cuticular hydrocarbons (CHCs), short distance chemical signals, in male mate recognition between the two sympatric elm leaf beetles, Pyrrhalta maculicollis and Pyrrhaltaaenescens. Mating experiments demonstrated that strong sexual isolation between the two species was driven by CHCs divergence. Males preferred to mate with conspecific females with intact conspecific CHCs or conspecific CHCs reapplied after removal. Males also preferred heterospecific females that were treated with conspecific CHCs. Chemical analysis showed that the CHC profiles differ significantly between species. In P. maculicollis dimethyl-branched alkanes between C29 and C35 account for the majority of the saturated alkanes while the CHC profile of P. aenescens mostly consisted of monomethyl-branched alkanes between C22 and C29. Additionally, some compounds, such as 12,18-diMeC32, 12,18-diMeC34, are unique to P. maculicollis.

  14. Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents.

    PubMed

    Grayson, Ben; Leger, Marianne; Piercy, Chloe; Adamson, Lisa; Harte, Michael; Neill, Joanna C

    2015-05-15

    The novel object recognition test (NOR) test is a two trial cognitive paradigm that assesses recognition memory. Recognition memory is disturbed in a range of human disorders and NOR is widely used in rodents for investigating deficits in a variety of animal models of human conditions where cognition is impaired. It possesses several advantages over more complex tasks that involve lengthy training procedures and/or food or water deprivation. It is quick to administer, non-rewarded, provides data quickly, cost effective and most importantly, ethologically relevant as it relies on the animal's natural preference for novelty. A PubMed search revealed over 900 publications in rats and mice using this task over the past 3 years with 34 reviews in the past 10 years, demonstrating its increasing popularity with neuroscientists. Although it is widely used in many disparate areas of research, no articles have systematically examined this to date, which is the subject of our review. We reveal that NOR may be used to study recognition memory deficits that occur in Alzheimer's disease and schizophrenia, where research is extensive, in Parkinson's disease and Autism Spectrum Disorders (ASD) where we observed markedly reduced numbers of publications. In addition, we review the use of NOR to study cognitive deficits induced by traumatic brain injury and cancer chemotherapy, not disorders per se, but situations in which cognitive deficits dramatically reduce the quality of life for those affected, see Fig. 1 for a summary. Our review reveals that, in all these animal models, the NOR test is extremely useful for identification of the cognitive deficits observed, their neural basis, and for testing the efficacy of novel therapeutic agents. Our conclusion is that NOR is of considerable value for cognitive researchers of all disciplines and we anticipate that its use will continue to increase due to its versatility and several other advantages, as detailed in this review.

  15. Geometric filtration of classification-based object detectors in realtime road scene recognition systems

    NASA Astrophysics Data System (ADS)

    Prun, Viktor; Bocharov, Dmitry; Koptelov, Ivan; Sholomov, Dmitry; Postnikov, Vassily

    2015-12-01

    We study the issue of performance improvement of classification-based object detectors by including certain geometric-oriented filters. Configurations of the observed 3D scene may be used as a priori or a posteriori information for object filtration. A priori information is used to select only those object parameters (size and position on image plane) that are in accordance with the scene, restricting implausible combinations of parameters. On the other hand the detection robustness can be enhanced by rejecting detection results using a posteriori information about 3D scene. For example, relative location of detected objects can be used as criteria for filtration. We have included proposed filters in object detection modules of two different industrial vision-based recognition systems and compared the resulting detection quality before detectors improving and after. Filtering with a priori information leads to significant decrease of detector's running time per frame and increase of number of correctly detected objects. Including filter based on a posteriori information leads to decrease of object detection false positive rate.

  16. The research of edge extraction and target recognition based on inherent feature of objects

    NASA Astrophysics Data System (ADS)

    Xie, Yu-chan; Lin, Yu-chi; Huang, Yin-guo

    2008-03-01

    Current research on computer vision often needs specific techniques for particular problems. Little use has been made of high-level aspects of computer vision, such as three-dimensional (3D) object recognition, that are appropriate for large classes of problems and situations. In particular, high-level vision often focuses mainly on the extraction of symbolic descriptions, and pays little attention to the speed of processing. In order to extract and recognize target intelligently and rapidly, in this paper we developed a new 3D target recognition method based on inherent feature of objects in which cuboid was taken as model. On the basis of analysis cuboid nature contour and greyhound distributing characteristics, overall fuzzy evaluating technique was utilized to recognize and segment the target. Then Hough transform was used to extract and match model's main edges, we reconstruct aim edges by stereo technology in the end. There are three major contributions in this paper. Firstly, the corresponding relations between the parameters of cuboid model's straight edges lines in an image field and in the transform field were summed up. By those, the aimless computations and searches in Hough transform processing can be reduced greatly and the efficiency is improved. Secondly, as the priori knowledge about cuboids contour's geometry character known already, the intersections of the component extracted edges are taken, and assess the geometry of candidate edges matches based on the intersections, rather than the extracted edges. Therefore the outlines are enhanced and the noise is depressed. Finally, a 3-D target recognition method is proposed. Compared with other recognition methods, this new method has a quick response time and can be achieved with high-level computer vision. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in object tracking, port AGV, robots

  17. BAP1 facilitates diagnostic objectivity, classification, and prognostication in malignant pleural mesothelioma.

    PubMed

    McGregor, Stephanie M; Dunning, Ryan; Hyjek, Elizabeth; Vigneswaran, Wickii; Husain, Aliya N; Krausz, Thomas

    2015-11-01

    BRCA-associated protein 1 (BAP1) has emerged as a promising biomarker for malignant pleural mesothelioma (MPM). Loss of BAP1 expression can occur by a variety of mechanisms, but reports on incidence are variable and the clinical significance is unclear. In order to investigate the diagnostic and prognostic significance of BAP1, we constructed a tissue microarray consisting of 111 MPM cases and performed BAP1 immunohistochemistry. BAP1 was lost in 77% of epithelioid cases (n=58) but was retained in all sarcomatoid cases (n=10); 49% of biphasic cases showed loss (n=43), and BAP1-negative cases demonstrated loss of staining in both the epithelioid and sarcomatoid components. All non-neoplastic mesothelial tissues (n=20) retained BAP1, resulting in a sensitivity, specificity, positive predictive value, and negative predictive value of 61%, 100%, 100%, and 32%, respectively. Moreover, BAP1 expression in spindled mesothelium enabled discrimination of reactive and malignant cells, thus providing a more objective means of distinguishing epithelioid from biphasic morphology compared to histology alone. Nonetheless, BAP1 staining was patchy in some benign mesothelial neoplasms, which raises concern for using BAP1 in small biopsies. Kaplan-Meier analysis demonstrated a significant improvement in overall survival with BAP1 loss, but this did not reach significance in multivariate analysis accounting for histologic subtype. When only epithelioid cases were analyzed there was a trend toward increased survival, but it did not reach significance. We conclude that BAP1 loss is frequent in epithelioid MPM, which is in turn associated with improved survival, and that it can have additional clinical significance by facilitating histologic classification.

  18. An automatic geo-spatial object recognition algorithm for high resolution satellite images

    NASA Astrophysics Data System (ADS)

    Ergul, Mustafa; Alatan, A. Aydın.

    2013-10-01

    This paper proposes a novel automatic geo-spatial object recognition algorithm for high resolution satellite imaging. The proposed algorithm consists of two main steps; a hypothesis generation step with a local feature-based algorithm and a verification step with a shape-based approach. In the hypothesis generation step, a set of hypothesis for possible object locations is generated, aiming lower missed detections and higher false-positives by using a Bag of Visual Words type approach. In the verification step, the foreground objects are first extracted by a semi-supervised image segmentation algorithm, utilizing detection results from the previous step, and then, the shape descriptors for segmented objects are utilized to prune out the false positives. Based on simulation results, it can be argued that the proposed algorithm achieves both high precision and high recall rates as a result of taking advantage of both the local feature-based and the shape-based object detection approaches. The superiority of the proposed method is due to the ability of minimization of false alarm rate and since most of the object shapes contain more characteristic and discriminative information about their identity and functionality.

  19. A new behavioural apparatus to reduce animal numbers in multiple types of spontaneous object recognition paradigms in rats.

    PubMed

    Ameen-Ali, K E; Eacott, M J; Easton, A

    2012-10-15

    Standard object recognition procedures assess animals' memory through their spontaneous exploration of novel objects or novel configurations of objects with other aspects of their environment. Such tasks are widely used in memory research, but also in pharmaceutical companies screening new drug treatments. However, behaviour in these tasks may be driven by influences other than novelty such as stress from handling which can subsequently influence performance. This extra-experimental variance means that large numbers of animals are required to maintain power. In addition, accumulation of data is time consuming as animals typically perform only one trial per day. The present study aimed to explore how effectively recognition memory could be tested with a new continual trials apparatus which allows for multiple trials within a session and reduced handling stress through combining features of delayed nonmatching-to-sample and spontaneous object recognition tasks. In this apparatus Lister hooded rats displayed performance significantly above chance levels in object recognition tasks (Experiments 1 and 2) and in tasks of object-location (Experiment 3) and object-in-context memory (Experiment 4) with data from only five animals or fewer per experimental group. The findings indicated that the results were comparable to those of previous reports in the literature and maintained statistical power whilst using less than a third of the number of animals typically used in spontaneous recognition paradigms. Overall, the results highlight the potential benefit of the continual trials apparatus to reduce the number of animals used in recognition memory tasks.

  20. Probabilistic 3D object recognition and pose estimation using multiple interpretations generation.

    PubMed

    Lu, Zhaojin; Lee, Sukhan

    2011-12-01

    This paper presents a probabilistic object recognition and pose estimation method using multiple interpretation generation in cluttered indoor environments. How to handle pose ambiguity and uncertainty is the main challenge in most recognition systems. In order to solve this problem, we approach it in a probabilistic manner. First, given a three-dimensional (3D) polyhedral object model, the parallel and perpendicular line pairs, which are detected from stereo images and 3D point clouds, generate pose hypotheses as multiple interpretations, with ambiguity from partial occlusion and fragmentation of 3D lines especially taken into account. Different from the previous methods, each pose interpretation is represented as a region instead of a point in pose space reflecting the measurement uncertainty. Then, for each pose interpretation, more features around the estimated pose are further utilized as additional evidence for computing the probability using the Bayesian principle in terms of likelihood and unlikelihood. Finally, fusion strategy is applied to the top ranked interpretations with high probabilities, which are further verified and refined to give a more accurate pose estimation in real time. The experimental results show the performance and potential of the proposed approach in real cluttered domestic environments.

  1. Different roles for M1 and M2 receptors within perirhinal cortex in object recognition and discrimination.

    PubMed

    Bartko, Susan J; Winters, Boyer D; Saksida, Lisa M; Bussey, Timothy J

    2014-04-01

    Recognition and discrimination of objects and individuals are critical cognitive faculties in both humans and non-human animals, and cholinergic transmission has been shown to be essential for both of these functions. In the present study we focused on the role of M1 and M2 muscarinic receptors in perirhinal cortex (PRh)-dependent object recognition and discrimination. The selective M1 antagonists pirenzepine and the snake toxin MT-7, and a selective M2 antagonist, AF-DX 116, were infused directly into PRh. Pre-sample infusions of both pirenzepine and AF-DX 116 significantly impaired object recognition memory in a delay-dependent manner. However, pirenzepine and MT-7, but not AF-DX 116, impaired oddity discrimination performance in a perceptual difficulty-dependent manner. The findings indicate distinct functions for M1 and M2 receptors in object recognition and discrimination.

  2. Substrate recognition by gelatinase A: the C-terminal domain facilitates surface diffusion.

    PubMed Central

    Collier, I E; Saffarian, S; Marmer, B L; Elson, E L; Goldberg, G

    2001-01-01

    An investigation of gelatinase A binding to gelatin produced results that are inconsistent with a traditional bimolecular Michaelis-Menten formalism but are effectively accounted for by a power law characteristic of fractal kinetics. The main reason for this inconsistency is that the bulk of the gelatinase A binding depends on its ability to diffuse laterally on the gelatin surface. Most interestingly, we show that the anomalous lateral diffusion and, consequently, the binding to gelatin is greatly facilitated by the C-terminal hemopexin-like domain of the enzyme whereas the specificity of binding resides with the fibronectin-like gelatin-binding domain. PMID:11566806

  3. An optimal sensing strategy for recognition and localization of 3-D natural quadric objects

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Hahn, Hernsoo

    1991-01-01

    An optimal sensing strategy for an optical proximity sensor system engaged in the recognition and localization of 3-D natural quadric objects is presented. The optimal sensing strategy consists of the selection of an optimal beam orientation and the determination of an optimal probing plane that compose an optimal data collection operation known as an optimal probing. The decision of an optimal probing is based on the measure of discrimination power of a cluster of surfaces on a multiple interpretation image (MII), where the measure of discrimination power is defined in terms of a utility function computing the expected number of interpretations that can be pruned out by a probing. An object representation suitable for active sensing based on a surface description vector (SDV) distribution graph and hierarchical tables is presented. Experimental results are shown.

  4. Recognition of 3-D symmetric objects from range images in automated assembly tasks

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1990-01-01

    A new technique is presented for the three dimensional recognition of symmetric objects from range images. Beginning from the implicit representation of quadrics, a set of ten coefficients is determined for symmetric objects like spheres, cones, cylinders, ellipsoids, and parallelepipeds. Instead of using these ten coefficients trying to fit them to smooth surfaces (patches) based on the traditional way of determining curvatures, a new approach based on two dimensional geometry is used. For each symmetric object, a unique set of two dimensional curves is obtained from the various angles at which the object is intersected with a plane. Using the same ten coefficients obtained earlier and based on the discriminant method, each of these curves is classified as a parabola, circle, ellipse, or hyperbola. Each symmetric object is found to possess a unique set of these two dimensional curves whereby it can be differentiated from the others. It is shown that instead of using the three dimensional discriminant which involves evaluation of the rank of its matrix, it is sufficient to use the two dimensional discriminant which only requires three arithmetic operations.

  5. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    SciTech Connect

    Win-Shwe, Tin-Tin; Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m{sup 3}), high-dose NRDE (H-NRDE, 129 μg/m{sup 3}), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  6. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability.

    PubMed

    Itoh, Yuji; Murata, Agato; Sakamoto, Seiji; Nanatani, Kei; Wada, Takehiko; Takahashi, Satoshi; Kamagata, Kiyoto

    2016-07-17

    Tumor suppressor p53 binds to the target in a genome and regulates the expression of downstream genes. p53 searches for the target by combining three-dimensional diffusion and one-dimensional sliding along the DNA. To examine the regulation mechanism of the target binding, we constructed the pseudo-wild type (pseudo-WT), activated (S392E), and inactive (R248Q) mutants of p53 and observed their target binding in long DNA using single-molecule fluorescence imaging. The pseudo-WT sliding along the DNA showed many pass events over the target and possessed target recognition probability (TRP) of 7±2%. The TRP increased to 18±2% for the activated mutant but decreased to 0% for the inactive mutant. Furthermore, the fraction of the target binding by the one-dimensional sliding among the total binding events increased from 63±9% for the pseudo-WT to 87±2% for the activated mutant. Control of TRP upon activation, as demonstrated here for p53, might be a general activation mechanism of transcription factors.

  7. A Comparison of the Effects of Depth Rotation on Visual and Haptic Three-Dimensional Object Recognition

    ERIC Educational Resources Information Center

    Lawson, Rebecca

    2009-01-01

    A sequential matching task was used to compare how the difficulty of shape discrimination influences the achievement of object constancy for depth rotations across haptic and visual object recognition. Stimuli were nameable, 3-dimensional plastic models of familiar objects (e.g., bed, chair) and morphs midway between these endpoint shapes (e.g., a…

  8. Sing that tune: infants' perception of melody and lyrics and the facilitation of phonetic recognition in songs.

    PubMed

    Lebedeva, Gina C; Kuhl, Patricia K

    2010-12-01

    To better understand how infants process complex auditory input, this study investigated whether 11-month-old infants perceive the pitch (melodic) or the phonetic (lyric) components within songs as more salient, and whether melody facilitates phonetic recognition. Using a preferential looking paradigm, uni-dimensional and multi-dimensional songs were tested; either the pitch or syllable order of the stimuli varied. As a group, infants detected a change in pitch order in a 4-note sequence when the syllables were redundant (experiment 1), but did not detect the identical pitch change with variegated syllables (experiment 2). Infants were better able to detect a change in syllable order in a sung sequence (experiment 2) than the identical syllable change in a spoken sequence (experiment 1). These results suggest that by 11 months, infants cannot "ignore" phonetic information in the context of perceptually salient pitch variation. Moreover, the increased phonetic recognition in song contexts mirrors findings that demonstrate advantages of infant-directed speech. Findings are discussed in terms of how stimulus complexity interacts with the perception of sung speech in infancy. PMID:20472295

  9. Sing that tune: infants' perception of melody and lyrics and the facilitation of phonetic recognition in songs.

    PubMed

    Lebedeva, Gina C; Kuhl, Patricia K

    2010-12-01

    To better understand how infants process complex auditory input, this study investigated whether 11-month-old infants perceive the pitch (melodic) or the phonetic (lyric) components within songs as more salient, and whether melody facilitates phonetic recognition. Using a preferential looking paradigm, uni-dimensional and multi-dimensional songs were tested; either the pitch or syllable order of the stimuli varied. As a group, infants detected a change in pitch order in a 4-note sequence when the syllables were redundant (experiment 1), but did not detect the identical pitch change with variegated syllables (experiment 2). Infants were better able to detect a change in syllable order in a sung sequence (experiment 2) than the identical syllable change in a spoken sequence (experiment 1). These results suggest that by 11 months, infants cannot "ignore" phonetic information in the context of perceptually salient pitch variation. Moreover, the increased phonetic recognition in song contexts mirrors findings that demonstrate advantages of infant-directed speech. Findings are discussed in terms of how stimulus complexity interacts with the perception of sung speech in infancy.

  10. Sing that Tune: Infants’ Perception of Melody and Lyrics and the Facilitation of Phonetic Recognition in Songs

    PubMed Central

    Lebedeva, Gina C.; Kuhl, Patricia K.

    2010-01-01

    To better understand how infants process complex auditory input, this study investigated whether 11-month-old infants perceive the pitch (melodic) or the phonetic (lyric) components within songs as more salient, and whether melody facilitates phonetic recognition. Using a preferential looking paradigm, uni-dimensional and multi-dimensional songs were tested; either the pitch or syllable order of the stimuli varied. As a group, infants detected a change in pitch order in a 4-note sequence when the syllables were redundant (Experiment 1), but did not detect the identical pitch change with variegated syllables (Experiment 2). Infants were better able to detect a change in syllable order in a sung sequence (Experiment 2) than the identical syllable change in a spoken sequence (Experiment 1). These results suggest that by 11 months, infants cannot “ignore” phonetic information in the context of perceptually salient pitch variation. Moreover, the increased phonetic recognition in song contexts mirrors findings that demonstrate advantages of infant-directed speech. Findings are discussed in terms of how stimulus complexity interacts with the perception of sung speech in infancy. PMID:20472295

  11. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-01

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. PMID:27589891

  12. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-01

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes.

  13. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The

  14. Assessing rodent hippocampal involvement in the novel object recognition task. A review.

    PubMed

    Cohen, Sarah J; Stackman, Robert W

    2015-05-15

    The novel object recognition (NOR) task has emerged as a popular method for testing the neurobiology of nonspatial memory in rodents. This task exploits the natural tendency of rodents to explore novel items and depending on the amount of time that rodents spend exploring the presented objects, inferences about memory can be established. Despite its wide use, the underlying neural circuitry and mechanisms supporting NOR have not been clearly defined. In particular, considerable debate has focused on whether the hippocampus plays a significant role in the object memory that is encoded, consolidated and then retrieved during discrete stages of the NOR task. Here we analyzed the results of all published reports in which the role of the rodent hippocampus in object memory was inferred from performance in the task with restricted parameters. We note that the remarkable variability in NOR methods across studies complicates the ability to draw meaningful conclusions from the work. Focusing on 12 reports in which a minimum criterion of sample session object exploration was imposed, we find that temporary or permanent lesion of the hippocampus consistently disrupts object memory when a delay of 10 min or greater is imposed between the sample and test sessions. We discuss the significance of a delay-dependent role of the hippocampus in NOR within the framework of the medial temporal lobe. We assert that standardization of the NOR protocol is essential for obtaining reliable data that can then be compared across studies to build consensus as to the specific contribution of the rodent hippocampus to object memory.

  15. Site change detection and object recognition using thermophysical affine invariants from infrared imagery

    NASA Astrophysics Data System (ADS)

    Nandhakumar, Nagaraj; Michel, Johnathan D.; Arnold, D. Gregory; Velten, Vincent J.

    1995-09-01

    Research on the formulation of invariant features for model-based object recognition has mostly been concerned with geometric constructs either of the object or in the imaging process. We describe a new method that identifies invariant features computed from long wave infrared imagery. These features are called thermophysical invariants and depend primarily on the material composition of the object. We use this approach for identifying objects or changes in scenes viewed by downward looking infrared images. Features are defined that are functions of only the thermophysical properties of the imaged materials. A physics-based model is derived from the principle of conservation of energy applied at the surface of the imaged regions. A linear form of the model is used to derive features that remain constant despite changes in scene parameters/driving conditions. Simulated and real imagery, as well as ground truth thermo-couple measurements were used to test the behavior of such features. A method of change detection in outdoor scenes is investigated. The invariants are used to detect when a hypothesized material no longer exists at a given location. For example, one can detect when a patch of clay/gravel has been replaced with concrete at a given site.

  16. Subsurface object recognition by means of regularization techniques for mapping coastal waters floor

    NASA Astrophysics Data System (ADS)

    Jiménez-Rodríguez, Luis O.; Umana-Diaz, Alejandra; Diaz-Santos, Jose; Neira-Carolina, Gerardino; Morales-Morales, Javier; Rodriguez, Eladio

    2005-10-01

    A fundamental challenge to Remote Sensing is mapping the ocean floor in coastal shallow waters where variability, due to the interaction between the coast and the sea, can bring significant disparity in the optical properties of the water column. The objects to be detected, coral reefs, sands and submerged aquatic vegetation, have weak signals, with temporal and spatial variation. In real scenarios the absorption and backscattering coefficients have spatial variation due to different sources of variability (river discharge, different depths of shallow waters, water currents) and temporal fluctuations. This paper presents the development of algorithms for retrieving information and its application to the recognition, classification and mapping of objects under coastal shallow waters. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. The retrieval of information requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and detection. The algorithms developed were applied to one set of remotely sensed data: a high resolution HYPERION hyperspectral imagery. An inverse problem arises as this spectral data is used for mapping the ocean shallow waters floor. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo of the ocean floor using a priori information in the form of stored spectral signatures, previously measured, of objects of interest, such as sand, corals, and sea grass.

  17. Effects of heavy particle irradiation and diet on object recognition memory in rats

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty; Hinchman, Marie; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    2009-04-01

    On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.

  18. Feature extraction and object recognition in multi-modal forward looking imagery

    NASA Astrophysics Data System (ADS)

    Greenwood, G.; Blakely, S.; Schartman, D.; Calhoun, B.; Keller, J. M.; Ton, T.; Wong, D.; Soumekh, M.

    2010-04-01

    The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) recently tested an explosive-hazards detection vehicle that combines a pulsed FLGPR with a visible-spectrum color camera. Additionally, NVESD tested a human-in-the-loop multi-camera system with the same goal in mind. It contains wide field-of-view color and infrared cameras as well as zoomable narrow field-of-view versions of those modalities. Even though they are separate vehicles, having information from both systems offers great potential for information fusion. Based on previous work at the University of Missouri, we are not only able to register the UTM-based positions of the FLGPR to the color image sequences on the first system, but we can register these locations to corresponding image frames of all sensors on the human-in-the-loop platform. This paper presents our approach to first generate libraries of multi-sensor information across these platforms. Subsequently, research is performed in feature extraction and recognition algorithms based on the multi-sensor signatures. Our goal is to tailor specific algorithms to recognize and eliminate different categories of clutter and to be able to identify particular explosive hazards. We demonstrate our library creation, feature extraction and object recognition results on a large data collection at a US Army test site.

  19. Object recognition test for studying cognitive impairments in animal models of Alzheimer's disease.

    PubMed

    Bengoetxea, Xabier; Rodriguez-Perdigon, Manuel; Ramirez, Maria J

    2015-06-01

    Animal models are essential resources in basic research and drug discovery in the field of Alzheimer's disease (AD). As the main clinical feature in AD is cognitive failure, the ultimate readout for any interventions or the ultimate goal in research should be measures of learning and memory. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, the aetiology of the illness remains unsolved. Therefore, assessment by cognitive assays should target relevant memory systems without assumptions about pathogenesis. The description of several tests that are available for assessing cognitive functioning in animal models can be found in literature. Among the behavioural test, the novel object recognition (NOR) task is a method to measure a specific form of recognition memory. It is based on the spontaneous behaviour of rodents and offers the advantage of not needing external motivation, reward or punishment. Therefore, the NOR test has been increasingly used as an experimental tool in assessing drug effects on memory and investigating the neural mechanisms underlying learning and memory. This review describes the basic procedure, modifications, practical considerations, and the requirements and caveats of this behavioural paradigm to be considered as appropriate for the study of AD. Altogether, NOR test could be considered as a very useful instrument that allows researchers to explore the cognitive status of rodents, and hence, for studying AD related pathological mechanisms or treatments.

  20. Object recognition test for studying cognitive impairments in animal models of Alzheimer's disease.

    PubMed

    Bengoetxea, Xabier; Rodriguez-Perdigon, Manuel; Ramirez, Maria J

    2015-01-01

    Animal models are essential resources in basic research and drug discovery in the field of Alzheimer's disease (AD). As the main clinical feature in AD is cognitive failure, the ultimate readout for any interventions or the ultimate goal in research should be measures of learning and memory. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, the aetiology of the illness remains unsolved. Therefore, assessment by cognitive assays should target relevant memory systems without assumptions about pathogenesis. The description of several tests that are available for assessing cognitive functioning in animal models can be found in literature. Among the behavioural test, the novel object recognition (NOR) task is a method to measure a specific form of recognition memory. It is based on the spontaneous behaviour of rodents and offers the advantage of not needing external motivation, reward or punishment. Therefore, the NOR test has been increasingly used as an experimental tool in assessing drug effects on memory and investigating the neural mechanisms underlying learning and memory. This review describes the basic procedure, modifications, practical considerations, and the requirements and caveats of this behavioural paradigm to be considered as appropriate for the study of AD. Altogether, NOR test could be considered as a very useful instrument that allows researchers to explore the cognitive status of rodents, and hence, for studying AD related pathological mechanisms or treatments. PMID:25961683

  1. HONTIOR - HIGHER-ORDER NEURAL NETWORK FOR TRANSFORMATION INVARIANT OBJECT RECOGNITION

    NASA Technical Reports Server (NTRS)

    Spirkovska, L.

    1994-01-01

    Neural networks have been applied in numerous fields, including transformation invariant object recognition, wherein an object is recognized despite changes in the object's position in the input field, size, or rotation. One of the more successful neural network methods used in invariant object recognition is the higher-order neural network (HONN) method. With a HONN, known relationships are exploited and the desired invariances are built directly into the architecture of the network, eliminating the need for the network to learn invariance to transformations. This results in a significant reduction in the training time required, since the network needs to be trained on only one view of each object, not on numerous transformed views. Moreover, one hundred percent accuracy is guaranteed for images characterized by the built-in distortions, providing noise is not introduced through pixelation. The program HONTIOR implements a third-order neural network having invariance to translation, scale, and in-plane rotation built directly into the architecture, Thus, for 2-D transformation invariance, the network needs only to be trained on just one view of each object. HONTIOR can also be used for 3-D transformation invariant object recognition by training the network only on a set of out-of-plane rotated views. Historically, the major drawback of HONNs has been that the size of the input field was limited to the memory required for the large number of interconnections in a fully connected network. HONTIOR solves this problem by coarse coding the input images (coding an image as a set of overlapping but offset coarser images). Using this scheme, large input fields (4096 x 4096 pixels) can easily be represented using very little virtual memory (30Mb). The HONTIOR distribution consists of three main programs. The first program contains the training and testing routines for a third-order neural network. The second program contains the same training and testing procedures as the

  2. Retrieval is not necessary to trigger reconsolidation of object recognition memory in the perirhinal cortex

    PubMed Central

    Santoyo-Zedillo, Marianela; Rodriguez-Ortiz, Carlos J.; Chavez-Marchetta, Gianfranco; Bermudez-Rattoni, Federico

    2014-01-01

    Memory retrieval has been considered as requisite to initiate memory reconsolidation; however, some studies indicate that blocking retrieval does not prevent memory from undergoing reconsolidation. Since N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in the perirhinal cortex have been involved in object recognition memory formation, the present study evaluated whether retrieval and reconsolidation are independent processes by manipulating these glutamate receptors. The results showed that AMPA receptor antagonist infusions in the perirhinal cortex blocked retrieval, but did not affect memory reconsolidation, although NMDA receptor antagonist infusions disrupted reconsolidation even if retrieval was blocked. Importantly, neither of these antagonists disrupted short-term memory. These data suggest that memory underwent reconsolidation even in the absence of retrieval. PMID:25128536

  3. Scalable Medical Image Understanding by Fusing Cross-Modal Object Recognition with Formal Domain Semantics

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Sintek, Michael; Buitelaar, Paul; Mukherjee, Saikat; Zhou, Xiang Sean; Freund, Jörg

    Recent advances in medical imaging technology have dramatically increased the amount of clinical image data. In contrast, techniques for efficiently exploiting the rich semantic information in medical images have evolved much slower. Despite the research outcomes in image understanding, current image databases are still indexed by manually assigned subjective keywords instead of the semantics of the images. Indeed, most current content-based image search applications index image features that do not generalize well and use inflexible queries. This slow progress is due to the lack of scalable and generic information representation systems which can abstract over the high dimensional nature of medical images as well as semantically model the results of object recognition techniques. We propose a system combining medical imaging information with ontological formalized semantic knowledge that provides a basis for building universal knowledge repositories and gives clinicians fully cross-lingual and cross-modal access to biomedical information.

  4. The influence of print exposure on the body-object interaction effect in visual word recognition

    PubMed Central

    Hansen, Dana; Siakaluk, Paul D.; Pexman, Penny M.

    2012-01-01

    We examined the influence of print exposure on the body-object interaction (BOI) effect in visual word recognition. High print exposure readers and low print exposure readers either made semantic categorizations (“Is the word easily imageable?”; Experiment 1) or phonological lexical decisions (“Does the item sound like a real English word?”; Experiment 2). The results from Experiment 1 showed that there was a larger BOI effect for the low print exposure readers than for the high print exposure readers in semantic categorization, though an effect was observed for both print exposure groups. However, the results from Experiment 2 showed that the BOI effect was observed only for the high print exposure readers in phonological lexical decision. The results of the present study suggest that print exposure does influence the BOI effect, and that this influence varies as a function of task demands. PMID:22563312

  5. The Crossmodal Facilitation of Visual Object Representations by Sound: Evidence from the Backward Masking Paradigm

    ERIC Educational Resources Information Center

    Chen, Yi-Chuan; Spence, Charles

    2011-01-01

    We report a series of experiments designed to demonstrate that the presentation of a sound can facilitate the identification of a concomitantly presented visual target letter in the backward masking paradigm. Two visual letters, serving as the target and its mask, were presented successively at various interstimulus intervals (ISIs). The results…

  6. View-Invariant Object Category Learning, Recognition, and Search: How Spatial and Object Attention are Coordinated Using Surface-Based Attentional Shrouds

    ERIC Educational Resources Information Center

    Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio

    2009-01-01

    How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified…

  7. [Non-conscious perception of emotional faces affects the visual objects recognition].

    PubMed

    Gerasimenko, N Iu; Slavutskaia, A V; Kalinin, S A; Mikhaĭlova, E S

    2013-01-01

    In 34 healthy subjects we have analyzed accuracy and reaction time (RT) during the recognition of complex visual images: pictures of animals and non-living objects. The target stimuli were preceded by brief presentation of masking non-target ones, which represented drawings of emotional (angry, fearful, happy) or neutral faces. We have revealed that in contrast to accuracy the RT depended on the emotional expression of the preceding faces. RT was significantly shorter if the target objects were paired with the angry and fearful faces as compared with the happy and neutral ones. These effects depended on the category of the target stimulus and were more prominent for objects than for animals. Further, the emotional faces' effects were determined by emotional and communication personality traits (defined by Cattell's Questionnaire) and were clearer defined in more sensitive, anxious and pessimistic introverts. The data are important for understanding the mechanisms of human visual behavior determination by non-consciously processing of emotional information. PMID:23885550

  8. Systems in Development: Motor Skill Acquisition Facilitates Three-Dimensional Object Completion

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Adolph, Karen E.; Johnson, Scott P.

    2010-01-01

    How do infants learn to perceive the backs of objects that they see only from a limited viewpoint? Infants' 3-dimensional object completion abilities emerge in conjunction with developing motor skills--independent sitting and visual-manual exploration. Infants at 4.5 to 7.5 months of age (n = 28) were habituated to a limited-view object and tested…

  9. Words (but Not Tones) Facilitate Object Categorization: Evidence from 6- and 12-Month-Olds

    ERIC Educational Resources Information Center

    Fulkerson, Anne L.; Waxman, Sandra R.

    2007-01-01

    Recent studies reveal that naming has powerful conceptual consequences within the first year of life. Naming distinct objects with the same word highlights commonalities among the objects and promotes object categorization. In the present experiment, we pursued the origin of this link by examining the influence of words and tones on object…

  10. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a

  11. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a

  12. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a

  13. Recognition of partially occluded threat objects using the annealed Hopefield network

    NASA Technical Reports Server (NTRS)

    Kim, Jung H.; Yoon, Sung H.; Park, Eui H.; Ntuen, Celestine A.

    1992-01-01

    Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features.

  14. Words (but not Tones) Facilitate Object Categorization: Evidence From 6- and 12-Month-Olds

    PubMed Central

    Fulkerson, Anne L.; Waxman, Sandra R.

    2007-01-01

    Recent studies reveal that naming has powerful conceptual consequences within the first year of life. Naming distinct objects with the same word highlights commonalities among the objects and promotes object categorization. In the present experiment, we pursued the origin of this link by examining the influence of words and tones on object categorization in infants at 6 and 12 months. At both ages, infants hearing a novel word for a set of distinct objects successfully formed object categories; those hearing a sequence of tones for the same objects did not. These results support the view that infants are sensitive to powerful and increasingly nuanced links between linguistic and conceptual units very early in the process of lexical acquisition. PMID:17064677

  15. The role of sensory-motor information in object recognition: evidence from category-specific visual agnosia.

    PubMed

    Wolk, David A; Coslett, H Branch; Glosser, Guila

    2005-08-01

    The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more reliably than items for which such information was not available; this was true when all items were non-living. Naming of objects from their associated sound was normal. These data suggest that both information about object form computed in the ventral visual system as well as sensory-motor information specifying the manner of manipulation contribute to object recognition.

  16. Infusion of protein synthesis inhibitors in the entorhinal cortex blocks consolidation but not reconsolidation of object recognition memory.

    PubMed

    Lima, Ramón H; Rossato, Janine I; Furini, Cristiane R; Bevilaqua, Lia R; Izquierdo, Iván; Cammarota, Martín

    2009-05-01

    Memory consolidation and reconsolidation require the induction of protein synthesis in some areas of the brain. Here, we show that infusion of the protein synthesis inhibitors anisomycin, emetine and cycloheximide in the entorhinal cortex immediately but not 180 min or 360 min after training in an object recognition learning task hinders long-term memory retention without affecting short-term memory or behavioral performance. Inhibition of protein synthesis in the entorhinal cortex after memory reactivation involving either a combination of familiar and novel objects or two familiar objects does not affect retention. Our data suggest that protein synthesis in the entorhinal cortex is necessary early after training for consolidation of object recognition memory. However, inhibition of protein synthesis in this cortical region after memory retrieval does not seem to affect the stability of the recognition trace.

  17. Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition

    NASA Astrophysics Data System (ADS)

    Xiao, Pengfeng; Zhang, Xueliang; Wang, Dongguang; Yuan, Min; Feng, Xuezhi; Kelly, Maggi

    2016-09-01

    This study proposed a new framework that combines pixel-level change detection and object-level recognition to detect changes of built-up land from high-spatial resolution remote sensing images. First, an adaptive differencing method was designed to detect changes at the pixel level based on both spectral and textural features. Next, the changed pixels were subjected to a set of morphological operations to improve the completeness and to generate changed objects, achieving the transition of change detection from the pixel level to the object level. The changed objects were further recognised through the difference of morphological building index in two phases to indicate changed objects on built-up land. The transformation from changed pixels to changed objects makes the proposed framework distinct with both the pixel-based and the object-based change detection methods. Compared with the pixel-based methods, the proposed framework can improve the change detection capability through the transformation and successive recognition of objects. Compared with the object-based method, the proposed framework avoids the issue of multitemporal segmentation and can generate changed objects directly from changed pixels. The experimental results show the effectiveness of the transformation from changed pixels to changed objects and the successive object-based recognition on improving the detection accuracy, which justify the application potential of the proposed change detection framework.

  18. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006

  19. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.

  20. Three-dimensional object recognition using gradient descent and the universal 3-D array grammar

    NASA Astrophysics Data System (ADS)

    Baird, Leemon C., III; Wang, Patrick S. P.

    1992-02-01

    A new algorithm is presented for applying Marill's minimum standard deviation of angles (MSDA) principle for interpreting line drawings without models. Even though no explicit models or additional heuristics are included, the algorithm tends to reach the same 3-D interpretations of 2-D line drawings that humans do. Marill's original algorithm repeatedly generated a set of interpretations and chose the one with the lowest standard deviation of angles (SDA). The algorithm presented here explicitly calculates the partial derivatives of SDA with respect to all adjustable parameters, and follows this gradient to minimize SDA. For a picture with lines meeting at m points forming n angles, the gradient descent algorithm requires O(n) time to adjust all the points, while the original algorithm required O(mn) time to do so. For the pictures described by Marill, this gradient descent algorithm running on a Macintosh II was found to be one to two orders of magnitude faster than the original algorithm running on a Symbolics, while still giving comparable results. Once the 3-D interpretation of the line drawing has been found, the 3-D object can be reduced to a description string using the Universal 3-D Array Grammar. This is a general grammar which allows any connected object represented as a 3-D array of pixels to be reduced to a description string. The algorithm based on this grammar is well suited to parallel computation, and could run efficiently on parallel hardware. This paper describes both the MSDA gradient descent algorithm and the Universal 3-D Array Grammar algorithm. Together, they transform a 2-D line drawing represented as a list of line segments into a string describing the 3-D object pictured. The strings could then be used for object recognition, learning, or storage for later manipulation.

  1. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed Central

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006

  2. A novel margin-based linear embedding technique for visual object recognition

    NASA Astrophysics Data System (ADS)

    Dornaika, F.; Assoum, A.

    2012-01-01

    Linear Dimensionality Reduction (LDR) techniques have been increasingly important in computer vision and pattern recognition since they permit a relatively simple mapping of data onto a lower dimensional subspace, leading to simple and computationally efficient classification strategies. Recently, many linear discriminant methods have been developed in order to reduce the dimensionality of visual data and to enhance the discrimination between different groups or classes. Although many linear discriminant analysis methods have been proposed in the literature, they suffer from at least one of the following shortcomings: i) they require the setting of many parameters (e.g., the neighborhood sizes for homogeneous and heterogeneous samples), ii) they suffer from the Small Sample Size problem that often occurs when dealing with visual data sets for which the number of samples is less than the dimension of the sample, and iii) most of the traditional subspace learning methods have to determine the dimension of the projected space by either cross-validation or exhaustive search. In this paper, we propose a novel margin-based linear embedding method that exploits the nearest hit and the nearest miss samples only. Our proposed method tackles all the above shortcomings. It finds the projection directions such that the sum of local margins is maximized. Our proposed approach has been applied to the problem of appearancebased face recognition. Experimental results performed on four public face databases show that the proposed approach can give better generalization performance than the competing methods. These competing methods used for performance comparison were: Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Average Neighborhood Margin Maximization (ANMM), and Maximally Collapsing Metric Learning algorithm (MCML). The proposed approach could also be applied to other category of objects characterized by large variations in their appearance.

  3. Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition.

    PubMed

    Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations.

  4. Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition

    NASA Astrophysics Data System (ADS)

    Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-09-01

    Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations.

  5. Crowded and sparse domains in object recognition: consequences for categorization and naming.

    PubMed

    Gale, Tim M; Laws, Keith R; Foley, Kerry

    2006-03-01

    Some models of object recognition propose that items from structurally crowded categories (e.g., living things) permit faster access to superordinate semantic information than structurally dissimilar categories (e.g., nonliving things), but slower access to individual object information when naming items. We present four experiments that utilize the same matched stimuli: two examine superordinate categorization and two examine picture naming. Experiments 1 and 2 required participants to sort pictures into their appropriate superordinate categories and both revealed faster categorization for living than nonliving things. Nonetheless, the living thing superiority disappeared when the atypical categories of body parts and musical instruments were excluded. Experiment 3 examined naming latency and found no difference between living and nonliving things. This finding was replicated in Experiment 4 where the same items were presented in different formats (e.g., color and line-drawn versions). Taken as a whole, these experiments show that the ease with which people categorize items maps strongly onto the ease with which they name them. PMID:16377049

  6. Deramciclane improves object recognition in rats: potential role of NMDA receptors.

    PubMed

    Kertész, Szabolcs; Kapus, Gábor; Gacsályi, István; Lévay, György

    2010-02-01

    The cognition-enhancing properties of deramciclane (N,N-dimethyl-2-([(1R,4R,6S)-1,7,7-trimethyl-6-phenyl-6-bicyclo[2.2.1]heptanyl]oxy)ethanamine) and memantine (3,5-dimethyl-tricyclo[3.3.1.1(3,7)]decylamine-3,5-dimethyladamantan-1-amine) were evaluated in the novel object recognition (OR) test in the rat, while their effect in comparison with other N-methyl-D-aspartate (NMDA) receptor blockers such us MK-801 ([+]-5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine maleate) and CPP ([+/-]-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid) on NMDA-evoked spreading depression (SD) was investigated in the chicken retina, in vitro. In the OR test, pretreatment of rats with either deramciclane (30 mg/kg p.o.) or memantine (10 and 30 mg/kg, p.o.) resulted in preference for the novel object, compared to the familiar one, indicating procognitive activity of the compounds. In the in vitro studies memantine (10-30 M), or deramciclane (30-100 M) as well as CPP (0.1-1 M), MK-801 (0.3-1 M), concentration-dependently inhibited NMDA evoked SD. Furthermore, the inhibitory effect of memantine, deramciclane and MK-801 was activity-dependent. These results support the role of NMDA receptors in the procognitive effect of deramciclane.

  7. A method of 3D object recognition and localization in a cloud of points

    NASA Astrophysics Data System (ADS)

    Bielicki, Jerzy; Sitnik, Robert

    2013-12-01

    The proposed method given in this article is prepared for analysis of data in the form of cloud of points directly from 3D measurements. It is designed for use in the end-user applications that can directly be integrated with 3D scanning software. The method utilizes locally calculated feature vectors (FVs) in point cloud data. Recognition is based on comparison of the analyzed scene with reference object library. A global descriptor in the form of a set of spatially distributed FVs is created for each reference model. During the detection process, correlation of subsets of reference FVs with FVs calculated in the scene is computed. Features utilized in the algorithm are based on parameters, which qualitatively estimate mean and Gaussian curvatures. Replacement of differentiation with averaging in the curvatures estimation makes the algorithm more resistant to discontinuities and poor quality of the input data. Utilization of the FV subsets allows to detect partially occluded and cluttered objects in the scene, while additional spatial information maintains false positive rate at a reasonably low level.

  8. Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition

    PubMed Central

    Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations. PMID:27601096

  9. Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition.

    PubMed

    Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations. PMID:27601096

  10. Conscious Intention to Speak Proactively Facilitates Lexical Access during Overt Object Naming

    ERIC Educational Resources Information Center

    Strijkers, Kristof; Holcomb, Phillip J.; Costa, Albert

    2011-01-01

    The present study explored when and how the top-down intention to speak influences the language production process. We did so by comparing the brain's electrical response for a variable known to affect lexical access, namely word frequency, during overt object naming and non-verbal object categorization. We found that during naming, the…

  11. Differential Roles for "Nr4a1" and "Nr4a2" in Object Location vs. Object Recognition Long-Term Memory

    ERIC Educational Resources Information Center

    McNulty, Susan E.; Barrett, Ruth M.; Vogel-Ciernia, Annie; Malvaez, Melissa; Hernandez, Nicole; Davatolhagh, M. Felicia; Matheos, Dina P.; Schiffman, Aaron; Wood, Marcelo A.

    2012-01-01

    "Nr4a1" and "Nr4a2" are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either "Nr4a1" or "Nr4a2", we found that "Nr4a2" is necessary for both long-term…

  12. Beyond perceptual expertise: revisiting the neural substrates of expert object recognition

    PubMed Central

    Harel, Assaf; Kravitz, Dwight; Baker, Chris I.

    2013-01-01

    Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex. PMID:24409134

  13. Enhancing The Recognition, Reusability, And Transparency Of Scientific Data Using Digital Object Identifiers

    NASA Astrophysics Data System (ADS)

    Wilson, B. E.; Cook, R. B.; Beaty, T. W.; Lenhardt, W.; Grubb, J.; Hook, L. A.; Sanderson, C.

    2010-12-01

    The Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC) is part of the NASA Earth Science Data and Information System (ESDIS) project, responsible for archiving and distributing a wide range of terrestrial ecology data sets. Partly to enhance the recognition for scientists sharing their data, the ORNL DAAC has had a data citation policy for many years, with the citation in the name of the scientists who collected and providing an Internet URL pointing to the data set. Some journal editors, however, objected to a URL in a scientific citation, arguing that URL’s are transient and problematic for the anticipated lifetime of a scientific journal article. In response to this concern, the ORNL DAAC started assigning Digital Object Identifiers (DOIs) to published data sets in 2007 and incorporating the DOI in the requested citation for each data set. DOIs have now been assigned to all ORNL DAAC published data sets. Our experience is that the DOI is a very useful tool for finalized data sets, which is most of what the ORNL DAAC deals with and works well for managing data set citations, as well as to data sets that are updated infrequently. We have not assigned DOIs to dynamically generated data sets, such as those generated by our data subsetting tools (such as the MODIS subsetting tool and the dynamic subsets generated by OGC web services). Dynamic data sets may be a case where separating data set identification (for scientific reproducibility) from data set citation (for attribution and impact analysis) may be appropriate. DOIs have also improved our ability to track citations of data sets, both in the formal scientific literature and in documents published to the general Web. We are now seeing examples where researchers are listing published data sets on a curriculum vita, as one indication of improved recognition of the value for sharing and archiving data sets. DOIs are not yet useful for tracking and assessing

  14. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  15. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  16. Opposable spines facilitate fine and gross object manipulation in fire ants

    NASA Astrophysics Data System (ADS)

    Cassill, Deby; Greco, Anthony; Silwal, Rajesh; Wang, Xuefeng

    2007-04-01

    Ants inhabit diverse terrestrial biomes from the Sahara Desert to the Arctic tundra. One factor contributing to the ants’ successful colonization of diverse geographical regions is their ability to manipulate objects when excavating nests, capturing, transporting and rendering prey or grooming, feeding and transporting helpless brood. This paper is the first to report the form and function of opposable spines on the foretarsi of queens and workers used during fine motor and gross motor object manipulation in the fire ant, Solenopsis invicta. In conjunction with their mandibles, queens and workers used their foretarsi to grasp and rotate eggs, push or pull thread-like objects out of their way or push excavated soil pellets behind them for disposal by other workers. Opposable spines were found on the foretarsi of workers from seven of eight other ant species suggesting that they might be a common feature in the Formicidae.

  17. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  18. Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study.

    PubMed

    Schettino, Antonio; Loeys, Tom; Delplanque, Sylvain; Pourtois, Gilles

    2011-04-01

    Recent studies suggest that visual object recognition is a proactive process through which perceptual evidence accumulates over time before a decision can be made about the object. However, the exact electrophysiological correlates and time-course of this complex process remain unclear. In addition, the potential influence of emotion on this process has not been investigated yet. We recorded high density EEG in healthy adult participants performing a novel perceptual recognition task. For each trial, an initial blurred visual scene was first shown, before the actual content of the stimulus was gradually revealed by progressively adding diagnostic high spatial frequency information. Participants were asked to stop this stimulus sequence as soon as they could correctly perform an animacy judgment task. Behavioral results showed that participants reliably gathered perceptual evidence before recognition. Furthermore, prolonged exploration times were observed for pleasant, relative to either neutral or unpleasant scenes. ERP results showed distinct effects starting at 280 ms post-stimulus onset in distant brain regions during stimulus processing, mainly characterized by: (i) a monotonic accumulation of evidence, involving regions of the posterior cingulate cortex/parahippocampal gyrus, and (ii) true categorical recognition effects in medial frontal regions, including the dorsal anterior cingulate cortex. These findings provide evidence for the early involvement, following stimulus onset, of non-overlapping brain networks during proactive processes eventually leading to visual object recognition.

  19. Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study.

    PubMed

    Schettino, Antonio; Loeys, Tom; Delplanque, Sylvain; Pourtois, Gilles

    2011-04-01

    Recent studies suggest that visual object recognition is a proactive process through which perceptual evidence accumulates over time before a decision can be made about the object. However, the exact electrophysiological correlates and time-course of this complex process remain unclear. In addition, the potential influence of emotion on this process has not been investigated yet. We recorded high density EEG in healthy adult participants performing a novel perceptual recognition task. For each trial, an initial blurred visual scene was first shown, before the actual content of the stimulus was gradually revealed by progressively adding diagnostic high spatial frequency information. Participants were asked to stop this stimulus sequence as soon as they could correctly perform an animacy judgment task. Behavioral results showed that participants reliably gathered perceptual evidence before recognition. Furthermore, prolonged exploration times were observed for pleasant, relative to either neutral or unpleasant scenes. ERP results showed distinct effects starting at 280 ms post-stimulus onset in distant brain regions during stimulus processing, mainly characterized by: (i) a monotonic accumulation of evidence, involving regions of the posterior cingulate cortex/parahippocampal gyrus, and (ii) true categorical recognition effects in medial frontal regions, including the dorsal anterior cingulate cortex. These findings provide evidence for the early involvement, following stimulus onset, of non-overlapping brain networks during proactive processes eventually leading to visual object recognition. PMID:21237274

  20. CANTAB object recognition and language tests to detect aging cognitive decline: an exploratory comparative study

    PubMed Central

    Cabral Soares, Fernanda; de Oliveira, Thaís Cristina Galdino; de Macedo, Liliane Dias e Dias; Tomás, Alessandra Mendonça; Picanço-Diniz, Domingos Luiz Wanderley; Bento-Torres, João; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2015-01-01

    Objective The recognition of the limits between normal and pathological aging is essential to start preventive actions. The aim of this paper is to compare the Cambridge Neuropsychological Test Automated Battery (CANTAB) and language tests to distinguish subtle differences in cognitive performances in two different age groups, namely young adults and elderly cognitively normal subjects. Method We selected 29 young adults (29.9±1.06 years) and 31 older adults (74.1±1.15 years) matched by educational level (years of schooling). All subjects underwent a general assessment and a battery of neuropsychological tests, including the Mini Mental State Examination, visuospatial learning, and memory tasks from CANTAB and language tests. Cluster and discriminant analysis were applied to all neuropsychological test results to distinguish possible subgroups inside each age group. Results Significant differences in the performance of aged and young adults were detected in both language and visuospatial memory tests. Intragroup cluster and discriminant analysis revealed that CANTAB, as compared to language tests, was able to detect subtle but significant differences between the subjects. Conclusion Based on these findings, we concluded that, as compared to language tests, large-scale application of automated visuospatial tests to assess learning and memory might increase our ability to discern the limits between normal and pathological aging. PMID:25565785

  1. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  2. Dityrosine administration induces novel object recognition deficits in young adulthood mice.

    PubMed

    Ran, Yumei; Yan, Biao; Li, Zhuqing; Ding, Yinyi; Shi, Yonghui; Le, Guowei

    2016-10-01

    Dietary modifications have been shown to contribute to the physical and mental diseases. Oxidative modifications of protein can be easily found in protein-rich food such as meat and milk products. Previous studies mainly focus on the consequences of lipid oxidation products intake in vivo, but the effects of protein oxidation products consumption have been largely neglected. Oxidants have been shown to play an important role in aging and neurodegenerative diseases. Dityrosine is the oxidated product of tyrosine residues in protein which is considered as a biomarker for oxidative stress, but the potential deleterious effects of dityrosine are unknown. In the present study, we explored the effects of dityrosine administration on the behavioral aspect. We found that dityrosine-ingested mice displayed impaired memory during novel object recognition test, but no influence to the spatial memory in Morris water maze compared with the saline group. Other aspects of neurobehavioral function such as locomotor activity, anxiety and social behavior were not affected by dityrosine ingestion. Furthermore, we found that dityrosine-ingested mice showed decreased expression level of NMDA receptor subunits Nr1, Nr2a, Nr2b as well as Bdnf, Trkb. Our study suggests that dityrosine exposure impairs hippocampus-dependent nonspatial memory accompanied by modulation of NMDA receptor subunits and Bdnf expression. PMID:27317839

  3. A checklist to facilitate objective hypothesis testing in social psychology research.

    PubMed

    Washburn, Anthony N; Morgan, G Scott; Skitka, Linda J

    2015-01-01

    Social psychology is not a very politically diverse area of inquiry, something that could negatively affect the objectivity of social psychological theory and research, as Duarte et al. argue in the target article. This commentary offers a number of checks to help researchers uncover possible biases and identify when they are engaging in hypothesis confirmation and advocacy instead of hypothesis testing. PMID:26786969

  4. A checklist to facilitate objective hypothesis testing in social psychology research.

    PubMed

    Washburn, Anthony N; Morgan, G Scott; Skitka, Linda J

    2015-01-01

    Social psychology is not a very politically diverse area of inquiry, something that could negatively affect the objectivity of social psychological theory and research, as Duarte et al. argue in the target article. This commentary offers a number of checks to help researchers uncover possible biases and identify when they are engaging in hypothesis confirmation and advocacy instead of hypothesis testing.

  5. The Benefits of Sensorimotor Knowledge: Body-Object Interaction Facilitates Semantic Processing

    ERIC Educational Resources Information Center

    Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Wilson, Kim; Locheed, Keri; Owen, William J.

    2008-01-01

    This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable.…

  6. Contrasting the edge- and surface-based theories of object recognition: behavioral evidence from macaques (Macaca mulatta).

    PubMed

    Parron, Carole; Washburn, David

    2010-01-01

    This study assessed the contribution of edge and surface cues on object representation in macaques (Macaca mulatta). In Experiments 1 and 2, 5 macaques were trained to discriminate 4 simple volumetric objects (geons) and were subsequently tested for their ability to recognize line drawings, silhouettes, and light changes of these geons. Performance was above chance in all test conditions and was similarly high for the line drawings and silhouettes of geons, suggesting the use of the outline shape to recognize the original objects. In addition, transfer for the geons seen under new lighting was greater than for the other stimuli, stressing the importance of the shading information. Experiment 3, using geons filled with new textures, showed that a radical change in the surface cues does not prevent object recognition. It is concluded that these findings support a surface-based theory of object recognition in macaques, although it does not exclude the contribution of edge cues, especially when surface details are not available.

  7. Feature binding in perceptual priming and in episodic object recognition: evidence from event-related brain potentials.

    PubMed

    Groh-Bordin, Christian; Zimmer, Hubert D; Mecklinger, Axel

    2005-08-01

    It is argued that explicit remembering is based on so-called episodic tokens binding together all perceptual features of a visual object. In episodic recognition, these features are collectively reactivated. In support of this view, it has been shown that changing sensory features of a stimulus from study to test decreases subject's performance in an episodic recognition task, even though the changed features are irrelevant for the recognition judgment. On the other hand, repetition priming is unaffected by such manipulations of perceptual specificity. Implicit memory performance is therefore thought to depend on structural representations, so-called types, comprising only invariant perceptual features, but no exemplar-specific details. Event-related potentials (ERPs) in our study revealed electrophysiological evidence for the differential involvement of these perceptual memory traces in explicit and implicit memory tasks. Participants attended either a living-nonliving task or an episodic recognition task with visually presented objects. During test both groups of participants processed new objects and old objects, which were repeated either identically or in a mirror-reversed version. In the implicit task ERPs showed an occipitoparietal repetition effect, which was the same for identically repeated items and mirror reversals. In contrast, in the explicit task an early mid-frontal old/new effect for identical but not for mirror-reversed old objects was observed indicating involuntary access to perceptual information during episodic retrieval. A later portion of the old/new effect solely differentiated both types of old items from new ones. PMID:16099366

  8. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  9. The Effect of Inversion on 3- to 5-Year-Olds' Recognition of Face and Nonface Visual Objects

    ERIC Educational Resources Information Center

    Picozzi, Marta; Cassia, Viola Macchi; Turati, Chiara; Vescovo, Elena

    2009-01-01

    This study compared the effect of stimulus inversion on 3- to 5-year-olds' recognition of faces and two nonface object categories matched with faces for a number of attributes: shoes (Experiment 1) and frontal images of cars (Experiments 2 and 3). The inversion effect was present for faces but not shoes at 3 years of age (Experiment 1). Analogous…

  10. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    ERIC Educational Resources Information Center

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  11. Estradiol-Induced Object Recognition Memory Consolidation Is Dependent on Activation of mTOR Signaling in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17[Beta]-estradiol (E[subscript 2]) is dependent on mTOR…

  12. Evidence for the Activation of Sensorimotor Information during Visual Word Recognition: The Body-Object Interaction Effect

    ERIC Educational Resources Information Center

    Siakaluk, Paul D.; Pexman, Penny M.; Aguilera, Laura; Owen, William J.; Sears, Christopher R.

    2008-01-01

    We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., "mask") and a set of low BOI…

  13. Intentional teaching facilitates young children's comprehension and use of a symbolic object.

    PubMed

    Maita, María Del Rosario; Mareovich, Florencia; Peralta, Olga

    2014-01-01

    Children are exposed to symbolic objects that they have to learn to use very early in life. The authors' aim was to examine whether it is possible to intentionally teach young children the symbolic function of an object. They employed a search task in which children had to use a map to find a toy. Experiment 1 revealed that with no instruction 3-year-, 10-month-old children were quite successful; 3-year-, 6-month-olds showed a divided performance; and 3-year-, 0-month-olds failed. With this baseline, Experiment 2 compared the performance of 3-year-, 0-month-olds in three different conditions: no-instruction, complete instruction (before the task begins), and teaching (complete instruction plus corrective feedback); only children in the teaching condition succeeded. However, children 6 months younger, 2-year-, 6-month-olds, failed despite teaching that was provided (Study 3). This research shows that at some points in development instruction is not enough; intentional teaching in communicative contexts is the mechanism that boosts symbolic understanding in early childhood. PMID:25271817

  14. Intentional teaching facilitates young children's comprehension and use of a symbolic object.

    PubMed

    Maita, María Del Rosario; Mareovich, Florencia; Peralta, Olga

    2014-01-01

    Children are exposed to symbolic objects that they have to learn to use very early in life. The authors' aim was to examine whether it is possible to intentionally teach young children the symbolic function of an object. They employed a search task in which children had to use a map to find a toy. Experiment 1 revealed that with no instruction 3-year-, 10-month-old children were quite successful; 3-year-, 6-month-olds showed a divided performance; and 3-year-, 0-month-olds failed. With this baseline, Experiment 2 compared the performance of 3-year-, 0-month-olds in three different conditions: no-instruction, complete instruction (before the task begins), and teaching (complete instruction plus corrective feedback); only children in the teaching condition succeeded. However, children 6 months younger, 2-year-, 6-month-olds, failed despite teaching that was provided (Study 3). This research shows that at some points in development instruction is not enough; intentional teaching in communicative contexts is the mechanism that boosts symbolic understanding in early childhood.

  15. Facilitating the right but not left DLPFC by TMS decreases truthfulness of object-naming responses.

    PubMed

    Karton, Inga; Rinne, Julia-Mai; Bachmann, Talis

    2014-09-01

    Dorsolateral prefrontal cortex (DLPFC) participates in many mental functions involving cognitive control. This also applies to processes underlying deception. Recently it was shown that, compared to the opposite effect found with left-hemisphere 1-Hz repetitive transcranial magnetic stimulation of the DLPFC, right-hemisphere stimulation decreased the propensity to produce untruthful responses in a subsequent task where subjects had freedom to name presented stimulus-objects either veridically or nonveridically. In a similar experiment, the purpose of the present study was to test whether changing the rTMS protocol from the disrupting to facilitatory type can lead to opposite results. When trains of 10-Hz pulses were delivered to the right DLPFC, propensity to lie increased while similar left-hemisphere DLPFC stimulation did not change the rate of untruthful responses. We can conclude that the way how right DLPFC and other areas functionally associated with it are involved in producing truthful or deliberately deceptive statements about perceived objects considerably depends on what are the parameters of stimulation by which functionality of this system is manipulated. PMID:24906194

  16. Object-based forest classification to facilitate landscape-scale conservation in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Mitchell, Michael; Wilson, R. Randy; Twedt, Daniel J.; Mini, Anne E.; James, J. Dale

    2016-01-01

    The Mississippi Alluvial Valley is a floodplain along the southern extent of the Mississippi River extending from southern Missouri to the Gulf of Mexico. This area once encompassed nearly 10 million ha of floodplain forests, most of which has been converted to agriculture over the past two centuries. Conservation programs in this region revolve around protection of existing forest and reforestation of converted lands. Therefore, an accurate and up to date classification of forest cover is essential for conservation planning, including efforts that prioritize areas for conservation activities. We used object-based image analysis with Random Forest classification to quickly and accurately classify forest cover. We used Landsat band, band ratio, and band index statistics to identify and define similar objects as our training sets instead of selecting individual training points. This provided a single rule-set that was used to classify each of the 11 Landsat 5 Thematic Mapper scenes that encompassed the Mississippi Alluvial Valley. We classified 3,307,910±85,344 ha (32% of this region) as forest. Our overall classification accuracy was 96.9% with Kappa statistic of 0.96. Because this method of forest classification is rapid and accurate, assessment of forest cover can be regularly updated and progress toward forest habitat goals identified in conservation plans can be periodically evaluated.

  17. A cholesterol recognition amino acid consensus domain in GP64 fusion protein facilitates anchoring of baculovirus to mammalian cells.

    PubMed

    Luz-Madrigal, Agustin; Asanov, Alexander; Camacho-Zarco, Aldo R; Sampieri, Alicia; Vaca, Luis

    2013-11-01

    Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV.

  18. A Cholesterol Recognition Amino Acid Consensus Domain in GP64 Fusion Protein Facilitates Anchoring of Baculovirus to Mammalian Cells

    PubMed Central

    Luz-Madrigal, Agustin; Asanov, Alexander; Camacho-Zarco, Aldo R.; Sampieri, Alicia

    2013-01-01

    Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV. PMID:23986592

  19. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    PubMed

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE. PMID:26529506

  20. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers

    PubMed Central

    Swartzwelder, H. Scott; Acheson, Shawn K.; Miller, Kelsey M.; Sexton, Hannah G.; Liu, Wen; Crews, Fulton T.; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE. PMID:26529506

  1. Hippocampal Activation of Rac1 Regulates the Forgetting of Object Recognition Memory.

    PubMed

    Liu, Yunlong; Du, Shuwen; Lv, Li; Lei, Bo; Shi, Wei; Tang, Yikai; Wang, Lianzhang; Zhong, Yi

    2016-09-12

    Forgetting is a universal feature for most types of memories. The best-defined and extensively characterized behaviors that depict forgetting are natural memory decay and interference-based forgetting [1, 2]. Molecular mechanisms underlying the active forgetting remain to be determined for memories in vertebrates. Recent progress has begun to unravel such mechanisms underlying the active forgetting [3-11] that is induced through the behavior-dependent activation of intracellular signaling pathways. In Drosophila, training-induced activation of the small G protein Rac1 mediates natural memory decay and interference-based forgetting of aversive conditioning memory [3]. In mice, the activation of photoactivable-Rac1 in recently potentiated spines in a motor learning task erases the motor memory [12]. These lines of evidence prompted us to investigate a role for Rac1 in time-based natural memory decay and interference-based forgetting in mice. The inhibition of Rac1 activity in hippocampal neurons through targeted expression of a dominant-negative Rac1 form extended object recognition memory from less than 72 hr to over 72 hr, whereas Rac1 activation accelerated memory decay within 24 hr. Interference-induced forgetting of this memory was correlated with Rac1 activation and was completely blocked by inhibition of Rac1 activity. Electrophysiological recordings of long-term potentiation provided independent evidence that further supported a role for Rac1 activation in forgetting. Thus, Rac1-dependent forgetting is evolutionarily conserved from invertebrates to vertebrates.

  2. Hippocampal Activation of Rac1 Regulates the Forgetting of Object Recognition Memory.

    PubMed

    Liu, Yunlong; Du, Shuwen; Lv, Li; Lei, Bo; Shi, Wei; Tang, Yikai; Wang, Lianzhang; Zhong, Yi

    2016-09-12

    Forgetting is a universal feature for most types of memories. The best-defined and extensively characterized behaviors that depict forgetting are natural memory decay and interference-based forgetting [1, 2]. Molecular mechanisms underlying the active forgetting remain to be determined for memories in vertebrates. Recent progress has begun to unravel such mechanisms underlying the active forgetting [3-11] that is induced through the behavior-dependent activation of intracellular signaling pathways. In Drosophila, training-induced activation of the small G protein Rac1 mediates natural memory decay and interference-based forgetting of aversive conditioning memory [3]. In mice, the activation of photoactivable-Rac1 in recently potentiated spines in a motor learning task erases the motor memory [12]. These lines of evidence prompted us to investigate a role for Rac1 in time-based natural memory decay and interference-based forgetting in mice. The inhibition of Rac1 activity in hippocampal neurons through targeted expression of a dominant-negative Rac1 form extended object recognition memory from less than 72 hr to over 72 hr, whereas Rac1 activation accelerated memory decay within 24 hr. Interference-induced forgetting of this memory was correlated with Rac1 activation and was completely blocked by inhibition of Rac1 activity. Electrophysiological recordings of long-term potentiation provided independent evidence that further supported a role for Rac1 activation in forgetting. Thus, Rac1-dependent forgetting is evolutionarily conserved from invertebrates to vertebrates. PMID:27593377

  3. A novel delayed non-match to sample object recognition task that allows simultaneous in vivo microdialysis.

    PubMed

    Ihalainen, Jouni; Sarajärvi, Timo; Kemppainen, Susanna; Keski-Rahkonen, Pekka; Lehtonen, Marko; Tanila, Heikki

    2010-06-15

    We present a modification of the widely used delayed non-match to sample (DNMS) paradigm for assessment of object recognition memory that can be combined with simultaneous in vivo microdialysis. The present study provides evidence that hippocampal ACh release increases from baseline during active exploration of the test environment and an empty test board, but a specific further increase is seen during the recognition memory task performance. This novel experimental model offers a good tool to study the impact of selective lesions or pharmacological manipulation simultaneously on neurotransmitter levels and memory task performance.

  4. Activity and function recognition for moving and static objects in urban environments from wide-area persistent surveillance inputs

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Bobick, Aaron; Jones, Eric

    2010-04-01

    In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.

  5. The effect of scene context on episodic object recognition: parahippocampal cortex mediates memory encoding and retrieval success.

    PubMed

    Hayes, Scott M; Nadel, Lynn; Ryan, Lee

    2007-01-01

    Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory.

  6. A comparison of the effects of depth rotation on visual and haptic three-dimensional object recognition.

    PubMed

    Lawson, Rebecca

    2009-08-01

    A sequential matching task was used to compare how the difficulty of shape discrimination influences the achievement of object constancy for depth rotations across haptic and visual object recognition. Stimuli were nameable, 3-dimensional plastic models of familiar objects (e.g., bed, chair) and morphs midway between these endpoint shapes (e.g., a bed-chair morph). The 2 objects presented on a trial were either both placed at the same orientation or were rotated by 90 degrees relative to each other. Discrimination difficulty was increased by presenting more similarly shaped objects on mismatch trials (easy: bed, then lizard; medium: bed, then chair; hard: bed, then bed-chair morph). For within-modal visual matching, orientation changes were most disruptive when shape discrimination was hardest. This interaction for 3-dimensional objects replicated the interaction reported in earlier studies presenting 2-dimensional pictures of the same objects (Lawson & Bülthoff, 2008). In contrast, orientation changes and discrimination difficulty had additive effects on within-modal haptic and cross-modal visual-to-haptic matching, whereas cross-modal haptic-to-visual matching was orientation invariant. These results suggest that the cause of orientation sensitivity may differ for visual and haptic object recognition.

  7. Implementation of a Peltier-based cooling device for localized deep cortical deactivation during in vivo object recognition testing

    NASA Astrophysics Data System (ADS)

    Marra, Kyle; Graham, Brett; Carouso, Samantha; Cox, David

    2012-02-01

    While the application of local cortical cooling has recently become a focus of neurological research, extended localized deactivation deep within brain structures is still unexplored. Using a wirelessly controlled thermoelectric (Peltier) device and water-based heat sink, we have achieved inactivating temperatures (<20 C) at greater depths (>8 mm) than previously reported. After implanting the device into Long Evans rats' basolateral amygdala (BLA), an inhibitory brain center that controls anxiety and fear, we ran an open field test during which anxiety-driven behavioral tendencies were observed to decrease during cooling, thus confirming the device's effect on behavior. Our device will next be implanted in the rats' temporal association cortex (TeA) and recordings from our signal-tracing multichannel microelectrodes will measure and compare activated and deactivated neuronal activity so as to isolate and study the TeA signals responsible for object recognition. Having already achieved a top performing computational face-recognition system, the lab will utilize this TeA activity data to generalize its computational efforts of face recognition to achieve general object recognition.

  8. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  9. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    PubMed

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway. PMID:25662715

  10. Forensic facial approximation assessment: can application of different average facial tissue depth data facilitate recognition and establish acceptable level of resemblance?

    PubMed

    Herrera, Lara Maria; Strapasson, Raíssa Ananda Paim; da Silva, Jorge Vicente Lopes; Melani, Rodolfo Francisco Haltenhoff

    2016-09-01

    Facial soft tissue thicknesses (FSTT) are important guidelines for modeling faces from skull. Amid so many FSTT data, Forensic artists have to make a subjective choice of a dataset that best meets their needs. This study investigated the performance of four FSTT datasets in the recognition and resemblance of Brazilian living individuals and the performance of assessors in recognizing people, according to sex and knowledge on Human Anatomy and Forensic Dentistry. Sixteen manual facial approximations (FAs) were constructed using three-dimensional (3D) prototypes of skulls (targets). The American method was chosen for the construction of the faces. One hundred and twenty participants evaluated all FAs by means of recognition and resemblance tests. This study showed higher proportions of recognition by FAs conducted with FSTT data from cadavers compared with those conducted with medical imaging data. Targets were also considered more similar to FAs conducted with FSTT data from cadavers. Nose and face shape, respectively, were considered the most similar regions to targets. The sex of assessors (male and female) and the knowledge on Human Anatomy and Forensic Dentistry did not play a determinant role to reach greater recognition rates. It was possible to conclude that FSTT data obtained from imaging may not facilitate recognition and establish acceptable level of resemblance. Grouping FSTT data by regions of the face, as proposed in this paper, may contribute to more accurate FAs.

  11. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds.

    PubMed

    Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio

    2009-02-01

    How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation

  12. ROSETTA: the compile-time recognition of object-oriented library abstractions and their use within user applications

    SciTech Connect

    Quinlan, D; Philip, B

    2001-01-08

    Libraries arise naturally from the increasing complexity of developing scientific applications, the optimization of libraries is just one type of high-performance optimization. Many complex applications areas can today be addressed by domain-specific object-oriented frameworks. Such object-oriented frameworks provide an effective compliment to an object-oriented language and effectively permit the design of what amount to essentially domain-specific languages. The optimization of such a domain-specific library/language combination however is particularly complicated due to the inability of the compiler to optimize the use of the libraries abstractions. The recognition of the use of object-oriented abstractions within user applications is a particularly difficult but important step in the optimization of how objects are used within expressions and statements. Such recognition entails more than just complex pattern matching. The approach presented within this paper uses specially built grammars to parse the C++ representation. The C++ representation is itself obtained using a modified version of the SAGE II C/C++ source code restructuring tool which is inturn based upon the Edison Design Group (EDG) C++ front-end. ROSETTA is a tool which automatically builds grammars and parsers from class definitions, associated parsers parse abstract syntax trees (ASTs) of lower level grammars into ASTs of higher level grammars. The lowest level grammar is that associated with the full C++ language itself, higher level grammars specialize the grammars specific to user defined objects. The grammars form a hierarchy and permit a high-degree of specialization in the recognition of complex use of user defined abstractions.

  13. The development of object recognition memory in rhesus macaques with neonatal lesions of the perirhinal cortex.

    PubMed

    Zeamer, Alyson; Richardson, Rebecca L; Weiss, Alison R; Bachevalier, Jocelyne

    2015-02-01

    To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC) task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood. PMID:25096364

  14. What Response Properties Do Individual Neurons Need to Underlie Position and Clutter “Invariant” Object Recognition?

    PubMed Central

    Li, Nuo; Cox, David D.; Zoccolan, Davide; DiCarlo, James J.

    2009-01-01

    Primates can easily identify visual objects over large changes in retinal position—a property commonly referred to as position “invariance.” This ability is widely assumed to depend on neurons in inferior temporal cortex (IT) that can respond selectively to isolated visual objects over similarly large ranges of retinal position. However, in the real world, objects rarely appear in isolation, and the interplay between position invariance and the representation of multiple objects (i.e., clutter) remains unresolved. At the heart of this issue is the intuition that the representations of nearby objects can interfere with one another and that the large receptive fields needed for position invariance can exacerbate this problem by increasing the range over which interference acts. Indeed, most IT neurons' responses are strongly affected by the presence of clutter. While external mechanisms (such as attention) are often invoked as a way out of the problem, we show (using recorded neuronal data and simulations) that the intrinsic properties of IT population responses, by themselves, can support object recognition in the face of limited clutter. Furthermore, we carried out extensive simulations of hypothetical neuronal populations to identify the essential individual-neuron ingredients of a good population representation. These simulations show that the crucial neuronal property to support recognition in clutter is not preservation of response magnitude, but preservation of each neuron's rank-order object preference under identity-preserving image transformations (e.g., clutter). Because IT neuronal responses often exhibit that response property, while neurons in earlier visual areas (e.g., V1) do not, we suggest that preserving the rank-order object preference regardless of clutter, rather than the response magnitude, more precisely describes the goal of individual neurons at the top of the ventral visual stream. PMID:19439676

  15. Coarse-coded higher-order neural networks for PSRI object recognition. [position, scale, and rotation invariant

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1993-01-01

    A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.

  16. The anterior temporal cortex is a primary semantic source of top-down influences on object recognition.

    PubMed

    Chiou, Rocco; Lambon Ralph, Matthew A

    2016-06-01

    Perception emerges from a dynamic interplay between feed-forward sensory input and feedback modulation along the cascade of neural processing. Prior knowledge, a major form of top-down modulatory signal, benefits perception by enabling efficacious inference and resolving ambiguity, particularly under circumstances of degraded visual input. Despite semantic information being a potentially critical source of this top-down influence, to date, the core neural substrate of semantic knowledge (the anterolateral temporal lobe - ATL) has not been considered as a key component of the feedback system. Here we provide direct evidence of its significance for visual cognition - the ATL underpins the semantic aspect of object recognition, amalgamating sensory-based (amount of accumulated sensory input) and semantic-based (representational proximity between exemplars and typicality of appearance) influences. Using transcranial theta-burst stimulation combined with a novel visual identification paradigm, we demonstrate that the left ATL contributes to discrimination between visual objects. Crucially, its contribution is especially vital under situations where semantic knowledge is most needed for supplementing deficiency of input (brief visual exposure), discerning analogously-coded exemplars (close representational distance), and resolving discordance (target appearance violating the statistical typicality of its category). Our findings characterise functional properties of the ATL in object recognition: this neural structure is summoned to augment the visual system when the latter is overtaxed by challenging conditions (insufficient input, overlapped neural coding, and conflict between incoming signal and expected configuration). This suggests a need to revisit current theories of object recognition, incorporating the ATL that interfaces high-level vision with semantic knowledge. PMID:27088615

  17. Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels.

    PubMed

    Hopkins, M E; Nitecki, R; Bucci, D J

    2011-10-27

    It is well established that physical exercise can enhance hippocampal-dependent forms of learning and memory in laboratory animals, commensurate with increases in hippocampal neural plasticity (brain-derived neurotrophic factor [BDNF] mRNA/protein, neurogenesis, long-term potentiation [LTP]). However, very little is known about the effects of exercise on other, non-spatial forms of learning and memory. In addition, there has been little investigation of the duration of the effects of exercise on behavior or plasticity. Likewise, few studies have compared the effects of exercising during adulthood versus adolescence. This is particularly important since exercise may capitalize on the peak of neural plasticity observed during adolescence, resulting in a different pattern of behavioral and neurobiological effects. The present study addressed these gaps in the literature by comparing the effects of 4 weeks of voluntary exercise (wheel running) during adulthood or adolescence on novel object recognition and BDNF levels in the perirhinal cortex (PER) and hippocampus (HP). Exercising during adulthood improved object recognition memory when rats were tested immediately after 4 weeks of exercise, an effect that was accompanied by increased BDNF levels in PER and HP. When rats were tested again 2 weeks after exercise ended, the effects of exercise on recognition memory and BDNF levels were no longer present. Exercising during adolescence had a very different pattern of effects. First, both exercising and non-exercising rats could discriminate between novel and familiar objects immediately after the exercise regimen ended; furthermore there was no group difference in BDNF levels. Two or four weeks later, however, rats that had previously exercised as adolescents could still discriminate between novel and familiar objects, while non-exercising rats could not. Moreover, the formerly exercising rats exhibited higher levels of BDNF in PER compared to HP, while the reverse was

  18. A self-organized learning strategy for object recognition by an embedded line of attraction

    NASA Astrophysics Data System (ADS)

    Seow, Ming-Jung; Alex, Ann T.; Asari, Vijayan K.

    2012-04-01

    on this observation we developed a self- organizing line attractor, which is capable of generating new lines in the feature space to learn unrecognized patterns. Experiments performed on UMIST pose database and CMU face expression variant database for face recognition have shown that the proposed nonlinear line attractor is able to successfully identify the individuals and it provided better recognition rate when compared to the state of the art face recognition techniques. Experiments on FRGC version 2 database has also provided excellent recognition rate in images captured in complex lighting environments. Experiments performed on the Japanese female face expression database and Essex Grimace database using the self organizing line attractor have also shown successful expression invariant face recognition. These results show that the proposed model is able to create nonlinear manifolds in a multidimensional feature space to distinguish complex patterns.

  19. Introducing AN Agent-Based Object Recognition Operator for Proximity Analysis

    NASA Astrophysics Data System (ADS)

    Behzadi, S.; Ali. Alesheikh, A.

    2013-09-01

    Object selection is a basic procedure in a Geographic Information System (GIS). Most current methods for doing so, select objects in two phases: create a simple distance-bounded geometric buffer; and intersect it with available features. This paper introduces a novel and intelligent selection operator based on the autonomy of the agent-based approach. The proposed operator recognizes objects around one object only in one step. In the proposed approach, each point object acts as an agent-automata object. It then senses its vicinity and identifies the surrounding objects. To assess the proposed model, the operator is designed, implemented, and evaluated in a case study. Finally, the results are evaluated and presented in details in the paper.

  20. Object recognition based on Google's reverse image search and image similarity

    NASA Astrophysics Data System (ADS)

    Horváth, András.

    2015-12-01

    Image classification is one of the most challenging tasks in computer vision and a general multiclass classifier could solve many different tasks in image processing. Classification is usually done by shallow learning for predefined objects, which is a difficult task and very different from human vision, which is based on continuous learning of object classes and one requires years to learn a large taxonomy of objects which are not disjunct nor independent. In this paper I present a system based on Google image similarity algorithm and Google image database, which can classify a large set of different objects in a human like manner, identifying related classes and taxonomies.

  1. Automatic Detection and Recognition of Man-Made Objects in High Resolution Remote Sensing Images Using Hierarchical Semantic Graph Model

    NASA Astrophysics Data System (ADS)

    Sun, X.; Thiele, A.; Hinz, S.; Fu, K.

    2013-05-01

    In this paper, we propose a hierarchical semantic graph model to detect and recognize man-made objects in high resolution remote sensing images automatically. Following the idea of part-based methods, our model builds a hierarchical possibility framework to explore both the appearance information and semantic relationships between objects and background. This multi-levels structure is promising to enable a more comprehensive understanding of natural scenes. After training local classifiers to calculate parts properties, we use belief propagation to transmit messages quantitatively, which could enhance the utilization of spatial constrains existed in images. Besides, discriminative learning and generative learning are combined interleavely in the inference procedure, to improve the training error and recognition efficiency. The experimental results demonstrate that this method is able to detect manmade objects in complicated surroundings with satisfactory precision and robustness.

  2. Correcting scale drift by object recognition in single-camera SLAM.

    PubMed

    Botterill, Tom; Mills, Steven; Green, Richard

    2013-12-01

    This paper proposes a novel solution to the problem of scale drift in single-camera simultaneous localization and mapping, based on recognizing and measuring objects. When reconstructing the trajectory of a camera moving in an unknown environment, the scale of the environment, and equivalently the speed of the camera, is obtained by accumulating relative scale estimates over sequences of frames. This leads to scale drift: errors in scale accumulate over time. The proposed solution is to learn the classes of objects that appear throughout the environment and to use measurements of the size of these objects to improve the scale estimate. A bag-of-words-based scheme to learn object classes, to recognize object instances, and to use these observations to correct scale drift is described and is demonstrated reducing accumulated errors by 64% while navigating for 2.5 km through a dynamic outdoor environment.

  3. Correcting scale drift by object recognition in single-camera SLAM.

    PubMed

    Botterill, Tom; Mills, Steven; Green, Richard

    2013-12-01

    This paper proposes a novel solution to the problem of scale drift in single-camera simultaneous localization and mapping, based on recognizing and measuring objects. When reconstructing the trajectory of a camera moving in an unknown environment, the scale of the environment, and equivalently the speed of the camera, is obtained by accumulating relative scale estimates over sequences of frames. This leads to scale drift: errors in scale accumulate over time. The proposed solution is to learn the classes of objects that appear throughout the environment and to use measurements of the size of these objects to improve the scale estimate. A bag-of-words-based scheme to learn object classes, to recognize object instances, and to use these observations to correct scale drift is described and is demonstrated reducing accumulated errors by 64% while navigating for 2.5 km through a dynamic outdoor environment. PMID:24273146

  4. Effects of the Similarity and Dissimilarity between Familiarization and Test Objects on Recognition Memory in Infants Following Unimodal and Bimodal Familiarization.

    ERIC Educational Resources Information Center

    Rolfe, Sharne A.; Day, R. H.

    1981-01-01

    Two experiments were conducted to investigate six-month-old infants' recognition memory for the shape of an object following unimodal (visual) and bimodal (visual and haptic) familiarization. Visual recognition memory was evident only when the conditions of familiarization and testing were identical. Two possible explanations are presented and…

  5. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. PMID:27233822

  6. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location.

  7. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet

    PubMed Central

    Rolls, Edmund T.

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus. PMID:22723777

  8. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    PubMed

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus. PMID:22723777

  9. Words Jump-Start Vision: A Label Advantage in Object Recognition.

    PubMed

    Boutonnet, Bastien; Lupyan, Gary

    2015-06-24

    People use language to shape each other's behavior in highly flexible ways. Effects of language are often assumed to be "high-level" in that, whereas language clearly influences reasoning, decision making, and memory, it does not influence low-level visual processes. Here, we test the prediction that words are able to provide top-down guidance at the very earliest stages of visual processing by acting as powerful categorical cues. We investigated whether visual processing of images of familiar animals and artifacts was enhanced after hearing their name (e.g., "dog") compared with hearing an equally familiar and unambiguous nonverbal sound (e.g., a dog bark) in 14 English monolingual speakers. Because the relationship between words and their referents is categorical, we expected words to deploy more effective categorical templates, allowing for more rapid visual recognition. By recording EEGs, we were able to determine whether this label advantage stemmed from changes to early visual processing or later semantic decision processes. The results showed that hearing a word affected early visual processes and that this modulation was specific to the named category. An analysis of ERPs showed that the P1 was larger when people were cued by labels compared with equally informative nonverbal cues-an enhancement occurring within 100 ms of image onset, which also predicted behavioral responses occurring almost 500 ms later. Hearing labels modulated the P1 such that it distinguished between target and nontarget images, showing that words rapidly guide early visual processing.

  10. Words Jump-Start Vision: A Label Advantage in Object Recognition.

    PubMed

    Boutonnet, Bastien; Lupyan, Gary

    2015-06-24

    People use language to shape each other's behavior in highly flexible ways. Effects of language are often assumed to be "high-level" in that, whereas language clearly influences reasoning, decision making, and memory, it does not influence low-level visual processes. Here, we test the prediction that words are able to provide top-down guidance at the very earliest stages of visual processing by acting as powerful categorical cues. We investigated whether visual processing of images of familiar animals and artifacts was enhanced after hearing their name (e.g., "dog") compared with hearing an equally familiar and unambiguous nonverbal sound (e.g., a dog bark) in 14 English monolingual speakers. Because the relationship between words and their referents is categorical, we expected words to deploy more effective categorical templates, allowing for more rapid visual recognition. By recording EEGs, we were able to determine whether this label advantage stemmed from changes to early visual processing or later semantic decision processes. The results showed that hearing a word affected early visual processes and that this modulation was specific to the named category. An analysis of ERPs showed that the P1 was larger when people were cued by labels compared with equally informative nonverbal cues-an enhancement occurring within 100 ms of image onset, which also predicted behavioral responses occurring almost 500 ms later. Hearing labels modulated the P1 such that it distinguished between target and nontarget images, showing that words rapidly guide early visual processing. PMID:26109657

  11. Quantitative MRI myocarditis analysis by a PCA-based object recognition algorithm

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Giordano, Gerardo; De Giorgi, Igino; Orientale, Antonio; Babino, Giovanni; Barone, Fabrizio

    2016-03-01

    Magnetic Resonance Imaging (MRI) has shown promising results in diagnosing myocarditis that can be qualitatively observed as enhanced pixels on the cardiac muscles images. In this paper, a quantitative MRI Myocarditis Analysis is proposed. Analysis consists in introducing a myocarditis index, defined as the ratio between enhanced pixels, representing an inflammation, and the total pixels of myocardial muscle. In order to recognize and quantify enhanced pixels, a PCA-based recognition algorithm is used. The algorithm, implemented in Matlab, was tested by examining a group of 12 patients, referred to MRI with presumptive, clinical diagnosis of myocarditis. To assess intra- and interobserver variability, two observers blindly analyzed data related to the 12 patients by delimiting myocardial region and selecting enhanced pixels. After 10 days the same observers redid the analysis. The obtained myocarditis indexes were compared to an ordinal variable (values in the 1 - 5 range) that represented the blind assessment of myocarditis seriousness given by two radiologists on the base of the patient case histories. Results show that there is a significant correlation (P < 0:001; r = 0:96) between myocarditis indexes and the radiologists' clinical judgments. Furthermore, a good intraobserver and interobserver reproducibility was obtained.

  12. Spherical blurred shape model for 3-D object and pose recognition: quantitative analysis and HCI applications in smart environments.

    PubMed

    Lopes, Oscar; Reyes, Miguel; Escalera, Sergio; Gonzàlez, Jordi

    2014-12-01

    The use of depth maps is of increasing interest after the advent of cheap multisensor devices based on structured light, such as Kinect. In this context, there is a strong need of powerful 3-D shape descriptors able to generate rich object representations. Although several 3-D descriptors have been already proposed in the literature, the research of discriminative and computationally efficient descriptors is still an open issue. In this paper, we propose a novel point cloud descriptor called spherical blurred shape model (SBSM) that successfully encodes the structure density and local variabilities of an object based on shape voxel distances and a neighborhood propagation strategy. The proposed SBSM is proven to be rotation and scale invariant, robust to noise and occlusions, highly discriminative for multiple categories of complex objects like the human hand, and computationally efficient since the SBSM complexity is linear to the number of object voxels. Experimental evaluation in public depth multiclass object data, 3-D facial expressions data, and a novel hand poses data sets show significant performance improvements in relation to state-of-the-art approaches. Moreover, the effectiveness of the proposal is also proved for object spotting in 3-D scenes and for real-time automatic hand pose recognition in human computer interaction scenarios. PMID:25415944

  13. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory. PMID:27444242

  14. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory.

  15. Changes to the object recognition system in patients with dementia of the Alzheimer's type.

    PubMed

    Purdy, K S; McMullen, P A; Freedman, M

    2002-07-01

    Do DAT patients show category-specific deficits in object identification, and do they arise from semantic or visual damage? Participants decided whether line drawings of living and nonliving objects matched names at superordinate, basic, or subordinate levels. Patients were most impaired with superordinate decisions. Controls had most difficulty with subordinate decisions. No category-specific deficit was found with patients. Impaired superordinate decisions by the patients support semantic damage. If category-specific deficits arise from damaged semantics, they should have been found. Since they were not, and since patients performed subordinate decisions the best, a visual basis to category specificity is supported. Finally, a living advantage was found with normal observers which cannot be spurious due to differences in concept familiarity since living and nonliving objects were matched for this variable. PMID:15259393

  16. Cortical plasticity for visuospatial processing and object recognition in deaf and hearing signers.

    PubMed

    Weisberg, Jill; Koo, Daniel S; Crain, Kelly L; Eden, Guinevere F

    2012-03-01

    Experience-dependent plasticity in deaf participants has been shown in a variety of studies focused on either the dorsal or ventral aspects of the visual system, but both systems have never been investigated in concert. Using functional magnetic resonance imaging (fMRI), we investigated functional plasticity for spatial processing (a dorsal visual pathway function) and for object processing (a ventral visual pathway function) concurrently, in the context of differing sensory (auditory deprivation) and language (use of a signed language) experience. During scanning, deaf native users of American Sign Language (ASL), hearing native ASL users, and hearing participants without ASL experience attended to either the spatial arrangement of frames containing objects or the identity of the objects themselves. These two tasks revealed the expected dorsal/ventral dichotomy for spatial versus object processing in all groups. In addition, the object identity matching task contained both face and house stimuli, allowing us to examine category-selectivity in the ventral pathway in all three participant groups. When contrasting the groups we found that deaf signers differed from the two hearing groups in dorsal pathway parietal regions involved in spatial cognition, suggesting sensory experience-driven plasticity. Group differences in the object processing system indicated that responses in the face-selective right lateral fusiform gyrus and anterior superior temporal cortex were sensitive to a combination of altered sensory and language experience, whereas responses in the amygdala were more closely tied to sensory experience. By selectively engaging the dorsal and ventral visual pathways within participants in groups with different sensory and language experiences, we have demonstrated that these experiences affect the function of both of these systems, and that certain changes are more closely tied to sensory experience, while others are driven by the combination of sensory and

  17. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. PMID

  18. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory.

  19. Recognition by Humans and Pigeons of Novel Views of 3-D Objects and Their Photographs

    ERIC Educational Resources Information Center

    Friedman, Alinda; Spetch, Marcia L.; Ferrey, Anne

    2005-01-01

    Humans and pigeons were trained to discriminate between 2 views of actual 3-D objects or their photographs. They were tested on novel views that were either within the closest rotational distance between the training views (interpolated) or outside of that range (extrapolated). When training views were 60? apart, pigeons, but not humans,…

  20. Error-Driven Learning in Visual Categorization and Object Recognition: A Common-Elements Model

    ERIC Educational Resources Information Center

    Soto, Fabian A.; Wasserman, Edward A.

    2010-01-01

    A wealth of empirical evidence has now accumulated concerning animals' categorizing photographs of real-world objects. Although these complex stimuli have the advantage of fostering rapid category learning, they are difficult to manipulate experimentally and to represent in formal models of behavior. We present a solution to the representation…

  1. A Tumor-specific MicroRNA Recognition System Facilitates the Accurate Targeting to Tumor Cells by Magnetic Nanoparticles

    PubMed Central

    Yu, Yingting; Yao, Yi; Yan, Hao; Wang, Rui; Zhang, Zhenming; Sun, Xiaodan; Zhao, Lingyun; Ao, Xiang; Xie, Zhen; Wu, Qiong

    2016-01-01

    Targeted therapy for cancer is a research area of great interest, and magnetic nanoparticles (MNPs) show great potential as targeted carriers for therapeutics. One important class of cancer biomarkers is microRNAs (miRNAs), which play a significant role in tumor initiation and progression. In this study, a cascade recognition system containing multiple plasmids, including a Tet activator, a lacI repressor gene driven by the TetOn promoter, and a reporter gene repressed by the lacI repressor and influenced by multiple endogenous miRNAs, was used to recognize cells that display miRNA signals that are characteristic of cancer. For this purpose, three types of signal miRNAs with high proliferation and metastasis abilities were chosen (miR-21, miR-145, and miR-9). The response of this system to the human breast cancer MCF-7 cell line was 3.2-fold higher than that to the human breast epithelial HBL100 cell line and almost 7.5-fold higher than that to human embryonic kidney HEK293T cells. In combination with polyethyleneimine-modified MNPs, this recognition system targeted the tumor location in situ in an animal model, and an ~42% repression of tumor growth was achieved. Our study provides a new combination of magnetic nanocarrier and gene therapy based on miRNAs that are active in vivo, which has potential for use in future cancer therapies. PMID:27138178

  2. Differential Cortical c-Fos and Zif-268 Expression after Object and Spatial Memory Processing in a Standard or Episodic-Like Object Recognition Task

    PubMed Central

    Barbosa, Flávio Freitas; Santos, José Ronaldo; Meurer, Ywlliane S. Rodrigues; Macêdo, Priscila Tavares; Ferreira, Luane M. Stamatto; Pontes, Isabella M. Oliveira; Ribeiro, Alessandra Mussi; Silva, Regina Helena

    2013-01-01

    Episodic memory reflects the capacity to recollect what, where, and when a specific event happened in an integrative manner. Animal studies have suggested that the medial temporal lobe and the medial pre-frontal cortex are important for episodic-like memory (ELM) formation. The goal of present study was to evaluate whether there are different patterns of expression of the immediate early genes c-Fos and Zif-268 in these cortical areas after rats are exposed to object recognition (OR) tasks with different cognitive demands. Male rats were randomly assigned to five groups: home cage control, empty open field (CTR-OF), open field with one object (CTR-OF + Obj), novel OR task, and ELM task and were killed 1 h after the last behavioral procedure. Rats were able to discriminate the objects in the OR task. In the ELM task, rats showed spatial (but not temporal) discrimination of the objects. We found an increase in the c-Fos expression in the dorsal dentate gyrus (DG) and in the perirhinal cortex (PRh) in the OR and ELM groups. The OR group also presented an increase of c-Fos expression in the medial prefrontal cortex (mPFC). Additionally, the OR and ELM groups had increased expression of Zif-268 in the mPFC. Moreover, Zif-268 was increased in the dorsal CA1 and PRh only in the ELM group. In conclusion, the pattern of activation was different in tasks with different cognitive demands. Accordingly, correlation tests suggest the engagement of different neural networks in the tasks used. Specifically, perirhinal-DG co-activation was detected after the what-where memory retrieval, but not after the novel OR task. Both regions correlated with the respective behavioral outcome. These findings can be helpful in the understanding of the neural networks underlying memory tasks with different cognitive demands. PMID:23986669

  3. Improved maximum average correlation height filter with adaptive log base selection for object recognition

    NASA Astrophysics Data System (ADS)

    Tehsin, Sara; Rehman, Saad; Awan, Ahmad B.; Chaudry, Qaiser; Abbas, Muhammad; Young, Rupert; Asif, Afia

    2016-04-01

    Sensitivity to the variations in the reference image is a major concern when recognizing target objects. A combinational framework of correlation filters and logarithmic transformation has been previously reported to resolve this issue alongside catering for scale and rotation changes of the object in the presence of distortion and noise. In this paper, we have extended the work to include the influence of different logarithmic bases on the resultant correlation plane. The meaningful changes in correlation parameters along with contraction/expansion in the correlation plane peak have been identified under different scenarios. Based on our research, we propose some specific log bases to be used in logarithmically transformed correlation filters for achieving suitable tolerance to different variations. The study is based upon testing a range of logarithmic bases for different situations and finding an optimal logarithmic base for each particular set of distortions. Our results show improved correlation and target detection accuracies.

  4. Automatic Recognition Of Moving Objects And Its Application To A Robot For Picking Asparagus

    NASA Astrophysics Data System (ADS)

    Baylou, P.; Amor, B. El Hadj; Bousseau, G.

    1983-10-01

    After a brief description of the robot for picking white asparagus, a statistical study of the different shapes of asparagus tips allowed us to determine certain discriminating parameters to detect the tips as they appear on the silhouette of the mound of earth. The localisation was done stereometrically with the help of two cameras. As the robot carrying the system of vision-localisation moves, the images are altered and decision cri-teria modified. A study of the image from mobile objects produced by both tube and CCD came-ras was carried out. A simulation of this phenomenon has been achieved in order to determine the modifications concerning object shapes, thresholding levels and decision parameters in function of the robot speed.

  5. Statistical Model For Pseudo-Moving Objects Recognition In Video Surveillance Systems

    NASA Astrophysics Data System (ADS)

    Vishnyakov, B.; Egorov, A.; Sidyakin, S.; Malin, I.; Vizilter, Y.

    2014-08-01

    This paper considers a statistical approach to define pseudo-moving (false) objects in video surveillance systems by constructing systems of hypothesis with the criteria based on statistical behavioral particularities. The obtained results are integrated in two ways: using the Bayes' theorem or the logistic regression. FAR-FRR curves are plotted for each system of hypothesis and also for the decision rule. The results of the proposed methods are obtained on test video databases.

  6. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes

    PubMed Central

    Yebes, J. Javier; Bergasa, Luis M.; García-Garrido, Miguel Ángel

    2015-01-01

    Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban scenarios is the detection of road participants (e.g., cyclists, pedestrians and vehicles). In this regard, this paper tackles the detection and orientation estimation of cars, pedestrians and cyclists, employing the challenging and naturalistic KITTI images. This work proposes 3D-aware features computed from stereo color images in order to capture the appearance and depth peculiarities of the objects in road scenes. The successful part-based object detector, known as DPM, is extended to learn richer models from the 2.5D data (color and disparity), while also carrying out a detailed analysis of the training pipeline. A large set of experiments evaluate the proposals, and the best performing approach is ranked on the KITTI website. Indeed, this is the first work that reports results with stereo data for the KITTI object challenge, achieving increased detection ratios for the classes car and cyclist compared to a baseline DPM. PMID:25903553

  7. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes.

    PubMed

    Yebes, J Javier; Bergasa, Luis M; García-Garrido, Miguel Ángel

    2015-01-01

    Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban scenarios is the detection of road participants (e.g., cyclists, pedestrians and vehicles). In this regard, this paper tackles the detection and orientation estimation of cars, pedestrians and cyclists, employing the challenging and naturalistic KITTI images. This work proposes 3D-aware features computed from stereo color images in order to capture the appearance and depth peculiarities of the objects in road scenes. The successful part-based object detector, known as DPM, is extended to learn richer models from the 2.5D data (color and disparity), while also carrying out a detailed analysis of the training pipeline. A large set of experiments evaluate the proposals, and the best performing approach is ranked on the KITTI website. Indeed, this is the first work that reports results with stereo data for the KITTI object challenge, achieving increased detection ratios for the classes car and cyclist compared to a baseline DPM. PMID:25903553

  8. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes.

    PubMed

    Yebes, J Javier; Bergasa, Luis M; García-Garrido, Miguel Ángel

    2015-04-20

    Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban scenarios is the detection of road participants (e.g., cyclists, pedestrians and vehicles). In this regard, this paper tackles the detection and orientation estimation of cars, pedestrians and cyclists, employing the challenging and naturalistic KITTI images. This work proposes 3D-aware features computed from stereo color images in order to capture the appearance and depth peculiarities of the objects in road scenes. The successful part-based object detector, known as DPM, is extended to learn richer models from the 2.5D data (color and disparity), while also carrying out a detailed analysis of the training pipeline. A large set of experiments evaluate the proposals, and the best performing approach is ranked on the KITTI website. Indeed, this is the first work that reports results with stereo data for the KITTI object challenge, achieving increased detection ratios for the classes car and cyclist compared to a baseline DPM.

  9. Spatial Memory and Long-Term Object Recognition Are Impaired by Circadian Arrhythmia and Restored by the GABAAAntagonist Pentylenetetrazole

    PubMed Central

    Ruby, Norman F.; Fernandez, Fabian; Garrett, Alex; Klima, Jessy; Zhang, Pei; Sapolsky, Robert; Heller, H. Craig

    2013-01-01

    Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopussungorus) so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABAA antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus. PMID:24009680

  10. Spatial memory and long-term object recognition are impaired by circadian arrhythmia and restored by the GABAAAntagonist pentylenetetrazole.

    PubMed

    Ruby, Norman F; Fernandez, Fabian; Garrett, Alex; Klima, Jessy; Zhang, Pei; Sapolsky, Robert; Heller, H Craig

    2013-01-01

    Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopus sungorus) [corrected] so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABAA antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus.

  11. Information persistence in the integration of partial cues for object recognition.

    PubMed

    Greene, Ernest

    2007-07-01

    A great many studies have shown that the perceptual effects of very brief visual stimuli can persist beyond the duration of the stimulus itself. These effects include sustained perception of the stimulus even though it is no longer present and the integration of information across an interstimulus interval. These two forms of sustained activity can be characterized as visible persistence and information persistence. Iconic memory protocols and a number of discrimination tasks have demonstrated the existence of information persistence that can last up to several hundred milliseconds, but there is little evidence that the cues needed for identification of objects can be transferred across intervals in this range. In the present experiments, a minimal transient discrete cue protocol was used to demonstrate that shape cues, these being provided by subsets of dots that mark the outer boundary of nameable objects, can be integrated over several hundred milliseconds and that the duration is a function of ambient room illumination. The experiments further evaluated whether this information persistence is mediated by visible persistence. Although both perceptual effects have durations that are an inverse function of room illumination, the ability to integrate partial shape cues was not determined by the duration of visible persistence. PMID:17929699

  12. Communication target object recognition for D2D connection with feature size limit

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Kim, Soochang; Kim, Young-hoon; Lee, Chulhee

    2015-03-01

    Recently, a new concept of device-to-device (D2D) communication, which is called "point-and-link communication" has attracted great attentions due to its intuitive and simple operation. This approach enables user to communicate with target devices without any pre-identification information such as SSIDs, MAC addresses by selecting the target image displayed on the user's own device. In this paper, we present an efficient object matching algorithm that can be applied to look(point)-and-link communications for mobile services. Due to the limited channel bandwidth and low computational power of mobile terminals, the matching algorithm should satisfy low-complexity, low-memory and realtime requirements. To meet these requirements, we propose fast and robust feature extraction by considering the descriptor size and processing time. The proposed algorithm utilizes a HSV color histogram, SIFT (Scale Invariant Feature Transform) features and object aspect ratios. To reduce the descriptor size under 300 bytes, a limited number of SIFT key points were chosen as feature points and histograms were binarized while maintaining required performance. Experimental results show the robustness and the efficiency of the proposed algorithm.

  13. Distinct preference for spatial frequency content in ventral stream regions underlying the recognition of scenes, faces, bodies and other objects.

    PubMed

    Canário, Nádia; Jorge, Lília; Loureiro Silva, M F; Alberto Soares, Mário; Castelo-Branco, Miguel

    2016-07-01

    The ventral visual pathway receives both inputs from parvocellular and magnocellular pathways, and combines information from distinct high and low spatial frequency channels (HSF and LSF). Using a random effects region of interest general linear model approach (n=21), we aimed to compare the selectivity to different spatial frequency channels in eight key areas involved in visual object recognition: FFA, OFA, and STS, for face processing; FBA, and EBA as body selective regions; (dorsal and ventral) LOC for object perception; PPA for processing information of places and VWFA as a region which responds to written verbal material. We found that face and body selective regions had significantly higher response to LSF, suggesting an important contribution of holistic processing favoring LSF channels, while other object responsive regions had a higher response to HSF, suggesting a more important role for detailed component processing. Both FBA and VWFA failed to reveal a preference to SF content. These findings apply in general to the preferred category, with the notable exception of PPA, which revealed a higher response to HSF for all categories of stimuli. Our results suggest that areas along the ventral stream have distinct spatial frequency preferences that seem to reflect both the nature of visual objects being processed, their position in the visual hierarchy, task demands and the relevance of holistic versus detailed processing. PMID:27180002

  14. Combining soft decision algorithms and scale-sequential hypotheses pruning for object recognition

    SciTech Connect

    Kumar, V.P.; Manolakos, E.S.

    1996-12-31

    This paper describes a system that exploits the synergy of Hierarchical Mixture Density (HMD) estimation with multiresolution decomposition based hypothesis pruning to perform efficiently joint segmentation and labeling of partially occluded objects in images. First we present the overall structure of the HMD estimation algorithm in the form of a recurrent neural network which generates the posterior probabilities of the various hypotheses associated with the image. Then in order to reduce the large memory and computation requirement we propose a hypothesis pruning scheme making use of the orthonormal discrete wavelet transform for dimensionality reduction. We provide an intuitive justification for the validity of this scheme and present experimental results and performance analysis on real and synthetic images to verify our claims.

  15. Error-Driven Learning in Visual Categorization and Object Recognition: A Common Elements Model

    PubMed Central

    Soto, Fabian A.; Wasserman, Edward A.

    2010-01-01

    A wealth of empirical evidence has now accumulated concerning animals’ categorizing photographs of real-world objects. Although these complex stimuli have the advantage of fostering rapid category learning, they are difficult to manipulate experimentally and to represent in formal models of behavior. We present a solution to the representation problem in modeling natural categorization by adopting a common-elements approach. A common-elements stimulus representation, in conjunction with an error-driven learning rule, can explain a wide range of experimental outcomes in animals’ categorization of naturalistic images. The model also generates novel predictions that can be empirically tested. We report two experiments which show how entirely hypothetical representational elements can nevertheless be subject to experimental manipulation. The results represent the first evidence of error-driven learning in natural image categorization and they support the idea that basic associative processes underlie this important form of animal cognition. PMID:20438230

  16. Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence.

    PubMed

    Mello-Carpes, Pâmela B; da Silva de Vargas, Liane; Gayer, Mateus Cristofari; Roehrs, Rafael; Izquierdo, Ivan

    2016-01-01

    Previously we showed that activation of the Nucleus of the Solitary Tract (NTS)-Nucleus Paragigantocellularis (PGi)-Locus coeruleus (LC) pathway, which theoretically culminates with norepinephrine (NE) release in dorsal hippocampus (CA1 region) and basolateral amygdala (BLA) is necessary for the consolidation of object recognition (OR) memory. Here we show that, while the microinjection of the beta-noradrenergic receptor blocker timolol into CA1 impairs OR memory consolidation, the microinjection of norepinephrine (NE) promotes the persistence of this type of memory. Further, we show that OR consolidation is attended by an increase of norepinephrine (NE) levels and of the expression of brain derived neurotrophic factor (BDNF) in hippocampus, which are impaired by inactivation of the NTS-PGi-LC pathway by the infusion of muscimol into the NTS. PMID:26691781

  17. Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence.

    PubMed

    Mello-Carpes, Pâmela B; da Silva de Vargas, Liane; Gayer, Mateus Cristofari; Roehrs, Rafael; Izquierdo, Ivan

    2016-01-01

    Previously we showed that activation of the Nucleus of the Solitary Tract (NTS)-Nucleus Paragigantocellularis (PGi)-Locus coeruleus (LC) pathway, which theoretically culminates with norepinephrine (NE) release in dorsal hippocampus (CA1 region) and basolateral amygdala (BLA) is necessary for the consolidation of object recognition (OR) memory. Here we show that, while the microinjection of the beta-noradrenergic receptor blocker timolol into CA1 impairs OR memory consolidation, the microinjection of norepinephrine (NE) promotes the persistence of this type of memory. Further, we show that OR consolidation is attended by an increase of norepinephrine (NE) levels and of the expression of brain derived neurotrophic factor (BDNF) in hippocampus, which are impaired by inactivation of the NTS-PGi-LC pathway by the infusion of muscimol into the NTS.

  18. The anatomy of object recognition--visual form agnosia caused by medial occipitotemporal stroke.

    PubMed

    Karnath, Hans-Otto; Rüter, Johannes; Mandler, André; Himmelbach, Marc

    2009-05-01

    The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). Since CO induces a diffuse and widespread pattern of neuronal and white matter damage throughout the whole brain, precise conclusions from these patients with VFA on the selective role of ventral stream structures for shape and orientation perception were difficult. Here, we report patient J.S., who demonstrated VFA after a well circumscribed brain lesion due to stroke etiology. Like the famous patient D.F. with VFA after CO intoxication studied by Milner, Goodale, and coworkers (Goodale et al., 1991, 1994; Milner et al., 1991; Servos et al., 1995; Mon-Williams et al., 2001a,b; Wann et al., 2001; Westwood et al., 2002; McIntosh et al., 2004; Schenk and Milner, 2006), J.S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.

  19. A Vision System for Real Time Road and Object Recognition for Vehicle Guidance

    NASA Astrophysics Data System (ADS)

    Jackson, T. A.; Samuelsen, G. S.

    1987-02-01

    tolerated. Another algorithm tracks prominent points on other objects (e.g. vehicles) to collect possible candidates of obstacles during the real time run. A complete image analysis for the relevant features is performed in one video cycle (16.6 ms).

  20. Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer's disease.

    PubMed

    Kubota, Takashi; Matsumoto, Hiroshi; Kirino, Yutaka

    2016-07-01

    Membrane-associated estrogen receptor "G protein-coupled receptor 30" (GPR30) has been implicated in spatial recognition memory and protection against neuronal death. The present study investigated the role of GPR30 in object recognition memory in an Alzheimer's disease (AD) mouse model (5XFAD) by using novel object recognition (NOR) test. Impairment of long-term (24 h) recognition memory was observed in both male and female 5XFAD mice. Selective GPR30 agonist, G-1, ameliorated this impairment in female 5XFAD mice, but not in male mice. Our study demonstrated the ameliorative role of GPR30 in NOR memory impaired by AD pathology in female mice. PMID:27423484

  1. Impairment of object recognition memory by maternal bisphenol A exposure is associated with inhibition of Akt and ERK/CREB/BDNF pathway in the male offspring hippocampus.

    PubMed

    Wang, Chong; Li, Zhihui; Han, Haijun; Luo, Guangying; Zhou, Bingrui; Wang, Shaolin; Wang, Jundong

    2016-02-01

    Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical used as a component of polycarbonates plastics that has potential adverse effects on human health. Exposure to BPA during development has been implicated in memory deficits, but the mechanism of action underlying the effect is not fully understood. In this study, we investigated the effect of maternal exposure to BPA on object recognition memory and the expressions of proteins important for memory, especially focusing on the ERK/CREB/BDNF pathway. Pregnant Sprague-Dawley female rats were orally treated with either vehicle or BPA (0.05, 0.5, 5 or 50 mg/kg BW/day) during days 9-20 of gestation. Male offspring were tested on postnatal day 21 with the object recognition task. Recognition memory was assessed using the object recognition index (index=the time spent exploring the novel object/(the time spent exploring the novel object+the time spent exploring the familiar object)). In the test session performed 90 min after the training session, BPA-exposed male offspring not only spent more time in exploring the familiar object at the highest dose than the control, but also displayed a significantly decreased the object recognition index at the doses of 0.5, 5 and 50 mg/kg BW/day. During the test session performed 24h after the training session, BPA-treated males did not change the time spent exploring the familiar object, but had a decreased object recognition index at 5 and 50 mg/kg BW/day, when compared to control group. These findings indicate that object recognition memory was susceptible to maternal BPA exposure. Western blot analysis of hippocampi from BPA-treated male offspring revealed a decrease in Akt, phospho-Akt, p44/42 MAPK and phospho-p44/42 MAPK protein levels, compared to controls. In addition, BPA significantly inhibited the levels of phosphorylation of CREB and BDNF in the hippocampus. Our results show that maternal BPA exposure may full impair object recognition memory, and that

  2. Impairment of object recognition memory by maternal bisphenol A exposure is associated with inhibition of Akt and ERK/CREB/BDNF pathway in the male offspring hippocampus.

    PubMed

    Wang, Chong; Li, Zhihui; Han, Haijun; Luo, Guangying; Zhou, Bingrui; Wang, Shaolin; Wang, Jundong

    2016-02-01

    Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical used as a component of polycarbonates plastics that has potential adverse effects on human health. Exposure to BPA during development has been implicated in memory deficits, but the mechanism of action underlying the effect is not fully understood. In this study, we investigated the effect of maternal exposure to BPA on object recognition memory and the expressions of proteins important for memory, especially focusing on the ERK/CREB/BDNF pathway. Pregnant Sprague-Dawley female rats were orally treated with either vehicle or BPA (0.05, 0.5, 5 or 50 mg/kg BW/day) during days 9-20 of gestation. Male offspring were tested on postnatal day 21 with the object recognition task. Recognition memory was assessed using the object recognition index (index=the time spent exploring the novel object/(the time spent exploring the novel object+the time spent exploring the familiar object)). In the test session performed 90 min after the training session, BPA-exposed male offspring not only spent more time in exploring the familiar object at the highest dose than the control, but also displayed a significantly decreased the object recognition index at the doses of 0.5, 5 and 50 mg/kg BW/day. During the test session performed 24h after the training session, BPA-treated males did not change the time spent exploring the familiar object, but had a decreased object recognition index at 5 and 50 mg/kg BW/day, when compared to control group. These findings indicate that object recognition memory was susceptible to maternal BPA exposure. Western blot analysis of hippocampi from BPA-treated male offspring revealed a decrease in Akt, phospho-Akt, p44/42 MAPK and phospho-p44/42 MAPK protein levels, compared to controls. In addition, BPA significantly inhibited the levels of phosphorylation of CREB and BDNF in the hippocampus. Our results show that maternal BPA exposure may full impair object recognition memory, and that

  3. Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer's disease mouse model.

    PubMed

    Zhang, Ru; Xue, Guizhen; Wang, Shaodeng; Zhang, Lihong; Shi, Changjie; Xie, Xin

    2012-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the AβPP/PS1 transgenic mouse model is a commonly used experimental model to mimic the pathological and cognitive impairments in AD. As a classic method to evaluate spatial learning and memory, the Morris water maze is widely applied to study the cognitive deficits in rodent AD models. However, the assay procedure is relatively complicated and requires a properly equipped environment. The novel object recognition test is a relatively simple and straightforward method to test working memory in rodents. However, whether the latter can be used as a common tool for evaluating the therapeutic effects of drugs in the AβPP/PS1 transgenic AD mouse model remains unclear. In the present study, we assessed the cognitive impairment of AβPP/PS1 AD mice with the novel object recognition test. In parallel, Morris water maze was performed and compared with the novel object recognition study. Both assays worked equally well in evaluating the cognitive defect of AβPP/PS1 mice. Furthermore, we drew similar conclusions from the novel object recognition assay as from the Morris water maze in assessing the therapeutic effects of two previously reported compounds, donepezil and naltrindole, on AD. We found the novel object recognition to be a facile assay with almost no stress to mice and think it could be used as an ideal primary screening assay to evaluate drug effects on AβPP/PS1 AD model.

  4. The Virtual Tray of Objects Task as a novel method to electrophysiologically measure visuo-spatial recognition memory.

    PubMed

    Amico, Francesco; Ambrosini, Ettore; Guillem, François; Mento, Giovanni; Power, Dermot; Pergola, Giulio; Vallesi, Antonino

    2015-12-01

    We explored a novel method to electrophysiologically measure visuo-spatial recognition memory using a modified version of the Virtual Tray of Objects Task (VTOT). Event-related potentials (ERP) were recorded from 18 healthy volunteers during performance in the VTOT. Participants were required to detect random repetitions of three-dimensional visual stimuli (OLD) and to refrain from responding to non-repeated stimuli (NEW). Differences in ERP between the NEW and OLD conditions were tested for statistical significance using assumption-free non-parametric analyses. Further, a correlation between ERP and behavioral measures was sought. Significant OLD-NEW effects were found for four ERP components showing distinct spatio-temporal characteristics: a posterior positive component appearing at 100 ms (P100), a left-lateralized negative component peaking at ≈250 ms (N250), a frontal negative component at ≈300-450 ms (FN400), and a right late frontal negativity (rLFN) at ≈500-720 ms. Moreover, individual differences in the OLD-NEW effect computed for the rLFN positively correlated with repeated stimulus recognition efficiency. However, there were no late left parietal P600 old/new effects. These findings suggest that the P100 component might reflect early visual perception processes taking place during performance in the task, whereas the N250 and FN400 components could be linked to stimulus-dependent access to visual memory representations and familiarity-related processes, respectively. In contrast, we propose that the rLFN component could be associated with higher-level cognitive functions, such as attention and monitoring processes. Altogether, our results suggest that the ERP version of the VTOT could play a role in the electrophysiological assessment of visuo-spatial memory and related sub-processes. PMID:26546862

  5. The growth of glioblastoma orthotopic xenografts in nude mice is directly correlated with impaired object recognition memory.

    PubMed

    Wasilewska-Sampaio, Ana Paula; Santos, Tiago G; Lopes, Marilene Hohmuth; Cammarota, Martin; Martins, Vilma Regina

    2014-01-17

    Cognitive dysfunction is found in patients with brain tumors and there is a need to determine whether it can be replicated in an experimental model. In the present study, the object recognition (OR) paradigm was used to investigate cognitive performance in nude mice, which represent one of the most important animal models available to study human tumors in vivo. Mice with orthotopic xenografts of the human U87MG glioblastoma cell line were trained at 9, 14, and 18days (D9, D14, and D18, respectively) after implantation of 5×10(5) cells. At D9, the mice showed normal behavior when tested 90min or 24h after training and compared to control nude mice. Animals at D14 were still able to discriminate between familiar and novel objects, but exhibited a lower performance than animals at D9. Total impairment in the OR memory was observed when animals were evaluated on D18. These alterations were detected earlier than any other clinical symptoms, which were observed only 22-24days after tumor implantation. There was a significant correlation between the discrimination index (d2) and time after tumor implantation as well as between d2 and tumor volume. These data indicate that the OR task is a robust test to identify early behavior alterations caused by glioblastoma in nude mice. In addition, these results suggest that OR task can be a reliable tool to test the efficacy of new therapies against these tumors.

  6. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats

    PubMed Central

    Jessberger, Sebastian; Clark, Robert E.; Broadbent, Nicola J.; Clemenson, Gregory D.; Consiglio, Antonella; Lie, D. Chichung; Squire, Larry R.; Gage, Fred H.

    2009-01-01

    New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior. PMID:19181621

  7. Developing a multi-Kinect-system for monitoring in dairy cows: object recognition and surface analysis using wavelets.

    PubMed

    Salau, J; Haas, J H; Thaller, G; Leisen, M; Junge, W

    2016-09-01

    Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images' high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows' or persons' surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69. PMID:26837672

  8. Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory.

    PubMed

    Clarke, Julia R; Rossato, Janine I; Monteiro, Siomara; Bevilaqua, Lia R M; Izquierdo, Iván; Cammarota, Martín

    2008-09-01

    Evidence indicates that brain endocannabinoids are involved in memory processing. However, the participation of CB1 and CB2 cannabinoid receptors in recognition memory has not been yet conclusively determined. Therefore, we evaluated the effect of the posttraining activation of hippocampal cannabinoid receptors on the consolidation of object recognition memory. Rats with infusion cannulae stereotaxically aimed to the CA1 region of the dorsal hippocampus were trained in an object recognition learning task involving exposure to two different stimulus objects. Memory retention was assessed at different times after training. In the test sessions, one of the objects presented during training was replaced by a novel one. When infused in the CA1 region immediately after training, the non-selective cannabinoid receptor agonist WIN-55,212-2 and the endocannabinoid membrane transporter inhibitor VDM-11 blocked long-term memory retention in a dose-dependent manner without affecting short-term memory, exploratory behavior, anxiety state or the functionality of the hippocampus. The amnesic effect of WIN-55,212-2 and VDM-11 was not due to state-dependency and was completely reversed by co-infusion of the CB1 receptor antagonist AM-251 and mimicked by the CB1 receptor agonist ACEA but not by the CB2 receptor agonists JWH-015 and palmitoylethanolamide. Our data indicate that activation of hippocampal CB1 receptors early after training hampers consolidation of object recognition memory.

  9. THE METABOTROPIC GLUTAMATE 2/3 RECEPTOR AGONIST LY379268 COUNTERACTED KETAMINE-AND APOMORPHINE-INDUCED PERFORMANCE DEFICITS IN THE OBJECT RECOGNITION TASK, BUT NOT OBJECT LOCATION TASK, IN RATS

    PubMed Central

    Pitsikas, Nikolaos; Markou, Athina

    2014-01-01

    Experimental evidence indicates that the non competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including cognitive deficits. Activation of Group II metabotropic glutamate 2/3 (mGlu2/3) receptors reduces the excessive glutamate release that is hypothesized to be associated with psychiatric disorders. Thus, mGlu2/3 receptor agonists may reverse deficits induced by excessive glutamate or DA release induced by administration of NMDA receptor antagonists and DA receptor agonists, respectively, and potentially those seen in schizophrenia. LY379268 is a selective mGlu2/3 receptor agonist that has shown to be effective in several animal models of stroke, epilepsy, and drug abuse. The present study investigated whether LY379268 antagonizes non-spatial and spatial recognition memory deficits induced by ketamine and apomorphine administration in rats. To assess the effects of the compounds on non-spatial and spatial recognition memory, the object recognition task and object location task were used. Post-training administration of LY379268 (1-3 mg/kg, i.p.) counteracted ketamine (3 mg/kg, i.p.) and apomorphine (1 mg/kg, i.p.)-induced performance deficits in the object recognition task. In contrast, LY379268 (1-3 mg/kg, i.p.) did not attenuate spatial recognition memory deficits produced by ketamine (3 mg/kg, i.p.) or apomorphine (1 mg/kg, i.p.) in the object location task. The present data show that the mGlu2/3 receptor agonist LY379268 reversed non-spatial, but not spatial, recognition memory deficits induced by NMDA receptor blockade or DA receptor agonism in rodents. Thus, such mGlu2/3 receptor agonists may be efficacious in reversing some memory deficits seen in schizophrenia patients. PMID:24859609

  10. Recognition of Trimethylated Histone H3 Lysine 4 Facilitates the Recruitment of Transcription Post-Initiation Factors and pre-mRNA Splicing

    PubMed Central

    Sims, Robert J.; Millhouse, Scott; Chen, Chi-Fu; Lewis, Brian A.; Erdjument-Bromage, Hediye; Tempst, Paul; Manley, James L.; Reinberg, Danny

    2007-01-01

    Tri-methylation of histone H3 on lysine 4 (H3K4me3) localizes near the 5′ region of genes and is tightly associated with active loci. Several proteins, such as CHD1, BPTF, JMJD2A, and the ING tumor suppressor family, directly recognize this lysine methyl mark. However, how H3K4me3 recognition participates in active transcription remains poorly characterized. Here we identify specific CHD1-interacting proteins via H3K4me3 affinity purification, including numerous factors mediating post-initiation events. Conventional biochemical purification revealed a stable complex between CHD1 and components of the spliceosome. Depletion of CHD1 in extracts dramatically reduced splicing efficiency in vitro, indicating a functional link between CHD1 and the spliceosome. Knockdown of CHD1 and H3K4me3 levels by siRNA reduced association of U2 snRNP components with chromatin, and more importantly, altered the efficiency of pre-mRNA splicing on active genes in vivo. These findings suggest that methylated H3K4 serves to facilitate the competency of pre-mRNA maturation through the bridging of spliceosomal components to H3K4me3 via CHD1. PMID:18042460

  11. A Cognitive Model of How Interactive Multimedia Authoring Facilitates Conceptual Understanding of Object-Oriented Programming in Novices

    ERIC Educational Resources Information Center

    Yuen, Timothy; Liu, Min

    2011-01-01

    This paper presents a cognitive model of how interactive multimedia authoring (IMA) affect novices' cognition in object-oriented programming. This model was generated through an empirical study of first year computer science students at the university level being engaged in interactive multimedia authoring of a role-playing game. Clinical…

  12. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory.

  13. Expert Facilitated Development of an Objective Assessment Tool for Point-of-Care Ultrasound Performance in Undergraduate Medical Education

    PubMed Central

    Black, Holly; Sheppard, Gillian; Metcalfe, Brian; Stone-McLean, Jordan; McCarthy, Heather

    2016-01-01

    Background: With the various applications of point-of-care ultrasound (PoCUS) steadily increasing, many medical schools across North America are incorporating PoCUS training into their undergraduate curricula. The Faculty of Medicine at Memorial University also intends to introduce PoCUS training into its own undergraduate medical program. The proposed approach is to introduce a PoCUS curriculum focusing on anatomy and physiology while developing cognitive and psychomotor skills that are later transferred into clinical applications. This has been the common approach taken by most undergraduate ultrasound programs in the United States. This project highlights the development and the challenges involved in creating an objective assessment tool that meets the unique needs of this proposed undergraduate ultrasound curriculum. Methods: After a thorough review of existing literature and input from experts in PoCUS, a prototype global rating scale (GRS) and three exam-specific checklists were created by researchers. The exam-specific checklists include aorta exam, subxiphoid cardiac exam, and focused abdominal exam. A panel of 18 emergency room physicians certified in PoCUS were recruited to evaluate the GRS and three checklists. This was accomplished using a modified Delphi technique. The items were rated on a 5-point Likert scale. If an item received a mean score of less than 4, it was deemed unimportant for the assessment of PoCUS performance in undergraduate medical learners and was excluded. Experts were also encouraged to provide comments and suggest further items to be added to the GRS or checklists. Items were modified according to these comments. All of the edits were then sent back to the experts for revisions. Results: A consensus was achieved after three rounds of surveys, with the final GRS containing nine items. The final aorta checklist contained nine items, and the subxiphoid cardiac and focused abdominal checklists each contained 11 items. Conclusion: By

  14. Improving Transcription of Qualitative Research Interviews with Speech Recognition Technology.

    ERIC Educational Resources Information Center

    Fogg, Terry; Wightman, Colin W.

    The recent development of high-quality voice recognition software greatly facilitates the production of transcriptions for research and allows for objective and full transcription as well as annotated interpretation. Commercial speech recognition programs that are appropriate for generating transcriptions are available from a number of vendors,…

  15. Neural Correlates of Face and Object Recognition in Young Children with Autism Spectrum Disorder, Developmental Delay, and Typical Development.

    ERIC Educational Resources Information Center

    Dawson, Geraldine; Carver, Leslie; Meltzoff, Andrew N.; Panagiotides, Herachles; McPartland, James; Webb, Sara J.

    2002-01-01

    Compared face recognition ability in young children with autism to that of children with typical development and developmental delay. Took electroencephalographic recordings of brain activity while children viewed pictures of their mothers and unfamiliar females, and familiar and unfamiliar toys. Found that autistic children showed no differences…

  16. Chronic treatment with sulbutiamine improves memory in an object recognition task and reduces some amnesic effects of dizocilpine in a spatial delayed-non-match-to-sample task.

    PubMed

    Bizot, Jean-Charles; Herpin, Alexandre; Pothion, Stéphanie; Pirot, Sylvain; Trovero, Fabrice; Ollat, Hélène

    2005-07-01

    The effect of a sulbutiamine chronic treatment on memory was studied in rats with a spatial delayed-non-match-to-sample (DNMTS) task in a radial maze and a two trial object recognition task. After completion of training in the DNMTS task, animals were subjected for 9 weeks to daily injections of either saline or sulbutiamine (12.5 or 25 mg/kg). Sulbutiamine did not modify memory in the DNMTS task but improved it in the object recognition task. Dizocilpine, impaired both acquisition and retention of the DNMTS task in the saline-treated group, but not in the two sulbutiamine-treated groups, suggesting that sulbutiamine may counteract the amnesia induced by a blockade of the N-methyl-D-aspartate glutamate receptors. Taken together, these results are in favor of a beneficial effect of sulbutiamine on working and episodic memory. PMID:15951087

  17. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  18. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    PubMed

    Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei

    2014-01-01

    Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  19. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields

    PubMed Central

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-01-01

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density. PMID:26138388

  20. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields.

    PubMed

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-01-01

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density. PMID:26138388

  1. Caffeine and modafinil given during 48 h sleep deprivation modulate object recognition memory and synaptic proteins in the hippocampus of the rat.

    PubMed

    Wadhwa, M; Sahu, S; Kumari, P; Kauser, H; Ray, K; Panjwani, U

    2015-11-01

    We aimed to evaluate the effect of caffeine/modafinil on sleep deprivation (SD) induced alterations in recognition memory and synaptic proteins. The data revealed a beneficial effect of caffeine/modafinil against deficit in the familiar object retrieval performance and object exploration ratio after 48 h SD. Caffeine treatment prevented the SD induced down-regulation of synaptophysin and synapsin I proteins with no change in PSD-95 protein in hippocampus. However, modafinil administration improved the down-regulation of synaptophysin, synapsin I and PSD-95 proteins in hippocampus. Hence, caffeine/modafinil can serve as counter measures in amelioration of SD induced consequences at behavioural and protein levels.

  2. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats.

    PubMed

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2014-03-01

    High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment.

  3. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats.

    PubMed

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2014-03-01

    High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment. PMID:24309633

  4. Recognition of Partially Occluded Objects Based on the Three Different Color Spaces (RGB, YCbCr, HSV)

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Rehman, Amjad

    2015-09-01

    The aim of this study is to propose an algorithm that can recognize partially occluded objects under different variations by computing three histograms of colour spaces (RGB, HSV, YCbCr). The dataset used in this research are from kitchen apparatuses. It is created by the researcher and include two parts: referenced objects (18 single objects) and tested objects (occluded objects) made from two single objects to represent the occluded object under different variations (scale, rotation, transformation) with varying percentage of occlusion (30-90 %). Three different colour spaces histogram (RGB, HIS, YCbCr) are used for extracting the features. Histogram intersection distance works for matching objects. Computation histograms and matching process are used to each block of image that given by image division process and finally compared the performance of each colour space by evaluating the accuracy. The experimental results demonstrate that the proposed algorithm is robust for identifying occluded objects and it could work at high occlusion.

  5. Behavioral methods for the study of the Ras-ERK pathway in memory formation and consolidation: passive avoidance and novel object recognition tests.

    PubMed

    d'Isa, Raffaele; Brambilla, Riccardo; Fasano, Stefania

    2014-01-01

    Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index

  6. Enhanced phonological facilitation and traces of concurrent word form activation in speech production: an object-naming study with multiple distractors.

    PubMed

    Abdel Rahman, Rasha; Melinger, Alissa

    2008-09-01

    In the present study, we extended the classic picture-word interference paradigm by the presentation of multiple distractor words (Experiment 1) to reexamine whether the word forms of semantic alternatives receive activation in the course of object naming. Experiment 2 showed that phonological facilitation can be magnified by the presentation of multiple words that share overlapping initial and final segments with the target name. Experiments 3 and 4 tested for traces ofnontarget phonological activation with multiple distractors, which enhances the chances of detecting such effects. These experiments revealed a consistent pattern of interference effects induced by words that were related to a semantic category member, consistent with theories assuming phonological activation of nontarget alternatives. PMID:19086192

  7. PWZ-029, an inverse agonist selective for α₅ GABAA receptors, improves object recognition, but not water-maze memory in normal and scopolamine-treated rats.

    PubMed

    Milić, Marija; Timić, Tamara; Joksimović, Srđan; Biawat, Poonam; Rallapalli, Sundari; Divljaković, Jovana; Radulović, Tamara; Cook, James M; Savić, Miroslav M

    2013-03-15

    Inverse agonism at the benzodiazepine site of α(5) subunit-containing GABA(A) receptors is an attractive approach for the development of putative cognition-enhancing compounds, which are still far from clinical application. Several ligands with binding and/or functional selectivity for α(5) GABA(A) receptors have been synthesized and tested in a few animal models. PWZ-029 is an α(5) GABA(A) selective inverse agonist whose memory enhancing effects were demonstrated in the passive avoidance task in rats and in Pavlovian fear conditioning in mice. In the present study we investigated the effects of PWZ-029 administration in novel object recognition test and Morris water maze, in normal and scopolamine-treated rats. All the three doses of PWZ-029 (2, 5 and 10 mg/kg) improved object recognition after the 24-h delay period, as shown by significant differences between the exploration times of the novel and old object, and the respective discrimination indices. PWZ-029 (2 mg/kg) also successfully reversed the 0.3 mg/kg scopolamine-induced deficit in recognition memory after the 1-h delay. In the Morris water maze test, PWZ-029 (5, 10 and 15 mg/kg) did not significantly influence swim patterns, either during five acquisition days or during the treatment-free probe trial. PWZ-029 (2, 5 and 10 mg/kg) also proved to be ineffective in the reversal of the 1mg/kg scopolamine-induced memory impairment in the water maze. The present mixed results encourage use of a variety of tests and experimental conditions in order to increase the predictability of preclinical testing of selective α(5) GABA(A) inverse agonists.

  8. fMRI correlates of object-based attentional facilitation vs. suppression of irrelevant stimuli, dependent on global grouping and endogenous cueing

    PubMed Central

    Freeman, Elliot D.; Macaluso, Emiliano; Rees, Geraint; Driver, Jon

    2013-01-01

    Theories of object-based attention often make two assumptions: that attentional resources are facilitatory, and that they spread automatically within grouped objects. Consistent with this, ignored visual stimuli can be easier to process, or more distracting, when perceptually grouped with an attended target stimulus. But in past studies, the ignored stimuli often shared potentially relevant features or locations with the target. In this fMRI study, we measured the effects of attention and grouping on Blood Oxygenation Level Dependent (BOLD) responses in the human brain to entirely task-irrelevant events. Two checkerboards were displayed each in opposite hemifields, while participants responded to check-size changes in one pre-cued hemifield, which varied between blocks. Grouping (or segmentation) between hemifields was manipulated between blocks, using common (vs. distinct) motion cues. Task-irrelevant transient events were introduced by randomly changing the color of either checkerboard, attended or ignored, at unpredictable intervals. The above assumptions predict heightened BOLD signals for irrelevant events in attended vs. ignored hemifields for ungrouped contexts, but less such attentional modulation under grouping, due to automatic spreading of facilitation across hemifields. We found the opposite pattern, in primary visual cortex. For ungrouped stimuli, BOLD signals associated with task-irrelevant changes were lower, not higher, in the attended vs. ignored hemifield; furthermore, attentional modulation was not reduced but actually inverted under grouping, with higher signals for events in the attended vs. ignored hemifield. These results challenge two popular assumptions underlying object-based attention. We consider a broader biased-competition framework: task-irrelevant stimuli are suppressed according to how strongly they compete with task-relevant stimuli, with intensified competition when the irrelevant features or locations comprise the same object

  9. What is it that color determinants determine? The relation between the rorschach inkblot method and cognitive object-recognition processes.

    PubMed

    Kron, Assaf; Cohen, Asher; Benziman, Hagit; Ben-Shakhar, Gershon

    2009-03-01

    We sought to demonstrate a relation between the Determinants in the Rorschach Inkblot Method (Rorschach, 1921) and fundamental properties of the participant's cognitive (visual) system by examining whether the report about Color Determinants is related to basic cognitive processes concerned with color of visual objects. In Experiment 1, we established an object-naming task that is sensitive to the objects' color. Participants were strongly influenced by the object's color, responding fastest when objects appeared in their typical color and slowest when the object's color was atypical. In Experiment 2, we examined the relationship between the Color Determinants in the Rorschach Inkblot Method and the magnitude of the color effect in the object-naming task of Experiment 1. It was found that the effect of color in the object-naming task was correlated with the type of color responses in the Rorschach Inkblot Method. The results support an "early" cognitive account of the Determinants. We discuss implications concerning the theory of the Rorschach and the relation between emotion, personality, and cognition. PMID:19205934

  10. Visual agnosia for line drawings and silhouettes without apparent impairment of real-object recognition: a case report.

    PubMed

    Hiraoka, Kotaro; Suzuki, Kyoko; Hirayama, Kazumi; Mori, Etsuro

    2009-01-01

    We report on a patient with visual agnosia for line drawings and silhouette pictures following cerebral infarction in the region of the right posterior cerebral artery. The patient retained the ability to recognize real objects and their photographs, and could precisely copy line drawings of objects that she could not name. This case report highlights the importance of clinicians and researchers paying special attention to avoid overlooking agnosia in such cases. The factors that lead to problems in the identification of stimuli other than real objects in agnosic cases are discussed.

  11. A space variant maximum average correlation height (MACH) filter for object recognition in real time thermal images for security applications

    NASA Astrophysics Data System (ADS)

    Gardezi, Akber; Alkandri, Ahmed; Birch, Philip; Young, Rupert; Chatwin, Chris

    2010-10-01

    We propose a space variant Maximum Average Correlation Height (MACH) filter which can be locally modified depending upon its position in the input frame. This can be used to detect targets in an environment from varying ranges and in unpredictable weather conditions using thermal images. It enables adaptation of the filter dependant on background heat signature variances and also enables the normalization of the filter energy levels. The kernel can be normalized to remove a non-uniform brightness distribution if this occurs in different regions of the image. The main constraint in this implementation is the dependence on computational ability of the system. This can be minimized with the recent advances in optical correlators using scanning holographic memory, as proposed by Birch et al. [1] In this paper we describe the discrimination abilities of the MACH filter against background heat signature variances and tolerance to changes in scale and calculate the improvement in detection capabilities with the introduction of a nonlinearity. We propose a security detection system which exhibits a joint process where human and an automated pattern recognition system contribute to the overall solution for the detection of pre-defined targets.

  12. Effect of block of α-1-adrenoceptors on overall motor activity but not on spatial cognition in the object-position recognition task.

    PubMed

    Levčík, D; Stuchlík, A; Klement, D

    2013-01-01

    Prazosin, an alpha(1)-adrenoceptor antagonist, is well known for its depressant effect on motivation and motor activity, while it has no effect on retention of spatial behavior in several tasks, e.g. in the Morris water maze and radial arm maze. The role of alpha(1)-adrenoceptors in operant tasks with stimulus-controlled behavior has not yet been tested. The present study investigated the effect of prazosin on the modulation of overall motor activity and on cognitive performance in a spatial operant task called object-position recognition task, where operant behavior (lever pressing) was controlled by spatial stimuli displayed on a computer screen. This task has been previously showed to be hippocampal-dependent. Pre-test injection of prazosin at the dose of 3 mg/kg decreased the responding rate, while it did not affect the recognition of object's position. In conclusion, we validated the new cognitive test with a drug with known pharmacological effects on behavior and confirmed the depressant effect of prazosin on motor activity and no effect on retrieval of spatial memory in the hippocampal-dependent operant task.

  13. Different attentional abilities among inbred mice strains using virtual object recognition task (VORT): SNAP25⁺/⁻ mice as a model of attentional deficit.

    PubMed

    Braida, Daniela; Ponzoni, Luisa; Matteoli, Michela; Sala M, Mariaelvina

    2016-01-01

    Autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, Alzheimer's and Parkinson's disease are characterized by attentional deficits. In the present study we first applied the virtual object recognition test (VORT), where 3D objects were replaced with highly discriminated geometrical shapes and presented on two 3.5-inch widescreen displays, in different inbred mice strains (C57BL/6N, DBA/2J, BALB/cJ), in comparison with the standard object recognition test (NOR). In both NOR and VORT, there was a progressive decay of performance in terms of reduced discrimination index from 5 min to 72 h of inter-trial delay in all strains. However, BALB/cJ inbred mice showed a better long lasting performance than C57BL/6N and DBA/2J, when tested in NOR. In VORT, BALB/cJ showed the best performance. Total exploration time was always higher in BALB/cJ than C57BL/6N and DBA/2J mice. C57BL/6N were less explorative strain than DBA/2J and BALB/cJ mice. When VORT was applied to SNAP-25(+/-) mice, an impairment in both NOR and VORT was shown. However, when moving shapes were applied, these heterozygous mice improved their performance, suggesting that the introduction of motion is a strong cue that makes the task more valuable to study attention deficits. Taken together, these data indicate that VORT provides a useful and rapid tool to identify the attentional deficit in different inbred strains and genetically modified mice, enhancing the value of psychiatric mouse models.

  14. [Tactile agnosia and dysfunction of the primary somatosensory area. Data of the study by somatosensory evoked potentials in patients with deficits of tactile object recognition].

    PubMed

    Mauguière, F; Isnard, J

    1995-01-01

    The question as to whether a failure of recognition unrelated to impaired sensory processing or to disorder of naming can occur in the somato-sensory modality has been eagerly debated in the french neurology. Taking as an argument the fact that he had never observed a tactile agnosia in the absence of subtle sensory deficits Dejerine denied the localizing value of tactile agnosia (or asterognosis). Conversely Delay, 20 years later, identified tactile performances such as discrimination of texture and shapes, which he considered as a specific neocortical function, that were lost in parietal syndromes with astereognosis and preserved elementary sensations. He also coined the term "tactile asymbolia" to qualify the patients with astereognosis in whom these performances are preserved. When referring to the definition of agnosias only "tactile asymbolia" should be considered as a "true" tactile agnosia. The recording of early somatosensory evoked potentials (SEPs) now offers the possibility of assessing non invasively the function of the primary somatosensory cortex (in particular area 3b). We have recorded SEPs to median nerve or finger stimulation in 309 subjects with a focal hemispheric lesion presenting with a somatosensory deficit of any type. We could confirm that asterognosis referable to impaired discrimination of textures and/or shapes in the absence of impaired elementary sensation is quite rare since it was observed in only 12 of our patients (3.9%). Moreover early cortical SEPs reflecting the activity of the primary somatosensory area (N20 or/and P27) were clearly abnormal in all of them. A single patient of this group of 12 could be considered as a case of tactile asymbolia but his early cortical SEPs were abnormal. The only condition combining a failure of tactile recognition of objects with normal early SEPs is represented by the "tactile anomia" observed in callosal dysconnexions. Thus, in our patients unable to identify objects by palpation in spite of

  15. Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion.

    PubMed

    Chandler, Benjamin; Mingolla, Ennio

    2016-01-01

    Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset that emphasizes occlusion and additions to a standard convolutional neural network aimed at increasing invariance to occlusion. An unmodified convolutional neural network trained and tested on the new dataset rapidly degrades to chance-level accuracy as occlusion increases. Training with occluded data slows this decline but still yields poor performance with high occlusion. Integrating novel preprocessing stages to segment the input and inpaint occlusions is an effective mitigation. A convolutional network so modified is nearly as effective with more than 81% of pixels occluded as it is with no occlusion. Such a network is also more accurate on unoccluded images than an otherwise identical network that has been trained with only unoccluded images. These results depend on successful segmentation. The occlusions in our dataset are deliberately easy to segment from the figure and background. Achieving similar results on a more challenging dataset would require finding a method to split figure, background, and occluding pixels in the input. PMID:27340396

  16. Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion.

    PubMed

    Chandler, Benjamin; Mingolla, Ennio

    2016-01-01

    Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset that emphasizes occlusion and additions to a standard convolutional neural network aimed at increasing invariance to occlusion. An unmodified convolutional neural network trained and tested on the new dataset rapidly degrades to chance-level accuracy as occlusion increases. Training with occluded data slows this decline but still yields poor performance with high occlusion. Integrating novel preprocessing stages to segment the input and inpaint occlusions is an effective mitigation. A convolutional network so modified is nearly as effective with more than 81% of pixels occluded as it is with no occlusion. Such a network is also more accurate on unoccluded images than an otherwise identical network that has been trained with only unoccluded images. These results depend on successful segmentation. The occlusions in our dataset are deliberately easy to segment from the figure and background. Achieving similar results on a more challenging dataset would require finding a method to split figure, background, and occluding pixels in the input.

  17. Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion

    PubMed Central

    Mingolla, Ennio

    2016-01-01

    Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset that emphasizes occlusion and additions to a standard convolutional neural network aimed at increasing invariance to occlusion. An unmodified convolutional neural network trained and tested on the new dataset rapidly degrades to chance-level accuracy as occlusion increases. Training with occluded data slows this decline but still yields poor performance with high occlusion. Integrating novel preprocessing stages to segment the input and inpaint occlusions is an effective mitigation. A convolutional network so modified is nearly as effective with more than 81% of pixels occluded as it is with no occlusion. Such a network is also more accurate on unoccluded images than an otherwise identical network that has been trained with only unoccluded images. These results depend on successful segmentation. The occlusions in our dataset are deliberately easy to segment from the figure and background. Achieving similar results on a more challenging dataset would require finding a method to split figure, background, and occluding pixels in the input. PMID:27340396

  18. The Effect of Visualized Instruction and Varied Rehearsal and Evaluation Strategies (Verbal and Visual) in Facilitating Students' Long-Term Retention on Tests Measuring Different Instructional Objectives.

    ERIC Educational Resources Information Center

    Dwyer, Francis M.

    1985-01-01

    This study investigated effects of rehearsal strategies and immediate test formats on delayed retention and effectiveness of visualization on material acquisition and retrieval. Findings indicate different rehearsal methods have different effects in facilitating delayed retention. Information acquisition is facilitated by visualization, although…

  19. Effects of diesel engine exhaust origin secondary organic aerosols on novel object recognition ability and maternal behavior in BALB/c mice.

    PubMed

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-10-30

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-D-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-α, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively.

  20. Effects of Diesel Engine Exhaust Origin Secondary Organic Aerosols on Novel Object Recognition Ability and Maternal Behavior in BALB/C Mice

    PubMed Central

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-01-01

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-d-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-α, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively

  1. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice

    PubMed Central

    Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente

    2015-01-01

    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice. PMID:26136670

  2. Impaired Spatial Learning Strategies and Novel Object Recognition in Mice Haploinsufficient for the Dual Specificity Tyrosine-Regulated Kinase-1A (Dyrk1A)

    PubMed Central

    Fernández, David; de Lagrán, María Martínez; Arbonés, Maria L.; Dierssen, Mara

    2008-01-01

    Background Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. Methodology/Principal Findings We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/−) to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/− mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25°C and 17°C) and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/− mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. Conclusions/Significance The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21. PMID:18648535

  3. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  4. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-08-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG-fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50-80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG-fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions.

  5. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-08-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2