Structural Insights into Cargo Recognition by the Yeast PTS1 Receptor*
Hagen, Stefanie; Drepper, Friedel; Fischer, Sven; Fodor, Krisztian; Passon, Daniel; Platta, Harald W.; Zenn, Michael; Schliebs, Wolfgang; Girzalsky, Wolfgang; Wilmanns, Matthias; Warscheid, Bettina; Erdmann, Ralf
2015-01-01
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo. PMID:26359497
Pedrosa, Ana G; Francisco, Tânia; Bicho, Diana; Dias, Ana F; Barros-Barbosa, Aurora; Hagmann, Vera; Dodt, Gabriele; Rodrigues, Tony A; Azevedo, Jorge E
2018-06-08
PEX1 and PEX6 are two members of the ATPases Associated with diverse cellular Activities (AAA) family and the core components of the receptor export module (REM) of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex which unfolds substrates by processive threading. However, whether the natural substrate of the PEX1.PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity crosslinking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1.PEX6 complex. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa.
Cui, Peng; Liu, Hongbo; Islam, Faisal; Li, Lan; Farooq, Muhammad A; Ruan, Songlin; Zhou, Weijun
2016-01-01
Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H 2 O 2 -producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na + /K + ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters ( OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1 , and OsAKT1 ) involved in Na + /K + homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na + and K + regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.
Walton, Paul A; Brees, Chantal; Lismont, Celien; Apanasets, Oksana; Fransen, Marc
2017-10-01
Accumulating evidence indicates that peroxisome functioning, catalase localization, and cellular oxidative balance are intimately interconnected. Nevertheless, it remains largely unclear why modest increases in the cellular redox state especially interfere with the subcellular localization of catalase, the most abundant peroxisomal antioxidant enzyme. This study aimed at gaining more insight into this phenomenon. Therefore, we first established a simple and powerful approach to study peroxisomal protein import and protein-protein interactions in living cells in response to changes in redox state. By employing this approach, we confirm and extend previous observations that Cys-11 of human PEX5, the shuttling import receptor for peroxisomal matrix proteins containing a C-terminal peroxisomal targeting signal (PTS1), functions as a redox switch that modulates the protein's activity in response to intracellular oxidative stress. In addition, we show that oxidative stress affects the import of catalase, a non-canonical PTS1-containing protein, more than the import of a reporter protein containing a canonical PTS1. Furthermore, we demonstrate that changes in the local redox state do not affect PEX5-substrate binding and that human PEX5 does not oligomerize in cellulo, not even when the cells are exposed to oxidative stress. Finally, we present evidence that catalase retained in the cytosol can protect against H 2 O 2 -mediated redox changes in a manner that peroxisomally targeted catalase does not. Together, these findings lend credit to the idea that inefficient catalase import, when coupled with the role of PEX5 as a redox-regulated import receptor, constitutes a cellular defense mechanism to combat oxidative insults of extra-peroxisomal origin. Copyright © 2017 Elsevier B.V. All rights reserved.
Weir, Nicholas R; Kamber, Roarke A; Martenson, James S
2017-01-01
Msp1 is a conserved AAA ATPase in budding yeast localized to mitochondria where it prevents accumulation of mistargeted tail-anchored (TA) proteins, including the peroxisomal TA protein Pex15. Msp1 also resides on peroxisomes but it remains unknown how native TA proteins on mitochondria and peroxisomes evade Msp1 surveillance. We used live-cell quantitative cell microscopy tools and drug-inducible gene expression to dissect Msp1 function. We found that a small fraction of peroxisomal Pex15, exaggerated by overexpression, is turned over by Msp1. Kinetic measurements guided by theoretical modeling revealed that Pex15 molecules at mitochondria display age-independent Msp1 sensitivity. By contrast, Pex15 molecules at peroxisomes are rapidly converted from an initial Msp1-sensitive to an Msp1-resistant state. Lastly, we show that Pex15 interacts with the peroxisomal membrane protein Pex3, which shields Pex15 from Msp1-dependent turnover. In sum, our work argues that Msp1 selects its substrates on the basis of their solitary membrane existence. PMID:28906250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualdrón-López, Melisa; Michels, Paul A.M., E-mail: paul.michels@uclouvain.be
Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins.more » PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M{sub r} of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M{sub r} of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and {sup 35}S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.« less
Alternative splicing suggests extended function of PEX26 in peroxisome biogenesis.
Weller, Sabine; Cajigas, Ivelisse; Morrell, James; Obie, Cassandra; Steel, Gary; Gould, Stephen J; Valle, David
2005-06-01
Matsumoto and colleagues recently identified PEX26 as the gene responsible for complementation group 8 of the peroxisome biogenesis disorders and showed that it encodes an integral peroxisomal membrane protein with a single C-terminal transmembrane domain and a cytosolic N-terminus that interacts with the PEX1/PEX6 heterodimer through direct binding to the latter. They proposed that PEX26 functions as the peroxisomal docking factor for the PEX1/PEX6 heterodimer. Here, we identify new PEX26 disease alleles, localize the PEX6-binding domain to the N-terminal half of the protein (aa 29-174), and show that, at the cellular level, PEX26 deficiency impairs peroxisomal import of both PTS1- and PTS2-targeted matrix proteins. Also, we find that PEX26 undergoes alternative splicing to produce several splice forms--including one, PEX26- delta ex5, that maintains frame and encodes an isoform lacking the transmembrane domain of full-length PEX26 (PEX26-FL). Despite its cytosolic location, PEX26- delta ex5 rescues peroxisome biogenesis in PEX26-deficient cells as efficiently as does PEX26-FL. To test our observation that a peroxisomal location is not required for PEX26 function, we made a chimeric protein (PEX26-Mito) with PEX26 as its N-terminus and the targeting segment of a mitochondrial outer membrane protein (OMP25) at its C-terminus. We found PEX26-Mito localized to the mitochondria and directed all detectable PEX6 and a fraction of PEX1 to this extraperoxisomal location; yet PEX26-Mito retains the full ability to rescue peroxisome biogenesis in PEX26-deficient cells. On the basis of these observations, we suggest that a peroxisomal localization of PEX26 and PEX6 is not required for their function and that the interaction of PEX6 with PEX1 is dynamic. This model predicts that, once activated in an extraperoxisomal location, PEX1 moves to the peroxisome and completes the function of the PEX1/6 heterodimer.
The Effect of Pseudoexfoliation and Pseudoexfoliation Induced Dry Eye on Central Corneal Thickness.
Akdemir, M Orcun; Kirgiz, Ahmet; Ayar, Orhan; Kaldirim, Havva; Mert, Metin; Cabuk, Kubra Serefoglu; Taskapili, Muhittin
2016-01-01
The aim of this study is to investigate the effect of pseudoexfoliation (PEX) and PEX-induced dry eye on central corneal thickness (CCT). This cross-sectional study consists of total 270 eyes of 135 patients (67 females, 68 males) in total. After excluding the PEX (-) 32 eyes with PEX in the other eye, totally 130 eyes in PEX (-) group and 108 eyes in the PEX (+) group were included in the study. The PEX (+) group was regrouped as PEX syndrome (80 eyes of 50 patients) and PEX glaucoma (28 eyes of 20 patients). In the PEX (-) group, the mean Schirmer test result was 12 ± 4 mm (4-25 mm), in the PEX syndrome group 10 ± 4 mm (4-22 mm), in the PEX glaucoma group 9 ± 3 mm (4-15 mm). The difference among the PEX (-) group, the PEX syndrome and the PEX glaucoma groups was statistically significant (p < 0.001, p < 0.001, respectively). In the PEX (-) group, the mean tear break up time test result was 11 ± 2 s (5-16 s), in the PEX syndrome group 8 ± 3 (3-16 s), in the PEX glaucoma group 8 ± 3 s (5-15 s). Mean CCT result was 544 µm in the PEX (-), 521 µm in the PEX syndrome group and 533 µm in the PEX glaucoma group. The difference among the PEX (-) group, the PEX syndrome and the PEX glaucoma groups was significant (p < 0.001, p = 0.030, respectively). There was a significant (+) correlation between intraocular pressure and CCT in the eyes with PEX (r = 0.307, p = 0.001). However, there was no statistically significant correlation between CCT, Schirmer and tear break up time tests in the eyes with PEX. PEX material can cause decrease in tear film secretion and disturb tear film stability. There is no effect of PEX-induced dry eye on CCT. Lower CCT values in the eyes with PEX material may be a result of decrease in corneal stromal cell density. Moreover, higher CCT values may be because of decreased endothelial cells in PEX glaucoma patients.
Mesa-Torres, Noel; Tomic, Nenad; Albert, Armando; Salido, Eduardo; Pey, Angel L
2015-02-13
Peroxisomal biogenesis and function critically depends on the import of cytosolic proteins carrying a PTS1 sequence into this organelle upon interaction with the peroxin Pex5p. Recent structural studies have provided important insights into the molecular recognition of cargo proteins by Pex5p. Peroxisomal import is a key feature in the pathogenesis of primary hyperoxaluria type 1 (PH1), where alanine:glyoxylate aminotransferase (AGT) undergoes mitochondrial mistargeting in about a third of patients. Here, we study the molecular recognition of PTS1 cargo proteins by Pex5p using oligopeptides and AGT variants bearing different natural PTS1 sequences, and employing an array of biophysical, computational and cell biology techniques. Changes in affinity for Pex5p (spanning over 3-4 orders of magnitude) reflect different thermodynamic signatures, but overall bury similar amounts of molecular surface. Structure/energetic analyses provide information on the contribution of ancillary regions and the conformational changes induced in Pex5p and the PTS1 cargo upon complex formation. Pex5p stability in vitro is enhanced upon cargo binding according to their binding affinities. Moreover, we provide evidence that the rational modulation of the AGT: Pex5p binding affinity might be useful tools to investigate mistargeting and misfolding in PH1 by pulling the folding equilibria towards the native and peroxisomal import competent state.
Poor recovery from a pulmonary exacerbation does not lead to accelerated FEV1 decline.
Sanders, Don B; Li, Zhanhai; Zhao, Qianqian; Farrell, Philip M
2017-07-29
Patients with CF treated for pulmonary exacerbations (PEx) may experience faster subsequent declines in FEV 1 . Additionally, incomplete recovery to baseline FEV 1 occurs frequently following PEx treatment. Whether accelerated declines in FEV 1 are preceded by poor PEx recovery has not been studied. Using 2004 to 2011 CF Foundation Patient Registry data, we randomly selected one PEx among patients ≥6years of age with no organ transplantations, ≥12months of data before and after the PEx, and ≥1 FEV 1 recorded within the 6months before and 3months after the PEx. We defined poor PEx recovery as the best FEV 1 in the 3months after the PEx <90% of the best FEV 1 in the 6months before the PEx. We calculated mean (95% CI) hazard ratios (HR) of having >5% predicted/year FEV 1 decline and poor PEx recovery using multi-state Markov models. From 13,954 PEx, FEV 1 declines of >5% predicted/year were more likely to precede poor spirometric recovery, HR 1.17 (1.08, 1.26), in Markov models adjusted for age and sex. Non-Responders were less likely to have a subsequent fast FEV 1 decline, HR 0.41 (0.37, 0.46), than patients who recovered to >90% of baseline FEV 1 following PEx treatment. Accelerated declines in FEV 1 are more likely to precede a PEx with poor recovery than to occur in the following year. Preventing or halting declines in FEV 1 may also have the benefit of preventing PEx episodes. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Bhogal, Moninder S; Lanyon-Hogg, Thomas; Johnston, Katherine A; Warriner, Stuart L; Baker, Alison
2016-01-29
Peroxisomes are vital metabolic organelles found in almost all eukaryotic organisms, and they rely exclusively on import of their matrix protein content from the cytosol. In vitro import of proteins into isolated peroxisomal fractions has provided a wealth of knowledge on the import process. However, the common method of protease protection garnered no information on the import of an N-terminally truncated PEX5 (PEX5C) receptor construct or peroxisomal malate dehydrogenase 1 (pMDH1) cargo protein into sunflower peroxisomes because of high degrees of protease susceptibility or resistance, respectively. Here we present a means for analysis of in vitro import through a covalent biotin label transfer and employ this method to the import of PEX5C. Label transfer demonstrates that the PEX5C construct is monomeric under the conditions of the import assay. This technique was capable of identifying the PEX5-PEX14 interaction as the first interaction of the import process through competition experiments. Labeling of the peroxisomal protein import machinery by PEX5C demonstrated that this interaction was independent of added cargo protein, and, strikingly, the interaction between PEX5C and the import machinery was shown to be ATP-dependent. These important mechanistic insights highlight the power of label transfer in studying interactions, rather than proteins, of interest and demonstrate that this technique should be applied to future studies of peroxisomal in vitro import. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nucleotide-dependent assembly of the peroxisomal receptor export complex
Grimm, Immanuel; Saffian, Delia; Girzalsky, Wolfgang; Erdmann, Ralf
2016-01-01
Pex1p and Pex6p are two AAA-ATPases required for biogenesis of peroxisomes. Both proteins form a hetero-hexameric complex in an ATP-dependent manner, which has a dual localization in the cytosol and at the peroxisomal membrane. At the peroxisomal membrane, the complex is responsible for the release of the import receptor Pex5p at the end of the matrix protein import cycle. In this study, we analyzed the recruitment of the AAA-complex to its anchor protein Pex15p at the peroxisomal membrane. We show that the AAA-complex is properly assembled even under ADP-conditions and is able to bind efficiently to Pex15p in vivo. We reconstituted binding of the Pex1/6p-complex to Pex15p in vitro and show that Pex6p mediates binding to the cytosolic part of Pex15p via a direct interaction. Analysis of the isolated complex revealed a stoichiometry of Pex1p/Pex6p/Pex15p of 3:3:3, indicating that each Pex6p molecule of the AAA-complex binds Pex15p. Binding of the AAA-complex to Pex15p in particular and to the import machinery in general is stabilized when ATP is bound to the second AAA-domain of Pex6p and its hydrolysis is prevented. The data indicate that receptor release in peroxisomal protein import is associated with a nucleotide-depending Pex1/6p-cycle of Pex15p-binding and release. PMID:26842748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, L.; Desbarats, M.; Viel, J.
1996-08-15
The recently identified human PEX g ene apparently encodes for a neutral endopeptidase that is mutated in patients with X-linked hypophosphatemia. The 3{prime} and 5{prime} ends of the coding region of PEX have not been cloned, nor has the tissue expression of the gene been identified. Here we report the isolation and characterization of the complete open reading frame of the mouse Pex gene and the demonstration of its expression in bone. Mouse Pex cDNA is predicted to encode a protein of 749 amino acids with 95% identity to the available human PEX sequence and significant homology to members ofmore » the membrane-bound metalloendopeptidase family. Northern blot analysis revealed a 6.6-kb transcript in bone and in cultured osteoblasts from normal mice that was not detectable in samples from the Hyp mouse, the murine homolog of human X-linked hypophosphatemia. Pex transcripts were, however, detectable in Hyp bone by RT-PCR amplification. Of particular interest, a cDNA clone from rat incisor shows 93% sequence identity to the 5{prime} end of Pex cDNA, suggesting that Pex may be expressed in another calcified tissue, the tooth. The association of impaired mineralization of bone and teeth and disturbed renal phosphate reabsorption with altered expression of Pex suggests that the Pex gene product may play a critical role in these processes. 47 refs., 2 figs., 1 tab.« less
Sanders, Don B; Zhao, Qianqian; Li, Zhanhai; Farrell, Philip M
2017-10-01
People with CF treated with IV antibiotics for a pulmonary exacerbation (PEx) frequently fail to recover to baseline FEV 1 . The long-term impact of these events has not been studied. To determine if a patient's spirometric recovery after a PEx is associated with time to next PEx within 1 year, the spirometric recovery after the next PEx, and/or the number of PEx episodes in the next 3 years. We used data from the CF Foundation Patient Registry from 2004 to 2011. We randomly selected one PEx per patient that met inclusion/exclusion criteria. Patients were defined as Non-Responders if their best FEV 1 (in liters) recorded in the 3 months after the PEx was <90% of the best FEV 1 (in liters) in the 6 months before the PEx. We compared Responders and Non-Responders using multivariable regression models. We randomly chose 13 954 PEx episodes that met inclusion/exclusion criteria. A total of 2 762 (19.8%) patients were classified as Non-Responders. Non-Responders had a shorter median time to the next PEx, 235 (95%CI 218, 252) days, versus >365 days for Responders. Thirty-four percent of Non-Responders at the initial PEx were also Non-Reponders at the next PEx, versus 20% of Responders at the initial PEx. Non-Responders had more PEx episodes over the next 3 years, 4.99 (95%CI 4.84, 5.13), than Responders, 3.46 (95%CI 3.41, 3.51). Poor recovery after a PEx is associated with a shorter time to the next PEx, increased risk of poor recovery at a second PEx, and more frequent subsequent PEx treatments. © 2017 Wiley Periodicals, Inc.
Oeljeklaus, Silke; Reinartz, Benedikt S; Wolf, Janina; Wiese, Sebastian; Tonillo, Jason; Podwojski, Katharina; Kuhlmann, Katja; Stephan, Christian; Meyer, Helmut E; Schliebs, Wolfgang; Brocard, Cécile; Erdmann, Ralf; Warscheid, Bettina
2012-04-06
The importomer complex plays an essential role in the biogenesis of peroxisomes by mediating the translocation of matrix proteins across the organellar membrane. A central part of this highly dynamic import machinery is the docking complex consisting of Pex14p, Pex13p, and Pex17p that is linked to the RING finger complex (Pex2p, Pex10p, Pex12p) via Pex8p. To gain detailed knowledge on the molecular players governing peroxisomal matrix protein import and, thus, the integrity and functionality of peroxisomes, we aimed at a most comprehensive investigation of stable and transient interaction partners of Pex14p, the central component of the importomer. To this end, we performed a thorough quantitative proteomics study based on epitope tagging of Pex14p combined with dual-track stable isotope labeling with amino acids in cell culture-mass spectrometry (SILAC-MS) analysis of affinity-purified Pex14p complexes and statistics. The results led to the establishment of the so far most extensive Pex14p interactome, comprising 9 core and further 12 transient components. We confirmed virtually all known Pex14p interaction partners including the core constituents of the importomer as well as Pex5p, Pex11p, Pex15p, and Dyn2p. More importantly, we identified new transient interaction partners (Pex25p, Hrr25p, Esl2p, prohibitin) that provide a valuable resource for future investigations on the functionality, dynamics, and regulation of the peroxisomal importomer.
Cartee, Gregory D; Arias, Edward B; Yu, Carmen S; Pataky, Mark W
2016-11-01
One exercise session can induce subsequently elevated insulin sensitivity that is largely attributable to greater insulin-stimulated glucose uptake by skeletal muscle. Because skeletal muscle is a heterogeneous tissue comprised of diverse fiber types, our primary aim was to determine exercise effects on insulin-independent and insulin-dependent glucose uptake by single fibers of different fiber types. We hypothesized that each fiber type featuring elevated insulin-independent glucose uptake immediately postexercise (IPEX) would be characterized by increased insulin-dependent glucose uptake at 3.5 h postexercise (3.5hPEX). Rat epitrochlearis muscles were isolated and incubated with 2-[ 3 H]deoxyglucose. Muscles from IPEX and sedentary (SED) controls were incubated without insulin. Muscles from 3.5hPEX and SED controls were incubated ± insulin. Glucose uptake (2-[ 3 H]deoxyglucose accumulation) and fiber type (myosin heavy chain isoform expression) were determined for single fibers dissected from the muscles. Major new findings included the following: 1) insulin-independent glucose uptake was increased IPEX in single fibers of each fiber type (types I, IIA, IIB, IIBX, and IIX), 2) glucose uptake values from insulin-stimulated type I and IIA fibers exceeded the values for the other fiber types, 3) insulin-stimulated glucose uptake for type IIX exceeded IIB fibers, and 4) the 3.5hPEX group vs. SED had greater insulin-stimulated glucose uptake in type I, IIA, IIB, and IIBX but not type IIX fibers. Insulin-dependent glucose uptake was increased at 3.5hPEX in each fiber type except for IIX fibers, although insulin-independent glucose uptake was increased IPEX in all fiber types (including type IIX). Single fiber analysis enabled the discovery of this fiber type-related difference for postexercise, insulin-stimulated glucose uptake. Copyright © 2016 the American Physiological Society.
Xie, Qingjun; Tzfadia, Oren; Levy, Matan; Weithorn, Efrat; Peled-Zehavi, Hadas; Van Parys, Thomas; Van de Peer, Yves; Galili, Gad
2016-01-01
ABSTRACT Most of the proteins that are specifically turned over by selective autophagy are recognized by the presence of short Atg8 interacting motifs (AIMs) that facilitate their association with the autophagy apparatus. Such AIMs can be identified by bioinformatics methods based on their defined degenerate consensus F/W/Y-X-X-L/I/V sequences in which X represents any amino acid. Achieving reliability and/or fidelity of the prediction of such AIMs on a genome-wide scale represents a major challenge. Here, we present a bioinformatics approach, high fidelity AIM (hfAIM), which uses additional sequence requirements—the presence of acidic amino acids and the absence of positively charged amino acids in certain positions—to reliably identify AIMs in proteins. We demonstrate that the use of the hfAIM method allows for in silico high fidelity prediction of AIMs in AIM-containing proteins (ACPs) on a genome-wide scale in various organisms. Furthermore, by using hfAIM to identify putative AIMs in the Arabidopsis proteome, we illustrate a potential contribution of selective autophagy to various biological processes. More specifically, we identified 9 peroxisomal PEX proteins that contain hfAIM motifs, among which AtPEX1, AtPEX6 and AtPEX10 possess evolutionary-conserved AIMs. Bimolecular fluorescence complementation (BiFC) results verified that AtPEX6 and AtPEX10 indeed interact with Atg8 in planta. In addition, we show that mutations occurring within or nearby hfAIMs in PEX1, PEX6 and PEX10 caused defects in the growth and development of various organisms. Taken together, the above results suggest that the hfAIM tool can be used to effectively perform genome-wide in silico screens of proteins that are potentially regulated by selective autophagy. The hfAIM system is a web tool that can be accessed at link: http://bioinformatics.psb.ugent.be/hfAIM/. PMID:27071037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampathkumar, P.; Roach, C.; Michels, P.A.M.
2009-05-27
Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called 'peroxins,' which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to havemore » a residue in the alpha(L) conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.« less
Wang, Jiaoyu; Zhang, Zhen; Wang, Yanli; Li, Ling; Chai, Rongyao; Mao, Xueqin; Jiang, Hua; Qiu, Haiping; Du, Xinfa; Lin, Fucheng; Sun, Guochang
2013-01-01
Peroxisomes participate in various important metabolisms and are required in pathogenicity of fungal plant pathogens. Peroxisomal matrix proteins are imported from cytoplasm into peroxisomes through peroxisomal targeting signal 1 (PTS1) or peroxisomal targeting signal 2 (PTS2) import pathway. PEX5 and PEX7 genes participate in the two pathways respectively. The involvement of PEX7 mediated PTS2 import pathway in fungal pathogenicity has been documented, while that of PTS1 remains unclear. Through null mutant analysis of MoPEX5, the PEX5 homolog in Magnaporthe oryzae, we report the crucial roles of PTS1 pathway in the development and host infection in the rice blast fungus, and compared with those of PTS2. We found that MoPEX5 disruption specifically blocked the PTS1 pathway. Δmopex5 was unable to use lipids as sole carbon source and lost pathogenicity completely. Similar as Δmopex7, Δmopex5 exhibited significant reduction in lipid utilization and mobilization, appressorial turgor genesis and H2O2 resistance. Additionally, Δmopex5 presented some distinct defects which were undetected in Δmopex7 in vegetative growth, conidial morphogenesis, appressorial morphogenesis and melanization. The results indicated that the PTS1 peroxisomal import pathway, in addition to PTS2, is required for fungal development and pathogenicity of the rice blast fungus, and also, as a main peroxisomal import pathway, played a more predominant role than PTS2. PMID:23405169
Farré, Jean-Claude; Carolino, Krypton; Stasyk, Oleh V; Stasyk, Olena G; Hodzic, Zlatan; Agrawal, Gaurav; Till, Andreas; Proietto, Marco; Cregg, James; Sibirny, Andriy A; Subramani, Suresh
2017-11-24
Peroxisomal membrane proteins (PMPs) traffic to peroxisomes by two mechanisms: direct insertion from the cytosol into the peroxisomal membrane and indirect trafficking to peroxisomes via the endoplasmic reticulum (ER). In mammals and yeast, several PMPs traffic via the ER in a Pex3- and Pex19-dependent manner. In Komagataella phaffii (formerly called Pichia pastoris) specifically, the indirect traffic of Pex2, but not of Pex11 or Pex17, depends on Pex3, but all PMPs tested for indirect trafficking require Pex19. In mammals, the indirect traffic of PMPs also requires PEX16, a protein that is absent in most yeast species. In this study, we isolated PEX36, a new gene in K. phaffii, which encodes a PMP. Pex36 is required for cell growth in conditions that require peroxisomes for the metabolism of certain carbon sources. This growth defect in cells lacking Pex36 can be rescued by the expression of human PEX16, Saccharomyces cerevisiae Pex34, or by overexpression of the endogenous K. phaffii Pex25. Pex36 is not an essential protein for peroxisome proliferation, but in the absence of the functionally redundant protein, Pex25, it becomes essential and less than 20% of these cells show import-incompetent, peroxisome-like structures (peroxisome remnants). In the absence of both proteins, peroxisome biogenesis and the intra-ER sorting of Pex2 and Pex11C are seriously impaired, likely by affecting Pex3 and Pex19 function. Copyright © 2017 Elsevier Ltd. All rights reserved.
ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS
Alexander, Angela; Kim, Jinhee; Powell, Reid T.; Dere, Ruhee; Tait-Mulder, Jacqueline; Lee, Ji-Hoon; Paull, Tanya T.; Pandita, Raj K.; Charaka, Vijaya K.; Pandita, Tej K.; Kastan, Michael B.; Walker, Cheryl Lyn
2015-01-01
Peroxisomes are highly metabolic, autonomously replicating organelles that generate ROS as a by product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to reactive oxygen species (ROS), ATM signaling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser141, which promotes PEX5 mono-ubiquitination at K209, and recognition of ubiquitinated PEX5 by the autophagy adapter protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy. PMID:26344566
Gür Güngör, Sirel; Bayer, Atilla; Akman, Ahmet; Asena, Leyla
2017-01-01
To determine the early signs of pseudoexfoliation (PEX) in fellow eyes of cases with unilateral PEX. Fellow eyes of 34 cases with unilateral PEX were evaluated by slit-lamp and gonioscopy. Findings associated with PEX were recorded. Mean age was 67.8±8.1 years (range 55-86 years). Twenty-five patients (73.5%) had pigmentation in the inferior angle and 23 patients (67.6%) had Sampaolesi's line located on the inferior angle in fellow eyes. The other most common findings were loss of peripupillary ruff in 10 patients (29.4%) and pigment dispersion following pupil dilation in 14 patients (41.1%). Pigmentation in the inferior angle and Sampaolesi's line on the inferior angle seem to be the most common early findings associated with PEX. Special attention should be paid to these findings in cases with ocular hypertension for proper management.
Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.
Saffert, Paul; Enenkel, Cordula; Wendler, Petra
2017-01-01
Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.
Anterior Lens Capsule and Iris Thicknesses in Pseudoexfoliation Syndrome.
Batur, Muhammed; Seven, Erbil; Tekin, Serek; Yasar, Tekin
2017-11-01
The aim of this study was to evaluate anatomic properties of the lens capsule and iris by anterior segment optical coherence tomography (AS-OCT) in patients with pseudoexfoliation (PEX). This prospective study included 62 eyes of 62 patients with PEX syndrome and 43 eyes of 43 age- and gender-matched controls. All subjects underwent full ophthalmologic examinations including AS-OCT. Pupillary diameter, midperipheral stromal iris thickness, central and temporal lens capsule thicknesses, and peripheral pseudoexfoliation material thickness on the anterior lens capsule surface were measured and recorded. Mean age was 66.8 ± 9.3 years in the PEX group and 65.5 ± 8.9 years in the control group (p = 0.44). The PEX group consisted of 62 patients: 38 men (61.3%) and 24 women (38.7%); the control group included 43 subjects: 25 men (58.1%) and 18 women (41.9%). Pupillary diameter after pharmacologic mydriasis was 21% smaller in the PEX group than controls. Mean midperipheral iris thickness was 36 ± 7.2 μm (7.8%) thinner in the PEX group than that of control group (p = 0.047). The central anterior capsule was a mean of 3.40 ± 0.51 μm (18%) thicker in the PEX group compared to the control group (p = 0.0001). The temporal anterior lens capsule was a mean of 0.17 ± 0.15 μm thicker in the PEX group compared to the control group (p = 0.81). With high-resolution OCT imaging, it has become possible to evaluate the anterior lens capsule without histologic examination and demonstrate that it is thicker than normal in PEX patients.
Law, Kelsey B.; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O.; Moser, Ann; Brumell, John H.; Braverman, Nancy
2017-01-01
ABSTRACT Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs. PMID:28521612
Law, Kelsey B; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O; Moser, Ann; Brumell, John H; Braverman, Nancy; Kim, Peter K
2017-05-04
Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.
Sharma, Ashutosh; Kirkpatrick, Gordon; Chen, Virginia; Skolnik, Kate; Hollander, Zsuzsanna; Wilcox, Pearce; Quon, Bradley S
2017-01-01
C-reactive protein (CRP) is a systemic marker of inflammation that correlates with disease status in cystic fibrosis (CF). The clinical utility of CRP measurement to guide pulmonary exacerbation (PEx) treatment decisions remains uncertain. To determine whether monitoring CRP during PEx treatment can be used to predict treatment response. We hypothesized that early changes in CRP can be used to predict treatment response. We reviewed all PEx events requiring hospitalization for intravenous (IV) antibiotics over 2 years at our institution. 83 PEx events met our eligibility criteria. CRP levels from admission to day 5 were evaluated to predict treatment non-response, using a modified version of a prior published composite definition. CRP was also evaluated to predict time until next exacerbation (TUNE). 53% of 83 PEx events were classified as treatment non-response. Paradoxically, 24% of PEx events were characterized by a ≥ 50% increase in CRP levels within the first five days of treatment. Absolute change in CRP from admission to day 5 was not associated with treatment non-response (p = 0.58). Adjusted for FEV1% predicted, admission log10 CRP was associated with treatment non-response (OR: 2.39; 95% CI: 1.14 to 5.91; p = 0.03) and shorter TUNE (HR: 1.60; 95% CI: 1.13 to 2.27; p = 0.008). The area under the receiver operating characteristics (ROC) curve of admission CRP to predict treatment non-response was 0.72 (95% CI 0.61-0.83; p<0.001). 23% of PEx events were characterized by an admission CRP of > 75 mg/L with a specificity of 90% for treatment non-response. Admission CRP predicts treatment non-response and time until next exacerbation. A very elevated admission CRP (>75mg/L) is highly specific for treatment non-response and might be used to target high-risk patients for future interventional studies aimed at improving exacerbation outcomes.
Kelley, Keven M; Stenson, Alexandra C; Dey, Rajarashi; Whelton, Andrew J
2014-12-15
Green buildings are increasingly being plumbed with crosslinked polyethylene (PEX) potable water pipe. Tap water quality was investigated at a six month old plumbing system and chemical and odor quality impacts of six PEX pipe brands were examined. Eleven PEX related contaminants were found in the plumbing system; one regulated (toluene) and several unregulated: Antioxidant degradation products, resin solvents, initiator degradation products, or manufacturing aides. Water chemical and odor quality was monitored for new PEX-a, -b and -c pipes with (2 mg/L free chlorine) and without disinfectant over 30 days. Odor and total organic carbon (TOC) levels decreased for all pipes, but odor remained greater than the USA's Environmental Protection Agency's (USEPA) secondary maximum contaminant level. Odors were not attributed to known odorants ethyl-tert-butyl ether (ETBE) or methyl-tert-butyl ether (MTBE). Free chlorine caused odor levels for PEX-a1 pipe to increase from 26 to 75 threshold odor number (TON) on day 3 and affected the rate at which TOC changed for each brand over 30 days. As TOC decreased, the ultraviolet absorbance at 254 nm increased. Pipes consumed as much as 0.5 mg/L as Cl2 during each 3 day stagnation period. Sixteen organic chemicals were identified, including toluene, pyridine, methylene trichloroacetate and 2,4-di-tert-butylphenol. Some were also detected during the plumbing system field investigation. Six brands of PEX pipes sold in the USA and a PEX-a green building plumbing system impacted chemical and drinking water odor quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phosphorylation of Pex11p does not regulate peroxisomal fission in the yeast Hansenula polymorpha
Thomas, Ann S.; Krikken, Arjen M.; van der Klei, Ida J.; Williams, Chris P.
2015-01-01
Pex11p plays a crucial role in peroxisomal fission. Studies in Saccharomyces cerevisiae and Pichia pastoris indicated that Pex11p is activated by phosphorylation, which results in enhanced peroxisome proliferation. In S. cerevisiae but not in P. pastoris, Pex11p phosphorylation was shown to regulate the protein’s trafficking to peroxisomes. However, phosphorylation of PpPex11p was proposed to influence its interaction with Fis1p, another component of the organellar fission machinery. Here, we have examined the role of Pex11p phosphorylation in the yeast Hansenula polymorpha. Employing mass spectrometry, we demonstrate that HpPex11p is also phosphorylated on a Serine residue present at a similar position to that of ScPex11p and PpPex11p. Furthermore, through the use of mutants designed to mimic both phosphorylated and unphosphorylated forms of HpPex11p, we have investigated the role of this post-translational modification. Our data demonstrate that mutations to the phosphorylation site do not disturb the function of Pex11p in peroxisomal fission, nor do they alter the localization of Pex11p. Also, no effect on peroxisome inheritance was observed. Taken together, these data lead us to conclude that peroxisomal fission in H. polymorpha is not modulated by phosphorylation of Pex11p. PMID:26099236
Degradation of specific aromatic compounds migrating from PEX pipes into drinking water.
Ryssel, Sune Thyge; Arvin, Erik; Lützhøft, Hans-Christian Holten; Olsson, Mikael Emil; Procházková, Zuzana; Albrechtsen, Hans-Jørgen
2015-09-15
Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water samples spiked with target compounds. Four compounds were quantified in field samples at concentrations of 0.15-8.0 μg/L. During PEX pipe water extraction 0.42 ± 0.20 mg NVOC/L was released and five compounds quantified (0.5-6.1 μg/L). The degradation of these compounds was evaluated in PEX-pipe water extractions and spiked samples. 4-ethylphenol was degraded within 22 days. Eight compounds were, however, only partially degradable under abiotic and biotic conditions within the timeframe of the experiments (2-4 weeks). Neither inhibition nor co-metabolism was observed in the presence of acetate or PEX pipe derived NVOC. Furthermore, the degradation in drinking water from four different locations with three different water works was similar. In conclusion, eight out of the nine compounds studied would - if being released from the pipes - reach consumers with only minor concentration decrease during water distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of age on the expression of Pex (Phex) in the mouse.
Meyer, R A; Young, C G; Meyer, M H; Garges, P L; Price, D K
2000-04-01
Pex is a newly discovered gene (also called Phex) whose mutation is the cause of X-linked hypophosphatemia. Other members of this gene family encode endopeptidases that activate or inactivate endocrine and paracrine factors. Though embryonic bone expresses mRNA for the Pex gene at relatively high levels, we have found Pex expression to be widespread in adult organs and to be poorly expressed in adult bone. This led to the hypothesis that Pex mRNA expression changes with age. To test this, genetically normal mice of the B6C3H hybrid strain were studied at 0 (newborn), 2, 3, 10, and 72 weeks of age. Organs known to express Pex were collected, and RNA was extracted from them. Following reverse transcription, cDNA was amplified by the polymerase chain reaction with primers for Pex and G3PDH, a housekeeping gene. The amplimers were separated by electrophoresis, blotted onto nylon membranes, and hybridized with radioactively labeled internal oligonucleotide probes. The radioactivity was quantified, and the data were analyzed as the Pex/G3PDH ratio. The brain samples had high levels of Pex mRNA expression that rose slightly with age. Calvaria, kidney, and lung samples had the highest Pex mRNA expression at birth. In these organs Pex mRNA expression fell with age to undetectable or barely detectable levels. Thymus, heart, and skeletal muscle samples had low Pex mRNA expression at birth that did not change with age. Some organs showed a decline in G3PDH levels with age, but Pex expression decreased more, leading to a reduced Pex/G3PDH ratio. The widespread expression of mRNA for Pex suggests a role beyond that of phosphate homeostasis. The high level of expression in newborn animals suggests a role in growth and development. This seems to occur in addition to its role for the endocrine regulation of phosphate homeostasis by as yet unknown humoral agents that must occur throughout life. In summary, Pex mRNA expression is high in brain and bone at birth. Expression remains high in brain with age but falls with age in bone, kidney, and lung.
A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis.
Joshi, Amit S; Huang, Xiaofang; Choudhary, Vineet; Levine, Tim P; Hu, Junjie; Prinz, William A
2016-11-21
Saccharomyces cerevisiae contains three conserved reticulon and reticulon-like proteins that help maintain ER structure by stabilizing high membrane curvature in ER tubules and the edges of ER sheets. A mutant lacking all three proteins has dramatically altered ER morphology. We found that ER shape is restored in this mutant when Pex30p or its homologue Pex31p is overexpressed. Pex30p can tubulate membranes both in cells and when reconstituted into proteoliposomes, indicating that Pex30p is a novel ER-shaping protein. In contrast to the reticulons, Pex30p is low abundance, and we found that it localizes to subdomains in the ER. We show that these ER subdomains are the sites where most preperoxisomal vesicles (PPVs) are generated. In addition, overproduction or deletion of Pex30p or Pex31p alters the size, shape, and number of PPVs. Our findings suggest that Pex30p and Pex31p help shape and generate regions of the ER where PPV biogenesis occurs.
Ahlemeyer, Barbara; Gottwald, Magdalena; Baumgart-Vogt, Eveline
2012-01-01
SUMMARY Impaired neuronal migration and cell death are commonly observed in patients with peroxisomal biogenesis disorders (PBDs), and in mouse models of this diseases. In Pex11β-deficient mice, we observed that the deletion of a single allele of the Pex11β gene (Pex11β+/− heterozygous mice) caused cell death in primary neuronal cultures prepared from the neocortex and cerebellum, although to a lesser extent as compared with the homozygous-null animals (Pex11β−/− mice). In corresponding brain sections, cell death was rare, but differences between the genotypes were similar to those found in vitro. Because PEX11β has been implicated in peroxisomal proliferation, we searched for alterations in peroxisomal abundance in the brain of heterozygous and homozygous Pex11β-null mice compared with wild-type animals. Deletion of one allele of the Pex11β gene slightly increased the abundance of peroxisomes, whereas the deletion of both alleles caused a 30% reduction in peroxisome number. The size of the peroxisomal compartment did not correlate with neuronal death. Similar to cell death, neuronal development was delayed in Pex11β+/− mice, and to a further extent in Pex11β−/− mice, as measured by a reduced mRNA and protein level of synaptophysin and a reduced protein level of the mature isoform of MAP2. Moreover, a gradual increase in oxidative stress was found in brain sections and primary neuronal cultures from wild-type to heterozygous to homozygous Pex11β-deficient mice. SOD2 was upregulated in neurons from Pex11β+/− mice, but not from Pex11β−/− animals, whereas the level of catalase remained unchanged in neurons from Pex11β+/− mice and was reduced in those from Pex11β−/− mice, suggesting a partial compensation of oxidative stress in the heterozygotes, but a failure thereof in the homozygous Pex11β−/− brain. In conclusion, we report the alterations in the brain caused by the deletion of a single allele of the Pex11β gene. Our data might lead to the reconsideration of the clinical treatment of PBDs and the common way of using knockout mouse models for studying autosomal recessive diseases. PMID:21954064
Is pseudoexfoliation syndrome associated with coronary artery disease?
Emiroglu, Mehmet Yunus; Coskun, Erol; Karapinar, Hekim; Capkın, Musa; Kaya, Zekeriya; Kaya, Hasan; Akcakoyun, Mustafa; Kargin, Ramazan; Simsek, Zeki; Acar, Göksel; Aung, Soe Moe; Pala, Selcuk; Özdemir, Burak; Esen, Ali Metin; Kırma, Cevat
2010-01-01
Background: Pseudoexfoliation syndrome (PEX) is recognised by chronic deposition of abnormal pseudoexfoliation material on anterior segment structures of the eye, especially the anterior lens capsule. In recent years, several studies have shown the presence of vascular, cardiac and other organ pseudoexfoliative material in patients with ocular pseudoexfoliation. Aims: The purpose of this study is to determine whether an association exists between ocular pseudoexfoliation and coronary artery disease, aortic aneurysms and peripheric vascular disease. Patients and Methods: 490 patients who underwent coronary angiography (CAG) at Kosuyolu Cardiovascula Research and Training Hospital were included in the study. Patients were evaluated for conventional risk factors such as age, sex, family history, hypertension, diabetes, dislipidemia and smoking. Detailed eye examinations including evaluation of lens were done in all patients. The presence of PEX material in the anterior segment was best appreciated by slit lamp after pupillary dilation. The patients were divided into two groups according to the presence of PEX, and compared for the presence of CAD and other risk factors. Results: CAD was present in 387 patients. 103 patients had normal coronary angiography. 20 (5.2 %) of CAD patients and 4 (3.9%) of normal CAG patients were found to have PEX (p>0.05). There was no significant relationship between CAD and the presence of PEX (p>0.05). When patients were grouped according to the presence of PEX, only age was significantly different between the two groups (r: 0.25, p<0.001). Conclusion: There is no significant relationship between the presence of PEX and CAD. Further studies in larger scales with elderly population may be more valuable. PMID:22558552
Su, Juanjuan; Thomas, Ann S; Grabietz, Tanja; Landgraf, Christiane; Volkmer, Rudolf; Marrink, Siewert J; Williams, Chris; Melo, Manuel N
2018-06-01
Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane
Yoshida, Yumi; Niwa, Hajime; Honsho, Masanori; Itoyama, Akinori; Fujiki, Yukio
2015-01-01
Pex11p family proteins are key players in peroxisomal fission, but their molecular mechanisms remains mostly unknown. In the present study, overexpression of Pex11pβ caused substantial vesiculation of peroxisomes in mammalian cells. This vesicle formation was dependent on dynamin-like protein 1 (DLP1) and mitochondrial fission factor (Mff), as knockdown of these proteins diminished peroxisomal fission after Pex11pβ overexpression. The fission-deficient peroxisomes exhibited an elongated morphology, and peroxisomal marker proteins, such as Pex14p or matrix proteins harboring peroxisomal targeting signal 1, were discernible in a segmented staining pattern, like beads on a string. Endogenous Pex11pβ was also distributed a striped pattern, but which was not coincide with Pex14p and PTS1 matrix proteins. Altered morphology of the lipid membrane was observed when recombinant Pex11p proteins were introduced into proteo-liposomes. Constriction of proteo-liposomes was observed under confocal microscopy and electron microscopy, and the reconstituted Pex11pβ protein localized to the membrane constriction site. Introducing point mutations into the N-terminal amphiphathic helix of Pex11pβ strongly reduced peroxisomal fission, and decreased the oligomer formation. These results suggest that Pex11p contributes to the morphogenesis of the peroxisomal membrane, which is required for subsequent fission by DLP1. PMID:25910939
Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M
2018-02-01
To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (<0·02%) to PEX (<0·2%) pipes. Extra disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P < 0·01, rRNA) and increase in Sphingomonas spp. as compared to control samples. Furthermore, extra-disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.
A Tactical Framework for Cyberspace Situational Awareness
2010-06-01
Command & Control 1. VOIP Telephone 2. Internet Chat 3. Web App ( TBMCS ) 4. Email 5. Web App (PEX) 6. Database (CAMS) 7. Database (ARMS) 8...Database (LogMod) 9. Resource (WWW) 10. Application (PFPS) Mission Planning 1. Application (PFPS) 2. Email 3. Web App ( TBMCS ) 4. Internet Chat...1. Web App (PEX) 2. Database (ARMS) 3. Web App ( TBMCS ) 4. Email 5. Database (CAMS) 6. VOIP Telephone 7. Application (PFPS) 8. Internet Chat 9
Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels.
Mindthoff, Sabrina; Grunau, Silke; Steinfort, Laura L; Girzalsky, Wolfgang; Hiltunen, J Kalervo; Erdmann, Ralf; Antonenkov, Vasily D
2016-02-01
More than 30 proteins (Pex proteins) are known to participate in the biogenesis of peroxisomes-ubiquitous oxidative organelles involved in lipid and ROS metabolism. The Pex11 family of homologous proteins is responsible for division and proliferation of peroxisomes. We show that yeast Pex11 is a pore-forming protein sharing sequence similarity with TRPM cation-selective channels. The Pex11 channel with a conductance of Λ=4.1 nS in 1.0M KCl is moderately cation-selective (PK(+)/PCl(-)=1.85) and resistant to voltage-dependent closing. The estimated size of the channel's pore (r~0.6 nm) supports the notion that Pex11 conducts solutes with molecular mass below 300-400 Da. We localized the channel's selectivity determining sequence. Overexpression of Pex11 resulted in acceleration of fatty acids β-oxidation in intact cells but not in the corresponding lysates. The β-oxidation was affected in cells by expression of the Pex11 protein carrying point mutations in the selectivity determining sequence. These data suggest that the Pex11-dependent transmembrane traffic of metabolites may be a rate-limiting step in the β-oxidation of fatty acids. This conclusion was corroborated by analysis of the rate of β-oxidation in yeast strains expressing Pex11 with mutations mimicking constitutively phosphorylated (S165D, S167D) or unphosphorylated (S165A, S167A) protein. The results suggest that phosphorylation of Pex11 is a mechanism that can control the peroxisomal β-oxidation rate. Our results disclose an unexpected function of Pex11 as a non-selective channel responsible for transfer of metabolites across peroxisomal membrane. The data indicate that peroxins may be involved in peroxisomal metabolic processes in addition to their role in peroxisome biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.
Mattiazzi Ušaj, M.; Brložnik, M.; Kaferle, P.; Žitnik, M.; Wolinski, H.; Leitner, F.; Kohlwein, S.D.; Zupan, B.; Petrovič, U.
2015-01-01
Pex11 is a peroxin that regulates the number of peroxisomes in eukaryotic cells. Recently, it was found that a mutation in one of the three mammalian paralogs, PEX11β, results in a neurological disorder. The molecular function of Pex11, however, is not known. Saccharomyces cerevisiae Pex11 has been shown to recruit to peroxisomes the mitochondrial fission machinery, thus enabling proliferation of peroxisomes. This process is essential for efficient fatty acid β-oxidation. In this study, we used high-content microscopy on a genome-wide scale to determine the subcellular localization pattern of yeast Pex11 in all non-essential gene deletion mutants, as well as in temperature-sensitive essential gene mutants. Pex11 localization and morphology of peroxisomes was profoundly affected by mutations in 104 different genes that were functionally classified. A group of genes encompassing MDM10, MDM12 and MDM34 that encode the mitochondrial and cytosolic components of the ERMES complex was analyzed in greater detail. Deletion of these genes caused a specifically altered Pex11 localization pattern, whereas deletion of MMM1, the gene encoding the fourth, endoplasmic-reticulum-associated component of the complex, did not result in an altered Pex11 localization or peroxisome morphology phenotype. Moreover, we found that Pex11 and Mdm34 physically interact and that Pex11 plays a role in establishing the contact sites between peroxisomes and mitochondria through the ERMES complex. Based on these results, we propose that the mitochondrial/cytosolic components of the ERMES complex establish a direct interaction between mitochondria and peroxisomes through Pex11. PMID:25769804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Ronghui; Satkovich, John; Hu, Jianping
Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less
Phacoemulsification in pseudoexfoliation syndrome.
Akinci, Arsen; Batman, Cosar; Zilelioglu, Orhan
2008-01-01
To compare the incidence of intraoperative and early postoperative complications (IEPC), visual outcomes, and change in intraocular pressure (IOP) between eyes with and without pseudoexfoliation syndrome (PEX) having cataract extraction by phacoemulsification. 800 eyes with PEX and 1,600 eyes without PEX having cataract extraction by phacoemulsification were included in this retrospective study. Evaluated parameters were incidence of IEPC, visual outcomes and change in IOP. chi2 and Student's t test were used for statistical analysis. There were no significant differences in the incidence of IEPC and visual acuity gain between the two groups (p > 0.05). Rise in IOP in the early postoperative period was significantly higher in the PEX group (p < 0.02). Patients with PEX who have phacoemulsification can achieve results similar to patients without PEX. IOP control in the early postoperative period seems to be more important in patients with PEX. Copyright 2008 S. Karger AG, Basel.
Heart Rate and Energy Expenditure in Division I Field Hockey Players During Competitive Play.
Sell, Katie M; Ledesma, Allison B
2016-08-01
Sell, KM and Ledesma, AB. Heart rate and energy expenditure in Division I field hockey players during competitive play. J Strength Cond Res 30(8): 2122-2128, 2016-The purpose of this study was to quantify energy expenditure and heart rate data for Division I female field hockey players during competitive play. Ten female Division I collegiate field hockey athletes (19.8 ± 1.6 years; 166.4 ± 6.1 cm; 58.2 ± 5.3 kg) completed the Yo-Yo intermittent endurance test to determine maximal heart rate. One week later, all subjects wore a heart rate monitor during a series of 3 matches in an off-season competition. Average heart rate (AvHR), average percentage of maximal heart rate (AvHR%), peak exercise heart rate (PExHR), and percentage of maximal heart rate (PExHR%), time spent in each of the predetermined heart rate zones, and caloric expenditure per minute of exercise (kcalM) were determined for all players. Differences between positions (backs, midfielders, and forwards) were assessed. No significant differences in AvHR, AvHR%, PExHR, PExHR%, and %TM were observed between playing positions. The AvHR% and PExHR% for each position fell into zones 4 (77-93% HRmax) and 5 (>93% HRmax), respectively, and significantly more time was spent in zone 4 compared with zones 1, 2, 3, and 5 across all players (p ≤ 0.05). The kcalM reflected very heavy intensity exercise. The results of this study will contribute toward understanding the sport-specific physiological demands of women's field hockey and has specific implications for the duration and schedule of training regimens.
E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis
Pan, Ronghui; Satkovich, John; Hu, Jianping
2016-10-31
Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less
Ugarte-Berzal, Estefanía; Vandooren, Jennifer; Bailón, Elvira; Opdenakker, Ghislain; García-Pardo, Angeles
2016-01-01
Degradation and remodeling of the extracellular matrix by matrix metalloproteinases (MMPs) plays important roles in normal development, inflammation, and cancer. MMP-9 efficiently degrades the extracellular matrix component gelatin, and the hemopexin domain of MMP-9 (PEX9) inhibits this degradation. To study the molecular basis of this inhibition, we generated GST fusion proteins containing PEX9 or truncated forms corresponding to specific structural blades (B1–B4) of PEX9. GST-PEX9 inhibited MMP-9-driven gelatin proteolysis, measured by gelatin zymography, FITC-gelatin conversion, and DQ-gelatin degradation assays. However, GST-PEX9 did not prevent the degradation of other MMP-9 substrates, such as a fluorogenic peptide, αB crystalline, or nonmuscular actin. Therefore, PEX9 may inhibit gelatin degradation by shielding gelatin and specifically preventing its binding to MMP-9. Accordingly, GST-PEX9 also abolished the degradation of gelatin by MMP-2, confirming that PEX9 is not an MMP-9 antagonist. Moreover, GST-B4 and, to a lesser extent, GST-B1 also inhibited gelatin degradation by MMP-9, indicating that these regions are responsible for the inhibitory activity of PEX9. Accordingly, ELISAs demonstrated that GST-B4 and GST-B1 specifically bound to gelatin. Our results establish new functions of PEX9 attributed to blades B4 and B1 and should help in designing specific inhibitors of gelatin degradation. PMID:27044750
Ozge, Gokhan; Koylu, Mehmet Talay; Mumcuoglu, Tarkan; Gundogan, Fatih Cakir; Ozgonul, Cem; Ayyildiz, Onder; Kucukevcilioglu, Murat
2016-05-01
To compare retinal nerve fiber layer thickness (RNFLT) and choroidal thickness (ChT) measurements in eyes with pseudoexfoliative (PEX) glaucoma, PEX syndrome and healthy control eyes. Eighteen patients with PEX glaucoma in one eye and PEX syndrome in the fellow eye were included. The right eyes of thirty-nine age- and sex-matched healthy subjects were included as control group. All participants underwent a detailed biomicroscopic and funduscopic examination. RNFLT and ChT measurements were performed with a commercially available spectral-domain optical coherence tomography (SD-OCT). ChT measurements were performed by using enhanced depth imaging (EDI) mode. Patients with PEX underwent diurnal IOP measurements with 4-hour intervals before inclusion in the study. RNFLT results included the average measurement and 6 quadrants (temporal, inferotemporal, inferonasal, nasal, superonasal and supero-temporal). ChT measurements were performed in the subfoveal region and around the fovea (500µm and 1500 µm nasal and temporal to the fovea), as well as around the optic disc (average peripapillary and eight quadrants in the peripapillary region (temporal, inferotemporal, inferior, inferonasal, nasal, superonasal, superior, supero-temporal)). RNFLT in all quadrants and average thickness were significantly lower in PEX glaucoma eyes compared to PEX syndrome eyes and healthy control eyes (p<0.001 for both). RNFLT comparisons between PEX syndrome and healthy control eyes did not show a significant difference (p>0.05) except the inferotemporal quadrant. ChT measurements were similar between groups (p>0.05). Thinning of the RNFL in association with unchanged ChT may mean that the presence of PEX material is a much more significant risk factor than choroidal changes in the progression of PEX syndrome to PEX glaucoma.
Breen, Michael; Xu, Yadong; Schneider, Alexandra; Williams, Ronald; Devlin, Robert
2018-06-01
Air pollution epidemiology studies of ambient fine particulate matter (PM 2.5 ) often use outdoor concentrations as exposure surrogates, which can induce exposure error. The goal of this study was to improve ambient PM 2.5 exposure assessments for a repeated measurements study with 22 diabetic individuals in central North Carolina called the Diabetes and Environment Panel Study (DEPS) by applying the Exposure Model for Individuals (EMI), which predicts five tiers of individual-level exposure metrics for ambient PM 2.5 using outdoor concentrations, questionnaires, weather, and time-location information. Using EMI, we linked a mechanistic air exchange rate (AER) model to a mass-balance PM 2.5 infiltration model to predict residential AER (Tier 1), infiltration factors (F inf_home , Tier 2), indoor concentrations (C in , Tier 3), personal exposure factors (F pex , Tier 4), and personal exposures (E, Tier 5) for ambient PM 2.5 . We applied EMI to predict daily PM 2.5 exposure metrics (Tiers 1-5) for 174 participant-days across the 13 months of DEPS. Individual model predictions were compared to a subset of daily measurements of F pex and E (Tiers 4-5) from the DEPS participants. Model-predicted F pex and E corresponded well to daily measurements with a median difference of 14% and 23%; respectively. Daily model predictions for all 174 days showed considerable temporal and house-to-house variability of AER, F inf_home , and C in (Tiers 1-3), and person-to-person variability of F pex and E (Tiers 4-5). Our study demonstrates the capability of predicting individual-level ambient PM 2.5 exposure metrics for an epidemiological study, in support of improving risk estimation. Copyright © 2018. Published by Elsevier B.V.
Arora, Samantha; Cheung, Angela C; Tarique, Usman; Agarwal, Arnav; Firdouse, Mohammed; Ailon, Jonathan
2017-09-01
To compare point-of-care ultrasound and physical examination (PEx), each performed by first-year medical students after brief teaching, for assessing ascites and hepatomegaly. Ultrasound and PEx were compared on: (1) reliability, validity and performance, (2) diagnostic confidence, ease of use, utility, and applicability. A single-center, randomized controlled trial was performed at a tertiary centre. First-year medical students were randomized to use ultrasound or PEx to assess for ascites and hepatomegaly. Cohen's kappa and interclass coefficient (ICC) were used to measure interrater reliability between trainee assessments and the reference standard (a same day ultrasound by a radiologist). Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were compared. A ten-point Likert scale was used to assess trainee diagnostic confidence and perceptions of utility. There were no significant differences in interobserver reliability, sensitivity, specificity, accuracy, PPV, or NPV between the ultrasound and PEx groups. However, students in the ultrasound group provided higher scores for perceived utility (ascites 8.38 ± 1.35 vs 7.08 ± 1.86, p = 0.008; hepatomegaly 7.68 ± 1.52 vs 5.36 ± 2.48, p < 0.001) and likelihood of adoption (ascites 8.67 ± 1.61 vs 7.46 ± 1.79, p = 0.02; hepatomegaly 8.12 ± 1.90 vs 5.92 ± 2.32, p = 0.001). When performed by first-year medical students, the validity and reliability of ultrasound is comparable to PEx, but with greater perceived utility and likelihood of adoption. With similarly brief instruction, point-of-care ultrasonography can be as effectively learned and performed as PEx, with a high degree of interest from trainees.
Galukande, Moses; Duffy, Kevin; Bitega, Jean Paul; Rackara, Sam; Bbaale, Denis Sekavuga; Nakaggwa, Florence; Nagaddya, Teddy; Wooding, Nick; Dea, Monica; Coutinho, Alex
2014-01-01
Background Safe Male Circumcision is a proven approach for partial HIV prevention. Several sub Saharan African countries have plans to reach a prevalence of 80% of their adult males circumcised by 2015. These targets require out of ordinary organization, demand creation, timely execution and perhaps the use of SMC devices. Objective To profile Adverse Events rate and acceptance of PrePex, a non surgical device for adult male circumcision. Methods A prospective study, conducted at International Hospital Kampala, Uganda, between August and October 2012. Ethical approval was obtained from Uganda National Council of Science and Technology. Results Of 1,040 men received to undergo SMC, 678 opted for PrePex, 36 were excluded at an initial physical examination screening. 642 were enrolled and consented, and another 17 were excluded before device placement. 625 underwent the procedure. Average age was 24 years (±7). Twelve moderate AEs occurred among 10 participants 12/625, (1.9%). These were all reversible. Five had device displacement, one had an everted foreskin; five had bleeding after the device was removed and one had voiding difficulties. The majority (279 out of 300) of men interviewed complained of some pain within the week of placement. Mean pain score at device placement (using visual analogue scale) was 0.5, at device removal 4.5 and within 2 min of removal the pain score was 1.4. Over 70% of the devices were placed and removed by non-physician clinicians. Presented with a choice, 60% of men chose PrePex over surgical SMC. Close to 90% would recommend the device to their friends. Odour from the necrotic skin was a concern. Removals done 1–2 days earlier than day 7 were beneficial and conferred no extra risk. Conclusion AEs of a moderate or severe nature associated with PrePex were low and reversible. PrePex is feasible for mass safe male circumcision scaling up. PMID:24489754
Ugarte-Berzal, Estefanía; Vandooren, Jennifer; Bailón, Elvira; Opdenakker, Ghislain; García-Pardo, Angeles
2016-05-27
Degradation and remodeling of the extracellular matrix by matrix metalloproteinases (MMPs) plays important roles in normal development, inflammation, and cancer. MMP-9 efficiently degrades the extracellular matrix component gelatin, and the hemopexin domain of MMP-9 (PEX9) inhibits this degradation. To study the molecular basis of this inhibition, we generated GST fusion proteins containing PEX9 or truncated forms corresponding to specific structural blades (B1-B4) of PEX9. GST-PEX9 inhibited MMP-9-driven gelatin proteolysis, measured by gelatin zymography, FITC-gelatin conversion, and DQ-gelatin degradation assays. However, GST-PEX9 did not prevent the degradation of other MMP-9 substrates, such as a fluorogenic peptide, αB crystalline, or nonmuscular actin. Therefore, PEX9 may inhibit gelatin degradation by shielding gelatin and specifically preventing its binding to MMP-9. Accordingly, GST-PEX9 also abolished the degradation of gelatin by MMP-2, confirming that PEX9 is not an MMP-9 antagonist. Moreover, GST-B4 and, to a lesser extent, GST-B1 also inhibited gelatin degradation by MMP-9, indicating that these regions are responsible for the inhibitory activity of PEX9. Accordingly, ELISAs demonstrated that GST-B4 and GST-B1 specifically bound to gelatin. Our results establish new functions of PEX9 attributed to blades B4 and B1 and should help in designing specific inhibitors of gelatin degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Schutte, Carl; Tshimanga, M; Mugurungi, Owen; Come, Iotamo; Necochea, Edgar; Mahomed, Mehebub; Xaba, Sinokuthemba; Bossemeyer, Debora; Ferreira, Thais; Macaringue, Lucinda; Chatikobo, Pessanai; Gundididza, Patricia; Hatzold, Karin
2016-06-01
The PrePex device has proven to be safe for voluntary medical male circumcision (VMMC) in adults in several African countries. Costing studies were conducted as part of a PrePex/Surgery comparison study in Zimbabwe and a pilot implementation study in Mozambique. The studies calculated per male circumcision unit costs using a cost-analysis approach. Both direct costs (consumable and nonconsumable supplies, device, personnel, associated staff training) and selected indirect costs (capital and support personnel costs) were calculated. The cost comparison in Zimbabwe showed a unit cost per VMMC of $45.50 for PrePex and $53.08 for surgery. The unit cost difference was based on higher personnel and consumable supplies costs for the surgical procedure, which used disposable instrument kits. In Mozambique, the costing analysis estimated a higher unit cost for PrePex circumcision ($40.66) than for surgery ($20.85) because of higher consumable costs, particularly the PrePex device and lower consumable supplies costs for the surgical procedure using reusable instruments. Supplies and direct staff costs contributed 87.2% for PrePex and 65.8% for surgical unit costs in Mozambique. PrePex device male circumcision could potentially be cheaper than surgery in Zimbabwe, especially in settings that lack the infrastructure and personnel required for surgical VMMC, and this might result in programmatic cost savings. In Mozambique, the surgical procedure seems to be less costly compared with PrePex mainly because of higher consumable supplies costs. With reduced device unit costs, PrePex VMMC could become more cost-efficient and considered as complementary for Mozambique's VMMC scale-up program.
Accuracy of five electronic foramen locators with different operating systems: an ex vivo study
de VASCONCELOS, Bruno Carvalho; BUENO, Michelli de Medeiros; LUNA-CRUZ, Suyane Maria; DUARTE, Marco Antonio Hungaro; FERNANDES, Carlos Augusto de Oliveira
2013-01-01
Objective: The aim of this study was to evaluate, ex vivo, the precision of five electronic root canal length measurement devices (ERCLMDs) with different operating systems: the Root ZX, Mini Apex Locator, Propex II, iPex, and RomiApex A-15, and the possible influence of the positioning of the instrument tips short of the apical foramen. Material and Methods: Forty-two mandibular bicuspids had their real canal lengths (RL) previously determined. Electronic measurements were performed 1.0 mm short of the apical foramen (-1.0), followed by measurements at the apical foramen (0.0). The data resulting from the comparison of the ERCLMD measurements and the RL were evaluated by the Wilcoxon and Friedman tests at a significance level of 5%. Results: Considering the measurements performed at 0.0 and -1.0, the precision rates for the ERCLMDs were: 73.5% and 47.1% (Root ZX), 73.5% and 55.9% (Mini Apex Locator), 67.6% and 41.1% (Propex II), 61.7% and 44.1% (iPex), and 79.4% and 44.1% (RomiApex A-15), respectively, considering ±0.5 mm of tolerance. Regarding the mean discrepancies, no differences were observed at 0.0; however, in the measurements at -1.0, the iPex, a multi-frequency ERCLMD, had significantly more discrepant readings short of the apical foramen than the other devices, except for the Propex II, which had intermediate results. When the ERCLMDs measurements at -1.0 were compared with those at 0.0, the Propex II, iPex and RomiApex A-15 presented significantly higher discrepancies in their readings. Conclusions: Under the conditions of the present study, all the ERCLMDs provided acceptable measurements at the 0.0 position. However, at the -1.0 position, the ERCLMDs had a lower precision, with statistically significant differences for the Propex II, iPex, and RomiApex A-15. PMID:23739852
Accuracy of five electronic foramen locators with different operating systems: an ex vivo study.
Vasconcelos, Bruno Carvalho de; Bueno, Michelli de Medeiros; Luna-Cruz, Suyane Maria; Duarte, Marco Antonio Hungaro; Fernandes, Carlos Augusto de Oliveira
2013-01-01
The aim of this study was to evaluate, ex vivo, the precision of five electronic root canal length measurement devices (ERCLMDs) with different operating systems: the Root ZX, Mini Apex Locator, Propex II, iPex, and RomiApex A-15, and the possible influence of the positioning of the instrument tips short of the apical foramen. Forty-two mandibular bicuspids had their real canal lengths (RL) previously determined. Electronic measurements were performed 1.0 mm short of the apical foramen (-1.0), followed by measurements at the apical foramen (0.0). The data resulting from the comparison of the ERCLMD measurements and the RL were evaluated by the Wilcoxon and Friedman tests at a significance level of 5%. Considering the measurements performed at 0.0 and -1.0, the precision rates for the ERCLMDs were: 73.5% and 47.1% (Root ZX), 73.5% and 55.9% (Mini Apex Locator), 67.6% and 41.1% (Propex II), 61.7% and 44.1% (iPex), and 79.4% and 44.1% (RomiApex A-15), respectively, considering ±0.5 mm of tolerance. Regarding the mean discrepancies, no differences were observed at 0.0; however, in the measurements at -1.0, the iPex, a multi-frequency ERCLMD, had significantly more discrepant readings short of the apical foramen than the other devices, except for the Propex II, which had intermediate results. When the ERCLMDs measurements at -1.0 were compared with those at 0.0, the Propex II, iPex and RomiApex A-15 presented significantly higher discrepancies in their readings. Under the conditions of the present study, all the ERCLMDs provided acceptable measurements at the 0.0 position. However, at the -1.0 position, the ERCLMDs had a lower precision, with statistically significant differences for the Propex II, iPex, and RomiApex A-15.
Interaction of Phospholipase A/Acyltransferase-3 with Pex19p
Uyama, Toru; Kawai, Katsuhisa; Kono, Nozomu; Watanabe, Masahiro; Tsuboi, Kazuhito; Inoue, Tomohito; Araki, Nobukazu; Arai, Hiroyuki; Ueda, Natsuo
2015-01-01
Phospholipase A/acyltransferase (PLA/AT)-3 (also known as H-rev107 or AdPLA) was originally isolated as a tumor suppressor and was later shown to have phospholipase A1/A2 activity. We have also found that the overexpression of PLA/AT-3 in mammalian cells results in specific disappearance of peroxisomes. However, its molecular mechanism remained unclear. In the present study, we first established a HEK293 cell line, which stably expresses a fluorescent peroxisome marker protein (DsRed2-Peroxi) and expresses PLA/AT-3 in a tetracycline-dependent manner. The treatment with tetracycline, as expected, caused disappearance of peroxisomes within 24 h, as revealed by diffuse signals of DsRed2-Peroxi and a remarkable decrease in a peroxisomal membrane protein, PMP70. A time-dependent decrease in ether-type lipid levels was also seen. Because the activation of LC3, a marker of autophagy, was not observed, the involvement of autophagy was unlikely. Among various peroxins responsible for peroxisome biogenesis, Pex19p functions as a chaperone protein for the transportation of peroxisomal membrane proteins. Immunoprecipitation analysis showed that PLA/AT-3 binds to Pex19p through its N-terminal proline-rich and C-terminal hydrophobic domains. The protein level and enzyme activity of PLA/AT-3 were increased by its coexpression with Pex19p. Moreover, PLA/AT-3 inhibited the binding of Pex19 to peroxisomal membrane proteins, such as Pex3p and Pex11βp. A catalytically inactive point mutant of PLA/AT-3 could bind to Pex19p but did not inhibit the chaperone activity of Pex19p. Altogether, these results suggest a novel regulatory mechanism for peroxisome biogenesis through the interaction between Pex19p and PLA/AT-3. PMID:26018079
Koellensperger, Gunda; Daubert, Simon; Erdmann, Ralf; Hann, Stephan; Rottensteiner, Hanspeter
2007-11-01
We determined the zinc binding stoichiometry of peroxisomal RING finger proteins by measuring sulfur/metal ratios using inductively coupled plasma-mass spectrometry coupled to size exclusion chromatography, a strategy that provides a fast and quantitative overview on the binding of metals in proteins. As a quality control, liquid chromatography-electrospray ionisation-time of flight-mass spectrometry was used to measure the molar masses of the intact proteins. The RING fingers of Pex2p, Pex10p, and Pex12p showed a stoichiometry of 2.0, 2.1, and 1.2 mol zinc/mol protein, respectively. Thus, Pex2p and Pex10p possess a typical RING domain with two coordinated zinc atoms, whereas that of Pex12p coordinates only a single zinc atom.
Schlötzer-Schrehardt, Ursula; Pasutto, Francesca; Sommer, Pascal; Hornstra, Ian; Kruse, Friedrich E.; Naumann, Gottfried O.H.; Reis, André; Zenkel, Matthias
2008-01-01
Pseudoexfoliation (PEX) syndrome is a generalized disease of the extracellular matrix and the most common identifiable cause of open-angle glaucoma. Two single nucleotide polymorphisms in the lysyl oxidase-like 1 (LOXL1) gene (rs1048661 and rs3825942) have been recently identified as strong genetic risk factors for both PEX syndrome and PEX glaucoma. Here we investigated the expression and localization of LOXL1, LOXL2, and lysyl oxidase (LOX) in tissues of PEX syndrome/glaucoma patients and controls in correlation with their individual single nucleotide polymorphism genotypes and stages of disease. LOXL1 ocular expression was reduced by ∼20% per risk allele of rs1048661, whereas risk alleles of rs3825942, which were highly overrepresented in PEX cases, did not affect LOXL1 expression levels. Irrespective of the individual genotype, LOXL1 expression was significantly increased in early PEX stages but was decreased in advanced stages both with and without glaucoma compared with controls, whereas LOX and LOXL2 showed no differences between groups. LOXL1 was also found to be a major component of fibrillar PEX aggregates in both intra- and extraocular locations and to co-localize with various elastic fiber components. These findings provide evidence for LOXL1 involvement in the initial stages of abnormal fibrogenesis in PEX tissues. Alterations of LOXL1 activation, processing, and/or substrate specificity may contribute to the abnormal aggregation of elastic fiber components into characteristic PEX fibrils. PMID:18974306
Outcomes in adult pectus excavatum patients undergoing Nuss repair
Ewais, MennatAllah M; Chaparala, Shivani; Uhl, Rebecca
2018-01-01
Pectus excavatum (PEx) is one of the most common congenital chest wall deformities. Depending on the severity, presentation of PEx may range from minor cosmetic issues to disabling cardiopulmonary symptoms. The effect of PEx on adult patients has not been extensively studied. Symptoms may not occur until the patient ages, and they may worsen over the years. More recent publications have implied that PEx may have significant cardiopulmonary implications and repair is of medical benefit. Adults presenting for PEx repair can undergo a successful repair with a minimally invasive “Nuss” approach. Resolution of symptoms, improved quality of life, and satisfying results are reported. PMID:29430201
Lund, Vidar; Anderson-Glenna, Mary; Skjevrak, Ingun; Steffensen, Inger-Lise
2011-09-01
The objectives of this study were to investigate migration of volatile organic compounds (VOCs) from cross-linked polyethylene (PEX) pipes used for drinking water produced by different production methods, and to evaluate their potential risk for human health and/or influence on aesthetic drinking water quality. The migration tests were carried out in accordance with EN-1420-1, and VOCs were analysed by gas chromatography-mass spectrometry. The levels of VOC migrating from new PEX pipes were generally low, and decreasing with time of pipe use. No association was found between production method of PEX pipes and concentration of migration products. 2,4-di-tert-butyl phenol and methyl tert-butyl ether (MTBE) were two of the major individual components detected. In three new PEX pipes, MTBE was detected in concentrations above the recommended US EPA taste and odour value for drinking water, but decreased below this value after 5 months in service. However, the threshold odour number (TON) values for two pipes were similar to new pipes even after 1 year in use. For seven chemicals for which conclusions on potential health risk could be drawn, this was considered of no or very low concern. However, odour from some of these pipes could negatively affect drinking water for up to 1 year.
Ratbi, Ilham; Jaouad, Imane Cherkaoui; Elorch, Hamza; Al-Sheqaih, Nada; Elalloussi, Mustapha; Lyahyai, Jaber; Berraho, Amina; Newman, William G; Sefiani, Abdelaziz
2016-10-01
Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. It is the mildest form known to date of peroxisome biogenesis disorder caused by hypomorphic mutations of PEX1 and PEX6 genes. We report on a second Moroccan family with Heimler syndrome with early onset, severe visual impairment and important phenotypic overlap with Usher syndrome. The patient carried a novel homozygous missense variant c.3140T > C (p.Leu1047Pro) of PEX1 gene. As standard biochemical screening of blood for evidence of a peroxisomal disorder did not provide a diagnosis in the individuals with HS, patients with SNHL and retinal pigmentation should have mutation analysis of PEX1 and PEX6 genes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Gunduz, Mehmet
2016-01-01
Peroxisomal disorders are a group of genetically heterogeneous metabolic diseases related to dysfunction of peroxisomes. Dysmorphic features, neurological abnormalities, and hepatic dysfunction can be presenting signs of peroxisomal disorders. Here we presented dysmorphic facial features and other clinical characteristics in two patients with PEX1 gene mutation. Follow-up periods were 3.5 years and 1 year in the patients. Case I was one-year-old girl that presented with neurodevelopmental delay, hepatomegaly, bilateral hearing loss, and visual problems. Ophthalmologic examination suggested septooptic dysplasia. Cranial magnetic resonance imaging (MRI) showed nonspecific gliosis at subcortical and periventricular deep white matter. Case II was 2.5-year-old girl referred for investigation of global developmental delay and elevated liver enzymes. Ophthalmologic examination findings were consistent with bilateral nystagmus and retinitis pigmentosa. Cranial MRI was normal. Dysmorphic facial features including broad nasal root, low set ears, downward slanting eyes, downward slanting eyebrows, and epichantal folds were common findings in two patients. Molecular genetic analysis indicated homozygous novel IVS1-2A>G mutation in Case I and homozygous p.G843D (c.2528G>A) mutation in Case II in the PEX1 gene. Clinical findings and developmental prognosis vary in PEX1 gene mutation. Kabuki-like phenotype associated with liver pathology may indicate Zellweger spectrum disorders (ZSD). PMID:27882258
Vandament, Lyndsey; Chintu, Naminga; Yano, Nanako; Mugurungi, Owen; Tambatamba, Bushimbwa; Ncube, Gertrude; Xaba, Sinokuthemba; Mpasela, Felton; Muguza, Edward; Mangono, Tichakunda; Madidi, Ngonidzashe; Samona, Alick; Tagar, Elva; Hatzold, Karin
2016-06-01
Results from recent costing studies have put into question potential Voluntary Medical Male Circumcision (VMMC) cost savings with the introduction of the PrePex device. We evaluated the cost drivers and the overall unit cost of VMMC for a variety of service delivery models providing either surgical VMMC or both PrePex and surgery using current program data in Zimbabwe and Zambia. In Zimbabwe, 3 hypothetical PrePex only models were also included. For all models, clients aged 18 years and older were assumed to be medically eligible for PrePex and uptake was based on current program data from sites providing both methods. Direct costs included costs for consumables, including surgical VMMC kits for the forceps-guided method, device (US $12), human resources, demand creation, supply chain, waste management, training, and transport. Results for both countries suggest limited potential for PrePex to generate cost savings when adding the device to current surgical service delivery models. However, results for the hypothetical rural Integrated PrePex model in Zimbabwe suggest the potential for material unit cost savings (US $35 per VMMC vs. US $65-69 for existing surgical models). This analysis illustrates that models designed to leverage PrePex's advantages, namely the potential for integrating services in rural clinics and less stringent infrastructure requirements, may present opportunities for improved cost efficiency and service integration. Countries seeking to scale up VMMC in rural settings might consider integrating PrePex only MC services at the primary health care level to reduce costs while also increasing VMMC access and coverage.
Ozgonul, Cem; Sertoglu, Erdim; Mumcuoglu, Tarkan; Ozge, Gokhan; Gokce, Gokcen
2016-12-01
To assess the levels of neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) in patients with pseudoexfoliation syndrome (PEX) and to compare the NLR and PLR results of patients with PEX, PEX glaucoma (PXG), and healthy controls. In total, 34 patients with PEX, 29 patients with PXG, and 42 healthy subjects were enrolled in this retrospective study. Complete ophthalmologic examination and complete blood count measurements were performed of all subjects. Complete blood counts were performed within 2 h of blood collection. There was a significant difference in NLR between PEX and control groups (p = 0.012) and PXG and control groups (p = 0.003). Also, a significant difference was found in PLR values between control and PXG groups (p = 0.024). Our study for the first time provides evidence that PLR and NLR may be useful for predicting the prognosis of PEX patients and progression to PXG.
Peeters, Annelies; Fraisl, Peter; van den Berg, Sjoerd; Ver Loren van Themaat, Emiel; Van Kampen, Antoine; Rider, Mark H.; Takemori, Hiroshi; van Dijk, Ko Willems; Van Veldhoven, Paul P.; Carmeliet, Peter; Baes, Myriam
2011-01-01
Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5−/− mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD+/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5−/− mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies. PMID:22002056
Tojo, Naoki; Abe, Shinya; Miyakoshi, Mari; Hayashi, Atsushi
2017-01-01
Purpose Ab interno trabeculectomy (AIT) with the Trabectome has been shown to reduce intraocular pressure (IOP) in eyes with pseudoexfoliation (PEX) glaucoma. Here, we examined the change of IOP fluctuations before and after only AIT or AIT with cataract surgery in PEX patients using the contact lens sensor Triggerfish®. Methods This was a prospective open-label study. Twenty-four consecutive patients with PEX glaucoma were included. Twelve patients underwent cataract surgery and AIT (triple-surgery group), and 12 patients underwent only AIT (single-surgery group). In each eye, IOP fluctuations over 24 h were measured with the contact lens sensor before and at 3 months after the surgery. We compared the change of IOP fluctuation before and after operation. We also evaluated the difference in IOP changes between the triple- and single-surgery groups. Results At 3 months after the surgeries, the mean IOP was significantly reduced from 23.5±6.5 mmHg to 14.6±2.8 mmHg in the single-surgery group and from 22.5±3.0 mmHg to 11.5±2.9 mmHg in the triple-surgery group. The mean IOP reduction rate was significantly higher in the triple-surgery group compared to the single-surgery group (p=0.0358). In both groups, the mean range of IOP fluctuations was significantly decreased during nocturnal periods. The mean range of 24 h IOP fluctuations was decreased in the triple-surgery group (p=0.00425), not in the single-surgery group (p=0.970). Conclusion Triple surgery could decrease IOP value and the IOP fluctuations to a greater extent than single surgery in PEX glaucoma patients. PMID:28979095
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L.; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P.; Rivas, Germán; García-Marco, José A.; García-Pardo, Angeles
2012-01-01
We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC50 values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis. PMID:22730324
Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J
2015-12-01
The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer.
Hatzold, Karin; Reed, Jason; Edgil, Dianna; Jaramillo, Juan; Castor, Delivette; Forsythe, Steven; Xaba, Sinokuthemba; Mugurungi, Owen
2014-01-01
Background Fourteen African countries are scaling up voluntary medical male circumcision (VMMC) for HIV prevention. Several devices that might offer alternatives to the three WHO-approved surgical VMMC procedures have been evaluated for use in adults. One such device is PrePex, which was prequalified by the WHO in May 2013. We utilized data from one of the PrePex field studies undertaken in Zimbabwe to identify cost considerations for introducing PrePex into the existing surgical circumcision program. Methods and Findings We evaluated the cost drivers and overall unit cost of VMMC at a site providing surgical VMMC as a routine service (“routine surgery site”) and at a site that had added PrePex VMMC procedures to routine surgical VMMC as part of a research study (“mixed study site”). We examined the main cost drivers and modeled hypothetical scenarios with varying ratios of surgical to PrePex circumcisions, different levels of site utilization, and a range of device prices. The unit costs per VMMC for the routine surgery and mixed study sites were $56 and $61, respectively. The two greatest contributors to unit price at both sites were consumables and staff. In the hypothetical scenarios, the unit cost increased as site utilization decreased, as the ratio of PrePex to surgical VMMC increased, and as device price increased. Conclusions VMMC unit costs for routine surgery and mixed study sites were similar. Low service utilization was projected to result in the greatest increases in unit price. Countries that wish to incorporate PrePex into their circumcision programs should plan to maximize staff utilization and ensure that sites function at maximum capacity to achieve the lowest unit cost. Further costing studies will be necessary once routine implementation of PrePex-based circumcision is established. PMID:24801515
Reach and Cost-Effectiveness of the PrePex Device for Safe Male Circumcision in Uganda
Duffy, Kevin; Galukande, Moses; Wooding, Nick; Dea, Monica; Coutinho, Alex
2013-01-01
Introduction Modelling, supported by the USAID Health Policy Initiative and UNAIDS, performed in 2011, indicated that Uganda would need to perform 4.2 million medical male circumcisions (MMCs) to reach 80% prevalence. Since 2010 Uganda has completed 380,000 circumcisions, and has set a national target of 1 million for 2013. Objective To evaluate the relative reach and cost-effectiveness of PrePex compared to the current surgical SMC method and to determine the effect that this might have in helping to achieve the Uganda national SMC targets. Methods A cross-sectional descriptive cost-analysis study conducted at International Hospital Kampala over ten weeks from August to October 2012. Data collected during the performance of 625 circumcisions using PrePex was compared to data previously collected from 10,000 circumcisions using a surgical circumcision method at the same site. Ethical approval was obtained. Results The moderate adverse events (AE) ratio when using the PrePex device was 2% and no severe adverse events were encountered, which is comparable to the surgical method, thus the AE rate has no effect on the reach or cost-effectiveness of PrePex. The unit cost to perform one circumcision using PrePex is $30.55, 35% ($7.90) higher than the current surgical method, but the PrePex method improves operator efficiency by 60%, meaning that a team can perform 24 completed circumcisions compared to 15 by the surgical method. The cost-effectiveness of PrePex, comparing the cost of performing circumcisions to the future cost savings of potentially averted HIV infections, is just 2% less than the current surgical method, at a device cost price of $20. Conclusion PrePex is a viable SMC tool for scale-up with unrivalled potential for superior reach, however national targets can only be met with effective demand creation and availability of trained human resource. PMID:23717402
Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).
Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L
1997-04-01
Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.
Cost Analysis of Adult Male Circumcision with the PrePex Device versus Surgery in Rwanda.
Mutabazi, Vincent; Bitega, Jean Paul; Muyenzi Ngeruka, Leon; Nyemazi, Jean Pierre; Dain, Mary; Kaplan, Steven A; Karema, Corine; Binagwaho, Agnes
2014-01-01
In this study from Rwanda, voluntary adult male circumcision costs 33% less with trained nurses using the PrePex device compared with physician-nurse teams performing dorsal-slit surgery. These cost savings and the documented safety, speed, and efficacy of the PrePex procedure, serve Rwanda's HIV prevention program.
2014-01-01
This compares outcome measures of current pectus excavatum (PEx) treatments, namely the Nuss and Ravitch procedures, in pediatric and adult patients. Original investigations that stratified PEx patients based on current treatment and age (pediatric = 0–21; adult 17–99) were considered for inclusion. Outcome measures were: operation duration, analgesia duration, blood loss, length of stay (LOS), outcome ratings, complications, and percentage requiring reoperations. Adult implant patients (18.8%) had higher reoperation rates than adult Nuss or Ravitch patients (5.3% and 3.3% respectively). Adult Nuss patients had longer LOS (7.3 days), more strut/bar displacement (6.1%), and more epidural analgesia (3 days) than adult Ravitch patients (2.9 days, 0%, 0 days). Excluding pectus bar and strut displacements, pediatric and adult Nuss patients tended to have higher complication rates (pediatric - 38%; adult - 21%) compared to pediatric and adult Ravitch patients (12.5%; 8%). Pediatric Ravitch patients clearly had more strut displacements than adult Ravitch patients (0% and 6.4% respectively). These results suggest significantly better results in common PEx surgical repair techniques (i.e. Nuss and Ravitch) than uncommon techniques (i.e. Implants and Robicsek). The results suggest slightly better outcomes in pediatric Nuss procedure patients as compared with all other groups. We recommend that symptomatic pediatric patients with uncomplicated PEx receive the Nuss procedure. We suggest that adult patients receive the Nuss or Ravitch procedure, even though the long-term complication rates of the adult Nuss procedure require more investigation. PMID:24506826
NASA Technical Reports Server (NTRS)
Bagshaw, S. L.; Cleland, R. E.
1990-01-01
Gravitropic curvature results from unequal growth rates on the upper and lower sides of horizontal stems. These unequal growth rates could be due to differences in wall extensibility between the two sides. To test this, the time course of curvature of horizontal sunflower (Helianthus annuus L.) hypocotyls was determined and compared with the time courses of changes in Instron-measured wall extensibility (PEx) of the upper and lower epidermal layers. As gravicurvature developed, so did the difference in PEx between the upper and lower epidermis. The enhanced growth rate on the lower side during the period of maximum increase in curvature was matched by PEx values greater than those of the vertical control, while the inhibited growth rate on the upper side was accompanied by PEx values below that of the control. The close correlation between changes in growth rates and alterations in PEx demonstrates that changes in wall extensibility play a major role in controlling gravicurvature.
Okusha, Yuka; Eguchi, Takanori; Sogawa, Chiharu; Okui, Tatsuo; Nakano, Keisuke; Okamoto, Kuniaki; Kozaki, Ken-Ichi
2018-05-15
Members of matrix metalloproteinase (MMP) family promote cancer cell migration, invasion, and metastasis through alteration of the tumor milieu, intracellular signaling pathways, and transcription. We examined gene expression signatures of colon adenocarcinoma cell lines with different metastatic potentials and found that rapidly metastatic cells powerfully expressed genes encoding MMP3 and MMP9. The non-proteolytic PEX isoform and proteolytic isoforms of MMPs were significantly expressed in the metastatic cells in vitro. Knockdown of MMP3 attenuated cancer cell migration and invasion in vitro and lung metastasis in vivo. Profound nuclear localization of MMP3/PEX was found in tumor-stroma marginal area. In contrast, MMP9 was localized in central area of subcutaneous tumors. Overexpression of the PEX isoform of MMP3 promoted proliferation and migration of the rapidly metastatic cells in vitro. Taken together, the non-proteolytic PEX isoform of MMPs locating in cell nuclei involves proliferation, migration, and subsequent metastasis of aggressive adenocarcinoma cells. © 2018 Wiley Periodicals, Inc.
A new role for ATM in selective autophagy of peroxisomes (pexophagy).
Tripathi, Durga Nand; Zhang, Jiangwei; Jing, Ji; Dere, Ruhee; Walker, Cheryl Lyn
2016-01-01
Peroxisomes are autonomously replicating and highly metabolic organelles necessary for β-oxidation of fatty acids, a process that generates large amounts of reactive oxygen species (ROS). Maintaining a balance between biogenesis and degradation of peroxisomes is essential to maintain cellular redox balance, but how cells do this has remained somewhat of a mystery. While it is known that peroxisomes can be degraded via selective autophagy (pexophagy), little is known about how mammalian cells regulate pexophagy to maintain peroxisome homeostasis. We have uncovered a mechanism for regulating pexophagy in mammalian cells that defines a new role for ATM (ATM serine/threonine kinase) kinase as a "first responder" to peroxisomal ROS. ATM is delivered to the peroxisome by the PEX5 import receptor, which recognizes an SRL sequence located at the C terminus of ATM to localize this kinase to peroxisomes. In response to ROS, the ATM kinase is activated and performs 2 functions: i) it signals to AMPK, which activates TSC2 to suppresses MTORC1 and phosphorylates ULK1 to induce autophagy, and ii) targets specific peroxisomes for pexophagy by phosphorylating PEX5 at Ser141, which triggers ubiquitination of PEX5 at Lys209 and binding of the autophagy receptor protein SQSTM1/p62 to induce pexophagy.
A new role for ATM in selective autophagy of peroxisomes (pexophagy)
Tripathi, Durga Nand; Zhang, Jiangwei; Jing, Ji; Dere, Ruhee; Walker, Cheryl Lyn
2016-01-01
abstract Peroxisomes are autonomously replicating and highly metabolic organelles necessary for β-oxidation of fatty acids, a process that generates large amounts of reactive oxygen species (ROS). Maintaining a balance between biogenesis and degradation of peroxisomes is essential to maintain cellular redox balance, but how cells do this has remained somewhat of a mystery. While it is known that peroxisomes can be degraded via selective autophagy (pexophagy), little is known about how mammalian cells regulate pexophagy to maintain peroxisome homeostasis. We have uncovered a mechanism for regulating pexophagy in mammalian cells that defines a new role for ATM (ATM serine/threonine kinase) kinase as a “first responder” to peroxisomal ROS. ATM is delivered to the peroxisome by the PEX5 import receptor, which recognizes an SRL sequence located at the C terminus of ATM to localize this kinase to peroxisomes. In response to ROS, the ATM kinase is activated and performs 2 functions: i) it signals to AMPK, which activates TSC2 to suppresses MTORC1 and phosphorylates ULK1 to induce autophagy, and ii) targets specific peroxisomes for pexophagy by phosphorylating PEX5 at Ser141, which triggers ubiquitnation of PEX5 at Lys209 and binding of the autophagy receptor protein SQSTM1/p62 to induce pexophagy. PMID:27050462
Somayaji, Ranjani; Goss, Christopher H; Khan, Umer; Neradilek, Moni; Neuzil, Kathleen M; Ortiz, Justin R
2017-06-15
Characterization of the role of respiratory viral pathogens on cystic fibrosis (CF) pulmonary disease is needed. We aimed to determine the association of influenza and respiratory syncytial virus (RSV) activity with risk of pulmonary exacerbation (PEx) in persons with CF in the United States. We conducted a cohort study from January 2003 to March 2009 using the CF Foundation Patient Registry merged with Centers for Disease Control and Prevention respiratory virus surveillance data. The primary goal was to determine the association between regional influenza or RSV detections with risk of PEx requiring intravenous antibiotics or hospitalization. We analyzed outcomes by geographic region and week of event using multivariable regression models adjusted for demographic and clinical predictors of PEx stratified for children (<18 years) and adults (≥18 years) to calculate relative risks (RRs) of PEx. There were 21022 individuals (52% male) in the CF patient cohort in 2003 comprised of 12702 children and 8320 adults. The overall incidence rate of PEx was 521.9 per 10000 person-months. In children, a 10% increase in the proportion of surveillance tests positive for influenza or RSV was significantly associated with increased PEx risk (RR, 1.02; 95% confidence interval [CI], 1.01-1.03) and (RR, 1.05; 95% CI, 1.02-1.07), respectively. In adults, surveillance tests positive for influenza (RR, 1.02; 95% CI, 1.01-1.02), but not RSV (RR, 0.99; 95% CI, .98-1.01), had a significant association with PEx risk. Our large CF population-based cohort demonstrated a significant association between PEx risk and influenza activity in children and adults and with RSV activity in children. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.
Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir
2003-04-01
High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.
Role of AAA(+)-proteins in peroxisome biogenesis and function.
Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang
2016-05-01
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
Negoro, Hiroaki; Sakamoto, Mitsuru; Kotaka, Atsushi; Matsumura, Kengo; Hata, Yoji
2018-02-01
Saccharomyces cerevisiae produces organic acids such as succinate, acetate, and malate during alcoholic fermentation. Since malate contributes to the pleasant taste of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast strains have been developed. Here, a high-malate-producing yeast strain F-701H was isolated. This mutant was sensitive to dimethyl succinate (DMS) and harbored a nonsense mutation in the peroxin gene PEX22, which was identified as the cause of high malate production by comparative genome analysis. This mutation, which appeared to cause Pex22p dysfunction, was sufficient to confer increased malate productivity and DMS sensitivity to yeast cells. Next, we investigated the mechanism by which this mutation led to high malate production in yeast cells. Peroxins, such as Pex22p, maintain peroxisomal biogenesis. Analysis of 29 PEX disruptants revealed an increased malate production by deletion of the genes encoding peroxins responsible for importing proteins (containing peroxisomal targeting signal 1, PTS1) into the peroxisomal matrix, and those responsible for the assembly of peroxins themselves in the peroxisomal membrane. A defect in peroxisomal malate dehydrogenase (Mdh3p), harboring endogenous PTS1, inhibited the high malate-producing phenotype in the PEX22 mutant. Moreover, Mdh3p, which was normally sorted to the peroxisomal matrix, was potentially mislocalized to the cytosol in the PEX22 mutant. This suggested that an increase in malate production resulted from the mislocalization of Mdh3p from the peroxisome to the cytoplasm due to the loss of peroxin-mediated transportation. Thus, the present study revealed a novel mechanism for organic acid productions in yeast during sake brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Blombery, P; Kivivali, L; Pepperell, D; McQuilten, Z; Engelbrecht, S; Polizzotto, M N; Phillips, L E; Wood, E; Cohney, S
2016-01-01
Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy (TMA). In 2009, the Australian TTP/TMA registry was established to collect data on patients presenting with TTP/TMA throughout Australia. To summarise information on the diagnosis and management of patients with TTP collected in the first 5 years (2009-2014) of the Australian TTP registry. Registry data from June 2009 to October 2014 were reviewed. Fifty-seven patients were identified with TTP (defined as ADAMTS13 activity <10%), accounting for 72 clinical episodes. ADAMTS13 inhibitor testing was performed in nine out of 57 patients (16%), reflecting the limited availability of accredited testing facilities. Sixty-seven out of 72 episodes were treated with therapeutic plasma exchange (PEx) using cryodepleted plasma (40% of episodes), fresh frozen plasma (36%) or a mixture (22%). Median exposure to plasma products was 55.9 L. PEx was commenced ≥2 days from stated diagnosis in 15% of episodes. Adverse reactions to PEx were common with documented allergic reactions (including life threatening) in 21% of episodes. Adjunctive immunosuppression was documented in 76% of episodes (corticosteroid 71% and rituximab 39%). Platelet transfusion was administered in 15% of episodes. Data from the Australian TTP/TMA registry suggest a heterogenous approach to the diagnosis and management of TTP in Australia over the assessed period. These observations highlight areas for improvement and standardisation of practice, including comprehensive diagnostic testing, more immediate access to PEx and a more uniform approach to adjunctive immunosuppression and supportive care. © 2015 Royal Australasian College of Physicians.
Castro, L Filipe C; Lobo-da-Cunha, Alexandre; Rocha, Maria J; Urbatzka, Ralph; Rocha, Eduardo
2013-01-01
A negative correlation between female gonadal maturation kinetics and size variations of hepatic peroxisomes was earlier documented in brown trout, as a probable impact of serum estrogen changes during the reproductive cycle. Herein, we investigated whether the organelle volume/surface dynamics seen in female brown trout liver peroxisomes - without numerical changes within each hepatocyte - is followed by variations in the expression of the membrane peroxisome protein Pex11α gene. For comparison, we also studied males. We find in females a seasonal variation with the highest Pex11α expression in February, which was statistically different from all other tested periods. Overall, the expression of PEX11α had over a fivefold decrease from February to September. This period coincides with the reproductive transition between the earlier post-spawning gonadal remodeling and preparatory staging and the pre-spawning period. Males did not show changes. Our approach allowed the first characterization of a peroxin gene in a teleost, the Pex11α, while offering a correlation scenario were, as we hypothesized, the peroxisomal size kinetics is paralleled by membrane-related gene alterations (measured herein as proxy of Pex11α gene expression). Our data support and expand previous results on the regulation, function and morphology of peroxisome dynamics in brown trout, with a broader interest. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Connell, Matthew
Increased installation of polymer potable water pipes in United States plumbing systems has created a need to thoroughly evaluate their water quality impacts. Eleven brands of new polymer drinking water pipe were evaluated for assimilable organic carbon (AOC) release at room temperature for 28 days. They included polyvinyl chloride (PVC), high-density polyethylene (HDPE), polypropylene (PP), and cross-linked polyethylene (PEX) pipes. Three of eight PEX pipe brands exceeded a 100 microg/L AOC threshold for microbial regrowth for the first exposure period and no brands exceeded this value on day 28. No detectable increase in AOC was found for PP and PEX-a1 pipes; the remaining pipe brands contributed marginal AOC levels. Water quality impacts were more fully evaluated for two brands of PEX-b and one brand of PP pipe. PEX pipes released more total organic carbon (TOC), volatile organic compounds (VOC), and semivolatile organic compounds (SVOC) and caused greater odor than the PP pipe. All three materials showed reductions in these water quality parameters over 30 days. Three PEX pipe field studies revealed that aged systems did not display more intense odors than distribution systems. However, the organic releases from polymer pipes may still alter water quality and contribute to rapid microbial growth, even though the aesthetic impacts are temporary.
Flight, W G; Bright-Thomas, R J; Sarran, C; Mutton, K J; Morris, J; Webb, A K; Jones, A M
2014-11-01
The effect of changes in the weather on the respiratory health of patients with cystic fibrosis (CF) is unclear. We conducted a prospective study to determine the impact of climate and season on the incidence of viral respiratory infections (VRI) and pulmonary exacerbations (PEx) among adults with CF. Between December 2010 and April 2012, 98 adults with CF were followed for 12 months. Polymerase chain reaction assays for nine viruses were performed on sputum, nose and throat swabs every 2 months and additionally at onset of PEx. Hourly temperature and relative humidity measurements were recorded throughout the study. Statistical analysis utilized generalized estimating equation (GEE) models. Pre-specified criteria for VRI and PEx were met at 29% and 37% of visits, respectively. Rhinovirus accounted for 72% of identified viruses. Incidence of rhinovirus peaked in autumn while non-rhinovirus VRI peaked in winter. Rhinovirus was associated with increased mean temperatures (OR 1.07; p = 0.001), while non-rhinovirus VRI was associated with lower mean temperatures (OR 0.87; p < 0.001). PEx occurred frequently throughout the study with no clear seasonal pattern observed. There was no significant association between climate variables and the incidence of either PEx or antibiotic prescription. There is a seasonal pattern to VRI in adults with CF. The incidence of VRI but not PEx is associated with changes in ambient temperature.
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles
2014-05-30
(pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Dimensions of Temperament and Depressive Symptoms: Replicating a Three-Way Interaction
Vasey, Michael W.; Harbaugh, Casaundra N.; Lonigan, Chistopher J.; Phillips, Beth M.; Hankin, Benjamin L.; Willem, Lore; Bijttebier, Patricia
2014-01-01
High negative emotionality (NE), low positive emotionality (PE), and low self-regulatory capacity (i.e., effortful control or EC) are related to depressive symptoms and furthermore, may moderate one another’s relations to such symptoms. Indeed, preliminary evidence suggests they may operate in a three-way interaction (Dinovo & Vasey, 2011), but the replicability of that finding remains unknown. Therefore, we tested this NExPExEC interaction in association with depressive symptoms in 5 independent samples. This interaction was significant in 4 of the 5 samples and a combined sample and approached significance in the fifth sample. In contrast, the NExPExEC interaction was unrelated to general anxious symptoms and thus may be specific to symptoms of depression. Implications, directions for future research, and limitations are discussed. PMID:24493906
Luks, Lisanne; Maier, Marcia Y; Sacchi, Silvia; Pollegioni, Loredano; Dietrich, Daniel R
2017-11-01
Proper subcellular trafficking is essential to prevent protein mislocalization and aggregation. Transport of the peroxisomal enzyme D-amino acid oxidase (DAAO) appears dysregulated by specific pharmaceuticals, e.g., the anti-overactive bladder drug propiverine or a norepinephrine/serotonin reuptake inhibitor (NSRI), resulting in massive cytosolic and nuclear accumulations in rat kidney. To assess the underlying molecular mechanism of the latter, we aimed to characterize the nature of peroxisomal and cyto-nuclear shuttling of human and rat DAAO overexpressed in three cell lines using confocal microscopy. Indeed, interference with peroxisomal transport via deletion of the PTS1 signal or PEX5 knockdown resulted in induced nuclear DAAO localization. Having demonstrated the absence of active nuclear import and employing variably sized mCherry- and/or EYFP-fusion proteins of DAAO and catalase, we showed that peroxisomal proteins ≤134 kDa can passively diffuse into mammalian cell nuclei-thereby contradicting the often-cited 40 kDa diffusion limit. Moreover, their inherent nuclear presence and nuclear accumulation subsequent to proteasome inhibition or abrogated peroxisomal transport suggests that nuclear localization is a characteristic in the lifecycle of peroxisomal proteins. Based on this molecular trafficking analysis, we suggest that pharmaceuticals like propiverine or an NSRI may interfere with peroxisomal protein targeting and import, consequently resulting in massive nuclear protein accumulation in vivo.
Anastasopoulos, Eleftherios; Coleman, Anne L.; Wilson, M. Roy; Sinsheimer, Janet S.; Yu, Fei; Katafigiotis, Sokratis; Founti, Panayiota; Salonikiou, Angeliki; Pappas, Theofanis; Koskosas, Archimidis; Katopodi, Theodora; Lambropoulos, Alexandros; Topouzis, Fotis
2014-01-01
Purpose. To investigate the association of the two single-nucleotide polymorphisms (SNPs) in the lysyl oxidase-like 1 (LOXL1) gene with pseudoexfoliation syndrome (PEX), pseudoexfoliative glaucoma (PEXG), and primary open-angle glaucoma (POAG) in a Greek population–based setting, from the Thessaloniki Eye study. Methods. A total of 233 subjects with successful DNA extraction, PCR amplification, and genotyping were included in the genetic analysis of G153D and R141L SNPs of LOXL1 gene and classified into four groups: controls (n = 93); subjects with PEX (n = 40); POAG (n = 66); and PEXG (n = 34). Multinomial logistic regression was used to test their association with LOXL1 SNPs with adjustment for covariates. The association of LOXL1 with IOP (in untreated subjects) and with systemic diseases was explored. Results. Both LOXL1 SNPs were present in high frequencies in controls and cases. The G153D was strongly associated with both PEX (odds ratio [OR] = 23.2, P = 0.003 for allele G) and PEXG (OR = 24.75, P = 0.003 for allele G) and was not associated with POAG (P = 0.451). In contrast, the R141L was not associated with PEX (P = 0.81), PEXG (P = 0.063), or POAG (P = 0.113). No association of the G153D with either intraocular pressure (IOP) or systemic diseases was found. Conclusions. In the Thessaloniki Eye Study, the G153D SNP of LOXL1 gene was strongly associated with both PEX and PEXG, whereas the R141L was not associated. No association of the LOXL1 with IOP or with systemic diseases was found. These findings further support the hypothesis that the LOXL1 gene contributes to onset of PEXG through PEX. Gene variants of LOXL1 do not help to identify those with PEX at increased risk for glaucoma development. PMID:24917141
Hsa-miR-195 targets PCMT1 in hepatocellular carcinoma that increases tumor life span.
Amer, Marwa; Elhefnawi, M; El-Ahwany, Eman; Awad, A F; Gawad, Nermen Abdel; Zada, Suher; Tawab, F M Abdel
2014-11-01
MicroRNAs are small 19-25 nucleotides which have been shown to play important roles in the regulation of gene expression in many organisms. Downregulation or accumulation of miRNAs implies either tumor suppression or oncogenic activation. In this study, differentially expressed hsa-miR-195 in hepatocellular carcinoma (HCC) was identified and analyzed. The prediction was done using a consensus approach of tools. The validation steps were done at two different levels in silico and in vitro. FGF7, GHR, PCMT1, CITED2, PEX5, PEX13, NOVA1, AXIN2, and TSPYL2 were detected with high significant (P < 0.005). These genes are involved in important pathways in cancer like MAPK signaling pathway, Jak-STAT signaling pathways, regulation of actin cytoskeleton, angiogenesis, Wnt signaling pathway, and TGF-beta signaling pathway. In vitro target validation was done for protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1). The co-transfection of pmirGLO-PCMT1 and pEGP-miR-195 showed highly significant results. Firefly luciferase was detected using Lumiscensor and t test analysis was done. Firefly luciferase expression was significantly decreased (P < 0.001) in comparison to the control. The low expression of firefly luciferase validates the method of target prediction that we used in this work by working on PCMT1 as a target for miR-195. Furthermore, the rest of the predicted genes are suspected to be real targets for hsa-miR-195. These target genes control almost all the hallmarks of liver cancer which can be used as therapeutic targets in cancer treatment.
Knoblach, Barbara; Rachubinski, Richard A
2013-01-01
The formation of membrane contact sites between cellular organelles is required for proper organelle communication and maintenance in the compartmentalized eukaryotic cell. We recently identified a tether that links peroxisomes to the cortical ER in the yeast, Saccharomyces cerevisiae. The tether is made up of the peroxisome biogenic protein Pex3p and the peroxisome inheritance factor Inp1p, and is formed by Inp1p-mediated linkage of ER-bound Pex3p and peroxisomal Pex3p. Here we discuss how this tether is fine-tuned to ensure that peroxisomes are stably maintained over generations of yeast cells. PMID:24567780
Short and long term response to pulmonary exacerbation treatment in cystic fibrosis
Heltshe, Sonya L.; Goss, Christopher H.; Thompson, Valeria; Sagel, Scott D.; Sanders, Don B.; Marshall, Bruce C.; Flume, Patrick A.
2016-01-01
Background Treatment of pulmonary exacerbations (PEx) in cystic fibrosis (CF) varies widely with no consensus on management practices or best indicators of therapeutic success. To design trials evaluating PEx treatment factors, we characterize the heterogeneity of PEx care in adults and pediatrics, and correlate it with measures of clinical response including short and long term lung function changes, change in symptom severity score, and time to next intravenous (IV) antibiotic therapy. Methods Data were used from a prospective observational study of CF patients ≥10 years of age enrolled at six sites between 2007 and 2010. All were started on IV antibiotics for a clinically diagnosed PEx. ANOVA, logistic and Cox regression were used to examine the association of treatment factors with short and long term clinical response. Results Of 123 CF patients (60% female, aged 23.1±10.2 years), 33% experienced <10% relative improvement in FEV1 during treatment which was associated with failing to recover baseline lung function three months after treatment (OR=7.8, 95% CI=(1.9, 31.6), p=0.004) and a longer time to next IV antibiotic (HR=0.48, 95% CI=(0.27, 0.85), p=0.011). Symptom improvement was observed but was not associated with subsequent lung function or time to next antibiotic therapy which had a median recurrence time of 143 days. Conclusions Immediate symptomatic or respiratory response to PEx treatment did not have a clear relationship with subsequent outcomes such as lung function or IV antibiotic-free interval. These results can inform future research of treatment regimens for PEx in terms of interventions and outcome measures. PMID:25911223
Peroxisome protein import: a complex journey.
Baker, Alison; Lanyon-Hogg, Thomas; Warriner, Stuart L
2016-06-15
The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Zeeshan, M.; Duggal, R.; Tated, M. K.; Singh, M.
2018-02-01
Heat exchangers are widely used in various energy-recovery applications. However, for specific applications where metallic tubes are subjected to various drawbacks i.e. cost, weight, corrosion etc. polymer materials are promising alternatives. In present study, various conventional as well as promising alternatives materials are chosen for investigation computationally. Experimentally, bi-annulus heat exchanger configuration is investigated for metallic materials. The simulations carried out conclude that the dimensionless temperature parameter for Cross-linked polypropylethylene (PEX) is greater than other polymers. It increases with increasing axial length of tube. The value for dimensionless temperature is higher for copper which is used as conventional tube material. Among different polymers highest temperature is observed for PEX followed by Low density polypropylene (LDPE), Polypropylene (PP) and Polyvinylidene fluoride (PVDF). For axial length up to 70mm approx. the temperature rises for PEX, LDPE is 28.3% and 26.4% respectively. However, temperature variation is same for PP and PVDF for same axial distance. This temperature variation is increased to 72.4%, 67.2%, 58.62% and 56.89% for PEX, LDPE, PP and PVDF respectively as axial distance variation reaches the end of pipe. The inner annulus temperature for PEX material at 10% length of tube is 28.3% of temperature achieved in copper tube which increases to 72.4% for full length of tube.
Vendramin, Chiara; McGuckin, Siobhan; Alwan, Ferras; Westwood, John-Paul; Thomas, Mari; Scully, Marie
2017-01-01
Patients presenting with acute episodes of thrombotic microangiopathies (TMAs) require urgent access to plasma exchange (PEX). OctaplasLG, a solvent/detergent fresh-frozen plasma product that has undergone viral inactivation and prion reduction step, has been used in our institution since 2013, replacing Octaplas. We prospectively reviewed 981 PEX procedures where OctaplasLG was the replacement fluid in 90 patients admitted acutely with a TMA presentation within our institution from January 1, 2013, to December 31, 2015. We recorded citrate toxicities, plasma reactions, viral transfer, complications related to central venous catheter, and venous thrombotic events (VTEs). Citrate toxicities were 5.4%, plasma reactions were 2%, and all were classified as Grade 1 or 2. VTE had an incidence of 12.2%, although 50% of the episodes occurred in early remission when patients were not receiving PEX. No line insertions complications were recorded. Line-associated infections were 2.2%. Hepatitis B and C serology and human immunodeficiency virus (HIV) were checked on admission. There were four patients who may have had passive transient transfer of hepatitis B antibodies from pooled plasma. No hepatitis C or HIV viral transfer was documented after treatment and no seroconversion was detected after treatment. Our data have demonstrated that the incidence of complications during PEX is low and using OctaplasLG is comparable to the low incidence of reactions. No cases of anaphylaxis, transfusion-related acute lung injury, or fatal plasma reactions were seen. There was no evidence of viral transmission or seroconversion after treatment. © 2016 AABB.
Mean platelet volume in pseudoexfoliation syndrome and glaucoma.
Türkcü, Fatih Mehmet; Yüksel, Harun; Sahin, Alparslan; Cinar, Yasin; Yüksel, Hatice; Cingü, Kürşat; Sahin, Muhammed; Yildirim, Adnan; Çaça, Ihsan
2014-01-01
Pseudoexfoliation (PEX) syndrome (PES) is characterized by the widespread deposition of abnormal extracellular fibrillary material on many ocular and extraocular tissues. The objective of this study was to evaluate the association among PES, PEX glaucoma (PEG), and mean platelet volume (MPV). Forty patients with PES (mean age 62.6 ± 7.8 years), 31 with PEG (mean age 65.9 ± 6.6 years), and 37 healthy individuals (control group) (mean age 64.0 ± 7.1 years) were included in the study. The MPV of the 3 groups were compared. Age and sex distribution were similar among groups (p>0.05). Mean MPV in PES, PEG, and control groups were 9.59 ± 0.94 fl, 9.53 ± 0.80 fl, and 7.7 ± 0.67 fl, respectively. In the PEX group, MPV values were significantly higher than in the control group (p<0.05). However, there was no difference between the PES and PEG groups (p>0.05). The MPV values in both groups with PEX were higher than those in the healthy group.
Zimmermann, N; Erb, C
2013-08-01
Matrix-metalloproteinases (MMPs) are proteolytic enzymes released by irritated epithelial cells of the ocular surface. It has been established that the subtype MMP-9 can serve as an inflammatory marker within the tear film. MMP-9 is also attributed to have an effect on the PEX-glaucoma development. Recently, a rapid immunoassay for detection of MMP-9 in the tear film was developed to estimate inflammatory extent during dry eye disease. The aim of this study was to analyse the MMP-9 concentration in tear film in PEX-syndrome. In addition, an assessment of the feasibility, reliability and readability of the test was done. We randomly selected 10 patients with PEX-syndrome and 10 healthy control patients and measured tear film MMP-9 of one eye with the RPS InflammaDry Detector™ (Rapid Pathogen Screening Inc., USA). We detected increased levels of MMP-9 in tear film in PEX-syndrome. 80 % of the PEX-patients and 20 % of the controls showed a positive test result (>or= 40 ng/mL MMP-9) indicating a test specificity and sensitivity of 80 %. This corresponds approximately to the published values for the dry eye (sensitivity 87 %, specificity: 92 %). The performance of the test is simple. The patients tolerated the inclusion of the test strips well. However, it is difficult to estimate whether enough tear film was used and in many cases, the intensity of the "indicator line" was weak. The rapid MMP-9-immunoassay is a novel, meaningful approach for the detection of inflammatory activity of the ocular surface. We have shown an up-regulation of the non-specific inflammatory marker MMP-9 in tear film in PEX-syndrome and suggest an association with a tear film disorder. However, an improvement in the estimation of the amount of collected tears and readability is desirable. Georg Thieme Verlag KG Stuttgart · New York.
Green, Stefan J.; Venkatramanan, Raghavee; Naqib, Ankur
2015-01-01
The polymerase chain reaction (PCR) is sensitive to mismatches between primer and template, and mismatches can lead to inefficient amplification of targeted regions of DNA template. In PCRs in which a degenerate primer pool is employed, each primer can behave differently. Therefore, inefficiencies due to different primer melting temperatures within a degenerate primer pool, in addition to mismatches between primer binding sites and primers, can lead to a distortion of the true relative abundance of targets in the original DNA pool. A theoretical analysis indicated that a combination of primer-template and primer-amplicon interactions during PCR cycles 3–12 is potentially responsible for this distortion. To test this hypothesis, we developed a novel amplification strategy, entitled “Polymerase-exonuclease (PEX) PCR”, in which primer-template interactions and primer-amplicon interactions are separated. The PEX PCR method substantially and significantly improved the evenness of recovery of sequences from a mock community of known composition, and allowed for amplification of templates with introduced mismatches near the 3’ end of the primer annealing sites. When the PEX PCR method was applied to genomic DNA extracted from complex environmental samples, a significant shift in the observed microbial community was detected. Furthermore, the PEX PCR method provides a mechanism to identify which primers in a primer pool are annealing to target gDNA. Primer utilization patterns revealed that at high annealing temperatures in the PEX PCR method, perfect match annealing predominates, while at lower annealing temperatures, primers with up to four mismatches with templates can contribute substantially to amplification. The PEX PCR method is simple to perform, is limited to PCR mixes and a single exonuclease step which can be performed without reaction cleanup, and is recommended for reactions in which degenerate primer pools are used or when mismatches between primers and template are possible. PMID:25996930
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Foing, Bernard
2014-05-01
In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.
A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms
Gonzalez, Nicola H.; Felsner, Gregor; Schramm, Frederic D.; Klingl, Andreas; Maier, Uwe-G.; Bolte, Kathrin
2011-01-01
Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1. PMID:21966495
Obiero, Walter; Young, Marisa R; Bailey, Robert C
2013-01-01
Male circumcision (MC) reduces the risk of heterosexual HIV acquisition in men by approximately 60%. MC programs for HIV prevention are currently being scaled-up in fourteen countries in sub-Saharan Africa. The current standard surgical technique for MC in many sub-Saharan African countries is the forceps-guided male circumcision (FGMC) method. The PrePex male circumcision (PMC) method could replace FGMC and potentially reduce MC programming costs. We compared the potential costs of introducing the PrePex device into MC programming to the cost of the forceps-guided method. Data were obtained from the Nyanza Reproductive Health Society (NRHS), an MC service delivery organization in Kenya, and from the Kenya Ministry of Health. Analyses are based on 48,265 MC procedures performed in four Districts in western Kenya from 2009 through 2011. Data were entered into the WHO/UNAIDS Decision Makers Program Planning Tool. The tool assesses direct and indirect costs of MC programming. Various sensitivity analyses were performed. Costs were discounted at an annual rate of 6% and are presented in United States Dollars. Not including the costs of the PrePex device or referral costs for men with phimosis/tight foreskin, the costs of one MC surgery were $44.54-$49.02 and $54.52-$55.29 for PMC and FGMC, respectively. The PrePex device is unlikely to result in significant cost-savings in comparison to the forceps-guided method. MC programmers should target other aspects of the male circumcision minimum package for improved cost efficiency.
ERIC Educational Resources Information Center
Alameda, Miriam Wood; Whitehead, James R.
2015-01-01
Stigmatization consequent to anti-fat bias (AFB) may affect the services people who are obese receive from health professionals, including physical education and exercise science (PEX) professionals. In this study, we compared AFB levels of American and Mexican PEX students and Mexican athletes. We also investigated if socially desirable (SD)…
Serum Iron Level Is Associated with Time to Antibiotics in Cystic Fibrosis.
Gifford, Alex H; Dorman, Dana B; Moulton, Lisa A; Helm, Jennifer E; Griffin, Mary M; MacKenzie, Todd A
2015-12-01
Serum levels of hepcidin-25, a peptide hormone that reduces blood iron content, are elevated when patients with cystic fibrosis (CF) develop pulmonary exacerbation (PEx). Because hepcidin-25 is unavailable as a clinical laboratory test, we questioned whether a one-time serum iron level was associated with the subsequent number of days until PEx, as defined by the need to receive systemic antibiotics (ABX) for health deterioration. Clinical, biochemical, and microbiological parameters were simultaneously checked in 54 adults with CF. Charts were reviewed to determine when they first experienced a PEx after these parameters were assessed. Time to ABX was compared in subgroups with and without specific attributes. Multivariate linear regression was used to identify parameters that significantly explained variation in time to ABX. In univariate analyses, time to ABX was significantly shorter in subjects with Aspergillus-positive sputum cultures and CF-related diabetes. Multivariate linear regression models demonstrated that shorter time to ABX was associated with younger age, lower serum iron level, and Aspergillus sputum culture positivity. Serum iron, age, and Aspergillus sputum culture positivity are factors associated with shorter time to subsequent PEx in CF adults. © 2015 Wiley Periodicals, Inc.
Nisato, Riccardo E; Hosseini, Ghamartaj; Sirrenberg, Christian; Butler, Georgina S; Crabbe, Thomas; Docherty, Andrew J P; Wiesner, Matthias; Murphy, Gillian; Overall, Christopher M; Goodman, Simon L; Pepper, Michael S
2005-10-15
Matrix metalloproteinase (MMP)-2 and its hemopexin C domain autolytic fragment (also called PEX) have been proposed to be crucial for angiogenesis. Here, we have investigated the dependency of in vitro angiogenesis on MMP-mediated extracellular proteolysis and integrin alpha(v)beta3-mediated cell adhesion in a three-dimensional collagen I model. The hydroxamate-based synthetic inhibitors BB94, CT1399, and CT1847 inhibited endothelial cell invasion, as did neutralizing anti-membrane-type 1-MMP (MT1-MMP) antibodies and tissue inhibitor of MMP (TIMP)-2 and TIMP-3 but not TIMP-1. This confirmed the pivotal importance of MT1-MMP over other MMPs in this model. Invasion was also inhibited by a nonpeptidic antagonist of integrin alpha(v)beta3, EMD 361276. Although PEX strongly inhibited pro-MMP-2 activation, when contaminating lipopolysaccharide was neutralized, PEX neither affected angiogenesis nor bound integrin alpha(v)beta(3). Moreover, no specific binding of pro-MMP-2 to integrin alpha(v)beta3 was found, whereas only one out of four independently prepared enzymatically active MMP-2 preparations could bind integrin alpha(v)beta3 , and this in a PEX-independent manner. Likewise, integrin alpha(v)beta3 -expressing cells did not bind MMP-2-coated surfaces. Hence, these findings show that endothelial cell invasion of collagen I gels is MT1-MMP and alpha(v)beta3 - dependent but MMP-2 independent and does not support a role for PEX in alpha(v)beta3 integrin binding or in modulating angiogenesis in this system.
NASA Astrophysics Data System (ADS)
Abramkin, D. S.; Gutakovskii, A. K.; Shamirzaev, T. S.
2018-03-01
The experimental ascertainment of band alignment type for semiconductor heterostructures with diffused interfaces is discussed. A method based on the analysis of the spectral shift of photoluminescence (PL) band with excitation density (Pex) that takes into account state filling and band bending effects on the PL band shift is developed. It is shown that the shift of PL band maximum position is proportional to ℏωmax ˜ (Ue + Uh).ln(Pex) + b.Pex1/3, where Ue (Uh) are electron (hole) Urbach energy tail, and parameter b characterizes the effect of band bending or is equal to zero for heterostructures with type-II or type-I band alignment, respectively. The method was approved with InAs/AlAs, GaAs/AlAs, GaSb/AlAs, and AlSb/AlAs heterostructures containing quantum wells.
The Joint Astrophysical Plasmadynamic Experiment (J-PEX): a high-resolution rocket spectrometer
NASA Astrophysics Data System (ADS)
Barstow, Martin A.; Bannister, Nigel P.; Cruddace, Raymond G.; Kowalski, Michael P.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Culhane, J. Leonard; Lapington, Jonathan S.
2003-02-01
We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245Å spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.
Rydzanicz, Małgorzata; Stradomska, Teresa Joanna; Jurkiewicz, Elżbieta; Jamroz, Ewa; Gasperowicz, Piotr; Kostrzewa, Grażyna; Płoski, Rafał; Tylki-Szymańska, Anna
2017-11-01
Zellweger syndrome (ZS) is a consequence of a peroxisome biogenesis disorder (PBD) caused by the presence of a pathogenic mutation in one of the 13 genes from the PEX family. ZS is a severe multisystem condition characterized by neonatal appearance of symptoms and a shorter life. Here, we report a case of ZS with a mild phenotype, due to a novel PEX6 gene mutation. The patient presented subtle craniofacial dysmorphic features and slightly slower psychomotor development. At the age of 2 years, he was diagnosed with adrenal insufficiency, hypoacusis, and general deterioration. Magnetic resonance imaging showed a symmetrical hyperintense signal in the frontal and parietal white matter. Biochemical tests showed elevated liver transaminases, elevated serum very long chain fatty acids, and phytanic acid. After the death of the child at the age of 6 years, molecular diagnostics were continued in order to provide genetic counseling for his parents. Next generation sequencing (NGS) analysis with the TruSight One™ Sequencing Panel revealed a novel homozygous PEX6 p.Ala94Pro mutation. In silico prediction of variant severity suggested its possible benign effect. To conclude, in the milder phenotypes, adrenal insufficiency, hypoacusis, and leukodystrophy together seem to be pathognomonic for ZS.
ECX and PEX rheology. Progress report, October--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, G.T.
1975-01-01
The objectives of this project are: (1) to evaluate the capillary rheometer as a device to qualitatively measure the extrusion properties of extrusion cast and paste explosives; (2) to study and determine means to distinguish and characterize the rheological properties of different lots of ECX and PEX; and (3) to apply results from (1) and (2) to production loading operations involving ECX and PEX. The second objective (to study and determine means to distinguish and characterize rheological properties) of this project has been accomplished. Testing procedures were finalized, and general knowledge of the rheometer itself was gained. Three batches ofmore » 85/15 (wt. percent) RDX/Sylgard were tested in the Instron Capillary Rheometer. Each lot was statistically distinguishable from the other two lots. One lot exhibited a significantly lower apparent viscosity than the other two lots, which were statistically different from each other, but which were in fairly close agreement.« less
Wang, Xiao-Ming; Yik, Wing Yan; Zhang, Peilin; Lu, Wange; Huang, Ning; Kim, Bo Ram; Shibata, Darryl; Zitting, Madison; Chow, Robert H; Moser, Ann B; Steinberg, Steven J; Hacia, Joseph G
2015-08-29
Zellweger spectrum disorder (PBD-ZSD) is a disease continuum caused by mutations in a subset of PEX genes required for normal peroxisome assembly and function. They highlight the importance of peroxisomes in the development and functions of the central nervous system, liver, and other organs. To date, the underlying bases for the cell-type specificity of disease are not fully elucidated. Primary skin fibroblasts from seven PBD-ZSD patients with biallelic PEX1, PEX10, PEX12, or PEX26 mutations and three healthy donors were transduced with retroviral vectors expressing Yamanaka reprogramming factors. Candidate induced pluripotent stem cells (iPSCs) were subject to global gene expression, DNA methylation, copy number variation, genotyping, in vitro differentiation and teratoma formation assays. Confirmed iPSCs were differentiated into neural progenitor cells (NPCs), neurons, oligodendrocyte precursor cells (OPCs), and hepatocyte-like cell cultures with peroxisome assembly evaluated by microscopy. Saturated very long chain fatty acid (sVLCFA) and plasmalogen levels were determined in primary fibroblasts and their derivatives. iPSCs were derived from seven PBD-ZSD patient-derived fibroblasts with mild to severe peroxisome assembly defects. Although patient and control skin fibroblasts had similar gene expression profiles, genes related to mitochondrial functions and organelle cross-talk were differentially expressed among corresponding iPSCs. Mitochondrial DNA levels were consistent among patient and control fibroblasts, but varied among all iPSCs. Relative to matching controls, sVLCFA levels were elevated in patient-derived fibroblasts, reduced in patient-derived iPSCs, and not significantly different in patient-derived NPCs. All cell types derived from donors with biallelic null mutations in a PEX gene showed plasmalogen deficiencies. Reporter gene assays compatible with high content screening (HCS) indicated patient-derived OPC and hepatocyte-like cell cultures had impaired peroxisome assembly. Normal peroxisome activity levels are not required for cellular reprogramming of skin fibroblasts. Patient iPSC gene expression profiles were consistent with hypotheses highlighting the role of altered mitochondrial activities and organelle cross-talk in PBD-ZSD pathogenesis. sVLCFA abnormalities dramatically differed among patient cell types, similar to observations made in iPSC models of X-linked adrenoleukodystrophy. We propose that iPSCs could assist investigations into the cell type-specificity of peroxisomal activities, toxicology studies, and in HCS for targeted therapies for peroxisome-related disorders.
Nakazawa, Takehito; Izuno, Ayako; Horii, Masato; Kodera, Rina; Nishimura, Hiroshi; Hirayama, Yuichiro; Tsunematsu, Yuta; Miyazaki, Yasumasa; Awano, Tatsuya; Muraguchi, Hajime; Watanabe, Kenji; Sakamoto, Masahiro; Takabe, Keiji; Watanabe, Takashi; Isagi, Yuji; Honda, Yoichi
2017-12-01
Peroxisomes are well-known organelles that are present in most eukaryotic organisms. Mutant phenotypes caused by the malfunction of peroxisomes have been shown in many fungi. However, these have never been investigated in Agaricomycetes, which include white-rot fungi that degrade wood lignin in nature almost exclusively and play an important role in the global carbon cycle. Based on the results of a forward genetics study to identify mutations causing defects in the ligninolytic activity of the white-rot Agaricomycete Pleurotus ostreatus, we report phenotypes of pex1 disruptants in P. ostreatus, which are defective in two major features of white-rot Agaricomycetes: lignin biodegradation and mushroom formation. Pex1 disruption was also shown to cause defects in the hyphal growth of P. ostreatus on certain sawdust and minimum media. We also demonstrated that pex1 is essential for fruiting initiation in the non-wood decaying Agaricomycete Coprinopsis cinerea. However, unlike P. ostreatus, significant defects in hyphal growth on the aforementioned agar medium were not observed in C. cinerea. This result, together with previous C. cinerea genetic studies, suggests that the regulation mechanisms for the utilization of carbon sources are altered during the evolution of Agaricomycetes or Agaricales. Copyright © 2017 Elsevier Inc. All rights reserved.
Lipid rafts are essential for peroxisome biogenesis in HepG2 cells.
Woudenberg, Jannes; Rembacz, Krzysztof P; Hoekstra, Mark; Pellicoro, Antonella; van den Heuvel, Fiona A J; Heegsma, Janette; van Ijzendoorn, Sven C D; Holzinger, Andreas; Imanaka, Tsuneo; Moshage, Han; Faber, Klaas Nico
2010-08-01
Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.
2011 Agile (Scrum) Workshop Held in Baltimore, Maryland on November 14-15, 2011
2011-11-15
have success- fully implemented Agile Development within DoD. SUSI MCKEE OC2IS Program Manager, U.S. Air Force Susana V. McKee has 25 years of DoD T...AGILE WILL WORK IN DOD: THREE EXAMPLES u Ms. Kelly Goshorn, Patriot Excalibur (PEX) Program Manager, U.S. Air Force u Ms. Susi McKee, Operational...OPS PEX Team: Internal •Devs/SMEs/Testers •Architecture Committee •Etc. none Future implementation, not Current release Big R/ Little r I n
Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water.
Gião, M S; Wilks, S A; Keevil, C W
2015-04-01
Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.
Willems, Sara M; Wright, Daniel J; Day, Felix R; Trajanoska, Katerina; Joshi, Peter K; Morris, John A; Matteini, Amy M; Garton, Fleur C; Grarup, Niels; Oskolkov, Nikolay; Thalamuthu, Anbupalam; Mangino, Massimo; Liu, Jun; Demirkan, Ayse; Lek, Monkol; Xu, Liwen; Wang, Guan; Oldmeadow, Christopher; Gaulton, Kyle J; Lotta, Luca A; Miyamoto-Mikami, Eri; Rivas, Manuel A; White, Tom; Loh, Po-Ru; Aadahl, Mette; Amin, Najaf; Attia, John R; Austin, Krista; Benyamin, Beben; Brage, Søren; Cheng, Yu-Ching; Cięszczyk, Paweł; Derave, Wim; Eriksson, Karl-Fredrik; Eynon, Nir; Linneberg, Allan; Lucia, Alejandro; Massidda, Myosotis; Mitchell, Braxton D; Miyachi, Motohiko; Murakami, Haruka; Padmanabhan, Sandosh; Pandey, Ashutosh; Papadimitriou, Ioannis; Rajpal, Deepak K; Sale, Craig; Schnurr, Theresia M; Sessa, Francesco; Shrine, Nick; Tobin, Martin D; Varley, Ian; Wain, Louise V; Wray, Naomi R; Lindgren, Cecilia M; MacArthur, Daniel G; Waterworth, Dawn M; McCarthy, Mark I; Pedersen, Oluf; Khaw, Kay-Tee; Kiel, Douglas P; Pitsiladis, Yannis; Fuku, Noriyuki; Franks, Paul W; North, Kathryn N; van Duijn, Cornelia M; Mather, Karen A; Hansen, Torben; Hansson, Ola; Spector, Tim; Murabito, Joanne M; Richards, J Brent; Rivadeneira, Fernando; Langenberg, Claudia; Perry, John R B; Wareham, Nick J; Scott, Robert A
2017-07-12
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10 -8 ) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.
An ER-peroxisome tether exerts peroxisome population control in yeast
Knoblach, Barbara; Sun, Xuejun; Coquelle, Nicolas; Fagarasanu, Andrei; Poirier, Richard L; Rachubinski, Richard A
2013-01-01
Eukaryotic cells compartmentalize biochemical reactions into membrane-enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER-peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p-containing anchored peroxisomes and Inp1p-deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers. PMID:23900285
Cyclosporin A and intravenous immunoglobulin treatment in polymyositis/dermatomyositis
Danieli, M; Malcangi, G; Palmieri, C; Logullo, F; Salvi, A; Piani, M; Danieli, G
2002-01-01
Objective: To describe the treatment of polymyositis (PM) and dermatomyositis (DM) with prednisone (PRED) and cyclosporin A (CSA) alone or associated with intravenous immunoglobulin (IVIg) and plasmapheresis (PEX). Methods: Between 1992 and 1999 CSA and PRED were used to treat 20 patients with idiopathic myositis (12 with DM, eight with PM), diagnosed according to the Bohan and Peter criteria. In patients with refractory or relapsed disease, IVIg was added alone (seven cases) or synchronised with PEX (six cases). A standardised protocol was used to evaluate the patients, and assess disease activity and treatment response. Results: Despite a transient response to PRED and CSA in 16/20 cases, this combination did not induce full remission in 13/20 cases, which led to the IVIg trial with or without PEX. Patients receiving PRED and CSA plus IVIg had a significantly higher probability of maintaining complete remission at the end of the four year follow up period than those treated with PRED and CSA alone (p<0.001). No further benefit was added by the PEX. The presence of arthritis significantly correlated with a poorer response to treatment (p<0.05). Adverse effects were gingival hyperplasia (one patient) and transient renal dysfunction (one). Conclusions: This open study suggests that combined treatment with PRED, CSA, and IVIg is useful in patients with myositis, even those with refractory or relapsed disease; no increase in the number or type of side effects is seen. PMID:11779756
Proctor, Caitlin R; Dai, Dongjuan; Edwards, Marc A; Pruden, Amy
2017-10-04
Several biotic and abiotic factors have been reported to influence the proliferation of microbes, including Legionella pneumophila, in hot water premise plumbing systems, but their combined effects have not been systematically evaluated. Here, we utilize simulated household water heaters to examine the effects of stepwise increases in temperature (32-53 °C), pipe material (copper vs. cross-linked polyethylene (PEX)), and influent assimilable organic carbon (0-700 μg/L) on opportunistic pathogen gene copy numbers and the microbiota composition, as determined by quantitative polymerase chain reaction and 16S rRNA gene amplicon sequencing. Temperature had an overarching influence on both the microbiota composition and L. pneumophila numbers. L. pneumophila peaked at 41 °C in the presence of PEX (1.58 × 10 5 gene copies/mL). At 53 °C, L. pneumophila was not detected. Several operational taxonomic units (OTUs) persisted across all conditions, accounting for 50% of the microbiota composition from 32 to 49 °C and 20% at 53 °C. Pipe material most strongly influenced microbiota composition at lower temperatures, driven by five to six OTUs enriched with each material. Copper pipes supported less L. pneumophila than PEX pipes (mean 2.5 log 10 lower) at temperatures ≤ 41 °C, but showed no difference in total bacterial numbers. Differences between pipe materials diminished with elevated temperature, probably resulting from decreased release of copper ions. At temperatures ≤ 45 °C, influent assimilable organic carbon correlated well with total bacterial numbers, but not with L. pneumophila numbers. At 53 °C, PEX pipes leached organic carbon, reducing the importance of dosed organic carbon. L. pneumophila numbers correlated with a Legionella OTU and a Methylophilus OTU identified by amplicon sequencing. Temperature was the most effective factor for the control of L. pneumophila, while microbiota composition shifted with each stepwise temperature increase. While copper pipe may also help shape the microbiota composition and limit L. pneumophila proliferation, its benefits might be constrained at higher temperatures. Influent assimilable organic carbon affected total bacterial numbers, but had minimal influence on opportunistic pathogen gene numbers or microbiota composition. These findings provide guidance among multiple control measures for the growth of opportunistic pathogens in hot water plumbing and insight into the mediating role of microbial ecological factors.
Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence†
Martin, Gregory G.; Hostetler, Heather A.; McIntosh, Avery L.; Tichy, Shane E.; Williams, Brad J.; Russell, David H.; Berg, Jeremy M.; Spencer, Thomas A.; Ball, Judith; Kier, Ann B.; Schroeder, Friedhelm
2008-01-01
Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2’s affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts/caveolae (AF488-CTB), 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488-antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting. PMID:18465878
NASA Astrophysics Data System (ADS)
Siewnicka, Alicja; Fajdek, Bartlomiej; Janiszowski, Krzysztof
2010-01-01
This paper presents a model of the human circulatory system with the possible addition of a parallel assist device, which was developed for the purpose of artificial heart monitoring. Information about an identification experiment of an extracorporeal ventricle assist device POLVAD is included. The modelling methods applied and the corresponding functional blocks in a PExSim package are presented. The results of the simulation for physiological conditions, left ventricle failure and pathological conditions with parallel assistance are included.
Qian, Guofeng; Karnati, Srikanth; Baumgart-Vogt, Eveline
2015-01-01
Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression and accelerated osteoblast differentiation. Taken together, our results suggest that PPARß regulates the numerical abundance and metabolic function of peroxisomes via Pex11ß in parallel to osteoblast differentiation. PMID:26630504
De Battista, Juan Carlos; Buonanotte, Carlos Federico; Foa Torres, Gustavo A; Keller, Jeffrey Thomas; Aranega, Cesar I
2018-04-24
Antecedentes: Las enfermedades que afectan la órbita representan un desafío quirúrgico, en particular las que comprometen el ápex orbitario. Una vía óptima de acceso quirúrgico proporciona la mejor exposición permitiendo identificar ciertas estructuras anatómicas claves llamadas reparos anatómicos. Objetivo: Describir la anatomía endoscópica de la unidad estructural Fisura Orbitaria Inferior / Músculo de Müller a nivel del ápex orbitario generando así un nuevo reparo anatómico endoscópico. Material y método: Análisis descriptivo óseo de la fisura orbitaria inferior (FOI) en cráneos secos, disección y estudio bajo técnica endoscópica de 6 cabezas fijadas en formol y coloreadas; finalmente se tomaron distancias y ángulos a forámenes relacionados con el ápex orbitario a 10 cráneos secos. El análisis estadístico se realizó con el programa estadístico SPSS 17,0 (SPSS, Inc., Chicago, IL). Resultado: En todas las disecciones endoscópicas se pudo identificar la unidad fisura orbitaria inferior-músculo de Müller y también verificar su íntima relación con el ápex orbitario. Morfométricamente el foramen óptico y el foramen redondo mayor están a una distancia promedio de 65.19mm y 60.16mm respectivamente. Los ángulos promedio del FO fue de 13.32 grados y del FRM de19.31 grados. Hallamos correlación significativa entre CO. y el FRM sólo en el hemicráneo izquierdo, (Tau b de Kendall 0.69, P=0.006). No se encontraron diferencias anatómicas (o morfológicas) significativas entre lados. Conclusión: bajo técnica endoscópica la unidad Fisura Orbitaria Inferior-Músculo de Müller (FOI-MM) es un reparo anatómico constante, útil y seguro que permite el reconocimiento del ápex orbitario y sus áreas contiguas.
Budnik, Lygia Therese; Adam, Balazs; Albin, Maria; Banelli, Barbara; Baur, Xaver; Belpoggi, Fiorella; Bolognesi, Claudia; Broberg, Karin; Gustavsson, Per; Göen, Thomas; Fischer, Axel; Jarosinska, Dorota; Manservisi, Fabiana; O'Kennedy, Richard; Øvrevik, Johan; Paunovic, Elizabet; Ritz, Beate; Scheepers, Paul T J; Schlünssen, Vivi; Schwarzenbach, Heidi; Schwarze, Per E; Sheils, Orla; Sigsgaard, Torben; Van Damme, Karel; Casteleyn, Ludwine
2018-01-01
The WHO has ranked environmental hazardous exposures in the living and working environment among the top risk factors for chronic disease mortality. Worldwide, about 40 million people die each year from noncommunicable diseases (NCDs) including cancer, diabetes, and chronic cardiovascular, neurological and lung diseases. The exposure to ambient pollution in the living and working environment is exacerbated by individual susceptibilities and lifestyle-driven factors to produce complex and complicated NCD etiologies. Research addressing the links between environmental exposure and disease prevalence is key for prevention of the pandemic increase in NCD morbidity and mortality. However, the long latency, the chronic course of some diseases and the necessity to address cumulative exposures over very long periods does mean that it is often difficult to identify causal environmental exposures. EU-funded COST Action DiMoPEx is developing new concepts for a better understanding of health-environment (including gene-environment) interactions in the etiology of NCDs. The overarching idea is to teach and train scientists and physicians to learn how to include efficient and valid exposure assessments in their research and in their clinical practice in current and future cooperative projects. DiMoPEx partners have identified some of the emerging research needs, which include the lack of evidence-based exposure data and the need for human-equivalent animal models mirroring human lifespan and low-dose cumulative exposures. Utilizing an interdisciplinary approach incorporating seven working groups, DiMoPEx will focus on aspects of air pollution with particulate matter including dust and fibers and on exposure to low doses of solvents and sensitizing agents. Biomarkers of early exposure and their associated effects as indicators of disease-derived information will be tested and standardized within individual projects. Risks arising from some NCDs, like pneumoconioses, cancers and allergies, are predictable and preventable. Consequently, preventative action could lead to decreasing disease morbidity and mortality for many of the NCDs that are of major public concern. DiMoPEx plans to catalyze and stimulate interaction of scientists with policy-makers in attacking these exposure-related diseases.
Emilsson, Össur Ingi; Benediktsdóttir, Bryndís; Ólafsson, Ísleifur; Cook, Elizabeth; Júlíusson, Sigurður; Björnsson, Einar Stefán; Guðlaugsdóttir, Sunna; Guðmundsdóttir, Anna Soffía; Mirgorodskaya, Ekaterina; Ljungström, Evert; Arnardóttir, Erna Sif; Gíslason, Þórarinn; Janson, Christer; Olin, Anna-Carin
2016-09-20
Nocturnal gastroesophageal reflux (nGER) is associated with respiratory symptoms and sleep-disordered breathing (SDB), but the pathogenesis is unclear. We aimed to investigate the association between nGER and respiratory symptoms, exacerbations of respiratory symptoms, SDB and airway inflammation. Participants in the European Community Respiratory Health Survey III in Iceland with nGER symptoms (n = 48) and age and gender matched controls (n = 42) were studied by questionnaires, exhaled breath condensate (EBC), particles in exhaled air (PEx) measurements, and a home polygraphic study. An exacerbation of respiratory symptoms was defined as an episode of markedly worse respiratory symptoms in the previous 12 months. Asthma and bronchitis symptoms were more common among nGER subjects than controls (54 % vs 29 %, p = 0.01; and 60 % vs 26 %, p < 0.01, respectively), as were exacerbations of respiratory symptoms (19 % vs 5 %, p = 0.04). Objectively measured snoring was more common among subjects with nGER than controls (snores per hour of sleep, median (IQR): 177 (79-281) vs 67 (32-182), p = 0.004). Pepsin (2.5 ng/ml (0.8-5.8) vs 0.8 ng/ml (0.8-3.6), p = 0.03), substance P (741 pg/ml (626-821) vs 623 pg/ml (562-676), p < 0.001) and 8-isoprostane (3.0 pg/ml (2.7-3.9) vs 2.6 pg/ml (2.2-2.9), p = 0.002) in EBC were higher among nGER subjects than controls. Albumin and surfactant protein A in PEx were lower among nGER subjects. These findings were independent of BMI. In a general population sample, nGER is associated with symptoms of asthma and bronchitis, as well as exacerbations of respiratory symptoms. Also, nGER is associated with increased respiratory effort during sleep. Biomarker measurements in EBC, PEx and serum indicate that micro-aspiration and neurogenic inflammation are plausible mechanisms.
Successful use of plasma exchange for profound hemolysis in a child with loxoscelism.
Said, Ahmed; Hmiel, Paul; Goldsmith, Matthew; Dietzen, Dennis; Hartman, Mary E
2014-11-01
We describe a 6-year-old boy who presented with massive hemolysis, shock, disseminated intravascular coagulopathy, and acute renal failure after loxosceles envenomation. In this patient, plasma exchange therapy (PEX) successfully cleared the plasma from an initial hemolytic index of 2000 (equivalent to 2 g/dL hemoglobin, where optimetric laboratory evaluation is impossible) to an index of <50 (no detectable hemolysis). This allowed the PICU team to correct his coagulopathy, assess his degree of organ dysfunction, and provide routine laboratory assessments during continuous venovenous hemodiafiltration. After 9 single volume PEX sessions, his hemolysis and coagulopathy had resolved and his plasma had cleared sufficiently to permit routine laboratory assessments without difficulty. Multiorgan system support with an aggressive transfusion strategy, mechanical ventilation, inotropes, and continuous venovenous hemodiafiltration resulted in complete recovery. We conclude that in the presence of overwhelming hemolysis, plasma can become so icteric that optimetric laboratory evaluation is impossible. In this setting, PEX can be used to clear the plasma, restoring the ability to perform routine laboratory assessments. Copyright © 2014 by the American Academy of Pediatrics.
Three-dimensional arbitrary voxel shapes in spectroscopy with submillisecond TEs.
Snyder, Jeff; Haas, Martin; Dragonu, Iulius; Hennig, Jürgen; Zaitsev, Maxim
2012-08-01
A novel spectroscopic method for submillisecond TEs and three-dimensional arbitrarily shaped voxels was developed and applied to phantom and in vivo measurements, with additional parallel excitation (PEX) implementation. A segmented spherical shell excitation trajectory was used in combination with appropriate radiofrequency weights for target selection in three dimensions. Measurements in a two-compartment phantom realized a TE of 955 µs, excellent spectral quality and comparable signal-to-noise ratios between accelerated (R = 2) and nonaccelerated modes. The two-compartment model allowed a comparison of the spectral suppression qualities of the method and, although outer volume signals were suppressed by factors of 1434 and 2246 compared with the theoretical unsuppressed case for the clinical and PEX modes, respectively, incomplete suppression of the outer volume (935 cm(3) compared with a target volume of 5.86 cm(3) ) resulted in a spectral contamination of 10.2% and 6.5% compared with the total signal. The method was also demonstrated in vivo in human brain on a clinical system at TE = 935 µs with good signal-to-noise ratio and spatial and spectral selection, and included LCModel relative quantification analysis. Eight metabolites showed significant fitting accuracy, including aspartate, N-acetylaspartylglutamate, glutathione and glutamate. Copyright © 2012 John Wiley & Sons, Ltd.
Moritz, Miriam M; Flemming, Hans-Curt; Wingender, Jost
2010-06-01
Drinking water biofilms were grown on coupons of plumbing materials, including ethylene-propylene-diene-monomer (EPDM) rubber, silane cross-linked polyethylene (PE-X b), electron-ray cross-linked PE (PE-X c) and copper under constant flow-through of cold tap water. After 14 days, the biofilms were spiked with Pseudomonas aeruginosa, Legionella pneumophila and Enterobacter nimipressuralis (10(6) cells/mL each). The test bacteria were environmental isolates from contamination events in drinking water systems. After static incubation for 24 h, water flow was resumed and continued for 4 weeks. Total cell count and heterotrophic plate count (HPC) of biofilms were monitored, and P. aeruginosa, L. pneumophila and E. nimipressuralis were quantified, using standard culture-based methods or culture-independent fluorescence in situ hybridization (FISH). After 14 days total cell counts and HPC values were highest on EPDM followed by the plastic materials and copper. P. aeruginosa and L. pneumophila became incorporated into drinking water biofilms and were capable to persist in biofilms on EPDM and PE-X materials for several weeks, while copper biofilms were colonized only by L. pneumophila in low culturable numbers. E. nimipressuralis was not detected in any of the biofilms. Application of the FISH method often yielded orders of magnitude higher levels of P. aeruginosa and L. pneumophila than culture methods. These observations indicate that drinking water biofilms grown under cold water conditions on domestic plumbing materials, especially EPDM and PE-X in the present study, can be a reservoir for P. aeruginosa and L. pneumophila that persist in these habitats mostly in a viable but non-culturable state.
Wei, Wei; Zhu, Wenjun; Cheng, Jiasen; Xie, Jiatao; Li, Bo; Jiang, Daohong; Li, Guoqing; Yi, Xianhong
2013-01-01
Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans. PMID:23563946
Grant, Phillip; Ahlemeyer, Barbara; Karnati, Srikanth; Berg, Timm; Stelzig, Ingra; Nenicu, Anca; Kuchelmeister, Klaus; Crane, Denis I; Baumgart-Vogt, Eveline
2013-10-01
Catalase and ABCD3 are frequently used as markers for the localization of peroxisomes in morphological experiments. Their abundance, however, is highly dependent on metabolic demands, reducing the validity of analyses of peroxisomal abundance and distribution based solely on these proteins. We therefore attempted to find a protein which can be used as an optimal marker for peroxisomes in a variety of species, tissues, cell types and also experimental designs, independently of peroxisomal metabolism. We found that the biogenesis protein peroxin 14 (PEX14) is present in comparable amounts in the membranes of every peroxisome and is optimally suited for immunoblotting, immunohistochemistry, immunofluorescence, and immunoelectron microscopy. Using antibodies against PEX14, we could visualize peroxisomes with almost undetectable catalase content in various mammalian tissue sections (submandibular and adrenal gland, kidney, testis, ovary, brain, and pancreas from mouse, cat, baboon, and human) and cell cultures (primary cells and cell lines). Peroxisome labeling with catalase often showed a similar tissue distribution to the mitochondrial enzyme mitochondrial superoxide dismutase (both responsible for the degradation of reactive oxygen species), whereas ABCD3 exhibited a distinct labeling only in cells involved in lipid metabolism. We increased the sensitivity of our methods by using QuantumDots™, which have higher emission yields compared to classic fluorochromes and are unsusceptible to photobleaching, thereby allowing more exact quantification without artificial mistakes due to heterogeneity of individual peroxisomes. We conclude that PEX14 is indeed the best marker for labeling of peroxisomes in a variety of tissues and cell types in a consistent fashion for comparative morphometry.
Chien, Chiang-Ting; Jou, Ming-Jia; Cheng, Tai-Yu; Yang, Chih-Hui; Yu, Tzu-Ying; Li, Ping-Chia
2015-01-01
Glucagon-like peptide-1 (GLP-1) receptor activation in the brain provides neuroprotection. Exendin-4 (Ex-4), a GLP-1 analog, has seen limited clinical usage because of its short half-life. We developed long-lasting Ex-4-loaded poly(D,L-lactide-co-glycolide) microspheres (PEx-4) and explored its neuroprotective potential against cerebral ischemia in diabetic rats. Compared with Ex-4, PEx-4 in the gradually degraded microspheres sustained higher Ex-4 levels in the plasma and cerebrospinal fluid for at least 2 weeks and improved diabetes-induced glycemia after a single subcutaneous administration (20 μg/day). Ten minutes of bilateral carotid artery occlusion (CAO) combined with hemorrhage-induced hypotension (around 30 mm Hg) significantly decreased cerebral blood flow and microcirculation in male Wistar rats subjected to streptozotocin-induced diabetes. CAO increased cortical O2− levels by chemiluminescence amplification and prefrontal cortex edema by T2-weighted magnetic resonance imaging analysis. CAO significantly increased aquaporin 4 and glial fibrillary acidic protein expression and led to cognition deficits. CAO downregulated phosphorylated Akt/endothelial nitric oxide synthase (p-Akt/p-eNOS) signaling and enhanced nuclear factor (NF)-κBp65/intercellular adhesion molecule-1 (ICAM-1) expression, endoplasmic reticulum (ER) stress, and apoptosis in the cerebral cortex. PEx-4 was more effective than Ex-4 to improve CAO-induced oxidative injury and cognitive deficits. The neuroprotection provided by PEx-4 was through p-Akt/p-eNOS pathways, which suppressed CAO-enhanced NF-κB/ICAM-1 signaling, ER stress, and apoptosis. PMID:26058696
An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor
Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O
2016-01-01
Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567
Li, Xin-Ran; Li, Hong-Ju; Yuan, Li; Liu, Man; Shi, Dong-Qiao; Liu, Jie; Yang, Wei-Cai
2014-01-01
Pollen undergo a maturation process to sustain pollen viability and prepare them for germination. Molecular mechanisms controlling these processes remain largely unknown. Here, we report an Arabidopsis thaliana mutant, dayu (dau), which impairs pollen maturation and in vivo germination. Molecular analysis indicated that DAU encodes the peroxisomal membrane protein ABERRANT PEROXISOME MORPHOLOGY9 (APEM9). DAU is transiently expressed from bicellular pollen to mature pollen during male gametogenesis. DAU interacts with peroxisomal membrane proteins PEROXIN13 (PEX13) and PEX16 in planta. Consistently, both peroxisome biogenesis and peroxisome protein import are impaired in dau pollen. In addition, the jasmonic acid (JA) level is significantly decreased in dau pollen, and the dau mutant phenotype is partially rescued by exogenous application of JA, indicating that the male sterility is mainly due to JA deficiency. In addition, the phenotypic survey of peroxin mutants indicates that the PEXs most likely play different roles in pollen germination. Taken together, these data indicate that DAU/APEM9 plays critical roles in peroxisome biogenesis and function, which is essential for JA production and pollen maturation and germination. PMID:24510720
NASA Astrophysics Data System (ADS)
Li, Yaohui
2017-04-01
Drought is one of the most common and frequent nature disasters in the world, particularly in China under the continental monsoonal climate with great variation. About thirty percent of economic loss caused by natural disasters is contributed by droughts in China, which is by far the most damaging weather disasters because of its long duration and extensive hazard areas. Droughts not only have a serious impact on the agriculture, water resources, ecology, natural environment, but also seriously affect the socio-economic such as human health, energy and transportation. Worsely, under the background of climate change, droughts in show increases in frequency, duration and scope in many places around the world, particularly northern China. Nowadays, droughts have aroused extensive concern of the scientists, governments and international community, and became one of the important scientific issues in geoscience research. However, most of researches on droughts in China so far were focused on the causes or regulars of one type of droughts (the atmosphere, agriculture or hydrological) from the perspective of the atmospheric circulation anomalies. Few of them considered a whole cycle of the drought-forming process from atmosphere-land interaction to agricultural/ecological one in terms of the land-atmosphere interaction; meanwhile, the feedback mechanism with the drought and land-atmosphere interaction is still unclear as well. All of them is because of lack of the relevant comprehensive observation experiment. "Land-atmosphere interaction and disaster-causing process of drought in northern China: observation and experiment" (DroughtPEX_China)is just launched in this requirement and background. DroughtPEX_China is supported by Special Scientific Research Fund of Public Welfare Industry (Meteorological) of China (Grant No.GYHY201506001)—"Drought Meteorology Scientific Research Project—the disaster-causing process and mechanism of drought in northern China". This project aims to establish a complete observation &experiment system for droughts particularly over the arid and semi-arid regions in northern China. Relying on the existing meteorological observation network and experimental bases, the DroughtPEX_China implemented interdisciplinary, comprehensive and systemic drought-scientific experiment including the routine observation, intensive and special observation, and the artificially field control test for the drought forming and reducing. Such large observation &experiment will promote a large step or theoretical breakthrough on the knowledge of the complex dynamic process for the formation and development of drought disasters, the mechanism of the water-energy cycle in the atmosphere-soil-vegetation on multi-scales, and the interrelationship in the atmosphere, agriculture and hydrological droughts. The ultimate purpose of DroughtPEX_China is to make great progress on the technology of accurate drought monitoring, risk assessment and early warning. This paper will introduce the Drought PEX_China with the scientific goal, experiment design and layout, preliminary results, information sharing, and its promoting role on international cooperation of drought scientific research. Key words: Disaster-causing process of drought; Observation & experiment; Northern China
Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei
2017-07-01
The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.
Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats
López-Álvarez, Guadalupe S.; Wojdacz, Tomasz K.; García-Cuellar, Claudia M.; Monroy-Ramírez, Hugo C.; Rodríguez-Segura, Miguel A.; Pacheco-Rivera, Ruth A.; Valencia-Antúnez, Carlos A.; Cervantes-Anaya, Nancy; Soto-Reyes, Ernesto; Vásquez-Garzón, Verónica R.; Sánchez-Pérez, Yesennia; Villa-Treviño, Saúl
2017-01-01
ABSTRACT The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4) using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively) after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats. PMID:27895046
Zhou, Xinping; Ye, Xingnong; Ren, Yanling; Mei, Chen; Ma, Liya; Huang, Jiansong; Xu, Weilai; Wei, Juying; Ye, Li; Mai, Wenyuan; Qian, Wenbin; Meng, Haitao; Jin, Jie; Tong, Hongyan
2016-12-01
Acquired thrombotic thrombocytopenic purpura (TTP) is a rare life-threatening thrombotic microangiopathy. This study aimed to provide a profile of the diagnosis and management of patients with acquired TTP collected in 10 years in a single center in southeast China. A total of 60 patients diagnosed with acute acquired TTP from March 2005 to August 2015 were enrolled. Among the 60 patients, 52 patients presented with their first episodes, and eight patients had two or more episodes. The median age at presentation was 49 (range, 17 to 78) years with a female predominance (male:female ratio, 1:1.60). ADAMTS 13 activity were analyzed in 43 patients, among whom 33 (76.7%) patients had a baseline level of < 5%. Mortality was 30%. Plasma exchange (PEX) was performed in 62 of 69 (89.9%) episodes. Corticosteroids were administered in 54 of 69 (78.3%) episodes. Other immunosuppressants (e.g., vincristine, cyclosporine, and cyclosporin) were used in 7 of 69 (10.1%) episodes. Rituximab was documented in 4 patients with refractory/relapsed TTP for 5 episodes, showing encouraging results. In conclusion, the diagnosis of TTP depended on a comprehensive analysis of clinical data. Plasma ADAMTS13 activity assay helped confirm a diagnosis. PEX was the mainstay of the therapy, and rituximab can be used in relapsed/refractory disease.
High-Resolution EUV Spectroscopy of White Dwarfs
NASA Astrophysics Data System (ADS)
Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.
2014-01-01
We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.
Fujihara, Naoki; Harata, Ken; Neumann, Ulla; Robin, Guillaume P.; O’Connell, Richard
2015-01-01
ABSTRACT The cucumber anthracnose fungus Colletotrichum orbiculare forms specialized cells called appressoria for host penetration. We identified a gene, FAM1, encoding a novel peroxin protein that is essential for peroxisome biogenesis and that associates with Woronin bodies (WBs), dense-core vesicles found only in filamentous ascomycete fungi which function to maintain cellular integrity. The fam1 disrupted mutants were unable to grow on medium containing oleic acids as the sole carbon source and were nonpathogenic, being defective in both appressorium melanization and host penetration. Fluorescent proteins carrying peroxisomal targeting signals (PTSs) were not imported into the peroxisomes of fam1 mutants, suggesting that FAM1 is a novel peroxisomal biogenesis gene (peroxin). FAM1 did not show significant homology to any Saccharomyces cerevisiae peroxins but resembled conserved filamentous ascomycete-specific Pex22-like proteins which contain a predicted Pex4-binding site and are potentially involved in recycling PTS receptors from peroxisomes to the cytosol. C. orbiculare FAM1 complemented the peroxisomal matrix protein import defect of the S. cerevisiae pex22 mutant. Confocal microscopy of Fam1-GFP (green fluorescent protein) fusion proteins and immunoelectron microscopy with anti-Fam1 antibodies showed that Fam1 localized to nascent WBs budding from peroxisomes and mature WBs. Association of Fam1 with WBs was confirmed by colocalization with WB matrix protein CoHex1 (C. orbiculare Hex1) and WB membrane protein CoWsc (C. orbiculare Wsc) and by subcellular fractionation and Western blotting with antibodies to Fam1 and CoHex1. In WB-deficient cohex1 mutants, Fam1 was redirected to the peroxisome membrane. Our results show that Fam1 is a WB-associated peroxin required for pathogenesis and raise the possibility that localized receptor recycling occurs in WBs. PMID:26374121
Becerra, E; Scully, M A; Leandro, M J; Heelas, E O; Westwood, J-P; De La Torre, I; Cambridge, G
2015-01-01
Autoantibodies inhibiting the activity of the metalloproteinase, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), underlie the pathogenesis of thrombotic thrombocytopenic purpura (TTP). Rituximab (RTX) combined with plasma-exchange (PEX) is an effective treatment in TTP. Patients can remain in remission for extended periods following PEX/RTX, and this is associated with continuing reduction in antibodies to ADAMTS13. Factors controlling B cell differentiation to autoantibody production, including stimulation through the B cell receptor and interactions with the B cell-activating factor (BAFF), may thus impact length of remission. In this cross-sectional study, we measured naive and memory B cell phenotypes [using CD19/immunoglobulin (Ig)D/CD27] following PEX/RTX treatment in TTP patients at B cell return (n = 6) and in 12 patients in remission 10–68 months post-RTX. We also investigated relationships among serum BAFF, soluble CD23 (sCD23– a surrogate measure of acquiring B memory (CD27+) phenotype) and BAFF receptor (BAFF-R) expression. At B cell return after PEX/RTX, naive B cells predominated and BAFF-R expression was reduced compared to healthy controls (P < 0·001). In the remission group, despite numbers of CD19+ B cells within normal limits in most patients, the percentage and absolute numbers of pre-switch and memory B cells remained low, with sCD23 levels at the lower end of the normal range. BAFF levels were correlated inversely with BAFF-R expression and time after therapy. In conclusion, the long-term effects of RTX therapy in patients with TTP included slow regeneration of memory B cell subsets and persistently reduced BAFF-R expression across all B cell subpopulations. This may reflect the delay in selection and differentiation of potentially autoreactive (ADAMTS13-specific) B cells, resulting in relatively long periods of low disease activity after therapy. PMID:25339550
2005-04-01
manuscript. RDB also thanks Dr. Barry that Kastl and colleagues (10) observed performance differences Rickman, Jon Deegan , Don Settergren, and Greg Bange for...11(5):547-53. Meitinger T. Pex gene deletions in Gy and Hyp mice provide mouse 18. Berndt T, Craig TA, Bowe AE, models for X-linked Vassiliadis J...manuscript, and Dr. S. Barry Rickman, between anatomic sites than ipsilateral data and that the Jon Deegan , and Greg Bange for helpful discussions. Dr
Genetics Home Reference: rhizomelic chondrodysplasia punctata
... and in the nervous system. Within peroxisomes, the proteins produced from the PEX7 , GNPAT , and AGPS genes play roles in the formation (synthesis) of lipid molecules called plasmalogens. Plasmalogens are found ...
German register for glaucoma patients with dry eye. I. Basic outcome with respect to dry eye.
Erb, Carl; Gast, Ulrike; Schremmer, Dieter
2008-11-01
The purpose of this register was to determine the links between glaucoma, age, concomitant disease, medication, and dry eye in a large group of glaucoma patients. A total of 20,506 patients from 900 centers across Germany were included. The first 30 consecutive glaucoma patients at each center were recruited. Epidemiological data as well as information on glaucoma, medication, concomitant diseases, dry eye, and local symptoms were elicited by means of a questionnaire. We analyzed primary open-angle glaucoma (POAG), pseudoexfoliation glaucoma (PEX), and pigmentary glaucoma (PDG). According to the register data, more women develop dry eye and glaucoma than men (56.9 vs. 45.7%). The most frequent concomitant systemic diseases were hypertension (48.1%), diabetes mellitus (22.5%), and dry mouth, nose, and skin (11.3%). As expected, the highest incidence of dry eye was found in those patients with dry mouth, nose, and skin. Dry eye occurred with dissimilar frequencies in association with the various glaucoma types: PEX>POAG>PDG. The incidence of dry eye increases with age. The gender difference in the occurrence of dry eye becomes apparent from the age of 50. Dry eye occurred more frequently when three or more antiglaucoma drugs were used and increased with the duration of glaucoma disease. We publish the first results from the German Glaucoma and Dry Eye Register. We found that the occurrence of dry eye is linked to several factors. Thus, the type of glaucoma has an impact on the risk of dry eye. The quantity of eye drops applied also plays a role in the development of the dry eye syndrome if more than three medications are used. While POAG is usually treated with one drug, PEX and PDG tend to be treated with multiple drugs. The gender difference in the occurrence of dry eye becomes apparent from the age 50 years. Because of the vicious circle of dry eye, antiglaucoma eye drops containing benzalkonium chloride compromises patient compliance. The results of the register are therefore of key relevance for the care of glaucoma patients.
NASA Astrophysics Data System (ADS)
Barstow, M. A.; Cruddace, R. G.; Kowalski, M. P.; Bannister, N. P.; Yentis, D.; Lapington, J. S.; Tandy, J. A.; Hubeny, I.; Schuh, S.; Dreizler, S.; Barbee, T. W.
2005-10-01
We have continued our detailed analysis of the high-resolution (R= 4000) spectroscopic observation of the DA white dwarf G191-B2B, obtained by the Joint Astrophysical Plasmadynamic Experiment (J-PEX) normal incidence sounding rocket-borne telescope, comparing the observed data with theoretical predictions for both homogeneous and stratified atmosphere structures. We find that the former models give the best agreement over the narrow waveband covered by J-PEX, in conflict with what is expected from previous studies of the lower resolution but broader wavelength coverage Extreme Ultraviolet Explorer spectra. We discuss the possible limitations of the atomic data and our understanding of the stellar atmospheres that might give rise to this inconsistency. In our earlier study, we obtained an unusually high ionization fraction for the ionized HeII present along the line of sight to the star. In the present paper, we obtain a better fit when we assume, as suggested by Space Telescope Imaging Spectrograph results, that this HeII resides in two separate components. When one of these is assigned to the local interstellar cloud, the implied He ionization fraction is consistent with measurements along other lines of sight. However, the resolving power and signal-to-noise available from the instrument configuration used in this first successful J-PEX flight are not sufficient to clearly identify and prove the existence of the two components.
Genes for spinocerebellar ataxia with blindness and deafness (SCABD/SCAR3, MIM# 271250 and SCABD2).
Guissart, Claire; Drouot, Nathalie; Oncel, Ibrahim; Leheup, Bruno; Gershoni-Barush, Ruth; Muller, Jean; Ferdinandusse, Sacha; Larrieu, Lise; Anheim, Mathieu; Arslan, Elif Acar; Claustres, Mireille; Tranchant, Christine; Topaloglu, Haluk; Koenig, Michel
2016-08-01
Ataxia is a symptom that is often associated with syndromic inherited diseases. We previously reported the linkage of a novel syndrome, ataxia with blindness and deafness (SCAR3/SCABD, OMIM# 271250), to chromosome 6p21-p23 by linkage mapping of an Arab Israeli consanguineous family. We have now identified by whole-exome sequencing a homozygous missense mutation in the Arab Israeli family in the SLC52A2 gene located in 8qter, therefore excluding linkage of this family to 6p. We confirmed the involvement of SLC52A2 by the identification of a second mutation in an independent family with an identical syndromic presentation, which we suggest to name SCABD2. SCABD2 is therefore allelic to Brown-Vialleto-Van Laere syndrome type 2 defined by prominent motoneuronopathy and deafness, and also caused by SLC52A2 mutations. In the course of this project, we identified a clinically similar family with a homozygous missense mutation in PEX6, which is located in 6p21. Therefore, despite false linkage in the initial family, SCABD1/SCAR3 is located in 6p21 and is caused by PEX6 mutations. Both SLC52A2 and PEX6 should be included in screening panels for the diagnosis of syndromic inherited ataxias, particularly as patients with mutations in SLC52A2 can be ameliorated by riboflavin supplementation.
Genes for spinocerebellar ataxia with blindness and deafness (SCABD/SCAR3, MIM# 271250 and SCABD2)
Guissart, Claire; Drouot, Nathalie; Oncel, Ibrahim; Leheup, Bruno; Gershoni-Barush, Ruth; Muller, Jean; Ferdinandusse, Sacha; Larrieu, Lise; Anheim, Mathieu; Arslan, Elif Acar; Claustres, Mireille; Tranchant, Christine; Topaloglu, Haluk; Koenig, Michel
2016-01-01
Ataxia is a symptom that is often associated with syndromic inherited diseases. We previously reported the linkage of a novel syndrome, ataxia with blindness and deafness (SCAR3/SCABD, OMIM# 271250), to chromosome 6p21–p23 by linkage mapping of an Arab Israeli consanguineous family. We have now identified by whole-exome sequencing a homozygous missense mutation in the Arab Israeli family in the SLC52A2 gene located in 8qter, therefore excluding linkage of this family to 6p. We confirmed the involvement of SLC52A2 by the identification of a second mutation in an independent family with an identical syndromic presentation, which we suggest to name SCABD2. SCABD2 is therefore allelic to Brown–Vialleto–Van Laere syndrome type 2 defined by prominent motoneuronopathy and deafness, and also caused by SLC52A2 mutations. In the course of this project, we identified a clinically similar family with a homozygous missense mutation in PEX6, which is located in 6p21. Therefore, despite false linkage in the initial family, SCABD1/SCAR3 is located in 6p21 and is caused by PEX6 mutations. Both SLC52A2 and PEX6 should be included in screening panels for the diagnosis of syndromic inherited ataxias, particularly as patients with mutations in SLC52A2 can be ameliorated by riboflavin supplementation. PMID:26669662
None
2017-12-09
Le DG H.Schopper prend congé de ses directeurs et collègues qui partent et remercie aussi les restants pour leur service; d'autres orateurs comme p.ex. Mons.Ullmann ainsi qu'un allemand prennent la parole.
Paskulin, D D; Cunha-Filho, J S L; Souza, C A B; Bortolini, M C; Hainaut, P; Ashton-Prolla, P
2012-01-01
p53 has a crucial role in human fertility by regulating the expression of leukemia inhibitory factor (LIF), a secreted cytokine critical for blastocyst implantation. To examine whether TP53 polymorphisms may be involved with in vitro fertilization (IVF) failure and endometriosis (END), we have assessed the associations between TP53 polymorphism in intron 2 (PIN2; G/C, intron 2), PIN3 (one (N, non-duplicated) or two (D, duplicated) repeats of a 16-bp motif, intron 3) and polymorphism in exon 4 (PEX4; C/G, p.P72R, exon 4) in 98 women with END and 115 women with post-IVF failure. In addition, 134 fertile women and 300 women unselected with respect to fertility-related features were assessed. TP53 polymorphisms and haplotypes were identified by amplification refractory mutation system polymerase chain reaction. TP53 PIN3 and PEX4 were associated with both END (P=0.042 and P=0.007, respectively) and IVF (P=0.004 and P=0.009, respectively) when compared with women both selected and unselected for fertility-related features. Haplotypes D-C and N-C were related to higher risk for END (P=0.002, P=0.001, respectively) and failure of IVF (P=0.018 and P=0.002, respectively) when compared with the Fertile group. These results support that specific TP53 haplotypes are associated with an increased risk of END-associated infertility and with post-IVF failure. PMID:23013791
Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.
2017-01-01
Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802
Ebrahim, Aqeel Khalil; Wadachi, Reiko; Suda, Hideaki
2007-04-01
The aim of this study was to evaluate the accuracy of five electronic apex locators (EALs) in determining the working length (WL) of teeth after removal of the root canal obturation materials. A total of 32 extracted straight, single-rooted teeth were used. The actual canal length (AL) was determined and the WL was established by subtracting 0.5 mm from the AL. The root canals were instrumented and divided into two groups. One group (n = 6) served as control, while the other group (n = 26) was the experimental group. In the experimental group, the root canals were obturated using vertically compacted gutta-percha with AH 26 sealer. In both groups, the access cavities were restored with a provisional restoration and stored for 15 days at 37 degrees C and 100% humidity. The root canal obturation material was removed, and the teeth were then mounted in an experimental apparatus. Five EALs were used: Dentaport ZX, ProPex, Foramatron D10, Apex NRG and Apit 7. For the electronic measurement of canal length, a size 25 K-file was used. During measurement, the canal was irrigated with 2.5% sodium hypochlorite. The difference (D) between the AL and the electronically determined length (EDL), AL-EDL, was calculated and recorded for each measurement. Data were analysed by two-way anova and Fisher's PLSD test. In both groups, statistically significant differences were found among the EALs (P < 0.01). In conclusion, the Dentaport ZX, ProPex and Foramatron D10 were more accurate than the other two EALs in determining the WL in teeth after removal of the root canal obturation materials. However, the Apex NRG and Apit 7 were also reliable for determination of the WL in the majority of the cases.
Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives
ERIC Educational Resources Information Center
Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.
2013-01-01
The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;…
PExFInS: An Integrative Post-GWAS Explorer for Functional Indels and SNPs
Cheng, Zhongshan; Chu, Hin; Fan, Yanhui; Li, Cun; Song, You-Qiang; Zhou, Jie; Yuen, Kwok-Yung
2015-01-01
Expression quantitative trait loci (eQTLs) mapping and linkage disequilibrium (LD) analysis have been widely employed to interpret findings of genome-wide association studies (GWAS). With the availability of deep sequencing data of 423 lymphoblastoid cell lines (LCLs) from six global populations and the microarray expression data, we performed eQTL analysis, identified more than 228 K SNP cis-eQTLs and 21 K indel cis-eQTLs and generated a LCL cis-eQTL database. We demonstrate that the percentages of population-shared and population-specific cis-eQTLs are comparable; while indel cis-eQTLs in the population-specific subsection make more contribution to gene expression variations than those in the population-shared subsection. We found cis-eQTLs, especially the population-shared cis-eQTLs are significantly enriched toward transcription start site. Moreover, the National Human Genome Research Institute cataloged GWAS SNPs are enriched for LCL cis-eQTLs. Specifically, 32.8% GWAS SNPs are LCL cis-eQTLs, among which 12.5% can be tagged by indel cis-eQTLs, suggesting the fundamental contribution of indel cis-eQTLs to GWAS association signals. To search for functional indels and SNPs tagging GWAS SNPs, a pipeline Post-GWAS Explorer for Functional Indels and SNPs (PExFInS) has been developed, integrating LD analysis, functional annotation from public databases, cis-eQTL mapping with our LCL cis-eQTL database and other published cis-eQTL datasets. PMID:26612672
ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaoxi, E-mail: xiaoxi.liu@uky.edu; Liu, Jingjing, E-mail: jingjing.liu0@gmail.com; Lester, Joshua D., E-mail: joshua.lester@uky.edu
2015-01-02
Highlights: • We examined the D2 localization and the proteome of D2-containing compartment in mouse adipose tissue. • We confirmed the presence of D2 on a subcellular compartment that has typical structure as a microperoxisome. • We demonstrated the scarcity of peroxisome markers on D2-containing compartment. • The D2-containing compartment may be a subpopulation of peroxisome in mouse adipose tissue. • Proteomic data suggests potential association between D2-containing compartment and mitochondria and ER. - Abstract: ATP-binding cassette transporter D2 (D2) is an ABC half transporter that is thought to promote the transport of very long-chain fatty acyl-CoAs into peroxisomes. Bothmore » D2 and peroxisomes increase during adipogenesis. Although peroxisomes are essential to both catabolic and anabolic lipid metabolism, their function, and that of D2, in adipose tissues remain largely unknown. Here, we investigated the D2 localization and the proteome of D2-containing organelles, in adipose tissue. Centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but deficient in peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with a dense matrix and a diameter of ∼200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment confirmed the scarcity of PEX19 and proteomic profiling revealed the presence of proteins associated with peroxisome, endoplasmic reticulum (ER), and mitochondria. D2 is localized to a distinct class of peroxisomes that lack many peroxisome proteins, and may associate physically with mitochondria and the ER.« less
Marchianti, Ancah Caesarina Novi; Arimura, Emi; Ushikai, Miharu; Horiuchi, Masahisa
2014-09-01
Exercise is effective for preventing the onset and development of type 2 diabetes mellitus (T2DM) in human cases; however, the effect of exercise on the pathophysiology using animal models of T2DM has not been fully evaluated. We applied voluntary exercise under pair-fed (P) conditions in db mice, an animal model of T2DM. Exercising (Ex) and sedentary (Se) mice were placed in a cage, equipped with a free or locked running wheel, for 4 weeks, respectively. The amount of food consumed by ad libitum-fed wild-type mice under the Se condition (ad-WT) was supplied to all mice, except ad libitum db mice (ad-db). Blood parameters and expression of the genes involved in nutrient metabolism were analyzed. PEx-db (pair-fed and exercising) mice showed significantly lower HbA1c, body weight and liver weight than PSe-db and ad-db mice. Decreased hepatic triglycerides in PEx-db mice corresponded to a lower expression of lipogenic enzyme genes in the liver. Moreover, PEx-db mice showed significantly lower plasma branched-chain amino acids (BCAA), arginine, proline, and tyrosine, in addition to increased skeletal muscle (SM) weight, than PSe-db and ad-db mice, in spite of little influence on the expression of the BCAA transaminase gene, in SM and WAT. We found that exercise under a food restriction condition decreases several amino acids, including BCAA, and may improve insulin sensitivity more than mere food restriction. We propose that the decreased concentration of blood amino acids may be a valuable marker evaluating the effects of exercise on diabetic conditions.
Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M
2016-01-01
This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345
Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara E F; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia C M; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M; Soares, Telma de J
2016-02-01
This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. © 2016 by the Society for Experimental Biology and Medicine.
NASA Astrophysics Data System (ADS)
Keith, D.; Dykema, J. A.; Keutsch, F. N.
2017-12-01
Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., < 1 kg of 0.3 µm radius CaCO3 particles) at can be injected; while, the propellers allow the gondola to move at speeds up to 3 m/sec relative to the local air mass driving the gondola back forth through the volume to measure properties of the perturbed air mass. This presentation will provide an overview of the experiment including (a) a systems engineering perspective from high-level scientific questions through instrument selection, mission design, and proposed operations and data analysis; (b) instruments, include current status of integration testing; (c) payload engineering including structure, power and mass budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.
Yoo, Youngchul; Park, Jong-Chan; Cho, Man-Ho; Yang, Jungil; Kim, Chi-Yeol; Jung, Ki-Hong; Jeon, Jong-Seong; An, Gynheung; Lee, Sang-Won
2018-01-01
Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae ( Xoo ), an agent of bacterial leaf blight of rice. The mutant (Δ rrsRLK ) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea . Δ rrsRLK showed significantly higher expression of OsPR1a , OsPR1b , OsLOX , RBBTI4 , and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H 2 O 2 ) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in Δ rrsRLK . These results suggest that the enhanced resistance in Δ rrsRLK is due to H 2 O 2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.
Building a Propulsion Experiment Project Management Environment
NASA Technical Reports Server (NTRS)
Keiser, Ken; Tanner, Steve; Hatcher, Danny; Graves, Sara
2004-01-01
What do you get when you cross rocket scientists with computer geeks? It is an interactive, distributed computing web of tools and services providing a more productive environment for propulsion research and development. The Rocket Engine Advancement Program 2 (REAP2) project involves researchers at several institutions collaborating on propulsion experiments and modeling. In an effort to facilitate these collaborations among researchers at different locations and with different specializations, researchers at the Information Technology and Systems Center,' University of Alabama in Huntsville, are creating a prototype web-based interactive information system in support of propulsion research. This system, to be based on experience gained in creating similar systems for NASA Earth science field experiment campaigns such as the Convection and Moisture Experiments (CAMEX), will assist in the planning and analysis of model and experiment results across REAP2 participants. The initial version of the Propulsion Experiment Project Management Environment (PExPM) consists of a controlled-access web portal facilitating the drafting and sharing of working documents and publications. Interactive tools for building and searching an annotated bibliography of publications related to REAP2 research topics have been created to help organize and maintain the results of literature searches. Also work is underway, with some initial prototypes in place, for interactive project management tools allowing project managers to schedule experiment activities, track status and report on results. This paper describes current successes, plans, and expected challenges for this project.
None
2017-12-09
Le Prof.Leprince-Ringuet, chercheur sur le plan scientifique, artistique et humain, parle de la remise en question des hommes et la remise en question scientifique fondamentale ou exemplaire- plusieurs personnes prennent la parole p.ex Jeanmairet, Adam, Gregory. Le Prof.Gregory clot la soirée en remerciant le Prof.Leprince-Ringuet
Electronic working length determination in primary teeth by ProPex and Digital Signal Processing.
Nelson-Filho, Paulo; Lucisano, Marcela Pacífico; Leonardo, Mário Roberto; da Silva, Raquel Assed Bezerra; da Silva, Léa Assed Bezerra
2010-12-01
The purpose of this study was to evaluate the accuracy of electronic apex locators Digital Signal Processing (DSP) and ProPex, for root canal length determination in primary teeth. Fifteen primary molars (a total of 34 root canals) were divided into two groups: Group I - without physiological resorption (n = 16); and Group II - with physiological resorption (n = 18). The length of each canal was measured by introducing a file until its tip was visible and then it was retracted 1 mm. For electronic measurement, the devices were set to 1 mm short of the apical resorption. The data were analysed statistically using the intraclass correlation coefficient (ICC). Results showed that the ICC was high for both electronic apex locators in all situations - with (ICC: DSP = 0.82 and Propex = 0.89) or without resorption (ICC: DSP = 0.92 and Propex = 0.90). Both apex locators were extremely accurate in determining the working length in primary teeth, both with or without physiological resorption. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.
The effect of material choice on biofilm formation in a model warm water distribution system.
Waines, Paul L; Moate, Roy; Moody, A John; Allen, Mike; Bradley, Graham
2011-11-01
Water distribution systems (WDS) are composed of a variety of materials and may harbour potential pathogens within surface-attached microbial biofilms. Biofilm formation on four plumbing materials, viz. copper, stainless steel 316 (SS316), ethylene propylene diene monomer (EPDM) and cross-linked polyethylene (PEX), was investigated using scanning electron microscope (SEM)/confocal microscopy, ATP-/culture-based analysis, and molecular analysis. Material 'inserts' were incorporated into a mains water fed, model WDS. All materials supported biofilm growth to various degrees. After 84 days, copper and SS316 showed no significant overall differences in terms of the level of biofilm formation observed, whilst PEX supported a significantly higher level of biofilm. EPDM exhibited gross contamination by a complex, multispecies biofilm, at a level significantly higher than was observed on the other materials, regardless of the analytical method used. PCR-DGGE analysis showed clear differences in the composition of the biofilm community on all materials after 84 days. The primary conclusion of this study has been to identify EPDM as a potentially unsuitable material for use as a major component in WDS.
It's Time For A New EUV Mission
NASA Astrophysics Data System (ADS)
Kowalski, Michael Paul; Wood, K. S.; Barstow, M. A.; Cruddace, R. G.
2010-01-01
The J-PEX high-resolution EUV spectrometer has made a breakthrough in capability with an effective area of 7 cm2 (220-245 Å) and resolving power of 4000, which exceed EUVE by factors of 7 and 20 respectively, and cover a range beyond the 170-Å cutoff of the Chandra LETG. The EUV includes critical spectral features containing diagnostic information often not available at other wavelengths (e.g., He II Ly series), and the bulk of radiation from million degree plasmas is emitted in the EUV. Such plasmas are ubiquitous, and examples include the atmospheres of white dwarfs; accretion phenomena in young stars, CVs and AGN; stellar coronae; and the ISM of our own galaxy and of others. However, sensitive EUV spectroscopy of high resolving power is required to resolve source spectral lines and edges unambiguously, to identify features produced by the intervening ISM, and to measure line profiles and Doppler shifts. This allows exploitation of the full range of plasma diagnostic techniques developed in laboratory and solar physics. J-PEX has flown twice on NASA sounding rockets. In 2001 we observed the isolated white dwarf G191-B2B and detected both ISM and photospheric lines. In 2008 we successfully observed the binary white dwarf Feige 24, but observation time is severely limited with sounding rockets. NASA has approved no new EUV mission, but it is time for one. Here we describe the scientific case for high-resolution EUV spectroscopy, summarize the technology that makes such measurements practical, and present a concept for a 3-month orbital mission, in which J-PEX is modified for a low-cost orbital mission to acquire sensitive high-resolution spectra for 30 white dwarfs, making an important contribution to the study of white dwarf evolution and hence the chemical balance of the Galaxy, and to the understanding of structure in the LISM.
Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N
2017-04-01
Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m 2 ; n = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes ( PEXs ) responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1- 14 C]palmitic acid and [1- 14 C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, 1 ) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated ( P < 0.05), 2 ) PGC-1α , PMP70 , key PEXs , and peroxisomal β-oxidation mRNA expression levels were significantly upregulated ( P < 0.05), and 3 ) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed ( P < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells. Copyright © 2017 the American Physiological Society.
Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang
2016-02-15
With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. Copyright © 2015 Elsevier B.V. All rights reserved.
Zand, Ladan; Muriithi, Angela; Nelsen, Eric; Franco, Pablo M; Greene, Eddie L; Qian, Qi; El-Zoghby, Ziad M
2012-12-01
Anion gap metabolic acidosis (AGMA) is commonly encountered in medical practice. Acetaminophen-induced AGMA is, however, not widely recognized. We report 2 cases of high anion gap metabolic acidosis secondary to 5-oxoproline accumulation resulting from acetaminophen consumption: the first case caused by acute one-time ingestion of large quantities of acetaminophen and the second case caused by chronic repeated ingestion in a patient with chronic liver disease. Recognition of this entity facilitated timely diagnosis and effective treatment. Given acetaminophen is commonly used over the counter medication, increased recognition of this adverse effect is of important clinical significance.
Lim, Cynthia C; Tung, Yu Tzu; Tan, Ban Hock; Lee, Puay Hoon; Mok, Irene Yj; Oon, Lynette; Chan, Kwai Peng; Choo, Jason Cj
2017-05-08
Cytomegalovirus (CMV) infections are associated with morbidity and mortality. We aimed to describe the epidemiology, risk factors and outcomes of CMV infection among patients with glomerulonephritis (GN) who received potent immunosuppressants (IS). Single-centre retrospective study of adults with biopsy-proven GN prescribed methylprednisolone (MP), cyclophosphamide (CYC) or rituximab (RTX). Primary endpoint was CMV infection defined by significant CMV antigenemia (>10 positive cells in 10 6 cells) or viremia (>2000 copies/ml). Death was related to CMV if CMV infection occurred within the same hospitalisation as death. Ninety-four patients were studied. CYC was prescribed in 65% and MP in 71% of the cohort. Only 2 patients received RTX and 15 patients received plasma exchanges (PEX). Median follow up was 31.9 (IQR: 13.7, 53.6) months. CMV infection occurred in 13 patients (13.8%) at 1.3 (0.6, 3.0) months from biopsy. Patients with CMV infection had higher serum creatinine [404 (272, 619) vs. 159 (93, 317) µmol/L, p < 0.001] and greater proteinuria [UPCR 7.5, (4.8, 11.8) vs. 4.2 (2.3, 8.4) g/g, p = 0.02] than those who did not have CMV infection. Also, more patients received CYC (92% vs. 60%, p = 0.03), RTX (15% vs. 0, p = 0.02) and PEX (38% vs. 12%, p = 0.01) than those who did not have CMV infection. Two patients had CMV-related deaths. CMV infection is common in GN patients receiving potent IS. Surveillance and possibly anti-viral prophylaxis should be considered for high-risk patients. This article is protected by copyright. All rights reserved.
Effects of pomegranate extract on blood flow and running time to exhaustion.
Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L
2014-09-01
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
Bararunyeretse, Prudence; Ji, Hongbing; Yao, Jun
2017-06-01
The toxicity of nickel and three of its main collectors, sodium isopropyl xanthate (SIPX), sodium ethyl xanthate (SEX), and potassium ethyl xanthate (PEX) to soil microbial activity, was analyzed, individually and as a binary combination of nickel and each of the collectors. The investigation was performed through the microcalorimetric analysis method. For the single chemicals, all power-time curves exhibited lag, exponential, stationary, and death phases of microbial growth. Different parameters exhibited a significant adverse effect of the analyzed chemicals on soil microbial activity, with a positive relationship between the inhibitory ratio and the chemical dose (p < 0.05 or p < 0.01). A peak power reduction level of 24.23% was noted for 50 μg g -1 soil in the case of Ni while for the mineral collectors, only 5 μg g -1 soil and 50 μg g -1 soil induced a peak power reduction level of over 35 and 50%, respectively, in general. The inhibitory ratio ranged in the following order: PEX > SEX > SIPX > Ni. Similar behavior was observed with the mixture toxicity whose inhibitory ratio substantially decreased (maximum decrease of 38.35%) and slightly increased (maximum increase of 15.34%), in comparison with the single toxicity of mineral collectors and nickel, respectively. The inhibitory ratio of the mixture toxicity was positively correlated (p < 0.05 or p < 0.01) with the total dose of the mixture. In general, the lesser and higher toxic effects are those of mixtures containing SIPX and PEX, respectively.
A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity.
Kassmann, Celia M; Quintes, Susanne; Rietdorf, Jens; Möbius, Wiebke; Sereda, Michael Werner; Nientiedt, Tobias; Saher, Gesine; Baes, Myriam; Nave, Klaus-Armin
2011-07-21
Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Exhaled particles as markers of small airway inflammation in subjects with asthma.
Larsson, Per; Lärstad, Mona; Bake, Björn; Hammar, Oscar; Bredberg, Anna; Almstrand, Ann-Charlotte; Mirgorodskaya, Ekaterina; Olin, Anna-Carin
2017-09-01
Exhaled breath contains suspended particles of respiratory tract lining fluid from the small airways. The particles are formed when closed airways open during inhalation. We have developed a method called Particles in Exhaled air (PExA ® ) to measure and sample these particles in the exhaled aerosol. Here, we use the PExA ® method to study the effects of birch pollen exposure on the small airways of individuals with asthma and birch pollen allergy. We hypothesized that birch pollen-induced inflammation could change the concentrations of surfactant protein A and albumin in the respiratory tract lining fluid of the small airways and influence the amount of exhaled particles. The amount of exhaled particles was reduced after birch pollen exposure in subjects with asthma and birch pollen allergy, but no significant effect on the concentrations of surfactant protein A and albumin in exhaled particles was found. The reduction in the number of exhaled particles may be due to inflammation in the small airways, which would reduce their diameter and potentially reduce the number of small airways that open and close during inhalation and exhalation. © 2015 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd.
65th birthday Jack Steinberger
None
2017-12-09
Laudatio pour Jack Steinberger né le 25 mai 1921, à l'occasion de son 65me anniversaire et sa retraite officielle, pour sa précieuse collaboration au Cern. Néanmoins son principal activité continuera comme avant dans sa recherche au Cern. Plusieurs orateurs prennent la parole (p.ex. E.Picasso) pour le féliciter et lui rendre hommage
Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Michael J.; Gaidamakova, E; Matrosova, V
2004-11-05
Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.
Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles.
Nie, Shufang; Zhang, Jia; Martinez-Zaguilan, Raul; Sennoune, Souad; Hossen, Md Nazir; Lichtenstein, Alice H; Cao, Jun; Meyerrose, Gary E; Paone, Ralph; Soontrapa, Suthipong; Fan, Zhaoyang; Wang, Shu
2015-12-28
Current approaches to the diagnosis and therapy of atherosclerosis cannot target lesion-determinant cells in the artery wall. Intimal macrophage infiltration promotes atherosclerotic lesion development by facilitating the accumulation of oxidized low-density lipoproteins (oxLDL) and increasing inflammatory responses. The presence of these cells is positively associated with lesion progression, severity and destabilization. Hence, they are an important diagnostic and therapeutic target. The objective of this study was to noninvasively assess the distribution and accumulation of intimal macrophages using CD36-targeted nanovesicles. Soy phosphatidylcholine was used to synthesize liposome-like nanovesicles. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine was incorporated on their surface to target the CD36 receptor. All in vitro data demonstrate that these targeted nanovesicles had a high binding affinity for the oxLDL binding site of the CD36 receptor and participated in CD36-mediated recognition and uptake of nanovesicles by macrophages. Intravenous administration into LDL receptor null mice of targeted compared to non-targeted nanovesicles resulted in higher uptake in aortic lesions. The nanovesicles co-localized with macrophages and their CD36 receptors in aortic lesions. This molecular target approach may facilitate the in vivo noninvasive imaging of atherosclerotic lesions in terms of intimal macrophage accumulation and distribution and disclose lesion features related to inflammation and possibly vulnerability thereby facilitate early lesion detection and targeted delivery of therapeutic compounds to intimal macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.
Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues
Singh, Dhirender; McMillan, JoEllyn M; Liu, Xin-Ming; Vishwasrao, Hemant M; Kabanov, Alexander V; Sokolsky-Papkov, Marina; Gendelman, Howard E
2015-01-01
Magnetic nanoparticles (MNPs) accumulate at disease sites with the aid of magnetic fields; biodegradable MNPs can be designed to facilitate drug delivery, influence disease diagnostics, facilitate tissue regeneration and permit protein purification. Because of their limited toxicity, MNPs are widely used in theranostics, simultaneously facilitating diagnostics and therapeutics. To realize therapeutic end points, iron oxide nanoparticle cores (5–30 nm) are encapsulated in a biocompatible polymer shell with drug cargos. Although limited, the toxic potential of MNPs parallels magnetite composition, along with shape, size and surface chemistry. Clearance is hastened by the reticuloendothelial system. To surmount translational barriers, the crystal structure, particle surface and magnetic properties of MNPs need to be optimized. With this in mind, we provide a comprehensive evaluation of advancements in MNP synthesis, functionalization and design, with an eye towards bench-to-bedside translation. PMID:24646020
A Physical Education Teacher's Journey: From District Coordinator to Facilitator
ERIC Educational Resources Information Center
Hunuk, Deniz
2017-01-01
Background: Despite the accumulating evidence highlighting the significant roles of an effective facilitator and appropriate pedagogies that a facilitator employs in shaping the professional learning environment, there is a paucity of research that explores how facilitators learn to facilitate. Purpose: The overall purpose of this study was to…
Human Exploration on the Moon, Mars and NEOs: PEX.2/ICEUM12B
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2016-07-01
The session COSPAR-16-PEX.2: "Human Exploration on the Moon, Mars and NEOs", co-sponsored by Commissions B, F will include solicited and contributed talks and poster/interactive presentations. It will also be part of the 12th International Conference on Exploration and Utilisation of the Moon ICEUM12B from the ILEWG ICEUM series started in 1994. It will address various themes and COSPAR communities: - Sciences (of, on, from) the Moon enabled by humans - Research from cislunar and libration points - From robotic villages to international lunar bases - Research from Mars & NEOs outposts - Humans to Phobos/Deimos, Mars and NEOS - Challenges and preparatory technologies, field research operations - Human and robotic partnerships and precursor missions - Resource utilisation, life support and sustainable exploration - Stakeholders for human exploration One half-day session will be dedicated to a workshop format and meetings/reports of task groups: Science, Technology, Agencies, Robotic village, Human bases, Society & Commerce, Outreach, Young Explorers. COSPAR has provided through Commissions, Panels and Working Groups (such as ILEWG, IMEWG) an international forum for supporting and promoting the robotic and human exploration of the Moon, Mars and NEOS. Proposed sponsors : ILEWG, ISECG, IKI, ESA, NASA, DLR, CNES, ASI, UKSA, JAXA, ISRO, SRON, CNSA, SSERVI, IAF, IAA, Lockheed Martin, Google Lunar X prize, UNOOSA
Iontophoresis-targeted, follicular delivery of minoxidil sulfate for the treatment of alopecia.
Gelfuso, Guilherme Martins; Gratieri, Tais; Delgado-Charro, M Begoña; Guy, Richard H; Vianna Lopez, Renata Fonseca
2013-05-01
Although minoxidil (MX) is a drug known to stimulate hair growth, the treatment of androgenic alopecia could be improved by delivery strategies that would favor drug accumulation into the hair follicles. This work investigated in vitro the potential of iontophoresis to achieve this objective using MX sulfate (MXS), a more water-soluble derivative of MX. Passive delivery of MXS was first determined from an ethanol-water solution and from a thermosensitive gel. The latter formulation resulted in greater accumulation of MXS in the stratum corneum (skin's outermost layer) and hair follicles and an overall decrease in absorption through the skin. Anodal iontophoresis of MXS from the same gel formulation was then investigated at pH 3.5 and pH 5.5. Compared with passive delivery, iontophoresis increased the amount of drug reaching the follicular infundibula from 120 to 600 ng per follicle. In addition, drug recovery from follicular casts was threefold higher following iontophoresis at pH 5.5 compared with that at pH 3.5. Preliminary in vivo experiments in rats confirmed that iontophoretic delivery of MXS facilitated drug accumulation in hair follicles. Overall, therefore, iontophoresis successfully and significantly enhanced follicular delivery of MX suggesting a useful opportunity for the improved treatment of alopecia. Copyright © 2013 Wiley Periodicals, Inc.
Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pospiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred
2018-02-01
Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62-0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. © The Author(s) 2017. Published by Oxford University Press.
Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pośpiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred
2018-01-01
Abstract Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. PMID:29220522
Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian Mustard1
de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman
1999-01-01
Indian mustard (Brassica juncea L.) accumulates high tissue Se concentrations and volatilizes Se in relatively nontoxic forms, such as dimethylselenide. This study showed that the presence of bacteria in the rhizosphere of Indian mustard was necessary to achieve the best rates of plant Se accumulation and volatilization of selenate. Experiments with the antibiotic ampicillin showed that bacteria facilitated 35% of plant Se volatilization and 70% of plant tissue accumulation. These results were confirmed by inoculating axenic plants with rhizosphere bacteria. Compared with axenic controls, plants inoculated with rhizosphere bacteria had 5-fold higher Se concentrations in roots (the site of volatilization) and 4-fold higher rates of Se volatilization. Plants with bacteria contained a heat-labile compound in their root exudate; when this compound was added to the rhizosphere of axenic plants, Se accumulation in plant tissues increased. Plants with bacteria had an increased root surface area compared with axenic plants; the increased area was unlikely to have caused their increased tissue Se accumulation because they did not accumulate more Se when supplied with selenite or selenomethionine. Rhizosphere bacteria also possibly increased plant Se volatilization because they enabled plants to overcome a rate-limiting step in the Se volatilization pathway, i.e. Se accumulation in plant tissues. PMID:9952452
Clinical Investigation Program Report.
1981-10-01
Accumulative Periodic Review C t -None ........ C -- 5" -- - s :-T Study Objective: Gastroesophageal reflux disease (GERD) refers to a clinT-aTWdF-sv i66...13 The Use of Metoclopramide to Facilitate Emergent Upper Intestinal Endoscopy. (0) 1980 G-80-14 Daytime Gastroesophageal Reflux : Characterization and...G-80-14 Status: Terminated Title: Daytime Gastroesophageal Reflux : Characterization and Specific Th erapy. Start Date: 10 Jun 80 Est Comp Date
Fluoxetine a novel anti-hepatitis C virus agent via ROS-, JNK-, and PPARβ/γ-dependent pathways.
Young, Kung-Chia; Bai, Chyi-Huey; Su, Hui-Chen; Tsai, Pei-Ju; Pu, Chien-Yu; Liao, Chao-Sheng; Lin, Yu-Min; Lai, Hsin-Wen; Chong, Lee-Won; Tsai, Yau-Sheng; Tsao, Chiung-Wen
2014-10-01
More than 20% of chronic hepatitis C (CHC) patients receiving interferon-alpha (IFN-α)-based anti-hepatitis C virus (HCV) therapy experienced significant depression, which was relieved by treatment with fluoxetine. However, whether and how fluoxetine affected directly the anti-HCV therapy remained unclear. Here, we demonstrated that fluoxetine inhibited HCV infection and blocked the production of reactive oxygen species (ROS) and lipid accumulation in Huh7.5 cells. Fluoxetine facilitated the IFN-α-mediated antiviral actions via activations of signal transducer and activator of transcription (STAT)-1 and c-Jun amino-terminal kinases (JNK). Alternatively, fluoxetine elevated peroxisome proliferator-activated receptor (PPAR) response element activity under HCV infection. The inhibitory effects of fluoxetine on HCV infection and lipid accumulation, but not production of ROS, were partially reversed by the PPAR-β, -γ, and JNK antagonists. Furthermore, fluoxetine intervention to the IFN-α-2b regimen facilitated to reduce HCV titer and alanine transaminase level for CHC patients. Therefore, fluoxetine intervention to the IFN-α-2b regimen improved the efficacy of anti-HCV treatment, which might be related to blockades of ROS generation and lipid accumulation and activation of host antiviral JNK/STAT-1 and PPARβ/γ signals. Copyright © 2014 Elsevier B.V. All rights reserved.
Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko
2016-09-01
To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM. Copyright © 2016 Elsevier Inc. All rights reserved.
Raas-Rothschild, Annick; Wanders, Ronald J A; Mooijer, Petra A W; Gootjes, Jeannette; Waterham, Hans R; Gutman, Alisa; Suzuki, Yasuyuki; Shimozawa, Nobuyuki; Kondo, Naomi; Eshel, Gideon; Espeel, Marc; Roels, Frank; Korman, Stanley H
2002-04-01
Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP diagnosed as USH, presented with sensorineural deafness, RP, dysmorphism, developmental delay, hepatomegaly, and hypsarrhythmia and died at age 17 mo. The infant was shown to have a PBD, on the basis of elevated plasma levels of very-long- and branched-chain fatty acids (VLCFAs and BCFAs), deficiency of multiple peroxisomal functions in fibroblasts, and complete absence of peroxisomes in fibroblasts and liver. Surprisingly, both parents had elevated plasma levels of VLCFAs and BCFAs. Fibroblast studies confirmed that both parents had a PBD. The parents' milder phenotypes correlated with relatively mild peroxisomal biochemical dysfunction and with catalase immunofluorescence microscopy demonstrating mosaicism and temperature sensitivity in fibroblasts. The infant and both of his parents belonged to complementation group C. PEX6 gene sequencing revealed mutations on both alleles, in the infant and in his parents. This unique family is the first report of a PBD with which the parents are themselves affected individuals rather than asymptomatic carriers. Because of considerable overlap between USH and milder PBD phenotypes, individuals suspected to have USH should be screened for peroxisomal dysfunction.
Lenz, B; Braendli-Baiocco, A; Engelhardt, J; Fant, P; Fischer, H; Francke, S; Fukuda, R; Gröters, S; Harada, T; Harleman, H; Kaufmann, W; Kustermann, S; Nolte, T; Palazzi, X; Pohlmeyer-Esch, G; Popp, A; Romeike, A; Schulte, A; Lima, B Silva; Tomlinson, L; Willard, J; Wood, C E; Yoshida, M
2018-02-01
Lysosomes have a central role in cellular catabolism, trafficking, and processing of foreign particles. Accumulation of endogenous and exogenous materials in lysosomes represents a common finding in nonclinical toxicity studies. Histologically, these accumulations often lack distinctive features indicative of lysosomal or cellular dysfunction, making it difficult to consistently interpret and assign adverse dose levels. To help address this issue, the European Society of Toxicologic Pathology organized a workshop where representative types of lysosomal accumulation induced by pharmaceuticals and environmental chemicals were presented and discussed. The expert working group agreed that the diversity of lysosomal accumulations requires a case-by-case weight-of-evidence approach and outlined several factors to consider in the adversity assessment, including location and type of cell affected, lysosomal contents, severity of the accumulation, and related pathological effects as evidence of cellular or organ dysfunction. Lysosomal accumulations associated with cytotoxicity, inflammation, or fibrosis were generally considered to be adverse, while those found in isolation (without morphologic or functional consequences) were not. Workshop examples highlighted the importance of thoroughly characterizing the biological context of lysosomal effects, including mechanistic data and functional in vitro readouts if available. The information provided here should facilitate greater consistency and transparency in the interpretation of lysosomal effects.
Elevated CO2 facilitates C and N accumulation in a rice paddy ecosystem.
Guo, Jia; Zhang, Mingqian; Wang, Xiaowen; Zhang, Weijian
2015-03-01
Elevated CO2 can stimulate wetland carbon (C) and nitrogen (N) exports through gaseous and dissolved pathways, however, the consequent influences on the C and N pools are still not fully known. Therefore, we set up a free-air CO2 enrichment experiment in a paddy field in Eastern China. After five year fumigation, we studied C and N in the plant-water-soil system. The results showed: (1) elevated CO2 stimulated rice aboveground biomass and N accumulations by 19.1% and 12.5%, respectively. (2) Elevated CO2 significantly increased paddy soil TOC and TN contents by 12.5% and 15.5%, respectively in the 0-15 cm layer, and 22.7% and 26.0% in the 15-30 cm soil layer. (3) Averaged across the rice growing period, elevated CO2 greatly increased TOC and TN contents in the surface water by 7.6% and 11.4%, respectively. (4) The TOC/TN ratio and natural δ15N value in the surface soil showed a decreasing trend under elevated CO2. The above results indicate that elevated CO2 can benefit C and N accumulation in paddy fields. Given the similarity between the paddies and natural wetlands, our results also suggest a great potential for long-term C and N accumulation in natural wetlands under future climate patterns. Copyright © 2015. Published by Elsevier B.V.
Zhao, Xuebing; Peng, Feng; Du, Wei; Liu, Canming; Liu, Dehua
2012-08-01
Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.
Göschl, Simone; Varbanov, Hristo P; Theiner, Sarah; Jakupec, Michael A; Galanski, Markus; Keppler, Bernhard K
2016-07-01
The current study aims to elucidate the possible reasons for the significantly different pharmacological behavior of platinum(IV) complexes with cisplatin-, carboplatin- or nedaplatin-like cores and how this difference can be related to their main physicochemical properties. Chlorido-containing complexes are reduced fast (within hours) by ascorbate and are able to unwind plasmid DNA in the presence of ascorbate, while their tri- and tetracarboxylato analogs are generally inert under the same conditions. Comparison of the lipophilicity, cellular accumulation and cytotoxicity of the investigated platinum compounds revealed the necessity to define new structure-property/activity relationships (SPRs and SARs). The higher activity and improved accumulation of platinum(IV) complexes bearing Cl(-) in equatorial position cannot only be attributed to passive diffusion facilitated by their lipophilicity. Therefore, further platinum accumulation experiments under conditions where active/facilitated transport mechanisms are suppressed were performed. Under hypothermic conditions (4°C), accumulation of dichloridoplatinum(IV) complexes is reduced down to 10% of the amount determined at 37°C. These findings suggest the involvement of active and/or facilitated transport in cellular uptake of platinum(IV) complexes with a cisplatin-like core. Studies with ATP depletion mediated by oligomycin and low glucose partially confirmed these observations, but their feasibility was severely limited in the adherent cell culture setting. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Junting; Zhang, Xiaoye; Dong, Yunsheng; Wang, Yaqiang; Liu, Cheng; Wang, Jizhi; Zhang, Yangmei; Che, Haochi
2018-01-01
In January 2013, February 2014, December 2015 and December 2016 to 10 January 2017, 12 persistent heavy aerosol pollution episodes (HPEs) occurred in Beijing, which received special attention from the public. During the HPEs, the precise cause of PM2.5 explosive growth (mass concentration at least doubled in several hours to 10 h) is uncertain. Here, we analyzed and estimated relative contributions of boundary-layer meteorological factors to such growth, using ground and vertical meteorological data. Beijing HPEs are generally characterized by the transport stage (TS), whose aerosol pollution formation is primarily caused by pollutants transported from the south of Beijing, and the cumulative stage (CS), in which the cumulative explosive growth of PM2.5 mass is dominated by stable atmospheric stratification characteristics of southerly slight or calm winds, near-ground anomalous inversion, and moisture accumulation. During the CSs, observed southerly weak winds facilitate local pollutant accumulation by minimizing horizontal pollutant diffusion. Established by TSs, elevated PM2.5 levels scatter more solar radiation back to space to reduce near-ground temperature, which very likely causes anomalous inversion. This surface cooling by PM2.5 decreases near-ground saturation vapor pressure and increases relative humidity significantly; the inversion subsequently reduces vertical turbulent diffusion and boundary-layer height to trap pollutants and accumulate water vapor. Appreciable near-ground moisture accumulation (relative humidity > 80 %) would further enhance aerosol hygroscopic growth and accelerate liquid-phase and heterogeneous reactions, in which incompletely quantified chemical mechanisms need more investigation. The positive meteorological feedback noted on PM2.5 mass explains over 70 % of cumulative explosive growth.
Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.
Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C
2010-09-30
Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
Neuhaus, Christine; Eisenberger, Tobias; Decker, Christian; Nagl, Sandra; Blank, Cornelia; Pfister, Markus; Kennerknecht, Ingo; Müller-Hofstede, Cornelie; Charbel Issa, Peter; Heller, Raoul; Beck, Bodo; Rüther, Klaus; Mitter, Diana; Rohrschneider, Klaus; Steinhauer, Ute; Korbmacher, Heike M; Huhle, Dagmar; Elsayed, Solaf M; Taha, Hesham M; Baig, Shahid M; Stöhr, Heidi; Preising, Markus; Markus, Susanne; Moeller, Fabian; Lorenz, Birgit; Nagel-Wolfrum, Kerstin; Khan, Arif O; Bolz, Hanno J
2017-09-01
Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3 , genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.
Xin, Xiaodong; He, Junguo; Li, Lin; Qiu, Wei
2018-02-01
This study investigated acidogenic and microbiological perspectives in the anaerobic fermentation (AF) of waste activated sludge (WAS) pre-hydrolyzed by enzymes catalysis. The enzymes catalysis boosted WAS biodegradability dramatically with nearly 8500 mg/L soluble chemical oxygen demand (SCOD) increase just within 4 h. The volatile fatty acids (VFAs) in the acidogenesis were accumulated effectively with over 3200 mg COD/L in 12 d, which reached 0.687 kWh/kg VSS electricity conversion efficiency (2.5 times higher than the control test). The fermentation process favored the compression of fermentative sludge with the distribution spread index (DSI) rising. The core populations of bacteria and archaea shifting enlarged the dissimilarity of communities at different fermentation stages. Increase of community diversity contributed to VFAs accumulation stability. Moreover, the intermediate bacterial community evenness favored VFAs accumulation potentially. The enzymes catalysis might be a promising solution for strengthening VFAs accumulation in the WAS fermentation with boosting the electricity conversion potential. Copyright © 2017 Elsevier Ltd. All rights reserved.
Subjective Accounts of the Turning Points that Facilitate Desistance From Intimate Partner Violence.
Walker, Kate; Bowen, Erica; Brown, Sarah; Sleath, Emma
2017-03-01
The transition from persistence to desistance in male perpetrators of intimate partner violence (IPV) is an understudied phenomenon. This article examines the factors that initiate and facilitate primary desistance from IPV. The narratives of 22 male perpetrators of IPV (13 desisters and 9 persisters), 7 female survivors, and 9 programme (IPV interventions) facilitators, in England, were analysed using thematic analysis. In their accounts, the participants described how the change from persister to desister did not happen as a result of discrete unique incidents but instead occurred through a number of catalysts or stimuli of change. These triggers were experienced gradually and accumulated over time in number and in type. In particular, Negative consequences of violence and Negative emotional responses needed to accumulate so that the Point of resolve: Autonomous decision to change was finally realised. This process facilitated and initiated the path of change and thus primary desistance from IPV.
von Baeyer, Hans
2002-08-01
Current reimbursement policy of health insurance for therapeutic plasmapheresis requires proof of efficacy using the concept of evidence-based medicine. The aim of this paper is to review the outcome of plasmapheresis used to treat thrombotic microangiopathy (TMA)-associated syndromes in the last decade to provide scientific evidence to back up reimbursement applications. The strength of evidence of each reviewed study was assessed using the five levels of evidence criteria as defined by the American Society of Hematology in 1996 for assessment of the treatment of immune thrombocytopenia. The level Experimental indication was added for situations where only case reports or small series supported by pathophysiological reasoning are available. The definitions of evidence used in this paper are as follows: Level I, randomized clinical trial with low rates of error (p < 0.01); Level II, randomized clinical trial with high rates of error (p < 0.05); Level III, nonrandomized studies with concurrent control group; Level IV, nonrandomized studies with historical control group; Level V, case series without a control group or expert opinion; and Experimental, case reports and pathophysiological reasoning. The results of this analysis based on the published data is summarized as follows: The indication of plasmapheresis is assigned to Level IV evidence for thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS); cancer/chemotherapy-associated TTP/HUS is assigned to Level V evidence; and TTP/HUS refractory to standard plasma exchange and post-bone marrow transplantation TTP/HUS are assigned to Experimental indication. For both subsets, protein A immunoadsorption is reportedly successful. The other TMA-associated syndromes, hemolysis elevated liver enzymes low platelets and HUS in early childhood, are no indication of plasmapheresis. Two randomized clinical trials were performed in order to demonstrate the superiority of plasma exchange/fresh frozen plasma (PEX/FFP) over plasma transfusion in the management of TTP/HUS. The results prove the greater clinical success of the latter type of plasma administration. Standard PEX/FFP has reduced the mortality of TTP/HUS from 94.5% to 13%.
[Supply medicinal products improvement in outpatient care in a hospital pharmacy service].
Santiago Pérez, A; Peña Pedrosa, J A; Alguacil Pau, A I; Pérez Morales, A; Molina Muñoz, P; Benítez Giménez, M T
Pharmaceutical care to outpatients is currently one of the main occupations of hospital pharmacy services (PEX). There are several questionnaires to measure the satisfaction of the PEX of a pharmacy service, and the results of these questionnaires can generate improvement actions that result in satisfaction. To verify if a satisfaction questionnaire for outpatients is valid for the generation of improvements in the care provided, and if after its implementation, the same questionnaire is able to detect changes in satisfaction. Prospective study of a single center carried out in a tertiary hospital in 2015 and 2016. A questionnaire previously validated with 16 Likert-type items was used. Demographic and classification data were collected. A descriptive analysis was performed and the internal consistency was calculated using the Cronbach's α value. A total of 258 questionnaires were collected in 2015 and 493 in 2016. There were no differences in the baseline characteristics of the patients and users of the service. The items with the lowest satisfaction scores in 2015 (comfort of the waiting room, dispensing privacy, drug pick-up time and medication pick-up time) guided the improvement actions to be implemented. In 2016 there was an improvement in the waiting time until collection in 12.3% (p = 0.002); in the comfort of the waiting room 4.9% (p = 0.304); business hours for medication collection, 10.7% (p = 0.013); and in the confidentiality of the dispensation 4% (p = 0.292). The remaining scores fluctuated minimally, with no statistical significance at all. A 5.1% improvement in overall satisfaction was found (p < 0.001). Satisfaction values obtained as a whole were high. The satisfaction questionnaire is a valid instrument for generating actions to improve the care received in an outpatient unit of a pharmacy service. This same questionnaire is a tool to monitor the changes implemented to improve the care received. Copyright © 2018 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.
Cuende, J; Moreno, S; Bolaños, J P; Almeida, A
2008-05-22
In neuroblastoma cells, retinoic acid induces cell cycle arrest and differentiation through degradation of the F-box protein, Skp2, and stabilization of cyclin-dependent kinase inhibitor, p27. However, the mechanism responsible for retinoic acid-mediated Skp2 destabilization is unknown. Since Skp2 is degraded by anaphase-promoting complex (APC)(Cdh1), here we studied whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1. We found that retinoic acid induced the nuclear accumulation of Cdh1 that paralleled Skp2 destabilization and p27 accumulation. The mRNA and protein abundance of Rae1-a nuclear export factor that limits APC(Cdh1) activity in mitosis-decreased upon retinoic acid-induced inhibition of neuroblastoma cell proliferation. Furthermore, either Rae1 overexpression or Cdh1 inhibition promoted Skp2 accumulation, p27 destabilization and prevented retinoic acid-induced cell cycle arrest and differentiation. Conversely, inhibition of Rae1 accelerated retinoic acid-induced differentiation. Thus, retinoic acid downregulates Rae1, hence facilitating APC(Cdh1)-mediated Skp2 degradation leading to the arrest of cell cycle progression and neuroblastoma differentiation.
Bellanti, Francesco; Villani, Rosanna; Tamborra, Rosanna; Blonda, Maria; Iannelli, Giuseppina; di Bello, Giorgia; Facciorusso, Antonio; Poli, Giuseppe; Iuliano, Luigi; Avolio, Carlo; Vendemiale, Gianluigi; Serviddio, Gaetano
2018-05-01
The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD) has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs) and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3β,5,6β-triol (triol) combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury. Copyright © 2017. Published by Elsevier B.V.
Gong, Lingxiao; Huo, Mingxin; Yang, Qing; Li, Jun; Ma, Bin; Zhu, Rulong; Wang, Shuying; Peng, Yongzhen
2013-04-01
Recently, the combination of anammox and post heterotrophic partial denitrification (nitrate to nitrite) was increasingly popular to treat anammox effluent with excessive nitrate, whereas achieving nitrite accumulation stably was a major bottleneck for post-denitrification. This work focused on the performance of heterotrophic partial denitrification under acetate feast-famine condition. The results showed that readily biodegradable COD to nitrate (RBCOD/NO3(-)) ratio of 2.5 facilitated an ideal nitrite accumulation ratio (NAR) of 71.7% under complete nitrate reduction. When RBCOD/NO3(-) ratio was below 3.5, in terms of efficiency and nitrite accumulation, higher NAR obtained during exogenous denitrification identified that the external acetate depletion was the optimal ending point of denitrification, which could be indicated by pH accurately. The indication of pH realized NAR of 60% ideally under batch-flow mode with RBCOD/NO3(-) ratio of 2.7, which might promote the scale-up of partial denitrification. Furthemore, alkaline environment (pH 9.0-9.6) repressed N2O emission even during endogenous denitrification. Copyright © 2012 Elsevier Ltd. All rights reserved.
A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte.
Jordan, Fiona L; Robin-Abbott, Molly; Maier, Raina M; Glenn, Edward P
2002-12-01
Phytoextraction is the use of plants to remove contaminants, in particular metals, from soil via root uptake and translocation to the shoots. Efficient phytoextraction requires high-biomass plants with efficient translocating properties. Halophytes characteristically accumulate large quantities of salts in above ground tissue material and can have high biomass production. It has been speculated that salt-tolerant plants may also be heavy metal tolerant and, further, may be able to accumulate metals. This study compared growth and metal uptake by a halophyte, Atriplex nummularia, and a common glycophyte, Zea mays, in a mine-tailing contaminated soil:mulch mixture. Two chelators, ethylenediaminetetraacetic acid (EDTA) and rhamnolipid, were used to facilitate plant metal uptake. Despite a lower growth rate (2% growth/d) in the contaminated soil, the halophyte accumulated roughly the same amount of metals as the glycophyte on a mass basis (30-40 mg/kg dry wt). Neither plant, however, hyperaccumulated any of the metals tested. When treated with EDTA, specific differences in patterns of metal uptake between the two plants emerged. The halophyte accumulated significantly more Cu (2x) and Pb (1x) in the shoots than the glycophyte, but root metal concentrations were generally higher for the glycophyte, indicating that the halophyte translocated more metal from the root to the shoot than the glycophyte. For example, Zn shoot-to-root ratios ranged from 1.4 to 2.1 for Atriplex and from 0.5 to 0.6 for Z. mays. The biodegradable chelator rhamnolipid was not effective at enhancing shoot metal concentrations, even though radiolabeled chelator was found in the shoot material of both plants. Our results suggest that halophytes, despite their slower growth rates, may have greater potential to selectively phytoextract metals from contaminated soils than glycophytes.
Quantifying the risk of pandemic influenza virus evolution by mutation and re-assortment.
Reperant, Leslie A; Grenfell, Bryan T; Osterhaus, Albert D M E
2015-12-08
Large outbreaks of zoonotic influenza A virus (IAV) infections may presage an influenza pandemic. However, the likelihood that an airborne-transmissible variant evolves upon zoonotic infection or co-infection with zoonotic and seasonal IAVs remains poorly understood, as does the relative importance of accumulating mutations versus re-assortment in this process. Using discrete-time probabilistic models, we determined quantitative probability ranges that transmissible variants with 1-5 mutations and transmissible re-assortants evolve after a given number of zoonotic IAV infections. The systematic exploration of a large population of model parameter values was designed to account for uncertainty and variability in influenza virus infection, epidemiological and evolutionary processes. The models suggested that immunocompromised individuals are at high risk of generating IAV variants with pandemic potential by accumulation of mutations. Yet, both immunocompetent and immunocompromised individuals could generate high viral loads of single and double mutants, which may facilitate their onward transmission and the subsequent accumulation of additional 1-2 mutations in newly-infected individuals. This may result in the evolution of a full transmissible genotype along short chains of contact transmission. Although co-infection with zoonotic and seasonal IAVs was shown to be a rare event, it consistently resulted in high viral loads of re-assortants, which may facilitate their onward transmission among humans. The prevention or limitation of zoonotic IAV infection in immunocompromised and contact individuals, including health care workers, as well as vaccination against seasonal IAVs-limiting the risk of co-infection-should be considered fundamental tools to thwart the evolution of a novel pandemic IAV by accumulation of mutations and re-assortment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Basile, M; Di Resta, V; Ranieri, E
2016-06-01
Hemorrhoidal disease is a common proctologic disorder. The HemorPex System(®) (HPS) (Angiologica, S. Martino Siccomario PV, Italy) is an innovative surgical technique based on muco-hemorrhoidopexy without Doppler guidance. The aim of this study was to evaluate the efficacy of HPS in on the treatment of grade II and III hemorrhoids. One hundred patients with grade II and III hemorrhoidal disease were included in the study and operated on using HPS without Doppler guidance. The procedure consists of a mucopexy carried out by means of a dedicated rotating anoscope in the 6 relatively constant positions of the terminal branches of the superior hemorrhoidal artery. A direct follow-up was carried out on 100 patients for up to 3 months. A late analysis (>12 months postoperatively) was conducted by telephone interview. At follow-up the following parameters were considered: pain, bleeding, prolapse, difficulties with hygiene and patient satisfaction with treatment. Operative time was 16 ± 5 min. Three-month follow-up showed significant improvement of symptoms: pain was present in 10 (10 %) patients versus 45 (45 %) preoperatively; bleeding in 13 (13 %) of patients versus 57 (57 %) preoperatively; prolapse in 13 (13 %) of patients versus 45 (45 %) preoperatively and difficulties with hygiene in 1 (1 %) versus 24 (24 %) preoperatively (all p < 0.05). At longer follow-up which was available in 67 patients, 5 patients (7.5 %) had recurrence and were reoperated on at 8, 10, 24, 26 and 36 months, respectively after the first procedure. As regards patient satisfaction, complete satisfaction was reported by 95/100 patients (95 %) at 3 months, 62/67 (92.5 %) at 12 months and 8/56 (85.7 %) at 24 months; partial satisfaction was reported by 3/100 patients (3 %) with intermittent bleeding at 3 months, 3/67 (4.4 %) patients at 12 months and 6/56 (10.7 %) patients at 24 months, all with either intermittent bleeding or prolapse. Dissatisfaction with the procedure was reported by in 1/100 (1 %) patient at 3 months, 2/67 (2.9 %) at 12 months and 2/56 (3.6 %) at 24 months including patients who underwent reintervention. HPS can be used in the treatment of grade II and III hemorrhoidal disease. Our results show that this simple technique may be an effective but due to the important limitations of this study (loss to follow-up, non-comparative study) further studies are required.
Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models.
Wong, Andrew W; Fite, Brett Z; Liu, Yu; Kheirolomoom, Azadeh; Seo, Jai W; Watson, Katherine D; Mahakian, Lisa M; Tam, Sarah M; Zhang, Hua; Foiret, Josquin; Borowsky, Alexander D; Ferrara, Katherine W
2016-01-01
Magnetic resonance-guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma-bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation-treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation.
Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models
Wong, Andrew W.; Fite, Brett Z.; Liu, Yu; Kheirolomoom, Azadeh; Seo, Jai W.; Watson, Katherine D.; Mahakian, Lisa M.; Tam, Sarah M.; Zhang, Hua; Foiret, Josquin; Borowsky, Alexander D.; Ferrara, Katherine W.
2015-01-01
Magnetic resonance–guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma–bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation–treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation. PMID:26595815
The C Terminus of the Polerovirus P5 Readthrough Domain Limits Virus Infection to the Phloem▿
Peter, Kari A.; Gildow, Frederick; Palukaitis, Peter; Gray, Stewart M.
2009-01-01
Poleroviruses are restricted to vascular phloem tissues from which they are transmitted by their aphid vectors and are not transmissible mechanically. Phloem limitation has been attributed to the absence of virus proteins either facilitating movement or counteracting plant defense. The polerovirus capsid is composed of two forms of coat protein, the major P3 protein and the minor P3/P5 protein, a translational readthrough of P3. P3/P5 is required for insect transmission and acts in trans to facilitate long-distance virus movement in phloem tissue. Specific potato leafroll virus mutants lacking part or all of the P5 domain moved into and infected nonvascular mesophyll tissue when the source-sink relationship of the plant (Solanum sarrachoides) was altered by pruning, with the progeny virus now being transmissible mechanically. However, in a period of months, a phloem-specific distribution of the virus was reestablished in the absence of aphid transmission. Virus from the new phloem-limited infection showed compensatory mutations that would be expected to restore the production of full-length P3/P5 as well as the loss of mechanical transmissibility. The data support our hypothesis that phloem limitation in poleroviruses presumably does not result from a deficiency in the repertoire of virus genes but rather results from P3/P5 accumulation under selection in the infected plant, with the colateral effect of facilitating transmission by phloem-feeding aphid vectors. PMID:19297484
The C terminus of the polerovirus p5 readthrough domain limits virus infection to the phloem.
Peter, Kari A; Gildow, Frederick; Palukaitis, Peter; Gray, Stewart M
2009-06-01
Poleroviruses are restricted to vascular phloem tissues from which they are transmitted by their aphid vectors and are not transmissible mechanically. Phloem limitation has been attributed to the absence of virus proteins either facilitating movement or counteracting plant defense. The polerovirus capsid is composed of two forms of coat protein, the major P3 protein and the minor P3/P5 protein, a translational readthrough of P3. P3/P5 is required for insect transmission and acts in trans to facilitate long-distance virus movement in phloem tissue. Specific potato leafroll virus mutants lacking part or all of the P5 domain moved into and infected nonvascular mesophyll tissue when the source-sink relationship of the plant (Solanum sarrachoides) was altered by pruning, with the progeny virus now being transmissible mechanically. However, in a period of months, a phloem-specific distribution of the virus was reestablished in the absence of aphid transmission. Virus from the new phloem-limited infection showed compensatory mutations that would be expected to restore the production of full-length P3/P5 as well as the loss of mechanical transmissibility. The data support our hypothesis that phloem limitation in poleroviruses presumably does not result from a deficiency in the repertoire of virus genes but rather results from P3/P5 accumulation under selection in the infected plant, with the colateral effect of facilitating transmission by phloem-feeding aphid vectors.
Liu, Rong-Yu; Cleary, Leonard J.; Byrne, John H.
2011-01-01
Accumulating evidence suggests that the transcriptional activator CREB1 is important for serotonin (5-HT)-induced long-term facilitation (LTF) of the sensorimotor synapse in Aplysia. Moreover, creb1 is among the genes activated by CREB1, suggesting a role for this protein beyond the induction phase of LTF. The time course of the requirement for CREB1 synthesis in the consolidation of long-term facilitation was examined using RNA interference (RNAi) techniques in sensorimotor co-cultures. Injection of CREB1 small-interfering RNA (siRNA) immediately or 10 h after 5-HT treatment blocked LTF when measured at 24 h and 48 h after treatment. In contrast, CREB1 siRNA did not block LTF when injected 16 h after 5-HT treatment. These results demonstrate that creb1 expression must be sustained for a relatively long time in order to support the consolidation of LTF. In addition, LTF is also accompanied by a long-term increase in the excitability (LTE) of sensory neurons (SNs). Because LTE was observed in the isolated SN after 5-HT treatment, this long-term change was intrinsic to that element of the circuit. LTE was blocked when CREB1 siRNA was injected into isolated SNs immediately after 5-HT treatment. These data suggest that 5-HT-induced CREB1 synthesis is required for consolidation of both LTF and LTE. PMID:21543617
Mao, Guannan; Wang, Yingying; Hammes, Frederik
2018-02-01
Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Cross-field diffusion in Hall thrusters and other plasma thrusters
NASA Astrophysics Data System (ADS)
Boeuf, J. P.
2012-10-01
Understanding and quantifying electron transport perpendicular to the magnetic field is a challenge in many low temperature plasma applications. Hall effect thrusters (HETs) provide an excellent example of cross-field transport. The HET is a very successful concept that can be considered both as a gridless ion source and an electromagnetic thruster. In HETs, the electric field E accelerating the ions is a consequence of the Lorentz force due to an external magnetic field B acting on the ExB Hall electron current. An essential aspect of HETs is that the ExB drift is closed, i.e. is in the azimuthal direction of a cylindrical channel. In the first part of this presentation we will discuss the physics of cross-field electron transport in HETs, and the current understanding (or non-understanding) of the possible role of turbulence and wall collisions on cross-field diffusion. We will also briefly comment on alternative designs of ion sources based on the same principles as the conventional HET (Anode Layer Thruster, Diverging Cusp Field Thrusters, End-Hall ion sources). In a second part of the presentation we show that the Lorentz force acting on diamagnetic currents (associated with the ∇PexB term in the electron momentum equation) can also provide thrust. This is the case for example in helicon thrusters where the plasma expands in a magnetic nozzle. We will report and discuss recent work on helicon thrusters and other devices where the diamagnetic current is dominant (with some examples where the ∇PexB current is not closed and is directed toward a wall!).
RNA content in the nucleolus alters p53 acetylation via MYBBP1A
Kuroda, Takao; Murayama, Akiko; Katagiri, Naohiro; Ohta, Yu-mi; Fujita, Etsuko; Masumoto, Hiroshi; Ema, Masatsugu; Takahashi, Satoru; Kimura, Keiji; Yanagisawa, Junn
2011-01-01
A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53–p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity. PMID:21297583
Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan
2016-01-01
To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633
Mehdawi, Ali F El; Cappa, Jennifer J; Fakra, Sirine C; Self, James; Pilon-Smits, Elizabeth A H
2012-04-01
• This study investigated how selenium (Se) affects relationships between Se hyperaccumulator and nonaccumulator species, particularly how plants influence their neighbors' Se accumulation and growth. • Hyperaccumulators Astragalus bisulcatus and Stanleya pinnata and nonaccumulators Astragalus drummondii and Stanleya elata were cocultivated on seleniferous or nonseleniferous soil, or on gravel supplied with different selenate concentrations. The plants were analyzed for growth, Se accumulation and Se speciation. Also, root exudates were analyzed for Se concentration. • The hyperaccumulators showed 2.5-fold better growth on seleniferous than on nonseleniferous soil, and up to fourfold better growth with increasing Se supply; the nonaccumulators showed the opposite results. Both hyperaccumulators and nonaccumulators could affect growth (up to threefold) and Se accumulation (up to sixfold) of neighboring plants. Nonaccumulators S. elata and A. drummondii accumulated predominantly (88-95%) organic C-Se-C; the remainder was selenate. S. elata accumulated relatively more C-Se-C and less selenate when growing adjacent to S. pinnata. Both hyperaccumulators released selenocompounds from their roots. A. bisulcatus exudate contained predominantly C-Se-C compounds; no speciation data could be obtained for S. pinnata. • Thus, plants can affect Se accumulation in neighbors, and soil Se affects competition and facilitation between plants. This helps to explain why hyperaccumulators are found predominantly on seleniferous soils. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Katsukawa, Mitsuko; Ohsawa, Shizue; Zhang, Lina; Yan, Yan; Igaki, Tatsushi
2018-06-04
Normal epithelial tissue exerts an intrinsic tumor-suppressive effect against oncogenically transformed cells. In Drosophila imaginal epithelium, clones of oncogenic polarity-deficient cells mutant for scribble (scrib) or discs large (dlg) are eliminated by cell competition when surrounded by wild-type cells. Here, through a genetic screen in Drosophila, we identify Serpin5 (Spn5), a secreted negative regulator of Toll signaling, as a crucial factor for epithelial cells to eliminate scrib mutant clones from epithelium. Downregulation of Spn5 in wild-type cells leads to elevation of Toll signaling in neighboring scrib cells. Strikingly, forced activation of Toll signaling or Toll-related receptor (TRR) signaling in scrib clones transforms scrib cells from losers to supercompetitors, resulting in tumorous overgrowth of mutant clones. Mechanistically, Toll activation in scrib clones leads to c-Jun N-terminal kinase (JNK) activation and F-actin accumulation, which cause strong activation of the Hippo pathway effector Yorkie that blocks cell death and promotes cell proliferation. Our data suggest that Spn5 secreted from normal epithelial cells acts as a component of the extracellular surveillance system that facilitates elimination of pre-malignant cells from epithelium. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clark, Brendan J; Jones, Jacqueline; Cook, Paul; Tian, Karen; Moss, Marc
2013-10-01
Alcohol abuse and dependence are collectively referred to as alcohol use disorders (AUD). An AUD is present in up to one third of patients admitted to an intensive care unit (ICU). We sought to understand the barriers and facilitators to change in ICU survivors with an AUD to provide a foundation upon which to tailor alcohol-related interventions. We used a qualitative approach with a broad constructivist framework, conducting semistructured interviews in medical ICU survivors with an AUD. Patients were included if they were admitted to 1 of 2 medical ICUs and were excluded if they refused participation, were unable to participate, or did not speak English. Digitally recorded and professionally transcribed interviews were analyzed using a general inductive approach and grouped into themes. Nineteen patients were included, with an average age of 51 (interquartile range, 36-51) years and an average Acute Physiology and Chronic Health Evaluation II score of 9 (interquartile range, 5-13); 68% were white, 74% were male, and the most common reason for admission was alcohol withdrawal (n=8). We identified 5 facilitators of change: empathy of the inpatient health care environment, recognition of accumulating problems, religion, pressure from others to stop drinking, and trigger events. We identified 3 barriers to change: missed opportunities, psychiatric comorbidity, and cognitive dysfunction. Social networks were identified as either a barrier or facilitator to change depending on the specific context. Alcohol-related interventions to motivate and sustain behavior change could be tailored to ICU survivors by accounting for unique barriers and facilitators. © 2013.
Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.
Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N
2012-05-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.
Xu, Jia; Zhang, Nan; Han, Bin; You, Yan; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Liu, Yating; He, Fei; Ding, Xiao; Bai, Zhipeng
2016-12-01
Using central site measurement data to predict personal exposure to particulate matter (PM) is challenging, because people spend most of their time indoors and ambient contribution to personal exposure is subject to infiltration conditions affected by many factors. Efforts in assessing and predicting exposure on the basis of associated indoor/outdoor and central site monitoring were limited in China. This study collected daily personal exposure, residential indoor/outdoor and community central site PM filter samples in an elderly community during the non-heating and heating periods in 2009 in Tianjin, China. Based on the chemical analysis results of particulate species, mass concentrations of the particulate compounds were estimated and used to reconstruct the PM mass for mass balance analysis. The infiltration factors (F inf ) of particulate compounds were estimated using both robust regression and mixed effect regression methods, and further estimated the exposure factor (F pex ) according to participants' time-activity patterns. Then an empirical exposure model was developed to predict personal exposure to PM and particulate compounds as the sum of ambient and non-ambient contributions. Results showed that PM mass observed during the heating period could be well represented through chemical mass reconstruction, because unidentified mass was minimal. Excluding the high observations (>300μg/m 3 ), this empirical exposure model performed well for PM and elemental carbon (EC) that had few indoor sources. These results support the use of F pex as an indicator for ambient contribution predictions, and the use of empirical non-ambient contribution to assess exposure to particulate compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
European Credit Transfer and Accumulation System: An Alternative Way to Calculate the ECTS Grades
ERIC Educational Resources Information Center
Grosges, Thomas; Barchiesi, Dominique
2007-01-01
The European Credit Transfer and Accumulation System (ECTS) has been developed and instituted to facilitate student mobility and academic recognition. This paper presents, discusses, and illustrates the pertinence and the limitation of the current statistical distribution of the ECTS grades, and we propose an alternative way to calculate the ECTS…
Sahana, Nandita; Kaur, Harpreet; Basavaraj; Tena, Fatima; Jain, Rakesh Kumar; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly
2012-01-01
The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant–pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro – PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation. PMID:23300704
Sahana, Nandita; Kaur, Harpreet; Basavaraj; Tena, Fatima; Jain, Rakesh Kumar; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly
2012-01-01
The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that are resistant to absorption of mercury, resistant to corrosion, facilitate the detection of liquid... in each cell room to prevent liquid mercury from being tracked into other areas. c. Provide adequate lighting in each cell room to facilitate the detection of liquid mercury spills or accumulations. d...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that are resistant to absorption of mercury, resistant to corrosion, facilitate the detection of liquid... in each cell room to prevent liquid mercury from being tracked into other areas. c. Provide adequate lighting in each cell room to facilitate the detection of liquid mercury spills or accumulations. d...
Code of Federal Regulations, 2012 CFR
2012-07-01
... that are resistant to absorption of mercury, resistant to corrosion, facilitate the detection of liquid... in each cell room to prevent liquid mercury from being tracked into other areas. c. Provide adequate lighting in each cell room to facilitate the detection of liquid mercury spills or accumulations. d...
Code of Federal Regulations, 2013 CFR
2013-07-01
... that are resistant to absorption of mercury, resistant to corrosion, facilitate the detection of liquid... in each cell room to prevent liquid mercury from being tracked into other areas. c. Provide adequate lighting in each cell room to facilitate the detection of liquid mercury spills or accumulations. d...
Hamming and Accumulator Codes Concatenated with MPSK or QAM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel
2009-01-01
In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jing; Department of Dental Implantology, School of Stomatology, Tongji University, Shanghai 200072; Ogata, Shigenori
2010-07-02
So far, the content and accumulation of ATP in isolated endoplasmic reticulum (ER) are little understood. First, we confirmed using electron microscopic and Western blotting techniques that the samples extracted from MDCK cells are endoplasmic reticulum (ER). The amounts of ATP in the extracted ER were measured from the filtrate after a spinning down of ultrafiltration spin column packed with ER. When the ER sample (5 {mu}g) after 3 days freezing was suspended in intracellular medium (ICM), 0.1% Triton X and ultrapure water (UPW), ATP amounts from the ER with UPW were the highest and over 10 times compared withmore » that from the control with ICM, indicating that UPW is the most effective tool in destroying the ER membrane. After a 10-min-incubation with ICM containing phosphocreatine (PCr)/creatine kinase (CK) of the fresh ER. ATP amounts in the filtrate obtained by spinning down were not changed from that in the control (no PCr/CK). However, ATP amounts in the filtrate from the second spinning down of the ER (treated with PCr/CK) suspended in UPW became over 10-fold compared with the control. When 1 {mu}M inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) was added in the incubation medium (ICM with PCr/CK), ATP amounts from the filtrate after the second spinning down were further enhanced around three times. This enhancement was almost canceled by Ca{sup 2+}-removal from ICM and by adding thapsigargin, a Ca{sup 2+}-ATPase inhibitor, but not by 2-APB and heparin, Ins(1,4,5)P{sub 3} receptor antagonists. Administration of 500 {mu}M adenosine to the incubation medium (with PCr/CK) failed to enhance the accumulation of ATP in the ER. These findings suggest that the ER originally contains ATP and ATP accumulation in the ER is promoted by PCr/CK and Ins(1,4,5)P{sub 3}.« less
Hirst, Jennifer; Edgar, James R.; Esteves, Typhaine; Darios, Frédéric; Madeo, Marianna; Chang, Jaerak; Roda, Ricardo H.; Dürr, Alexandra; Anheim, Mathieu; Gellera, Cinzia; Li, Jun; Züchner, Stephan; Mariotti, Caterina; Stevanin, Giovanni; Blackstone, Craig; Kruer, Michael C.; Robinson, Margaret S.
2015-01-01
Adaptor proteins (AP 1–5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1, encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 ζ protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and ‘fingerprint bodies’. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 ζ. The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs. PMID:26085577
Papanatsiou, Maria; Amtmann, Anna
2016-01-01
Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K+ channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K+ ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K+ and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K+ accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells. PMID:27406168
Regulation of Neurotransmitter Responses in the Central Nervous System.
1987-05-01
Key Words: Phospholi- ygenase nor lipoxygenase inhibitors selectively in- pase A-Phospholipase C-Cyclic AMP accumulation fluenced the facilitating... inhibitors of these en- cause 6-fluoronorepinephrine facilitated isoproter- z~mes were incapable of selectively reducing the enol-stimulated cAMP... anxiety , and insomnia might result from a deficit in GABA A receptor function, or in the activity of selected GABAergic neurons. Indeed it has been
Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation
2014-08-20
understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of
Circulating CXCR5+CD4+ T cells participate in the IgE accumulation in allergic asthma.
Gong, Fang; Zhu, Hua-Yan; Zhu, Jie; Dong, Qiao-Jing; Huang, Xuan; Jiang, Dong-Jin
2018-05-01
The pathogenesis of allergic asthma is primarily characterized by abnormality in immunoglobin(Ig)E pathway, suggesting a possible role for follicular helper T cells (Tfh) in the genesis of excessive IgE accumulation. The blood chemokine (C-X-C motif) receptor 5 (CXCR)5 + CD4 + T cells, known as "circulating" Tfh, share common functional characteristics with Tfh cells from germinal centers. The aim of this study was to determine the phenotypes and functions of circulating CXCR5 + CD4 + T cells in allergic asthmatics. Here we found the frequency of the circulating CXCR5 + CD4 + T cells was raised in allergic asthma compared with healthy control (HC). Phenotypic assays showed that activated circulating CXCR5 + CD4 + T cells display the key features of Tfh cells, including invariably coexpressed programmed cell death (PD)-1 and inducible costimulator (ICOS). The frequency of interleukin IL-4 + -, IL-21 + -producing CXCR5 + CD4 + T cells was increased in allergic asthma patients compared with HC. Furthermore, sorted circulating CXCR5 + CD4 + T cells from allergic asthma patients boosted IgE production in coculture assay which could be inhibited by IL-4 or IL-21 blockage. Interestingly, IL-4 + -, IL-21 + -CXCR5 + CD4 + T cells positively correlated with total IgE in the blood. Our data indicated that circulating CXCR5 + CD4 + T cells may have a significant role in facilitating IgE production in allergic asthma patients. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Processing the Interspecies Quorum-sensing Signal Autoinducer-2 (AI-2)
Marques, João C.; Lamosa, Pedro; Russell, Caitlin; Ventura, Rita; Maycock, Christopher; Semmelhack, Martin F.; Miller, Stephen T.; Xavier, Karina B.
2011-01-01
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsible for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior. PMID:21454635
Processing the Interspecies Quorum-sensing Signal Autoinducer-2 (AI-2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Marques; P Lamosa; C Russell
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsiblemore » for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior.« less
FloPSy - Search-Based Floating Point Constraint Solving for Symbolic Execution
NASA Astrophysics Data System (ADS)
Lakhotia, Kiran; Tillmann, Nikolai; Harman, Mark; de Halleux, Jonathan
Recently there has been an upsurge of interest in both, Search-Based Software Testing (SBST), and Dynamic Symbolic Execution (DSE). Each of these two approaches has complementary strengths and weaknesses, making it a natural choice to explore the degree to which the strengths of one can be exploited to offset the weakness of the other. This paper introduces an augmented version of DSE that uses a SBST-based approach to handling floating point computations, which are known to be problematic for vanilla DSE. The approach has been implemented as a plug in for the Microsoft Pex DSE testing tool. The paper presents results from both, standard evaluation benchmarks, and two open source programs.
Zou, Jinte; Li, Yongmei
2016-10-01
Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.
S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth
Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar
2015-01-01
Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030
Blewett, Tamzin A; Ransberry, Victoria E; McClelland, Grant B; Wood, Chris M
2016-04-01
The Atlantic killifish (Fundulus heteroclitus) is a resilient estuarine species that may be subjected to anthropogenic contamination of its natural habitat, by toxicants such as nickel (Ni). We investigated Ni accumulation and potential modes of Ni toxicity, in killifish, as a function of environmental salinity. Killifish were acclimated to 4 different salinities [0 freshwater (FW), 10, 30 and 100% seawater (SW)] and exposed to 5 mg/L of Ni for 96 h. Tissue Ni accumulation, whole body ions, critical swim speed and oxidative stress parameters were examined. SW was protective against Ni accumulation in the gills and kidney. Addition of Mg and Ca to FW protected against gill Ni accumulation, suggesting competition with Ni for uptake. Concentration-dependent Ni accumulation in the gill exhibited saturable relationships in both FW- and SW-acclimated fish. However SW fish displayed a lower Bmax (i.e. lower number of Ni binding sites) and a lower Km (i.e. higher affinity for Ni binding). No effect of Ni exposure was observed on critical swim speed (Ucrit) or maximum rate of oxygen consumption (MO2max). Markers of oxidative stress showed either no effect (e.g. protein carbonyl formation), or variable effects that appeared to depend more on salinity than on Ni exposure. These data indicate that the killifish is very tolerant to Ni toxicity, a characteristic that may facilitate the use of this species as a site-specific biomonitor of contaminated estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery.
Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi
2011-01-01
The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin.
Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery
Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi
2011-01-01
Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452
Jeppsson, Kristian; Carlborg, Kristian K.; Nakato, Ryuichiro; Berta, Davide G.; Lilienthal, Ingrid; Kanno, Takaharu; Lindqvist, Arne; Brink, Maartje C.; Dantuma, Nico P.; Katou, Yuki; Shirahige, Katsuhiko; Sjögren, Camilla
2014-01-01
The cohesin complex, which is essential for sister chromatid cohesion and chromosome segregation, also inhibits resolution of sister chromatid intertwinings (SCIs) by the topoisomerase Top2. The cohesin-related Smc5/6 complex (Smc5/6) instead accumulates on chromosomes after Top2 inactivation, known to lead to a buildup of unresolved SCIs. This suggests that cohesin can influence the chromosomal association of Smc5/6 via its role in SCI protection. Using high-resolution ChIP-sequencing, we show that the localization of budding yeast Smc5/6 to duplicated chromosomes indeed depends on sister chromatid cohesion in wild-type and top2-4 cells. Smc5/6 is found to be enriched at cohesin binding sites in the centromere-proximal regions in both cell types, but also along chromosome arms when replication has occurred under Top2-inhibiting conditions. Reactivation of Top2 after replication causes Smc5/6 to dissociate from chromosome arms, supporting the assumption that Smc5/6 associates with a Top2 substrate. It is also demonstrated that the amount of Smc5/6 on chromosomes positively correlates with the level of missegregation in top2-4, and that Smc5/6 promotes segregation of short chromosomes in the mutant. Altogether, this shows that the chromosomal localization of Smc5/6 predicts the presence of the chromatid segregation-inhibiting entities which accumulate in top2-4 mutated cells. These are most likely SCIs, and our results thus indicate that, at least when Top2 is inhibited, Smc5/6 facilitates their resolution. PMID:25329383
Emergency Management of Myasthenia Gravis
... to weakened throat muscles and accumulated secretions. EMERGENCY MANAGEMENT OF MG The MGFA mission is to facilitate ... fax mgfa@myasthenia.org • www.myasthenia.org EMERGENCY MANAGEMENT OF MG Emergency Management Important information for the ...
Inkinen, Jenni; Kaunisto, Tuija; Pursiainen, Anna; Miettinen, Ilkka T; Kusnetsov, Jaana; Riihinen, Kalle; Keinänen-Toivola, Minna M
2014-02-01
Complex interactions existing between water distribution systems' materials and water can cause a reduction in water quality and unwanted changes in materials, aging or corrosion of materials and formation of biofilms on surfaces. Substances leaching from pipe materials and water fittings, as well as the microbiological quality of water and formation of biofilms were evaluated by applying a Living Lab theme i.e. a research in a real life setting using a full scale system during its first year of operation. The study site was a real office building with one part of the building lined with copper pipes, the other with cross-linked polyethylene (PEX) pipes thus enabling material comparison; also differences within the cold and hot water systems were analysed. It was found that operational conditions, such as flow conditions and temperature affected the amounts of metals leaching from the pipe network. In particular, brass components were considered to be a source of leaching; e. g. the lead concentration was highest during the first few weeks after the commissioning of the pipe network when the water was allowed to stagnate. Assimilable organic carbon (AOC) and microbially available phosphorus (MAP) were found to leach from PEX pipelines with minor effects on biomass of the biofilm. Cultivable and viable biomass (heterotrophic plate count (HPC), and adenosine triphosphate (ATP)) levels in biofilms were higher in the cold than in the hot water system whereas total microbial biomass (total cell count (DAPI)) was similar with both systems. The type of pipeline material was not found to greatly affect the microbial biomass or Alpha-, Beta- and Gammaproteobacteria profiles (16s rRNA gene copies) after the first one year of operation. Also microbiological quality of water was found to deteriorate due to stagnation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R
2016-09-01
Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K(+) channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K(+) ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K(+) and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K(+) accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells. © 2016 American Society of Plant Biologists. All rights reserved.
Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell
2007-04-01
Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.
Zhang, Zong-Kang; Li, Jie; Yan, De-Xin; Leung, Wing-Nang; Zhang, Bao-Ting
2016-01-01
Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg−1·day−1) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques. PMID:26828485
Anthocyanins facilitate tungsten accumulation in Brassica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, K.L.
2002-11-01
Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showedmore » a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.« less
Grass, Gregor; Fan, Bin; Rosen, Barry P.; Franke, Sylvia; Nies, Dietrich H.; Rensing, Christopher
2001-01-01
The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of 65Zn, suggesting ZitB-mediated efflux of zinc. PMID:11443104
Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L
2008-02-22
One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.
Ye, Chenglong; Bai, Tongshuo; Yang, Yi; Zhang, Hao; Guo, Hui; Li, Zhen; Li, Huixin; Hu, Shuijin
2017-07-24
Oxisol soils are widely distributed in the humid tropical and subtropical regions and are generally characterized with high contents of metal oxides. High metal oxides are believed to facilitate organic carbon (C) accumulation via mineral-organic C interactions but Oxisols often have low organic C. Yet, the causes that constrain organic C accumulation in Oxisol soil are not exactly clear. Here we report results from a microcosm experiment that evaluated how the quantity and size of crop residue fragments affect soil C retention in a typical Oxisol soil in southeast China. We found that there were significantly higher levels of dissolved organic C (DOC), microbial biomass C (MBC) and C accumulation in the heavy soil fraction in soil amended with fine-sized (<0.2 mm) compared with coarse-sized (5.0 mm) fragments. Attenuated total reflectance-Fourier transform infrared spectroscopy analysis further showed that fine-sized residues promoted stabilization of aliphatic C-H and carboxylic C=O compounds associated with mineral phases. In addition, correlation analysis revealed that the increased content of organic C in the heavy soil fraction was positively correlated with increased DOC and MBC. Together, these results suggest that enhancement of contact between organic materials and soil minerals may promote C stabilization in Oxisols.
Fan, Jilian; Zhai, Zhiyang; Yan, Chengshi; ...
2015-09-26
The biogenesis of photosynthetic membranes in the plastids of higher plants requires an extensive supply of lipid precursors from the endoplasmic reticulum (ER). Four TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins (TGD1,2,3,4) have thus far been implicated in this lipid transfer process. While TGD1, TGD2, and TGD3 constitute an ATP binding cassette transporter complex residing in the plastid inner envelope, TGD4 is a transmembrane lipid transfer protein present in the outer envelope. These observations raise questions regarding how lipids transit across the aqueous intermembrane space. Here in this paper, we describe the isolation and characterization of a novel Arabidopsis thaliana gene, TGD5. Disruption ofmore » TGD5 results in similar phenotypic effects as previously described in tgd1,2,3,4 mutants, including deficiency of ER-derived thylakoid lipids, accumulation of oligogalactolipids, and triacylglycerol. Genetic analysis indicates that TGD4 is epistatic to TGD5 in ER-to-plastid lipid trafficking, whereas double mutants of a null tgd5 allele with tgd1-1 or tgd2-1 show a synergistic embryo-lethal phenotype. TGD5 encodes a small glycine-rich protein that is localized in the envelope membranes of chloroplasts. In addition, coimmunoprecipitation assays show that TGD5 physically interacts with TGD1, TGD2, TGD3, and TGD4. Collectively, these results suggest that TGD5 facilitates lipid transfer from the outer to the inner plastid envelope by bridging TGD4 with the TGD1,2,3 transporter complex.« less
Utp9p facilitates Msn5p-mediated nuclear reexport of retrograded tRNAs in Saccharomyces cerevisiae.
Eswara, Manoja B K; McGuire, Andrew T; Pierce, Jacqueline B; Mangroo, Dev
2009-12-01
Utp9p is a nucleolar protein that is part of a subcomplex containing several U3 snoRNA-associated proteins including Utp8p, which is a protein that shuttles aminoacyl-tRNAs from the nucleolus to the nuclear tRNA export receptors Los1p and Msn5p in Saccharomyces cerevisiae. Here we show that Utp9p is also an intranuclear component of the Msn5p-mediated nuclear tRNA export pathway. Depletion of Utp9p caused nuclear accumulation of mature tRNAs derived from intron-containing precursors, but not tRNAs made from intronless pre-tRNAs. Utp9p binds tRNA directly and saturably, and copurifies with Utp8p, Gsp1p, and Msn5p, but not with Los1p or aminoacyl-tRNA synthetases. Utp9p interacts directly with Utp8p, Gsp1p, and Msn5p in vitro. Furthermore, Gsp1p forms a complex with Msn5p and Utp9p in a tRNA-dependent manner. However, Utp9p does not shuttle between the nucleus and the cytoplasm. Because tRNA splicing occurs in the cytoplasm and the spliced tRNAs are retrograded back to the nucleus, we propose that Utp9p facilitates nuclear reexport of retrograded tRNAs. Moreover, the data suggest that Utp9p together with Utp8p translocate aminoacyl-tRNAs from the nucleolus to Msn5p and assist with formation of the Msn5p-tRNA-Gsp1p-GTP export complex.
A Kinase Independent Role for EGF Receptor in Autophagy Initiation
Tan, Xiaojun; Thapa, Narendra; Sun, Yue; Anderson, Richard A
2014-01-01
The Epidermal Growth Factor Receptor (EGFR) is upregulated in numerous human cancers. Inhibition of EGFR signaling induces autophagy in tumor cells. Here we report an unanticipated role for the inactive EGFR in autophagy initiation. Inactive EGFR interacts with the oncoprotein LAPTM4B that is required for the endosomal accumulation of EGFR upon serum starvation. Inactive EGFR and LAPTM4B stabilize each other at endosomes and recruit the exocyst subcomplex containing Sec5. We show that inactive EGFR, LAPTM4B, and the Sec5 subcomplex are required for basal and starvation induced autophagy. LAPTM4B and Sec5 promote EGFR association with the autophagy inhibitor Rubicon, which in turn disassociates Beclin 1 from Rubicon to initiate autophagy. Thus, the oncoprotein LAPTM4B facilitates the role of inactive EGFR in autophagy initiation. This pathway is positioned to control tumor metabolism and promote tumor cell survival upon serum deprivation or metabolic stress. PMID:25594178
Zolman, B K; Yoder, A; Bartel, B
2000-01-01
Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA. PMID:11063705
Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants.
Cross, Laura L; Ebeed, Heba Talat; Baker, Alison
2016-05-01
Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins are controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis are discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants. Copyright © 2015 Elsevier B.V. All rights reserved.
The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy.
Liu, Xuezhao; Li, Yang; Wang, Xin; Xing, Ruxiao; Liu, Kai; Gan, Qiwen; Tang, Changyong; Gao, Zhiyang; Jian, Youli; Luo, Shouqing; Guo, Weixiang; Yang, Chonglin
2017-05-01
Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak-Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder. © 2017 Liu et al.
The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy
Xing, Ruxiao; Tang, Changyong; Gao, Zhiyang
2017-01-01
Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak–Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder. PMID:28404643
Investigating the Contribution of the Phosphate Transport Pathway to Arsenic Accumulation in Rice1[W
Wu, Zhongchang; Ren, Hongyan; McGrath, Steve P.; Wu, Ping; Zhao, Fang-Jie
2011-01-01
Arsenic (As) accumulation in rice (Oryza sativa) may pose a significant health risk to consumers. Plants take up different As species using various pathways. Here, we investigated the contribution of the phosphate (Pi) transport pathway to As accumulation in rice grown hydroponically or under flooded soil conditions. In hydroponic experiments, a rice mutant defective in OsPHF1 (for phosphate transporter traffic facilitator1) lost much of the ability to take up Pi and arsenate and to transport them from roots to shoots, whereas transgenic rice overexpressing either the Pi transporter OsPht1;8 (OsPT8) or the transcription factor OsPHR2 (for phosphate starvation response2) had enhanced abilities of Pi and arsenate uptake and translocation. OsPT8 was found to have a high affinity for both Pi and arsenate, and its overexpression increased the maximum influx by 3- to 5-fold. In arsenate-treated plants, both arsenate and arsenite were detected in the xylem sap, with the proportion of the latter increasing with the exposure time. Under the flooded soil conditions, the phf1 mutant took up less Pi whereas the overexpression lines took up more Pi. But there were no similar effects on As accumulation and distribution. Rice grain contained predominantly dimethylarsinic acid and arsenite, with arsenate being a minor species. These results suggest that the Pi transport pathway contributed little to As uptake and transport to grain in rice plants grown in flooded soil. Transgenic approaches to enhance Pi acquisition from paddy soil through the overexpression of Pi transporters may not increase As accumulation in rice grain. PMID:21715673
Meyer, Rikke Louise; Zeng, Raymond Jianxiong; Giugliano, Valerio; Blackall, Linda Louise
2005-05-01
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO(3)(-) accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes.
Experimental study of {sup 99m}Tc-aluminum oxide use for sentinel lymph nodes detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernov, V. I., E-mail: Chernov@oncology.tomsk.ru; Sinilkin, I. G.; Zelchan, R. V.
The purpose of the study was a comparative research in the possibility of using the radiopharmaceuticals {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis for visualizing sentinel lymph nodes. The measurement of the sizes of {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis colloidal particles was performed in seven series of radiopharmaceuticals. The pharmacokinetics of {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis was researched on 50 white male rats. The possibility of the use of {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis for lymphoscintigraphy was studied in the experiments on 12 white male rats. The average dynamic diameter of the sol particlemore » was 52–77 nm for {sup 99m}Tc-Al{sub 2}O{sub 3} and 16.7–24.5 nm for {sup 99m}Tc-Nanocis. Radiopharmaceuticals accumulated in the inguinal lymph node in 1 hour after administration; the average uptake of {sup 99}mTc-Al{sub 2}O{sub 3} was 8.6% in it, and the accumulation of {sup 99m}Tc-Nanocis was significantly lower—1.8% (p < 0.05). In all study points the average uptake of {sup 99m}Tc-Al{sub 2}O{sub 3} in the lymph node was significantly higher than {sup 99m}Tc-Nanocis accumulation. The results of dynamic scintigraphic studies in rats showed that {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis actively accumulated into the lymphatic system. By using {sup 99m}Tc-Al{sub 2}O{sub 3} inguinal lymph node was determined in 5 minutes after injection and clearly visualized in all the animals in the 15th minute, when the accumulation became more than 1% of the administered dose. Further observation indicated that the {sup 99m}Tc-Al{sub 2}O{sub 3} accumulation reached a plateau in a lymph node (average 10.5%) during 2-hour study and then its accumulation remained practically at the same level, slightly increasing to 12% in 24 hours. In case of {sup 99m}Tc-Nanocis inguinal lymph node was visualized in all animals for 15 min when it was accumulated on the average 1.03% of the administered dose. Plateau of {sup 99m}Tc-Nanocis accumulation in the lymph node (average 2.05%) occurred after 2 hours of the study and remained almost on the same level (in average 2.3%) for 24 hours. Thus, the experimental study of a new domestic radiopharmaceutical showed that the {sup 99m}Tc-Al{sub 2}O{sub 3} accumulates actively in the lymph nodes several times as compared to the imported analogue and its practical application will facilitate intraoperative identification of sentinel lymph nodes.« less
Positive effects of duckweed polycultures on starch and protein accumulation.
Li, Yang; Zhang, Fantao; Daroch, Maurycy; Tang, Jie
2016-10-01
The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation. © 2016 The Author(s).
Positive effects of duckweed polycultures on starch and protein accumulation
Li, Yang; Zhang, Fantao; Daroch, Maurycy; Tang, Jie
2016-01-01
The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation. PMID:27515418
Bao, Han; Dilbeck, Preston L; Burnap, Robert L
2013-10-01
The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry during this final step of H2O-oxidation.
ANTHOCYANINS FACILITATE TUNGSTEN ACCUMULATION IN BRASSICA. (R827104)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling
2015-11-01
The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.
T7 phage factor required for managing RpoS in Escherichia coli.
Tabib-Salazar, Aline; Liu, Bing; Barker, Declan; Burchell, Lynn; Qimron, Udi; Matthews, Steve J; Wigneshweraraj, Sivaramesh
2018-06-05
T7 development in Escherichia coli requires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ 70 , by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.7 remains to be fully deciphered. Here, we present results from functional and structural analyses to reveal that Gp5.7 primarily serves to inhibit Eσ S , the predominant form of the RNAP in the stationary phase of growth, which accumulates in exponentially growing E. coli as a consequence of the buildup of guanosine pentaphosphate [(p)ppGpp] during T7 development. We further demonstrate a requirement of Gp5.7 for T7 development in E. coli cells in the stationary phase of growth. Our finding represents a paradigm for how some lytic phages have evolved distinct mechanisms to inhibit the bacterial transcription machinery to facilitate phage development in bacteria in the exponential and stationary phases of growth.
Zhang, Jun; Li, Shihe; Fischer, Reinhard; Xiang, Xin
2003-01-01
The mechanism(s) by which microtubule plus-end tracking proteins are targeted is unknown. In the filamentous fungus Aspergillus nidulans, both cytoplasmic dynein and NUDF, the homolog of the LIS1 protein, localize to microtubule plus ends as comet-like structures. Herein, we show that NUDM, the p150 subunit of dynactin, also forms dynamic comet-like structures at microtubule plus ends. By examining proteins tagged with green fluorescent protein in different loss-of-function mutants, we demonstrate that dynactin and cytoplasmic dynein require each other for microtubule plus-end accumulation, and the presence of cytoplasmic dynein is also important for NUDF's plus-end accumulation. Interestingly, deletion of NUDF increases the overall accumulation of dynein and dynactin at plus ends, suggesting that NUDF may facilitate minus-end–directed dynein movement. Finally, we demonstrate that a conventional kinesin, KINA, is required for the microtubule plus-end accumulation of cytoplasmic dynein and dynactin, but not of NUDF. PMID:12686603
Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress
Nordlander, Bodil; Klein, Dagmara; Hong, Kuk-Ki; Jacobson, Therese; Dahl, Peter; Schaber, Jörg; Nielsen, Jens; Hohmann, Stefan; Klipp, Edda
2013-01-01
We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2) and glycerol import (Stl1) and activates a regulatory enzyme in glycolysis (Pfk26/27). In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the regulation of the Fps1 glycerol facilitator. Taken together, we elucidated how different metabolic adaptation mechanisms cooperate and provide hypotheses for further experimental studies. PMID:23762021
Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate.
Reis, Cristiano E R; Zhang, Jianguo; Hu, Bo
2014-09-01
Microbial oil accumulated by fungal cells is a potential feedstock for biodiesel production, and lignocellulosic materials can serve as the carbon source to support the fungal growth. The dilute acid pretreatment of corn stover can effectively break down its lignin structure, and this process generates a hydrolysate containing mostly xylose at very dilute concentration and numerous by-products that may significantly inhibit the cell growth. This study utilized corn stover hydrolysate as the culture media for the growth of Mucor circinelloides. The results showed that Mucor cells formed pellets during the cell growth, which facilitates the cell harvest from dilute solution. The results also showed that the inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), and acetic acid could be avoided if their concentration was low. In fact, all these by-products may be assimilated as carbon sources for the fungal growth. The results proved the feasibility to reuse the cultural broth water for acid pretreatment and then use for subsequent cell cultivation. The results will have a direct impact on the overall water usage of the process.
TRANSIENT BIOGEOCHEMICAL CYCLING AND SEDIMENT OXYGEN DEMAND
Through this research, the effects of variable sediment accumulation and oxygen concentration on SOD and soluble chemical fluxes will be quantified. This study will enable correct estimates of “diffuser-induced” SOD to be made that will facilitate appropriate desig...
NASA Astrophysics Data System (ADS)
Wu, Dong; Chen, Guanzhou; Zhang, Xiaojun; Yang, Kai; Xie, Bing
2017-01-01
In this study, the addition of sulfamethazine (SMT) to landfill refuse decreased nitrogen intermediates (e.g. N2O and NO) and dinitrogen (N2) gas fluxes to <0.5 μg-N/kg-refuse·h-1, while the N2O and N2 flux were at ~1.5 and 5.0 μg-N/kg-refuse·h-1 respectively in samples to which oxytetracycline (OTC) had been added. The ARG (antibiotic resistance gene) levels in the refuse increased tenfold after long-term exposure to antibiotics, followed by a fourfold increase in the N2 flux, but SMT-amended samples with the largest resistome facilitated the denitrification (the nitrogen accumulated as NO gas at ~6 μg-N/kg-refuse·h-1) to a lesser extent than OTC-amended samples. Further, deep sequencing results show that long-term OTC exposure partially substituted Hyphomicrobium, Fulvivirga, and Caldilinea (>5%) for the dominant bacterial hosts (Rhodothermus, ~20%) harboring nosZ and norB genes that significantly correlated with nitrogen emission pattern, while sulfamethazine amendment completely reduced the relative abundance of the “original inhabitants” functioning to produce NOx gas reduction. The main ARG carriers (Pseudomonas) that were substantially enriched in the SMT group had lower levels of denitrifying functional genes, which could imply that denitrification is influenced more by bacterial dynamics than by abundance of ARGs under antibiotic pressures.
Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki
2014-01-01
Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G 1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G 1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation.
Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki
2014-01-01
Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation. PMID:24583467
Accelerated Mutation Accumulation in Asexual Lineages of a Freshwater Snail
Neiman, Maurine; Hehman, Gery; Miller, Joseph T.; Logsdon, John M.; Taylor, Douglas R.
2010-01-01
Sexual reproduction is both extremely costly and widespread relative to asexual reproduction, meaning that it must also confer profound advantages in order to persist. One theorized benefit of sex is that it facilitates the clearance of harmful mutations, which would accumulate more rapidly in the absence of recombination. The extent to which ineffective purifying selection and mutation accumulation are direct consequences of asexuality and whether the accelerated buildup of harmful mutations in asexuals can occur rapidly enough to maintain sex within natural populations, however, remain as open questions. We addressed key components of these questions by estimating the rate of mutation accumulation in the mitochondrial genomes of multiple sexual and asexual representatives of Potamopyrgus antipodarum, a New Zealand snail characterized by mixed sexual/asexual populations. We found that increased mutation accumulation is associated with asexuality and occurs rapidly enough to be detected in recently derived asexual lineages of P. antipodarum. Our results demonstrate that increased mutation accumulation in asexuals can differentially affect coexisting and ecologically similar sexual and asexual lineages. The accelerated rate of mutation accumulation observed in asexual P. antipodarum provides some of the most direct evidence to date for a link between asexuality and mutation accumulation and implies that mutational buildup could be rapid enough to contribute to the short-term evolutionary mechanisms that favor sexual reproduction. PMID:19995828
Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone
Zhao, Liangliang; Hadziahmetovic, Majda; Wang, Chenguang; Xu, Xueying; Song, Ying; Jinnah, H.A.; Wodzinska, Jolanta; Iacovelli, Jared; Wolkow, Natalie; Krajacic, Predrag; Weissberger, Alyssa Cwanger; Connelly, John; Spino, Michael; Lee, Michael K.; Connor, James; Giasson, Benoit; Harris, Z. Leah; Dunaief, Joshua L.
2016-01-01
Brain iron accumulates in several neurodegenerative diseases and can cause oxidative damage, but mechanisms of brain iron homeostasis are incompletely understood. Patients with mutations in the cellular iron-exporting ferroxidase ceruloplasmin (Cp) have brain iron accumulation causing neurodegeneration. Here, we assessed the brains of mice with combined mutation of Cp and its homolog hephaestin. Compared to single mutants, brain iron accumulation was accelerated in double mutants in the cerebellum, substantia nigra, and hippocampus. Iron accumulated within glia, while neurons were iron deficient. There was loss of both neurons and glia. Mice developed ataxia and tremor, and most died by 9 months. Treatment with the oral iron chelator deferiprone diminished brain iron levels, protected against neuron loss, and extended lifespan. Ferroxidases play important, partially overlapping roles in brain iron homeostasis by facilitating iron export from glia, making iron available to neurons. PMID:26303407
Ahmadzadehfar, Hojjat; Sabet, Amir; Meyer, Carsten; Habibi, Elham; Biersack, Hans-Jürgen; Ezziddin, Samer
2012-11-01
A 76-year-old man with colorectal cancer and hepatic metastases was referred to us for radioembolization of the liver. Angiography with 99mTc-MAA SPECT/CT was performed 8 weeks after the discontinuation of bevacizumab. 99mTc-MAA SPECT/CT showed a diffused intrahepatic tracer distribution with no focally accentuated accumulation in the tumorous region. The test was repeated 6 weeks later and Tc-MAA SPECT/CT showed this time a tumor accentuated tracer accumulation in the liver. Subsequently, the patient was treated with resin microspheres. Tc-MAA SPECT/CT allows a better evaluation of intrahepatic tracer accumulation of Tc-MAA and facilitates the determination of the most appropriate treatment time.
Li, Ying; Cai, Le; Dong, Jian-Wei; Xing, Yun; Duan, Wei-He; Zhou, Hao; Ding, Zhong-Tao
2015-07-29
Rubrosterone, possessing various remarkable bioactivities, is an insect-molting C19-steroid. However, only very small amounts are available for biological tests due to its limited content from plant sources. Fungi of genus Fusarium have been reported to have the ability to convert C27-steroids into C19-steroids. In this study, Asparagus filicinus, containing a high content of 20-hydroxyecdysone, was utilized to accumulate rubrosterone through solid fermentation by Fusarium oxysporum. The results showed that F. oxysporum had the ability to facilitate the complete biotransformation of 20-hydroxyecdysone to rubrosterone by solid-state fermentation. The present method could be an innovative and efficient approach to accumulate rubrosterone with an outstanding conversion ratio.
Zhou, Junxuan; Zhang, Cong
2018-01-01
Ellagitannins in Phyllanthus emblica L. (emblic leafflower fruits) have been thought of as the beneficial constituents for ameliorating endocrinal and metabolic diseases including diabetes. However, the effect of emblic leafflower fruits on diabetic vascular complications involved in ellagitannin-derived urolithin metabolites is still rare. In this study, acetylcholine-induced endothelium-independent relaxation in aortas was facilitated upon emblic leafflower fruit consumption in the single dose streptozotocin-induced hyperglycemic rats. Emblic leafflower fruit consumption also suppressed the phosphorylation of Akt (Thr308) in the hyperglycemic aortas. More importantly, urolithin A (UroA) and its derived phase II metabolites were identified as the metabolites upon emblic leafflower fruit consumption by HPLC-ESI-Q-TOF-MS. Moreover, UroA reduced the protein expressions of phosphor-Akt (Thr308) and β-catenin in a high glucose-induced A7r5 vascular smooth muscle cell proliferation model. Furthermore, accumulation of β-catenin protein and activation of Wnt signaling in LiCl-triggered A7r5 cells were also ameliorated by UroA treatment. In conclusion, our data demonstrate that emblic leafflower fruit consumption facilitates the vascular function in hyperglycemic rats by regulating Akt/β-catenin signaling, and the effects are potentially mediated by the ellagitannin metabolite urolithin A. PMID:29692859
Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden
2013-01-01
Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434
The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5
Li, Bosheng; Bücker, Birte; Keil, Philipp; Zhang, Shaoman; Li, Jigang; Kang, Dingming; Liu, Jie; Dong, Jie; Deng, Xing Wang; Irish, Vivian
2018-01-01
The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA) and abscisic acid (ABA), and is influenced by environmental factors. The COP9 Signalosome (CSN) is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs). Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1) ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway. PMID:29462139
Daidoji, Tomo; Watanabe, Yohei; Arai, Yasuha; Kajikawa, Junichi; Hirose, Ryohei; Nakaya, Takaaki
Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.
Sterol Carrier Protein-2: Binding Protein for Endocannabinoids
Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.
2015-01-01
The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ΔG values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313
[Mutation analysis of the PAH gene in children with phenylketonuria from the Qinghai area of China].
He, Jiang; Wang, Hui-Zhen; Xu, Fa-Liang; Yang, Xi; Wang, Rui; Zou, Hong-Yun; Yu, Wu-Zhong
2015-11-01
To study the mutation characteristics of the phenylalanine hydroxylase (PAH) gene in children with phenylketonuria (PKU) from the Qinghai area of China, in order to provide basic information for genetic counseling and prenatal diagnosis. Mutations of the PAH gene were detected in the promoter and exons 1-13 and their flanking intronic sequences of PAH gene by PCR and DNA sequencing in 49 children with PKU and their parents from the Qinghai area of China. A total of 30 different mutations were detected in 80 out of 98 mutant alleles (82%), including 19 missense (63%), 5 nonsense (17%), 3 splice-site (10%) and 3 deletions (10%). Most mutations were detected in exons 3, 6, 7, 11 and intron 4 of PAH gene. The most frequent mutations were p.R243Q (19%), IVS4-1G>A (9%), p.Y356X (7%) and p.EX6-96A>G(5%). Two novel mutations p.N93fsX5 (c.279-282delCATC) and p.G171E (c.512G>A) were found. p.H64fsX9(c.190delC) was documented for the second time in Chinese PAH gene. The mutation spectrum of the gene PAH in the Qinghai population was similar to that in other populations in North China while significantly different from that in the populations from some provinces in southern China, Japan and Europe. The mutations of PAH gene in the Qinghai area of China demonstrate a unique diversity, complexity and specificity.
Bal, Jyotiranjan; Lee, Hye-Jeong; Cheon, Seon Ah; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Jeong-Yoon
2013-01-01
Sphingolipids are involved in cell differentiation and morphogenesis in eukaryotic cells. In this study, YlLac1p, a ceramide synthase required for glucosylceramide (GlcCer) synthesis, was found to be essential for hyphal growth in Yarrowia lipolytica. Y. lipolytica GlcCer was shown to be composed of a C16:0 fatty acid, which is hydroxylated at C2, and a C18:2 long chain base, which is unsaturated at both C4 and C8 and methylated at C9. Domain swapping analysis revealed that the entire TRAM/Lag1/CLN8 (TLC) domain, not the Lag1 motif, is crucial for the function of YlLac1p. YlDes1p, the C4 desaturase of the ceramide synthesized by YlLac1p, was also required for Y. lipolytica morphogenesis. Both Yllac1Δ and Yldes1Δ mutants neither polarize lipid rafts nor form normal vacuoles. Interestingly, mutation in YlPEX5, which encode a peroxisomal targeting signal receptor, partially suppressed the defective hyphal growth of Yllac1Δ. The Yllac1ΔYlpex5Δ mutant restored the ability to polarize lipid rafts and to form normal vacuoles, although it could not synthesize GlcCer. Taken together, our results suggest that GlcCer or GlcCer derivatives may be involved in hyphal morphogenesis in Y. lipolytica, at least in part, by affecting polarization of lipid rafts and vacuole morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Blewett, Nathan H.; Iben, James R.; Gaidamakov, Sergei
2017-01-01
ABSTRACT Human La antigen (Sjögren's syndrome antigen B [SSB]) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3′ exonucleases, the ends of precursor tRNAs, and other transcripts synthesized by RNA polymerase III and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed previously that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing, although the pathway(s) involved in neuronal loss thereafter was unknown. Here, we demonstrate that La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by a 10-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex, we employed mRNA sequencing (mRNA-Seq), immunohistochemistry, and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry, including temporal analyses, demonstrated neurodegeneration, followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from postmitotic neurons results in defective pre-tRNA and pre-rRNA processing and progressive neurodegeneration with loss of cortical brain mass. PMID:28223366
NASA Astrophysics Data System (ADS)
Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J.; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O.; DuBow, Michael S.; Odic, Emmanuel
2015-11-01
Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H2O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ~5.5 and ~5 log10 reductions were observed for E. coli DH-1 bacteria (from 106 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H2O2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C the contribution of heating, along with that of H2O2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions.
NASA Astrophysics Data System (ADS)
Zhang, Huai; Cheng, Huihong; Pang, Yajin; Shi, Yaolin; Yuen, David A.
2016-12-01
On December 16, 2013, right after the Three Gorges Reservoir (TGR) reached its highest annual water level, a powerful M5.1 earthquake occurred in Badong County, China's Hubei Province. The epicenter is 5.5 km away from the upstream boundary and 100 km from the dam. Was this earthquake triggered by the impoundment of the TGR, and what are its subsequences? To answer these questions, we constructed a coupled three-dimensional poroelastic finite element model to examine the ground surface deformation, the Coulomb failure stress change (ΔCFS) due to the variation of elastic stress and pore pressure, and the elastic strain energy potential accumulation in the TGR region upon the occurrence of this event. Our calculated maximum surface deformation values beneath the TGR compare well with GPS observations, which validates our numerical model. At the hypocenter of the earthquake, ΔCFS is around 8.0 ∼ 11.0 kPa, revealing that it may be eventually triggered by the impoundment. We also discovered that the total elastic strain energy potential accumulation due to the impounded water load is around 1.7 × 1012 J, merely equivalent to 0.01% of the total energy released by this event, indicating that this earthquake is predominately controlled by the typical regional tectonic settings as well as the weak fault zones, and the reservoir impoundment might only facilitate its procedure or occurrence. Furthermore, the stress level in this region remains high after this earthquake and the subsequent reservoir-triggered micro-seismicity or even bigger event are highly possible.
Mexican Americans: Labeling and Mislabeling.
ERIC Educational Resources Information Center
Lampe, Philip E.
1984-01-01
To facilitate comparisons between studies of those who have ancestral ties to Mexico and to aid in accumulation of knowledge, some agreement must be reached among social scientists and a common terminology be adopted. A proposed terminology differentiates between Mexicans, Mexican Americans, Mexicanos, Chicanos, Latinos, Latin Americans, and…
Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles
USDA-ARS?s Scientific Manuscript database
Current approaches to the diagnosis and therapy of atherosclerosis cannot target to lesion-determinant cells in the artery wall. Intimal macrophage infiltration promotes atherosclerotic lesion development by facilitating the accumulation of oxidized low-density lipoproteins (oxLDL) and increasing in...
Controlling the mode of operation of organic transistors through side-chain engineering.
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B; Bandiello, Enrico; Hanifi, David A; Sessolo, Michele; Malliaras, George G; McCulloch, Iain; Rivnay, Jonathan
2016-10-25
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors.
Controlling the mode of operation of organic transistors through side-chain engineering
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan
2016-01-01
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983
Shih, Ying-Chun; Chen, Chao-Ling; Zhang, Yan; Mellor, Rebecca L; Kanter, Evelyn M; Fang, Yun; Wang, Hua-Chi; Hung, Chen-Ting; Nong, Jing-Yi; Chen, Hui-Ju; Lee, Tzu-Han; Tseng, Yi-Shuan; Chen, Chiung-Nien; Wu, Chau-Chung; Lin, Shuei-Liong; Yamada, Kathryn A; Nerbonne, Jeanne M; Yang, Kai-Chien
2018-04-13
Cardiac fibrosis plays a critical role in the pathogenesis of heart failure. Excessive accumulation of extracellular matrix (ECM) resulting from cardiac fibrosis impairs cardiac contractile function and increases arrhythmogenicity. Current treatment options for cardiac fibrosis, however, are limited, and there is a clear need to identify novel mediators of cardiac fibrosis to facilitate the development of better therapeutics. Exploiting coexpression gene network analysis on RNA sequencing data from failing human heart, we identified TXNDC5 (thioredoxin domain containing 5), a cardiac fibroblast (CF)-enriched endoplasmic reticulum protein, as a potential novel mediator of cardiac fibrosis, and we completed experiments to test this hypothesis directly. The objective of this study was to determine the functional role of TXNDC5 in the pathogenesis of cardiac fibrosis. RNA sequencing and Western blot analyses revealed that TXNDC5 mRNA and protein were highly upregulated in failing human left ventricles and in hypertrophied/failing mouse left ventricle. In addition, cardiac TXNDC5 mRNA expression levels were positively correlated with those of transcripts encoding transforming growth factor β1 and ECM proteins in vivo. TXNDC5 mRNA and protein were increased in human CF (hCF) under transforming growth factor β1 stimulation in vitro. Knockdown of TXNDC5 attenuated transforming growth factor β1-induced hCF activation and ECM protein upregulation independent of SMAD3 (SMAD family member 3), whereas increasing expression of TXNDC5 triggered hCF activation and proliferation and increased ECM protein production. Further experiments showed that TXNDC5, a protein disulfide isomerase, facilitated ECM protein folding and that depletion of TXNDC5 led to ECM protein misfolding and degradation in CF. In addition, TXNDC5 promotes hCF activation and proliferation by enhancing c-Jun N-terminal kinase activity via increased reactive oxygen species, derived from NAD(P)H oxidase 4. Transforming growth factor β1-induced TXNDC5 upregulation in hCF was dependent on endoplasmic reticulum stress and activating transcription factor 6-mediated transcriptional control. Targeted disruption of Txndc5 in mice ( Txndc5 -/- ) revealed protective effects against isoproterenol-induced cardiac hypertrophy, reduced fibrosis (by ≈70%), and markedly improved left ventricle function; post-isoproterenol left ventricular ejection fraction was 59.1±1.5 versus 40.1±2.5 ( P <0.001) in Txndc5 -/- versus wild-type mice, respectively. The endoplasmic reticulum protein TXNDC5 promotes cardiac fibrosis by facilitating ECM protein folding and CF activation via redox-sensitive c-Jun N-terminal kinase signaling. Loss of TXNDC5 protects against β agonist-induced cardiac fibrosis and contractile dysfunction. Targeting TXNDC5, therefore, could be a powerful new therapeutic approach to mitigate excessive cardiac fibrosis, thereby improving cardiac function and outcomes in patients with heart failure. © 2018 American Heart Association, Inc.
Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling
You, Jaehwan; Hou, Shangmei; Malik-Soni, Natasha; Xu, Zaikun; Kumar, Anil; Rachubinski, Richard A.; Frappier, Lori
2015-01-01
ABSTRACT Flaviviruses are significant human pathogens that have an enormous impact on the global health burden. Currently, there are very few vaccines against or therapeutic treatments for flaviviruses, and our understanding of how these viruses cause disease is limited. Evidence suggests that the capsid proteins of flaviviruses play critical nonstructural roles during infection, and therefore, elucidating how these viral proteins affect cellular signaling pathways could lead to novel targets for antiviral therapy. We used affinity purification to identify host cell proteins that interact with the capsid proteins of West Nile and dengue viruses. One of the cellular proteins that formed a stable complex with flavivirus capsid proteins is the peroxisome biogenesis factor Pex19. Intriguingly, flavivirus infection resulted in a significant loss of peroxisomes, an effect that may be due in part to capsid expression. We posited that capsid protein-mediated sequestration and/or degradation of Pex19 results in loss of peroxisomes, a situation that could result in reduced early antiviral signaling. In support of this hypothesis, we observed that induction of the lambda interferon mRNA in response to a viral RNA mimic was reduced by more than 80%. Together, our findings indicate that inhibition of peroxisome biogenesis may be a novel mechanism by which flaviviruses evade the innate immune system during early stages of infection. IMPORTANCE RNA viruses infect hundreds of millions of people each year, causing significant morbidity and mortality. Chief among these pathogens are the flaviviruses, which include dengue virus and West Nile virus. Despite their medical importance, there are very few prophylactic or therapeutic treatments for these viruses. Moreover, the manner in which they subvert the innate immune response in order to establish infection in mammalian cells is not well understood. Recently, peroxisomes were reported to function in early antiviral signaling, but very little is known regarding if or how pathogenic viruses affect these organelles. We report for the first time that flavivirus infection results in significant loss of peroxisomes in mammalian cells, which may indicate that targeting of peroxisomes is a key strategy used by viruses to subvert early antiviral defenses. PMID:26423946
Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes.
Woudenberg, Jannes; Rembacz, Krzysztof P; van den Heuvel, Fiona A J; Woudenberg-Vrenken, Titia E; Buist-Homan, Manon; Geuken, Mariska; Hoekstra, Mark; Deelman, Leo E; Enrich, Carlos; Henning, Rob H; Moshage, Han; Faber, Klaas Nico
2010-05-01
Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.
Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates)
Ludewig-Klingner, Ann-Kathrin; Michael, Victoria; Jarek, Michael; Brinkmann, Henner
2018-01-01
Abstract The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa. PMID:29202176
Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.
2015-01-01
Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241
Propionate induces cell swelling and K+ accumulation in shark rectal gland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.
1989-08-01
Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same timemore » Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by {sup 86}Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes.« less
Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Zhiyang; Liu, Hui; Xu, Changcheng
Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less
Nakamura, Maya; Wright, Jonathan C
2013-01-01
A key evolutionary development facilitating land colonization in terrestrial isopods (Isopoda: Oniscidea) is the intermittent liberation of waste nitrogen as volatile ammonia. Intermittent ammonia release exploits glutamine (Gln) as an intermediary nitrogen store. Here, we explore the relationship between temporal patterns of ammonia release and Gln accumulation in three littoral oniscideans from Southern California. Results are interpreted in terms of water availability, habitat, activity patterns, and ancestry. A two-way experimental design was used to test whether ammonia excretion and Gln accumulation follow a tidal or diel periodicity. Ammonia excretion was studied in the laboratory using chambers with or without available seawater and using an acid trap to collect volatile ammonia. Ligia occidentalis releases ammonia directly into seawater and accumulates Gln during low tide (48.9 ± 6.5 μmol g⁻¹ at low tide, 24.1 ± 3.0 μmol g⁻¹ at high tide), indicating that excretion is tidally constrained. Alloniscus perconvexus and Tylos punctatus can excrete ammonia directly into seawater or utilize volatilization. Both species burrow in sand by day and show a diel excretory pattern, accumulating Gln nocturnally (31.8 ± 2.7 μmol g⁻¹ at dawn and 21.8 ± 2.3 μmol g⁻¹ at dusk for A. perconvexus; 85.7 ± 15.1 μmol g⁻¹ at dawn and 25.4 ± 2.9 μmol g⁻¹ at dusk for T. punctatus) and liberating ammonia diurnally. Glutaminase shows higher activity in terrestrial (0.54-0.86 U g⁻¹) compared to intertidal (0.25-0.31 U g⁻¹) species, consistent with the need to generate high PNH₃ for volatilization. The predominant isoform in Armadillidium vulgare is phosphate dependent and maleate independent; phosphate is a plausible regulator in vivo.
Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation
Zhai, Zhiyang; Liu, Hui; Xu, Changcheng; ...
2017-10-01
Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less
Wang, Jia; Rajakulendran, Nirusan; Amirsadeghi, Sasan; Vanlerberghe, Greg C
2011-08-01
The plant mitochondrial electron transport chain (ETC) includes a non-energy conserving alternative oxidase (AOX) thought to dampen reactive oxygen species (ROS) generation by the ETC and/or facilitate carbon metabolism by uncoupling it from ATP turnover. When wild-type (WT) Nicotiana tabacum grown at 28°C/22°C (light/dark) were transferred to 12°C/5°C, they showed a large induction of leaf Aox1a mRNA and AOX protein within 24 h. Transfer to cold also resulted in a large accumulation of monosaccharides, an increase in transcript level of genes encoding important ROS-scavenging enzymes and a moderate increase in lipid peroxidation. Transgenic plants with suppressed AOX level showed less cold-induced sugar accumulation than WT while transgenic plants with enhanced AOX levels showed enhanced sugar accumulation. This is inconsistent with the hypothesis that AOX acts to burn excess carbohydrate, but rather suggests a role for AOX to aid sugar accumulation, at least during cold stress. At 28°C/22°C, plants with suppressed AOX had elevated levels of lipid peroxidation compared with WT, while plants with enhanced AOX had reduced lipid peroxidation. This is consistent with the hypothesis that AOX dampens ROS generation and oxidative damage. However, this inverse relationship between AOX level and lipid peroxidation did not hold upon shift to cold. Under this stress condition, plants with strong suppression of AOX show enhanced induction of ROS-scavenging enzymes compared with WT and decline in lipid peroxidation. These data suggest that, under stress conditions, the lack of AOX enhances a mitochondrial stress-signaling pathway able to increase the ROS-scavenging capacity of the cell. Copyright © Physiologia Plantarum 2011.
Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion.
Li, Guanglai; Tang, Jay X
2009-08-14
In this Letter we propose a kinematic model to explain how collisions with a surface and rotational Brownian motion give rise to accumulation of microswimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from an oblique angle. It then swims away from the surface, facilitated by rotational Brownian motion. Simulations based on this model reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming between two walls.
Clow, Kathy A; Driedzic, William R
2012-04-15
Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ∼1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver.
Kampmeier, Florian; Niesen, Judith; Koers, Alexander; Ribbert, Markus; Brecht, Andreas; Fischer, Rainer; Kiessling, Fabian; Barth, Stefan; Thepen, Theo
2010-10-01
The epidermal growth factor receptor (EGFR) is overexpressed in several types of cancer and its inhibition can effectively inhibit tumour progression. The purpose of this study was to design an EGFR-specific imaging probe that combines efficient tumour targeting with rapid systemic clearance to facilitate non-invasive assessment of EGFR expression. Genetic fusion of a single-chain antibody fragment with the SNAP-tag produced a 48-kDa antibody derivative that can be covalently and site-specifically labelled with substrates containing 0 (6)-benzylguanine. The EGFR-specific single-chain variable fragment (scFv) fusion protein 425(scFv)SNAP was labelled with the near infrared (NIR) dye BG-747, and its accumulation, specificity and kinetics were monitored using NIR fluorescence imaging in a subcutaneous pancreatic carcinoma xenograft model. The 425(scFv)SNAP fusion protein accumulates rapidly and specifically at the tumour site. Its small size allows efficient renal clearance and a high tumour to background ratio (TBR) of 33.2 +/- 6.3 (n = 4) 10 h after injection. Binding of the labelled antibody was efficiently competed with a 20-fold excess of unlabelled probe, resulting in an average TBR of 6 +/- 1.35 (n = 4), which is similar to that obtained with a non-tumour-specific probe (5.44 +/- 1.92, n = 4). When compared with a full-length antibody against EGFR (cetuximab), 425(scFv)SNAP-747 showed significantly higher TBRs and complete clearance 72 h post-injection. The 425(scFv)SNAP fusion protein combines rapid and specific targeting of EGFR-positive tumours with a versatile and robust labelling technique that facilitates the attachment of fluorophores for use in optical imaging. The same approach could be used to couple a chelating agent for use in nuclear imaging.
Pierce, Jacqueline B; van der Merwe, George; Mangroo, Dev
2014-02-01
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.
Pierce, Jacqueline B.; van der Merwe, George
2014-01-01
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors. PMID:24297441
Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters
Walker, Aisha L.; Franke, Ryan M.; Sparreboom, Alex; Ware, Russell E.
2015-01-01
Objective Hydroxyurea has proven laboratory and clinical therapeutic benefits for sickle cell anemia (SCA) and other diseases, yet many questions remain regarding its in vivo pharmacokinetic and pharmacodynamic profiles. Previous reports suggest that hydroxyurea passively diffuses across cells, but its observed rapid absorption and distribution are more consistent with facilitated or active transport. We investigated the potential role of solute carrier (SLC) transporters in cellular uptake and accumulation of hydroxyurea. Materials and Methods Passive diffusion of hydroxyurea across cell membranes was determined using the parallel artificial membrane permeability assay. SLC transporter screens were conducted using in vitro intracellular drug accumulation and transcellular transport assays in cell lines and oocytes overexpressing SLC transporters. Gene expression of SLC transporters was measured by real-time PCR in human tissues and cell lines. Results Hydroxyurea had minimal diffusion across a lipid bilayer but was a substrate for 5 different SLC transporters belonging to the OCTN and OATP families of transporters and urea transporters A and B. Further characterization of hydroxyurea transport revealed that cellular uptake by OATP1B3 is time and temperature dependent and inhibited by known substrates of OATP1B3. Urea transporters A and B are expressed differentially in human tissues and erythroid cells, and transport hydroxyurea bidirectionally via facilitated diffusion. Conclusions These studies provide new insight into drug transport proteins that may be involved in the in vivo absorption, cellular distribution, and elimination of hydroxyurea. Elucidation of hydroxyurea transcellular movement should improve our understanding of its pharmacokinetics and pharmacodynamics, and may help explain some of the inter-patient drug variability observed in patients with SCA. PMID:21256917
Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen
2014-01-01
Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690
ERIC Educational Resources Information Center
Summerskill, John
The Educational Passport is a service that is being developed at the Educational Testing Service for students or other individuals in order to facilitate their entry to school or college or employment. The Passport is an accumulative record that the individual prepares and owns and uses. At the Educational Testing Service, photographed documents…
Prediction of cheatgrass field germination potential using wet thermal accumulation
Bruce A. Roundy; Stuart P. Hardegree; Jeane C. Chambers; Alison Whittaker
2007-01-01
Invasion and dominance of weedy species is facilitated or constrained by environmental and ecological factors that affect resource availability during critical life stages. We compared the relative effects of season, annual weather, site, and disturbance on potential cheatgrass (Bromus tectorum L.) germination in big sagebrush (Artemisia...
Creating Lifelong Learners: Fostering Facilitation, Modeling, & Choice in the Classroom
ERIC Educational Resources Information Center
Thomas, Angela Falter
2015-01-01
This article discusses alternatives to the lecture-style teaching that remains a fundamental practice for many middle school classrooms. Information was accumulated by pre-service middle school language arts teachers, who interviewed their mentor for their student teaching experience, focusing on how each teacher attempts to foster lifelong…
Students' Wisdom Related Knowledge as Expertise
ERIC Educational Resources Information Center
Plavšic, Marlena; Ambrosi-Randic, Neala
2016-01-01
Wisdom, as a form of cognitive functioning, includes different types of knowledge and values, and it seems that increasing the knowledge about the world and different experiences may facilitate their development. School system usually pays more attention to accumulation of knowledge, but little related to wisdom. In this study wisdom…
Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H; Husted, Søren; Schjoerring, Jan K; Talke, Ina N; Krämer, Ute; Clemens, Stephan
2012-02-01
Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.
Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H.; Husted, Søren; Schjoerring, Jan K.; Talke, Ina N.; Krämer, Ute; Clemens, Stephan
2012-01-01
Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem. PMID:22374395
Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun
2015-01-01
Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.
ACCUMULATION OF RADIOCESIUM BY MUSHROOMS IN THE ENVIRONMENT: A LITERATURE REVIEW AND IMAGE GALLERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, M; Mary Ramsey, M
2006-11-05
During the last 50 years, a large amount of information on radionuclide accumulators or 'sentinel-type' organisms in the environment has been published. Much of this work focused on the risks of food-chain transfer of radionuclides to higher organisms such as reindeer and man. However, until the 1980's and 1990's, there has been little published data on the radiocesium ({sup 134}Cs and {sup 137}Cs) accumulation by mushrooms. This presentation will consist of a review of the published data for {sup 134,137}Cs accumulation by mushrooms in nature. The review will consider the time of sampling, sample location characteristics, the radiocesium source termmore » and other aspects that promote {sup 134,137}Cs uptake by mushrooms. This review will focus on published data for mushrooms that demonstrate a large propensity for use in the environmental biomonitoring of radiocesium contamination. It will also provide photographs and descriptions of habitats for many of these mushrooms to facilitate their collection for biomonitoring.« less
A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II.
Parua, Pabitra K; Booth, Gregory T; Sansó, Miriam; Benjamin, Bradley; Tanny, Jason C; Lis, John T; Fisher, Robert P
2018-06-13
The end of the RNA polymerase II (Pol II) transcription cycle is strictly regulated to prevent interference between neighbouring genes and to safeguard transcriptome integrity 1 . The accumulation of Pol II downstream of the cleavage and polyadenylation signal can facilitate the recruitment of factors involved in mRNA 3'-end formation and termination 2 , but how this sequence is initiated remains unclear. In a chemical-genetic screen, human protein phosphatase 1 (PP1) isoforms were identified as substrates of positive transcription elongation factor b (P-TEFb), also known as the cyclin-dependent kinase 9 (Cdk9)-cyclin T1 (CycT1) complex 3 . Here we show that Cdk9 and PP1 govern phosphorylation of the conserved elongation factor Spt5 in the fission yeast Schizosaccharomyces pombe. Cdk9 phosphorylates both Spt5 and a negative regulatory site on the PP1 isoform Dis2 4 . Sites targeted by Cdk9 in the Spt5 carboxy-terminal domain can be dephosphorylated by Dis2 in vitro, and dis2 mutations retard Spt5 dephosphorylation after inhibition of Cdk9 in vivo. Chromatin immunoprecipitation and sequencing analysis indicates that Spt5 is dephosphorylated as transcription complexes traverse the cleavage and polyadenylation signal, concomitant with the accumulation of Pol II phosphorylated at residue Ser2 of the carboxy-terminal domain consensus heptad repeat 5 . A conditionally lethal Dis2-inactivating mutation attenuates the drop in Spt5 phosphorylation on chromatin, promotes transcription beyond the normal termination zone (as detected by precision run-on transcription and sequencing 6 ) and is genetically suppressed by the ablation of Cdk9 target sites in Spt5. These results suggest that the transition of Pol II from elongation to termination coincides with a Dis2-dependent reversal of Cdk9 signalling-a switch that is analogous to a Cdk1-PP1 circuit that controls mitotic progression 4 .
Thanachartwet, Vipa; Wattanathum, Anan; Oer-areemitr, Nittha; Jittmittraphap, Akanitt; Sahassananda, Duangjai; Monpassorn, Chalida; Surabotsophon, Manoon; Desakorn, Varunee
2016-02-01
Dengue is the most common mosquito-borne viral disease in humans. However, the sensitivities of warning signs (WSs) for identifying severe dengue in adults are low, and the utility of lactate levels for identifying severe dengue in adults has not been verified. Therefore, we aimed to evaluate the diagnostic accuracy of using peripheral venous lactate levels (PVL), as well as WSs established by the World Health Organization, for identifying severe dengue. We prospectively evaluated individuals hospitalized for dengue who were admitted to the Hospital for Tropical Diseases in Thailand between May 2013 and January 2015. Blood samples to evaluate PVL levels were collected at admission and every 24 h until the patient exhibited a body temperature of <37.8 °C for at least 24 h. Data were recorded on a pre-defined case report form, including baseline characteristics, clinical parameters, and laboratory findings. Among 125 patients with confirmed dengue, 105 (84.0%) patients had non-severe dengue, and 20 (16.0%) patients had severe dengue. The presence of clinical fluid accumulation as a WS provided high sensitivity (75.0%, 95% confidence interval [CI]: 50.9-91.3%) and specificity (90.5%, 95% CI: 83.2-95.3%). The PVL level at admission was used to evaluate its diagnostic value, and receiver operating characteristic curve analysis revealed an area under the curve of 0.84 for identifying severe dengue. At the optimal cutoff value (PVL: 2.5 mmol/L), the sensitivity and specificity were 65.0% (95% CI: 40.8-84.6%) and 96.2% (95% CI: 90.5-99.0%), respectively. A combined biomarker comprising clinical fluid accumulation and/or PVL of ≥2.5 mmol/L provided the maximum diagnostic accuracy for identifying severe dengue, with a sensitivity of 90.0% (95% CI: 68.3-98.8%) and a specificity of 87.6% (95% CI: 79.8-93.2%). Clinical fluid accumulation and/or PVL may be used as a diagnostic biomarker of severe dengue among adults. This biomarker may facilitate early recognition and timely treatment of patients with severe dengue, which may reduce dengue-related mortality and hospital burden.
Lu, Yi; Wu, Qing; Liu, Long-Zhu; Yu, Xiao-Jiang; Liu, Jin-Jun; Li, Man-Xiang; Zang, Wei-Jin
2018-04-01
Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Yanan; Zhang, Sufang; Zhu, Zhiwei; Shen, Hongwei; Lin, Xinping; Jin, Xiang; Jiao, Xiang; Zhao, Zongbao Kent
2018-01-01
Lipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential. While nitrogen limitation has been routinely employed, low-cost raw materials usually contain rich nitrogenous components, thus preventing from efficient lipid production. Inorganic phosphate (Pi) limitation has been found sufficient to promote conversion of sugars into lipids, yet the molecular basis of cellular response to Pi limitation and concurrent lipid accumulation remains elusive. Here, we performed multi-omic analyses of the oleaginous yeast Rhodosporidium toruloides to shield lights on Pi-limitation-induced lipid accumulation. Samples were prepared under Pi-limited as well as Pi-repleted chemostat conditions, and subjected to analysis at the transcriptomic, proteomic, and metabolomic levels. In total, 7970 genes, 4212 proteins, and 123 metabolites were identified. Results showed that Pi limitation facilitates up-regulation of Pi-associated metabolism, RNA degradation, and triacylglycerol biosynthesis while down-regulation of ribosome biosynthesis and tricarboxylic acid cycle. Pi limitation leads to dephosphorylation of adenosine monophosphate and the allosteric activator of isocitrate dehydrogenase key to lipid biosynthesis. It was found that NADPH, the key cofactor for fatty acid biosynthesis, is limited due to reduced flux through the pentose phosphate pathway and transhydrogenation cycle and that this can be overcome by over-expression of an endogenous malic enzyme. These phenomena are found distinctive from those under nitrogen limitation. Our data suggest that Pi limitation activates Pi-related metabolism, RNA degradation, and TAG biosynthesis while inhibits ribosome biosynthesis and TCA cycle, leading to enhanced carbon fluxes into lipids. The information greatly enriches our understanding on microbial oleaginicity and Pi-related metabolism. Importantly, systems data may facilitate designing advanced cell factories for production of lipids and related oleochemicals.
Galigniana, Mario D; Echeverría, Pablo C; Erlejman, Alejandra G; Piwien-Pilipuk, Graciela
2010-01-01
In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR) -domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor "transformation") is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore.
Hou, Dandi; Wang, Kai; Liu, Ting; Wang, Haixin; Lin, Zhi; Qian, Jie; Lu, Lingli; Tian, Shengke
2017-05-16
Understanding the strategies that the roots of hyperaccumulating plants use to extract heavy metals from soils is important for optimizing phytoremediation. The rhizosphere characteristics of Sedum alfredii, a hyperaccumulator, were investigated 6 months after it had been planted in weathered field soils contaminated with 5.8 μg of Cd g -1 , 1985.1 μg of Zn g -1 , 667.5 μg of Pb g -1 , and 698.8 μg of Cu g -1 . In contrast with the non-hyperaccumulating ecotype (NHE), the hyperaccumulating ecotype (HE) of S. alfredii was more tolerant to the metals, and higher levels of Cd and Zn accumulated. The HE was characterized by a unique rhizosphere, including extensive root systems, a reduced soil pH, a higher metal bioavailability, and increased rhizomicrobial activity. The bioavailability of metals was significantly correlated with the HE's unique bacterial communities (P < 0.005). The HE harbored abundant Streptomyces (9.43%, family Streptomycetaceae), Kribbella (1.08%, family Nocardioidaceae), and an unclassified genus (1.09%, family Nocardioidaceae) in its rhizosphere, a composition that differed from that of the NHE. PICRUSt analysis predicted high relative abundances of imputed functional profiles in the HE rhizosphere related to membrane transport and amino acid metabolism. This study reveals the rhizosphere characteristics, particularly the unique bacterial rhizobiome of a hyperaccumulator, that might provide a new approach to facilitating heavy metal phytoextraction.
Computed tomography of deep fat masses in multiple symmetrical lipomatosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enzi, G.; Biondetti, P.R.; Fiore, D.
1982-07-01
Deep fat masses were evaluated by computed tomography (CT) in 15 patients with multiple symmetrical lipomatosis. In 4 patients, peritracheal accumulations of fat were observed. In 3 of them, tracheal compression by lipomatous tissue was demonstrated: 2 were asymptomatic and the third severe respiratory insufficiency secondary to blockage of the air was by the vocal cords as the result of recurrent nerve palsy. In 6 patients, lipomatous tissue occupied the potential space between the spina scapulae and the trapezius, supraspinatus, and infraspinatus muscles. In 2, calcification of lipomatous masses was observed. There was no relationship between extension of subcutaneous fatmore » and accumulation at deep sites. CT facilitates early detection of peritracheal lipomatous tissue and is helpful in follow-up when deep fat accumulation is responsible for space-occupying lesions requiring surgery.« less
No longer simply a Practice-based Research Network (PBRN) health improvement networks.
Williams, Robert L; Rhyne, Robert L
2011-01-01
While primary care Practice-based Research Networks are best known for their original, research purpose, evidence accumulating over the last several years is demonstrating broader values of these collaborations. Studies have demonstrated their role in quality improvement and practice change, in continuing professional education, in clinician retention in medically underserved areas, and in facilitating transition of primary care organization. A role in informing and facilitating health policy development is also suggested. Taking into account this more robust potential, we propose a new title, the Health Improvement Network, and a new vision for Practice-based Research Networks.
Gratitude: prompting behaviours that build relationships.
Bartlett, Monica Y; Condon, Paul; Cruz, Jourdan; Baumann, Jolie; Desteno, David
2012-01-01
The emotion gratitude is argued to play a pivotal role in building and maintaining social relationships. Evidence is accumulating that links gratitude to increases in relationship satisfaction. Yet, there is currently little evidence for how gratitude does this. The present paper provides experimental evidence of gratitude facilitating relationship-building behaviours. Study 1 provides evidence that gratitude promotes social affiliation, leading one to choose to spend time with a benefactor. Study 2 offers further evidence of gratitude's ability to strengthen relationships by showing that gratitude facilitates socially inclusive behaviours, preferentially towards one's benefactor, even when those actions come at a cost to oneself.
Sheehy, Eamon J; Vinardell, Tatiana; Toner, Mary E; Buckley, Conor T; Kelly, Daniel J
2014-01-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled 'solid' controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies.
Sheehy, Eamon J.; Vinardell, Tatiana; Toner, Mary E.; Buckley, Conor T.; Kelly, Daniel J.
2014-01-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled ‘solid’ controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies. PMID:24595316
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Park, S; Lee, H
Purpose: This work evaluated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps (OSLDfull) with the bleaching conditions according to the accumulated dose. Methods: The OSLDs were first pre-irradiated with a Co-60 gamma ray at more than 5 kGy, so as to fill the deep electron and hole traps. Using a 6-MV beam, the OSLDfull characteristics were investigated in terms of the full bleaching, fading, dose linearity, and dose sensitivity obtained in response to the accumulated dose values. To facilitate a comparison of the dose sensitivity, OSLDs with un-filled deep electron/hole traps (OSLDempty) were investigatedmore » in the same manner. A long-pass filter was used to exclude bleaching-source wavelengths of less than 520 nm. Various bleaching time and wavelength combinations were used in order to determine the optimal bleaching conditions for the OSLD full. Results: The fading for the OSLDfull exhibited stable signals after 8 min, for both 1- and 10-Gy. For 4-h bleaching time and an unfiltered bleaching device, the supralinear index values for the OSLDfull were 1.003, 1.002, 0.999, and 1.001 for doses of 2, 4, 7, and 10 Gy, respectively. For a 65-Gy accumulated dose with a 5-Gy fraction, no variation in dose sensitivity was obtained for the OSLDfull, within a standard deviation of 0.85%, whereas the OSLDempty dose sensitivity decreased by approximately 2.3% per 10 Gy. The filtered bleaching device yielded a highly stable sensitivity for OSLDfull, independent of bleaching time and within a standard deviation of 0.71%, whereas the OSLDempty dose sensitivity decreased by approximately 4.2% per 10 Gy for an accumulated dose of 25 Gy with a 5-Gy fraction. Conclusion: Under the bleaching conditions determined in this study, clinical dosimetry with OSLDfull is highly stable, having an accuracy of 1% with no change in dose sensitivity or linearity at clinical doses. This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korea government (MISP) (No. 2014M2B2A4031164), and by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C3459).« less
Herpes Simplex Virus 2 Infection Impacts Stress Granule Accumulation
Finnen, Renée L.; Pangka, Kyle R.
2012-01-01
Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle. PMID:22623775
NASA Astrophysics Data System (ADS)
Bardelcik, Alexander; Vowles, Caryn J.; Worswick, Michael J.
2018-04-01
This paper examines the mechanical, microstructural, and damage characteristics of five different material conditions that were created using the tailored hot stamping process with in-die heating. The tailored material conditions, TMC1 to TMC5 (softest-hardest), were created using die temperatures ranging from 700 °C to 400 °C, respectively. The tensile strength (and total elongation) ranged from 615 MPa (0.24) for TMC1 to 1122 MPa (0.11) for TMC5. TMC3 and TMC4 exhibited intermediate strength levels, with almost no increase in total elongation relative to TMC5. FE-SEM microscopy was used to quantify the mixed-phase microstructures, which ranged in volume fractions of ferrite, pearlite, bainite, and martensite. High-resolution optical microscopy was used to quantify void accumulation and showed that the total void area fraction at 0.60 thickness strain was low for TMC1 and TMC5 ( 0.09 pct) and highest for TMC3 (0.31 pct). Damage modes were characterized and revealed that the poor damage behavior of TMC3 (martensite/bainite/ferrite composition) was a result of small martensitic grains forming at grain boundaries and grain boundary junctions, which facilitated void nucleation as shown by the highest measured void density for this particular material condition. The excellent ductility of TMC1 was a result of a large grained ferritic/pearlitic microstructure that was less susceptible to void nucleation and growth. Large titanium nitride (TiN) inclusions were observed in all of the tailored material conditions and it was shown that they noticeably contributed to the total void accumulation, specifically for the TMC3 and TMC4 material conditions.
Interplanetary space science data base and access/display tool on the NSSDC heliospheric CD-ROM
NASA Technical Reports Server (NTRS)
Papitashvili, N. E.; King, J. H.
1995-01-01
The National Space Science Data Center (NSSDC) has accumulated a rich archive of heliospheric, magnetospheric, and ionospheric data, as well as data from most other NASA-involved science disciplines. To facilitate access to and use of these data, NSSDC has begun to put selected data onto CD-ROM's. This paper describes one such CD-ROM, and the access and display software developed at NSSDC to support its use. The data on the CD-ROM consist primarily of hourly solar wind magnetic field and plasma data from many near-Earth spacecraft (OMNI) and deep space spacecraft (Voyagers, Pioneers, Helios, Pioneer Venus Orbiter). In addition, 5-minute resolution IMP-8 and ISEE-3 magnetic field and plasma data are also included. Data are stored in both ASCII and CDF formats.
Pre-eruptive storage conditions of the Holocene dacite erupted from Kizimen Volcano, Kamchatka
Browne, B.; Izbekov, P.; Eichelberger, J.; Churikova, T.
2010-01-01
This study describes an investigation of the pre-eruptive conditions (T, P and fO2) of dacite magma erupted during the KZI cycle (12,000-8400 years ago) of Kizimen Volcano, Kamchatka, the earliest, most voluminous and most explosive eruption cycle in the Kizimen record. Hydrothermal, water-saturated experiments on KZI dacite pumice coupled with titanomagnetite-ilmenite geothermometry calculations require that the KZI dacite existed at a temperature of 823 ?? 20??C and pressures of 125-150 MPa immediately prior to eruption. This estimate corresponds to a lithologic contact between Miocene volcaniclastic rocks and Pliocene-Pleistocene volcanic rocks located at a depth of 5-6 km beneath the Kizimen edifice, which may have facilitated the accumulation of atypically large volumes of gas-rich dacite during the KZI cycle.
Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy
NASA Astrophysics Data System (ADS)
Han, Jishu; Zhang, Jingjing; Yang, Meng; Cui, Daxiang; de La Fuente, Jesus M.
2015-12-01
Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future.Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future. Electronic supplementary information (ESI) available: The evolution of the UV-vis absorption of Au NPrs by centrifugation, TEM image of PEG-capped Au NPrs, the UV-vis absorption of glucose, cytotoxicity of Au@PEG-Glc NPrs, gastric cell viabilities versus the concentration of Au@PEG-Glc NPrs and gastric cell viabilities filled with 80 μg Au@PEG-Glc NPrs versus the irradiation time, optoacoustic signals of Au NPr solution and Au@PEG NPrs. See DOI: 10.1039/c5nr06261f
Rozov, A; Burnashev, N; Sakmann, B; Neher, E
2001-01-01
In connections formed by nerve terminals of layer 2/3 pyramidal cells onto bitufted interneurones in young (postnatal day (P)14–15) rat somatosensory cortex, the efficacy and reliability of synaptic transmission were low. At these connections release was facilitated by paired-pulse stimulation (at 10 Hz). In connections formed by terminals of layer 2/3 pyramids with multipolar interneurones efficacy and reliability were high and release was depressed by paired-pulse stimulation. In both types of terminal, however, the voltage-dependent Ca2+ channels that controlled transmitter release were predominantly of the P/Q- and N-subtypes. The relationship between unitary EPSP amplitude and extracellular calcium concentration ([Ca2+]o) was steeper for facilitating than for depressing terminals. Fits to a Hill equation with nH= 4 indicated that the apparent KD of the Ca2+ sensor for vesicle release was two- to threefold lower in depressing terminals than in facilitating ones. Intracellular loading of pyramidal neurones with the fast and slowly acting Ca2+ buffers BAPTA and EGTA differentially reduced transmitter release in these two types of terminal. Unitary EPSPs evoked by pyramidal cell stimulation in bitufted cells were reduced by presynaptic BAPTA and EGTA with half-effective concentrations of ∼0.1 and ∼1 mm, respectively. Unitary EPSPs evoked in multipolar cells were reduced to one-half of control at higher concentrations of presynaptic BAPTA and EGTA (∼0.5 and ∼7 mm, respectively). Frequency-dependent facilitation of EPSPs in bitufted cells was abolished by EGTA at concentrations of > 0.2 mm, suggesting that accumulation of free Ca2+ is essential for facilitation in the terminals contacting bitufted cells. In contrast, facilitation was unaffected or even slightly increased in the terminals loaded with BAPTA in the concentration range 0.02–0.5 mm. This is attributed to partial saturation of exogenously added BAPTA. However, BAPTA at concentrations > 1 mm also abolished facilitation. Frequency-dependent depression of EPSPs in multipolar cells was not significantly reduced by EGTA. With BAPTA, the depression decreased at concentrations > 0.5 mm, concomitant with a reduction in amplitude of the first EPSP in a train. An analysis is presented that interprets the effects of EGTA and BAPTA on synaptic efficacy and its short-term modification during paired-pulse stimulation in terms of changes in [Ca2+] at the release site ([Ca2+]RS) and that infers the affinity of the Ca2+ sensor from the dependence of unitary EPSPs on [Ca2+]o. The results suggest that the target cell-specific difference in release from the terminals on bitufted or multipolar cells can be explained by a longer diffusional distance between Ca2+ channels and release sites and/or lower Ca2+ channels density in the terminals that contact bitufted cells. This would lead to a lower [Ca2+] at release sites and would also explain the higher apparent KD of the Ca2+ sensor in facilitating terminals. PMID:11251060
Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.
Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan
2015-02-05
Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.
Sample Size Estimation in Cluster Randomized Educational Trials: An Empirical Bayes Approach
ERIC Educational Resources Information Center
Rotondi, Michael A.; Donner, Allan
2009-01-01
The educational field has now accumulated an extensive literature reporting on values of the intraclass correlation coefficient, a parameter essential to determining the required size of a planned cluster randomized trial. We propose here a simple simulation-based approach including all relevant information that can facilitate this task. An…
ERIC Educational Resources Information Center
Busseri, Michael A.; Rose-Krasnor, Linda
2009-01-01
In recent years, an impressive volume of evidence has accumulated demonstrating that youth involvement in structured, organized activities (e.g. school sports, community clubs) may facilitate positive youth development. We present a theory-based framework for studying structured activity involvement (SAI) as a context for positive youth…
Recognising Prior Learning: Investigating the Future of Informal Learning, a Northern Ireland Study
ERIC Educational Resources Information Center
O'Hagan, Celia; McAleavy, Gerry; Storan, John
2005-01-01
Credit accumulation and transfer schemes (CATS) have developed as a means to facilitate access and the recognition and development of formal learning experiences across educational sectors and providers. Modularisation and credit developments have significantly affected the provision of formal learning opportunities over the last three decades.…
C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD.
Liu, Yuanjing; Pattamatta, Amrutha; Zu, Tao; Reid, Tammy; Bardhi, Olgert; Borchelt, David R; Yachnis, Anthony T; Ranum, Laura P W
2016-05-04
To define how the C9orf72 GGGGCC expansion mutation causes ALS/FTD and to facilitate therapy development, a mouse model that recapitulates the molecular and phenotypic features of the disease is urgently needed. Two groups recently reported BAC mouse models that produce RNA foci and RAN proteins but, surprisingly, do not develop the neurodegenerative or behavioral features of ALS/FTD. We now report a BAC mouse model of C9orf72 ALS/FTD that shows decreased survival, paralysis, muscle denervation, motor neuron loss, anxiety-like behavior, and cortical and hippocampal neurodegeneration. These mice express C9orf72 sense transcripts and upregulated antisense transcripts. In contrast to sense RNA foci, antisense foci preferentially accumulate in ALS/FTD-vulnerable cell populations. RAN protein accumulation increases with age and disease, and TDP-43 inclusions are found in degenerating brain regions in end-stage animals. The ALS/FTD phenotypes in our mice provide a unique tool that will facilitate developing therapies targeting pathways that prevent neurodegeneration and increase survival. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Zeyang; Castillo-González, Claudia; Wang, Zhiye; Sun, Di; Hu, Xiaomei; Shen, Xuefeng; Potok, Magdalena E; Zhang, Xiuren
2018-06-18
Serrate (SE) is a key component in RNA metabolism. Little is known about whether and how it can regulate epigenetic silencing. Here, we report histone methyltransferases ATXR5 and ATXR6 (ATXR5/6) as novel partners of SE. ATXR5/6 deposit histone 3 lysine 27 monomethylation (H3K27me1) to promote heterochromatin formation, repress transposable elements (TEs), and control genome stability in Arabidopsis. SE binds to ATXR5/6-regulated TE loci and promotes H3K27me1 accumulation in these regions. Furthermore, SE directly enhances ATXR5 enzymatic activity in vitro. Unexpectedly, se mutation suppresses the TE reactivation and DNA re-replication phenotypes in the atxr5 atxr6 mutant. The suppression of TE expression results from triggering RNA-dependent RNA polymerase 6 (RDR6)-dependent RNA silencing in the se atxr5 atxr6 mutant. We propose that SE facilitates ATXR5/6-mediated deposition of the H3K27me1 mark while inhibiting RDR6-mediated RNA silencing to protect TE transcripts. Hence, SE coordinates epigenetic silencing and RNA processing machineries to fine-tune the TE expression. Copyright © 2018 Elsevier Inc. All rights reserved.
A high-resolution method for the localization of proanthocyanidins in plant tissues
2011-01-01
Background Histochemical staining of plant tissues with 4-dimethylaminocinnamaldehyde (DMACA) or vanillin-HCl is widely used to characterize spatial patterns of proanthocyanidin accumulation in plant tissues. These methods are limited in their ability to allow high-resolution imaging of proanthocyanidin deposits. Results Tissue embedding techniques were used in combination with DMACA staining to analyze the accumulation of proanthocyanidins in Lotus corniculatus (L.) and Trifolium repens (L.) tissues. Embedding of plant tissues in LR White or paraffin matrices, with or without DMACA staining, preserved the physical integrity of the plant tissues, allowing high-resolution imaging that facilitated cell-specific localization of proanthocyanidins. A brown coloration was seen in proanthocyanidin-producing cells when plant tissues were embedded without DMACA staining and this was likely to have been due to non-enzymatic oxidation of proanthocyanidins and the formation of colored semiquinones and quinones. Conclusions This paper presents a simple, high-resolution method for analysis of proanthocyanidin accumulation in organs, tissues and cells of two plant species with different patterns of proanthocyanidin accumulation, namely Lotus corniculatus (birdsfoot trefoil) and Trifolium repens (white clover). This technique was used to characterize cell type-specific patterns of proanthocyanidin accumulation in white clover flowers at different stages of development. PMID:21595992
Aluminum exclusion and aluminum tolerance in woody plants.
Brunner, Ivano; Sperisen, Christoph
2013-01-01
The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al(3) (+) from root cells (exclusion mechanisms) and those that enable plants to tolerate Al(3) (+) once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al(3) (+) exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al(3) (+) adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.
Kim, Young-Min; Lee, Seung Joon; Jo, Sun Jin; Park, Kyu Nam
2016-01-05
To identify the barriers to and facilitators of implementing guidelines for targeted temperature management (TTM) after cardiac arrest perceived by hospital resuscitation champions and to investigate the changes in their perceptions over the early implementation period. A longitudinal qualitative study (up to 2 serial semistructured interviews over 1 year and focus groups). The individual interviews and focus groups were transcribed and coded by 2 independent assessors. Contents were analysed thematically; group interaction was also examined. 21 hospitals, including community and tertiary care centres in South Korea. 21 hospital champions (14 acting champions and 7 managerial champions). The final data set included 40 interviews and 2 focus groups. The identified barriers and facilitators could be classified into 3 major themes: (1) healthcare professionals' perceptions of the guidelines and protocols, (2) interdisciplinary and interprofessional collaboration and (3) organisational resources. Lack of resources was the most commonly agreed on barrier for the acting champions, whereas lack of interdisciplinary collaboration was the most common barrier for the managerial champions. Educational activities and sharing successfully treated cases were the most frequently identified facilitators. Most of the participants identified and agreed that cooling equipment was an important barrier as well as a facilitator of successful TTM implementation. Perception of the guidelines and protocols has improved with the accumulation of clinical experience over the study period. Healthcare professionals' internal barriers to TTM implementation may be influenced by new guidelines and can be changed with the accumulation of successful clinical experiences during the early implementation period. Promoting interprofessional and interdisciplinary collaboration through educational activities and the use of cooling equipment with an automated feedback function can improve adherence to guidelines in hospitals with limited human resources in critical care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Kim, Young-Min; Lee, Seung Joon; Jo, Sun Jin; Park, Kyu Nam
2016-01-01
Objectives To identify the barriers to and facilitators of implementing guidelines for targeted temperature management (TTM) after cardiac arrest perceived by hospital resuscitation champions and to investigate the changes in their perceptions over the early implementation period. Design A longitudinal qualitative study (up to 2 serial semistructured interviews over 1 year and focus groups). The individual interviews and focus groups were transcribed and coded by 2 independent assessors. Contents were analysed thematically; group interaction was also examined. Setting 21 hospitals, including community and tertiary care centres in South Korea. Participants 21 hospital champions (14 acting champions and 7 managerial champions). Results The final data set included 40 interviews and 2 focus groups. The identified barriers and facilitators could be classified into 3 major themes: (1) healthcare professionals’ perceptions of the guidelines and protocols, (2) interdisciplinary and interprofessional collaboration and (3) organisational resources. Lack of resources was the most commonly agreed on barrier for the acting champions, whereas lack of interdisciplinary collaboration was the most common barrier for the managerial champions. Educational activities and sharing successfully treated cases were the most frequently identified facilitators. Most of the participants identified and agreed that cooling equipment was an important barrier as well as a facilitator of successful TTM implementation. Perception of the guidelines and protocols has improved with the accumulation of clinical experience over the study period. Conclusions Healthcare professionals’ internal barriers to TTM implementation may be influenced by new guidelines and can be changed with the accumulation of successful clinical experiences during the early implementation period. Promoting interprofessional and interdisciplinary collaboration through educational activities and the use of cooling equipment with an automated feedback function can improve adherence to guidelines in hospitals with limited human resources in critical care. PMID:26733568
5 CFR 630.304 - Accumulation limitation for part-time employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Accumulation limitation for part-time... REGULATIONS ABSENCE AND LEAVE Annual Leave § 630.304 Accumulation limitation for part-time employees. A part-time employee may accumulate not more than 240 or 360 hours' annual leave on the same basis that a full...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Ankur Kumar; Singh, Sandeep; Chhipa, Rishi Raj
2006-10-15
The response rates of extensively used chemotherapeutic drugs, carboplatin (Carb) or 5-fluorouracil (5-FU) are relatively disappointing because of considerable side effects associated with their high-dose regimen. In the present study, we determined whether treatment with a cholesterol depleting agent, methyl-{beta}-cyclodextrin (MCD), enhances the weak efficacy of low doses of Carb or 5-FU in human breast cancer cells. Data demonstrate that pretreatment with MCD significantly potentiates the cytotoxic activity of Carb and 5-FU in both MCF-7 and MDA-MB-231. Furthermore, we explored the molecular basis of enhanced cytotoxicity, and our data revealed that low-dose treatment with these drugs in MCD pretreated cellsmore » exhibited significantly decreased Akt phosphorylation, NF-{kappa}B activity and down-regulation in expression of anti-apoptotic protein Bcl-2. In addition, MCD pretreated cells demonstrated an increased intracellular drug accumulation as compared to cells treated with drugs alone. Taken together, our data provide the basis for potential therapeutic application of MCD in combination with other conventional cytotoxic drugs to facilitate reduction of drug dosage that offers a better chemotherapeutic approach with low toxicity.« less
Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De
2017-05-10
Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright © 2017 the authors 0270-6474/17/374928-14$15.00/0.
5-Aminolevulinic Acid Accumulation in a Cerebral Infarction Mimicking High-Grade Glioma.
Behling, Felix; Hennersdorf, Florian; Bornemann, Antje; Tatagiba, Marcos; Skardelly, Marco
2016-08-01
5-Aminolevulinic acid (5-ALA) has become an integral part in the neurosurgical treatment of malignant glioma. Over time, several other tumor entities have been identified to metabolize 5-ALA and show a similar fluorescence pattern during surgical resection. This case report is the first description of 5-ALA accumulation in postischemic cerebral tissue. This evidence questions the assumption that 5-ALA accumulation in glioma is exclusively attributed to tumor infiltration. Instead, 5-ALA accumulation can also occur beyond the tumor borders and may be partially ascribed to inflammatory changes in the surrounding brain tissue. A 64-year old woman presented with episodes of apraxia and a ring-enhancing lesion in postcontrast T1-weighted magnetic resonance sequences suggestive of high grade glioma. Strong fluorescence was observed during 5-ALA-guided resection. However, although the frozen section was inconclusive, the final histopathologic examination revealed a stage II cerebral infarction. 5-ALA accumulation in postischemic cerebral tissue should be considered for intended supramarginal resections near eloquent brain regions. Therefore, sufficient preoperative imaging should regularly include magnetic resonance imaging spectroscopy and perfusion sequences to ascertain the proper diagnosis. Moreover, further research is warranted to determine the role of 5-ALA accumulation in postischemic and inflammatory brain tissue. Copyright © 2016 Elsevier Inc. All rights reserved.
Collection of microparticles at high balloon altitudes in the stratosphere
NASA Technical Reports Server (NTRS)
Testa, John P., Jr.; Stephens, John R.; Berg, Walter W.; Cahill, Thomas A.; Onaka, Takashi
1990-01-01
Stratospheric particles were collected between 34 and 36 km, using a combination of cascade impactors and filters lofted by a large helium balloon, and the particle concentration, size distribution, and bulk elemental composition were determined using SEM and proton-induced X-ray emission (PEXE) instrument. In addition, datailed particle morphology, elemental analysis, and electron diffraction data were obtained on 23 particles using a TEM. The concentration of particles between 0.045 and 1.0 micron in radius was found to be orders of magnitude above the concentrations predicted by the model of Hunten et al. (1980), but was consistent with balloon and satellite observations. Elemental composition analysis showed the presence of Cl, S, Ti, Fe, Br, Ni, Zr, Zn, Sr, and Cu in decreasing order of concentration. The 23 particles analyzed by TEM ranged from Al-rich silicates to almost pure Fe to one containing almost exclusively Ba and S. None were definitely chondritic in composition.
Moles: Tool-Assisted Environment Isolation with Closures
NASA Astrophysics Data System (ADS)
de Halleux, Jonathan; Tillmann, Nikolai
Isolating test cases from environment dependencies is often desirable, as it increases test reliability and reduces test execution time. However, code that calls non-virtual methods or consumes sealed classes is often impossible to test in isolation. Moles is a new lightweight framework which addresses this problem. For any .NET method, Moles allows test-code to provide alternative implementations, given as .NET delegates, for which C# provides very concise syntax while capturing local variables in a closure object. Using code instrumentation, the Moles framework will redirect calls to provided delegates instead of the original methods. The Moles framework is designed to work together with the dynamic symbolic execution tool Pex to enable automated test generation. In a case study, testing code programmed against the Microsoft SharePoint Foundation API, we achieved full code coverage while running tests in isolation without an actual SharePoint server. The Moles framework integrates with .NET and Visual Studio.
Shai, Nadav; Yifrach, Eden; van Roermund, Carlo W T; Cohen, Nir; Bibi, Chen; IJlst, Lodewijk; Cavellini, Laetitia; Meurisse, Julie; Schuster, Ramona; Zada, Lior; Mari, Muriel C; Reggiori, Fulvio M; Hughes, Adam L; Escobar-Henriques, Mafalda; Cohen, Mickael M; Waterham, Hans R; Wanders, Ronald J A; Schuldiner, Maya; Zalckvar, Einat
2018-05-02
The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in β-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease.
Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene
NASA Astrophysics Data System (ADS)
Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.
2017-12-01
Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.
Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.
Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R
2017-04-01
The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.
Gao, Qi; Cao, Xuan; Huang, Yu-Ying; Yang, Jing-Lin; Chen, Jun; Wei, Liu-Jing; Hua, Qiang
2018-05-18
Recent advances in the production of biofuels by microbes have attracted attention due to increasingly limited fossil fuels. Biodiesels, especially fatty acid ethyl esters (FAEEs), are considered a potentially fully sustainable fuel in the near future due to similarities with petrodiesels and compatibility with existing infrastructure. However, biosynthesis of FAEEs is limited by the supply of precursor lipids and acetyl-CoA. In the present study, we explored the production potential of an engineered biosynthetic pathway coupled to the addition of ethanol in the oleaginous yeast Yarrowia lipolytica. This type of yeast is able to supply a greater amount of precursor lipids than species typically used. To construct the FAEEs synthesis pathway, WS genes that encode wax ester synthases (WSs) from different species were codon-optimized and heterologously expressed in Y. lipolytica. The most productive engineered strain was found to express a WS gene from Marinobacter hydrocarbonoclasticus strain DSM 8798. To stepwisely increase FAEEs production, we optimized the promoter of WS overexpression, eliminated β-oxidation by deleting the PEX10 gene in our engineered strains, and redirected metabolic flux toward acetyl-CoA. The new engineered strain, coupled with an optimized ethanol concentration, led to an approximate 5.5-fold increase in extracellular FAEEs levels compared to the wild-type strain and a maximum FAEEs titer of 1.18 g/L in shake flask cultures. In summary, the present study demonstrated that an engineered Y. lipolytica strain possessed a high capacity for FAEEs production and may serve as a platform for more efficient biodiesel production in the future.
Lessons from ten years of genome-wide association studies of asthma
Vicente, Cristina T; Revez, Joana A; Ferreira, Manuel A R
2017-01-01
Twenty-five genome-wide association studies (GWAS) of asthma were published between 2007 and 2016, the largest with a sample size of 157242 individuals. Across these studies, 39 genetic variants in low linkage disequilibrium (LD) with each other were reported to associate with disease risk at a significance threshold of P<5 × 10−8, including 31 in populations of European ancestry. Results from analyses of the UK Biobank data (n=380 503) indicate that at least 28 of the 31 associations reported in Europeans represent true-positive findings, collectively explaining 2.5% of the variation in disease liability (median of 0.06% per variant). We identified 49 transcripts as likely target genes of the published asthma risk variants, mostly based on LD with expression quantitative trait loci (eQTL). Of these genes, 16 were previously implicated in disease pathophysiology by functional studies, including TSLP, TNFSF4, ADORA1, CHIT1 and USF1. In contrast, at present, there is limited or no functional evidence directly implicating the remaining 33 likely target genes in asthma pathophysiology. Some of these genes have a known function that is relevant to allergic disease, including F11R, CD247, PGAP3, AAGAB, CAMK4 and PEX14, and so could be prioritized for functional follow-up. We conclude by highlighting three areas of research that are essential to help translate GWAS findings into clinical research or practice, namely validation of target gene predictions, understanding target gene function and their role in disease pathophysiology and genomics-guided prioritization of targets for drug development. PMID:29333270
Polymerization on the rocks: beta-amino acids and arginine
NASA Technical Reports Server (NTRS)
Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1998-01-01
We have studied the accumulation of long oligomers of beta-amino acids on the surface of minerals using the 'polymerization on the rocks' protocol. We find that long oligopeptides of beta-glutamic acid which cannot be formed in homogeneous aqueous solution are accumulated efficiently on the surface of hydroxylapatite using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as condensing agent. The EDAC-induced oligomerization of aspartic acid on hydroxylapatite proceeds even more efficiently. Hydroxylapatite can also facilitate the ligation of the tripeptide (glu)3. The 'polymerization on the rocks' scenario is not restricted to negatively-charged amino acids. Oligoarginines are accumulated on the surface of illite using carbonyldiimidizole (CDI) as condensing agent. We find that FeS2 catalyzes the CDI-induced oligomerization of arginine, although it does not adsorb oligoarginines. These results are relevant to the formation of polypeptides on the primitive earth.
New Method for Knowledge Management Focused on Communication Pattern in Product Development
NASA Astrophysics Data System (ADS)
Noguchi, Takashi; Shiba, Hajime
In the field of manufacturing, the importance of utilizing knowledge and know-how has been growing. To meet this background, there is a need for new methods to efficiently accumulate and extract effective knowledge and know-how. To facilitate the extraction of knowledge and know-how needed by engineers, we first defined business process information which includes schedule/progress information, document data, information about communication among parties concerned, and information which corresponds to these three types of information. Based on our definitions, we proposed an IT system (FlexPIM: Flexible and collaborative Process Information Management) to register and accumulate business process information with the least effort. In order to efficiently extract effective information from huge volumes of accumulated business process information, focusing attention on “actions” and communication patterns, we propose a new extraction method using communication patterns. And the validity of this method has been verified for some communication patterns.
Molecular and cellular mechanisms of pulmonary fibrosis
2012-01-01
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096
Proinflammatory TLR signaling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages
Jin, Jin; Xiao, Yichuan; Hu, Hongbo; Zou, Qiang; Li, Yanchuan; Gao, Yanpan; Ge, Wei; Cheng, Xuhong; Sun, Shao-Cong
2014-01-01
Signal transduction from toll-like receptors (TLRs) is important for innate immunity against infections, but deregulated TLR signaling contributes to inflammatory disorders. Here we show that myeloid cell-specific ablation of TRAF2 greatly promotes TLR-stimulated proinflammatory cytokine expression in macrophages and exacerbates colitis in an animal model of inflammatory bowel disease. TRAF2 deficiency does not enhance upstream signaling events, but it causes accumulation of two transcription factors, c-Rel and IRF5, known to mediate proinflammatory cytokine induction. Interestingly, TRAF2 controls the fate of c-Rel and IRF5 via a proteasome-dependent mechanism that also requires TRAF3 and the E3 ubiquitin ligase cIAP. We further show that TRAF2 also regulates inflammatory cytokine production in tumor-associated macrophages and facilitates tumor growth. These findings demonstrate an unexpected anti-inflammatory function of TRAF2 and suggest a proteasome-dependent mechanism that limits the proinflammatory TLR signaling. PMID:25565375
Keil, Lorenz; Hartmann, Michael; Lanzmich, Simon; Braun, Dieter
2016-07-27
How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients - down to 100 K over one metre - can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.
Facilitation- vs. competition-driven succession: the key role of resource-ratio.
Koffel, Thomas; Boudsocq, Simon; Loeuille, Nicolas; Daufresne, Tanguy
2018-05-02
Symbiotic nitrogen (N)-fixing plants are abundant during primary succession, as typical bedrocks lack available N. In turn, fixed N accumulates in soils through biomass turnover and recycling, favouring more nitrophilous organisms. Yet, it is unclear how this facilitation mechanism interacts with competition for other limiting nutrients such as phosphorus (P) and how this affects succession. Here, we introduce a resource-explicit, community assembly model of N-fixing species and analyze successional trajectories along resource availability gradients using contemporary niche theory. We show that facilitation-driven succession occurs under low N and high enough P availabilities, and is characterised by autogenic ecosystem development and relatively ordered trajectories. We show that late facilitation-driven succession is sensitive to catastrophic shifts, highlighting the need to invoke other mechanisms to explain ecosystem stability near the climax. Put together with competition-driven succession, these results lead to an enriched version of Tilman's resource-ratio theory of succession. © 2018 John Wiley & Sons Ltd/CNRS.
Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael R.; Tegos, George P.
2011-01-01
Background Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria. PMID:21483731
Catana, Vasile; Golding, Brian; Weretilnyk, Elizabeth A.; Cameron, Robin K.
2014-01-01
A whole-genome sequencing technique developed to identify fast neutron-induced deletion mutations revealed that iap1-1 is a new allele of EDS5 (eds5-5). RPS2-AvrRpt2-initiated effector-triggered immunity (ETI) was compromised in iap1-1/eds5-5 with respect to in planta bacterial levels and the hypersensitive response, while intra- and intercellular free salicylic acid (SA) accumulation was greatly reduced, suggesting that SA contributes as both an intracellular signaling molecule and an antimicrobial agent in the intercellular space during ETI. During the compatible interaction between wild-type Col-0 and virulent Pseudomonas syringae pv. tomato (Pst), little intercellular free SA accumulated, which led to the hypothesis that Pst suppresses intercellular SA accumulation. When Col-0 was inoculated with a coronatine-deficient strain of Pst, high levels of intercellular SA accumulation were observed, suggesting that Pst suppresses intercellular SA accumulation using its phytotoxin coronatine. This work suggests that accumulation of SA in the intercellular space is an important component of basal/PAMP-triggered immunity as well as ETI to pathogens that colonize the intercellular space. PMID:24594657
Plant reproductive organs and the origin of terrestrial insects
Georgy V. Stadnitsky
1991-01-01
It is widely believed that plants facilitated the evolution of terrestrial insects (Southwood 1973). However, the mechanisms by which this evolution occurred are not yet fully understood. I therefore propose a hypothesis about one possible mode of formation of terrestrial insects and fauna. The soil, warm shallow lagoons, tidal zones, and accumulations of detritus are...
ERIC Educational Resources Information Center
Rampersad, Ravi
2014-01-01
Bourdieu describes capital as the political building blocks of social order that give meaning to social accumulation and consumption. Through a combination of Bourdieu's sociology and critical race theory, this sojourn into Afro-Trinidadian boys' achievement seeks to elucidate an approach to understanding capital as inherently raced. This is…
ERIC Educational Resources Information Center
Buggey, Tom; Hoomes, Grace; Sherberger, Mary Elizabeth; Williams, Sarah
2011-01-01
Video self-modeling (VSM) has accumulated a relatively impressive track record in the research literature across behaviors, ages, and types of disabilities. Using only positive imagery, VSM gives individuals the opportunity to view themselves performing a task just beyond their present functioning level via creative editing of videos using VCRs or…
Lugade, Amit A; Kalathil, Suresh; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin
2013-07-01
The accumulation of immunosuppressive cells and exhausted effector T cells highlight an important immune dysfunction in advanced stage hepatocellular carcinoma (HCC) patients. These cells significantly hamper the efficacy immunotherapies and facilitate HCC progression. We have recently demonstrated that the multipronged depletion of immunosuppressive cells potentially restores effector T-cell function in HCC.
Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M
2016-05-26
RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.
Does Holding a Postdoctoral Position Bring Benefits for Advancing to Academia?
ERIC Educational Resources Information Center
Lin, Eric S.; Chiu, Shih-Yung
2016-01-01
Postdoc is a special transitional position for those with a doctoral degree and is usually regarded as an investment to accumulate the additional human and social capital needed to facilitate future job searches or to add to an academic reserve army of unemployed PhDs. Given the prevalence of postdoctoral positions nowadays, it is crucial to…
Adelaide Chapman Johnson; J. Alan Yeakley
2016-01-01
Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates...
ERIC Educational Resources Information Center
Diefenbach, Gretchen J.; Tolin, David F.; Gilliam, Christina M.; Meunier, Suzanne A.
2008-01-01
Data suggesting that cognitive-behavioral therapy (CBT) is efficacious for late-life anxiety are accumulating; however, effectiveness has not been well established. Incorporating CBT for anxiety into home care is needed to facilitate access to evidenced-based treatment for a growing population of community-dwelling, functionally impaired elderly…
ERIC Educational Resources Information Center
Makopoulou, Kyriaki
2018-01-01
Background: Research evidence on what makes CPD effective is accumulating. Yet, fundamental questions about the specific features that lead to programme success. Furthermore, very little research investigates the nature and quality of CPD providers' (tutors) practices. Taking a closer look at how CPD providers support teachers to learn is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoshaug, Eric P; Van Wychen, Stefanie R; Zhang, Min
Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1)more » genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.« less
Implementation of 5S Method for Ergonomic Laboratory
NASA Astrophysics Data System (ADS)
Dila Sari, Amarria; Ilma Rahmillah, Fety; Prabowo Aji, Bagus
2017-06-01
This article discusses 5S implementation in Work System Design and Ergonomic Laboratory, Department of Industrial Engineering, Islamic University of Indonesia. There are some problems related to equipment settings for activity involving students such as files which is accumulated over the previous year practicum, as well as the movement of waste in the form of time due to the placement of goods that do not fit. Therefore, this study aims to apply the 5S method in DSK & E laboratory to facilitate the work processes and reduce waste. The project is performed by laboratory management using 5S methods in response to continuous improvement (Kaizen). Moreover, some strategy and suggestions are promoted to impose 5S system within the laboratory. As a result, the tidiness and cleanliness can be achieved that lead to the great performance of laboratory users. Score assessment before implementing 5S DSKE laboratory is at 64 (2.56) while the score after implementation is 32 (1.28) and shows an improvement of 50%. This has implications for better use in the laboratory area, save time when looking for tools and materials due to its location and good visual control, as well as improving the culture and spirit of ‘5S’ on staff regarding better working environment
Revisiting the cognitive buffer hypothesis for the evolution of large brains
Sol, Daniel
2008-01-01
Why have some animals evolved large brains despite substantial energetic and developmental costs? A classic answer is that a large brain facilitates the construction of behavioural responses to unusual, novel or complex socioecological challenges. This buffer effect should increase survival rates and favour a longer reproductive life, thereby compensating for the costs of delayed reproduction. Although still limited, evidence in birds and mammals is accumulating that a large brain facilitates the construction of novel and altered behavioural patterns and that this ability helps dealing with new ecological challenges more successfully, supporting the cognitive-buffer interpretation of the evolution of large brains. PMID:19049952
Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John
2014-01-01
Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024
Chertok, Beata; David, Allan E.; Yang, Victor C.
2010-01-01
This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity – properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administration, GPEI could not be magnetically accumulated in tumors of rats harboring orthotopic 9L-gliosarcomas due to its poor pharmacokinetic properties, reflected by a negligibly low plasma AUC of 12 ± 3 μg Fe/ml*min. To improve “passive” GPEI presentation to brain tumor vasculature for subsequent “active” magnetic capture, we examined the intra-carotid route as an alternative for nanoparticle administration. Intra-carotid administration in conjunction with magnetic targeting resulted in 30-fold (p = 0.002) increase in tumor entrapment of GPEI compared to that seen with intravenous administration. In addition, magnetic accumulation of cationic GPEI (ζ-potential = + 37.2 mV) in tumor lesions was 5.2-fold higher (p = 0.004) than that achieved with slightly anionic G100 (ζ-potential = −12 mV) following intra-carotid administration, while no significant accumulation difference was detected between the two types of nanoparticles in the contra-lateral brain (p = 0.187). These promising results warrant further investigation of GPEI as a potential cell-permeable, magnetically-responsive platform for brain tumor delivery of drugs and genes. PMID:20494439
Chertok, Beata; David, Allan E; Yang, Victor C
2010-08-01
This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity--properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administration, GPEI could not be magnetically accumulated in tumors of rats harboring orthotopic 9L-gliosarcomas due to its poor pharmacokinetic properties, reflected by a negligibly low plasma AUC of 12 +/- 3 microg Fe/ml min. To improve "passive" GPEI presentation to brain tumor vasculature for subsequent "active" magnetic capture, we examined the intra-carotid route as an alternative for nanoparticle administration. Intra-carotid administration in conjunction with magnetic targeting resulted in 30-fold (p=0.002) increase in tumor entrapment of GPEI compared to that seen with intravenous administration. In addition, magnetic accumulation of cationic GPEI (zeta-potential = + 37.2 mV) in tumor lesions was 5.2-fold higher (p=0.004) than that achieved with slightly anionic G100 (zeta-potential= -12 mV) following intra-carotid administration, while no significant accumulation difference was detected between the two types of nanoparticles in the contra-lateral brain (p=0.187). These promising results warrant further investigation of GPEI as a potential cell-permeable, magnetically-responsive platform for brain tumor delivery of drugs and genes. 2010 Elsevier Ltd. All rights reserved.
Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin
NASA Technical Reports Server (NTRS)
Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.
1989-01-01
Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.
Finkenstedt, Armin; Wolf, Elisabeth; Höfner, Elmar; Gasser, Bethina Isasi; Bösch, Sylvia; Bakry, Rania; Creus, Marc; Kremser, Christian; Schocke, Michael; Theurl, Milan; Moser, Patrizia; Schranz, Melanie; Bonn, Guenther; Poewe, Werner; Vogel, Wolfgang; Janecke, Andreas R.; Zoller, Heinz
2010-01-01
Background & Aims Aceruloplasminemia is a rare autosomal recessive neurodegenerative disease associated with brain and liver iron accumulation which typically presents with movement disorders, retinal degeneration, and diabetes mellitus. Ceruloplasmin is a multi-copper ferroxidase that is secreted into plasma and facilitates cellular iron export and iron binding to transferrin. Results A novel homozygous ceruloplasmin gene mutation, c.2554+1G>T, was identified as the cause of aceruloplasminemia in three affected siblings. Two siblings presented with movement disorders and diabetes. Complementary DNA sequencing showed that this mutation causes skipping of exon 14 and deletion of amino acids 809–852 while preserving the open reading frame. Western blotting of liver extracts and sera of affected patients showed retention of the abnormal protein in the liver. Aceruloplasminemia was associated with severe brain and liver iron overload, where hepatic mRNA expression of the iron hormone hepcidin was increased, corresponding to the degree of iron overload. Hepatic iron concentration normalized after 3 and 5 months of iron chelation therapy with deferasirox, which was also associated with reduced insulin demands. During short term treatment there was no clinical or imaging evidence for significant effects on brain iron overload. Conclusions Aceruloplasminemia can show an incomplete clinical penetrance but is invariably associated with iron accumulation in the liver and in the brain. Iron accumulation in aceruloplasminemia is a result of defective cellular iron export, where hepcidin regulation is appropriate for the degree of iron overload. Iron chelation with deferasirox was effective in mobilizing hepatic iron but has no effect on brain iron. PMID:20801540
Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin.
Hicks, G R; Rayle, D L; Jones, A M; Lomax, T L
1989-07-01
Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.
Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng
2018-01-01
Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592
Applying probabilistic well-performance parameters to assessments of shale-gas resources
Charpentier, Ronald R.; Cook, Troy
2010-01-01
In assessing continuous oil and gas resources, such as shale gas, it is important to describe not only the ultimately producible volumes, but also the expected well performance. This description is critical to any cost analysis or production scheduling. A probabilistic approach facilitates (1) the inclusion of variability in well performance within a continuous accumulation, and (2) the use of data from developed accumulations as analogs for the assessment of undeveloped accumulations. In assessing continuous oil and gas resources of the United States, the U.S. Geological Survey analyzed production data from many shale-gas accumulations. Analyses of four of these accumulations (the Barnett, Woodford, Fayetteville, and Haynesville shales) are presented here as examples of the variability of well performance. For example, the distribution of initial monthly production rates for Barnett vertical wells shows a noticeable change with time, first increasing because of improved completion practices, then decreasing from a combination of decreased reservoir pressure (in infill wells) and drilling in less productive areas. Within a partially developed accumulation, historical production data from that accumulation can be used to estimate production characteristics of undrilled areas. An understanding of the probabilistic relations between variables, such as between initial production and decline rates, can improve estimates of ultimate production. Time trends or spatial trends in production data can be clarified by plots and maps. The data can also be divided into subsets depending on well-drilling or well-completion techniques, such as vertical in relation to horizontal wells. For hypothetical or lightly developed accumulations, one can either make comparisons to a specific well-developed accumulation or to the entire range of available developed accumulations. Comparison of the distributions of initial monthly production rates of the four shale-gas accumulations that were studied shows substantial overlap. However, because of differences in decline rates among them, the resulting estimated ultimate recovery (EUR) distributions are considerably different.
How sedge meadow soils, microtopography, and vegetation respond to sedimentation
Werner, K.J.; Zedler, Joy B.
2002-01-01
The expansion of urban and agricultural activities in watersheds of the Midwestern USA facilitates the conversion of species-rich sedge meadows to stands of Phalaris arundinacea and Typha spp. We document the role of sediment accumulation in this process based on field surveys of three sedge meadows dominated by Carex stricta, their adjacent Phalaris or Typha stands, and transitions from Carex to these invasive species. The complex microtopography of Carex tussocks facilitates the occurrence of other native species. Tussock surface area and species richness were positively correlated in two marshes (r2 = 0.57 and 0.41); on average, a 33-cm-tall tussock supported 7.6 species. Phalaris also grew in tussock form in wetter areas but did not support native species. We found an average of 10.5 Carex tussocks per 10-m transect, but only 3.5 Phalaris tussocks. Microtopographic relief, determined with a high-precision GPS, measured 11% greater in Carex meadows than Phalaris stands. Inflowing sediments reduced microtopographic variation and surface area for native species. We calculated a loss of one species per 1000 cm2 of lost tussock surface area, and loss of 1.2 species for every 10-cm addition of sediment over the sedge meadow surface. Alluvium overlying the sedge meadow soil had a smaller proportion of organic matter content and higher dry bulk density than the buried histic materials. We conclude that sedimentation contributes to the loss of native species in remnant wetlands. ?? 2002, The Society of Wetland Scientists.
Yamane, Arito; Robbiani, Davide F; Resch, Wolfgang; Bothmer, Anne; Nakahashi, Hirotaka; Oliveira, Thiago; Rommel, Philipp C; Brown, Eric J; Nussenzweig, Andre; Nussenzweig, Michel C; Casellas, Rafael
2013-01-31
Activation-induced cytidine deaminase (AID) promotes chromosomal translocations by inducing DNA double-strand breaks (DSBs) at immunoglobulin (Ig) genes and oncogenes in the G1 phase. RPA is a single-stranded DNA (ssDNA)-binding protein that associates with resected DSBs in the S phase and facilitates the assembly of factors involved in homologous repair (HR), such as Rad51. Notably, RPA deposition also marks sites of AID-mediated damage, but its role in Ig gene recombination remains unclear. Here, we demonstrate that RPA associates asymmetrically with resected ssDNA in response to lesions created by AID, recombination-activating genes (RAG), or other nucleases. Small amounts of RPA are deposited at AID targets in G1 in an ATM-dependent manner. In contrast, recruitment in the S-G2/M phase is extensive, ATM independent, and associated with Rad51 accumulation. In the S-G2/M phase, RPA increases in nonhomologous-end-joining-deficient lymphocytes, where there is more extensive DNA-end resection. Thus, most RPA recruitment during class switch recombination represents salvage of unrepaired breaks by homology-based pathways during the S-G2/M phase of the cell cycle. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana
2017-01-01
An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.
Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J.; Hasegawa, Paul M.
2011-01-01
Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning. PMID:21156857
Suetsugu, Noriyuki; Takemiya, Atsushi; Kong, Sam-Geun; Higa, Takeshi; Komatsu, Aino; Shimazaki, Ken-Ichiro; Kohchi, Takayuki; Wada, Masamitsu
2016-09-13
In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.
Han, Hyounkoo; Lee, Hohyeon; Kim, Kwangmeyung; Kim, Hyuncheol
2017-11-28
Although nanomedicines have been intensively investigated for cancer therapy in the past, poor accumulation of nanomedicines in tumor sites remains a serious problem. Therefore, a novel drug delivery system is required to enhance accumulation and penetration of nanomedicines at the tumor site. Recently, high-intensity focused ultrasound (HIFU) has been highlighted as a non-invasive therapeutic modality, and showed enhanced therapeutic efficacy in combination with nanomedicines. Cavitation effect induced by the combination of HIFU and microbubbles results in transiently enhanced cell membrane permeability, facilitating improved drug delivery efficiency into tumor sites. Therefore, we introduce the acoustic cavitation and thermal/mechanical effects of HIFU in conjunction with microbubble to overcome the limitation of conventional drug delivery. The cavitation effect maximized by the strong acoustic energy of HIFU induced the preferential accumulation of nanomedicine locally released from the nanomedicines-microbubble complex in the tumor. In addition, the mechanical effect of HIFU allowed the accumulated nanomedicines to penetrate into deeper tumor region. The preferential accumulation and deeper penetration of nanomedicines by HIFU showed enhanced therapeutic efficacy, compared to low frequency ultrasound (US). These overall results demonstrate that the strategy combined nanomedicines-microbubble complex with HIFU is a promising tools for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Kusunose, Jiro; Zhang, Hua; Gagnon, M. Karen J.; Pan, Tingrui; Simon, Scott I.; Ferrara, Katherine W.
2012-01-01
The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum–sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (KD ~ 300 µM) and VCAM-1-targeting (KD ~ 30 µM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm2), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium. PMID:22855121
Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa.
Celesk, R A; Robillard, N J
1989-01-01
Ciprofloxacin accumulation in Pseudomonas aeruginosa was measured by a bioassay. Drug accumulation in strain PAO2 was compared with that of three spontaneous ciprofloxacin-resistant mutants selected with 0.5 micrograms of ciprofloxacin per ml. PAO4701 cfxA2 contains a mutation in the gyrA gene, PAO4742 cfxB5 may represent a permeability mutant based on pleiotropic drug resistance, and PAO4700 cfxA1 cfxB1 contains both types of mutations. In all strains, drug accumulation was similar, reaching steady state during the first minute of exposure. Drug accumulation was unsaturable over a range of 5 to 80 micrograms/ml, suggesting that ciprofloxacin accumulates by diffusion in P. aeruginosa. Although all four strains accumulated two- to sevenfold more ciprofloxacin in the presence of the inhibitor carbonyl cyanide m-chlorophenylhydrazone, the cfxB mutants accumulated two- to fourfold less drug than either PAO2 or the cfxA2 mutant. Polyacrylamide gel analysis revealed a protein common to cfxB mutants only, while all strains had similar lipopolysaccharide profiles. The results suggest that ciprofloxacin accumulation in P. aeruginosa is a complex phenomenon that may be affected by both an energy-dependent drug efflux process and outer envelope composition. Images PMID:2514623
Castellarin, Simone D; Di Gaspero, Gabriele; Marconi, Raffaella; Nonis, Alberto; Peterlunger, Enrico; Paillard, Sophie; Adam-Blondon, Anne-Francoise; Testolin, Raffaele
2006-01-01
Background Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines. Results Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases. Putative function was assigned on the basis of sequence homology, expression profiling and its correlation with metabolite accumulation at ten different ripening stages. At the onset of colour transition, transcriptional induction of VvF3'H and VvF3'5'H was temporally coordinated with the beginning of anthocyanin biosynthesis, the expression being 2-fold and 50-fold higher, respectively, in red berries versus green berries. The peak of VvF3'5'H expression was observed two weeks later concomitantly with the increase of the ratio of delphinidin-/cyanidin-derivatives. The analysis of structural genomics revealed that two copies of VvF3'H are physically linked on linkage group no. 17 and several copies of VvF3'5'H are tightly clustered and embedded into a segmental duplication on linkage group no. 6, unveiling a high complexity when compared to other plant flavonoid hydroxylase genes known so far, mostly in ornamentals. Conclusion We have shown that genes encoding flavonoid 3'- and 3',5'-hydroxylases are expressed in any tissues of the grape plant that accumulate flavonoids and, particularly, in skin of ripening red berries that synthesise mostly anthocyanins. The correlation between transcript profiles and the kinetics of accumulation of red/cyanidin- and blue/delphinidin-based anthocyanins indicated that VvF3'H and VvF3'5'H expression is consistent with the chromatic evolution of ripening bunches. Local physical maps constructed around the VvF3'H and VvF3'5'H loci should help facilitate the identification of the regulatory elements of each isoform and the future manipulation of grapevine and wine colour through agronomical, environmental and biotechnological tools. PMID:16433923
NASA Astrophysics Data System (ADS)
Yang, Di
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
ERIC Educational Resources Information Center
Huang, Tsung-Ren; Grossberg, Stephen
2010-01-01
How do humans use target-predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, humans can learn that a certain combination of objects may define a context for a kitchen and trigger a more efficient…
Conditions inside fisher dens during prescribed fires; what is the risk posed by spring underburns?
Craig M. Thompson; Kathryn L. Purcell
2016-01-01
The use of spring prescribed fires to reduce accumulated fuel loads in western forests and facilitate the return of natural fire regimes is a controversial topic. While spring burns can be effective at reducing fuel loads and restoring heterogeneous landscapes, concerns exist over the potential impacts of unnaturally-timed fires to native species. To protect native...
Gerasimova, N. S.; Pestov, N. A.; Kulaeva, O. I.; Clark, D. J.; Studitsky, V. M.
2016-01-01
ABSTRACT RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure. PMID:27115204
Synaptic ribbon. Conveyor belt or safety belt?
Parsons, T D; Sterling, P
2003-02-06
The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.
Crowder, Marina E.; Flynn, Jonathan R.; McNally, Karen P.; Cortes, Daniel B.; Price, Kari L.; Kuehnert, Paul A.; Panzica, Michelle T.; Andaya, Armann; Leary, Julie A.; McNally, Francis J.
2015-01-01
Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin. PMID:26133383
Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.
Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve
2009-01-01
Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.
Petruk, Svetlana; Cai, Jingli; Sussman, Robyn; Sun, Guizhi; Kovermann, Sina K; Mariani, Samanta A; Calabretta, Bruno; McMahon, Steven B; Brock, Hugh W; Iacovitti, Lorraine; Mazo, Alexander
2017-04-20
Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.
Rutten, Julie W; Klever, Roselin R; Hegeman, Ingrid M; Poole, Dana S; Dauwerse, Hans G; Broos, Ludo A M; Breukel, Cor; Aartsma-Rus, Annemieke M; Verbeek, J Sjef; van der Weerd, Louise; van Duinen, Sjoerd G; van den Maagdenberg, Arn M J M; Lesnik Oberstein, Saskia A J
2015-12-29
CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, leading to toxic NOTCH3 protein accumulation in the small- to medium sized arterioles. The accumulation is systemic but most pronounced in the brain vasculature where it leads to clinical symptoms of recurrent stroke and dementia. There is no therapy for CADASIL, and therapeutic development is hampered by a lack of feasible clinical outcome measures and biomarkers, both in mouse models and in CADASIL patients. To facilitate pre-clinical therapeutic interventions for CADASIL, we aimed to develop a novel, translational CADASIL mouse model. We generated transgenic mice in which we overexpressed the full length human NOTCH3 gene from a genomic construct with the archetypal c.544C > T, p.Arg182Cys mutation. The four mutant strains we generated have respective human NOTCH3 RNA expression levels of 100, 150, 200 and 350 % relative to endogenous mouse Notch3 RNA expression. Immunohistochemistry on brain sections shows characteristic vascular human NOTCH3 accumulation in all four mutant strains, with human NOTCH3 RNA expression levels correlating with age at onset and progression of NOTCH3 accumulation. This finding was the basis for developing the 'NOTCH3 score', a quantitative measure for the NOTCH3 accumulation load. This score proved to be a robust and sensitive method to assess the progression of NOTCH3 accumulation, and a feasible biomarker for pre-clinical therapeutic testing. This novel, translational CADASIL mouse model is a suitable model for pre-clinical testing of therapeutic strategies aimed at delaying or reversing NOTCH3 accumulation, using the NOTCH3 score as a biomarker.
Laurence, Jessica A.; Leemaqz, Shalem; O’Leary, Sean; Bianco-Miotto, Tina; Du, Jing; Anderson, Paul H.; Roberts, Claire T.
2015-01-01
Vitamin D deficiency has been implicated in the pathogenesis of several pregnancy complications attributed to impaired or abnormal placental function, but there are few clues indicating the mechanistic role of vitamin D in their pathogenesis. To further understand the role of vitamin D receptor (VDR)-mediated activity in placental function, we used heterozygous Vdr ablated C57Bl6 mice to assess fetal growth, morphological parameters and global gene expression in Vdr null placentae. Twelve Vdr +/- dams were mated at 10–12 weeks of age with Vdr +/- males. At day 18.5 of the 19.5 day gestation in our colony, females were euthanised and placental and fetal samples were collected, weighed and subsequently genotyped as either Vdr +/+, Vdr +/- or Vdr -/-. Morphological assessment of placentae using immunohistochemistry was performed and RNA was extracted and subject to microarray analysis. This revealed 25 genes that were significantly differentially expressed between Vdr +/+ and Vdr -/- placentae. The greatest difference was a 6.47-fold change in expression of Cyp24a1 which was significantly lower in the Vdr -/- placentae (P<0.01). Other differentially expressed genes in Vdr -/- placentae included those involved in RNA modification (Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signalling (Plscr1, Pex5) and mammalian target of rapamycin (mTOR) signalling (Deptor and Prr5). Interrogation of the upstream sequence of differentially expressed genes identified that many contain putative vitamin D receptor elements (VDREs). Despite the gene expression differences, this did not contribute to any differences in overall placental morphology, nor was function affected as there was no difference in fetal growth as determined by fetal weight near term. Given our dams still expressed a functional VDR gene, our results suggest that cross-talk between the maternal decidua and the placenta, as well as maternal vitamin D status, may be more important in determining pregnancy outcome than conceptus expression of VDR. PMID:26121239
Rico, J. Eduardo; Saed Samii, Sina; Mathews, Alice T.; Lovett, Jacqueline; Haughey, Norman J.; McFadden, Joseph W.
2017-01-01
Reduced insulin action develops naturally during the peripartum to ensure maternal nutrient delivery to the fetus and neonate. However, increased insulin resistance can facilitate excessive lipolysis which in turn promotes metabolic disease in overweight dairy cattle. Increased fatty acid availability favors the accumulation of the sphingolipid ceramide and is implicated in the pathogenesis of insulin resistance, however, the relationship between sphingolipid metabolism and insulin resistance during the peripartum remains largely unknown. Our objectives were to characterize temporal responses in plasma and tissue sphingolipids in lean and overweight peripartal cows and to establish the relationships between sphingolipid supply and lipolysis, hepatic lipid deposition, and systemic insulin action. Twenty-one multiparous lean and overweight Holstein cows were enrolled in a longitudinal study spanning the transition from gestation to lactation (d -21 to 21, relative to parturition). Plasma, liver, and skeletal muscle samples were obtained, and sphingolipids were profiled using LC/MS/MS. Insulin sensitivity was assessed utilizing intravenous insulin and glucose challenges. Our results demonstrated the following: first, insulin resistance develops postpartum concurrently with increased lipolysis and hepatic lipid accumulation; second, ceramides and glycosylated ceramides accumulate during the transition from gestation to lactation and are further elevated in overweight cows; third, ceramide accrual is associated with lipolysis and liver lipid accumulation, and C16:0- and C24:0-ceramide are inversely associated with systemic insulin sensitivity postpartum; fourth, plasma sphingomyelin, a potential source of ceramides reaches a nadir at parturition and is closely associated with feed intake; fifth, select sphingomyelins are lower in the plasma of overweight cows during the peripartal period. Our results demonstrate that dynamic changes occur in peripartal sphingolipids that are influenced by adiposity, and are associated with the onset of peripartal insulin resistance. These observations are in agreement with a putative potential role for sphingolipids in facilitating the physiological adaptations of peripartum. PMID:28486481
Sácký, Jan; Leonhardt, Tereza; Kotrba, Pavel
2016-04-01
Russula atropurpurea can accumulate remarkably high concentrations of Zn in its sporocarps. We have previously demonstrated that 40 % of the intracellular Zn in this species is sequestered by MT-like RaZBP peptides. To see what other mechanisms for the handling of the accumulated Zn are available to R. atropurpurea, we searched its transcriptome for cDNAs coding for transporters of the cation diffusion facilitator (CDF) family. The transcriptome search enabled us to identify RaCDF1 and RaCDF2, which were further subjected to functional studies in metal sensitive Saccharomyces cerevisiae. The expression of RaCDF1 and its translational fusion with green fluorescent protein (GFP) protected the yeasts against Zn and Co, but not Cd or Mn, toxicity and led to increased Zn accumulation in the cells. The GFP fluorescence, observed in the RaCDF1::GFP-expressing yeasts on tonoplasts, indicated that the RaCDF1-mediated Zn and Co tolerance was a result of vacuolar sequestration of the metals. The expression of RaCDF2 supported Zn, but not Mn, tolerance in the yeasts and reduced the cellular uptake of Zn, which is congruent with the proposed idea of the Zn-efflux function of RaCDF2, supported by the localization of GFP-derived fluorescence on the plasma membrane of the yeasts expressing functional RaCDF2::GFP. Contrarily, RaCDF2 increased the sensitivity to Co and Cd in the yeasts and significantly promoted Cd uptake, which suggested that it can act as a bidirectional metal transporter. The notion that RaCDF1 and RaCDF2 are genuine CDF transporters in R. atropurputrea was further reinforced by the fact that the RaCDF-associated metal tolerance and uptake phenotypes were lost upon the replacement of histidyl (in RaCDF1) and aspartyl (in RaCDF2), which are highly conserved in the second transmembrane domain and known to be essential for the function of CDF proteins.
Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.
2009-01-01
The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.
Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.
Sheehy, Eamon J; Mesallati, Tariq; Vinardell, Tatiana; Kelly, Daniel J
2015-02-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) have been shown to generate bone in vivo by executing an endochondral programme. This may hinder the use of MSCs for articular cartilage regeneration, but opens the possibility of using engineered cartilaginous tissues for large bone defect repair. Hydrogels may be an attractive tool in the scaling-up of such tissue engineered grafts for endochondral bone regeneration. In this study, we compared the capacity of different naturally derived hydrogels (alginate, chitosan and fibrin) to support chondrogenesis and hypertrophy of MSCs in vitro and endochondral ossification in vivo. In vitro, alginate and chitosan constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG), with chitosan constructs synthesizing the highest levels of collagen. Alginate and fibrin constructs supported the greatest degree of calcium accumulation, though only fibrin constructs calcified homogeneously. In vivo, chitosan constructs facilitated neither vascularization nor endochondral ossification, and also retained the greatest amount of sGAG, suggesting it to be a more suitable material for the engineering of articular cartilage. Both alginate and fibrin constructs facilitated vascularization and endochondral bone formation as well as the development of a bone marrow environment. Alginate constructs accumulated significantly more mineral and supported greater bone formation in central regions of the engineered tissue. In conclusion, this study demonstrates the capacity of chitosan hydrogels to promote and better maintain a chondrogenic phenotype in MSCs and highlights the potential of utilizing alginate hydrogels for MSC-based endochondral bone tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cheetham, B F; Shaw, D C; Bellett, A J
1982-01-01
Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112
Fertilizer Response and Biomass Accumulation of a 5-year-old Sweetgum Plantation
Timothy T. Ku; John K. Francis; Charles R. Blinn
1981-01-01
A sweetgum plantation was established in 1975 to evaluate the effects of N, P fertilizers on growth and biomass accumulation. Positive response to the N and, to a lesser degree, the N + P treatment were noted the first year after fertilization. At age 5, total biomass averaged 2.5 T/ha: 25% leaves, 25% branches and 49% stems. Biomass accumulation was 50% greater on N...
Luo, Wanxian; Wen, Ge; Yang, Li; Tang, Jiao; Wang, Jianguo; Wang, Jihui; Zhang, Shiyu; Zhang, Li; Ma, Fei; Xiao, Liling; Wang, Ying; Li, Yingjia
2017-01-01
In this study, we investigated the potential of a dual-targeted pH-sensitive doxorubicin prodrug-microbubble complex (DPMC) in ultrasound (US)-assisted antitumor therapy. The doxorubicin prodrug (DP) consists of a succinylated-heparin carrier conjugated with doxorubicin (DOX) via hydrazone linkage and decorated with dual targeting ligands, folate and cRGD peptide. Combination of microbubble (MB) and DP, generated via avidin-biotin binding, promoted intracellular accumulation and improved therapeutic efficiency assisted by US cavitation and sonoporation. Aggregates of prepared DP were observed with an inhomogeneous size distribution (average diameters: 149.6±29.8 nm and 1036.2±38.8 nm, PDI: 1.0) while DPMC exhibited a uniform distribution (average diameter: 5.804±2.1 μm), facilitating its usage for drug delivery. Notably, upon US exposure, DPMC was disrupted and aggregated DP dispersed into homogeneous small-sized nanoparticles (average diameter: 128.6±42.3 nm, PDI: 0.21). DPMC could target to angiogenic endothelial cells in tumor region via αvβ3-mediated recognition and subsequently facilitate its specific binding to tumor cells mediated via recognition of folate receptor (FR) after US exposure. In vitro experiments showed higher tumor specificity and killing ability of DPMC with US than free DOX and DP for breast cancer MCF-7 cells. Furthermore, significant accumulation and specificity for tumor tissues of DPMC with US were detected using in vivo fluorescence and ultrasound molecular imaging, indicating its potential to integrate tumor imaging and therapy. In particular, through inducing apoptosis, inhibiting cell proliferation and antagonizing angiogenesis, DPMC with US produced higher tumor inhibition rates than DOX or DPMC without US in MCF-7 xenograft tumor-bearing mice while inducing no obvious body weight loss. Our strategy provides an effective platform for the delivery of large-sized or aggregated particles to tumor sites, thereby extending their therapeutic applications in vivo. PMID:28255342
The co-chaperones Fkbp4/5 control Argonaute2 expression and facilitate RISC assembly.
Martinez, Natalia J; Chang, Hao-Ming; Borrajo, Jacob de Riba; Gregory, Richard I
2013-11-01
Argonaute2 (Ago2) protein and associated microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC) for target messenger RNA cleavage and post-transcriptional gene silencing. Although Ago2 is essential for RISC activity, the mechanism of RISC assembly is not well understood, and factors controlling Ago2 protein expression are largely unknown. A role for the Hsc70/Hsp90 chaperone complex in loading small RNA duplexes into the RISC has been demonstrated in cell extracts, and unloaded Ago2 is unstable and degraded by the lysosome in mammalian cells. Here we identify the co-chaperones Fkbp4 and Fkbp5 as Ago2-associated proteins in mouse embryonic stem cells. Pharmacological inhibition of this interaction using FK506 or siRNA-mediated Fkbp4/5 depletion leads to decreased Ago2 protein levels. We find FK506 treatment inhibits, whereas Fkbp4/5 overexpression promotes, miRNA-mediated stabilization of Ago2 expression. Simultaneous treatment with a lysosome inhibitor revealed the accumulation of unloaded Ago2 complexes in FK506-treated cells. We find that, consistent with unloaded miRNAs being unstable, FK506 treatment also affects miRNA abundance, particularly nascent miRNAs. Our results support a role for Fkbp4/5 in RISC assembly.
Macabenta, Frank D; Jensen, Amber G; Cheng, Yi-Shan; Kramer, Joseph J; Kramer, Sunita G
2013-08-15
Drosophila embryonic dorsal vessel (DV) morphogenesis is a highly stereotyped process that involves the migration and morphogenesis of 52 pairs of cardioblasts (CBs) in order to form a linear tube. This process requires spatiotemporally-regulated localization of signaling and adhesive proteins in order to coordinate the formation of a central lumen while maintaining simultaneous adhesion between CBs. Previous studies have shown that the Slit/Roundabout and Netrin/Unc5 repulsive signaling pathways facilitate site-specific loss of adhesion between contralateral CBs in order to form a luminal space. However, the concomitant mechanism by which attraction initiates CB outgrowth and discrete localization of adhesive proteins remains poorly understood. Here we provide genetic evidence that Netrin signals through DCC (Deleted in Colorectal Carcinoma)/UNC-40/Frazzled (Fra) to mediate CB outgrowth and attachment and that this function occurs prior to and independently of Netrin/UNC-5 signaling. fra mRNA is expressed in the CBs prior to and during DV morphogenesis. Loss-of-fra-function results in significant defects in cell shape and alignment between contralateral CB rows. In addition, CB outgrowth and attachment is impaired in both fra loss- and gain-of-function mutants. Deletion of both Netrin genes (NetA and NetB) results in CB attachment phenotypes similar to fra mutants. Similar defects are also seen when both fra and unc5 are deleted. Finally we show that Fra accumulates at dorsal and ventral leading edges of paired CBs, and this localization is dependent upon Netrin. We propose that while repulsive guidance mechanisms contribute to lumen formation by preventing luminal domains from coming together, site-specific Netrin/Frazzled signaling mediates CB attachment. Copyright © 2013 Elsevier Inc. All rights reserved.
Decision Facilitator for Launch Operations using Intelligent Agents
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2005-01-01
Launch operations require millions of micro-decisions which contribute to the macro decision of 'Go/No-Go' for a launch. Knowledge workers"(such as managers and technical professionals) need information in a timely precise manner as it can greatly affect mission success. The intelligent agent (web search agent) uses the words of a hypertext markup language document which is connected through the internet. The intelligent agent's actions are to determine if its goal of seeking a website containing a specified target (e.g., keyword or phrase), has been met. There are few parameters that should be defined for the keyword search like "Go" and "No-Go". Instead of visiting launch and range decision making servers individually, the decision facilitator constantly connects to all servers, accumulating decisions so the final decision can be decided in a timely manner. The facilitator agent uses the singleton design pattern, which ensures that only a single instance of the facilitator agent exists at one time. Negotiations could proceed between many agents resulting in a final decision. This paper describes details of intelligent agents and their interaction to derive an unified decision support system.
Elbaz, Benayahu; Shoshani-Knaani, Noa; David-Assael, Ora; Mizrachy-Dagri, Talya; Mizrahi, Keren; Saul, Helen; Brook, Emil; Berezin, Irina; Shaul, Orit
2006-06-01
Zn hyperaccumulator plants sequester Zn into their shoot vacuoles. To date, the only transporters implicated in Zn sequestration into the vacuoles of hyperaccumulator plants are cation diffusion facilitators (CDFs). We investigated the expression in Arabidopsis halleri of a homolog of AtMHX, an A. thaliana tonoplast transporter that exchanges protons with Mg, Zn and Fe ions. A. halleri has a single copy of a homologous gene, encoding a protein that shares 98% sequence identity with AtMHX. Western blot analysis with vacuolar-enriched membrane fractions suggests localization of AhMHX in the tonoplast. The levels of MHX proteins are much higher in leaves of A. halleri than in leaves of the non-accumulator plant A. thaliana. At the same time, the levels of MHX transcripts are similar in leaves of the two species. This suggests that the difference in MHX levels is regulated at the post-transcriptional level. In vitro translation studies indicated that the difference between AhMHX and AtMHX expression is not likely to result from the variations in the sequence of their 5' untranslated regions (5'UTRs). The high expression of AhMHX in A. halleri leaves is constitutive and not significantly affected by the metal status of the plants. In both species, MHX transcript levels are higher in leaves than in roots, but the difference is higher in A. halleri. Metal sequestration into root vacuoles was suggested to inhibit hyperaccumulation in the shoot. Our data implicate AhMHX as a candidate gene in metal accumulation or tolerance in A. halleri.
Lowry, David B.; Sheng, Calvin C.; Zhu, Zhirui; Juenger, Thomas E.; Lahner, Brett; Salt, David E.; Willis, John H.
2012-01-01
Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake. PMID:22292026
2013-01-01
The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed and the impact of expression of MerE on methylmercury accumulation was evaluated. The subcellular localization of transiently expressed GFP-tagged MerE was examined in Arabidopsis suspension-cultured cells. The GFP-MerE was found to localize to the plasma membrane and cytosol. The transgenic Arabidopsis expressing MerE accumulated significantly more methymercury and mercuric ions into plants than the wild-type Arabidopsis did. The transgenic plants expressing MerE was significantly more resistant to mercuric ions, but only showed more resistant to methylmercury compared with the wild type Arabidopsis. These results demonstrated that expression of the bacterial mercury transporter MerE promoted the transport and accumulation of methylmercury in transgenic Arabidopsis, which may be a useful method for improving plants to facilitate the phytoremediation of methylmercury pollution. PMID:24004544
Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Ji-Hye; Yun, Hong Shik; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791
2016-01-01
The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibitionmore » of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients. - Highlights: • PSMC5 is a radiation-sensitive biomarker in H460 cells. • PSMC5 depletion inhibits radiation-induced apoptosis in H460 cells. • PSMC5 knockdown blocks ROS generation through inhibition of the p53-p21 pathway. • PSMC5 knockdown enhances p21 degradation via AKT-dependent MDM2 stabilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yuxian; Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD; Ballar, Petek
2006-11-03
Deficiency of circulating {alpha}-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutantmore » AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.« less
Voelker, R; Mendel-Hartvig, J; Barkan, A
1997-02-01
A nuclear mutant of maize, tha1, which exhibited defects in the translocation of proteins across the thylakoid membrane, was described previously. A transposon insertion at the tha1 locus facilitated the cloning of portions of the tha1 gene. Strong sequence similarity with secA genes from bacteria, pea and spinach indicates that tha1 encodes a SecA homologue (cp-SecA). The tha1-ref allele is either null or nearly so, in that tha1 mRNA is undetectable in mutant leaves and cp-SecA accumulation is reduced > or = 40-fold. These results, in conjunction with the mutant phenotype described previously, demonstrate that cp-SecA functions in vivo to facilitate the translocation of OEC33, PSI-F and plastocyanin but does not function in the translocation of OEC23 and OEC16. Our results confirm predictions for cp-SecA function made from the results of in vitro experiments and establish several new functions for cp-SecA, including roles in the targeting of a chloroplast-encoded protein, cytochrome f, and in protein targeting in the etioplast, a nonphotosynthetic plastid type. Our finding that the accumulation of properly targeted plastocyanin and cytochrome f in tha1-ref thylakoid membranes is reduced only a few-fold despite the near or complete absence of cp-SecA suggests that cp-SecA facilitates but is not essential in vivo for their translocation across the membrane.
IMPLEMENTATION AND VALIDATION OF A FULLY IMPLICIT ACCUMULATOR MODEL IN RELAP-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zou, Ling; Zhang, Hongbin
2016-01-01
This paper presents the implementation and validation of an accumulator model in RELAP-7 under the framework of preconditioned Jacobian free Newton Krylov (JFNK) method, based on the similar model used in RELAP5. RELAP-7 is a new nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). RELAP-7 is a fully implicit system code. The JFNK and preconditioning methods used in RELAP-7 is briefly discussed. The slightly modified accumulator model is summarized for completeness. The implemented model was validated with LOFT L3-1 test and benchmarked with RELAP5 results. RELAP-7 and RELAP5 had almost identical results for themore » accumulator gas pressure and water level, although there were some minor difference in other parameters such as accumulator gas temperature and tank wall temperature. One advantage of the JFNK method is its easiness to maintain and modify models due to fully separation of numerical methods from physical models. It would be straightforward to extend the current RELAP-7 accumulator model to simulate the advanced accumulator design.« less
Reversing Breast Cancer-Induced Immune Suppression
2014-01-01
same oxidative radicals that MDSC use to facilitate immune suppression. Nrf2 protects cells against inflammation and is stabilized in response to... inflammation , hypoxia, and other factors that are known inducers of MDSC. Since Nrf2 regulates antioxidant response and apoptosis, I hypothesize that... inflammation -induced and conventional MDSC transport of cystine. SASP has no effect on tumor growth, metastatic disease, MDSC accumulation, or MDSC suppressive
Reversing Breast Cancer-Induced Immune Suppression
2013-01-01
MDSC use to facilitate immune suppression. Nrf2 protects cells against inflammation and is stabilized in response to inflammation , hypoxia, and... inflammation -induced and conventional MDSC transport of cystine. SASP has no effect on tumor growth, metastatic disease, MDSC accumulation, or MDSC...anti-tumor immunity. It has been demonstrated that inflammation enhances xC- expression on MDSC, but higher xC- expression does not enhance the
Lee, Jinyoung; Kim, Jong-Hyun; Sohn, Hae-Jin; Yang, Hee-Jong; Na, Byoung-Kuk; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon
2014-08-01
Naegleria fowleri causes a lethal primary amoebic meningoencephalitis (PAM) in humans and experimental animals, which leads to death within 7-14 days. Cysteine proteases of parasites play key roles in nutrient uptake, excystment/encystment, host tissue invasion, and immune evasion. In this study, we cloned N. fowleri cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes from our cDNA library of N. fowleri. The full-length sequences of genes were 1,038 and 939 bp (encoded 345 and 313 amino acids), and molecular weights were 38.4 and 34 kDa, respectively. Also, nfcpb and nfcpb-L showed a 56 and 46 % identity to Naegleria gruberi cathepsin B and cathepsin B-like enzyme, respectively. Recombinant NfCPB (rNfCPB) and NfCPB-L (rNfCPB-L) proteins were expressed by the pEX5-NT/TOPO vector that was transformed into Escherichia coli BL21, and they showed 38.4 and 34 kDa bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis using their respective antibodies. Proteolytic activity of refolded rNfCPB and rNfCPB-L was maximum at a pH of 4.5, and the most effective substrate was Z-LR-MCA. rNfCPB and rNfCPB-L showed proteolytic activity for several proteins such as IgA, IgG, IgM, collagen, fibronectin, hemoglobin, and albumin. These results suggested that NfCPB and NfCPB-L cysteine protease are important components of the N. fowleri ESP, and they may play important roles in host tissue invasion and immune evasion as pathogens that cause N. fowleri PAM.
Van Der Werf, Paul; Stephani, Ralph A.; Meister, Alton
1974-01-01
5-Oxoprolinase catalyzes the conversion of 5-oxo-L-proline (L-pyroglutamate, L-2-pyrrolidone-5-carboxylate) to L-glutamate with concomitant stoichiometric cleavage of ATP to ADP and inorganic orthophosphate. In this reaction, a step in the γ-glutamyl cycle, 5-oxoproline (formed by the action of γ-glutamylcyclotransferase on γ-glutamyl amino acids, which are in turn formed by transpeptidation of amino acids with glutathione), is made available for glutathione synthesis. When mice are injected with L-2-imidazolidone-4-carboxylate, a competitive inhibitor of 5-oxoprolinase, they accumulate 5-oxoproline in their tissues (kidney, liver, brain, and eye) and excrete it in the urine. Mice given the inhibitor together with one of several L-amino acids accumulate and excrete much more 5-oxoproline than when they are given the inhibitor alone. Such augmentation of 5-oxoproline accumulation offers evidence for the function of the γ-glutamyl cycle in vivo and supports the view that 5-oxoproline is a quantitatively significant metabolite. Images PMID:4151516
Warming and Chilling: Assessing Aspects of Changing Plant Ecology with Continental-scale Phenology
NASA Astrophysics Data System (ADS)
Schwartz, M. D.; Hanes, J. M.
2009-12-01
Many recent ecological studies have concentrated on the direct impacts of climate warming, such as modifications to seasonal plant and animal life cycle events (phenology). There are many examples, with most indicating earlier onset of spring plant growth and delayed onset of autumn senescence. However, the implication of continued warming for plant species’ chilling requirements has received comparatively less attention. Temperate zone woody plants often require a certain level of cool season "chilling" (accumulated time at temperatures below a specific threshold) to break dormancy and prepare to respond to springtime warming. Thus, the potential impacts of insufficient chilling must be included in a comprehensive assessment of plant species' responses to climate warming. Vegetation phenological data, when collected for specific plant species at continental-scale, can be used to extract information relating to the combined impacts of reduced chilling and warming on plant species physiology. In a recent study, we demonstrated that common lilac first leaf and first bloom phenology (collected from multiple locations in the western United States and matched with air temperature records) can estimate the species' chilling requirement (in this case 1748 chilling hours, below a base temperature of 7.2°C) and highlight the changing impact of warming on the plant's phenological response in light of that requirement. Specifically, when chilling is above the requirement, lilac first leaf dates advance at a rate of -5.0 days per 100 hour chilling accumulation reduction, and lilac first bloom dates advance at a rate of -4.2 days per 100 hour chilling accumulation reduction. In contrast, when chilling is below the requirement, the lilac event dates advance at a much reduced rate of -1.6 days per 100 hour reduction for first leaf date and -2.2 days per 100 hour reduction for first bloom date. Overall, these encouraging results for common lilac suggest that similar continental-scale phenological measurements could facilitate a better understanding of relationships among phenological response, springtime warming, and chilling requirements for other species. Further, it should be possible to address more detailed follow-up plant ecology questions in future studies using similar methodology. Example questions would include: 1) Are the chilling requirements for a species the same across its entire range? 2) Do species adapt to warming conditions by changing their chilling requirements? and 3) How much variation is there among species chilling requirements within the same community? Continental-scale phenological data sets are being developed by the USA National Phenology Network (http://www.usanpn.org), that will facilitate such investigations, and in turn be essential for understanding of (and eventually consideration of possible adaptations to) the coming impacts of climate warming on temperate plant communities. Additionally, these phenological data, because they provide plants species’ responses across large portions of species geographic ranges, will facilitate deeper understanding of the full range of plant-environment responses and consequently foster development of more robust phenological models.
Wall, Alexander; Persigehl, Thorsten; Hauff, Peter; Licha, Kai; Schirner, Michael; Müller, Silke; von Wallbrunn, Angelika; Matuszewski, Lars; Heindel, Walter; Bremer, Christoph
2008-01-01
Introduction Use of fluorescence imaging in oncology is evolving rapidly, and nontargeted fluorochromes are currently being investigated for clinical application. Here, we investigated whether the degree of tumour angiogenesis can be assessed in vivo by planar and tomographic methods using the perfusion-type cyanine dye SIDAG (1,1'-bis- [4-sulfobutyl]indotricarbocyanine-5,5'-dicarboxylic acid diglucamide monosodium). Method Mice were xenografted with moderately (MCF7, DU4475) or highly vascularized (HT1080, MDA-MB435) tumours and scanned up to 24 hours after intravenous SIDAG injection using fluorescence reflectance imaging. Contrast-to-noise ratio was calculated for all tumours, and fluorochrome accumulation was quantified using fluorescence-mediated tomography. The vascular volume fraction of the xenografts, serving as a surrogate marker for angiogenesis, was measured using magnetic resonance imaging, and blood vessel profile (BVP) density and vascular endothelial growth factor expression were determined. Results SIDAG accumulation correlated well with angiogenic burden, with maximum contrast to noise ratio for MDA-MB435 (P < 0.0001), followed by HT1080, MCF7 and DU4475 tumours. Fluorescence-mediated tomography revealed 4.6-fold higher fluorochrome concentrations in MDA-MB435 than in DU4475 tumours (229 ± 90 nmol/l versus 49 ± 22 nmol/l; P < 0.05). The vascular volume fraction was 4.5-fold (3.58 ± 0.9% versus 0.8 ± 0.53%; P < 0.01), blood vessel profile density 5-fold (399 ± 36 BVPs/mm2 versus 78 ± 16 BVPs/mm2) and vascular endothelial growth factor expression 4-fold higher for MDA-MB435 than for DU4475 tumours. Conclusion Our data suggest that perfusion-type cyanine dyes allow assessment of angiogenesis in vivo using planar or tomographic imaging technology. They may thus facilitate characterization of solid tumours. PMID:18331624
Choi, Sung Won; Ryu, Ok Hee; Choi, Sun Jin; Song, In Sun; Bleyer, Anthony J; Hart, Thomas C
2005-10-01
As a consequence of uromodulin gene mutations, individuals develop precocious hyperuricemia, gout, and progressive renal failure. In vitro studies suggest that pathologic accumulation of uromodulin/Tamm-Horsfall glycoprotein (THP) occurs in the endoplasmic reticulum (ER), but the pathophysiology of renal damage is unclear. It was hypothesized that programmed cell death triggered by accumulation of misfolded THP in the ER causes progressive renal disease. Stably transfected human embryonic kidney 293 cells and immortalized thick ascending limb of Henle's loop cells with wild-type and mutated uromodulin cDNA were evaluated to test this hypothesis. Immunocytochemistry, ELISA, and deglycosylation studies indicated that accumulation of mutant THP occurred in the ER. FACS analyses showed a significant increase in early apoptosis signal in human embryonic kidney 293 and thick ascending limb of Henle's loop cells that were transfected with mutant uromodulin constructs. Colchicine and sodium 4-phenylbutyrate treatment increased secretion of THP from the ER to the cell membrane and into the culture media and significantly improved cell viability. These findings indicate that intracellular accumulation of THP facilitates apoptosis and that this may provide the pathologic mechanism responsible for the progressive renal damage associated with uromodulin gene mutations. Colchicine and sodium 4-phenylbutyrate reverse these processes and could potentially be beneficial in ameliorating the progressive renal damage in uromodulin-associated kidney diseases.
Schiavon, Michela; Pilon-Smits, Elizabeth A H
2017-03-01
Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Lou, Cai-Rong; Liu, Hong-Yu; Li, Yu-Feng; Li, Yu-Ling
2016-01-01
Recent studies in PM2.5 sources show that anthropogenic emissions are the main contributors to haze pollution. Due to their essential roles in establishing policies for improving air quality, socioeconomic drivers of PM2.5 levels have attracted increasing attention. Unlike previous studies focusing on the annual PM2.5 concentration (Cyear), this paper focuses on the accumulation phase of PM2.5 during the pollution episode (PMAE) in the Yangtze River Delta in China. This paper mainly explores the spatial variations of PMAE and its links to the socioeconomic factors using a geographical detector and simple linear regression. The results indicated that PM2.5 was more likely to accumulate in more developed cities, such as Nanjing and Shanghai. Compared with Cyear, PMAE was more sensitive to socioeconomic impacts. Among the twelve indicators chosen for this study, population density was an especially critical factor that could affect the accumulation of PM2.5 dramatically and accounted for the regional difference. A 1% increase in population density could cause a 0.167% rise in the maximal increment and a 0.214% rise in the daily increase rate of PM2.5. Additionally, industry, energy consumption, and vehicles were also significantly associated with PM2.5 accumulation. These conclusions could serve to remediate the severe PM2.5 pollution in China. PMID:27669272
Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei; Xu, Chunyan
2018-08-01
The up-flow anaerobic sludge blanket (UASB) system with graphene assisted was developed for coal gasification wastewater (CGW) treatment. Short-term results showed that optimal graphene addition (0.5 g/L) resulted in a more significant enhancement of methane production and chemical oxygen demand (COD) removal compared with that of the optimal activated carbon addition (10.0 g/L). Long-term results demonstrated that COD removal efficiency and methane production rate with graphene assisted achieved 64.7% and 180.5 mL/d, respectively. In addition, graphene could promote microbes accumulation and enzymes activity, resulting in higher extracellular polymeric substances (EPS) and coenzyme F 420 concentrations. X-ray Diffraction (XRD) analysis indicated that chemical of graphene changed insignificantly during the experiment. Meanwhile, with graphene assisted, cells were attached together to form microbial aggregates to facilitate sludge granulation process. Furthermore, the enriched Geobacter and Pseudomonas might perform direct interspecies electron transfer (DIET) with Methanosaeta via biological electrical connection, enhancing the anaerobic degradation of CGW. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biochar built soil carbon over a decade by stabilizing rhizodeposits
NASA Astrophysics Data System (ADS)
(Han) Weng, Zhe; van Zwieten, Lukas; Singh, Bhupinder Pal; Tavakkoli, Ehsan; Joseph, Stephen; MacDonald, Lynne M.; Rose, Terry J.; Rose, Michael T.; Kimber, Stephen W. L.; Morris, Stephen; Cozzolino, Daniel; Araujo, Joyce R.; Archanjo, Braulio S.; Cowie, Annette
2017-04-01
Biochar can increase the stable C content of soil. However, studies on the longer-term role of plant-soil-biochar interactions and the consequent changes to native soil organic carbon (SOC) are lacking. Periodic 13CO2 pulse labelling of ryegrass was used to monitor belowground C allocation, SOC priming, and stabilization of root-derived C for a 15-month period--commencing 8.2 years after biochar (Eucalyptus saligna, 550 °C) was amended into a subtropical ferralsol. We found that field-aged biochar enhanced the belowground recovery of new root-derived C (13C) by 20%, and facilitated negative rhizosphere priming (it slowed SOC mineralization by 5.5%, that is, 46 g CO2-C m-2 yr-1). Retention of root-derived 13C in the stable organo-mineral fraction (<53 μm) was also increased (6%, P < 0.05). Through synchrotron-based spectroscopic analysis of bulk soil, field-aged biochar and microaggregates (<250 μm), we demonstrate that biochar accelerates the formation of microaggregates via organo-mineral interactions, resulting in the stabilization and accumulation of SOC in a rhodic ferralsol.
Park, Seonghwan; Kim, Jeongmi; Yoon, Youngjin; Park, Younghyun; Lee, Taeho
2015-12-01
The possibility of utilizing blended wastewaters from different streams was investigated for cost-efficient microalgal cultivation. The influent of a domestic wastewater treatment plant and the liquid fertilizer from a swine wastewater treatment plant were selected as water- and nutrient-source wastewaters, respectively. The growth of Micractinium inermum NLP-F014 in the blended wastewater medium without any pretreatment was comparable to that in Bold's Basal Medium. The optimum blending ratio of 5-15% (vv(-1)) facilitated biomass production up to 5.7 g-dry cell weight (DCW) L(-1), and the maximum biomass productivity (1.03 g-DCWL(-1)d(-1)) was achieved after three days of cultivation. Nutrient depletion induced lipid accumulation in the cell up to 39.1% (ww(-1)) and the maximum lipid productivity was 0.19 g-FAMEL(-1)d(-1). These results suggest that blending water- and nutrient-source wastewaters at a proper ratio without pretreatment can significantly cut costs in microalgae cultivation for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Ruhung; Lee, Michael; Kinghorn, Karina; Hughes, Tyler; Chuckaree, Ishwar; Lohray, Rishabh; Chow, Erik; Pantano, Paul; Draper, Rockford
2018-05-26
To understand the influence of carboxylation on the interaction of carbon nanotubes with cells, the amount of pristine multi-walled carbon nanotubes (P-MWNTs) or carboxylated multi-walled carbon nanotubes (C-MWNTs) coated with Pluronic ® F-108 that were accumulated by macrophages was measured by quantifying CNTs extracted from cells. Mouse RAW 264.7 macrophages and differentiated human THP-1 (dTHP-1) macrophages accumulated 80-100 times more C-MWNTs than P-MWNTs during a 24-h exposure at 37 °C. The accumulation of C-MWNTs by RAW 264.7 cells was not lethal; however, phagocytosis was impaired as subsequent uptake of polystyrene beads was reduced after a 20-h exposure to C-MWNTs. The selective accumulation of C-MWNTs suggested that there might be receptors on macrophages that bind C-MWNTs. The binding of C-MWNTs to macrophages was measured as a function of concentration at 4 °C in the absence of serum to minimize the potential interference by serum proteins or temperature-dependent uptake processes. The result was that the cells bound 8.7 times more C-MWNTs than P-MWNTs, consistent with the selective accumulation of C-MWNTs at 37 °C. In addition, serum strongly antagonized the binding of C-MWTS to macrophages, suggesting that serum contained inhibitors of binding. Moreover, inhibitors of class A scavenger receptor (SR-As) reduced the binding of C-MWNTs by about 50%, suggesting that SR-As contribute to the binding and endocytosis of C-MWNTs in macrophages but that other receptors may also be involved. Altogether, the evidence supports the hypothesis that macrophages contain binding sites selective for C-MWNTs that facilitate the high accumulation of C-MWNTs compared to P-MWNTs.
Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S
1994-01-01
The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.
Palanca-Wessels, Maria C.; Booth, Garrett C.; Convertine, Anthony J.; Lundy, Brittany B.; Berguig, Geoffrey Y.; Press, Michael F.; Stayton, Patrick S.; Press, Oliver W.
2016-01-01
The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidin-conjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5′ RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5′ RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy. PMID:26840082
Palanca-Wessels, Maria C; Booth, Garrett C; Convertine, Anthony J; Lundy, Brittany B; Berguig, Geoffrey Y; Press, Michael F; Stayton, Patrick S; Press, Oliver W
2016-02-23
The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidin-conjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5' RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5' RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy.
Berclaz, Corinne; Pache, Christophe; Bouwens, Arno; Szlag, Daniel; Lopez, Antonio; Joosten, Lieke; Ekim, Selen; Brom, Maarten; Gotthardt, Martin; Grapin-Botton, Anne; Lasser, Theo
2015-01-01
The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it alleviates the need of both genetically modified mice to detect islets and injection of external dye to reveal vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide 1 receptor (GLP1R), for which other imaging modalities have been used and can serve as a reference. Cultured cells transfected with GLP1R and incubated with Cy5.5-exendin-3 show full tracer internalization. We determined that a dose of 1 μg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer in islets with a high specificity. In a next step, time-lapse OCM imaging was used to monitor the rapid and specific tracer accumulation in murine islets and its persistence over hours. This optical platform represents a versatile toolbox for selecting beta-cell specific markers for diabetes research and future clinical diagnosis. PMID:25988507
Martell, R. L.; Slapak, C. A.; Levy, S. B.
1997-01-01
The relationship between mammalian facilitative glucose transport proteins (GLUT) and multidrug resistance was examined in two vincristine (VCR)-selected murine erythroleukaemia (MEL) PC4 cell lines. GLUT proteins, GLUT1 and GLUT3, were constitutively coexpressed in the parental cell line and also in the VCR-selected cell lines. Increased expression of the GLUT1 isoform was noted both in the PC-V40 (a non-P-glycoprotein, mrp-overexpressing subline) and in the more resistant PC-V160 (overexpressing mrp and mdr3) cell lines. Overexpression of GLUT3 was detected only in the PC-V160 subline. An increased rate of facilitative glucose transport (Vmax) and level of plasma membrane GLUT protein expression paralleled increased VCR resistance, active VCR efflux and decreased VCR steady-state accumulation in these cell lines. Glucose transport inhibitors (GTIs), cytochalasin B (CB) and phloretin blocked the active efflux and decreased steady-state accumulation of VCR in the PC-V40 subline. GTIs did not significantly affect VCR accumulation in the parental or PC-V160 cells. A comparison of protein sequences among GLUT1, GLUT3 and MRP revealed a putative cytochalasin B binding site in MRP, which displayed 44% sequence similarity/12% identity with that previously identified in GLUT1 and GLUT3; these regions also exhibited a similar hydropathy plot pattern. The findings suggested that CB bound to MRP and directly or indirectly lowered VCR efflux and/or CB bound to one or both GLUT proteins, which acted to lower the VCR efflux mediated by MRP. This is the first report of a non-neuronal murine cell line that expressed GLUT3. Images Figure 3 PMID:9010020
Kang, Yoonja; Tang, Ying-Zhong; Taylor, Gordon T; Gobler, Christopher J
2017-02-01
To date, the life stages of pelagophytes have been poorly described. This study describes the ability of Aureoumbra lagunensis to enter a resting stage in response to environmental stressors including high temperature, nutrient depletion, and darkness as well as their ability to revert from resting cells back to vegetative cells after exposure to optimal light, temperature, and nutrient conditions. Resting cells became round in shape and larger in size, filled with red accumulation bodies, had smaller and fewer plastids, more vacuolar space, contained lower concentrations of chl a and RNA, displayed reduced photosynthetic efficiency, and lower respiration rates relative to vegetative cells. Analysis of vegetative and resting cells using Raman microspectrometry indicated resting cells were enriched in sterols within red accumulation bodies and were depleted in pigments relative to vegetative cells. Upon reverting to vegetative cells, cells increased their chl a content, photosynthetic efficiency, respiration rate, and growth rate and lost accumulation bodies as they became smaller. The time required for resting cells to resume vegetative growth was proportional to both the duration and temperature of dark storage, possibly due to higher metabolic demands on stored energy (sterols) reserves during longer period of storage and/or storage at higher temperature (20°C vs. 10°C). Resting cells kept in the dark at 10°C for 7 months readily reverted back to vegetative cells when transferred to optimal conditions. Thus, the ability of Aureoumbra to form a resting stage likely enables them to form annual blooms within subtropic ecosystems, resist temperature extremes, and may facilitate geographic expansion via anthropogenic transport. © 2016 Phycological Society of America.
Guo, Rui; Hu, Nan; Kandadi, Machender R; Ren, Jun
2012-04-01
Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect.
Nadeem, Faisal; Ahmad, Zeeshan; Wang, Ruifeng; Han, Jienan; Shen, Qi; Chang, Feiran; Diao, Xianmin; Zhang, Fusuo; Li, Xuexian
2018-01-01
Foxtail millet (FM) [ Setaria italica (L.) Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN) at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such "excessive" protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.
Tsg101 regulates PI(4,5)P2/Ca2+ signaling for HIV-1 Gag assembly
Ehrlich, Lorna S.; Medina, Gisselle N.; Photiadis, Sara; Whittredge, Paul B.; Watanabe, Susan; Taraska, Justin W.; Carter, Carol A.
2014-01-01
Our previous studies identified the 1,4,5-inositol trisphosphate receptor (IP3R), a channel mediating release of Ca2+ from ER stores, as a cellular factor differentially associated with HIV-1 Gag that might facilitate ESCRT function in virus budding. Channel opening requires activation that is initiated by binding of 1,4,5-triphosphate (IP3), a product of phospholipase C (PLC)-mediated PI(4,5)P2 hydrolysis. The store emptying that follows stimulates store refilling which requires intact PI(4,5)P2. Raising cytosolic Ca2+ promotes viral particle production and our studies indicate that IP3R and the ER Ca2+ store are the physiological providers of Ca2+ for Gag assembly and release. Here, we show that Gag modulates ER store gating and refilling. Cells expressing Gag exhibited a higher cytosolic Ca2+ level originating from the ER store than control cells, suggesting that Gag induced release of store Ca2+. This property required the PTAP motif in Gag that recruits Tsg101, an ESCRT-1 component. Consistent with cytosolic Ca2+ elevation, Gag accumulation at the plasma membrane was found to require continuous IP3R activation. Like other IP3R channel modulators, Gag was detected in physical proximity to the ER and to endogenous IP3R, as indicated respectively by total internal reflection fluorescence (TIRF) and immunoelectron microscopy (IEM) or indirect immunofluorescence. Reciprocal co-immunoprecipitation suggested that Gag and IP3R proximity is favored when the PTAP motif in Gag is intact. Gag expression was also accompanied by increased PI(4,5)P2 accumulation at the plasma membrane, a condition favoring store refilling capacity. Supporting this notion, Gag particle production was impervious to treatment with 2-aminoethoxydiphenyl borate, an inhibitor of a refilling coupling interaction. In contrast, particle production by a Gag mutant lacking the PTAP motif was reduced. We conclude that a functional PTAP L domain, and by inference Tsg101 binding, confers Gag with an ability to modulate both ER store Ca2+ release and ER store refilling. PMID:24904548
Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L
2016-01-01
Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of 13C-labeled CO2 and CH4 were detected immediately following incubation with [U-13C]acetate, indicating high turnover rate of acetate. The identified 13C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways. PMID:27128991
Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L
2016-10-01
Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of (13)C-labeled CO2 and CH4 were detected immediately following incubation with [U-(13)C]acetate, indicating high turnover rate of acetate. The identified (13)C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.
Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung
2014-01-01
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351
Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers
NASA Astrophysics Data System (ADS)
Walter Anthony, Katey M.; Anthony, Peter; Grosse, Guido; Chanton, Jeffrey
2012-06-01
Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs, such as coal beds and natural gas deposits. In the Arctic, permafrost and glaciers form a `cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. With a carbon store of over 1,200Pg, the Arctic geologic methane reservoir is large when compared with the global atmospheric methane pool of around 5Pg. As such, the Earth's climate is sensitive to the escape of even a small fraction of this methane. Here, we document the release of 14C-depleted methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland, using aerial and ground surface survey data and in situ measurements of methane isotopes and flux. We mapped over 150,000 seeps, which we identified as bubble-induced open holes in lake ice. These seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulations. Younger seeps in Greenland were associated with zones of ice-sheet retreat since the Little Ice Age. Our findings imply that in a warming climate, disintegration of permafrost, glaciers and parts of the polar ice sheets could facilitate the transient expulsion of 14C-depleted methane trapped by the cryosphere cap.
Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.
Asin-Cayuela, Jordi; Manas, Abdul-Rahman B; James, Andrew M; Smith, Robin A J; Murphy, Michael P
2004-07-30
The mitochondria-targeted antioxidant MitoQ comprises a ubiquinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation. This cation drives the membrane potential-dependent accumulation of MitoQ into mitochondria, enabling the ubiquinol antioxidant to prevent mitochondrial oxidative damage far more effectively than untargeted antioxidants. We sought to fine-tune the hydrophobicity of MitoQ so as to control the extent of its membrane binding and penetration into the phospholipid bilayer, and thereby regulate its partitioning between the membrane and aqueous phases within mitochondria and cells. To do this, MitoQ variants with 3, 5, 10 and 15 carbon aliphatic chains were synthesised. These molecules had a wide range of hydrophobicities with octan-1-ol/phosphate buffered saline partition coefficients from 2.8 to 20000. All MitoQ variants were accumulated into mitochondria driven by the membrane potential, but their binding to phospholipid bilayers varied from negligible for MitoQ3 to essentially total for MitoQ15. Despite the span of hydrophobicites, all MitoQ variants were effective antioxidants. Therefore, it is possible to fine-tune the degree of membrane association of MitoQ and other mitochondria targeted compounds, without losing antioxidant efficacy. This indicates how the uptake and distribution of mitochondria-targeted compounds within mitochondria and cells can be controlled, thereby facilitating investigations of mitochondrial oxidative damage.
Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry
2015-01-01
Summary Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183 000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioniens in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. PMID:21518240
Son, Moonil; Lee, Kyung-Mi; Yu, Jisuk; Kang, Minji; Park, Jin Man; Kwon, Sun-Jung
2013-01-01
The accumulation of viral RNA depends on many host cellular factors. The hexagonal peroxisome (Hex1) protein is a fungal protein that is highly expressed when the DK21 strain of Fusarium graminearum virus 1 (FgV1) infects its host, and Hex1 affects the accumulation of FgV1 RNA. The Hex1 protein is the major constituent of the Woronin body (WB), which is a peroxisome-derived electron-dense core organelle that seals the septal pore in response to hyphal wounding. To clarify the role of Hex1 and the WB in the relationship between FgV1 and Fusarium graminearum, we generated targeted gene deletion and overexpression mutants. Although neither HEX1 gene deletion nor overexpression substantially affected vegetative growth, both changes reduced the production of asexual spores and reduced virulence on wheat spikelets in the absence of FgV1 infection. However, the vegetative growth of deletion and overexpression mutants was increased and decreased, respectively, upon FgV1 infection compared to that of an FgV1-infected wild-type isolate. Viral RNA accumulation was significantly decreased in deletion mutants but was significantly increased in overexpression mutants compared to the viral RNA accumulation in the virus-infected wild-type control. Overall, these data indicate that the HEX1 gene plays a direct role in the asexual reproduction and virulence of F. graminearum and facilitates viral RNA accumulation in the FgV1-infected host fungus. PMID:23864619
Nuclear export of the small ribosomal subunit requires the Ran–GTPase cycle and certain nucleoporins
Moy, Terence I.; Silver, Pamela A.
1999-01-01
After their assembly in the nucleolus, ribosomal subunits are exported from the nucleus to the cytoplasm. After export, the 20S rRNA in the small ribosomal subunit is cleaved to yield 18S rRNA and the small 5′ ITS1 fragment. The 5′ ITS1 RNA is normally degraded by the cytoplasmic Xrn1 exonuclease, but in strains lacking XRN1, the 5′ ITS1 fragment accumulates in the cytoplasm. Using the cytoplasmic localization of the 5′ ITS1 fragment as an indicator for the export of the small ribosomal subunit, we have identified genes that are required for ribosome export. Ribosome export is dependent on the Ran–GTPase as mutations in Ran or its regulators caused 5′ ITS1 to accumulate in the nucleoplasm. Mutations in the genes encoding the nucleoporin Nup82 and in the NES exporter Xpo1/Crm1 also caused the nucleoplasmic accumulation of 5′ ITS1. Mutants in a subset of nucleoporins and in the nuclear transport factors Srp1, Kap95, Pse1, Cse1, and Mtr10 accumulate the 5′ ITS1 in the nucleolus and affect ribosome assembly. In contrast, we did not detect nuclear accumulation of 5′ ITS1 in 28 yeast strains that have mutations in other genes affecting nuclear trafficking. PMID:10465789
Do positive interactions increase with abiotic stress? A test from a semi-arid steppe.
Maestre, Fernando T; Cortina, Jordi
2004-01-01
Theoretical models predict that the relative importance of facilitation and competition may vary inversely across gradients of abiotic stress. However, these predictions have not been thoroughly tested in the field, especially in semi-arid environments. In this study, we evaluated how the net effect of the tussock grass Stipa tenacissima on the shrub Pistacia lentiscus varied across a gradient of abiotic stress in semi-arid Mediterranean steppes. We fitted the relationship between accumulated rainfall and the relative neighbour index (our measures of abiotic stress and of the net effect of S. tenacissima on P. lentiscus, respectively), which varied across this gradient, to a quadratic model. Competitive interactions dominated at both extremes of the gradient. Our results do not support established theory. Instead, they suggest that a shift from facilitation to competition under high abiotic stress conditions is likely to occur when the levels of the most limiting resource are so low that the benefits provided by the facilitator cannot overcome its own resource uptake. PMID:15504009
Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun
2017-03-01
Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.
Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.
Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan
2017-09-01
Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.
Toward a global space exploration program: A stepping stone approach
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret
2012-01-01
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.
NASA Astrophysics Data System (ADS)
Li, L.; Schaeffer, S. M.
2017-12-01
Drying-rewetting cycles can induce carbon (C) depletion in soil, while conservation agricultural management aims at soil C sequestration. Understanding the combined effect of drying-rewetting cycles and conservation management is critical for sustaining agricultural soil under climate change. Soil organic C can be stored in a relatively rapidly cycling active pool, or a more slowly cycling passive pool. We conducted a 24-days mesocosm incubation using an agricultural soil from western Tennessee under 35-years of conservation management. Different lengths of drought period before rewetting of 0, 3, 6, and 24 days were applied on the mesocosms. To trace the fate of newly added C, 13C labeled glucose was added to the mesocosms at the beginning of the incubation. After 24 days, dissolvable organic C, microbial biomass C, accumulative microbial respiration, and extracellular enzyme activity were analyzed to evaluate the active C pool; hydrogen peroxide oxidation and aggregate size fractionation were used to examine the passive C pool. The highest cumulative microbial respiration was found in the 6-days treatment combining a N-fixing cover crop with no-tillage, and the lowest in the 24-day treatment with a wheat cover crop combined with conventional-tillage (1000.0±20.5 and 106.8±17.5 µg C-CO2 g-1 dry soil, respectively). The 6-days treatment induced 0.5-4.3 times higher cumulative C-CO2 emission than the 3-days treatment. The proportion of macroaggregates in bulk soil varied between 97.2% and 76.7%, and it was negatively correlated with drying-rewetting frequency. The proportion of microaggregates in bulk soil varied between 21.9% and 2.1%, and it was positively correlated with drying-rewetting frequency. 13C recovery rate in bulk soil varied between 11-53%. The vetch-cover-crop-with-no-tillage treatment facilitated 13C accumulation the most. Our results show that the N fixing cover crops combined with no-tillage treatment induced the highest C accumulation in bulk soil, while the no cover crop combined with conventional tillage induced the lowest C concentration. Our results show that frequent drying-rewetting cycles disrupt macroaggregates and release the microaggregates within macroaggregates, and favor greater C loss combined with greater C storage in less stable aggregate fractions.
Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease
Williams, Chadwick; Panaccione, Remo; Ghosh, Subrata; Rioux, Kevin
2011-01-01
Mesalazine [5-aminosalicylic acid (5-ASA)] has been used for over 30 years in the treatment of inflammatory bowel disease (IBD). It is a highly effective, safe, and well-tolerated drug for treatment of mild to moderate ulcerative colitis, which represents most patients with this disease. Recent studies of patient adherence to 5-ASA therapies in ulcerative colitis have highlighted the need for regimens that enable long-term compliance to significantly reduce the risk of troublesome and debilitating flares in the short term, and possibly colon cancer in the long term. Indeed, much of the recent innovation in clinical use of 5-ASA in colitis has come from studies of novel delivery mechanisms and simplified oral dosing schedules. These studies have provided much needed clarity on essential matters such as starting dose, dose escalation, and efficacy in terms of the ideal clinical endpoint - mucosal healing. Various manufacturers are re-evaluating their products to determine the safety and efficacy of such dosing regimens. Although once widely employed in the treatment of Crohn’s disease (CD), the accumulated body of evidence now suggests that there is a much more limited role for 5-ASA in this particular form of inflammatory bowel disease. Recent 5-ASA randomized-controlled trials, comparative studies, and outcomes research have led to refined treatment strategies and awareness for practitioners to better inform, engage and facilitate patients in optimal use of 5-ASA in inflammatory bowel disease. PMID:21765868
Li, Ruili; Xu, Hualin; Chai, Minwei; Qiu, Guo Yu
2016-02-01
To investigate the influence of mangrove forest on heavy metal accumulation and storage in intertidal sediments, core sediments from natural mangrove, restored mangrove, and adjacent mud flat spanning the intertidal zone along the south coastline of the most heavily urbanized Deep bay, Guangdong province, China were analyzed. The average concentrations of mercury (Hg) in surface sediments of natural mangrove and restored mangrove were 172 and 151 ng g(-1), whereas those of copper (Cu) were 75 and 50 μg g(-1), respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Shenzhen were at median to high levels, which is consistent with the fact that Shenzhen is in high exploitation and its mangrove suffer intensive impact from human activities. Hg and Cu concentration profiles indicated a higher metal accumulation in surface layers of sediments, in agreement with enrichment of organic matter contents. Maximum concentration, enrichment factors, and excess (background-deducted) concentration inventories of metals (Hg and Cu) were substantially different between environments, decreasing from natural mangrove sediments to restored mangrove sediments to mud flat. Furthermore, metal inputs to Futian mangrove decreased in the order natural mangrove > restored mangrove > mud flat, indicating that mangrove facilitated the accumulation and storage of Hg and Cu in sediment layers.
Takahashi, Kazuhide; Suzuki, Katsuo
2011-11-01
Cell migration is accomplished by the formation of cellular protrusions such as lamellipodia and filopodia. These protrusions result from actin filament (F-actin) rearrangement at the cell cortex by WASP/WAVE family proteins and Drosophila enabled (Ena)/vasodilator-stimulated factor proteins. However, the role of each of these actin cytoskeletal regulatory proteins in the regulation of three-dimensional cell invasion remains to be clarified. We found that platelet-derived growth factor (PDGF) induces invasion of MDA-MB-231 human breast cancer cells through invasion chamber membrane pores. This invasion was accompanied by intensive F-actin accumulation at the sites of cell infiltration. After PDGF stimulation, WAVE2, N-WASP, and a mammalian Ena (Mena) colocalized with F-actin at the sites of cell infiltration in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. Depletion of WAVE2, N-WASP, or Mena by RNA interference (RNAi) abrogated both cell invasion and intensive F-actin accumulation at the invasion site. These results indicate that by mediating intensive F-actin accumulation at the sites of cell infiltration, WAVE2, N-WASP, and Mena are crucial for PI3K-dependent cell invasion induced by PDGF. Copyright © 2011 Wiley Periodicals, Inc.
Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A
2016-01-26
Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.
Rigó, Gábor; Ayaydin, Ferhan; Tietz, Olaf; Zsigmond, Laura; Kovács, Hajnalka; Páy, Anikó; Salchert, Klaus; Darula, Zsuzsanna; Medzihradszky, Katalin F.; Szabados, László; Palme, Klaus; Koncz, Csaba; Cséplő, Ágnes
2013-01-01
CRK5 is a member of the Arabidopsis thaliana Ca2+/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5–green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane–associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling. PMID:23673979
Hu, Liqin; Kang, Xincong; Shen, Pengyuan; Chen, Tian; Zhang, Jiayin; Liu, Dongbo
2018-05-25
In this study, we established a rapid and efficient HPLC method to determine the accumulation of Huperzine A and Huperzine B in the fermentation broth of endophytic fungus Colletotrichum gloesporioides from Huperzia serrate. The chloroform extracts of fermentation broth were dissolved in methanol and filtered before injection for HPLC analysis. The analysis was performed on an Agilent Eclipse plus-C18 column (250 mm×4.6 mm, 5 μm) by isocratic elution. The mobile phase was 0.015 mol/L ammonium acetate-methanol (70:30, V/V), the flow rate was 1 mL/min and the detection wavelength was set at 308 nm. Huperzine A and Huperzine B could be well separated within 25 min. Good linearity of Huperzine A was found in the range of 1.50-48.00 μg/mL (r=0.999 5), and that of huperzine B was in 0.25-7.50 μg/mL (r=0.999 7). The average recoveries of Huperzine A and Huperzine B were 106.83% and 108.06%, respectively (RSD=3.34%, 3.60%). The results demonstrate that this method can detect the content of huperzine A and huperzine B in fermentation broth simply, rapidly, accurately and in good reproducibility. Under the optimized conditions, the accumulated content of huperzine A and huperzine B were measured from the sixth to the fifteenth day. Huperzine A and Huperzine B reached the highest (12.417 0 μg/mL and 4.660 3 μg/mL, respectively) at the fourteenth and eighth days. The analysis methodology could contribute to the future study of huperzine A and huperzine B biosynthesis in C. gloeosporioides, consequently facilitate the development of new drug resources.
NASA Astrophysics Data System (ADS)
Winbourne, J. B.; Daniel, P.; Porder, S.
2016-12-01
Carbon accumulation in secondary tropical forests is substantial, and thought to be limited at least in part by nitrogen (N) availability. Slash and burn agriculture and grazing remove N from the system, however, the abundance of symbiotic N fixing trees in young tropical forests suggests rapid N accumulation as forests regrow. Here we use statistically robust spatial sampling to quantify symbiotic (SNF) and asymbiotic N fixation across a chronosequence of re-growing tropical forests in the Mata Atlântica of Bahia, Brasil. The Mata Atlântica once stretched 1500 km along the east coast of Brasil, is currently 85% deforested, and is a target of national and international restoration efforts that rely heavily on the planting of legume species to facilitate forest regrowth. As expected, we found the highest rates of SNF early in forest succession, but these rates were low compared with prior estimates (16-year-old forests fixed 5.75 ± 2.2 kg N ha-1 yr-1), and did not significantly decline in older stands. Mature forests (>100 years old) fixed 4.3 kg N ha-1 yr-1. This rate is similar to measurements using the same method in intact forests in Costa Rica, and both estimates are 5 times lower than previous estimates of SNF inputs into mature tropical forests. In our study, SNF accounted for > 99% of the total N inputs via biological N fixation. Several intriguing possibilities emerge from these data: 1) contrary to expectations, abundant legumes early in succession do not dramatically increase N inputs in these regrowing tropical forests and 2) the hypothesis that N fixation is down regulated by facultative fixers once forests reach maturity is not consistent with our observations.
Educational Impact of Trainee-Facilitated Head and Neck Radiology-Pathology Correlation Conferences.
Ginat, Daniel Thomas; Cipriani, Nicole A; Christoforidis, Gregory
2018-05-17
The goal of this study was to evaluate the benefits of resident and fellow-facilitated radiology-pathology head and neck conferences. A total of seven resident-facilitated and six fellow-facilitated head and neck radiology-pathology cases were presented as part of the radiology department conference series. The radiology residents were surveyed regarding the perceived quality and effectiveness of the fellow-facilitated sessions. The number of publications yielded from all the cases presented was tracked. Overall, the residents assessed the quality of the fellow-facilitated conferences with an average score of 3.9 out of 5 and the overall helpfulness with an average of 3.5 out of 5. The overall average level of resident understanding among the residents for the topics presented to them by the fellows at baseline was 2.5 out of 5 and 3.4 out of 5 after the presentations, which was a significant increase (p-value < 0.01). There were three peer-reviewed publications generated from the resident presentations and four peer-reviewed publications generated from the fellow presentations, which represents a 54% publication rate collectively. Therefore, trainee-facilitated head and neck radiology-pathology conferences at our institution provide added learning and scholarly activity opportunities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... having a combined volume not exceeding 5,000 cubic feet may be connected on the same zone. (d) Where a space is of such size that one accumulator is not sufficient, not more than two accumulators may be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... having a combined volume not exceeding 5,000 cubic feet may be connected on the same zone. (d) Where a space is of such size that one accumulator is not sufficient, not more than two accumulators may be...
Functional characterization of lysosomal interaction of Akt with VRK2.
Hirata, Noriyuki; Suizu, Futoshi; Matsuda-Lennikov, Mami; Tanaka, Tsutomu; Edamura, Tatsuma; Ishigaki, Satoko; Donia, Thoria; Lithanatudom, Pathrapol; Obuse, Chikashi; Iwanaga, Toshihiko; Noguchi, Masayuki
2018-06-05
Serine-threonine kinase Akt (also known as PKB, protein kinase B), a core intracellular mediator of cell survival, is involved in various human cancers and has been suggested to play an important role in the regulation of autophagy in mammalian cells. Nonetheless, the physiological function of Akt in the lysosomes is currently unknown. We have reported previously that PtdIns(3)P-dependent lysosomal accumulation of the Akt-Phafin2 complex is a critical step for autophagy induction. Here, to characterize the molecular function of activated Akt in the lysosomes in the process of autophagy, we searched for the molecules that interact with the Akt complex at the lysosomes after induction of autophagy. By time-of-flight-mass spectrometry (TOF/MS) analysis, kinases of the VRK family, a unique serine-threonine family of kinases in the human kinome, were identified. VRK2 interacts with Akt1 and Akt2, but not with Akt3; the C terminus of Akt and the N terminus of VRK2 facilitate the interaction of Akt and VRK2 in mammalian cells. The kinase-dead form of VRK2A (KD VRK2A) failed to interact with Akt in coimmunoprecipitation assays. Bimolecular fluorescence complementation (BiFC) experiments showed that, in the lysosomes, Akt interacted with VRK2A but not with VRK2B or KD VRK2A. Immunofluorescent assays revealed that VRK2 and phosphorylated Akt accumulated in the lysosomes after autophagy induction. WT VRK2A, but not KD VRK2A or VRK2B, facilitated accumulation of phosphorylated Akt in the lysosomes. Downregulation of VRK2 abrogated the lysosomal accumulation of phosphorylated Akt and impaired nuclear localization of TFEB; these events coincided to inhibition of autophagy induction. The VRK2-Akt complex is required for control of lysosomal size, acidification, bacterial degradation, and for viral replication. Moreover, lysosomal VRK2-Akt controls cellular proliferation and mitochondrial outer-membrane stabilization. Given the roles of autophagy in the pathogenesis of human cancer, the current study provides a novel insight into the oncogenic activity of VRK2-Akt complexes in the lysosomes via modulation of autophagy.
U.S. Policy Options Toward Stopping North Korea’s Illicit Activities
2007-12-01
dollars were unfrozen at Banco Delta Asia, a Macao bank investigated for facilitating North Korea’s illicit transactions. Because the “North Koreans...have said publicly that they will not comply with the bilateral agreement until the Banco Delta Asia funds are safely under their control,” the funds...12 billion accumulation of loan defaults, contributing to its inability to procure further loans on the international market .26 North Korea’s
Soluble polymer conjugates for drug delivery.
Minko, Tamara
2005-01-01
The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.
Economics of health in South Africa: past, present and future.
Benatar, S R
1989-01-01
Some of the background to the present structure of medicine in South Africa, an outline of some economic aspects of our current (inadequate) health care service and tentative suggestions regarding the directions in which our health services should be moving to facilitate the legitimization (political) and accumulation (economic) processes required to meet the needs and demands of all the people of an internationally recognized, just and free South Africa are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenhove, Hildegarde
The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)
Yan, Qing; Lopes, Lucas D.; Shaffer, Brenda T.; Kidarsa, Teresa A.; Vining, Oliver; Philmus, Benjamin; Song, Chunxu; Stockwell, Virginia O.; Raaijmakers, Jos M.; McPhail, Kerry L.; Andreote, Fernando D.; Chang, Jeff H.
2018-01-01
ABSTRACT Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac− mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac− mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac− mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac− mutants: a reduced proportion of Gac− mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac− mutants. PMID:29339425
Okegawa, T; Pong, R C; Li, Y; Bergelson, J M; Sagalowsky, A I; Hsieh, J T
2001-09-01
The coxsackie and adenovirus receptor (CAR) is identified as a high-affinity receptor for adenovirus type 5. We observed that invasive bladder cancer specimens had significantly reduced CAR mRNA levels compared with superficial bladder cancer specimens, which suggests that CAR may play a role in the progression of bladder cancer. Elevated CAR expression in the T24 cell line (CAR-negative cells) increased its sensitivity to adenovirus infection and significantly inhibited its in vitro growth, accompanied by p21 and hypophosphorylated retinoblastoma accumulation. Conversely, decreased CAR levels in both RT4 and 253J cell lines (CAR-positive cells) promoted their in vitro growth. To unveil the mechanism of action of CAR, we showed that the extracellular domain of CAR facilitated intercellular adhesion. Furthermore, interrupting intercellular adhesion of CAR by a specific antibody alleviates the growth-inhibitory effect of CAR. We also demonstrated that both the transmembrane and intracellular domains of CAR were critical for its growth-inhibitory activity. These data indicate that the cell-cell contact initiated by membrane-bound CAR can elicit a negative signal cascade to modulate cell cycle regulators inside the nucleus of bladder cancer cells. Therefore, the presence of CAR cannot only facilitate viral uptake of adenovirus but also inhibit cell growth. These results can be integrated to formulate a new strategy for bladder cancer therapy.
Late 20th Century increase in South Pole snow accumulation
Mosley-Thompson, E.; Paskievitch, J.F.; Gow, A.J.; Thompson, L.G.
1999-01-01
A compilation of the 37-year history of net accumulation at the South Pole [Mosley-Thompson et al., 1995] suggests an increase in net annual accumulation since 1965. This record is sporadic and its quality is compromised by spatially restricted observations and nonsystematic measurement procedures. Results from a new, spatially extensive network of 236 accumulation poles document that the current 5-year (1992-1997) average annual net accumulation at the South Pole is 84.5??8.9 mm water equivalent (w.e.). This accumulation rate reflects a 30% increase since the 1960s when the best, although not optimal, records indicate that it was 65 mm w.e. Identification of two prominent beta radioactivity horizons (1954/1955 and 1964/1965) in six firn cores confirms an increase in accumulation since 1965. Viewed from a longer perspective of accumulation provided by ice cores and a snow mine study, the net accumulation of the 30-year period, 1965-1994, is the highest 30-year average of this millennium. Limited data suggest this recent accumulation increase extends beyond the South Pole region and may be characteristic of the high East Antarctic Plateau. Enhanced accumulation over the polar ice sheets has been identified as a potential early indicator of warmer sea surface temperatures and may offset a portion of the current rise in global sea level. Copyright 1999 by the American Geophysical Union.
Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni
2018-05-01
The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.
Dental plaque - associated infections and antibacterial oral hygiene products.
Verran, J
1991-02-01
Synopsis Dental plaque accumulates on hard non-shedding surfaces such as teeth, dentures and orthodontic appliances. This accumulation is facilitated by the absence of adequate oral hygiene procedures. The term 'plaque' describes a mass of microorganisms embedded in an organic matrix of host and microbial origin. In addition to the aesthetic desirability of 'clean teeth, healthy gums and fresh breath' associated with the absence of plaque, obvious consequences of the presence of plaque include tooth decay (dental caries), gingivitis and periodontal (gum) disease and denture associated problems. Thus the prevention of plaque formation, the reduction of plaque accumulation and the effective removal of plaque are considerations of the cosmetic and health professions alike. There are many oral hygiene products available to the general public - toothpastes, mouthwashes, denture cleaners, and, more recently, chewing gums and novel mouthwashes. Several of these products have antimicrobial components. This paper reviews the microbiology of plaque and plaque associated problems, and surveys the type of products currently available for maintenance of good oral hygiene. Potential areas for future development are also explored.
Bouwman, Hindrik; Evans, Steven W; Cole, Nik; Choong Kwet Yive, Nee Sun; Kylin, Henrik
2016-03-01
Isolated coral atolls are not immune from marine debris accumulation. We identified Southeast Asia, the Indian sub-continent, and the countries on the Arabian Sea as most probable source areas of 50 000 items on the shores of St. Brandon's Rock (SBR), Indian Ocean. 79% of the debris was plastics. Flip-flops, energy drink bottles, and compact fluorescent lights (CFLs) were notable item types. The density of debris (0.74 m(-)(1) shore length) is comparable to similar islands but less than mainland sites. Intact CFLs suggests product-facilitated long-range transport of mercury. We suspect that aggregated marine debris, scavenged by the islands from currents and gyres, could re-concentrate pollutants. SBR islets accumulated debris types in different proportions suggesting that many factors act variably on different debris types. Regular cleaning of selected islets will take care of most of the accumulated debris and may improve the ecology and tourism potential. However, arrangements and logistics require more study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
In 2006 and 2007, the greenline Appalachian basin field maps were digitized under the supervision of Scott Kinney and converted to geographic information system (GIS) files for chapter I.1 (this volume). By converting these oil and gas field maps to a digital format and maintaining the field names where noted, they are now available for a variety of oil and gas and possibly carbon-dioxide sequestration projects. Having historical names assigned to known digitized conventional fields provides a convenient classification scheme into which cumulative production and ultimate field-size databases can be organized. Moreover, as exploratory and development drilling expands across the basin, many previously named fields that were originally treated as conventional fields have evolved into large, commonly unnamed continuous-type accumulations. These new digital maps will facilitate a comparison between EUR values from recently drilled, unnamed parts of continuous accumulations and EUR values from named fields discovered early during the exploration cycle of continuous accumulations.
Li, Fu-Long; Liu, Jin-Ping; Bao, Ruo-Xuan; Yan, GuoQuan; Feng, Xu; Xu, Yan-Ping; Sun, Yi-Ping; Yan, Weili; Ling, Zhi-Qiang; Xiong, Yue; Guan, Kun-Liang; Yuan, Hai-Xin
2018-02-06
Enhanced glycolysis in cancer cells has been linked to cell protection from DNA damaging signals, although the mechanism is largely unknown. The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) catalyzes the generation of fructose-2,6-bisphosphate, a potent allosteric stimulator of glycolysis. Intriguingly, among the four members of PFKFB family, PFKFB3 is uniquely localized in the nucleus, although the reason remains unclear. Here we show that chemotherapeutic agent cisplatin promotes glycolysis, which is suppressed by PFKFB3 deletion. Mechanistically, cisplatin induces PFKFB3 acetylation at lysine 472 (K472), which impairs activity of the nuclear localization signal (NLS) and accumulates PFKFB3 in the cytoplasm. Cytoplasmic accumulation of PFKFB3 facilitates its phosphorylation by AMPK, leading to PFKFB3 activation and enhanced glycolysis. Inhibition of PFKFB3 sensitizes tumor to cisplatin treatment in a xenograft model. Our findings reveal a mechanism for cells to stimulate glycolysis to protect from DNA damage and potentially suggest a therapeutic strategy to sensitize tumor cells to genotoxic agents by targeting PFKFB3.
Interaction between blood-brain barrier and glymphatic system in solute clearance.
Verheggen, I C M; Van Boxtel, M P J; Verhey, F R J; Jansen, J F A; Backes, W H
2018-03-30
Neurovascular pathology concurs with protein accumulation, as the brain vasculature is important for waste clearance. Interstitial solutes, such as amyloid-β, were previously thought to be primarily cleared from the brain by blood-brain barrier transport. Recently, the glymphatic system was discovered, in which cerebrospinal fluid is exchanged with interstitial fluid, facilitated by the aquaporin-4 water channels on the astroglial endfeet. Glymphatic flow can clear solutes from the interstitial space. Blood-brain barrier transport and glymphatic clearance likely serve complementary roles with partially overlapping mechanisms providing a well-conditioned neuronal environment. Disruption of these mechanisms can lead to protein accumulation and may initiate neurodegenerative disorders, for instance amyloid-β accumulation and Alzheimer's disease. Although both mechanisms seem to have a similar purpose, their interaction has not been clearly discussed previously. This review focusses on this interaction in healthy and pathological conditions. Future health initiatives improving waste clearance might delay or even prevent onset of neurodegenerative disorders. Defining glymphatic flow kinetics using imaging may become an alternative way to identify those at risk of Alzheimer's disease. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velec, Michael, E-mail: michael.velec@rmp.uhn.on.ca; Institute of Medical Science, University of Toronto, Toronto, ON; Moseley, Joanne L.
2012-07-15
Purpose: To investigate the accumulated dose deviations to tumors and normal tissues in liver stereotactic body radiotherapy (SBRT) and investigate their geometric causes. Methods and Materials: Thirty previously treated liver cancer patients were retrospectively evaluated. Stereotactic body radiotherapy was planned on the static exhale CT for 27-60 Gy in 6 fractions, and patients were treated in free-breathing with daily cone-beam CT guidance. Biomechanical model-based deformable image registration accumulated dose over both the planning four-dimensional (4D) CT (predicted breathing dose) and also over each fraction's respiratory-correlated cone-beam CT (accumulated treatment dose). The contribution of different geometric errors to changes between themore » accumulated and predicted breathing dose were quantified. Results: Twenty-one patients (70%) had accumulated dose deviations relative to the planned static prescription dose >5%, ranging from -15% to 5% in tumors and -42% to 8% in normal tissues. Sixteen patients (53%) still had deviations relative to the 4D CT-predicted dose, which were similar in magnitude. Thirty-two tissues in these 16 patients had deviations >5% relative to the 4D CT-predicted dose, and residual setup errors (n = 17) were most often the largest cause of the deviations, followed by deformations (n = 8) and breathing variations (n = 7). Conclusion: The majority of patients had accumulated dose deviations >5% relative to the static plan. Significant deviations relative to the predicted breathing dose still occurred in more than half the patients, commonly owing to residual setup errors. Accumulated SBRT dose may be warranted to pursue further dose escalation, adaptive SBRT, and aid in correlation with clinical outcomes.« less
NASA Astrophysics Data System (ADS)
Nasim, Wajid; Amin, Asad; Fahad, Shah; Awais, Muhammad; Khan, Naeem; Mubeen, Muhammad; Wahid, Abdul; Turan, Veysel; Rehman, Muhammad Habibur; Ihsan, Muhammad Zahid; Ahmad, Shakeel; Hussain, Sajjad; Mian, Ishaq Ahmad; Khan, Bushra; Jamal, Yousaf
2018-06-01
Climate change has adverse effects at global, regional and local level. Heat wave events have serious contribution for global warming and natural hazards in Pakistan. Historical (1997-2015) heat wave were analyzed over different provinces (Punjab, Sindh and Baluchistan) of Pakistan to identify the maximum temperature trend. Heat accumulation in Pakistan were simulated by the General Circulation Model (GCM) combined with 3 GHG (Green House Gases) Representative Concentration Pathways (RCPs) (RCP-4.5, 6.0, and 8.5) by using SimCLIM model (statistical downscaling model for future trend projections). Heat accumulation was projected for year 2030, 2060, and 2090 for seasonal and annual analysis in Pakistan. Heat accumulation were projected to increase by the baseline year (1995) was represented in percentage change. Projection shows that Sindh and southern Punjab was mostly affected by heat accumulation. This study identified the rising trend of heat wave over the period (1997-2015) for Punjab, Sindh and Baluchistan (provinces of Pakistan), which identified that most of the meteorological stations in Punjab and Sindh are highly prone to heat waves. According to model projection; future trend of annual heat accumulation, in 2030 was increased 17%, 26%, and 32% but for 2060 the trends were reported by 54%, 49%, and 86% for 2090 showed highest upto 62%, 75%, and 140% for RCP-4.5, RCP-6.0, and RCP-8.5, respectively. While seasonal trends of heat accumulation were projected to maximum values for monsoon and followed by pre-monsoon and post monsoon. Heat accumulation in monsoon may affect the agricultural activities in the region under study.
Paqué, Frank; Rechenberg, Dan-Krister; Zehnder, Matthias
2012-05-01
Hard-tissue debris is accumulated during rotary instrumentation. This study investigated to what extent a calcium-complexing agent that has good short-term compatibility with sodium hypochlorite (NaOCl) could reduce debris accumulation when applied in an all-in-one irrigant during root canal instrumentation. Sixty extracted mandibular molars with isthmuses in the mesial root canal system were selected based on prescans using a micro-computed tomography system. Thirty teeth each were randomly assigned to be instrumented with a rotary system and irrigated with either 2.5% NaOCl or 2.5% NaOCl containing 9% (wt/vol) etidronic acid (HEBP). Using a side-vented irrigating tip, 2 mL of irrigant was applied by 1 blinded investigator to the mesial canals after each instrument. Five milliliters of irrigant was applied per canal as the final rinse. Mesial root canal systems were scanned at high resolution before and after treatment, and accumulated hard-tissue debris was calculated as vol% of the original canal anatomy. Values between groups were compared using the Student's t test (α < .05). Irrigation with 2.5% NaOCl resulted in 5.5 ± 3.6 vol% accumulated hard-tissue debris compared with 3.8 ± 1.8 vol% when HEBP was contained in the irrigant (P < .05). A hypochlorite-compatible chelator can reduce but not completely prevent hard-tissue debris accumulation during rotary root canal instrumentation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Gao, Xing; Nan, Yang; Zhao, Yuanlin; Yuan, Yuan; Ren, Bincheng; Sun, Chao; Cao, Kaiyu; Yu, Ming; Feng, Xuyang; Ye, Jing
2017-12-01
Statins have been proven to be effective in treating non-alcoholic fatty liver disease (NAFLD). Recently, it was reported that statins decreased the hepatic expression of perilipin 5 (Plin5), a lipid droplet (LD)-associated protein, which plays critical roles in regulating lipid accumulation and lipolysis in liver. However, the function and regulation mechanism of Plin5 have not yet been well-established in NAFLD treatment with statins. In this study, we observed that atorvastatin moderately reduced the expression of Plin5 in livers without changing the protein level of Plin5 in the hepatic LD fraction of mice fed with high-fat diet (HFD). Intriguingly, atorvastatin stimulated the PKA-mediated phosphorylation of Plin5 and reduced the triglyceride (TG) accumulation in hepatocytes with overexpression of wide type (Plin5-WT) compared to serine-155 mutant Plin5 (Plin5-S155A). Moreover, PKA-stimulated FA release of purified LDs carrying Plin5-WT but not Plin5-S155A. Glucagon, a PKA activator, stimulated the phosphorylation of Plin5-WT and inhibited its interaction with CGI-58. The results indicated that atorvastatin promoted lipolysis and reduced TG accumulation in the liver by increasing PKA-mediated phosphorylation of Plin5. This new mechanism of lipid-lowering effects of atorvastatin might provide a new strategy for NAFLD treatment. Copyright © 2017. Published by Elsevier B.V.
Li, Wen-Yan; Chen, Bing-Xian; Chen, Zhong-Jian; Gao, Yin-Tao; Chen, Zhuang; Liu, Jun
2017-01-01
Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS) regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs) are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI), a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the regulation of NOX family gene expression in germinating seeds of monocot cereals. PMID:28098759
NASA Astrophysics Data System (ADS)
Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju
2018-04-01
The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022). More stringent emission reduction measures will need to be conducted by the government.
Weeks, Kate L; Ranieri, Antonella; Karaś, Agnieszka; Bernardo, Bianca C; Ashcroft, Alexandra S; Molenaar, Chris; McMullen, Julie R; Avkiran, Metin
2017-03-25
Class IIa histone deacetylase (HDAC) isoforms such as HDAC5 are critical signal-responsive repressors of maladaptive cardiomyocyte hypertrophy, through nuclear interactions with transcription factors including myocyte enhancer factor-2. β-Adrenoceptor (β-AR) stimulation, a signal of fundamental importance in regulating cardiac function, has been proposed to induce both phosphorylation-independent nuclear export and phosphorylation-dependent nuclear accumulation of cardiomyocyte HDAC5. The relative importance of phosphorylation at Ser259/Ser498 versus Ser279 in HDAC5 regulation is also controversial. We aimed to determine the impact of β-AR stimulation on the phosphorylation, localization, and function of cardiomyocyte HDAC5 and delineate underlying molecular mechanisms. A novel 3-dimensional confocal microscopy method that objectively quantifies the whole-cell nuclear/cytoplasmic distribution of green fluorescent protein tagged HDAC5 revealed the β-AR agonist isoproterenol to induce β 1 -AR-mediated and protein kinase A-dependent HDAC5 nuclear accumulation in adult rat cardiomyocytes, which was accompanied by dephosphorylation at Ser259/279/498. Mutation of Ser259/Ser498 to Ala promoted HDAC5 nuclear accumulation and myocyte enhancer factor-2 inhibition, whereas Ser279 ablation had no such effect and did not block isoproterenol-induced nuclear accumulation. Inhibition of the Ser/Thr phosphatase PP2A blocked isoproterenol-induced HDAC5 dephosphorylation. Co-immunoprecipitation revealed a specific interaction of HDAC5 with the PP2A targeting subunit B55α, as well as catalytic and scaffolding subunits, which increased >3-fold with isoproterenol. Knockdown of B55α in neonatal cardiomyocytes attenuated isoproterenol-induced HDAC5 dephosphorylation. β-AR stimulation induces HDAC5 nuclear accumulation in cardiomyocytes by a mechanism that is protein kinase A-dependent but requires B55α-PP2A-mediated dephosphorylation of Ser259/Ser498 rather than protein kinase A-mediated phosphorylation of Ser279. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Snabaitis, A K; Shattock, M J; Chambers, D J
1999-07-01
We previously demonstrated improved myocardial preservation with polarized (tetrodotoxin-induced), compared with depolarized (hyperkalemia-induced), arrest and hypothermic storage. This study was undertaken to determine whether polarized arrest reduced ionic imbalance during ischemic storage and whether this was influenced by Na+/K +/2Cl- cotransport inhibition. We used the isolated crystalloid perfused working rat heart preparation (1) to measure extracellular K+ accumulation (using a K+-sensitive intramyocardial electrode) during ischemic (control), depolarized (K+ 16 mmol/L), and polarized (tetrodotoxin, 22 micromol/L) arrest and hypothermic (7.5 degrees C) storage (5 hours), (2) to determine dose-dependent (0.1, 1.0, 10 and 100 micromol/L) effects of the Na +/K+/2Cl- cotransport inhibitor, furosemide, on extracellular K+ accumulation during polarized arrest and 7.5 degrees C storage, and (3) to correlate extracellular K+ accumulation to postischemic recovery of cardiac function. Characteristic triphasic profiles of extracellular K+ accumulation were observed in control and depolarized arrested hearts; a significantly attenuated profile with polarized arrested hearts demonstrated reduced extracellular K+ accumulation, correlating with higher postischemic function (recovery of aortic flow was 54% +/-4% [P =.01] compared with 39% +/-3% and 32% +/-3% in depolarized and control hearts, respectively). Furosemide (0.1, 1.0, 10, and 100 micromol/L) modified extracellular K+ accumulation by -18%, -38%, -0.2%, and +9%, respectively, after 30 minutes and by -4%, -27%, +31%, and +42%, respectively, after 5 hours of polarized storage. Recovery of aortic flow was 53% +/-4% (polarized arrest alone), 56% +/-8%, 70% +/-2% (P =.04 vs control), 69% +/-4% (P =.04 vs control), and 65% +/-3% ( P =. 04 vs control), respectively. Polarized arrest was associated with a reduced ionic imbalance (demonstrated by reduced extracellular K+ accumulation) and improved recovery of cardiac function. Further attenuation of extracellular K + accumulation (by furosemide) resulted in additional recovery.
Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry
2011-06-01
Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Kim, Hae-Suk; Montana, Vedrana; Jang, Hyun-Ju; Parpura, Vladimir; Kim, Jeong-a
2013-08-02
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has beneficial effects in the prevention of cardiovascular disease. Autophagy is a cellular process that protects cells from stressful conditions. To determine whether the beneficial effect of EGCG is mediated by a mechanism involving autophagy, the roles of the EGCG-stimulated autophagy in the context of ectopic lipid accumulation were investigated. Treatment with EGCG increased formation of LC3-II and autophagosomes in primary bovine aortic endothelial cells (BAEC). Activation of calmodulin-dependent protein kinase kinase β was required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation was significantly impaired by knockdown of calmodulin-dependent protein kinase kinase β. This effect is most likely due to cytosolic Ca(2+) load. To determine whether EGCG affects palmitate-induced lipid accumulation, the effects of EGCG on autophagic flux and co-localization of lipid droplets and autophagolysosomes were examined. EGCG normalized the palmitate-induced impairment of autophagic flux. Accumulation of lipid droplets by palmitate was markedly reduced by EGCG. Blocking autophagosomal degradation opposed the effect of EGCG in ectopic lipid accumulation, suggesting the action of EGCG is through autophagosomal degradation. The mechanism for this could be due to the increased co-localization of lipid droplets and autophagolysosomes. Co-localization of lipid droplets with LC3 and lysosome was dramatically increased when the cells were treated with EGCG and palmitate compared with the cells treated with palmitate alone. Collectively, these findings suggest that EGCG regulates ectopic lipid accumulation through a facilitated autophagic flux and further imply that EGCG may be a potential therapeutic reagent to prevent cardiovascular complications.
Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei
2014-01-01
ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661
Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme.
Jankowsky, E; Schwenzer, B
1996-01-01
Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems. PMID:8602353
Crowley, Patrick J; Crowley, Michael J
2014-01-01
Major head injuries are not uncommon in the Irish national game of hurling. Historically, helmets were not worn. We report a multistage campaign to facilitate and encourage the use of appropriate headgear among the estimated 100 000 hurling players in Ireland. This campaign lasted for 27 years between 1985 and 2012, and involved a number of different stages including: (1) facilitating the establishment of a business dedicated to developing head protection equipment suitable for hurling, (2) placing a particular emphasis on continual product enhancement to the highest industrial standards, (3) engaging continually with the game's controlling body, the Gaelic Athletic Association (GAA), with the ultimate objective of securing a mandatory usage policy for protective helmets and faceguards, (4) longitudinal research to monitor hurling injury, equipment usage and players' attitudes and (5) widely communicating key research findings to GAA leaders and members, as well as to 1000 clubs and schools. One of our three relevant studies included 798 patients and identified a dramatic association between the type of head protection used by a player, if any, and the site of the injury requiring treatment. While 51% of the injured players without head protection suffered head trauma, this rate was only 35% among the players wearing helmets and 5% among players who were wearing full head protection (both a helmet and faceguard). The GAA responded in three stages to the accumulating evidence: (1) they introduced a mandatory regulation for those aged less than 18 years in 2005; (2) this ruling was extended to all players under 21 years in 2007 and (3) finally extended to all players irrespective of age, gender or grade from January 2010. The latter ruling applied to both games and organised training sessions.
Genetic and environmental factors affecting cryptic variations in gene regulatory networks
2013-01-01
Background Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Results Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Conclusions Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity. PMID:23622056
Genetic and environmental factors affecting cryptic variations in gene regulatory networks.
Iwasaki, Watal M; Tsuda, Masaki E; Kawata, Masakado
2013-04-26
Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity.
OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues.
Xu, Yang; Yang, Jie; Wang, Yihua; Wang, Jiachang; Yu, Yang; Long, Yu; Wang, Yunlong; Zhang, Huan; Ren, Yulong; Chen, Jun; Wang, Ying; Zhang, Xin; Guo, Xiuping; Wu, Fuqing; Zhu, Shanshan; Lin, Qibing; Jiang, Ling; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin
2017-07-01
Seed-setting rate is a critical determinant of grain yield in rice (Oryza sativa L.). Rapid and healthy pollen tube growth in the style is required for high seed-setting rate. The molecular mechanisms governing this process remain largely unknown. In this study, we isolate a dominant low seed-setting rate rice mutant, sss1-D. Cellular examination results show that pollen tube growth is blocked in about half of the mutant styles. Molecular cloning and functional assays reveals that SSS1-D encodes OsCNGC13, a member of the cyclic nucleotide-gated channel family. OsCNGC13 is preferentially expressed in the pistils and its expression is dramatically reduced in the heterozygous plant, suggesting a haploinsufficiency nature for the dominant mutant phenotype. We show that OsCNGC13 is permeable to Ca2+. Consistent with this, accumulation of cytoplasmic calcium concentration ([Ca2+]cyt) is defective in the sss1-D mutant style after pollination. Further, the sss1-D mutant has altered extracellular matrix (ECM) components and delayed cell death in the style transmission tract (STT). Based on these results, we propose that OsCNGC13 acts as a novel maternal sporophytic factor required for stylar [Ca2+]cyt accumulation, ECM components modification and STT cell death, thus facilitating the penetration of pollen tube in the style for successful double fertilization and seed-setting in rice.
Meng, Dandan; Lei, Qian; Li, Yin; Deng, Pengyi; Chen, Mingjie; Tu, Min; Lu, Xinpei; Yang, Guangxiao; He, Guangyuan
2013-01-01
Atmospheric pressure room temperature plasma jets (APRTP-Js) that can emit a mixture of different active species have recently found entry in various medical applications. Apoptosis is a key event in APRTP-Js-induced cellular toxicity, but the exact biological mechanisms underlying remain elusive. Here, we explored the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in APRTP-Js-induced apoptosis using in vitro model of HepG2 cells. We found that APRTP-Js facilitated the accumulation of ROS and RNS in cells, which resulted in the compromised cellular antioxidant defense system, as evidenced by the inactivation of cellular antioxidants including glutathione (GSH), superoxide dismutase (SOD) and catalase. Nitrotyrosine and protein carbonyl content analysis indicated that APRTP-Js treatment caused nitrative and oxidative injury of cells. Meanwhile, intracellular calcium homeostasis was disturbed along with the alteration in the expressions of GRP78, CHOP and pro-caspase12. These effects accumulated and eventually culminated into the cellular dysfunction and endoplasmic reticulum stress (ER stress)-mediated apoptosis. The apoptosis could be markedly attenuated by N-acetylcysteine (NAC, a free radical scavenger), which confirmed the involvement of oxidative and nitrative stress in the process leading to HepG2 cell apoptosis by APRTP-Js treatment. PMID:24013954
NASA Astrophysics Data System (ADS)
Rosa, Rui; Seibel, Brad A.
2010-07-01
The Humboldt (or jumbo) squid, Dosidicus gigas, is an active predator endemic to the Eastern Pacific that undergoes diel vertical migrations into a pronounced oxygen minimum layer (OML). Here, we investigate the physiological mechanisms that facilitate these migrations and assess the associated costs and benefits. Exposure to hypoxic conditions equivalent to those found in the OML (∼10 μM O 2 at 10 °C) led to a significant reduction in the squid’s routine metabolic rate (RMR), from 8.9 to 1.6 μmol O 2 g -1 h -1 ( p < 0.05), and a concomitant increase in mantle muscle octopine levels (from 0.50 to 5.24 μmol g -1 tissue, p < 0.05). Enhanced glycolitic ATP production accounted for only 7.0% and 2.8% at 10 °C and 20 °C, respectively, of the energy deficit that resulted from the decline in aerobic respiration. The observed metabolic suppression presumably extends survival time in the OML by conserving the finite stores of fermentable substrate and avoiding the accumulation of the deleterious anaerobic end products in the tissues. RMR increased significantly with temperature ( p < 0.05), from 8.9 (at 10 °C) to 49.85 μmol O 2 g -1 h -1 (at 25 °C) which yielded a Q10 of 2.0 between 10 and 20 °C and 7.9 between 20 and 25 °C ( p < 0.05). These results suggest that 25 °C, although within the normal surface temperature range in the Gulf of California, is outside this species’ normal temperature range. By following the scattering layer into oxygen-enriched shallow water at night, D. gigas may repay any oxygen debt accumulated during the daytime. The dive to deeper water may minimize exposure to stressful surface temperatures when most prey have migrated to depth during the daytime. The physiological and ecological strategies demonstrated here may have facilitated the recent range expansion of this species into northern waters where expanding hypoxic zones prohibit competing top predators.
Yang, Xiangdong; Lloyd, Bethany; Daniell, Henry
2013-01-01
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts. PMID:23355891
Simultaneous Determination of 11 Illicit Phenethylamines in Hair by LC-MS-MS: In Vivo Application.
Nieddu, Maria; Burrai, Lucia; Demontis, Maria Piera; Varoni, Maria Vittoria; Baralla, Elena; Trignano, Claudia; Boatto, Gianpiero
2015-09-01
Existing phenethylamines are a class of synthetic compounds that differ from each other only in small changes to a largely conserved chemical structure. The recreational and illicit use of phenethylamines is a widespread problem. A simple procedure for the simultaneous quantitative determination in hair of 11 phenethylamines that are officially recognized as illicit by Italian legislation (p-methoxyamphetamine; p-methoxymethamphetamine; 3,4,5-trimethoxyamphetamine; 2,5-dimethoxyamphetamine; 2,5-dimethoxy-4-methylamphetamine; 2,5-dimethoxy-4-ethylamphetamine; 2,5-dimethoxy-4-bromoamphetamine; 2,5-dimethoxy-4-bromophenethylamine; 2,5-dimethoxy-4-iodophenethylamine; 2,5-dimethoxy-4-ethylthiophenethylamine and 2,5-dimethoxy-4-n-propylthiophenethylamine) has been developed and validated. Extraction from the matrix was performed after incubation in methanolic HCl and filtered reconstituted extracts were injected into a liquid chromatography/tandem mass spectrometry system (LC-MS-MS) without any further purification steps. This validated LC-MS-MS method has been used to determine the in vivo accumulation/retention of the above target analytes in hair after repeat oral administration to rats. This experiment further permitted investigation of the effect of pigmentation on the uptake of these phenethylamines by hair and the effect of hair pigmentation. The developed method could potentially be used for forensic and toxicological purposes, in the detection and quantitation of these illicit substances in human hair in workplace drug testing; drug-facilitated crime investigation; driver re-licensing; determining drug abuse history and postmortem toxicology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles.
Khashan, Khawlah Salah; Sulaiman, Ghassan Mohammad; Abdul Ameer, Farah Abdul Kareem; Napolitano, Giuliana
2016-03-01
The Colloidal solutions of nickel oxide (NiO) nanoparticles synthesized via Nd-Yag pulse ablation of nickel immersed in H2O were studied. The created nanoparticles were characterized by UV-VIS absorption, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). FTIR characterization confirms the formation of nickel oxide nanoparticles. The optical band gap values, determined by UV-VIS absorption measurements, are found to be (4.5 ev). TEM shows that nanoparticles size ranged from 2-21 nm. The antimicrobial activity was carried out against pseudomonas aurogenisa, Escherichia coli (gram negative bacteria), Staphylococcus aureus and Streptococcus pneumonia (gram positive bacteria). The NiO nanoparticles showed inhibitory activity in both strains of bacteria with best selectivity against gram-positive bacteria. The findings of present study indicate that NiO nanoparticles could potentiate the permeability of bacterial cell wall, and remarkably increase the accumulation of amoxicillin in bacteria, suggesting that NiO nanoparticles together with amoxicillin would facilitate the synergistic impact on growth inhibition of bacterial strains.
Direct Evidence of Meltwater Flow Within a Firn Aquifer in Southeast Greenland
NASA Astrophysics Data System (ADS)
Miller, Olivia; Solomon, D. Kip; Miège, Clément; Koenig, Lora; Forster, Richard; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Montgomery, Lynn
2018-01-01
Within the lower percolation zone of the southeastern Greenland ice sheet, meltwater has accumulated within the firn pore space, forming extensive firn aquifers. Previously, it was unclear if these aquifers stored or facilitated meltwater runoff. Following mixing of a saline solution into boreholes within the aquifer, we observe that specific conductance measurements decreased over time as flowing freshwater diluted the saline mixture in the borehole. These tests indicate that water flows through the aquifer with an average specific discharge of 4.3 × 10-6 m/s (σ = 2.5 × 10-6 m/s). The specific discharge decreases dramatically to 0 m/s, defining the bottom of the aquifer between 30 to 50 m depth. The observed flow indicates that the firn pore space is a short-term (<30 years) storage mechanism in this region. Meltwater flows out of the aquifer, likely into nearby crevasses, and possibly down to the base of the ice sheet and into the ocean.
Li, Qian; Xu, Manjuan; Wang, Gaojun; Chen, Rong; Qiao, Wei; Wang, Xiaochang
2018-02-01
Batch experiments were conducted using biochar (BC) to promote stable and efficient methane production from thermophilic co-digestion of food waste (FW) and waste activated sludge (WAS) at feedstock/seed sludge (F/S) ratios of 0.25, 0.75, 1.5, 2.25, and 3. The results showed that the presence of BC dramatically shortened the lag time of methane production and increased the methane production rate with increased organic loading. The higher buffer capacity and large specific surface area of BC promoted microorganism growth and adaption to VFAs accumulation. Additionally, the electron exchange in syntrophic oxidation of butyrate and acetate as intermediate products was significantly facilitated by BC possibly due to the selective succession of bacteria and methanogens which may have participated in direct interspecies electron transfer, in contrast with the control group with low-efficient electron ferried between syntrophic oxidizers and methanogens using hydrogen as the electron carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.
CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition
Murakami, Y; Tian, L; Voss, O H; Margulies, D H; Krzewski, K; Coligan, J E
2014-01-01
The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway. PMID:25034781
Protoporphyrin IX fluorescence as potential indicator of psoriasis severity and progression.
Wang, Bo; Xu, Yu-Ting; Zhang, Li; Zheng, Jie; Sroka, Ronald; Wang, Hong-Wei; Wang, Xiu-Li
2017-09-01
In psoriatic lesions, fluorescence diagnosis with blue light can detect protoporphyrin IX accumulation, especially after topical 5-aminolaevulinic acid (ALA) application. However, variable fluorescence distributions, interpersonal variations and long incubation time limit its wide application in clinic. This study is aimed to identify a consistent and convenient method to facilitate diagnosis and evaluation of psoriatic lesions. 104 psoriatic lesions from 30 patients were evaluated. Single lesion PSI scoring and fluorescence by macrospectrofluorometry were recorded on each lesion before and after treatment with narrow-band UVB. Punctate red fluorescence, emitted mainly by protoporphyrin IX, is observed in some psoriatic lesions. According to psoriasis severity index, fluorescence-positive lesions are more severe than lesions without fluorescence. We found a significant positive correlation between psoriasis severity and fluorescence intensity from protoporphyrin IX. Protoporphyrin IX-induced red fluorescence can be used as a novel and convenient approach for psoriasis diagnosis and progression evaluation. Copyright © 2017. Published by Elsevier B.V.
Xu, Dechao; Chen, Hongbo; Li, Xiaoming; Yang, Qi; Zeng, Tianjing; Luo, Kun; Zeng, Guangming
2013-09-01
An innovative static/oxic/anoxic (SOA) activated sludge process characterized by static phase as a substitute for conventional anaerobic stage was developed to enhance biological nutrient removal (BNR) with influent ammonia of 20 and 40 mg/L in R1 and R2 reactors, respectively. The results demonstrated that static phase could function as conventional anaerobic stage. In R1 lower influent ammonia concentration facilitated more polyphosphate accumulating organisms (PAOs) growth, but secondary phosphorus release occurred due to NOx(-) depletion during post-anoxic period. In R2, however, denitrifying phosphorus removal proceeded with sufficient NOx(-). Both R1 and R2 saw simultaneous nitrification-denitrification. Glycogen was utilized to drive post-denitrification with denitrification rates in excess of typical endogenous decay rates. The anoxic stirring duration could be shortened from 3 to 1.5h to avoid secondary phosphorus release in R1 and little adverse impact was found on nutrients removal in R2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes.
Herr, Andreas; Fischer, Reinhard
2014-09-01
Aspergillus nidulans is able to synthesize penicillin and serves as a model to study the regulation of its biosynthesis. Only three enzymes are required to form the beta lactam ring tripeptide, which is comprised of l-cysteine, l-valine and l-aminoadipic acid. Whereas two enzymes, AcvA and IpnA localize to the cytoplasm, AatA resides in peroxisomes. Here, we tested a novel strategy to improve penicillin production, namely the change of the residence of the enzymes involved in the biosynthesis. We tested if targeting of AcvA or IpnA (or both) to peroxisomes would increase the penicillin yield. Indeed, AcvA peroxisomal targeting led to a 3.2-fold increase. In contrast, targeting IpnA to peroxisomes caused a complete loss of penicillin production. Overexpression of acvA, ipnA or aatA resulted in 1.4, 2.8 and 3.1-fold more penicillin, respectively in comparison to wildtype. Simultaneous overexpression of all three enzymes resulted even in 6-fold more penicillin. Combination of acvA peroxisomal targeting and overexpression of the gene led to 5-fold increase of the penicillin titer. At last, the number of peroxisomes was increased through overexpression of pexK. A strain with the double number of peroxisomes produced 2.3 times more penicillin. These results show that penicillin production can be triggered at several levels of regulation, one of which is the subcellular localization of the enzymes. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Pankiewicz, Urszula; Sujka, Monika; Włodarczyk-Stasiak, Marzena; Mazurek, Artur; Jamroz, Jerzy
2014-08-15
Cultures of Saccharomyces cerevisiae were treated with PEF to improve simultaneous accumulation of magnesium and zinc ions in the biomass. The results showed that the ions concentration in the medium and their mutual interactions affect accumulation in cells. Increasing the concentration of one ion in the medium reduced the accumulation of the second one, in the control as well as in the cells treated with PEF. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEF of 5.0 kV/cm and 20 μs pulse width, accumulation of magnesium and zinc in yeast biomass reached maximum levels of 2.85 and 11.41 mg/gd.m., respectively, To summarize, optimization of ion pair concentration and PEF parameters caused a 1.5 or 2-fold increase of magnesium and zinc accumulation, respectively, in S. cerevisiae. Copyright © 2014 Elsevier Ltd. All rights reserved.