Science.gov

Sample records for facilitative nucleobase transporter

  1. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals

    PubMed Central

    Furukawa, Junji; Inoue, Katsuhisa; Maeda, Junya; Yasujima, Tomoya; Ohta, Kinya; Kanai, Yoshikatsu; Takada, Tappei; Matsuo, Hirotaka; Yuasa, Hiroaki

    2015-01-01

    The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na+ and H+, but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes. PMID:26455426

  2. Nucleobase and nucleoside transport and integration into plant metabolism

    PubMed Central

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level. PMID:25250038

  3. Oxidative stress modulates nucleobase transport in microvascular endothelial cells.

    PubMed

    Bone, Derek B J; Antic, Milica; Vilas, Gonzalo; Hammond, James R

    2014-09-01

    Purine nucleosides and nucleobases play key roles in the physiological response to vascular ischemia/reperfusion events. The intra- and extracellular concentrations of these compounds are controlled, in part, by equilibrative nucleoside transporter subtype 1 (ENT1; SLC29A1) and by equilibrative nucleobase transporter subtype 1 (ENBT1). These transporters are expressed at the membranes of numerous cell types including microvascular endothelial cells. We studied the impact of reactive oxygen species on the function of ENT1 and ENBT1 in primary (CMVEC) and immortalized (HMEC-1) human microvascular endothelial cells. Both cell types displayed similar transporter expression profiles, with the majority (>90%) of 2-chloro[(3)H]adenosine (nucleoside) uptake mediated by ENT1 and [(3)H]hypoxanthine (nucleobase) uptake mediated by ENBT1. An in vitro mineral oil-overlay model of ischemia/reperfusion had no effect on ENT1 function, but significantly reduced ENBT1 Vmax in both cell types. This decrease in transport function was mimicked by the intracellular superoxide generator menadione and could be reversed by the superoxide dismutase mimetic MnTMPyP. In contrast, neither the extracellular peroxide donor TBHP nor the extracellular peroxynitrite donor 3-morpholinosydnonimine (SIN-1) affected ENBT1-mediated [(3)H]hypoxanthine uptake. SIN-1 did, however, enhance ENT1-mediated 2-chloro[(3)H]adenosine uptake. Our data establish HMEC-1 as an appropriate model for study of purine transport in CMVEC. Additionally, these data suggest that the generation of intracellular superoxide in ischemia/reperfusion leads to the down-regulation of ENBT1 function. Modification of purine transport by oxidant stress may contribute to ischemia/reperfusion induced vascular damage and should be considered in the development of therapeutic strategies.

  4. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins.

    PubMed

    Young, J D; Yao, S Y M; Sun, L; Cass, C E; Baldwin, S A

    2008-07-01

    1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.

  5. A Transition-State Interaction Shifts Nucleobase Ionization Toward Neutrality to Facilitate Small Ribozyme Catalysis

    PubMed Central

    Liberman, Joseph A.; Guo, Man; Jenkins, Jermaine L.; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R.; Wedekind, Joseph E.

    2012-01-01

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pKa values for the Ade38 N1-imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pKa value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pKa we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pKa values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pKa >0.8 log units relative to the precatalytic state. The agreement of the microscopic and macroscopic pKa values and the accompanying structural analysis support a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity. PMID:22989273

  6. SUPERFUND GROUNDWATER ISSUE - FACILITATED TRANSPORT

    EPA Science Inventory

    The Regional Superfund Ground Water Forum is a group of ground-water scientists representing EPA's Regional Superfund Offices, organized to exchange up to date information related to ground-water remediation at Superfund sites. Facilitated transport is an issue identified by the ...

  7. Structural, Dynamical and Electronic Transport Properties of Modified DNA Duplexes Containing Size-Expanded Nucleobases

    SciTech Connect

    Sumpter, Bobby G; Fuentes-Cabrera, Miguel A

    2011-01-01

    Among the distinct strategies proposed to expand the genetic alphabet, size-expanded nucleobases are promising for the development of modified DNA duplexes with improved biotechnological properties. In particular, duplexes built up by replacing canonical bases with the corresponding benzo-fused counterparts could be valuable as molecular nanowires. In this context, this study reports the results of classical molecular dynamics simulations carried out to examine the structural and dynamical features of size-expanded DNAs, including both hybrid duplexes containing mixed pairs of natural and benzo-fused bases (xDNA) and pure size-expanded (xxDNA) duplexes. Furthermore, the electronic structure of both natural and size-expanded duplexes is examined by means of density functional computations. The results confirm that the structural and flexibility properties of the canonical DNA are globally little affected by the presence of benzo-fused bases. The most relevant differences are found in the enhanced size of the grooves, and the reduction in the twist. However, the analysis also reveals subtle structural effects related to the nature and sequence of benzo-fused bases in the duplex. On the other hand, electronic structure calculations performed for xxDNAs confirm the reduction in the HOMO-LUMO gap predicted from the analysis of the natural bases and their size-expanded counterparts, which suggests that pure size-expanded DNAs can be good conductors. A more complex situation is found for xDNAs, where fluctuations in the electrostatic interaction between base pairs exerts a decisive influence on the modulation of the energy gap.

  8. Structural, Dynamical, and Electronic Transport Properties of Modified DNA Duplexes Containing Size-Expanded Nucleobases

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Orozco, Modesto; Luque, Javier; Sumpter, Bobby G; Blas, Jose; Ordejon, Pablo J; Huertas, Oscar; Tabares, Carolina

    2011-01-01

    Among the distinct strategies proposed to expand the genetic alphabet, sizeexpanded nucleobases are promising for the development of modified DNA duplexes with improved biotechnological properties. In particular, duplexes built up by replacing canonical bases with the corresponding benzo-fused counterparts could be valuable as molecular nanowires. In this context, this study reports the results of classical molecular dynamics simulations carried out to examine the structural and dynamical features of size-expanded DNAs, including both hybrid duplexes containing mixed pairs of natural and benzo-fused bases (xDNA) and pure size-expanded (xxDNA) duplexes. Furthermore, the electronic structure of both natural and size-expanded duplexes is examined by means of density functional computations. The results confirm that the structural and flexibility properties of the canonical DNA are globally little affected by the presence of benzo-fused bases. Themost relevant differences are found in the enhanced size of the grooves, and the reduction in the twist. However, the analysis also reveals subtle structural effects related to the nature and sequence of benzo-fused bases in the duplex. On the other hand, electronic structure calculations performed for xxDNAs confirm the reduction in the HOMOLUMO gap predicted from the analysis of the natural bases and their size-expanded counterparts, which suggests that pure size-expanded DNAs can be good conductors. A more complex situation is found for xDNAs, where fluctuations in the electrostatic interaction between base pairs exerts a decisive influence on the modulation of the energy gap.

  9. Oxidation of DNA: damage to nucleobases.

    PubMed

    Kanvah, Sriram; Joseph, Joshy; Schuster, Gary B; Barnett, Robert N; Cleveland, Charles L; Landman, Uzi

    2010-02-16

    All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of its formation; (ii) the electronic and structural factors that determine the nucleobases at which irreversible reactions most readily occur; (iii) the mechanism of reaction for nucleobase radical cations. The loss of an electron (ionization) from DNA generates an electron "hole" (a radical cation), located most often on its nucleobases, that migrates reversibly through duplex DNA by hopping until it is trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In aqueous solution, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counterions to the phosphate groups (typically Na(+)) play an important role in facilitating both hopping and the eventual reaction of the radical cation with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA, comprising the four common DNA nucleobases G, C, A, and T, reaction occurs most commonly at a guanine, resulting in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step, primarily by a tandem process. The oxidative damage of DNA is a complex process, influenced by charge transport and reactions that are controlled by a combination of enthalpic, entropic, steric, and

  10. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds.

    PubMed

    Yang, Hsiu-Wen; Lee, Ai-Wei; Huang, Chi-Hsien; Chen, Jem-Kun

    2014-11-01

    In this study we employed poly(N-isopropylacrylamide) (PNIPAAm) as a matrix that we hybridized with five different nucleobase units (adenine, thymine, uracil, guanine, cytosine) to generate PNIPAAm-nucleobase supramolecular complexes (PNSCs) stabilized through bio-multiple hydrogen bonds (BMHBs). These nucleobase units interacted with PNIPAAm through BMHBs of various strengths, leading to competition between the BMHBs and the intramolecular hydrogen bonds (HBs) of PNIPAAm. The changes in morphology, crystalline structure, and thermoresponsive behavior of PNIPAAm were related to the strength of its BMHBs with the nucleobases. The strengths of the BMHBs followed the order guanine > adenine > thymine > cytosine > uracil, as verified through analyses of Fourier transform infrared spectra, lower critical solution temperatures, and inter-association equilibrium constants. The PNSCs also exhibited remarkable improvements in conductivity upon the formation of BMHBs, which facilitated proton transport. The neat PNIPAAm film was an insulator, but it transformed into a semiconductor after hybridizing with the nucleobases. In particular, the resistivity of the PNIPAAm-guanine supramolecular complex decreased to 1.35 × 10(5) ohm cm. The resistivity of the PNIPAAm-cytosine supramolecular complex increased significantly from 5.83 × 10(6) to 3 × 10(8) ohm cm upon increasing the temperature from 40 to 50 °C, suggesting that this material might have applicability in thermo-sensing. The ability to significantly improve the conductivity of hydrogels through such a simple approach involving BMHBs might facilitate their use as novel materials in bioelectronics. PMID:25196131

  11. Proton Transfer in Nucleobases is Mediated by Water

    SciTech Connect

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  12. Facilitative glucose transporters in livestock species.

    PubMed

    Hocquette, J F; Abe, H

    2000-01-01

    The study of facilitative glucose transporters (GLUT) requires carefully done immunological experiments and sensitive molecular biology approaches to identify the various mechanisms which control GLUT expression at the RNA and protein levels. The cloning of species-specific GLUT cDNAs showed that GLUT4 and GLUT1 diverge less among species than other GLUT isoforms. The key role of GLUT in glucose homeostasis has been demonstrated in livestock species. In vitro studies have suggested specific roles of GLUT1 and GLUT3 in avian cells. In vivo studies have demonstrated a regulation of GLUTs (especially of GLUT4) by nutritional and hormonal factors in pigs and cattle, in lactating cows and goats and throughout the foetal life in the placenta and tissues of lambs and calves. All these results suggest that any changes in GLUT expression and activity (such as GLUT4 in muscles) could modify nutrient partitioning and tissue metabolism, and hence, the qualities of animal products (milk, meat).

  13. Saturated Zone Colloid-Facilitated Transport

    SciTech Connect

    A. Wolfsberg; P. Reimus

    2001-12-18

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS M&O 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  14. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    PubMed

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. PMID:24621654

  15. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    PubMed

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members.

  16. Computation Of Facilitated Transport of O2 In Hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1991-01-01

    Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.

  17. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    SciTech Connect

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-05-31

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments.

  18. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...

  19. Microhydration of Deprotonated Nucleobases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2016-08-01

    Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o , ΔS o , and ΔG o , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data.

  20. Nuclear protein accumulation by facilitated transport and intranuclear binding.

    PubMed

    Paine, P L

    1993-10-01

    Nuclear proteins are transported from the cytoplasm into the nucleus via nuclear envelope pore complexes (NPCs). At the molecular level, the mechanisms responsible for this transport remain obscure. However, it is known that, for many proteins, the process requires ATP and proceeds against formidable nucleocytoplasmic concentration gradients. Therefore, the NPC is often thought of as an active transport site. In this article, Philip Paine presents the alternative hypothesis that, on current evidence, protein translocation across the nuclear envelope and accumulation in the nucleus can equally well be explained by facilitated transport through the NPC and subsequent intranuclear binding.

  1. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  2. Design of intelligent nucleobases and DNA HOMO mapping.

    PubMed

    Saito, Isao

    2002-01-01

    We have designed a new nucleobase, benzodeazaadenine (BDA) that has a stronger charge transport ability than guanine and is not destroyed during charge transport process. By incorporating this new nucleobase into DNA, we demonstrated a protocol for real DNA nano-wire that is far superior to natural DNA. We also demonstrated that the selectivity for the interaction of Mn(II) ion with guanine N7 in G runs is a HOMO-controlled process, and as a consequence, the selectivity for G-metal ion interactions obtained by 15N-NMR studies would directly reflect the HOMO distribution of G-containing sequences in B-DNA.

  3. Colloid-facilitated transport of lead in natural discrete fractures.

    PubMed

    Tang, Xiang-Yu; Weisbrod, Noam

    2009-01-01

    Colloid-facilitated transport of lead (Pb) was explored in a natural chalk fracture with an average equivalent hydraulic aperture of 139 microm. Tracer solution was prepared by adding montmorillonite (100 mg L(-1)) and/or humic acid (HA) (10 mg L(-1)) to modified artificial rainwater containing dissolved Pb (21.4 mg Pb L(-1)), naturally precipitated PbCO(3) particles (16.4 mg Pb L(-1)) and LiBr (39.0 mg L(-1)). We found that Pb is only mobile when associated with colloids. PbCO(3) particles were not mobile in the fracture. The addition of HA to the montmorillonite suspension increased the suspension's mobility and therefore promoted the colloid-facilitated transport of Pb. The increases in pH and sodium absorption ratio induced by the chalk-tracer solution interactions appeared to increase the dispersion and mobilization of colloids entering the fracture. The dominant colloid-facilitated transport of Pb reported in this study has significant implications for risk assessment of Pb mobility in fractured rocks. PMID:19395135

  4. No facilitator required for membrane transport of hydrogen sulfide

    PubMed Central

    Mathai, John C.; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Zeidel, Mark L.; Lee, John K.; Pohl, Peter

    2009-01-01

    Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H2S flux. To measure H2O and H2S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H2S ⇆ H+ + HS−) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H2S, PM,H2S ≥ 0.5 ± 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, PM,H2S remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H2S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H2S barrier indicates that H2S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels. PMID:19805349

  5. NKCC1 transporter facilitates seizures in the developing brain.

    PubMed

    Dzhala, Volodymyr I; Talos, Delia M; Sdrulla, Dan A; Brumback, Audrey C; Mathews, Gregory C; Benke, Timothy A; Delpire, Eric; Jensen, Frances E; Staley, Kevin J

    2005-11-01

    During development, activation of Cl(-)-permeable GABA(A) receptors (GABA(A)-R) excites neurons as a result of elevated intracellular Cl(-) levels and a depolarized Cl(-) equilibrium potential (E(Cl)). GABA becomes inhibitory as net outward neuronal transport of Cl(-) develops in a caudal-rostral progression. In line with this caudal-rostral developmental pattern, GABAergic anticonvulsant compounds inhibit motor manifestations of neonatal seizures but not cortical seizure activity. The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) facilitates the accumulation of Cl(-) in neurons. The NKCC1 blocker bumetanide shifted E(Cl) negative in immature neurons, suppressed epileptiform activity in hippocampal slices in vitro and attenuated electrographic seizures in neonatal rats in vivo. Bumetanide had no effect in the presence of the GABA(A)-R antagonist bicuculline, nor in brain slices from NKCC1-knockout mice. NKCC1 expression level versus expression of the Cl(-)-extruding transporter (KCC2) in human and rat cortex showed that Cl(-) transport in perinatal human cortex is as immature as in the rat. Our results provide evidence that NKCC1 facilitates seizures in the developing brain and indicate that bumetanide should be useful in the treatment of neonatal seizures.

  6. Protist-facilitated particle transport using emulated soil micromodels.

    PubMed

    Rubinstein, Rebecca L; Kadilak, Andrea L; Cousens, Virginia C; Gage, Daniel J; Shor, Leslie M

    2015-02-01

    Microbial processes in the subsurface can be visualized directly using micromodels to emulate pore-scale geometries. Here, emulated soil micromodels were used to measure transport of fluorescent beads in the presence and absence of the soil ciliate Colpoda sp. under quiescent conditions. Beads alone or beads with protists were delivered to the input wells of replicate micromodels that contained three 20 mm(2) channels emulating a sandy loam microstructure. Bead abundance in microstructured channels was measured by direct counts of tiled confocal micrographs. For channels with protists, average bead abundances were approximately 320, 560, 710, 830, and 790 mm(-2) after 1, 2, 3, 5, and 10 days, respectively, versus 0, 0, 0.3, 7.8, and 45 mm(-2) without protists. Spatial and temporal patterns of bead abundance indicate that protist-facilitated transport is not a diffusive-type process but rather a function of more complex protist behaviors, including particle uptake and egestion and motility in a microstructured habitat. Protist-facilitated transport may enhance particle mixing in the soil subsurface and could someday be used for targeted delivery of nanoparticles, encapsulated chemicals, or bacteria for remediation and agriculture applications.

  7. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    SciTech Connect

    Flury, Markus

    2003-09-14

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring during leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has

  8. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8.

    PubMed

    Corpe, Christopher P; Eck, Peter; Wang, Jin; Al-Hasani, Hadi; Levine, Mark

    2013-03-29

    Intestinal vitamin C (Asc) absorption was believed to be mediated by the Na(+)-dependent ascorbic acid transporter SVCT1. However, Asc transport across the intestines of SVCT1 knock-out mice is normal indicating that alternative ascorbic acid transport mechanisms exist. To investigate these mechanisms, rodents were gavaged with Asc or its oxidized form dehydroascorbic acid (DHA), and plasma Asc concentrations were measured. Asc concentrations doubled following DHA but not Asc gavage. We hypothesized that the transporters responsible were facilitated glucose transporters (GLUTs). Using Xenopus oocyte expression, we investigated whether facilitative glucose transporters GLUT2 and GLUT5-12 transported DHA. Only GLUT2 and GLUT8, known to be expressed in intestines, transported DHA with apparent transport affinities (Km) of 2.33 and 3.23 mm and maximal transport rates (Vmax) of 25.9 and 10.1 pmol/min/oocyte, respectively. Maximal rates for DHA transport mediated by GLUT2 and GLUT8 in oocytes were lower than maximal rates for 2-deoxy-d-glucose (Vmax of 224 and 32 pmol/min/oocyte for GLUT2 and GLUT8, respectively) and fructose (Vmax of 406 and 116 pmol/min/oocyte for GLUT2 and GLUT8, respectively). These findings may be explained by differences in the exofacial binding of substrates, as shown by inhibition studies with ethylidine glucose. DHA transport activity in GLUT2- and GLUT8-expressing oocytes was inhibited by glucose, fructose, and by the flavonoids phloretin and quercetin. These studies indicate intestinal DHA transport may be mediated by the facilitative sugar transporters GLUT2 and GLUT8. Furthermore, dietary sugars and flavonoids in fruits and vegetables may modulate Asc bioavailability via inhibition of small intestinal GLUT2 and GLUT8.

  9. Understanding heat facilitated drug transport across human epidermis.

    PubMed

    Wood, D G; Brown, M B; Jones, S A

    2012-08-01

    The application of moderate heat is a safe and effective means to increase drug transport across human skin. However, the cascade of events that follows the exposure of a topical skin formulation to a heating source is not well understood. The aim of this study was to elucidate how three potential rate limiting stages in the drug transport process; formulation release, drug partitioning and epidermal diffusion, responded to changes in local temperature using the model drug lidocaine. Release from the formulation measured using regenerated cellulose membrane was shown to be driven by drug diffusion in the vehicle; it responded linearly when the local temperature was changed (21.6 μg/cm(2)/h for every 1 °C rise) and displayed no measurable partitioning of lidocaine into RCM. Once the drug was within the human epidermis, the structural changes of the barrier controlled its transport. The apparent lidocaine diffusion coefficient through silicone membrane increased from 6.52 to 8.43 × 10(-4) over the 32-45 °C temperature range, but it increased from 7.74 × 10(-5)cm(2)h(-1) to 4.8 × 10(-4)cm(2)h(-1) in the human epidermis. In the absence of large increases in drug partitioning, fluidisation of the lipids in the upper layers of the epidermis at 37-45 °C was shown to facilitate lidocaine diffusion which for human skin transport was the rate limiting process.

  10. Golgi Localized Barley MTP8 Proteins Facilitate Mn Transport

    PubMed Central

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species. PMID:25486417

  11. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of

  12. Colloid Facilitated Transport of Plutonium in Fractured Volcanic Tuff

    NASA Astrophysics Data System (ADS)

    Kersting, A. B.; Zhao, P.; Walensky, J. R.; Roberts, S. K.; Johnson, M. R.; Zavarin, M.; Ramon, E. C.

    2004-12-01

    The transport of low-solubility radionuclides in a colloidal- or colloidal bound state is frequently suspected or observed. Groundwater contaminated with radionuclides associated with underground nuclear tests was collected from several different well locations at the Nevada Test Site (NTS). In each case, the low-levels of plutonium detected in the groundwater were overwhelmingly (>95percent) associated with the colloidal and not the dissolved fraction of the groundwater. The colloidal fractions consisted of secondary minerals such as clays and zeolites. To better understand the mechanisms controlling the potential colloidal transport of plutonium, colloid-facilitated fracture flow laboratory experiments are being conducted. Pseudocolloids consisting of Pu(IV) sorbed to clinoptilolite were combined with a radionuclide solution cocktail consisting of Np, U, Cs, Sr, Sm and 3H and Re (analog to Tc) tracers in NTS-type synthetic groundwater (4.5mM NaHCO3-). The cocktail was injected into a smooth fracture in a volcanic tuff rock core from the NTS and the effluent analyzed. Autoradiography and secondary ion mass spectrometry will be used to understand the mineral -colloid-radionuclide interactions in the fracture volcanic tuff.

  13. Isoform-selective Inhibition of Facilitative Glucose Transporters

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Tzekov, Anatoly; Wildman, Scott A.; Hruz, Paul W.

    2014-01-01

    Pharmacologic HIV protease inhibitors (PIs) and structurally related oligopeptides are known to reversibly bind and inactivate the insulin-responsive facilitative glucose transporter 4 (GLUT4). Several PIs exhibit isoform selectivity with little effect on GLUT1. The ability to target individual GLUT isoforms in an acute and reversible manner provides novel means both to investigate the contribution of individual GLUTs to health and disease and to develop targeted treatment of glucose-dependent diseases. To determine the molecular basis of transport inhibition, a series of chimeric proteins containing transmembrane and cytosolic domains from GLUT1 and GLUT4 and/or point mutations were generated and expressed in HEK293 cells. Structural integrity was confirmed via measurement of N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) labeling of the chimeric proteins in low density microsome fractions isolated from stably transfected 293 cells. Functional integrity was assessed via measurement of zero-trans 2-deoxyglucose (2-DOG) uptake. ATB-BMPA labeling studies and 2-DOG uptake revealed that transmembrane helices 1 and 5 contain amino acid residues that influence inhibitor access to the transporter binding domain. Substitution of Thr-30 and His-160 in GLUT1 to the corresponding positions in GLUT4 is sufficient to completely transform GLUT1 into GLUT4 with respect to indinavir inhibition of 2-DOG uptake and ATB-BMPA binding. These data provide a structural basis for the selectivity of PIs toward GLUT4 over GLUT1 that can be used in ongoing novel drug design. PMID:24706759

  14. PFLOTRAN: Recent Developments Facilitating Massively-Parallel Reactive Biogeochemical Transport

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.

    2015-12-01

    With the recent shift towards modeling carbon and nitrogen cycling in support of climate-related initiatives, emphasis has been placed on incorporating increasingly mechanistic biogeochemistry within Earth system models to more accurately predict the response of terrestrial processes to natural and anthropogenic climate cycles. PFLOTRAN is an open-source subsurface code that is specialized for simulating multiphase flow and multicomponent biogeochemical transport on supercomputers. The object-oriented code was designed with modularity in mind and has been coupled with several third-party simulators (e.g. CLM to simulate land surface processes and E4D for coupled hydrogeophysical inversion). Central to PFLOTRAN's capabilities is its ability to simulate tightly-coupled reactive transport processes. This presentation focuses on recent enhancements to the code that enable the solution of large parameterized biogeochemical reaction networks with numerous chemical species. PFLOTRAN's "reaction sandbox" is described, which facilitates the implementation of user-defined reaction networks without the need for a comprehensive understanding of PFLOTRAN software infrastructure. The reaction sandbox is written in modern Fortran (2003-2008) and leverages encapsulation, inheritance, and polymorphism to provide the researcher with a flexible workspace for prototyping reactions within a massively parallel flow and transport simulation framework. As these prototypical reactions mature into well-accepted implementations, they can be incorporated into PFLOTRAN as native biogeochemistry capability. Users of the reaction sandbox are encouraged to upload their source code to PFLOTRAN's main source code repository, including the addition of simple regression tests to better ensure the long-term code compatibility and validity of simulation results.

  15. Nucleocytoplasmic transport of ribosomes in a eukaryotic system: Is there a facilitated transport process

    SciTech Connect

    Khanna-Gupta, A.; Ware, V.C. )

    1989-03-01

    The authors have examined the kinetics of the process by which ribosomes are exported from the nucleus to the cytoplasm using Xenopus laevis oocytes microinjected into the germinal vesicle with radiolabeled ribosomes or ribosomal subunits from X. laevis, Tetrahymena thermophila, or Escherichia coli. Microinjected eukaryotic mature ribosomes are redistributed into the oocyte cytoplasm by an apparent carrier-mediated transport process that exhibits saturation kinetics as increasing amounts of ribosomes are injected. T. thermophila ribosomes are competent to traverse the Xenopus nuclear envelope, suggesting that the basic mechanism underlying ribosome transport is evolutionarily conserved. Microinjected E. coli ribosomes are not transported in this system, indicating that prokaryotic ribosomes lack the signals required for transport. Surprisingly, coinjected small (40S) and large (60S) subunits from T. thermophila are transported significantly faster than individual subunits. These observations support a facilitated transport model for the translocation of ribosomal subunits as separate units across the nuclear envelope whereby the transport rate of 60S or 40S subunits is enhanced by the presence of the partner subunit. Although the basic features of the transport mechanism have been preserved through evolution, other aspects of the process may be mediated through species-specific interactions. They hypothesize that a species-specific nuclear 40S-60S subunit association may expedite the transport of individual subunits across the nuclear envelope.

  16. Methanotrophic bacteria and facilitated transport of pollutants in aquifer material

    SciTech Connect

    Jenkins, M.B.; Chen, Jyh-Herng; Kadner, D.J.; Lion, L.W. )

    1994-10-01

    In-situ stimulation of methanotrophic bacteria has been considered for aquifer remediation. Experimental results indicate that both colloidal suspensions containing methanotrophic cells and the soluble extracellular polymers produced by methanotrophic cells have the potential to enhance the transport and removal of other environmental contaminants such as polynuclear aromatic hydrocarbons and transition metals in aquifer material. Three methanotrophic bacteria were used in the experiments: Methylomonas albus BG8, Methylosinus trichosporium OB3b, and Methylocystis parvus OBBP. The distribution coefficients for Cd with extraceullular polymers were of the same order as that obtained with the aquifer sand, indicating polymers from the methanotrophic bacteria could act to increase the transport of Cd in a porous medium. Polymer from BG8 significantly reduced the apparent distribution coefficient for Cd with an aquifer sand. [[sup 14]C]phenanthrene also sorbed to extracellular polymer and to washed, suspended methanotrophic cells. The exopolymer of BG8 and OBBP significantly reduced the apparent distribution coefficient (K[sub d]) for phenanthrene with aquifer sand. The distribution coefficients for phenanthrene with the methanotrophic cells were an order of magnitude greater than those previously reported for other heterotrophic bacteria. Cells of the methanotrophs also significantly reduced the apparent K[sub d] for phenanthrene with an aquifer sand. The three strains of methanotrophs displayed mobility in a column of packed sand, and strain OBBP reduced the retardation coefficient of phenanthrene with an aquifer sand by 27%. These data indicate that both extracellular polymer and mobile cells of methanotrophic bacteria display a capacity to facilitate the mobility of pollutant metals and polynuclear aromatic hydrocarbons in aquifer material. 48 refs., 3 figs., 4 tabs.

  17. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment.

    PubMed

    Barron, Carly C; Bilan, Philip J; Tsakiridis, Theodoros; Tsiani, Evangelia

    2016-02-01

    It is long recognized that cancer cells display increased glucose uptake and metabolism. In a rate-limiting step for glucose metabolism, the glucose transporter (GLUT) proteins facilitate glucose uptake across the plasma membrane. Fourteen members of the GLUT protein family have been identified in humans. This review describes the major characteristics of each member of the GLUT family and highlights evidence of abnormal expression in tumors and cancer cells. The regulation of GLUTs by key proliferation and pro-survival pathways including the phosphatidylinositol 3-kinase (PI3K)-Akt, hypoxia-inducible factor-1 (HIF-1), Ras, c-Myc and p53 pathways is discussed. The clinical utility of GLUT expression in cancer has been recognized and evidence regarding the use of GLUTs as prognostic or predictive biomarkers is presented. GLUTs represent attractive targets for cancer therapy and this review summarizes recent studies in which GLUT1, GLUT3, GLUT5 and others are inhibited to decrease cancer growth. PMID:26773935

  18. Methanotrophic Bacteria and Facilitated Transport of Pollutants in Aquifer Material

    PubMed Central

    Jenkins, Michael B.; Chen, Jyh-Herng; Kadner, Debra J.; Lion, Leonard W.

    1994-01-01

    In situ stimulation of methanotrophic bacteria has been considered as a methodology for aquifer remediation. Chlorinated aliphatic hydrocarbons such as trichloroethylene are fortuitously oxidized by the methane monooxygenase produced by methanotrophic bacteria. Experimental results are presented that indicate that both colloidal suspensions containing methanotrophic cells and the soluble extracellular polymers produced by methanotrophic cells have the potential to enhance the transport and removal of other environmental contaminants such as polynuclear aromatic hydrocarbons and transition metals in aquifer material. Three well-characterized methanotrophic bacteria were used in the experiments: Methylomonas albus BG8 (a type I methanotroph), Methylosinus trichosporium OB3b (a type II methanotroph), and Methylocystis parvus OBBP (a type II methanotroph). Isotherms were obtained for sorption of two radiolabeled pollutants, [14C] phenanthrene and 109Cd, onto an aquifer sand in the presence and absence of washed cells and their extracellular polymer. Column transport experiments were performed with the washed methanotrophic cells and phenanthrene. The distribution coefficients for Cd with extracellular polymers were of the same order as that obtained with the aquifer sand, indicating that polymers from the methanotrophic bacteria could act to increase the transport of Cd in a porous medium. Polymer from BG8 significantly reduced the apparent distribution coefficient for Cd with an aquifer sand. [14C] phenanthrene also sorbed to extracellular polymer and to washed, suspended methanotrophic cells. The exopolymer of BG8 and OBBP significantly reduced the apparent distribution coefficient (Kd) for phenanthrene with aquifer sand. The distribution coefficients for phenanthrene with the methanotrophic cells were an order of magnitude greater than those previously reported for other heterotrophic bacteria. Cells of the methanotrophs also significantly reduced the apparent Kd

  19. Methanotrophic bacteria and facilitated transport of pollutants in aquifer material.

    PubMed

    Jenkins, M B; Chen, J H; Kadner, D J; Lion, L W

    1994-10-01

    In situ stimulation of methanotrophic bacteria has been considered as a methodology for aquifer remediation. Chlorinated aliphatic hydrocarbons such as trichloroethylene are fortuitously oxidized by the methane monooxygenase produced by methanotrophic bacteria. Experimental results are presented that indicate that both colloidal suspensions containing methanotrophic cells and the soluble extracellular polymers produced by methanotrophic cells have the potential to enhance the transport and removal of other environmental contaminants such as polynuclear aromatic hydrocarbons and transition metals in aquifer material. Three well-characterized methanotrophic bacteria were used in the experiments: Methylomonas albus BG8 (a type I methanotroph), Methylosinus trichosporium OB3b (a type II methanotroph), and Methylocystis parvus OBBP (a type II methanotroph). Isotherms were obtained for sorption of two radiolabeled pollutants, [C] phenanthrene and Cd, onto an aquifer sand in the presence and absence of washed cells and their extracellular polymer. Column transport experiments were performed with the washed methanotrophic cells and phenanthrene. The distribution coefficients for Cd with extracellular polymers were of the same order as that obtained with the aquifer sand, indicating that polymers from the methanotrophic bacteria could act to increase the transport of Cd in a porous medium. Polymer from BG8 significantly reduced the apparent distribution coefficient for Cd with an aquifer sand. [C] phenanthrene also sorbed to extracellular polymer and to washed, suspended methanotrophic cells. The exopolymer of BG8 and OBBP significantly reduced the apparent distribution coefficient (K(d)) for phenanthrene with aquifer sand. The distribution coefficients for phenanthrene with the methanotrophic cells were an order of magnitude greater than those previously reported for other heterotrophic bacteria. Cells of the methanotrophs also significantly reduced the apparent K(d) for

  20. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure

  1. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    PubMed Central

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  2. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves.

    PubMed

    Guo, Woei-Jiun; Nagy, Reka; Chen, Hsin-Yi; Pfrunder, Stefanie; Yu, Ya-Chi; Santelia, Diana; Frommer, Wolf B; Martinoia, Enrico

    2014-02-01

    Fructose (Fru) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Fru transport is poorly studied. Although SWEET17 (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS17) has been characterized as a vacuolar Fru exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-β-glucuronidase/-GREEN FLUORESCENT PROTEIN fusions expressed in Arabidopsis (Arabidopsis thaliana) reveal that SWEET17 is highly expressed in the cortex of roots and localizes to the tonoplast of root cells. Expression of SWEET17 in roots was inducible by Fru and darkness, treatments that activate accumulation and release of vacuolar Fru, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Fru, respectively. Overexpression of SWEET17 specifically reduced the Fru content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Fru-specific uniporter on the root tonoplast. Vacuoles overexpressing SWEET17 showed increased [14C]Fru uptake compared with the wild type. SWEET17-mediated Fru uptake was insensitive to ATP or treatment with NH4Cl or carbonyl cyanide m-chlorophenyl hydrazone, indicating that SWEET17 functions as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Fru excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that in addition to a role in leaves, SWEET17 plays a key role in facilitating bidirectional Fru transport across the tonoplast of roots in response to metabolic demand to maintain cytosolic Fru homeostasis.

  3. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    SciTech Connect

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  4. Pulsed supersonic beams with nucleobases.

    PubMed

    Sarfraz, Adnan; Rademann, Klaus; Christen, Wolfgang

    2012-10-01

    The dissolution of the primary nucleobases in supercritical fluids has been investigated using pulsed molecular beam mass spectrometry. Due to the low critical temperatures of ethylene and carbon dioxide, their adiabatic jet expansion permits transferring thermally sensitive solutes into the gas phase. This feature is particularly attractive for pharmaceutical and biomedical applications. In this study, adenine, guanine, cytosine, thymine, and uracil have been dissolved in supercritical ethylene with a few percent of ethanol as cosolvent. At source temperatures of 313 K, these solutions have been expanded from supercritical pressures into high vacuum using a customized pulsed nozzle. A mass spectrometer was used to monitor the relative amounts of solute, solvent, and cosolvent in the supersonic beam. The results suggest a paramount influence of the cosolvent.

  5. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  6. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  7. Transport by Collective Flagellar Beating Facilitates Evolutionary Transitions to Multicellularity

    NASA Astrophysics Data System (ADS)

    Short, Martin; Powers, Thomas

    2005-11-01

    A central problem underlying the evolution from single cells to multicellular organisms is the relationship between metabolic requirements and environmental metabolite exchange with increasing size. For organisms that form spherical colonies such as the volvocalean green algae, there is a bottleneck if diffusion alone governs nutrient uptake as they increase in size, for the diffusive flux is linear in the radius while the requirements of surface somatic cells grow quadratically. Using Volvox as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface flagella plays in enhancing nutrient uptake. We show that the fluid flow driven by the coordinated beating of those flagella produces a boundary layer in the concentration of a diffusing solute which renders the metabolite exchange rate quadratic in the colony radius. This bypasses the diffusive bottleneck, facilitating evolutionary transitions to multicellularity which may be driven by other environmental factors. These results suggest that flagella may have evolved not only for motility, but also to enhance metabolite exchange.

  8. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission.

    PubMed

    Sen, Ananya; Matthews, Edward M; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 (2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 (2-) ⋅ thymine and PtCl6 (2-) ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 (2-) ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl6 (2-) ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 (2-) ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  9. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  10. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission.

    PubMed

    Sen, Ananya; Matthews, Edward M; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 (2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 (2-) ⋅ thymine and PtCl6 (2-) ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 (2-) ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl6 (2-) ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 (2-) ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment. PMID:26567662

  11. Active transporters as enzymes: an energetic framework applied to major facilitator superfamily and ABC importer systems.

    PubMed

    Shilton, Brian H

    2015-04-15

    Active membrane transporters are dynamic molecular machines that catalyse transport across a membrane by coupling solute movement to a source of energy such as ATP or a secondary ion gradient. A central question for many active transporters concerns the mechanism by which transport is coupled to a source of energy. The transport process and associated energetic coupling involve conformational changes in the transporter. For efficient transport, the conformational changes must be tightly regulated and they must link energy use to movement of the substrate across the membrane. The present review discusses active transport using the well-established energetic framework for enzyme-mediated catalysis. In particular, membrane transport systems can be viewed as ensembles consisting of low-energy and high-energy conformations. The transport process involves binding interactions that selectively stabilize the higher energy conformations, and in this way promote conformational changes in the system that are coupled to decreases in free energy and substrate translocation. The major facilitator superfamily of secondary active transporters is used to illustrate these ideas, which are then be expanded to primary active transport mediated by ABC (ATP-binding cassette) import systems, with a focus on the well-studied maltose transporter.

  12. Decreased Salinity and Actinide Mobility: Colloid-Facilitated Transport or pH Change?

    PubMed

    Haliena, Brian; Zheng, Hangping; Melson, Nathan; Kaplan, Daniel I; Barnett, Mark O

    2016-01-19

    Colloids have been implicated in influencing the transport of actinides and other adsorbed contaminants in the subsurface, significantly increasing their mobility. Such colloid-facilitated transport can be induced by changes in groundwater chemistry that occur, for example, when high ionic strength contaminant plumes are displaced by infiltrating rainwater. We studied the transport and mobility of Th(IV), as an analogue for Pu(IV) and other tetravalent actinides [An(IV)], in saturated columns packed with a natural heterogeneous subsurface sandy sediment. As expected, decreases in ionic strength both promoted the mobilization of natural colloids and enhanced the transport of previously adsorbed Th(IV). However, colloid-facilitated transport played only a minor role in enhancing the transport of Th(IV). Instead, the enhanced transport of Th(IV) was primarily due to the pH-dependent desorption of Th(IV) caused by the change in ionic strength. In contrast, the adsorption of Th(IV) had a marked impact on the surface charge of the sandy sediment, significantly affecting the mobility of the colloids. In the absence of Th(IV), changes in ionic strength were ineffective at releasing colloids while in the presence of Th(IV), decreases in ionic strength liberated significant concentrations of colloids. Therefore, under the conditions of our experiments which mimicked acidic, high ionic strength groundwater contaminant plumes, Th(IV) had a much greater effect on colloid transport than colloids had on Th(IV) transport.

  13. RNA fragment modeling with a nucleobase discrete-state model

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Bian, Yunqiang; Lin, Hui; Wang, Wei

    2012-02-01

    In this work we develop an approach for predicting the tertiary structures of RNA fragments by combining an RNA nucleobase discrete state (RNAnbds) model, a sequential Monte Carlo method, and a statistical potential. The RNAnbds model is designed for optimizing the configuration of nucleobases with respect to their preceding ones along the sequence and their spatial neighbors, in contrast to previous works that focus on RNA backbones. The tests of our approach with the fragments taken from a small RNA pseudoknot and a 23S ribosome RNA show that for short fragments (<10 nucleotides), the root mean square deviations (RMSDs) between the predicted and the experimental ones are generally smaller than 3 Å; for slightly longer fragments (10-15 nucleotides), most RMSDs are smaller than 4 Å. The comparison of our method with another physics-based predictor with a testing set containing nine loops shows that ours is superior in both accuracy and efficiency. Our approach is useful in facilitating RNA three-dimensional structure prediction as well as loop modeling. It also holds the promise of providing insight into the structural ensembles of RNA loops.

  14. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.

    PubMed

    Callahan, Michael P; Smith, Karen E; Cleaves, H James; Ruzicka, Josef; Stern, Jennifer C; Glavin, Daniel P; House, Christopher H; Dworkin, Jason P

    2011-08-23

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  15. Colloid-facilitated tracer transport by steady random ground-water flow

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.

    2000-09-01

    We study the transport of reactive solute in a three-phase system (water-solid matrix-colloids) in natural porous media. Semianalytical (integral) solutions are derived for the first time, which can be used for computing expected concentration, mass flux, or discharge for the dissolved as well as for colloid-bounded tracer. The results are based on a few simplifying assumptions: advection-dominated transport, linear mass transfer reactions, and steady-state colloidal concentration. Derived semianalytical expressions capture the main features of colloid-facilitated transport (the reversible-equilibrium and irreversible-kinetic sorption of tracers on colloids), and are applicable for the general class of linear sorption processes on the porous matrix. Derived solutions account for spatial variability of flow and sorption parameters, which is relevant for field-scale applications. We apply the theoretical results to the transport of neptunium and plutonium, using flow and transport data from the alluvial aquifer near Yucca Mountain, Nevada. Based on the zeroth and first temporal moment, dimensionless indicators are proposed for assessing the potential impact of colloid-facilitated tracer transport in aquifers. Generic sensitivity curves show the importance of tracer-colloid kinetic rates. Even very low irreversible rates (which will generally be difficult to determine in the laboratory) may yield observable effects for sufficiently long transport times. The obtained results can be used for assessing the significance of colloid-facilitated tracer transport under field conditions, as well as for setting further constraints on relevant parameters which need to be estimated in the field.

  16. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis.

    PubMed

    Ranocha, Philippe; Dima, Oana; Nagy, Réka; Felten, Judith; Corratgé-Faillie, Claire; Novák, Ondřej; Morreel, Kris; Lacombe, Benoît; Martinez, Yves; Pfrunder, Stephanie; Jin, Xu; Renou, Jean-Pierre; Thibaud, Jean-Baptiste; Ljung, Karin; Fischer, Urs; Martinoia, Enrico; Boerjan, Wout; Goffner, Deborah

    2013-01-01

    The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report the discovery and the functional characterization of the first vacuolar auxin transporter. We demonstrate that WALLS ARE THIN1 (WAT1), a plant-specific protein that dictates secondary cell wall thickness of wood fibres, facilitates auxin export from isolated Arabidopsis vacuoles in yeast and in Xenopus oocytes. We unambiguously identify IAA and related metabolites in isolated Arabidopsis vacuoles, suggesting a key role for the vacuole in intracellular auxin homoeostasis. Moreover, local auxin application onto wat1 mutant stems restores fibre cell wall thickness. Our study provides new insight into the complexity of auxin transport in plants and a means to dissect auxin function during fibre differentiation.

  17. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis

    PubMed Central

    Ranocha, Philippe; Dima, Oana; Nagy, Réka; Felten, Judith; Corratgé-Faillie, Claire; Novák, Ondřej; Morreel, Kris; Lacombe, Benoît; Martinez, Yves; Pfrunder, Stephanie; Jin, Xu; Renou, Jean-Pierre; Thibaud, Jean-Baptiste; Ljung, Karin; Fischer, Urs; Martinoia, Enrico; Boerjan, Wout; Goffner, Deborah

    2013-01-01

    The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report the discovery and the functional characterization of the first vacuolar auxin transporter. We demonstrate that WALLS ARE THIN1 (WAT1), a plant-specific protein that dictates secondary cell wall thickness of wood fibres, facilitates auxin export from isolated Arabidopsis vacuoles in yeast and in Xenopus oocytes. We unambiguously identify IAA and related metabolites in isolated Arabidopsis vacuoles, suggesting a key role for the vacuole in intracellular auxin homoeostasis. Moreover, local auxin application onto wat1 mutant stems restores fibre cell wall thickness. Our study provides new insight into the complexity of auxin transport in plants and a means to dissect auxin function during fibre differentiation. PMID:24129639

  18. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    NASA Astrophysics Data System (ADS)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  19. Simulation of carrier-facilitated transport of phenanthrene in a layered soil profile.

    PubMed

    Prechtel, Alexander; Knabner, Peter; Schneid, Eckhard; Totsche, Kai Uwe

    2002-06-01

    The appropriate prediction of the fate of the contaminant is an essential step when evaluating the risk of severe groundwater pollutions-in particular in the context of natural attenuation. We numerically study the reactive transport of phenanthrene at the field scale in a multilayer soil profile based on experimental data. The effect of carrier facilitation by dissolved organic carbon is emphasized and incorporated in the model. Previously published simulations are restricted to the saturated zone and/or to homogeneous soil columns at the laboratory scale. A numerical flow and transport model is extended and applied to understand and quantify the relevant processes in the case of a strongly sorbing hydrophobic organic compound that is subject to carrier facilitation in the unsaturated zone. The contaminant migration is investigated on long- and short-term time scales and compared to predictions without carrier facilitation. The simulations demonstrate the importance of carrier facilitation and suggest strongly to take this aspect into account. By carrier facilitation breakthrough times at the groundwater level decreased from 500 to approximately 8 years and concentration peaks increased by two orders of magnitude in the long-term simulation assuming a temporary spill in an initially unpolluted soil with a non-sorbing carrier.

  20. FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT

    EPA Science Inventory

    This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...

  1. Particle-facilitated transport of lindane in water-saturated tropical lateritic porous media.

    PubMed

    Ngueleu, Stéphane K; Grathwohl, Peter; Cirpka, Olaf A

    2014-07-01

    The persistent insecticide lindane [(1α,2α,3β,4α,5α,6β)-1,2,3,4,5,6-hexachlorocyclohexane] is still in use in many tropical countries and remains a threat to soil and water quality. We studied the sorption and transport of lindane onto and through lateritic soils in both the absence and presence of lignite particles, onto which lindane may preferably sorb. We determined a linear distribution coefficient of lindane onto the soil matrix of 3.38 ± 0.16 L kg. Soil particles were not released from the porous medium on changing ionic strength, and also transport of lindane was not affected by changes in ionic strength. We fitted coupled transport models for lindane and the particles to the data, revealing that: (i) sorption kinetics of lindane onto the matrix is described best by intraparticle diffusion; (ii) 20% of the total porosity of the lateritic sample is intraparticle porosity; and (iii) only lignite particles with a median diameter <0.45 μm were not retained in the porous medium and thus facilitated the transport of lindane. We conclude that although lindane and similar pollutants may sorb on tropical lateritic porous media, their transport may be facilitated by particles with high organic-C content or dissolved organic C (DOC). This may be of relevance in farmlands and swamp groundwater systems where DOC, produced by leaching or slow biodegradation of surface organic matter, could cause rapid groundwater contamination by sorbing pollutants. Moreover, the results of this study can help to understand nanoparticle behavior in lateritic soils as the size of particles that facilitate lindane transport approaches the nanoparticle size range.

  2. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1.

    PubMed

    Hou, Zhanjun; Matherly, Larry H

    2014-01-01

    This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.

  3. Facilitated transport of dioxins in soil following unintentional release of pesticide-surfactant formulations.

    PubMed

    Grant, Sharon; Mortimer, Munro; Stevenson, Gavin; Malcolm, Don; Gaus, Caroline

    2011-01-15

    Colloids such as surfactant micelles can act as transport facilitators for highly lipophilic, generally immobile contaminants in soil. Following a fire at a pesticide facility, this study investigated vertical and lateral migration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in heterogeneous soil beneath bunded ponds, where contaminated wastewater containing high surfactant loads was stored until remediation. Initially, surface and subsurface soil was obtained during excavation, and subsequently intact cores to 5.7 m were collected. ΣPCDD/F concentrations were elevated in the wastewater (15-81 ng/L) and correspondingly in pond surface soils (6.1-61 ng/g). Maximum ΣPCDD/F concentrations were, however, observed at 2-2.5 m depth (68-130 ng/g), far below their expected mobility range based on physicochemical properties. Congener specific analysis further indicated that PCDD/F mobility was reversed, with the least water-soluble congener migrating to the greatest extent. The presence of higher chlorinated PCDD/Fs throughout a core collected in the direction of groundwater flow indicated subsequent lateral transport. These results provide field evidence for rapid vertical migration (2.4 m in <4 months) of highly lipophilic PCDD/Fs and suggest surfactant facilitated transport as the dominant transport mechanism. Quantification and evaluation of such fundamental changes in contaminant transport and fate in the presence of surfactants is required to identify areas at risk of groundwater contamination.

  4. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  5. Communication: Photoactivation of nucleobase bound platinumII metal complexes: Probing the influence of the nucleobase

    NASA Astrophysics Data System (ADS)

    Sen, Ananya; Dessent, Caroline E. H.

    2014-12-01

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound PtII(CN)42- complexes, i.e., Pt(CN)42-ṡM, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λmax ˜ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN)42- localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN)42-ṡThymine > Pt(CN)42-ṡUracil > Pt(CN)42-ṡAdenine > Pt(CN)42-ṡCytosine. Changes in the bandwidth of the ˜4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes.

  6. Transportation Facilitation Education Program: A Handbook for Transportation and Distribution. Part III. Final Report.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. Coll. of Business Administration.

    The handbook accents the nature of transportation and related domestic and international business activities. Its objective is to provide basic information for the newcomer to the field. Chapters 2 and 3 describe assistance available from public and private agencies, as well as regulatory requirements for foreign traders and a resume of the…

  7. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    SciTech Connect

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P

    2003-02-01

    For the last several years, the Underground Test Area (UGTA) program has funded a series of studies carried out by scientists to investigate the role of colloids in facilitating the transport of low-solubility radionuclides in groundwater, specifically plutonium (Pu). Although the studies were carried out independently, the overarching goals of these studies has been to determine if colloids in groundwater at the NTS can and will transport low-solubility radionuclides such as Pu, define the geochemical mechanisms under which this may or may not occur, determine the hydrologic parameters that may or may not enhance transport through fractures and provide recommendations for incorporating this information into future modeling efforts. The initial motivation for this work came from the observation in 1997 and 1998 by scientists from Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) that low levels of Pu originally from the Benham underground nuclear test were detected in groundwater from two different aquifers collected from wells 1.3 km downgradient (Kersting et al., 1999). Greater than 90% of the Pu and other radionuclides were associated with the naturally occurring colloidal fraction (< 1 micron particles) in the groundwater. The colloids consisted mainly of zeolite (mordenite, clinoptilolite/heulandite), clays (illite, smectite) and cristobalite (SiO{sub 2}). These minerals were also identified as alteration mineral components in the host rock aquifer, a rhyolitic tuff. The observation that Pu can and has migrated in the subsurface at the NTS has forced a rethinking of our basic assumptions regarding the mechanical and geochemical transport pathways of low-solubility radionuclides. If colloid-facilitated transport is the primary mechanism for transporting low-solubility radionuclides in the subsurface, then current transport models based solely on solubility arguments and retardation estimates may underestimate the flux and

  8. The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis.

    PubMed

    Remy, Estelle; Cabrito, Tânia R; Batista, Rita A; Teixeira, Miguel C; Sá-Correia, Isabel; Duque, Paula

    2015-01-01

    Potassium (K(+)) is an essential mineral nutrient for plant growth and development, with numerous membrane transporters and channels having been implicated in the maintenance and regulation of its homeostasis. The cation cesium (Cs(+)) is toxic for plants but shares similar chemical properties to the K(+) ion and hence competes with its transport. Here, we report that K(+) and Cs(+) homeostasis in Arabidopsis thaliana also requires the action of ZIFL2 (Zinc-Induced Facilitator-Like 2), a member of the Major Facilitator Superfamily (MFS) of membrane transporters. We show that the Arabidopsis ZIFL2 is a functional transporter able to mediate K(+) and Cs(+) influx when heterologously expressed in yeast. Promoter-reporter, reverse transcription-PCR and fluorescent protein fusion experiments indicate that the predominant ZIFL2.1 isoform is targeted to the plasma membrane of endodermal and pericyle root cells. ZIFL2 loss of function and overexpression exacerbate and alleviate plant sensitivity, respectively, upon Cs(+) and excess K(+) supply, also influencing Cs(+) whole-plant partitioning. We propose that the activity of this Arabidopsis MFS carrier promotes cellular K(+) efflux in the root, thereby restricting Cs(+)/K(+) xylem loading and subsequent root to shoot translocation under conditions of Cs(+) or high K(+) external supply.

  9. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James, II; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nuc1eobases in meteorites has been debated for over 50 y. So far, the few nuc1eobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs; purine, 2,6-diminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analoge were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  10. Facilitated diffusion of 6-deoxy-D-glucose in bakers' yeast: evidence against phosphorylation-associated transport of glucose.

    PubMed Central

    Romano, A H

    1982-01-01

    6-Deoxy-D-glucose, a structural homomorph of D-glucose which lacks a hydroxyl group at carbon 6 and thus cannot be phosphorylated, is transported by Saccharomyces cerevisiae via a facilitated diffusion system with affinity equivalent to that shown with D-glucose. This finding supports the facilitated diffusion mechanism for glucose transport and contradicts theories of transport-associated phosphorylation which hold that sugar phosphorylation is necessary for high-affinity operation of the glucose carrier. PMID:6754704

  11. Facilitated mitochondrial import of antiviral and anticancer nucleoside drugs by human equilibrative nucleoside transporter-3

    PubMed Central

    Govindarajan, Rajgopal; Leung, George P. H.; Zhou, Mingyan; Tse, Chung-Ming; Wang, Joanne; Unadkat, Jashvant D

    2009-01-01

    human equilibrative nucleoside transporter-3 (hENT3) was recently reported as a pH-dependent, intracellular (lysosomal) transporter capable of transporting anti-human immunodeficiency virus (HIV) dideoxynucleosides (ddNs). Because most anti-HIV ddNs (e.g., zidovudine, AZT) exhibit clinical mitochondrial toxicity, we investigated whether hENT3 facilitates transport of anti-HIV ddNs into the mitochondria. Cellular fractionation and immunofluorescence microscopy studies in several human cell lines identified a substantial presence of hENT3 in the mitochondria, with additional presence at the cell surface of two placental cell lines (JAR, JEG3). Mitochondrial or cell surface hENT3 expression was confirmed in human hepatocytes and placental tissues, respectively. Unlike endogenous hENT3, yellow fluorescent protein (YFP)-tagged hENT3 was partially directed to the lysosomes. Xenopus oocytes expressing NH2-terminal-deleted hENT3 (expressed at the cell surface) showed pH-dependent interaction with several classes of nucleosides (anti-HIV ddNs, gemcitabine, fialuridine, ribavirin) that produce mitochondrial toxicity. Transport studies in hENT3 gene-silenced JAR cells showed significant reduction in mitochondrial transport of nucleosides and nucleoside drugs. Our data suggest that cellular localization of hENT3 is cell type dependent and the native transporter is substantially expressed in mitochondria and/or cell surface. hENT3-mediated mitochondrial transport may play an important role in mediating clinically observed mitochondrial toxicity of nucleoside drugs. In addition, our finding that hENT3 is a mitochondrial transporter is consistent with the recent finding that mutations in the hENT3 gene cause an autosomal recessive disorder in humans called the H syndrome. PMID:19164483

  12. Members of the Francisella tularensis Phagosomal Transporter Subfamily of Major Facilitator Superfamily Transporters Are Critical for Pathogenesis

    PubMed Central

    Marohn, Mark E.; Santiago, Araceli E.; Shirey, Kari Ann; Lipsky, Michael; Vogel, Stefanie N.

    2012-01-01

    Francisella tularensis is the causative agent of tularemia. Due to its aerosolizable nature and low infectious dose, F. tularensis is classified as a category A select agent and, therefore, is a priority for vaccine development. Survival and replication in macrophages and other cell types are critical to F. tularensis pathogenesis, and impaired intracellular survival has been linked to a reduction in virulence. The F. tularensis genome is predicted to encode 31 major facilitator superfamily (MFS) transporters, and the nine-member Francisella phagosomal transporter (Fpt) subfamily possesses homology with virulence factors in other intracellular pathogens. We hypothesized that these MFS transporters may play an important role in F. tularensis pathogenesis and serve as good targets for attenuation and vaccine development. Here we show altered intracellular replication kinetics and attenuation of virulence in mice infected with three of the nine Fpt mutant strains compared with wild-type (WT) F. tularensis LVS. The vaccination of mice with these mutant strains was protective against a lethal intraperitoneal challenge. Additionally, we observed pronounced differences in cytokine profiles in the livers of mutant-infected mice, suggesting that alterations in in vivo cytokine responses are a major contributor to the attenuation observed for these mutant strains. These results confirm that this subset of MFS transporters plays an important role in the pathogenesis of F. tularensis and suggest that a focus on the development of attenuated Fpt subfamily MFS transporter mutants is a viable strategy toward the development of an efficacious vaccine. PMID:22508856

  13. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases.

    PubMed

    Rajapandiyan, Panneerselvam; Yang, Jyisy

    2012-12-01

    In this work, a cylindrical-substrate array for surface-enhanced Raman scattering (SERS) measurements was developed to enable analysis of nucleobases in a few microliters of liquid. To eliminate uncertainties associated with SERS detection of aqueous samples, a new type of cylindrical SERS substrate was designed to confine the aqueous sample at the tip of the SERS probe. Poly(methyl methacrylate) (PMMA) optical fibers in a series of different diameters were used as the basic substrate. A solution of poly(vinylidene fluoride)/dimethylformamide (PVDF/DMF) was used to coat the tip of each fiber to increase the surface roughness and facilitate adsorption of silver nanoparticles (AgNPs) for enhancing Raman signals. A chemical reduction method was used to form AgNPs in and on the PVDF coating layer. The reagents and reaction conditions were systematically examined with the aim of estimating the optimum parameters. Unlike the spreading of aqueous sample on most SERS substrates, particularly flat ones, the new SERS substrates showed enough hydrophobicity to restrict aqueous sample to the tip area, thus enabling quantitative analysis. The required volume of sample could be as low as 1 μL with no need for a drying step in the procedure. By aligning the cylindrical SERS substrates into a solid holder, an array of cylindrical substrates was produced for mass analysis of aqueous samples. This new substrate improves both reproducibility and sensitivity for detection in aqueous samples. The enhancement factor approaches 7 orders in magnitude with a relative standard error close to 8%. Using the optimized conditions, nucleobases of adenine, cytosine, thymine, and uracil could be detected with limits approaching a few hundreds nanomolar in only a few microliters of solution. PMID:23140099

  14. Protonation of Glu135 Facilitates the Outward-to-Inward Structural Transition of Fucose Transporter

    PubMed Central

    Liu, Yufeng; Ke, Meng; Gong, Haipeng

    2015-01-01

    Major facilitator superfamily (MFS) transporters typically need to alternatingly sample the outward-facing and inward-facing conformations, in order to transport the substrate across membrane. To understand the mechanism, in this work, we focused on one MFS member, the L-fucose/H+ symporter (FucP), whose crystal structure exhibits an outward-open conformation. Previous experiments imply several residues critical to the substrate/proton binding and structural transition of FucP, among which Glu135, located in the periplasm-accessible vestibule, is supposed as being involved in both proton translocation and conformational change of the protein. Here, the structural transition of FucP in presence of substrate was investigated using molecular-dynamics simulations. By combining the equilibrium and accelerated simulations as well as thermodynamic calculations, not only was the large-scale conformational change from the outward-facing to inward-facing state directly observed, but also the free energy change during the structural transition was calculated. The simulations confirm the critical role of Glu135, whose protonation facilitates the outward-to-inward structural transition both by energetically favoring the inward-facing conformation in thermodynamics and by reducing the free energy barrier along the reaction pathway in kinetics. Our results may help the mechanistic studies of both FucP and other MFS transporters. PMID:26244736

  15. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. PMID:26945065

  16. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger.

  17. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis.

    PubMed

    Witz, Sandra; Jung, Benjamin; Fürst, Sarah; Möhlmann, Torsten

    2012-04-01

    Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 μM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified.

  18. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis.

    PubMed

    Witz, Sandra; Jung, Benjamin; Fürst, Sarah; Möhlmann, Torsten

    2012-04-01

    Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 μM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified. PMID:22474184

  19. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells.

    PubMed

    Watanabe, Sachiko; Moniaga, Catharina Sagita; Nielsen, Søren; Hara-Chikuma, Mariko

    2016-02-26

    Aquaporin (AQP) 9, a member of the transmembrane water channel family, is defined as a water/glycerol transporting protein. Some AQPs including AQP3 and AQP8 have been recently found to transport hydrogen peroxide (H2O2). Here we show that AQP9 facilitates the membrane transport of H2O2 in human and mice cells. Enforced expression of human AQP9 in Chinese hamster ovary-K1 potentiated the increase in cellular H2O2 after adding exogenous H2O2. In contrast, AQP9 knockdown by siRNA in human hepatoma HepG2 cells reduced the import of extracellular H2O2. In addition, the uptake of extracellular H2O2 was suppressed in erythrocytes and bone marrow-derived mast cells from AQP9 knockout mice compared with wild-type cells. Coincidentally, H2O2-induced cytotoxicity was attenuated by AQP9 deficiency in human and mice cells. Our findings implicate the involvement of AQP9 in H2O2 transport in human and mice cells.

  20. Matrix Diffusion and Colloid-Facilitated Transport in Fractured Rocks: Model and Parameter Validation

    SciTech Connect

    Zavarin, M

    2002-08-02

    In this report, we review the results of Reimus et al. (2000a; 2000b) regarding matrix diffusion and colloid-facilitated transport in fractured rock and evaluate the implications of these results on modeling fracture flow at the Nevada Test Site (NTS). In particular, we examine these data in the context of the recent Cheshire hydrologic source term (HST) model results (Pawloski et al., 2001). This report is divided into several sections. In the first, we evaluate the effective diffusion coefficient (D{sub e}) data reported in Reimus et al. (2000a) for conservative tracer species ({sup 3}H, {sup 14}C, and {sup 99}Tc) and fit a simple effective diffusion model to these data. In the second, we use the fitted effective diffusion model, in conjunction with a surface complexation model, to simulate plutonium-colloid transport and compare model results to data reported in Reimus et al. (2000b). In the third, we evaluate the implications of these data with regards to radionuclide transport through fractures at the field scale and, in particular, with regards to the Cheshire HST model (Pawloski et al., 2001). Finally, we make recommendations regarding future radionuclide transport modeling efforts at the NTS.

  1. Colloid-Facilitated Transport of Plutonium, Pu(+V), in Saturated Alluvium

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. I.; Reimus, P. W.; Ware, S.; Haga, M. H.

    2004-12-01

    Natural groundwater colloids can facilitate the subsurface transport of strongly-sorbing radionuclides, such as plutonium (Pu). To evaluate this mechanism, packed-bed column experiments were conducted, comparing the simultaneous transport of dissolved plutonium (Pu-239) of an initial oxidation state (+V), Pu sorbed onto natural colloids, 190-nm and 500-nm diameter fluorescent Carboxylate Modified Latex (CML) microspheres, and tritium, as a conservative tracer, in saturated alluvium. The experiments were conducted in two columns having slightly different porosities at two flow rates, resulting in average linear velocities, v, of 0.6 to 3.65 cm/hr in one column and 0.57 to 2.85 cm/hr in the other. In all experiments, Pu associated with natural colloids transported through alluvium essentially unretarded, while dissolved Pu was entirely retained. These results were consistent with the strong sorption of Pu to alluvium and the negligible desorption from natural colloids, observed in separate batch experiments, over time scales exceeding those of the column experiments. The breakthrough of natural colloids preceded that of tritium in all experiments, indicating a slightly smaller effective pore volume for the colloids. The enhancement of colloids' transport over tritium decreased with v, implying ~40% enhancement at v = 0. The 500-nm CML microspheres were significantly attenuated in the column experiments compared to the 190-nm microspheres, which exhibited slightly more attenuation than natural colloids.

  2. Facilitated transport of heavy metals by bacterial colloids in sand columns

    NASA Astrophysics Data System (ADS)

    Guiné, V.; Martins, J.; Gaudet, J. P.

    2003-05-01

    The aim of this work is to evaluate the ability of biotic collois (e.g. bacterial cells) to facilitate the transport of heavy metals in soils. and to identify the main factors influencing colloid transport in order to detelmine the geo-chemical conditions where this secondary transport process may become dominant. The model colloids studied here are living cells of Escherichia coli and Ralstonia metallidurans. We studied the transport of mercury zinc, and cadmium in columns of Fontainebleau sand. The properties (i.e. optical and morphological properties, charge (zeta potential, zeta) and hydrophobia (water/hexadecane distribution parameter, K_{hw})) of the bacterial cells surface were characterised, as well as their potential for heavy metals sorption (kinetic and isotherm). Both surface charge (zeta=-54 and -14 mV) and hydrophobia (K_{hw} = 0.25 and 0.05) differ strongly for the two bacteria. Column studies were conducted with bacteria and heavy metals separately or simultaneously. The cell surface differences led to different transport behaviour of the two bacteria, although the retardation factor is close to 1 for both. We observed that colloid mobility increases when increasing bacterial cells concentration and when decreasing the ionic strength. We also observed that bacterial colloids appeared as excellent vectors for Hg, Zn and Cd. Indeed, heavy metals adsorbed on the Fontainebleau sand when injected alone in columns (retardation factors of 1.4 ; 2.9 and 3.8 for Hg, Zn and Cd, respectively); whereas no retardation (R≈1) is observed when injected in the presence of both bacteria. Moreover, transport of bio-sorbed metal appears to be 4 to 6 times higher than dissolved heavy-metal.

  3. Colloid-facilitated Pb transport in two shooting-range soils in Florida.

    PubMed

    Yin, Xianqiang; Gao, Bin; Ma, Lena Q; Saha, Uttam Kumar; Sun, Huimin; Wang, Guodong

    2010-05-15

    Shooting range soils with elevated Pb contents are of environmental concern due to their adverse impacts on human and animals. In Florida, the problem merits special attention because of Florida's sandy soil, high rainfall, and shallow groundwater level, which tend to favor Pb migration. This study used large intact soil column to examine colloid-facilitated Pb transport in two Florida shooting-range soils with different physicochemical properties (e.g., organic carbon content, pH, and clay content). Simulated rainwater (SRW) was pumped through the intact soil columns under different ionic strengths (0.07 and 5 mmol L(-1)) and flow rates (2.67, 5.30 and 10.6 cm h(-1)) to mobilize Pb and soil colloids. Our results showed that colloids dominated Pb transport in both soils and there was a significant correlation between colloids and Pb in the leachates. Decreases in ionic strength and increases in flow rate enhanced the release of both colloids and Pb in the soils. Size fraction analyses showed that in OCR soils (sandy soils with low organic carbon), most of the Pb (87%) was associated with coarse colloid fraction (0.45-8 microm). However, high Pb level (66%) was found in the dissolved and nano-sized colloid fraction (<0.1 microm) in the MPR soils (sandy soils with high organic carbon). This suggests that soil properties are important to Pb migration in soils and groundwater. Our study indicated that colloids play an important role in facilitating Pb transport in shooting range soils.

  4. Colloid-facilitated Pb transport in two shooting-range soils in Florida.

    PubMed

    Yin, Xianqiang; Gao, Bin; Ma, Lena Q; Saha, Uttam Kumar; Sun, Huimin; Wang, Guodong

    2010-05-15

    Shooting range soils with elevated Pb contents are of environmental concern due to their adverse impacts on human and animals. In Florida, the problem merits special attention because of Florida's sandy soil, high rainfall, and shallow groundwater level, which tend to favor Pb migration. This study used large intact soil column to examine colloid-facilitated Pb transport in two Florida shooting-range soils with different physicochemical properties (e.g., organic carbon content, pH, and clay content). Simulated rainwater (SRW) was pumped through the intact soil columns under different ionic strengths (0.07 and 5 mmol L(-1)) and flow rates (2.67, 5.30 and 10.6 cm h(-1)) to mobilize Pb and soil colloids. Our results showed that colloids dominated Pb transport in both soils and there was a significant correlation between colloids and Pb in the leachates. Decreases in ionic strength and increases in flow rate enhanced the release of both colloids and Pb in the soils. Size fraction analyses showed that in OCR soils (sandy soils with low organic carbon), most of the Pb (87%) was associated with coarse colloid fraction (0.45-8 microm). However, high Pb level (66%) was found in the dissolved and nano-sized colloid fraction (<0.1 microm) in the MPR soils (sandy soils with high organic carbon). This suggests that soil properties are important to Pb migration in soils and groundwater. Our study indicated that colloids play an important role in facilitating Pb transport in shooting range soils. PMID:20079969

  5. Intrinsic and Carrier Colloid-facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.

    2015-12-01

    Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.

  6. Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients.

    PubMed

    Cheng, Tao; Saiers, James E

    2010-10-01

    Colloid-sized particles are commonly detected in vadose-zone pore waters and are capable of binding chemicals with sorptive affinities for geologic materials. Published research demonstrates that colloids are capable of facilitating the transport of sorptive contaminants under conditions of steady pore water flow, when volumetric moisture content and pore water velocity are constant. Less is known about the role of colloids in governing contaminant mobility under transient-flow conditions, which are characteristic of natural vadose-zone environments. The objective of this study is to elucidate the influences of flow transients on the mobilization and transport of in situ colloids and colloid-associated contaminants. We conducted column experiments in which the mobilization of in situ colloids and (137)Cs was induced by transients associated with the drainage and imbibition of (137)Cs contaminated-sediments. Our results demonstrate that substantial quantities of in situ colloids and colloid-associated (137)Cs are mobilized as volumetric moisture content declines during porous-medium drainage and as volumetric moisture content increases during porous-medium imbibition. We also find that the colloid-effect on (137)Cs transport is sensitive to changes in pore water ionic strength. That is, the quantities of colloids mobilized and the capacity of the these colloids to bind (137)Cs decrease with increasing ionic strength, leading to a decrease of the mass of (137)Cs eluted from the columns during porous-medium drainage and imbibition.

  7. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates.

    PubMed

    Bienert, Gerd Patrick; Bienert, Manuela Désirée; Jahn, Thomas Paul; Boutry, Marc; Chaumont, François

    2011-04-01

    Major intrinsic proteins (MIPs) transport water and uncharged solutes across membranes in all kingdoms of life. Recently, an uncharacterized MIP subfamily was identified in the genomes of plants and fungi and named X Intrinsic Proteins (XIPs). Here, we describe the genetic features, localization, expression, and functions of a group of Solanaceae XIPs. XIP cDNA and gDNA were cloned from tobacco, potato, tomato, and morning glory. A conserved sequence motif in the first intron of Solanaceae XIPs initiates an RNA-processing mechanism that results in two splice variants (α and β). When transiently or stably expressed in tobacco plants, yellow fluorescent protein-tagged NtXIP1;1α and NtXIP1;1β were both localized in the plasma membrane. Transgenic tobacco lines expressing NtXIP1;1-promoter-GUS constructs and RT-PCR studies showed that NtXIP1;1 was expressed in all organs. The NtXIP1;1 promoter was mainly active in cell layers facing the environment in all above-ground tissues. Heterologous expression of Solanaceae XIPs in Xenopus laevis oocytes and various Saccharomyces cerevisiae mutants demonstrated that these isoforms facilitate the transport of bulky solutes, such as glycerol, urea, and boric acid. In contrast, permeability for water was undetectable. These data suggest that XIPs function in the transport of uncharged solutes across the cell plasma membrane in specific plant tissues, including at the interface between the environment and external cell layers.

  8. Do anthropogenic transports facilitate stored-product pest moth dispersal? A molecular approach

    NASA Astrophysics Data System (ADS)

    Ryne, Camilla; Bensch, Staffan

    2008-02-01

    Stored-product moths cause large economic damage in food processing industries and storage facilities. Control of indoor pests is currently dealt with locally, and control strategies seldom include different mills or cooperative industries in joint efforts to reduce infestations. In colder climates where conditions hinder flight dispersal of stored-product moths, we hypothesize that human transport between mills will facilitate dispersal. Albeit considered intuitive, this hypothesis has so far never been tested. Male moths from three mills (populations) in southern Sweden and Denmark were collected and by using amplified fragment length polymorphism (AFLP) pair-wise F st values were calculated. Cluster (population) origins of the genotypes were computed by using a model-based method, structure. The results suggest that known transportation of flour between two mills generate genetically more similar populations of the economically important stored-product moth, Ephestia kuehniella (Zell.) (Lepidoptera; Pyralidae), compared to the third mill, with another distribution area, but situated geographically in between the other mills. The structure model placed the sampled genotypes to belong to either two or five original populations, with a higher probability of two original populations. The third mill was consistently different from the other two mills independent of the models’ calculated number of populations. Although the study was restricted to three mills and one transportation route, it highlights the possibility that transportation of food products promotes genetic mixing (i.e. dispersal) of insect pest populations. Including cooperating mills in control (or monitor) strategy schemes against stored-product pest insects would therefore be a more effective action, rather than to treat each mill separately.

  9. Colloid facilitated transport in fractured rock : parameter estimation and comparison with experimental data

    SciTech Connect

    Viswanathan, H. S.; Wolfsberg, A. V.

    2002-01-01

    Many contaminants in groundwater strongly interact with the immobile porous matrix, which retards their movement relative to groundwater flow. Colloidal particles, which are often present in groundwater, have a relatively small size and large specific surface area which makes it possible for them to also adsorb pollutants. The sorption of tracers to colloids may enhance their mobility in groundwater, relative to the case where colloids are not present. A class of pollutants for which colloid-facilitated transport may be of particular significance are radioactive isotopes. A major reason for why geologic repositories are considered suitable for the disposal of spent nuclear fuel is the strong affinity of many radionuclides to adsorb onto the porous matrix. Therefore, radionuclides accidentally released, would be contained in the geological media by adsorption or filtration until sufficient decay takes place. However, the presence of colloids may enhance radionuclide mobility in the groundwater, and reduce the efficiency of geologic media to act as a natural barrier.

  10. Facilitated transport of carbon dioxide through supported liquid membranes of aqueous amine solutions

    SciTech Connect

    Teramoto, Masaaki; Nakai, Katsuya; Ohnishi, Nobuaki; Huang, Q.; Watari, Takashi; Matsuyama, Hideto

    1996-02-01

    A series of experiments on the facilitated transport of CO{sub 2} through supported liquid membranes containing monoethanolamine (MEA) and diethanolamine (DEA) was performed. The feed gas was a mixture of CO{sub 2} and CH{sub 4}, and the CO{sub 2} partial pressure p{sub CO{sub 2},F} was in the range from 0.05 to 0.97 atm. Compared to the MEA membranes, the DEA membranes showed a little higher permeation rate of CO{sub 2} since the equilibrium constant of the reaction between CO{sub 2} and MEA is too large for CO{sub 2} to be released to the receiving phase rapidly. When p{sub CO{sub 2},F} and the MEA concentration were 0.05 atm and 4 mol/dm{sup 3}, respectively, the separation factor {alpha}(CO{sub 2}/CH{sub 4}) was about 2,000. It was found that if the membrane thickness multiplied by the square root of the tortuosity factor of the microporous support membrane is used as the effective pore length, the experimentally observed permeation rates of CO{sub 2} can be satisfactorily simulated by the theory of facilitated transport of CO{sub 2} through aqueous amine membranes. A method for estimating the solubilities of CO{sub 2} in the membrane solutions from the permeation rates of CH{sub 4} was also proposed. It was also found that permeation rates of CO{sub 2} through aqueous DEA membranes reported by Guha et al. were quantitatively explained by the proposed theory.

  11. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    SciTech Connect

    Ryan, Joseph

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix

  12. Self-organized transient facilitated atomic transport in Pt /Al(111)

    NASA Astrophysics Data System (ADS)

    Süle, P.

    2008-04-01

    During the course of atomic transport in a host material, impurity atoms need to surmount an energy barrier driven by thermodynamic bias or at ultralow temperatures by quantum tunneling. In the present article, we demonstrate using atomistic simulations that at ultralow temperature, transient interlayer atomic transport is also possible without tunneling when the Pt /Al(111) impurity/host system self-organizes itself spontaneously into an intermixed configuration. No such extremely fast athermal concerted process has been reported before at ultralow temperatures. The outlined novel transient atomic exchange mechanism could be of general validity. We find that the source of ultralow temperature heavy particle barrier crossing is intrinsic and no external bias is necessary for atomic intermixing and surface alloying in Pt /Al, although the dynamic barrier height is a few eV. The mechanism is driven by the local thermalization of the Al(111) surface in a self-organized manner arranged spontaneously by the system without any external stimulus. The core of the short lived thermalized region reaches the local temperature of ˜1000K (including a few tens of Al atoms), while the average temperature of the simulation cell is ˜3K. The transient facilitated intermixing process also takes place with repulsive impurity-host interaction potential leading to negative atomic mobility; hence, the atomic injection is largely independent of the strength of the impurity-surface interaction. We predict that similar exotic behavior is possible in other materials as well.

  13. Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter.

    PubMed

    Zeng, H; Parthasarathy, R; Rampal, A L; Jung, C Y

    1996-01-01

    A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function.

  14. Silver- and gold-mediated nucleobase bonding.

    PubMed

    Acioli, Paulo H; Srinivas, Sudha

    2014-08-01

    We report the results of a density functional theory investigation of the bonding of nucleobases mediated by silver and gold atoms in the gas phase. Our calculations use the Becke exchange and Perdew-Wang correlation functional (BPW91) combined with the Stuttgart effective core potentials to represent the valence electrons of gold, silver, and platinum, and the all-electron DGTZVP basis set for C, H, N, and O. This combination was chosen based on tests on the metal atoms and tautomers of adenine, cytosine, and guanine. To establish a benchmark to understand the metal-mediated bonding, we calculated the binding energy of each of the base pairs in their canonical forms. Our calculations show rather strong bonds between the Watson-Crick base pairs when compared with typical values for N-H-N and N-H-O hydrogen bonds. The neutral metal atoms tend to bond near the nitrogen atoms. The effect of the metal atoms on the bonding of nucleobases differs depending on whether or not the metal atoms bond to one of the hydrogen-bonding sites. When the silver or gold atoms bond to a non-hydrogen-bonding site, the effect is a slight enhancement of the cytosine-guanine bonding, but there is almost no effect on the adenine-thymine pairing. The metal atoms can block one of the hydrogen-bonding sites, thus preventing the normal cytosine-guanine and adenine-thymine pairings. We also find that both silver and gold can bond to consecutive guanines in a similar fashion to platinum, albeit with a significantly lower binding energy.

  15. Transport of vitamin A across blood-tissue barriers is facilitated by STRA6.

    PubMed

    Kelly, Mary; Widjaja-Adhi, M Airanthi K; Palczewski, Grzegorz; von Lintig, Johannes

    2016-08-01

    Vitamin A bound to retinol binding protein 4 (RBP4) constitutes the major transport mode for retinoids in fasting circulation. Emerging evidence suggests that membrane protein, STRA6 (stimulated by retinoic acid 6), is the RBP4 receptor and vitamin A channel; however, the role of STRA6 in vitamin A homeostasis remains to be defined in vivo We subjected Stra6-knockout mice to diets sufficient and insufficient for vitamin A and used heterozygous siblings as controls. We determined vitamin A levels of the eyes, brain, and testis, which highly express Stra6, as well as of tissues with low expression, such as lung and fat. We also studied the consequence of STRA6 deficiency on retinoid-dependent processes in tissues. Furthermore, we examined how STRA6 deficiency affected retinoid homeostasis of the aging mouse. The picture that emerged indicates a critical role for STRA6 in the transport of vitamin A across blood-tissue barriers in the eyes, brain, and testis. Concurrently, fat and lung rely on dietary vitamin A. In testis and brain, Stra6 expression was regulated by vitamin A. In controls, this regulation reduced vitamin A consumption when the dietary supply was limited, sequestering it for the eye. Thus, STRA6 is critical for vitamin A homeostasis and the adaption of this process to the fluctuating supply of the vitamin.-Kelly, M., Widjaja-Adhi, M. A. K., Palczewski, G., von Lintig, J. Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. PMID:27189978

  16. Colloid-Facilitated Radionuclide Transport at the Potential Yucca Mountain Repository

    NASA Astrophysics Data System (ADS)

    Alcorn, S. R.; Mertz, C. J.

    2001-12-01

    In a geologic repository for nuclear waste, transport of radionuclides on or within colloids may be important for radionuclides of concern that have low solubility and can be entrained in, or sorbed onto, colloidal particles generated within the repository system. It is anticipated that colloids will be formed and mobilized at the potential Yucca Mountain repository as a result of alteration of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) waste forms, as well as corrosion of engineered barrier system (EBS) components. The abundance of colloids leaving a breached waste package and entering the repository drift will depend on the extent of waste form and EBS component alteration and the alteration products formed. Further, colloid abundance and stability will depend on such environmental factors as the ionic strength, pH, cation concentrations, natural colloid content, and organic acid and microbe content of groundwater entering the waste package from the drift. Colloids may flocculate and settle, be chemically retarded, mechanically filtered, or dissolve. In addition, colloids may sorb readily at the interfaces between air and water in rocks and engineered barriers and, depending upon the characteristics and degree of saturation of the porous medium, may be immobilized, retarded, or transported. A methodology for modeling colloid-facilitated radionuclide transport in the potential repository at Yucca Mountain was developed for use in Total System Performance Assessment calculations. The model incorporates several colloid sources and addresses factors affecting colloid stability and concentration as well as distribution and attachment of radionuclides onto colloids. Waste form corrosion tests performed at Argonne National Laboratory (ANL) have focused on determination of colloid composition, stability, concentration, size distribution, and associated radionuclide concentration. Data from these experiments were used as model inputs.

  17. Atrazine adsorption and colloid-facilitated transport through the unsaturated zone

    USGS Publications Warehouse

    Sprague, L.A.; Herman, J.S.; Hornberger, G.M.; Mills, A.L.

    2000-01-01

    One explanation for unexpectedly widespread ground water contamination from atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) may be the occurence of colloid-facilitated transport, whereby the dissolved herbicide becomes adsorbed to mobile colloids that migrate through preferential flow-paths in the soil zone and into the ground water. The objectives of this study were to determine the extent of adsorpton of atrazine to bulk soil and to soil colloids and to determine the extent of colloid-facilitated transport of atrazine at a field site in Virginia during simulated rainfall events. Equilibrium batch adsorption experiments were performed over a concentration range of 0.05 to 10.0 mg atrazine L-1 on bulk soil samples and on colloidal suspensions of 75 mg L-1, a concentration comparable with those observed at the field site. Linear partition coefficients ranged from 0.496 to 2.48 L kg-1 for the bulk soil and from 70.8 to 832 L kg-1 for the soil colloids. In the field, gravity lysimeters were insured at a depth of 25 cm below the surface of six 0.25-m2 undisturbed plots. Mass recovery of surface-applied atrazine in the lysimeters was not significantly affected by rainfall rate and was, on average, 2.7% for plots receiving 25 mm h-1 simulated rainfall and 3.6% for plots receiving 50 mm h-1 simulated rainfall. Of the total atrazine collected in the lysimeters, the fraction that was colloid-associated ranged from 4.9 to 30% (mean of 15%), indicating that a measurable portion of mobile atrazine is transported via association with colloids.One explanation for unexpectedly widespread ground water contamination from atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) may be the occurrence of colloid-facilitated transport, whereby the dissolved herbicide becomes adsorbed to mobile colloids that migrate through preferential flow-paths in the soil zone and into the ground water. The objectives of this study were to determine the extent of adsorption of

  18. Modeling of facilitated transport of phenylalanine by emulsion liquid membranes with di(2-ethylhexyl)phosphoric acid as a carrier

    SciTech Connect

    Liu, X.; Liu, D.

    1998-12-01

    A mathematical model is developed in this paper to simulate the facilitated transport of phenylalanine (Phe) in emulsion liquid membrane (ELM) systems with di(2-ethylhexyl)phosphoric acid as a carrier. The model takes into account the mass transfer in both the external aqueous phase and the organic membrane phase interfacial reaction as well as membrane breakage during agitation. The model is tested by comparing theoretical predications with experimental results using Phe extraction by ELM processes. It is found that the model is valid for simulating the facilitated transport of Phe with ELM under various experimental conditions.

  19. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.

    PubMed

    Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W

    2010-02-01

    A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal. PMID:19406449

  20. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.

    PubMed

    Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W

    2010-02-01

    A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal.

  1. Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4.

    PubMed

    Kraft, Thomas E; Hresko, Richard C; Hruz, Paul W

    2015-12-01

    The insulin-responsive facilitative glucose transporter GLUT4 is of fundamental importance for maintenance of glucose homeostasis. Despite intensive effort, the ability to express and purify sufficient quantities of structurally and functionally intact protein for biophysical analysis has previously been exceedingly difficult. We report here the development of novel methods to express, purify, and functionally reconstitute GLUT4 into detergent micelles and proteoliposomes. Rat GLUT4 containing FLAG and His tags at the amino and carboxy termini, respectively, was engineered and stably transfected into HEK-293 cells. Overexpression in suspension culture yielded over 1.5 mg of protein per liter of culture. Systematic screening of detergent solubilized GLUT4-GFP fusion protein via fluorescent-detection size exclusion chromatography identified lauryl maltose neopentyl glycol (LMNG) as highly effective for isolating monomeric GLUT4 micelles. Preservation of structural integrity and ligand binding was demonstrated via quenching of tryptophan fluorescence and competition of ATB-BMPA photolabeling by cytochalasin B. GLUT4 was reconstituted into lipid nanodiscs and proper folding was confirmed. Reconstitution of purified GLUT4 with amphipol A8-35 stabilized the transporter at elevated temperatures for extended periods of time. Functional activity of purified GLUT4 was confirmed by reconstitution of LMNG-purified GLUT4 into proteoliposomes and measurement of saturable uptake of D-glucose over L-glucose. Taken together, these data validate the development of an efficient means to generate milligram quantities of stable and functionally intact GLUT4 that is suitable for a wide array of biochemical and biophysical analyses.

  2. Role of LiBF4 in Ionic Liquid Membranes for Facilitated CO2 Transport.

    PubMed

    Choi, Yeji; Hong, Gil Hwan; Kang, Sang Wook

    2016-03-01

    The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4)/LiBF4 electrolyte was prepared for highly selective facilitated CO2 transport membranes. When LiBF4 was incorporated into BMIM BF4, synergy effects by free Li+ ion and imidazolium cations is expected to enhance the separation performance for CO2/N2 and CO2/CH4. The free state of BF4- ions in BMIM BF4/LiBF4 solutions was investigated by FT-Raman spectroscopy. For the coordination of LiBF4 with BMIMBF4, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) was utilized. Electrolyte membranes consisting of BMIM BF4 and LiBF4 showed selectivities of 8.40 and 8.25 for CO2/N2 and CO2/CH4, respectively. Neat BMIM BF4 membrane showed selectivities of 5.0 and 4.8, respectively. Enhanced separation performance was attributed to increased free Li+ and abundant free imidazolium cations. PMID:27455716

  3. Protist-facilitated transport of soil bacteria in an artificial soil micromodel

    NASA Astrophysics Data System (ADS)

    Rubinstein, R. L.; Cousens, V.; Gage, D. J.; Shor, L. M.

    2013-12-01

    Soil bacteria within the rhizosphere benefit plants by protecting roots from pathogens, producing growth factors, and improving nutrient availability. These effects can greatly improve overall plant health and increase crop yield, but as roots grow out from the tips they quickly outpace their bacterial partners. Some soil bacteria are motile and can chemotact towards root tips, but bacterial mobility in unsaturated soils is limited to interconnected hydrated pores. Mobility is further reduced by the tendency of soil bacteria to form biofilms. The introduction of protists to the rhizosphere has been shown to benefit plants, purportedly by selective grazing on harmful bacteria or release of nutrients otherwise sequestered in bacteria. We propose that an additional benefit to the presence of protists is the facilitated transport of beneficial bacteria along root systems. Using microfluidic devices designed to imitate narrow, fluid-filled channels in soil, we have shown that the distribution of bacteria through micro-channels is accelerated in the presence of protists. Furthermore, we have observed that even with predation effects, the bacteria remain viable and continue to reproduce for the duration of our experiments. These results expand upon our understanding of complex bio-physical interactions in the rhizosphere system, and may have important implications for agricultural practices.

  4. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-01

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  5. Colloid facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments.

    PubMed

    Grolimund, Daniel; Borkovec, Michal

    2005-09-01

    Mobile colloidal particles may act as carriers of strongly sorbing contaminants in subsurface materials. Such colloid-facilitated transport can be induced by changes in salinity, similar to freshwater intrusion to a contaminated aquifer saturated with saltwater, or groundwater penetration into a contaminated site saturated with a dumpsite leachate. This process is studied for noncalcareous soil material with laboratory column experiments with sodium and calcium as major cations and with lead as a strongly sorbing model contaminant. The measured breakthrough curves of these elements were described with a mathematical transport model, which invokes release and deposition kinetics of the colloids, together with adsorption and desorption of the relevant ions to the solid matrix as well as to the suspended colloids. In particular, the specific coupling between colloid and solute transport is considered. The crux of a successful description of such colloidal transport processes is to capture the inhibition of the particle release by adsorbed divalent ions properly and explicitly to considerthe dependence of colloid release on the solution chemistry and the chemical conditions at the solid-liquid interface. Experiments and modeling address colloid-facilitated transport of lead out of a contaminated zone and through a noncontaminated zone, including effects of flow velocity and length of the noncontaminated zone. We finally show that colloid-facilitated transport can be suppressed by the injection of a suitably chosen solution of a calcium salt.

  6. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  7. Microbially Produced Organic Matter and Its Role in Facilitating Pu Transport in the Deep Vadose Zone

    NASA Astrophysics Data System (ADS)

    Fisher, J. C.; Tinnacher, R. M.; Zavarin, M.; Kersting, A. B.; Czerwinski, K.; Moser, D. P.

    2010-12-01

    Microorganisms have the potential to affect the fate and mobility of actinides in the deep vadose zone (DVZ) by metabolism (direct oxidation/reduction and changes to ecosystem redox potential), production of colloids and ligands, or by sorption (biofilms). The role of microbial communities in colloid-facilitated Pu transport is currently under investigation at the Nevada Test Site (NTS). Our experimental objective is to obtain both qualitative and quantitative data on the in situ role of biological organic material (DOM, POC, and EPS) on the (de)sorption of Pu at environmentally relevant concentrations. Groundwater samples were collected through vertical ventilation holes from a flooded post-test tunnel at the (NTS), where SSU rRNA gene libraries revealed a range of potential microbial physiotypes. Microbial enrichments were set up with the aim of isolating numerically significant representatives of major relevant physiotypes (e.g. aerobic heterotrophs, Mn/Fe reducers, EPS producers). NTS isolates, a well-characterized Shewanella sp.(str. CN-32), and an EPS-mutant of this strain were screened for their reactivity with Pu(IV). Organisms with both high and low (relative) Kd’s were used in sorption and cell lysis experiments. Viability experiments were conducted for all isolates in NaCl or NaCl/NaHCO3 solutions (I=0.01) for pH = 3, 5, 7, and 9. Products from cell lysis were filtered (0.22 um) or dialyzed (MW cutoff = 20,000 kD). These fractions were normalized by TOC and equilibrated with Pu to determine if Pu sorbs more strongly to either viable cells, EPS, cell membranes, or cell exudates. In our experiments, Pu(IV) sorbed most strongly to cells or cell fractions with EPS (expolysaccharide, the major biofilm component). However, cell fractions and exudates, which may become mobile when released from lysed or senescing cells, also strongly sorbed to Pu(IV). Therefore, changes in groundwater chemistry (e.g., pH or ionic strength) may have both direct chemical

  8. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    SciTech Connect

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  9. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    PubMed

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  10. A Major Facilitator Superfamily Transporter Plays a Dual Role in Polar Auxin Transport and Drought Stress Tolerance in Arabidopsis[W

    PubMed Central

    Remy, Estelle; Cabrito, Tânia R.; Baster, Pawel; Batista, Rita A.; Teixeira, Miguel C.; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-01-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H+-coupled K+ transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells. PMID:23524662

  11. ESTIMATING THE POTENTIAL FOR FACILITATED TRANSPORT OF NAPROPAMIDE BY DISSOLVED ORGANIC MATTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) has been found to significantly affect the soil sorption/desorption of napropamide [2-(a-naphthoxy-N, N-diethylpropionamide] and to enhance its transport through soil columns. A method to qualitatively predict if DOM will enhance the transport of napropamide based on e...

  12. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.

    PubMed

    Rathi, Preeti; Maurer, Sara; Kubik, Grzegorz; Summerer, Daniel

    2016-08-10

    We report the direct isolation of user-defined DNA sequences from the human genome with programmable selectivity for both canonical and epigenetic nucleobases. This is enabled by the use of engineered transcription-activator-like effectors (TALEs) as DNA major groove-binding probes in affinity enrichment. The approach provides the direct quantification of 5-methylcytosine (5mC) levels at single genomic nucleotide positions in a strand-specific manner. We demonstrate the simple, multiplexed typing of a variety of epigenetic cancer biomarker 5mC with custom TALE mixes. Compared to antibodies as the most widely used affinity probes for 5mC analysis, i.e., employed in the methylated DNA immunoprecipitation (MeDIP) protocol, TALEs provide superior sensitivity, resolution and technical ease. We engineer a range of size-reduced TALE repeats and establish full selectivity profiles for their binding to all five human cytosine nucleobases. These provide insights into their nucleobase recognition mechanisms and reveal the ability of TALEs to isolate genomic target sequences with selectivity for single 5-hydroxymethylcytosine and, in combination with sodium borohydride reduction, single 5-formylcytosine nucleobases. PMID:27429302

  13. Zero-tension lysimeters: An improved design to monitor colloid-facilitated contaminant transport in the vadose zone

    SciTech Connect

    Thompson, M.L.; Scharf, R.L.; Shang, C.

    1995-04-24

    There is increasing evidence that mobile colloids facilitate the long-distance transport of contaminants. The mobility of fine particles and macromolecules has been linked to the movement of actinides, organic contaminants, and heavy metals through soil. Direct evidence for colloid mobility includes the presence of humic materials in deep aquifers as well as coatings of accumulated clay, organic matter, or sesquioxides on particle or aggregate surfaces in subsoil horizons of many soils. The potential for colloid-facilitated transport of contaminants from hazardous-waste sites requires adequate monitoring before, during, and after in-situ remediation treatments. Zero-tension lysimeters (ZTLs) are especially appropriate for sampling water as it moves through saturated soil, although some unsaturated flow events may be sampled as well. Because no ceramic barrier or fiberglass wick is involved to maintain tension on the water (as is the case with other lysimeters), particles suspended in the water as well as dissolved species may be sampled with ZTLs. In this report, a ZTL design is proposed that is more suitable for monitoring colloid-facilitated contaminant migration. The improved design consists of a cylinder made of polycarbonate or polytetrafluoroethylene (PTFE) that is placed below undisturbed soil material. In many soils, a hydraulically powered tube may be used to extract an undisturbed core of soil before placement of the lysimeter. In those cases, the design has significant advantages over conventional designs with respect to simplicity and speed of installation. Therefore, it will allow colloid-facilitated transport of contaminants to be monitored at more locations at a given site.

  14. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices

    PubMed Central

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Sawchuk, Megan G.; Scarpella, Enrico; Ljung, Karin

    2016-01-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS. PMID:27119525

  15. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.

    PubMed

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Waldie, Tanya; Sawchuk, Megan G; Scarpella, Enrico; Ljung, Karin; Leyser, Ottoline

    2016-04-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.

  16. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.

    PubMed

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Waldie, Tanya; Sawchuk, Megan G; Scarpella, Enrico; Ljung, Karin; Leyser, Ottoline

    2016-04-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS. PMID:27119525

  17. The Renaissance of Metal-Pyrimidine Nucleobase Coordination Chemistry.

    PubMed

    Lippert, Bernhard; Sanz Miguel, Pablo J

    2016-08-16

    The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more

  18. The Renaissance of Metal-Pyrimidine Nucleobase Coordination Chemistry.

    PubMed

    Lippert, Bernhard; Sanz Miguel, Pablo J

    2016-08-16

    The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more

  19. Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application

    PubMed Central

    Dancik, Yuri; Anissimov, Yuri G; Jepps, Owen G; Roberts, Michael S

    2012-01-01

    AIMS To relate the varying dermal, subcutaneous and muscle microdialysate concentrations found in man after topical application to the nature of the drug applied and to the underlying physiology. METHODS We developed a physiologically based pharmacokinetic model in which transport to deeper tissues was determined by tissue diffusion, blood, lymphatic and intersitial flow transport and drug properties. The model was applied to interpret published human microdialysis data, estimated in vitro dermal diffusion and protein binding affinity of drugs that have been previously applied topically in vivo and measured in deep cutaneous tissues over time. RESULTS Deeper tissue microdialysis concentrations for various drugs in vivo vary widely. Here, we show that carriage by the blood to the deeper tissues below topical application sites facilitates the transport of highly plasma protein bound drugs that penetrate the skin, leading to rapid and significant concentrations in those tissues. Hence, the fractional concentration for the highly plasma protein bound diclofenac in deeper tissues is 0.79 times that in a probe 4.5 mm below a superficial probe whereas the corresponding fractional concentration for the poorly protein bound nicotine is 0.02. Their corresponding estimated in vivo lag times for appearance of the drugs in the deeper probes were 1.1 min for diclofenac and 30 min for nicotine. CONCLUSIONS Poorly plasma protein bound drugs are mainly transported to deeper tissues after topical application by tissue diffusion whereas the transport of highly plasma protein bound drugs is additionally facilitated by convective blood, lymphatic and interstitial transport to deep tissues. PMID:21999217

  20. The Effect of a Simulated Macropore on the Colloid-Facilitated Transport of Cesium and Strontium: Experiment and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Ryan, J. N.; Saiers, J. E.

    2011-12-01

    The sorption of contaminants to mobile colloids has been shown to increase the transport of the contaminants in a process known as colloid-facilitated transport. Many laboratory experiments and computer model simulations have shown that enhanced transport can occur when a contaminant strongly associates with mobile colloids and release kinetics are slow relative to the rate of flow. Knowing when colloid-facilitated transport will affect field-scale situations and risk assessment decisions has been difficult. The three parts of our research were (1) conduct a set of isotherms and breakthrough curves for a well-characterized system (illite colloids, homogeneous quartz sand, saturated and unsaturated conditions), (2) conduct breakthrough experiments with the addition of a central macropore and, (3) model the results to identify and quantify the effects of desorption kinetics and unsaturated conditions on colloid-facilitated transport with a macropore. Breakthrough experiments used a 12.7 cm diameter and 33.5 cm long column packed with cleaned and sieved quartz sand. The homogeneous experiments used sand with a median grain size of 0.325 mm. For macropore experiments, a 2 cm diameter tube of 1.6 mm sand (about 5× the size of the matrix sand) was packed in the center of the column. A rainfall simulator was suspended over the column and a relative saturation of 1.0, 0.80, or 0.33 was established. Three moisture sensors and three tensiometers monitored the flow conditions. Effluent was collected with a peristaltic pump and a fraction collector and measured for total and dissolved ions, pH, and colloid concentration. Cesium and strontium were used as model contaminants because they are common contaminants found on Department of Energy sites in the United States and because they have contrasting sorption kinetics with illite. A previously developed model for saturated colloid-facilitated transport of cesium and strontium was extended to accommodate unsaturated conditions

  1. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter

    NASA Astrophysics Data System (ADS)

    Lee, Yongchan; Nishizawa, Tomohiro; Yamashita, Keitaro; Ishitani, Ryuichiro; Nureki, Osamu

    2015-01-01

    SWEET family proteins mediate sugar transport across biological membranes and play crucial roles in plants and animals. The SWEETs and their bacterial homologues, the SemiSWEETs, are related to the PQ-loop family, which is characterized by highly conserved proline and glutamine residues (PQ-loop motif). Although the structures of the bacterial SemiSWEETs were recently reported, the conformational transition and the significance of the conserved motif in the transport cycle have remained elusive. Here we report crystal structures of SemiSWEET from Escherichia coli, in the both inward-open and outward-open states. A structural comparison revealed that SemiSWEET undergoes an intramolecular conformational change in each protomer. The conserved PQ-loop motif serves as a molecular hinge that enables the ‘binder clip-like’ motion of SemiSWEET. The present work provides the framework for understanding the overall transport cycles of SWEET and PQ-loop family proteins.

  2. Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking.

    PubMed

    Chaudhary, Nitika; Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-07-01

    Trichoderma spp. have been acknowledged as potent bio-control agents against microbial pathogens and also as plant growth promoters. Various secondary metabolites are attributed for these beneficial activities. Major facilitator superfamily (MFS) includes the large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites. We have carried out a proteome-wide identification of MFS transporters using protein sequence and structure based hierarchical method in Trichoderma reesei. 448 proteins out of 9115 were detected to carry transmembrane helices. MFS specific intragenic gene duplication and its context with transport function have been presented. Finally, using homology based techniques, domains and motifs of MFS families have been identified and utilized to classify them. From query dataset of 448 transmembrane proteins, 148 proteins are identified as potential MFS transporters. Sugar porter, drug: H(+) antiporter-1, monocarboxylate porter and anion: cation symporter emerged as major MFS families with 51, 35, 17 and 11 members respectively. Representative protein tertiary structures of these families are homology modeled for structure-function analysis. This study may help to understand the molecular basis of secretion and transport of agriculturally valuable secondary metabolites produced by these bio-control fungal agents which may be exploited in future for enhancing its biotechnological applications in eco-friendly sustainable development.

  3. Communication: Photoactivation of nucleobase bound platinum{sup II} metal complexes: Probing the influence of the nucleobase

    SciTech Connect

    Sen, Ananya; Dessent, Caroline E. H.

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt{sup II}(CN){sub 4}{sup 2−} complexes, i.e., Pt(CN){sub 4}{sup 2−}⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λ{sub max} ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN){sub 4}{sup 2−} localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN){sub 4}{sup 2−}⋅Thymine > Pt(CN){sub 4}{sup 2−}⋅Uracil > Pt(CN){sub 4}{sup 2−}⋅Adenine > Pt(CN){sub 4}{sup 2−}⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes.

  4. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  5. An Active Learning Exercise to Facilitate Understanding of Nephron Function: Anatomy and Physiology of Renal Transporters

    ERIC Educational Resources Information Center

    Dirks-Naylor, Amie J.

    2016-01-01

    Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…

  6. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  7. Electron transport across glycerol monooleate bilayer lipid membranes facilitated by magnesium etiochlorin.

    PubMed Central

    Feldberg, S W; Armen, G H; Bell, J A; Chang, C K; Wang, C B

    1981-01-01

    The transport of electrons across biological membranes is believed to play an important role in many biophenomena. Although there have been many examples of systems which may be transporting electrons across Mueller-Rudin bilayer lipid membranes (blm), none has been well characterized. The system we describe here comprises a glycerol monooleate blm containing a magnesium etiochlorin (Mg-C) separating two aqueous phases each containing ferricyanide, ferrocyanide, KCl, and a platinum electrode. The E0s for the Mg-C+/Mg-C and ferri-/ferrocyanide couples are 0.22 and 0.24 V vs. SCE. Thus the MG-C+/Mb-C system is easily poised by the ferri-/ferrocyanide system. When the potentials of the ferri-/ferrocyanide couples are different on each side of the blm we show that the open-circuit membrane potential nearly equals the difference between the redox potentials. This is unequivocal evidence that electrons are being transferred across the blm from one aqueous phase to the other. On the basis of these experiments we deduce that electron transport is the major charge transport mechanism. When redox potentials are the same on each side of the blm, the conductance of the membrane can be greater than 10(-3) S/cm2. The conductance is proportional to the second power of the concentration of Mg-C in the membrane-forming mixture. A number of additional experiments are described which attempt to elucidate the mechanism of electron transfer. We believe that our data are consistent with the idea of an electron-hopping mechanism in which the transmembrane electron transport occurs by a series of second-order electron transfers between membrane-bound electron donors (Mg-C) and acceptors (Mg-C+). Alternative explanations are presented. PMID:7213929

  8. [Hopping and superexchange mechanisms of charge transport to DNA].

    PubMed

    Lakhno, V D; Sultanov, V B

    2003-01-01

    A theory for charge transport in nucleobase sequences was constructed in which the hole migration proceeds via hopping between guanines. Each hop over the adenine-thymine (A-T) bridge connecting neighboring guanines occurs by means of the superexchange mechanism. The experimental data and theoretical results for various types of nucleobase sequences are compared.

  9. Isolation and functional analysis of Thmfs1, the first major facilitator superfamily transporter from the biocontrol fungus Trichoderma harzianum.

    PubMed

    Liu, Mu; Liu, Jun; Wang, Wei Min

    2012-10-01

    A novel major facilitator superfamily (MFS) transporter gene, Thmfs1, was isolated from Trichoderma harzianum (T. harzianum). A Thmfs1 over-expressing mutant displayed enhanced antifungal activity and fungicide tolerance, while the Thmfs1 disruption mutant showed the opposite trend. Trichodermin production in Thmfs1 disruption group (185 mg l(-1)) was decreased by less than 17 % compared to the parental strain, suggesting that Thmfs1 is not mainly responsible for trichodermin secretion. Real-time PCR showed that Thmfs1 transcript level could be induced by a certain range of trichodermin concentrations, while expression of Tri5, encoding a trichodiene synthase, was strongly inhibited under these conditions. To our knowledge, Thmfs1 is the first MFS transporter gene identified in T. harzianum. PMID:22661043

  10. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    PubMed

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  11. Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization

    PubMed Central

    Leonhardt, Ralf M.; Abrahimi, Parwiz; Mitchell, Susan M.; Cresswell, Peter

    2014-01-01

    The transporter associated with antigen processing (TAP) translocates peptide antigens into the lumen of the endoplasmic reticulum (ER) for loading onto major histocompatibility complex (MHC) class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex (PLC), an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains (N domains) of TAP1 and TAP2. The third binding site is present in the core transmembrane domain (coreTMD) of TAP1 and is only used by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular the role of tapasin binding to the coreTMD of TAP1 single chains is mysterious as this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic transmembrane helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants lacking tapasin binding to either N domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization. PMID:24501197

  12. Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblast.

    PubMed

    Cleal, J K; Glazier, J D; Ntani, G; Crozier, S R; Day, P E; Harvey, N C; Robinson, S M; Cooper, C; Godfrey, K M; Hanson, M A; Lewis, R M

    2011-02-15

    Fetal growth depends on placental transfer of amino acids from maternal to fetal blood. The mechanisms of net amino acid efflux across the basal membrane (BM) of the placental syncytiotrophoblast to the fetus, although vital for amino acid transport, are poorly understood. We examined the hypothesis that facilitated diffusion by the amino acid transporters TAT1, LAT3 and LAT4 plays an important role in this process, with possible effects on fetal growth. Amino acid transfer was measured in isolated perfused human placental cotyledons (n = 5 per experiment) using techniques which distinguish between different transport processes. Placental TAT1, LAT3 and LAT4 proteins were measured, and mRNA expression levels (measured using real-time quantitative-PCR) were related to fetal and neonatal anthropometry and dual-energy X-ray absorptiometry measurements of neonatal lean mass in 102 Southampton Women's Survey (SWS) infants. Under conditions preventing transport by amino acid exchangers, all amino acids appearing in the fetal circulation were substrates of TAT1, LAT3 or LAT4. Western blots demonstrated the presence of TAT1, LAT3 and LAT4 in placental BM preparations. Placental TAT1 and LAT3 mRNA expression were positively associated with measures of fetal growth in SWS infants (P < 0.05). We provide evidence that the efflux transporters TAT1, LAT3 and LAT4 are present in the human placental BM, and may play an important role in the net efflux of amino acids to the fetus. Unlike other transporters they can increase fetal amino acid concentrations. Consistent with a role in placental amino acid transfer capacity and fetal growth TAT1 and LAT3 mRNA expression showed positive associations with infant size at birth.

  13. Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Ng, K. Y. Simon; Deng, Da

    2015-08-01

    Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the electrolyte than that of nanoparticles. Therefore, it will be interesting to tunnel-holes in the high volumetric density microparticles to facilitate the reversible storage of lithium ions. Here, tunnel-like holes were generated in microparticles to dramatically increase the accessibility of the active materials to facilitate the lithium ion transfer. A plausible formation mechanism to explain the generation of tunnel-like holes was proposed based on time-course experiments and intensive characterization. Impressively, the as-prepared microbeads with tunnels demonstrated dramatically improved performance compared to the solid microbeads without tunnels in lithium ion storage. The microparticles with tunnels could achieve comparable electrochemical performances to those nanoparticles reported in the literature, suggesting that microparticles, properly tuned, could be promising candidates as negative electrodes for lithium-ion batteries and worthy of further studies. We also directly measured the volumetric density of the microparticles. We would like to highlight that a superior volumetric capacity of 514 mA h cm-3 has been achieved. We hope to promote more frequent use of the unit mA h cm-3 in addition to the conventional unit mA h g-1 in the battery community.Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the

  14. Bacillus cereus efflux protein BC3310 - a multidrug transporter of the unknown major facilitator family, UMF-2.

    PubMed

    Kroeger, Jasmin K; Hassan, Karl; Vörös, Aniko; Simm, Roger; Saidijam, Massoud; Bettaney, Kim E; Bechthold, Andreas; Paulsen, Ian T; Henderson, Peter J F; Kolstø, Anne-Brit

    2015-01-01

    Phylogenetic classification divides the major facilitator superfamily (MFS) into 82 families, including 25 families that are comprised of transporters with no characterized functions. This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a member of the "unknown major facilitator family-2" (UMF-2). BC3310 was shown to be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver nitrate when heterologously expressed in Escherichia coli DH5α ΔacrAB. A conserved aspartate residue (D105) in putative transmembrane helix 4 was identified, which was essential for the energy dependent ethidium bromide efflux by BC3310. Transport proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF-2 proteins revealed that they carry a variant of the MFS motif A, which may be used as a marker to distinguish easily between this family and other MFS proteins. Genes orthologous to bc3310 are highly conserved within the B. cereus group of organisms and thus belong to the core genome, suggesting an important conserved functional role in the normal physiology of these bacteria.

  15. Bacillus cereus efflux protein BC3310 – a multidrug transporter of the unknown major facilitator family, UMF-2

    PubMed Central

    Kroeger, Jasmin K.; Hassan, Karl; Vörös, Aniko; Simm, Roger; Saidijam, Massoud; Bettaney, Kim E.; Bechthold, Andreas; Paulsen, Ian T.; Henderson, Peter J. F.; Kolstø, Anne-Brit

    2015-01-01

    Phylogenetic classification divides the major facilitator superfamily (MFS) into 82 families, including 25 families that are comprised of transporters with no characterized functions. This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a member of the “unknown major facilitator family-2” (UMF-2). BC3310 was shown to be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver nitrate when heterologously expressed in Escherichia coli DH5α ΔacrAB. A conserved aspartate residue (D105) in putative transmembrane helix 4 was identified, which was essential for the energy dependent ethidium bromide efflux by BC3310. Transport proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF-2 proteins revealed that they carry a variant of the MFS motif A, which may be used as a marker to distinguish easily between this family and other MFS proteins. Genes orthologous to bc3310 are highly conserved within the B. cereus group of organisms and thus belong to the core genome, suggesting an important conserved functional role in the normal physiology of these bacteria. PMID:26528249

  16. Excitation Spectra of Nucleobases with Multiconfigurational Density Functional Theory.

    PubMed

    Hubert, Mickaël; Jensen, Hans Jørgen Aa; Hedegård, Erik D

    2016-01-14

    Range-separated hybrid methods between wave function theory and density functional theory (DFT) can provide high-accuracy results, while correcting some of the inherent flaws of both the underlying wave function theory and DFT. We here assess the accuracy for excitation energies of the nucleobases thymine, uracil, cytosine, and adenine, using a hybrid between complete active space self-consistent field (CASSCF) and DFT methods. The method is based on range separation, thereby avoiding all double-counting of electron correlation and is denoted long-range CASSCF short-range DFT (CAS-srDFT). Using a linear response extension of CAS-srDFT, we compare the first 7-8 excited states of the nucleobases with perturbative multireference approaches as well as coupled cluster based methods. Our results show that the CAS-srDFT method can provide accurate excitation energies in good correspondence with the computationally more expensive methods. PMID:26669578

  17. Nucleobase appended viologens: Building blocks for new optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Ciobanu, Marius; Asaftei, Simona

    2015-04-01

    We describe here the fabrication, characterization and possible applications of a new type of optical material - consisting of 4,4‧-bipyridinium core ("viologen") and nucleobases i.e. adenine and/or thymine made by H-bonding. The viologen-nucleobase derivatives were used to construct supramolecular structures in a "biomimetic way" with complementary oligonucleotides (ssDNA) and peptide nucleic acids (ssPNA) as templates. The new nanostructured materials are expected to exhibit enhanced optical and optoelectronic properties with application in the field of supramolecular electronics. Such viologen derivatives could be significant in the design of new 2D and 3D materials with potentially application in optoelectronics, molecular electronics or sensoric.

  18. Local piezoresponse and polarization switching in nucleobase thymine microcrystals

    NASA Astrophysics Data System (ADS)

    Bdikin, Igor; Heredia, Alejandro; Neumayer, Sabine M.; Bystrov, Vladimir S.; Gracio, José; Rodriguez, Brian J.; Kholkin, Andrei L.

    2015-08-01

    Thymine (2-oxy-4-oxy-5 methyl pyrimidine) is one of the four nucleobases of deoxyribonucleic acid (DNA). In the DNA molecule, thymine binds to adenine via two hydrogen bonds, thus stabilizing the nucleic acid structure and is involved in pairing and replication. Here, we show that synthetic thymine microcrystals grown from the solution exhibit local piezoelectricity and apparent ferroelectricity, as evidenced by nanoscale electromechanical measurements via Piezoresponse Force Microscopy. Our experimental results demonstrate significant electromechanical activity and polarization switchability of thymine, thus opening a pathway for piezoelectric and ferroelectric-based applications of thymine and, perhaps, of other DNA nucleobase materials. The results are supported by molecular modeling of polarization switching under an external electric field.

  19. Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates.

    PubMed

    Schulz, Alexander

    2015-01-01

    Assimilates synthesized in the mesophyll of mature leaves move along the pre-phloem transport pathway to the bundle sheath of the minor veins from which they are loaded into the phloem. The present review discusses the most probable driving force(s) for the pre-phloem pathway, diffusion down the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar oligomerization, and leads to a high sugar accumulation in the phloem, even though the phloem is not symplasmically isolated, but well coupled by plasmodesmata (PD). Hence the mode polymer-trap mode is also designated active symplasmic loading. For woody angiosperms and gymnosperms an alternate loading mode is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic loaders a considerable part of water flux happens through the PD between bundle sheath and phloem. PMID:25516499

  20. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola.

    PubMed

    Hu, Pengjie; Yin, Yong-Gen; Ishikawa, Satoru; Suzui, Nobuo; Kawachi, Naoki; Fujimaki, Shu; Igura, Masato; Yuan, Cheng; Huang, Jiexue; Li, Zhu; Makino, Tomoyuki; Luo, Yongming; Christie, Peter; Wu, Longhua

    2013-09-01

    The aims of this study are to investigate whether and how the nitrogen form (nitrate (NO3 (-)) versus ammonium (NH4 (+))) influences cadmium (Cd) uptake and translocation and subsequent Cd phytoextraction by the hyperaccumulator species Sedum plumbizincicola. Plants were grown hydroponically with N supplied as either NO3 (-) or NH4 (+). Short-term (36 h) Cd uptake and translocation were determined innovatively and quantitatively using a positron-emitting (107)Cd tracer and positron-emitting tracer imaging system. The results show that the rates of Cd uptake by roots and transport to the shoots in the NO3 (-) treatment were more rapid than in the NH4 (+) treatment. After uptake for 36 h, 5.6 (0.056 μM) and 29.0 % (0.290 μM) of total Cd in the solution was non-absorbable in the NO3 (-) and NH4 (+) treatments, respectively. The local velocity of Cd transport was approximately 1.5-fold higher in roots (3.30 cm h(-1)) and 3.7-fold higher in shoots (10.10 cm h(-1)) of NO3 (-)- than NH4 (+)-fed plants. Autoradiographic analysis of (109)Cd reveals that NO3 (-) nutrition enhanced Cd transportation from the main stem to branches and young leaves. Moreover, NO3 (-) treatment increased Cd, Ca and K concentrations but inhibited Fe and P in the xylem sap. In a 21-day hydroponic culture, shoot biomass and Cd concentration were 1.51 and 2.63 times higher in NO3 (-)- than in NH4 (+)-fed plants. We conclude that compared with NH4 (+), NO3 (-) promoted the major steps in the transport route followed by Cd from solution to shoots in S. plumbizincicola, namely its uptake by roots, xylem loading, root-to-shoot translocation in the xylem and uploading to the leaves. S. plumbizincicola prefers NO3 (-) nutrition to NH4 (+) for Cd phytoextraction. PMID:23589260

  1. Facilitation of Drug Transport across the Blood–Brain Barrier with Ultrasound and Microbubbles

    PubMed Central

    Meairs, Stephen

    2015-01-01

    Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood–brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer’s disease is presented. PMID:26404357

  2. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions.

    PubMed

    Moudrakovski, Igor L; Udachin, Konstantin A; Alavi, Saman; Ratcliffe, Christopher I; Ripmeester, John A

    2015-02-21

    The understanding and eventual control of guest molecule transport in gas hydrates is of central importance for the efficient synthesis and processing of these materials for applications in the storage, separation, and sequestration of gases and natural gas production. Previously, some links have been established between dynamics of the host water molecules and guest-host hydrogen bonding interactions, but direct observation of transport in the form of cage-to-cage guest diffusion is still lacking. Recent calculations have suggested that pairs of different guest molecules in neighboring cages can affect guest-host hydrogen bonding and, therefore, defect injection and water lattice motions. We have chosen two sets of hydrate guest pairs, tetrahydrofuran (THF)-CO2 and isobutane-CO2, that are predicted to enhance or to diminish guest-host hydrogen bonding interactions as compared to those in pure CO2 hydrate and we have studied guest dynamics in each using (13)C nuclear magnetic resonance (NMR) methods. In addition, we have obtained the crystal structure of the THF-CO2 sII hydrate using the combined single crystal X-ray diffraction and (13)C NMR powder pattern data and have performed molecular dynamics-simulation of the CO2 dynamics. The NMR powder line shape studies confirm the enhanced and delayed dynamics for the THF and isobutane containing hydrates, respectively, as compared to those in the CO2 hydrate. In addition, from line shape studies and 2D exchange spectroscopy NMR, we observe cage-to-cage exchange of CO2 molecules in the THF-CO2 hydrate, but not in the other hydrates studied. We conclude that the relatively rapid intercage guest dynamics are the result of synergistic guest A-host water-guest B interactions, thus allowing tuning of the guest transport properties in the hydrates by choice of the appropriate guest molecules. Our experimental value for inter-cage hopping is slower by a factor of 10(6) than a published calculated value.

  3. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions

    SciTech Connect

    Moudrakovski, Igor L.; Udachin, Konstantin A.; Ratcliffe, Christopher I.; Alavi, Saman; Ripmeester, John A.

    2015-02-21

    The understanding and eventual control of guest molecule transport in gas hydrates is of central importance for the efficient synthesis and processing of these materials for applications in the storage, separation, and sequestration of gases and natural gas production. Previously, some links have been established between dynamics of the host water molecules and guest-host hydrogen bonding interactions, but direct observation of transport in the form of cage-to-cage guest diffusion is still lacking. Recent calculations have suggested that pairs of different guest molecules in neighboring cages can affect guest-host hydrogen bonding and, therefore, defect injection and water lattice motions. We have chosen two sets of hydrate guest pairs, tetrahydrofuran (THF)-CO{sub 2} and isobutane-CO{sub 2}, that are predicted to enhance or to diminish guest–host hydrogen bonding interactions as compared to those in pure CO{sub 2} hydrate and we have studied guest dynamics in each using {sup 13}C nuclear magnetic resonance (NMR) methods. In addition, we have obtained the crystal structure of the THF-CO{sub 2} sII hydrate using the combined single crystal X-ray diffraction and {sup 13}C NMR powder pattern data and have performed molecular dynamics-simulation of the CO{sub 2} dynamics. The NMR powder line shape studies confirm the enhanced and delayed dynamics for the THF and isobutane containing hydrates, respectively, as compared to those in the CO{sub 2} hydrate. In addition, from line shape studies and 2D exchange spectroscopy NMR, we observe cage-to-cage exchange of CO{sub 2} molecules in the THF-CO{sub 2} hydrate, but not in the other hydrates studied. We conclude that the relatively rapid intercage guest dynamics are the result of synergistic guest A–host water–guest B interactions, thus allowing tuning of the guest transport properties in the hydrates by choice of the appropriate guest molecules. Our experimental value for inter-cage hopping is slower by a factor of 10

  4. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions

    NASA Astrophysics Data System (ADS)

    Moudrakovski, Igor L.; Udachin, Konstantin A.; Alavi, Saman; Ratcliffe, Christopher I.; Ripmeester, John A.

    2015-02-01

    The understanding and eventual control of guest molecule transport in gas hydrates is of central importance for the efficient synthesis and processing of these materials for applications in the storage, separation, and sequestration of gases and natural gas production. Previously, some links have been established between dynamics of the host water molecules and guest-host hydrogen bonding interactions, but direct observation of transport in the form of cage-to-cage guest diffusion is still lacking. Recent calculations have suggested that pairs of different guest molecules in neighboring cages can affect guest-host hydrogen bonding and, therefore, defect injection and water lattice motions. We have chosen two sets of hydrate guest pairs, tetrahydrofuran (THF)-CO2 and isobutane-CO2, that are predicted to enhance or to diminish guest-host hydrogen bonding interactions as compared to those in pure CO2 hydrate and we have studied guest dynamics in each using 13C nuclear magnetic resonance (NMR) methods. In addition, we have obtained the crystal structure of the THF-CO2 sII hydrate using the combined single crystal X-ray diffraction and 13C NMR powder pattern data and have performed molecular dynamics-simulation of the CO2 dynamics. The NMR powder line shape studies confirm the enhanced and delayed dynamics for the THF and isobutane containing hydrates, respectively, as compared to those in the CO2 hydrate. In addition, from line shape studies and 2D exchange spectroscopy NMR, we observe cage-to-cage exchange of CO2 molecules in the THF-CO2 hydrate, but not in the other hydrates studied. We conclude that the relatively rapid intercage guest dynamics are the result of synergistic guest A-host water-guest B interactions, thus allowing tuning of the guest transport properties in the hydrates by choice of the appropriate guest molecules. Our experimental value for inter-cage hopping is slower by a factor of 106 than a published calculated value.

  5. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    SciTech Connect

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.; Thomas, C.W.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as well as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.

  6. DNA-nucleobases: gate dielectric/passivation layer for flexible GFET-based sensor applications

    NASA Astrophysics Data System (ADS)

    Williams, Adrienne D.; Ouchen, Fahima; Kim, Steve S.; Elhamri, Said; Naik, Rajesh R.; Grote, James

    2015-09-01

    The main goal of this research was to maintain the bulk charge carrier mobility of graphene, after deposition of the gate dielectric layer used for making transistor devices. The approach was introducing a thin film of deoxyribonucleic acid (DNA) nucleobase purine guanine, deposited by physical vapor deposition (PVD), onto layers of graphene that were transferred onto various flexible substrates. Several test platforms were fabricated with guanine as a standalone gate dielectric, as the control, and guanine as a passivation layer between the graphene and PMMA. It was found that the bulk charge carrier mobility of graphene was best maintained and most stable using guanine as a passivation layer between the graphene and PMMA. Other transport properties, such as charge carrier concentration, conductivity type and electrical resistivity were investigated as well. This is an important first step to realizing high performance graphene-based transistors that have potential use in bio and environmental sensors, computer-processing and electronics.

  7. Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells.

    PubMed

    Vieceli Dalla Sega, Francesco; Zambonin, Laura; Fiorentini, Diana; Rizzo, Benedetta; Caliceti, Cristiana; Landi, Laura; Hrelia, Silvana; Prata, Cecilia

    2014-04-01

    In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.

  8. Uranium facilitated transport by water-dispersible colloids in field and soil columns.

    PubMed

    Crançon, P; Pili, E; Charlet, L

    2010-04-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the <50 microm mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean porewater velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both (238)U initially present in the soil column and (233)U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  9. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress.

    PubMed

    Xu, Xiaoxue; Chen, Jinyin; Xu, Houjuan; Li, Duochuan

    2014-08-01

    Fungal species present in extreme low pH environments are expected to have adapted for tolerance to high H(+) concentrations. However, their adaptability mechanism is unclear. In this study, we isolated an acid-tolerant strain of Penicillium funiculosum, which can grow actively at pH 1.0 and thrived in pH 0.6. A major facilitator superfamily transporter (PfMFS) was isolated from an acid-sensitive random insertional mutant (M4) of the fungus. It encodes a putative protein of 551 residues and contains 14 transmembrane-spanning segments. A targeted mutant (M7) carrying an inactivated copy of PfMFS showed an obvious reduction of growth compared with the wild type (WT) and complementation of M7 with PfMFS restored the wild-type level of growth at pH 1.0. Further data showed that the wild-type showed higher intracellular pH than M7 in response to pH 1. Subcellular localization showed that PfMFS was a cell membrane protein. Homology modeling showed structural similarity with an MFS transporter EmrD from Escherichiacoli. These results demonstrate that the PfMFS transporter is involved in the acid resistance and intracellular pH homeostasis of P. funiculosum.

  10. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain.

    PubMed

    Shaoping, Hu; Xincai, Chen; Jiyan, Shi; Yingxu, Chen; Qi, Lin

    2008-05-01

    The role of acid rain in affecting Pb and As transport from mine tailings was investigated by pumping simulated acid rain at a infiltration rate of 10.2 cm/h through soil columns. Simulated acid rain with pH of 3.0, 4.5 and 5.6 were used as leaching solutions. Results showed that 86.9-95.9% of Pb and 90-91.8% of As eluted from the columns were adsorbed by particles in the leachates. Scanning electron microscopy (SEM) analysis showed that particles released from the columns were mainly composed of flocculated aggregates and plate or rod shaped discrete grains. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray analysis (EDX) showed that these particles were predominantly silicate minerals. Results from our experiments demonstrated that when rapid infiltration conditions or a rainstorm exist, particle-facilitated transport of contaminants is likely to the dominant metal transport pathway influenced by acid rain.

  11. Colloidal-facilitated transport of inorganic contaminants in ground water: part 1, sampling considerations

    USGS Publications Warehouse

    Puls, Robert W.; Eychaner, James H.; Powell, Robert M.

    1996-01-01

    Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen, and filter pore diameter. During well purging and sample collection, suspended particle size and number as well as dissolved oxygen, temperature, specific conductance, pH, and redox potential were monitored. Laboratory analyses of both unfiltered samples and the filtrates were performed by inductively coupled argon plasma, atomic absorption with graphite furnace, and ion chromatography. Scanning electron microscopy with Energy Dispersive X-ray was also used for analysis of filter particulates. Suspended particle counts consistently required approximately twice as long as the other field-monitored indicators to stabilize. High-flow-rate pumps entrained normally nonmobile particles. Difference in elemental concentrations using different filter-pore sizes were generally not large with only two wells having differences greater than 10 percent in most wells. Similar differences (>10%) were observed for some wells when samples were collected under nitrogen rather than in air. Fe2+/Fe3+ ratios for air-collected samples were smaller than for samples collected under a nitrogen atmosphere, reflecting sampling-induced oxidation.

  12. Facilitated Strontium Transport by Remobilization of Strontium-Containing Secondary Precipitates in Hanford Site Subsurface

    SciTech Connect

    Wang, Guohui; Um, Wooyong

    2013-03-15

    Significantly enhanced immobilization of radionuclides (such as 90Sr and 137Cs) due to adsorption and coprecipitation with neo-formed colloid-sized secondary precipitates has been reported at the U.S. Department of Energy’s Hanford Site. However, the stability of these secondary precipitates containing radionuclides in the subsurface under changeable field conditions is not clear. Here, the authors tested the remobilization possibility of Sr containing secondary precipitates (nitrate-cancrinite) in the subsurface using saturated column experiments under different geochemical and flow conditions. The columns were packed with quartz sand that contained secondary precipitates (nitrate-cancrinite containing Sr), and leached using colloid-free solutions under different flow rates, varying pH, and ionic strength conditions. The results indicate remobilization of the neo-formed secondary precipitates could be possible given a change of background conditions. The remobility of the neo formed precipitates increased with the rise in the leaching solution flow rate and pH (in a range of pH 4 to 11), as well as with decreasing solution ionic strength. The increased mobility of Sr-containing secondary precipitates with changing background conditions can be a potential source for additional radionuclide transport in Hanford Site subsurface environments.

  13. Transport of surfactant-facilitated multiwalled carbon nanotube suspensions in columns packed with sized soil particles.

    PubMed

    Lu, Yinying; Yang, Kun; Lin, Daohui

    2014-09-01

    Transport of carbon nanotubes (CNTs) in soil/sediment matrixes can regulate their potential eco-effects and has been however rarely studied. Herein, column experiments were conducted to investigate mobility of CNT suspensions stabilized by dodecylbenzenesulfonic acid sodium salt (SDBS), octyl-phenol-ethoxylate (TX-100) and cetylpyridinium chloride (CPC) in four soil samples with certain particle sizes. Humic acid was extracted from a soil sample and was coated on quartz sands to explore the effect of soil organic matter (SOM) on the mobility. Results showed that the positively-charged CPC-CNT was entirely retained in the columns while the negatively-charged SDBS-CNT and TX-100-CNT more or less broke through the columns. Pearson correlation analyses revealed that soil texture rather than SOM controlled the mobility. Electrostatic attraction to and/or precipitation on the grain surfaces together with the straining effect could explain the CNT retention. These novel results will help to understand the eco-effects of CNTs.

  14. Colloid facilitated transport of humic substances in soil: laboratory experiment and modeling calculation.

    NASA Astrophysics Data System (ADS)

    Dinu, Marina; Moiseenko, Tatyana

    2016-04-01

    An understanding of ability to predict the fate and transport of colloids in soil systems are of great importance in many environmental and industrial applications. Especially, in the case study sizes and zeta potentials of lignin and humus components (as a parameter reflecting the mobility and tread of organic substances). The objects of investigation were water extracts of gleepodzolic soil of European territory of Russia and Western Siberia, as well as humus substances extracted from this soil. In this study, evaluation of size, molecular weight distribution and zeta potential were used to predict the mobility of the organic component fractions of the soil. Fractionation was performed using multistage filtration plant (100 Da) and measuring physic-chemical parameters measured with the Malvern Zetasizer Nano ZSP. Significant differences in the distribution of organic matter on the molecular weight, charge (sign) of the zeta potential and the size of the sample of European Russia in comparison with samples of Western Siberia have been found. Also, laboratory studies have demonstrated of any differences in physicochemical parameters as infrared spectra, ultraviolet spectra, complexing ability of samples of the same soil type but different areas of Russia. The results can be used in the prediction of the migration ability of fractions humus substances and their stability at change physic-chemical conditions (the coefficient of mobility of the organic components by calculated in MathCad). This work was supported by the grant № 14-17-00460 RSF from 07.11.2014

  15. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport.

    PubMed

    McCauliff, Leslie A; Xu, Zhi; Li, Ran; Kodukula, Sarala; Ko, Dennis C; Scott, Matthew P; Kahn, Peter C; Storch, Judith

    2015-11-01

    The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment.

  16. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport.

    PubMed

    McCauliff, Leslie A; Xu, Zhi; Li, Ran; Kodukula, Sarala; Ko, Dennis C; Scott, Matthew P; Kahn, Peter C; Storch, Judith

    2015-11-01

    The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment. PMID:26296895

  17. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  18. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability?

    PubMed

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K

    2009-10-01

    Local availability of glycine near N-methyl-D-aspartate receptors (NMDARs) is partly regulated by neuronal glycine transporter 1 (GlyT1), which can therefore modulate NMDAR function because binding to the glycine site of the NMDAR is necessary for channel activation. Disrupting GlyT1 in forebrain neurons has been shown to enhance Pavlovian conditioning and object recognition memory. Here, the authors report that the same genetic manipulation facilitated reversal learning in the water maze test of reference memory, but did not lead to any clear improvement in a working memory version of the water maze test. Facilitation in a nonspatial discrimination reversal task conducted on a T maze was also observed, supporting the conclusion that forebrain neuronal GlyT1 may modulate the flexibility in (new) learning and relevant mnemonic functions. One possibility is that these phenotypes may reflect reduced susceptibility to certain forms of proactive interference. This may be relevant for the suggested clinical application of GlyT1 inhibitors in the treatment of cognitive deficits, including schizophrenia, which is characterized by cognitive inflexibility in addition to the positive symptoms of the disease.

  19. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.

    PubMed

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2016-09-01

    Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K(+) channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K(+) ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K(+) and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K(+) accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells. PMID:27406168

  20. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir12[OPEN

    PubMed Central

    Papanatsiou, Maria; Amtmann, Anna

    2016-01-01

    Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K+ channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K+ ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K+ and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K+ accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells. PMID:27406168

  1. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.

    PubMed

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2016-09-01

    Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K(+) channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K(+) ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K(+) and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K(+) accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells.

  2. Aquaporin 1 Is Involved in Acid Secretion by Ionocytes of Zebrafish Embryos through Facilitating CO2 Transport

    PubMed Central

    Horng, Jiun-Lin; Chao, Pei-Lin; Chen, Po-Yen; Shih, Tin-Han; Lin, Li-Yih

    2015-01-01

    Mammalian aquaporin 1 (AQP1) is well known to function as a membrane channel for H2O and CO2 transport. Zebrafish AQP1a.1 (the homologue of mammalian AQP1) was recently identified in ionocytes of embryos; however its role in ionocytes is still unclear. In this study, we hypothesized that zebrafish AQP1a.1 is involved in the acid secretion by ionocytes through facilitating H2O and CO2 diffusion. A real-time PCR showed that mRNA levels of AQP1a.1 in embryos were induced by exposure to 1% CO2 hypercapnia for 3 days. In situ hybridization and immunohistochemistry showed that the AQP1a.1 transcript was highly expressed by acid-secreting ionocytes, i.e., H+-ATPase-rich (HR) cells. A scanning ion-selective electrode technique (SIET) was applied to analyze CO2-induced H+ secretion by individual ionocytes in embryos. H+ secretion by HR cells remarkably increased after a transient loading of CO2 (1% for 10 min). AQP1a.1 knockdown with morpholino oligonucleotides decreased the H+ secretion of HR cells by about half and limited the CO2 stimulated increase. In addition, exposure to an AQP inhibitor (PCMB) for 10 min also suppressed CO2-induced H+ secretion. Results from this study support our hypothesis and provide in vivo evidence of the physiological role of AQP1 in CO2 transport. PMID:26287615

  3. Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William

    2015-10-29

    In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curves highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.

  4. Expression and regulation of facilitative glucose transporters in equine insulin-sensitive tissue: from physiology to pathology.

    PubMed

    Lacombe, Véronique A

    2014-01-01

    Glucose uptake is the rate-limiting step in glucose utilization in mammalians and is tightly regulated by a family of specialized proteins, called the facilitated glucose transporters (GLUTs/SLC2). GLUT4, the major isoform in insulin-responsive tissue, translocates from an intracellular pool to the cell surface and as such determines insulin-stimulated glucose uptake. However, despite intensive research over 50 years, the insulin-dependent and -independent pathways that mediate GLUT4 translocation are not fully elucidated in any species. Insulin resistance (IR) is one of the hallmarks of equine metabolic syndrome and is the most common metabolic predisposition for laminitis in horses. IR is characterized by the impaired ability of insulin to stimulate glucose disposal into insulin-sensitive tissues. Similar to other species, the functional capability of the insulin-responsive GLUTs is impaired in muscle and adipose tissue during IR in horses. However, the molecular mechanisms of altered glucose transport remain elusive in all species, and there is still much to learn about the physiological and pathophysiological functions of the GLUT family members, especially in regard to class III. Since GLUTs are key regulators of whole-body glucose homeostasis, they have received considerable attention as potential therapeutic targets to treat metabolic disorders in human and equine patients. PMID:24977043

  5. Carbonic anhydrase II is found in the placenta of a viviparous, matrotrophic lizard and likely facilitates embryo-maternal CO2 transport.

    PubMed

    Van Dyke, James U; Lindsay, Laura A; Murphy, Christopher R; Thompson, Michael B

    2015-11-01

    The evolution of viviparity requires the development of mechanisms that facilitate transport of respiratory gases between mother and developing embryo. Of particular importance is maternal excretion of embryonic carbon dioxide (CO2 ), which increases as the embryo grows in size during development. The carbonic anhydrases are a family of enzymes that convert CO2 to bicarbonate for transport throughout the cardiovascular system and which may also be important for CO2 transport from embryo to mother. We used immunohistochemistry to localize carbonic anhydrase II in the placental tissues of a viviparous and highly placentotrophic lizard, Pseudemoia entrecasteauxii. Carbonic anhydrase II is localized in the uterine component of the paraplacentome, presumably to facilitate transport of embryonic CO2 to the mother. Carbonic anhydrase II is also localized in both the uterine and embryonic components of the placentome, a region heavily involved in placental nutrient transport rather than respiratory gas exchange. In contrast, carbonic anhydrase II is not present in the uterine or embryonic components of the omphaloplacenta, another region responsible for nutrient transport. While carbonic anhydrase II in the paraplacentomal uterus is likely to be responsible for embryo-maternal CO2 transport, the distribution of carbonic anhydrase II throughout the placentome indicates a different function. Instead of transporting embryonic CO2 , placentomal carbonic anhydrase II appears to be responsible for transporting CO2 produced by energetically expensive nutrient transport mechanisms in both the uterus and the embryo, which implies that the mechanisms of nutrient transport in the omphaloplacenta may not be as energetically expensive.

  6. Isoform-selective inhibition of facilitative glucose transporters: elucidation of the molecular mechanism of HIV protease inhibitor binding.

    PubMed

    Hresko, Richard C; Kraft, Thomas E; Tzekov, Anatoly; Wildman, Scott A; Hruz, Paul W

    2014-06-01

    Pharmacologic HIV protease inhibitors (PIs) and structurally related oligopeptides are known to reversibly bind and inactivate the insulin-responsive facilitative glucose transporter 4 (GLUT4). Several PIs exhibit isoform selectivity with little effect on GLUT1. The ability to target individual GLUT isoforms in an acute and reversible manner provides novel means both to investigate the contribution of individual GLUTs to health and disease and to develop targeted treatment of glucose-dependent diseases. To determine the molecular basis of transport inhibition, a series of chimeric proteins containing transmembrane and cytosolic domains from GLUT1 and GLUT4 and/or point mutations were generated and expressed in HEK293 cells. Structural integrity was confirmed via measurement of N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) labeling of the chimeric proteins in low density microsome fractions isolated from stably transfected 293 cells. Functional integrity was assessed via measurement of zero-trans 2-deoxyglucose (2-DOG) uptake. ATB-BMPA labeling studies and 2-DOG uptake revealed that transmembrane helices 1 and 5 contain amino acid residues that influence inhibitor access to the transporter binding domain. Substitution of Thr-30 and His-160 in GLUT1 to the corresponding positions in GLUT4 is sufficient to completely transform GLUT1 into GLUT4 with respect to indinavir inhibition of 2-DOG uptake and ATB-BMPA binding. These data provide a structural basis for the selectivity of PIs toward GLUT4 over GLUT1 that can be used in ongoing novel drug design. PMID:24706759

  7. A Re-Examination of Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; de Vries, M.; Becker, L.; Ehrenfreund, E.

    The biomolecular building blocks of life, as we know it, are amino acids, purines and pyrimidines. The latter two form the bases of DNA and RNA, molecules that are used in the storage, transcription and translation of genetic information in all terrestrial organisms. A dedicated search for these compounds in meteorites can shed light on the origins of life in two ways: (i) Results can help assess the plausibility of extraterrestrial formation of prebiotic molecules followed by their meteoritic delivery to the early Earth. (ii) Such studies can also provide insights into possible prebiotic synthetic routes. We will search for these compounds in selected carbonaceous chondrites using formic acid extraction and reverse phase high performance liquid chromatography (HPLC) to isolate specific nucleobases from the bulk meteorite material as previously reported [1,2,3]. We will also use a new technique, resonant two-photon ionization mass spectrometry (R2PI) that can, not only identify organic compounds by their mass, but at the same time by their vibronic spectroscopy [4]. R2PI dramatically enhances the specificity for certain compounds (e.g. amino acids, nucleobases) and allows for distinction of structural isomers, tautomers and enantiomers as well as providing additional information due to isotope shifts. The optical spectroscopy can thus help us to further discriminate between terrestrial and extraterrestrial nucleobases. References: [1] Van Der Velden, W. and Schwarts, A. W. (1977) Geochim. Cosmochim. Acta, 41, 961-968. [2] Stoks, P. G. and Schwartz, A. W. (1979a) Nature, 282, 709-10. [3] Glavin, D. P. and Bada, J. L. (2004) In Lunar and Planetary Science XXXV, Abstract # 1022, Houston. [4] Nir, E., Grace, L. I., Brauer, B. and de Vries, M. S. (1999) Journal of the American Chemical Society, 121, 4896-4897.

  8. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29.

    PubMed

    Young, James D; Yao, Sylvia Y M; Baldwin, Jocelyn M; Cass, Carol E; Baldwin, Stephen A

    2013-01-01

    Nucleoside transport in humans is mediated by members of two unrelated protein families, the SLC28 family of cation-linked concentrative nucleoside transporters (CNTs) and the SLC29 family of energy-independent, equilibrative nucleoside transporters (ENTs). These families contain three and four members, respectively, which differ both in the stoichiometry of cation coupling and in permeant selectivity. Together, they play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis. Moreover, they facilitate cellular uptake of several nucleoside and nucleobase drugs used in cancer chemotherapy and treatment of viral infections. Thus, the transporter content of target cells can represent a key determinant of the response to treatment. In addition, by regulating the concentration of adenosine available to cell surface receptors, nucleoside transporters modulate many physiological processes ranging from neurotransmission to cardiovascular activity. This review describes the molecular and functional properties of the two transporter families, with a particular focus on their physiological roles in humans and relevance to disease treatment.

  9. A Versatile Approach Towards Nucleobase-Modified Aptamers.

    PubMed

    Tolle, Fabian; Brändle, Gerhard M; Matzner, Daniel; Mayer, Günter

    2015-09-01

    A novel and versatile method has been developed for modular expansion of the chemical space of nucleic acid libraries, thus enabling the generation of nucleobase-modified aptamers with unprecedented recognition properties. Reintroduction of the modification after enzymatic replication gives broad access to many chemical modifications. This wide applicability, which is not limited to a single modification, will rapidly advance the application of in vitro selection approaches beyond what is currently feasible and enable the generation of aptamers to many targets that have so far not been addressable. PMID:26224087

  10. Adeninealkylresorcinol, the first alkylresorcinol tethered with nucleobase from Lasiodiplodia sp.

    PubMed

    Gao, Yu-Meng; Sun, Tian-Yu; Ma, Min; Chen, Guo-Dong; Zhou, Zheng-Qun; Wang, Chuan-Xi; Hu, Dan; Chen, Li-Guo; Yao, Xin-Sheng; Gao, Hao

    2016-07-01

    Adeninealkylresorcinol (1), an unusual alkylresorcinol with adenine-alkylresorcinol conjoined skeleton, was isolated from an endophytic fungus Lasiodiplodia sp. obtained from a traditional Chinese medicine Houttuynia cordata Thunb., together with three new biogenetically related compounds (2-4). Their structures were elucidated by comprehensive spectroscopic analysis, and the absolute configuration of 4 was determined by the modified Mosher's method and quantum chemical calculation. Among them, adeninealkylresorcinol (1) is the first alkylresorcinol tethered with nucleobase. In addition, the antioxidant, cytotoxic, and antimicrobial activities of 1-3 were evaluated. PMID:27343368

  11. Two-Photon-Induced Fluorescence of Isomorphic Nucleobase Analogs

    PubMed Central

    Lane, Richard S. K.; Jones, Rosemary; Sinkeldam, Renatus W.

    2014-01-01

    Five isomorphic fluorescent uridine mimics have been subjected to two-photon (2P) excitation analysis to investigate their potential applicability as non-perturbing probes for the single-molecule detection of nucleic acids. We find that small structural differences can cause major changes in the two-photon excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both furan-modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure-photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications. PMID:24604669

  12. Progress report on colloid-facilitated transport at Yucca Mountain: Yucca Mountain site characterization program milestone 3383

    SciTech Connect

    Triay, I.R.; Degueldre, C.; Wistrom, A.O.; Cotter, C.R.; Lemons, W.W.

    1996-06-01

    To assess colloid-facilitated radionuclide transport in groundwaters at the potential nuclear waste repository at Yucca Mountain, it is very important to understand the generation and stability of colloids, including naturally occurring colloids. To this end, we measured the colloid concentration in waters from Well J-13, which is on the order of 106 particles per milliliter (for particle sizes larger than 100 manometers). At this low particle loading, the sorption of radionuclides to colloids would have to be extremely high before the colloids could carry a significant amount of radionuclides from the repository to the accessible environment. We also performed aggregation experiments to evaluate the stability of silica (particle diameter: 85 nm) and clay colloids (particle diameter: 140 nm) as a function of ionic strength in a carbonate-rich synthetic groundwater. When the concentration of electrolyte is increased to induce aggregation, the aggregation is irreversible and the rate of aggregation increases with increasing electrolyte strength. We used autocorrelation photon spectroscopy to estimate the rate of particle aggregation for both types of colloids. By relating the measured aggregation rate to the Smoluchowski rate expression, we determined the stability ratio, W. Aggregation of silica particles and kaolinite clay particles decreased dramatically for an electrolyte concentration, C{sub NaCl}, below 300 mM and 200 mM, respectively.

  13. Facilitation by intracellular carbonic anhydrase of Na+–HCO3− co-transport but not Na+/H+ exchange activity in the mammalian ventricular myocyte

    PubMed Central

    Villafuerte, Francisco C; Swietach, Pawel; Youm, Jae-Boum; Ford, Kerrie; Cardenas, Rosa; Supuran, Claudiu T; Cobden, Philip M; Rohling, Mala; Vaughan-Jones, Richard D

    2014-01-01

    Carbonic anhydrase enzymes (CAs) catalyse the reversible hydration of CO2 to H+ and HCO3− ions. This catalysis is proposed to be harnessed by acid/base transporters, to facilitate their transmembrane flux activity, either through direct protein–protein binding (a ‘transport metabolon’) or local functional interaction. Flux facilitation has previously been investigated by heterologous co-expression of relevant proteins in host cell lines/oocytes. Here, we examine the influence of intrinsic CA activity on membrane HCO3− or H+ transport via the native acid-extruding proteins, Na+–HCO3− cotransport (NBC) and Na+/H+ exchange (NHE), expressed in enzymically isolated mammalian ventricular myocytes. Effects of intracellular and extracellular (exofacial) CA (CAi and CAe) are distinguished using membrane-permeant and –impermeant pharmacological CA inhibitors, while measuring transporter activity in the intact cell using pH and Na+ fluorophores. We find that NBC, but not NHE flux is enhanced by catalytic CA activity, with facilitation being confined to CAi activity alone. Results are quantitatively consistent with a model where CAi catalyses local H+ ion delivery to the NBC protein, assisting the subsequent (uncatalysed) protonation and removal of imported HCO3− ions. In well-superfused myocytes, exofacial CA activity is superfluous, most likely because extracellular CO2/HCO3− buffer is clamped at equilibrium. The CAi insensitivity of NHE flux suggests that, in the native cell, intrinsic mobile buffer-shuttles supply sufficient intracellular H+ ions to this transporter, while intrinsic buffer access to NBC proteins is restricted. Our results demonstrate a selective CA facilitation of acid/base transporters in the ventricular myocyte, implying a specific role for the intracellular enzyme in HCO3− transport, and hence pHi regulation in the heart. PMID:24297849

  14. Facilitation by intracellular carbonic anhydrase of Na+ -HCO3- co-transport but not Na+ / H+ exchange activity in the mammalian ventricular myocyte.

    PubMed

    Villafuerte, Francisco C; Swietach, Pawel; Youm, Jae-Boum; Ford, Kerrie; Cardenas, Rosa; Supuran, Claudiu T; Cobden, Philip M; Rohling, Mala; Vaughan-Jones, Richard D

    2014-03-01

    Carbonic anhydrase enzymes (CAs) catalyse the reversible hydration of CO2 to H+ and HCO3- ions. This catalysis is proposed to be harnessed by acid/base transporters, to facilitate their transmembrane flux activity, either through direct protein-protein binding (a 'transport metabolon') or local functional interaction. Flux facilitation has previously been investigated by heterologous co-expression of relevant proteins in host cell lines/oocytes. Here, we examine the influence of intrinsic CA activity on membrane HCO3- or H+ transport via the native acid-extruding proteins, Na+ -HCO3- cotransport (NBC) and Na+ / H+ exchange (NHE), expressed in enzymically isolated mammalian ventricular myocytes. Effects of intracellular and extracellular (exofacial) CA (CAi and CAe) are distinguished using membrane-permeant and -impermeant pharmacological CA inhibitors, while measuring transporter activity in the intact cell using pH and Na+ fluorophores. We find that NBC, but not NHE flux is enhanced by catalytic CA activity, with facilitation being confined to CAi activity alone. Results are quantitatively consistent with a model where CAi catalyses local H+ ion delivery to the NBC protein, assisting the subsequent (uncatalysed) protonation and removal of imported HCO3- ions. In well-superfused myocytes, exofacial CA activity is superfluous, most likely because extracellular CO2/HCO3- buffer is clamped at equilibrium. The CAi insensitivity of NHE flux suggests that, in the native cell, intrinsic mobile buffer-shuttles supply sufficient intracellular H+ ions to this transporter, while intrinsic buffer access to NBC proteins is restricted. Our results demonstrate a selective CA facilitation of acid/base transporters in the ventricular myocyte, implying a specific role for the intracellular enzyme in HCO3- transport, and hence pHi regulation in the heart.

  15. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer.

  16. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer. PMID:26850226

  17. Metal ion mediated nucleobase recognition by the ZTP riboswitch

    PubMed Central

    Trausch, Jeremiah J.; Marcano-Velázquez, Joan G.; Matyjasik, Michal M.; Batey, Robert T.

    2015-01-01

    SUMMARY The ZTP riboswitch is a widespread family of regulatory RNAs that upregulate de novo purine synthesis in response to increased intracellular levels of ZTP or ZMP (AICAR). As an important intermediate in purine biosynthesis, ZMP also serves as a proxy for the concentration of 10-formyltetrahydrofolate, a key component of one carbon metabolism. Here we report the structure of the ZTP riboswitch bound to ZMP at a resolution of 1.80 Å. The RNA contains two subdomains brought together through a long-range pseudoknot further stabilized through helix-helix packing. ZMP is bound at the subdomain interface of the RNA through a set of interactions with the ligand's base, ribose sugar and phosphate moieties. Unique to nucleobase recognition by RNAs, the Z base is inner sphere coordinated to a magnesium cation bound by two backbone phosphates. This interaction, along with steric hindrance by the backbone, imparts specificity over related analogs such as ATP/AMP. PMID:26144884

  18. Does stacking restrain the photodynamics of individual nucleobases?

    PubMed

    Nachtigallová, Dana; Zelený, Tomás; Ruckenbauer, Matthias; Müller, Thomas; Barbatti, Mario; Hobza, Pavel; Lischka, Hans

    2010-06-23

    Nonadiabatic photodynamical simulations of 4-aminopyrimidine (4-APy) used as a model for adenine were performed by embedding it between two stacking methyl-guanine (mGua) molecules to determine the effect of spatial restrictions on the ultrafast photodeactivation mechanism of this nucleobase. A hybrid multiconfigurational ab initio/molecular mechanical approach in combination with surface hopping was used. During the dynamics the formation of a significant fraction of intrastrand hydrogen bonding from 4-APy to mGua above and below is observed. These findings show that this type of hydrogen bond may play an important role for the photodynamics within one DNA strand and that it should be of interest even in irregular segments of double stranded nucleic acids structures. The relaxation mechanism of internal conversion to the ground state is dominated by ring puckering, and an overall elongation of the lifetime of the embedded system by approximately 20% as compared to the isolated 4-APy is computed. PMID:20513159

  19. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-12-12

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.

  20. First Principles Study of Nuclear Quadrupole Interactions in Single and Double Chain DNA and Solid Nucleobases

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Saha, H. P.; Chow, Lee; Huang, M. B.

    2009-03-01

    Nuclear Quadrupole Interactions (NQI) of ^17O, ^14N and ^2H nuclei have been studied for free nucleobases and nucleobases in single strand and double strand DNA and in solid state. Our first-principles investigations were carried out using the Gaussian 2003 set of programs to implement the Hartree-Fock procedure combined with many-body effects included using many-body perturbation theory. As expected for NQI in general, many-body effects are found to be small. Results will be presented for the quadrupole coupling constants (e^2qQ) and asymmetry parameters (η) for the nucleobases in the various environments. Trends in e^2qQ and η in the different environments will be discussed. In the case of the solid nucleobases, comparisons will be made with available experimental data [1] for ^17O nuclei.[3pt] [1] Gang Wu et al., J. Am. Chem. Soc. 124, 1768 (2002)

  1. Binding Strength of Nucleobases and Nucleosides on Silver Nanoparticles Probed by a Colorimetric Method.

    PubMed

    Yu, Lu; Li, Na

    2016-06-01

    Because of their unique and tunable properties, oligonucleotide-functionalized noble metal nanoparticles have provided a versatile platform for various engineering and biomedical applications. The vast majority of such applications were demonstrated with gold nanoparticles (AuNPs) while only a few were demonstrated with sliver nanoparticles (AgNPs). This is largely due to the lack of robust protocols to functionalize AgNPs with thiol-modified oligonucleotides. Previous studies have revealed strong interactions between nucleobases and AgNPs. This could enable an alternative way to functionalize AgNPs with non-thiolated oligonucleotides. However, there is no quantitative study on the interaction strengths between AgNPs and oligonucleotides. Several methods have been used for quantitative evaluation of the interaction strengths between AuNPs and oligonucleotides. These methods often require specialized equipment that might not be widely accessible or rely on labor-intensive procedures to obtain the adsorption isotherms. Herein, we developed a colorimetric method, as a simple and high-throughput alternative of existing methods, to quantify the binding strength between AgNPs and nucleobases/nucleosides. In this colorimetric method, concentration-dependent destabilizing effects of nucleobase/nucleoside adsorption on AgNPs are utilized to indirectly quantify the amount of nucleobases/nucleosides adsorbed on AgNPs, thus deriving the binding strength between AgNPs and nucleobases/nucleosides. First, the concentration-dependent AgNP aggregation kinetics in the presence of nucleobases/nucleosides were systematically investigated. Then, this colorimetric method was used to determine the binding strengths between AgNPs and various DNA/RNA nucleobases/nucleosides. It was found that the ranking of interaction strengths between AgNPs and DNA/RNA nucleosides (dC < dT < dA, rC < rU < rA) is generally agreed with that between AgNPs and corresponding nucleobases (C < T < U < A). This

  2. Quantum mechanical treatment of binding energy between DNA nucleobases and carbon nanotube: A DFT analysis

    NASA Astrophysics Data System (ADS)

    Chehel Amirani, Morteza; Tang, Tian; Cuervo, Javier

    2013-12-01

    The interactions between DNA and carbon nanotubes (CNTs) have been widely studied in recent years. The binding process of DNA with CNT as well as the electronic properties of DNA/CNT hybrids constitutes an interesting yet complicated problem. The binding energy (BE) of the hybridization is one of the most extensively studied parameters for the problem. In this work, density functional theory (DFT) was used to perform geometry optimization of neutral nucleobases including adenine, cytosine, guanine and thymine absorbed on a zigzag (7,0) single-walled CNT and to evaluate the basis set superposition error corrected BE of the optimized configuration. All DFT calculations were performed using the M05-2X functional. The 6-31G(d) basis set was used for the optimization step and single point energy calculations were done using the 6-31G(d,p) basis set. For each nucleobase, we examined the influence of the initial configuration (IC) on the BE value. In particular, we considered 24 different ICs for each nucleobase, and each IC was subjected to an independent optimization and BE calculation. Our results showed that different ICs result in very different BE values and can even change the order of the BE corresponding to different nucleobases. The difference in the BE for a particular nucleobase caused by changes in its IC can be comparable to the difference in the BE between different nucleobases at the same initial position relative to the CNT. This provides an explanation for the discrepancies that exist in the literature on the nucleobase/CNT BE, and suggests that the potential energy surface between the nucleobases and the CNT can have many local minima and care should be exercised in the calculation and interpretation of the BE.

  3. Which Electronic and Structural Factors Control the Photostability of DNA and RNA Purine Nucleobases?

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Reichardt, Christian; Crespo-Hernández, Carlos E.; Martínez-Fernández, Lara; Corral, Inés; Rauer, Clemens; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2015-06-01

    Following ultraviolet excitation, the canonical purine nucleobases, guanine and adenine, are able to efficiently dissipate the absorbed energy within hundreds of femtoseconds. This property affords these nucleobases with great photostability. Conversely, non-canonical purine nucleobases exhibit high fluorescence quantum yields or efficiently populate long-lived triplet excited states from which chemistry can occur. Using femtosecond broadband transient absorption spectroscopy in combination with ab initio static and surface hopping dynamics simulations we have determined the electronic and structural factors that regulate the excited state dynamics of the purine nucleobase derivatives. Importantly, we have uncovered that the photostability of the guanine and adenine nucleobases is not due to the structure of the purine core itself and that the substituent at the C6 position of the purine nucleobase plays a more important role than that at the C2 position in the ultrafast relaxation of deleterious electronic energy. [The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  4. Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking.

    PubMed

    Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence; Li, Hui

    2013-07-14

    The adsorption of hydrogen-bonded and stacked nucleobase pairs on the hexagonal boron nitride (h-BN) surface was studied by density functional theory and molecular dynamics methods. Eight types of nucleobase pairs (i.e., GG, AA, TT, CC, UU, AT, GC, and AU) were chosen as the adsorbates. The adsorption configurations, interaction energies, and electronic properties of the nucleobase pair on the h-BN surface were obtained and compared. The density of states analysis result shows that both the hydrogen-bonded and stacked nucleobase pairs were physisorbed on h-BN with minimal charge transfer. The hydrogen-bonded base pairs lying on the h-BN surface are significantly more stable than the stacked forms in both the gas and water phase. The molecular dynamics simulation result indicates that h-BN possessed high sensitivity for the nucleobases and the h-BN surface adsorption could revert the base pair interaction from stacking back to hydrogen bonding in aqueous environment. The h-BN surface could immobilize the nucleobases on its surface, which suggests the use of h-BN has good potential in DNA/RNA detection biosensors and self-assembly nanodevices. PMID:23689542

  5. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study.

    PubMed

    Lin, Qing; Zou, Xiaolong; Zhou, Gang; Liu, Rui; Wu, Jian; Li, Jia; Duan, Wenhui

    2011-07-14

    Our ab initio calculations indicate that the interaction of deoxyribonucleic/ribonucleic acid (DNA/RNA) nucleobases [guanine (G), adenine (A), thymine (T), cytosine (C), and uracil (U)] with the hexagonal boron nitride (h-BN) sheet, a polar but chemically inert surface, is governed by mutual polarization. Unlike the case of graphene, all nucleobases exhibit the same stacking arrangement on the h-BN sheet due to polarization effects: the anions (N and O atoms) of nucleobases prefer to stay on top of cations (B) of the substrate as far as possible, regardless of the biological properties of nucleobases. The adsorption energies, ranging from 0.5 eV to 0.69 eV, increase in the order of U, C, T, A and G, which can be attributed to different side groups or atoms of nucleobases. The fundamental nature of DNA/RNA nucleobases and h-BN sheet remains unchanged upon adsorption, suggesting that the h-BN sheet is a promising template for DNA/RNA-related research, such as self-assembly. PMID:21637870

  6. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail. PMID:27452282

  7. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.

  8. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer.

    PubMed

    Matherly, Larry H; Wilson, Mike R; Hou, Zhanjun

    2014-04-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases.

  9. The Major Facilitative Folate Transporters Solute Carrier 19A1 and Solute Carrier 46A1: Biology and Role in Antifolate Chemotherapy of Cancer

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun

    2014-01-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases. PMID:24396145

  10. Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides.

    PubMed

    Hayashi, Keisuke; Schoonbeek, Henk-Jan; De Waard, Maarten A

    2002-10-01

    Bcmfs1, a novel major facilitator superfamily gene from Botrytis cinerea, was cloned, and replacement and overexpression mutants were constructed to study its function. Replacement mutants showed increased sensitivity to the natural toxic compounds camptothecin and cercosporin, produced by the plant Camptotheca acuminata and the plant pathogenic fungus Cercospora kikuchii, respectively. Overexpression mutants displayed decreased sensitivity to these compounds and to structurally unrelated fungicides, such as sterol demethylation inhibitors (DMIs). A double-replacement mutant of Bcmfs1 and the ATP-binding cassette (ABC) transporter gene BcatrD was more sensitive to DMI fungicides than a single-replacement mutant of BcatrD, known to encode an important ABC transporter of DMIs. The sensitivity of the wild-type strain and mutants to DMI fungicides correlated with Bcmfs1 expression levels and with the initial accumulation of oxpoconazole by germlings of these isolates. The results indicate that Bcmfs1 is a major facilitator superfamily multidrug transporter involved in protection against natural toxins and fungicides and has a substrate specificity that overlaps with the ABC transporter BcatrD. Bcmfs1 may be involved in protection of B. cinerea against plant defense compounds during the pathogenic phase of growth on host plants and against fungitoxic antimicrobial metabolites during its saprophytic phase of growth.

  11. Bcmfs1, a Novel Major Facilitator Superfamily Transporter from Botrytis cinerea, Provides Tolerance towards the Natural Toxic Compounds Camptothecin and Cercosporin and towards Fungicides

    PubMed Central

    Hayashi, Keisuke; Schoonbeek, Henk-jan; De Waard, Maarten A.

    2002-01-01

    Bcmfs1, a novel major facilitator superfamily gene from Botrytis cinerea, was cloned, and replacement and overexpression mutants were constructed to study its function. Replacement mutants showed increased sensitivity to the natural toxic compounds camptothecin and cercosporin, produced by the plant Camptotheca acuminata and the plant pathogenic fungus Cercospora kikuchii, respectively. Overexpression mutants displayed decreased sensitivity to these compounds and to structurally unrelated fungicides, such as sterol demethylation inhibitors (DMIs). A double-replacement mutant of Bcmfs1 and the ATP-binding cassette (ABC) transporter gene BcatrD was more sensitive to DMI fungicides than a single-replacement mutant of BcatrD, known to encode an important ABC transporter of DMIs. The sensitivity of the wild-type strain and mutants to DMI fungicides correlated with Bcmfs1 expression levels and with the initial accumulation of oxpoconazole by germlings of these isolates. The results indicate that Bcmfs1 is a major facilitator superfamily multidrug transporter involved in protection against natural toxins and fungicides and has a substrate specificity that overlaps with the ABC transporter BcatrD. Bcmfs1 may be involved in protection of B. cinerea against plant defense compounds during the pathogenic phase of growth on host plants and against fungitoxic antimicrobial metabolites during its saprophytic phase of growth. PMID:12324349

  12. Seeding the Pregenetic Earth: Meteoritic Abundances of Nucleobases and Potential Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2015-07-01

    Carbonaceous chondrites are a class of meteorite known for having high contents of water and organics. In this study, the abundances of the nucleobases, i.e., the building blocks of RNA and DNA, found in carbonaceous chondrites are collated from a variety of published data and compared across various meteorite classes. An extensive review of abiotic chemical reactions producing nucleobases is then performed. These reactions are then reduced to a list of 15 individual reaction pathways that could potentially occur within meteorite parent bodies. The nucleobases guanine, adenine, and uracil are found in carbonaceous chondrites in amounts of 1–500 ppb. It is currently unknown which reaction is responsible for their synthesis within the meteorite parent bodies. One class of carbonaceous meteorite dominates the abundances of both amino acids and nucleobases—the so-called CM2 (e.g., Murchison meteorite). CR2 meteorites (e.g., Graves Nunataks) also dominate the abundances of amino acids, but are the least abundant in nucleobases. The abundances of total nucleobases in these two classes are 330 ± 250 and 16 ± 13 ppb, respectively. Guanine most often has the greatest abundances in carbonaceous chondrites with respect to the other nucleobases, but is 1–2 orders of magnitude less abundant in CM2 meteorites than glycine (the most abundant amino acid). Our survey of the reaction mechanisms for nucleobase formation suggests that Fischer–Tropsch synthesis (i.e., CO, H2, and NH3 gases reacting in the presence of a catalyst such as alumina or silica) is the most likely candidate for conditions that characterize the early states of planetesimals.

  13. Unified reaction pathways for the prebiotic formation of RNA and DNA nucleobases.

    PubMed

    Jeilani, Yassin Aweis; Williams, Phoenix N; Walton, Sofia; Nguyen, Minh Tho

    2016-07-27

    The reaction pathways for the prebiotic formation of nucleobases are complex and lead to the formation of a mixture of products. In the past 50 years, there has been a concerted effort for identifying a unified mechanism for the abiotic origin of the biomolecules but with little success. In the present theoretical study, we identified two prominent precursors for the building up of RNA and DNA nucleobases under prebiotic conditions: (a) 1,2-diaminomaleonitrile (DAMN), which is a tetramer of hydrogen cyanide (HCN), and (b) formamide, a hydrolysis product of HCN; it is important to emphasize that HCN is the source of both precursors. We find that free radical pathways are potentially appropriate to account for the origin of nucleobases from HCN. The current study unites the formamide pathways with the DAMN pathways. The mechanisms for the formation of the RNA and DNA nucleobases (uracil, adenine, purine, cytosine) were studied by quantum chemical computations using density functional theory at the B3LYP/6-311G(d,p) level. All the routes involved proceed with relatively low energy barriers (within the error margin of DFT methods). We showed that the radical mechanisms for the formation of nucleobases could be unified through common precursors. The results demonstrated that 4-aminoimidazole-5-carbonitrile (AICN), which is a known precursor for nucleobases, is a product of DAMN. The overall mechanisms are internally consistent with the abiotic formation of the nucleobases, namely (a) under a meteoritic impact scenario on the early Earth's surface that generated high internal energy, and/or (b) in the (gas phase) interstellar regions without the presence of catalysts.

  14. Seeding the Pregenetic Earth: Meteoritic Abundances of Nucleobases and Potential Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2015-07-01

    Carbonaceous chondrites are a class of meteorite known for having high contents of water and organics. In this study, the abundances of the nucleobases, i.e., the building blocks of RNA and DNA, found in carbonaceous chondrites are collated from a variety of published data and compared across various meteorite classes. An extensive review of abiotic chemical reactions producing nucleobases is then performed. These reactions are then reduced to a list of 15 individual reaction pathways that could potentially occur within meteorite parent bodies. The nucleobases guanine, adenine, and uracil are found in carbonaceous chondrites in amounts of 1-500 ppb. It is currently unknown which reaction is responsible for their synthesis within the meteorite parent bodies. One class of carbonaceous meteorite dominates the abundances of both amino acids and nucleobases—the so-called CM2 (e.g., Murchison meteorite). CR2 meteorites (e.g., Graves Nunataks) also dominate the abundances of amino acids, but are the least abundant in nucleobases. The abundances of total nucleobases in these two classes are 330 ± 250 and 16 ± 13 ppb, respectively. Guanine most often has the greatest abundances in carbonaceous chondrites with respect to the other nucleobases, but is 1-2 orders of magnitude less abundant in CM2 meteorites than glycine (the most abundant amino acid). Our survey of the reaction mechanisms for nucleobase formation suggests that Fischer-Tropsch synthesis (i.e., CO, H2, and NH3 gases reacting in the presence of a catalyst such as alumina or silica) is the most likely candidate for conditions that characterize the early states of planetesimals.

  15. A metal-ion NMR investigation of the antibiotic facilitated transport of monovalent cations through the walls of phospholipid vesicles. II. Sulfur-33 NMR

    SciTech Connect

    Buster, D.C.

    1988-01-01

    A technique has been developed to investigate the antibiotic facilitated transmembrane transport of monovalent cations using {sup 23}Na and {sup 7}Li Nuclear Magnetic Resonance spectroscopy. The initial portion of this thesis outlines the production and characterization of a model lipid system amenable to the NMR detection of cation transport. Large unilamellar vesicles (LUV) have been prepared from a 4:1 mixture of phosphatidylcholine and phosphatidylglycerol. The presence of the anionic chemical shift reagent dysprosium (III) tripolyphosphate, either inside or outside of the vesicles, allows for the spectroscopic separation of the NMR resonances arising from the inter- and extravesicular cation pools. The cation transporting properties of the channel-forming pentadecapeptide, gramicidin D, have been studied using the NMR technique.

  16. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: evidence for passive and facilitated transport.

    PubMed

    Stott, Lucy C; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F; Bury, Nic R

    2015-02-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L(-1)), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport.

  17. Synthesis and characterization of nucleobase-carbon nanotube hybrids.

    PubMed

    Singh, Prabhpreet; Kumar, Jitendra; Toma, Francesca Maria; Raya, Jesus; Prato, Maurizio; Fabre, Bruno; Verma, Sandeep; Bianco, Alberto

    2009-09-23

    We report the synthesis and characterization of adenine-single-walled carbon nanotube (SWCNT) hybrid materials, where for the first time nucleobases are covalently attached to the exosurface of SWCNTs. The structural properties of all hybrids have been characterized using usual spectroscopic and microscopic techniques. The degree of functional groups for functionalized SWCNTs (f-SWCNTs) 2a and 2b is one adenine group for each 26 and 37 carbon atoms, respectively. Solid-state magic angle spinning (13)C NMR spectroscopy (MAS NMR) and electrochemistry have been also applied for the characterization of these f-SWCNTs. AFM images of f-SWCNT 2b showed an interesting feature of horizontally aligned nanotubes along the surface when deposited on highly oriented pyrolytic graphite surface. Furthermore, we evaluated the coordinating ability of these hybrid materials toward silver ions, and interestingly, we found a pattern of silver nanoparticles localized over the surface of the carbon nanotube network. The presence of aligned and randomly oriented CNTs and their ability to coordinate with metal ions make this class of materials very interesting for applications in the development of novel electronic devices and as new supports for different catalytic transformations. PMID:19673527

  18. DNA photoreacts by nucleobase ring cleavage to form labile isocyanates.

    PubMed

    Buschhaus, Laura; Rolf, Josefin; Kleinermanns, Karl

    2013-11-14

    Differential infrared absorption spectroscopy was used to study the formation of isocyanates and further photo-products in the oligonucleotides dG10, dC10 and dT10 and in their mononucleosides by ultraviolet light at 266 nm. We find that α-cleavage takes place in oligonucleotides and mononucleosides both in films and in solution. The very intense and spectrally isolated isocyanate (N=C=O) asymmetric stretch vibration at 2277 cm(-1) is used as a spectroscopic marker for detection of the photo-product. The band disappears upon reaction with small amounts of water vapour as expected for isocyanates. Quantum yields for isocyanate formation by nucleobase ring cleavage in the α-position to the carbonyl group are ∼5 × 10(-5) in the mononucleosides and up to 5 × 10(-4) in the oligonucleotides. In the mixed oligonucleotides dG10/dC10 and dA10/dT10 the quantum yield of α-cleavage drops by a factor of 10 compared to the single oligonucleotides. Implications for DNA repair and photo-induced DNA-protein cross-linking via isocyanate reaction with NH2 groups of amino acids are discussed.

  19. Formation of the nucleobases around the star forming region

    NASA Astrophysics Data System (ADS)

    Saha, Rajdeep; Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K.; Chakrabarti, Sonali

    2013-06-01

    Chemistry of the dense and cold interstellar clouds are mainly dominated by the ion-molecular and radical-radical interactions though some neutral-neutral reactions are also barrierless and feasible at this condition. The base pairs of RNA are guanine (G) & uracil (U) (G-U pair) and adenine (A) & cytosine (C) (A-C pair). We perform quantum chemical calculations to predict the energetically most economical as well as favorable root for the formation of major bases of the nucleic acids. The outcome of this quantum chemical calculations could be used into our hydro-chemical model to obtain the abundances of some of the important bases of RNA during the formation of a proto star. It is well known that the thymine (T) and uracil (U) are the two nucleobases which are not common in DNA and RNA. Our quantum chemical calculation suggests that uracil could be produced prior to thymine in our chemical network. These findings could be used to support the RNA world hypothesis.

  20. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  1. The role of nucleobase interactions in RNA structure and dynamics

    PubMed Central

    Bottaro, Sandro; Di Palma, Francesco; Bussi, Giovanni

    2014-01-01

    The intricate network of interactions observed in RNA three-dimensional structures is often described in terms of a multitude of geometrical properties, including helical parameters, base pairing/stacking, hydrogen bonding and backbone conformation. We show that a simple molecular representation consisting in one oriented bead per nucleotide can account for the fundamental structural properties of RNA. In this framework, canonical Watson-Crick, non-Watson-Crick base-pairing and base-stacking interactions can be unambiguously identified within a well-defined interaction shell. We validate this representation by performing two independent, complementary tests. First, we use it to construct a sequence-independent, knowledge-based scoring function for RNA structural prediction, which compares favorably to fully atomistic, state-of-the-art techniques. Second, we define a metric to measure deviation between RNA structures that directly reports on the differences in the base–base interaction network. The effectiveness of this metric is tested with respect to the ability to discriminate between structurally and kinetically distant RNA conformations, performing better compared to standard techniques. Taken together, our results suggest that this minimalist, nucleobase-centric representation captures the main interactions that are relevant for describing RNA structure and dynamics. PMID:25355509

  2. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth.

  3. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    PubMed Central

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-01-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346−9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45–90 d, starting with an initial formamide weight fraction of 10−3 wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  4. Anharmonic IR Spectra of Biomolecules: Nucleobases and Their Oligomers

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Carnimeo, Ivan; Fornaro, Teresa

    2014-06-01

    Computational spectroscopy techniques have become in the last years effective means to predict and characterize spectra, such as infrared, for molecular systems of increasing dimensions with account for different environments. We are actively developing a comprehensive and robust computational protocol, set within a perturbative vibrational framework [1], aimed at a quantitative reproduction of the spectra of biomolecules. In order to model the vibrational spectra of weakly bound molecular complexes, dispersion interactions should be taken into proper account. In this work, we present critical assessment of dispersion-corrected DFT approaches for anharmonic vibrational frequency calculations. It is shown that fully anharmonic IR spectra, simulated through full and reduced-dimensionality generalized second-order vibrational perturbation theory (GVPT2)[1] with the potential energy surfaces computed with the B3LYP-D3 approach, may be used to interpret experimental data of nucleobases and their complexes[2] by the direct comparison of experimental IR spectra with their theoretical anharmonic counterpart, taking into account also overtones and combination bands. [1] V. Barone, M. Biczysko, J. Bloino, Phys. Chem. Chem. Phys., 2014,16, 1759-1787 [2] T. Fornaro, M. Biczysko, S. Monti, V. Barone, Phys. Chem. Chem. Phys., 2014, DOI: 10.1039/C3CP54724H

  5. N-h and N-C bond activation of pyrimidinic nucleobases and nucleosides promoted by an osmium polyhydride.

    PubMed

    Esteruelas, Miguel A; García-Raboso, Jorge; Oliván, Montserrat; Oñate, Enrique

    2012-05-21

    Complex OsH(6)(P(i)Pr(3))(2) (1) reacts with 1-methylthymine and 1-methyluracil to give OsH(3)(P(i)Pr(3))(2)(nucleobase') (2, 3) containing the deprotonated nucleobases (nucleobase') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom of the ring at position 4. Similarly, the reactions of 1 with thymidine, 5-methyluridine, deoxyuridine, and uridine lead to OsH(3)(P(i)Pr(3))(2)(nucleoside') (4-7) with the deprotonated nucleoside (nucleoside') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom at position 4 of the nucleobases. Treatment of complexes 5 and 7, containing nucleosides derived from ribose, with OsH(2)Cl(2)(P(i)Pr(3))(2) (8) in the presence of Et(3)N affords dinuclear species OsH(3)(P(i)Pr(3))(2)(nucleobase')-(ribose)(P(i)Pr(3))(2)H(2)Os (9, 10) formed by two different metal fragments. Complex 1 also promotes the cleavage of the N-C bond of 2-7 to give the dinuclear species {OsH(3)(P(i)Pr(3))(2)}(2)(nucleobase'') (11, 12) with the nucleobase skeleton (nucleobase'') κ(2)-N,O coordinated to both metal fragments. These compounds can be also prepared by reaction of 1 with 0.5 equiv of thymine and uracil. The use of 1:1 hexahydride:nucleobase molar ratios gives rise to the preferred formation of the mononuclear complexes OsH(3)(P(i)Pr(3))(2)(nucleobase''') (13, 14; nucleobase''' = monodeprotonated thymine or uracil). The X-ray structures of complexes 6, 11, and 14 are also reported.

  6. Influence of biofilms on the movement of colloids in porous media. Implications for colloid facilitated transport in subsurface environments.

    PubMed

    Leon Morales, Carlos Felipe; Strathmann, Martin; Flemming, Hans-Curt

    2007-05-01

    Colloid transport through porous media can be influenced by the presence of biofilms. Sterile and non-sterile sand columns were investigated using Laponite RD as model colloid and a highly mucoid strain of Pseudomonas aeruginosa as model biofilm former. Laponite RD was marked specifically by fluorescent complexes with rhodamine 6G. Breakthrough curves (BTCs) were used as parameters for determination of colloid transport characteristics. In the sterile columns, the colloid was mobile (collision efficiencies from 0.05 to 0.08) both after the presence of Na(+) and Ca(2+) ions followed by deionised water influent. In the biofilm-grown column, the same treatment did not result in colloid retention in the case of Na(+) exposure, but in altered or enhanced colloid transport. In the case of Ca(2+) ions exposure, colloid retention increased with biofilm age. After 3 weeks, almost complete retention was observed. Similar observations were made in columns packed with material from slow sand filtration units. These data reveal the complex interactions between biofilms, cations and colloid transport. Changes in the electrolyte composition of water percolating the subsurface can frequently occur and will result in different colloid transport characteristics with regard to the dominating species of ions and the relative abundance of microbial biofilms. This has to be considered when modelling colloid transport through the subsurface.

  7. Formation of Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Astrophysics Data System (ADS)

    Nuevo, M.; Sandford, S. A.; Milam, S. N.; Materese, C. K.; Elsila, J. E.; Dworkin, J. P.

    2011-05-01

    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. Biological nucleobases are divided in two types: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin has been confirmed by isotope measurements, but no N-heterocycle has ever been observed in the ISM. Experiments showed that the UV irradiation of pyrimidine mixed in astrophysical ices such as H_2O, NH_3, CH_3OH, or any combination of these at low temperature (20-30 K) leads to the formation of multiple photo-products derived from pyrimidine including the nucleobases uracil and cytosine. Theoretical studies on the formation of uracil confirmed its experimental formation pathway and demonstrated that the H_2O matrix plays a key role in the chemistry [9]. Thymine, however, was not found in any of the samples, though other pyrimidine derivatives, as well as other species of prebiotic interest such as urea and the amino acid glycine, could be identified [8]. We will extend this study to the formation of nucleobases and other prebiotic species from the UV irradiation of pyrimidine in astrophysically relevant ice mixtures containing H_2O, NH_3, CH_3OH, CO, and CO_2.

  8. The Formation of Nucleobases from the Irradiation of Purine in Astophysical Ices and Comparisons with Meteorites.

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2016-01-01

    N-heterocycles have been identified in meteorites and their extraterrestrial origins are suggested by isotopic ratio measurements. Although small N- heterocycles have not been detected in the interstellar medium (ISM), recent experiments in our lab have shown that the irradiation of the aromatic molecules like benzene (C6H6) and naphthalene (C10H8) in mixed molecular ices leads to the formation of O- and N-heterocyclic molecules. Among the class of N-heterocycles are the nucleobases, which are of astrobiological interest because they are the information bearing units of DNA and RNA. Nucleobases have been detected in meteorites [3-5], with isotopic signatures that are also consistent with an extraterrestrial origin. Three of the biologically relevant nucleobases (uracil, cytosine, and guanine) have a pyrimidine core structure while the remaining two (adenine and guanine) possess a purine core. Previous experiments in our lab have demonstrated that all of the bio-logical nucleobases (and numerous other molecules) with a pyrimidine core structure can be produced by irradiating pyrimidine in mixed molecular ices of several compositions [6-8]. In this work, we study the formation of purine-based molecules, including the nucleobases adenine, and guanine, from the ultraviolet (UV) irradiation of purine in ices consisting mixtures of H2O and NH3 at low temperature. The experiments are designed to simulate the astrophysical conditions under which these species may be formed in dense molecular clouds, protoplanetary disks, or on the surfaces of icy bodies in planetary systems.

  9. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development

    PubMed Central

    Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong

    2016-01-01

    Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development. PMID:27102826

  10. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development.

    PubMed

    Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong

    2016-01-01

    Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development. PMID:27102826

  11. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress.

    PubMed

    Paul, Stephanie; Alegre, Kamela O; Holdsworth, Scarlett R; Rice, Matthew; Brown, James A; McVeigh, Paul; Kelly, Sharon M; Law, Christopher J

    2014-05-01

    Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as Escherichia coli. Although the tripartite AcrAB-TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E. coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E. coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB-TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H(+) antiport.

  12. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples1[OPEN

    PubMed Central

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H+-pumping activities of vacuolar H+-ATPase (VHA) and/or vacuolar H+-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H+-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants. PMID:26637549

  13. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.

    PubMed

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Cheng, Lailiang; Hao, Yu-Jin

    2016-03-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants. PMID:26637549

  14. Glucocorticoid-dependent induction of interleukin-6 receptor expression in human hepatocytes facilitates interleukin-6 stimulation of amino acid transport.

    PubMed Central

    Fischer, C P; Bode, B P; Takahashi, K; Tanabe, K K; Souba, W W

    1996-01-01

    OBJECTIVE: The authors studied the effects of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on glutamine and alanine transport in isolated human hepatocytes. They also evaluated the role of dexamethasone in modulating this response and its effects on the expression of the plasma membrane high-affinity IL-6 receptor. SUMMARY BACKGROUND DATA: Animal studies indicate that cytokines are important mediators of the increased hepatic amino acid uptake that occurs during cancer and sepsis, but studies in human tissues are lacking. The control of transport by cytokines and cytokine receptor expression in the liver may provide a mechanism by which hepatocytes can modulate amino acid availability during catabolic disease states. METHODS: Human hepatocytes were isolated from wedge biopsy specimens and plated in 24-well trays. Interleukin-6 and TNF-alpha, in combination with the synthetic glucocorticoid dexamethasone, were added to hepatocytes in culture, and the transport of radiolabeled glutamine and alanine was measured. Fluorescent-activated cell sorter (FACS) analysis was used to study the effects of dexamethasone on IL-6 receptor number in the well-differentiated human hepatoma HepG2. RESULTS: Both IL-6 and TNF-alpha exerted a small stimulatory effect on alanine and glutamine transport. Dexamethasone alone did not alter transport rates, but pretreatment of cells augmented the effects of both cytokines on carrier-mediated amino acid uptake. Dexamethasone pretreatment and a combination of IL-6 and TNF-alpha resulted in a greater than twofold increase in transport activity. Fluorescent-activated cell sorter analysis demonstrated that dexamethasone induced a threefold increase in the expression of high-affinity IL-6 receptors. CONCLUSIONS: Interleukin-6 and TNF-alpha work coordinately with glucocorticoids to stimulate amino acid uptake in human hepatocytes. Dexamethasone exerts a permissive effect on cytokine-mediated increases in transport by increasing IL

  15. Photoelectron Spectroscopy of Rare-Gas Solvated Nucleobase Anions

    NASA Astrophysics Data System (ADS)

    Buonaugurio, Angela M.; Chen, Jing; Bowen, Kit H.

    2012-06-01

    Gas-phase polar molecular anions [uracil (U^-), thymine (T^-), 1-3 dimethyluracil (DMU^-)] solvated by rare gas atoms were studied by means of negative ion photoelectron spectroscopy. The photoelectron spectrum (PES) of U^-, T^-, and DMU^- each exhibit a distinctive dipole-bound (DB) spectral signature. The spectra of U^-, U^- (Ar)_1,2 and U^- (Kr)_1 also only displayed the DB anion feature. Upon the solvation of more rare gas atoms, the spectra of U^- (Ar)_3, U^- (Kr)_2, and U^- (Xe)1-3 not only retained the DB signature but also exhibited the valence anion features. Moreover, the DB and the valence features shifted together to higher electron binding energies (EBEs) with increasing numbers of rare gas solvent atoms. Therefore, the co-existing DB and the valence anions appeared to be strongly coupled with each other, i.e. they effectively form a single state that is a superposition of both DB and valence anion states. For both U^- and T^- series, the ``onset size" of the Xe, Kr, and Ar solvents for the co-existing of the two anionic states was 1, 2, and 3 respectively. In addition, a minimum of 2 methane (CH_4) molecules or 1 ethane (C_2H_6) molecule were required to induce the coupling between the two states in the T^- series. Thus, the nucleobase anion interaction with non-polar solvent atoms tracks as the sum of the solvent polarizabilities. However for the DMU- series, the DB and the valence anions of DMU^-(Xe)_1, DMU^-(Kr)_2, and DMU^-(Ar)_3 were completely absent in both the mass spectra and the PES. Beyond these ``holes", their PES displayed the similar behaviors to the U^- and T^- series. Extrapolated EA values for these missing species were at or very close to zero, which may explain why they were not seen. However, why this was the case is not clear. With better Franck-Condon overlap between the origins of the NB^- (Rg)_n valence anion and the neutral NB(Rg)n than between those of the NB^- (H2O)n valence anion and the neutral NB(H2O)n, extrapolation of

  16. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    NASA Astrophysics Data System (ADS)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  17. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    NASA Astrophysics Data System (ADS)

    Dawley, M. Michele; Tanzer, Katrin; Carmichael, Ian; Denifl, Stephan; Ptasińska, Sylwia

    2015-06-01

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C5H4N4O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp - H) anion (C5H3N4O-) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp - NH)-, C4H3N4-/C4HN3O-, C4H2N3-, C3NO-/HC(HCN)CN-, OCN-, CN-, and O-. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  18. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  19. The origin of efficient triplet state population in sulfur-substituted nucleobases

    NASA Astrophysics Data System (ADS)

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-10-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.

  20. High-energy chemistry of formamide: a simpler way for nucleobase formation.

    PubMed

    Ferus, Martin; Michalčíková, Regina; Shestivská, Violetta; Šponer, Jiří; Šponer, Judit E; Civiš, Svatopluk

    2014-01-30

    The formation of nucleobases from formamide during a high-energy density event, i.e., the impact of an extraterrestrial body into the planetary atmosphere, was studied by irradiation of formamide ice and liquid samples with a high-power laser in the presence of potential catalysts. FTIR spectroscopy, time-resolved emission spectroscopy, and GC-MS were subsequently used to monitor the dissociation of this molecule into stable molecular fragments (HCN, H2O, HNCO, H2, CO, and NH3) and unstable species (HNC, •CN, and •NH). The kinetic and thermodynamic models of the high-energy density event molecular dynamics have been suggested together with the reaction routes leading from the dissociation products to the nucleobases. In addition, using theoretical calculations, we propose a simple new reaction pathway for the formation of both pyrimidine and purine nucleobases involving •CN radical chemistry. PMID:24437678

  1. Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Materese, Christopher; Nuevo, Michel

    2012-01-01

    Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.

  2. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...

  3. Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion.

    PubMed

    Cunningham, Philip; Naftalin, Richard J

    2014-11-01

    Structural changes and xylose docking to eight conformers of Escherichia Coli XylE, a xylose transporter similar to mammalian passive glucose transporters GLUTs, have been examined. Xylose docks to inward and outward facing conformers at a high affinity central site (K(i) 4-20 µM), previously identified by crystallography and additionally consistently docks to lower affinity sites in the external and internal vestibules (K(i) 12-50 µM). All these sites lie within intramolecular tunnels and cavities. Several local regions in the central transmembrane zone have large positional divergences of both skeleton carbon Cα positions and side chains. One such in TM 10 is the destabilizing sequence G388-P389-V390-C391 with an average RMSD (4.5 ± 0.4 Å). Interchange between conformer poses results in coalescence of tunnels with adjacent cavities, thereby producing a transitory channel spanning the entire transporter. A fully open channel exists in one inward-facing apo-conformer, (PDB 4ja4c) as demonstrated by several different tunnel-finding algorithms. The conformer interchanges produce a gated network within a branched central channel that permits staged ligand diffusion across the transporter during the open gate periods. Simulation of this model demonstrates that small-scale conformational changes required for sequentially opening gate with frequencies in the ns-μs time domain accommodate diffusive ligand flow between adjacent sites with association-dissociation rates in the μs-ms domain without imposing delays. This current model helps to unify the apparently opposing concepts of alternate access and multisite models of ligand transport.

  4. Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion.

    PubMed

    Cunningham, Philip; Naftalin, Richard J

    2014-11-01

    Structural changes and xylose docking to eight conformers of Escherichia Coli XylE, a xylose transporter similar to mammalian passive glucose transporters GLUTs, have been examined. Xylose docks to inward and outward facing conformers at a high affinity central site (K(i) 4-20 µM), previously identified by crystallography and additionally consistently docks to lower affinity sites in the external and internal vestibules (K(i) 12-50 µM). All these sites lie within intramolecular tunnels and cavities. Several local regions in the central transmembrane zone have large positional divergences of both skeleton carbon Cα positions and side chains. One such in TM 10 is the destabilizing sequence G388-P389-V390-C391 with an average RMSD (4.5 ± 0.4 Å). Interchange between conformer poses results in coalescence of tunnels with adjacent cavities, thereby producing a transitory channel spanning the entire transporter. A fully open channel exists in one inward-facing apo-conformer, (PDB 4ja4c) as demonstrated by several different tunnel-finding algorithms. The conformer interchanges produce a gated network within a branched central channel that permits staged ligand diffusion across the transporter during the open gate periods. Simulation of this model demonstrates that small-scale conformational changes required for sequentially opening gate with frequencies in the ns-μs time domain accommodate diffusive ligand flow between adjacent sites with association-dissociation rates in the μs-ms domain without imposing delays. This current model helps to unify the apparently opposing concepts of alternate access and multisite models of ligand transport. PMID:25163893

  5. Nucleobase recognition in ssDNA at the central constriction of the αhemolysin pore

    PubMed Central

    Stoddart, David; Heron, Andrew J.; Klingelhoefer, Jochen; Mikhailova, Ellina; Maglia, Giovanni; Bayley, Hagan

    2010-01-01

    Nanopores are under investigation for single-molecule DNA sequencing. The α-hemolysin (αHL) protein nanopore contains three recognition points capable of nucleobase discrimination in individual immobilized ssDNA molecules. We have modified the recognition point R1 by extensive mutagenesis of residue 113. Amino acids that provide an energy barrier to ion flow (e.g. bulky or hydrophobic residues) strengthen base identification, while amino acids that lower the barrier weaken it. Amino acids with related side chains produce similar patterns of nucleobase recognition providing a rationale for the redesign of recognition points. PMID:20704324

  6. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.

    PubMed

    Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-03-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0-10 mg L(-1)), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0-0.75), and pH (6.0-10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L(-1), greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments. PMID:22316080

  7. Lysophospholipid flipping across the Escherichia coli inner membrane catalyzed by a transporter (LplT) belonging to the major facilitator superfamily.

    PubMed

    Harvat, Edgar M; Zhang, Yong-Mei; Tran, Can V; Zhang, Zhongge; Frank, Matthew W; Rock, Charles O; Saier, Milton H

    2005-03-25

    The transfer of phospholipids across membrane bilayers is protein-mediated, and most of the established transporters catalyze the energy-dependent efflux of phospholipids from cells. This work identifies and characterizes a lysophospholipid transporter gene (lplT, formally ygeD) in Escherichia coli that is an integral component in the 2-acylglycerophosphoethanolamine (2-acyl-GPE) metabolic cycle for membrane protein acylation. The lplT gene is adjacent to and in the same operon as the aas gene, which encodes the bifunctional enzyme 2-acyl-GPE acyltransferase/acyl-acyl carrier protein synthetase. In some bacteria, acyltransferase/acyl-ACP synthetase (Aas) and LplT homologues are fused in a single polypeptide chain. 2-Acyl-GPE transport to the inside of the cell was assessed by measuring the Aas-dependent formation of phosphatidylethanolamine. The Aas-dependent incorporation of [3H]palmitate into phosphatidylethanolamine was significantly diminished in deltalplT mutants, and the LplT-Aas transport/acylation activity was independent of the proton motive force. The deltalplT mutants accumulated acyl-GPE in vivo and had a diminished capacity to transport exogenous 2-acylglycerophosphocholine into the cell. Spheroplasts prepared from wild-type E. coli transported and acylated fluorescent 2-acyl-GPE with an apparent K(d) of 7.5 microM, whereas this high-affinity process was absent in deltalplT mutants. Thus, LplT catalyzes the transbilayer movement of lysophospholipids and is the first example of a phospholipid flippase that belongs to the major facilitator superfamily.

  8. Chromium(VI) removal through facilitated transport using CYANEX 923 as carrier and reducing stripping with hydrazine sulfate.

    PubMed

    Alguacil, F J; Alonso, M

    2003-03-01

    The transport of chromium(VI) through a flat-sheet supported liquid membrane (FSSLM) containing CYANEX 923 (mixture of phosphine oxides) as a carrier has been studied. The permeation of the metal is investigated as a function of various experimental variables: hydrodynamic conditions, concentration of chromium(VI) and HCI in the feed phase, CYANEX 923 concentration and diluent in the membrane, and strippant concentration in the receiving phase. By using hydrazine sulfate in the receiving phase, chromium(VI) is immediately reduced to the less toxic chromium(III). The aqueous mass transfer coefficient and the thickness of the aqueous boundary layer were calculated from the experimental results. The selectivity of CYANEX 923-based FSSLM toward different metal ions and the behavior of the system against other carriers is presented.

  9. The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  10. Hartree-Fock Cluster Study of Electronic Structures and Nuclear Quadrupole Interactions in Solid Nucleobases.

    NASA Astrophysics Data System (ADS)

    Scheicher, R. H.; Dubey, Archana; Badu, S. R.; Saha, H. P.; Pink, R. H.; Nagamine, K.; Torikai, E.; Chow, Lee; Das, T. P.

    2008-03-01

    In recent work [1] we have studied nucleobases attached to a CH3 group to simulate the influence of their binding to the sugar rings and the phosphate groups in DNA and RNA and the effect of this binding on the nuclear quadrupole interactions of ^14N, ^17O and ^2H nuclei. Our results from this work have indicated that for ^17O, the binding to the CH3 group moves our results from the free nucleobases closer to the experimentally observed data [2] in the solid nucleobases. We are now investigating the solid nucleobases by the first --principles Hartree-Fock cluster procedure that we have employed earlier for the halogen molecular solids [3]. Our results for the binding energy of an imidazole molecule in the molecular solid system and the ^14N, ^17O and ^2H nuclear quadrupole interaction parameters will be presented. [1] T.P. Das et al (at this APS meeting), [2] Gang Wu et al, J. Am.Chem. Soc. 124, 1768(2002). [3] M.M. Aryal et al Hyperfine Interactions (to be published).

  11. 6-Pyrazolylpurine as an Artificial Nucleobase for Metal-Mediated Base Pairing in DNA Duplexes

    PubMed Central

    Léon, J. Christian; Sinha, Indranil; Müller, Jens

    2016-01-01

    The artificial nucleobase 6-pyrazol-1-yl-purine (6PP) has been investigated with respect to its usability in metal-mediated base pairing. As was shown by temperature-dependent UV spectroscopy, 6PP may form weakly stabilizing 6PP–Ag(I)–6PP homo base pairs. Interestingly, 6PP can be used to selectively recognize a complementary pyrimidine nucleobase. The addition of Ag(I) to a DNA duplex comprising a central 6PP:C mispair (C = cytosine) leads to a slight destabilization of the duplex. In contrast, a stabilizing 6PP–Ag(I)–T base pair is formed with a complementary thymine (T) residue. It is interesting to note that 6PP is capable of differentiating between the pyrimidine moieties despite the fact that it is not as sterically crowded as 6-(3,5-dimethylpyrazol-1-yl)purine, an artificial nucleobase that had previously been suggested for the recognition of nucleic acid sequences via the formation of a metal-mediated base pair. Hence, the additional methyl groups of 6-(3,5-dimethylpyrazol-1-yl)purine may not be required for the specific recognition of the complementary nucleobase. PMID:27089326

  12. Characterization of nucleobases and nucleosides in the fruit of Alpinia oxyphylla collected from different cultivation regions.

    PubMed

    Song, Wenjing; Li, Yonghui; Wang, Jianguo; Li, Zeyou; Zhang, Junqing

    2014-03-01

    The fruit of Alpinia oxyphylla, known as Yizhi, Yakuchi and Ikji in Chinese, Japanese, and Korean, respectively, has been utilized as an important drug for the treatment of diarrhea, dyspepsia, spermatorrhea, kidney asthenia and abdominal pain in East Asian traditional medicine for thousands of years. Since the therapeutic effects of A. oxyphylla are attributed to multiple components and nucleobases and nucleosides exhibit various bioactivities, it is necessary to explore the chemical characterization of nucleobases and nucleosides in this herb. Herein, 10 common nucleobases and nucleosides, including cytidine, adenosine, thymidine, inosine, guanosine, 2'-deoxyinosine, guanine, adenine, cytosine, and hypoxanthine, were quantified simultaneously in the fruit of A. oxyphylla collected from different geographical regions. Changes in their contents were discussed, and hierarchical cluster analysis (HCA) was performed to classify all samples on the basis of the contents of the investigated analytes. The results indicated that there was a large variation in the contents of nucleobases and nucleosides among the herbs from different regions, and the samples collected from the same cultivation region were mostly classified in one cluster. The method can be used for comprehensive quality evaluation of A. oxyphylla.

  13. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings.

    PubMed

    Lowry, Gregory V; Shaw, Samuel; Kim, Christopher S; Rytuba, James J; Brown, Gordon E

    2004-10-01

    Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings--New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit--were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having approximately 100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCI) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (approximately 78%) of the mercury is present in the form of Hg

  14. Monitoring of event based mobilization of hydrophobic pollutants in rivers: Calibration of turbidity as a proxy for particle facilitated transport

    NASA Astrophysics Data System (ADS)

    Rügner, Hermann; Schwientek, Marc; Grathwohl, Peter

    2014-05-01

    Transport of many pollutants in rivers is coupled to transport of suspended particles which is typically enhanced during events such as floods, snow melts etc. As the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants in rivers such as polycyclic aromatic hydrocarbons (PAHs), PCBs, etc. and several heavy metals. On-line turbidity measurements (e.g. by optical backscattering sensors) then allow for an assessment of particle and pollutant flux dynamics. In this study, pronounced flood and thus turbidity events were sampled at high temporal resolution in three contrasting catchments in Southwest Germany (Rivers Ammer, Goldersbach, Steinlach) as well as in the River Neckar. Samples were analyzed for turbidity, the total amount of PAH and total suspended solids (TSS) in water. Additionally, the grain size distributions of suspended solids were determined. Discharge and turbidity were measured on-line at gauging stations in three of the catchments. Results showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the flood samples (i.e. independent on grain size). This also holds for total PAH concentrations which can be reasonably well predicted based on the turbidity measurements and TSS versus PAH relationships - even for very high turbidity or TSS values (> 2000 NTU or mg l-1, respectively). From these linear regressions concentrations of PAHs on suspended particles were obtained which varied by catchment. The values comprise a robust measure of the average sediment quality in a river network and may be correlated to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. Based on long-term on-line turbidity measurements mass flow rates of particle bound pollutants over time could be calculated. Results showed that by far the largest amount

  15. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings

    USGS Publications Warehouse

    Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also

  16. A Novel Recombinant Vaccinia Virus Expressing the Human Norepinephrine Transporter Retains Oncolytic Potential and Facilitates Deep-Tissue Imaging

    PubMed Central

    Chen, Nanhai; Zhang, Qian; Yu, Yong A; Stritzker, Jochen; Brader, Peter; Schirbel, Andreas; Samnick, Samuel; Serganova, Inna; Blasberg, Ronald; Fong, Yuman; Szalay, Aladar A

    2009-01-01

    Noninvasive and repetitive monitoring of a virus in target tissues and/or specific organs of the body is highly desirable for the development of safe and efficient cancer virotherapeutics. We have previously shown that the oncolytic vaccinia virus GLV-1h68 can target and eradicate human tumors in mice and that its therapeutic effects can be monitored by using optical imaging. Here, we report on the development of a derivative of GLV-1h68, a novel recombinant vaccinia virus (VACV) GLV-1h99, which was constructed to carry the human norepinephrine transporter gene (hNET) under the VACV synthetic early promoter placed at the F14.5L locus for deep-tissue imaging. The hNET protein was expressed at high levels on the membranes of cells infected with this virus. Expression of the hNET protein did not negatively affect virus replication, cytolytic activity in cell culture, or in vivo virotherpeutic efficacy. GLV-1h99–mediated expression of the hNET protein in infected cells resulted in specific uptake of the radiotracer [131I]-meta-iodobenzylguanidine (MIBG). In mice, GLV-1h99–infected tumors were readily imaged by [124I]-MIBG positron emission tomography. To our knowledge, GLV-1h99 is the first oncolytic virus expressing the hNET protein that can efficiently eliminate tumors and simultaneously allow deep-tissue imaging of infected tumors. PMID:19287510

  17. Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Materese, Christopher K.; Milam, Stefanie N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions.

  18. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-01-01

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed. PMID:26703531

  19. Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to the groundwater at Ma Da area, Vietnam.

    PubMed

    Hofmann, Thilo; Wendelborn, Anke

    2007-06-01

    PCDD/Fs are hydrophobic organic substances and strongly sorbing to soil particles. Once adsorbed to soil particles they are believed to be virtually immobile. However, research in the last decades confirmed that strong sorbing contaminants may reach the groundwater via colloid-facilitated transport. This pathway has not been investigated before in Vietnam. Ma Da area, 100 km north of Ho Chi Minh City, was repeatedly sprayed during the Vietnam War (1962-1971) with herbicides like Agent Orange containing, beside others, the teratogenic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 11 surface soil samples and 12 water samples were collected in Ma Da area for analysis of PCDD/Fs in solids. Soil TCDD concentrations ranged from 1-41 ppt with a mean of 8.8 ppt and a mean I-TEQ of 9.7 ppt. Two surface water samples showed colloid bound TCDD (7 and 19 ppt). Groundwater samples showed elevated colloid bound PCDD concentrations (mean 770 ng/kg), mainly octachlorodibenzo-p-dioxin. Groundwater colloids separated by filtration did not show any TCDD. The results support that TCDD/Fs can be relocated from the top soil to the groundwater by colloidal pathway. They did not provide evidence that the dioxins bound to groundwater colloids are leftovers from the Second Indochinese War. However, this study reinforces that the colloidal transport pathway has to be included investigating the relocation of strong sorbing organic contaminants.

  20. Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to the groundwater at Ma Da area, Vietnam.

    PubMed

    Hofmann, Thilo; Wendelborn, Anke

    2007-06-01

    PCDD/Fs are hydrophobic organic substances and strongly sorbing to soil particles. Once adsorbed to soil particles they are believed to be virtually immobile. However, research in the last decades confirmed that strong sorbing contaminants may reach the groundwater via colloid-facilitated transport. This pathway has not been investigated before in Vietnam. Ma Da area, 100 km north of Ho Chi Minh City, was repeatedly sprayed during the Vietnam War (1962-1971) with herbicides like Agent Orange containing, beside others, the teratogenic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 11 surface soil samples and 12 water samples were collected in Ma Da area for analysis of PCDD/Fs in solids. Soil TCDD concentrations ranged from 1-41 ppt with a mean of 8.8 ppt and a mean I-TEQ of 9.7 ppt. Two surface water samples showed colloid bound TCDD (7 and 19 ppt). Groundwater samples showed elevated colloid bound PCDD concentrations (mean 770 ng/kg), mainly octachlorodibenzo-p-dioxin. Groundwater colloids separated by filtration did not show any TCDD. The results support that TCDD/Fs can be relocated from the top soil to the groundwater by colloidal pathway. They did not provide evidence that the dioxins bound to groundwater colloids are leftovers from the Second Indochinese War. However, this study reinforces that the colloidal transport pathway has to be included investigating the relocation of strong sorbing organic contaminants. PMID:17668815

  1. Exciton energy transfer-based quantum dot fluorescence sensing array: "chemical noses" for discrimination of different nucleobases.

    PubMed

    Liu, Jianbo; Li, Gui; Yang, Xiaohai; Wang, Kemin; Li, Li; Liu, Wei; Shi, Xing; Guo, Yali

    2015-01-20

    A novel exciton energy transfer-based fluorescence sensing array for the discrimination of different nucleobases was developed through target nucleobase-triggered self-assembly of quantum dots (QDs). Four QD nanoprobes with different ligand receptors, including mercaptoethylamine, N-acetyl-l-cysteine, 2-dimethyl-aminethanethiol, and thioglycolic acid, were created to detect and identify nucleobase targets. These QDs served as both selective recognition scaffolds and signal transduction elements for a biomolecule target. The extent of particle assembly, induced by the analyte-triggered self-assembly of QDs, led to an exciton energy transfer effect between interparticles that gave a readily detectable fluorescence quenching and distinct fluorescence response patterns. These patterns are characteristic for each nucleobase and can be quantitatively differentiated by linear discriminate analysis. Furthermore, a fingerprint-based barcode was established to conveniently discriminate the nucleobases. This pattern sensing was successfully used to identify nucleobase samples at unknown concentrations and five rare bases. In this "chemical noses" strategy, the robust characteristics of QD nanoprobes, coupled with the diversity of surface functionality that can be readily obtained using nanoparticles, provides a simple and label-free biosensing approach that shows great promise for biomedical applications. PMID:25495103

  2. Binding of nucleobases with graphene and carbon nanotube: a review of computational studies.

    PubMed

    Chehel Amirani, Morteza; Tang, Tian

    2015-01-01

    Functionalized carbon nanotubes (CNTs) constitute a new class of nanostructured materials that have vast applications in CNT purification and separation, biosensing, drug delivery, etc. Hybrids formed from the functionalization of CNT with biological molecules have shown interesting properties and have attracted great attention in recent years. Of particular interest is the hybridization of single- or double-stranded nucleic acid (NA) with CNT. Nucleobases, as the building blocks of NA, interact with CNT and contribute strongly to the stability of the NA-CNT hybrids and their properties. In this work, we present a thorough review of previous studies on the binding of nucleobases with graphene and CNT, with a focus on the simulation works that attempted to evaluate the structure and strength of binding. Discrepancies among these works are identified, and factors that might contribute to such discrepancies are discussed.

  3. One-pot microbial synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-06-01

    A one-pot enzymatic synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase was established. Glycolysis by baker's yeast (Saccharomyces cerevisiae) generated ATP which was used to produce D: -glyceraldehyde 3-phosphate production from glucose via fructose 1,6-diphosphate. The D: -glyceraldehyde 3-phosphate produced was transformed to 2'-deoxyribonucleoside via 2-deoxyribose 5-phosphate and then 2-deoxyribose 1-phosphate in the presence of acetaldehyde and a nucleobase by deoxyriboaldolase, phosphopentomutase expressed in Escherichia coli, and a commercial nucleoside phosphorylase. About 33 mM 2'-deoxyinosine was produced from 600 mM glucose, 333 mM acetaldehyde and 100 mM adenine in 24 h. 2'-Deoxyinosine was produced from adenine due to the adenosine deaminase activity of E. coli transformants.

  4. Crystal Structures of Non-Natural Nucleobase Pairs in A- and B-DNA†

    PubMed Central

    Georgiadis, Millie M.; Singh, Isha; Kellett, Whitney F.; Hoshika, Shuichi; Benner, Steven A.; Richards, Nigel G. J.

    2015-01-01

    The extent to which synthetic biology can be used to expand genetic information systems compatible with natural enzymes and cells will depend on the extent to which multiple and contiguous non-natural nucleobase pairs fit within the standard double helical conformations of DNA. Toward this goal, two non-standard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) were designed to form a Z:P pair with a standard “edge on” Watson-Crick geometry, but with rearranged hydrogen bond donor and acceptor groups. Here, we present the crystal structures of two self-complementary 16-mer oligonucleotides containing Z:P pairs. The first contained two consecutive Z:P nucleobase pairs and was found to crystallize within a host-guest complex in B-form. The second contained six consecutive Z:P pairs; it was found to crystallize as an A-form DNA duplex, although it can adopt B-form in solution as inferred from circular dichroism spectra. Although Z:P pairs have some structural properties that are similar to those of G:C pairs, unique features include stacking of the nitro group on Z with the adjacent heterocyclic nucleobase ring in A-DNA. In both B-and A-DNA, major groove widths associated with the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs potentially due to the presence of the nitro group in Z. Thus, our structural studies suggest that multiple and consecutive Z:P pairs are readily accommodated in DNA duplex structures recognized by natural polymerases, and therefore the GACTZP synthetic genetic system has the requisite properties to expand sequence space. PMID:25961938

  5. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    SciTech Connect

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  6. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers.

    PubMed

    Lo, Pik Kwan; Sleiman, Hanadi F

    2009-04-01

    Conjugated polymers synthesized by step polymerization mechanisms typically suffer from poor molecular weight control and broad molecular weight distributions. We report a new method which uses nucleobase recognition to read out and efficiently copy the controlled chain length and narrow molecular weight distribution of a polymer template generated by living polymerization, into a daughter conjugated polymer. Aligning nucleobase-containing monomers on their complementary parent template using hydrogen-bonding interactions, and subsequently carrying out a Sonogashira polymerization, leads to the templated synthesis of a conjugated polymer. Remarkably, this daughter strand is found to possess a narrow molecular weight distribution and a chain length nearly equivalent to that of the parent template. On the other hand, nontemplated polymerization or polymerization with the incorrect template generates a short conjugated oligomer with a significantly broader molecular weight distribution. Hence, nucleobase-templated polymerization is a useful tool in polymer synthesis, in this case allowing the use of a large number of polymers generated by living methods, such as anionic polymerization, controlled radical polymerizations (NMP, ATRP, and RAFT) and other mechanisms to program the structure, length, and molecular weight distribution of polymers normally generated by step polymerization methods and significantly enhance their properties.

  7. The origin of efficient triplet state population in sulfur-substituted nucleobases

    PubMed Central

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-01-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero. PMID:27703148

  8. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  9. Understanding the interaction of DNA-RNA nucleobases with different ZnO nanomaterials.

    PubMed

    Saha, Supriya; Sarkar, Pranab

    2014-08-01

    Due to the potential application of different nanostructure materials in biomedical nanotechnologies, understanding the interaction between the inorganic nanoparticles and biological molecules at the atomic level is of paramount importance. We present here the results of our theoretical investigation of the interaction of different nucleotide bases--adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)--with different ZnO nanoparticles, such as ZnO nanowires (NWs), nanotubes (NTs), surfaces and quantum dots (QDs). As the size of the systems we studied is relatively large, we have used the self-consistent-charge density-functional tight-binding (SCC-DFTB) method to optimize the complex systems. We have studied in detail the site-specific binding nature and the adsorption strength of these nucleobases with different ZnO nanoparticles. The calculated binding energy order and the interaction strength of nucleobases are very much dependent on the nature of the nanoparticle surfaces and are different for different nanostructures. In most of the cases ZnO prefers to bind either through the top site of the nucleobases or with the ring nitrogen atom having a lone pair relative to other binding sites of the bases. PMID:24942064

  10. Determination of HDV ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics

    PubMed Central

    Kellerman, Daniel L; Simmons, Kandice S; Pedraza, Mayra; Piccirilli, Joseph A; York, Darrin M; Harris, Michael E

    2015-01-01

    Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2′-O-transphosphorylation by the HDV ribozyme is sensitive to the identity of the N(-1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2′O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(-1) nucleobase contributes to HDV catalysis, and to test the utility of this approach for RNA structure-function studies. Internal competition reactions containing all four substrate sequence variants at the N(-1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed basepairing interaction. Mutants A78U, A78G and A79G retain significant catalytic activity, but do not alter the specificity for the N(-1) nucleobase. Effects of nucleobase analog substitutions at N(-1) indicate that U is preferred due to the ability to donate an H-bond in the Watson-Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site, and illustrate multiple-substrate kinetic analyses as a practical approach for characterizing structure-function relationships in RNA reactions. PMID:25937290

  11. Studies on effective atomic numbers and electron densities of nucleobases in DNA

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok

    2016-10-01

    Various parameters of dosimetric importance such as effective atomic numbers (Zeff) and electron densities (Nel) of nucleobases in DNA have been calculated for the total and partial photon interaction processes in the wide energy range of 1 keV-100 GeV. The variations of Zeff and Nel with energy are shown graphically for all partial and total interaction processes and are found to be similar. Up to 10 keV, Zeff and Nel show a sharp increase for cytosine-guanine and thymine-adenine whereas for all the other nucleobases, it is almost constant. Then there is sharp decrease in Zeff and Nel with energy up to 100 keV for all the nucleobases. From 100 keV to 6 MeV, Zeff and Nel are almost independent of energy. From 6 MeV to 100 MeV, there is regular increase in Zeff and Nel with photon energy. Above 400 MeV, Zeff and Nel remain almost constant. The obtained results are due to the dominance of photoelectric absorption, Compton scattering and pair production in different energy regions as respectively stated above and their dependences on the chemical compositions of the interacting media.

  12. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Nuevo, Michel; Materese, Christopher K.

    2014-01-01

    Nucleobases are the informational subunits of DNA and RNA. They consist of Nheterocycles that belong to either the pyrimidine-base group (uracil, cytosine, and thymine) or the purinebase group (adenine and guanine). Several nucleobases, mostly purine bases, have been detected in meteorites [1-3], with isotopic signatures consistent with an extraterrestrial origin [4]. Uracil is the only pyrimidine-base compound formally reported in meteorites [2], though the presence of cytosine cannot be ruled out [5,6]. However, the actual process by which the uracil was made and the reasons for the non-detection of thymine in meteorites have yet to be fully explained. Although no N-heterocycles have ever been observed in the ISM [7,8], the positions of the 6.2-µm interstellar emission features suggest a population of such molecules is likely to be present [9]. In this work we study the formation of pyrimidine-based molecules, including the three nucleobases uracil, cytosine, and thymine from the ultraviolet (UV) irradiation of pyrimidine in ices consisting of several combinations of H(sub2)O, NH(sub3), CH(sub3)OH, and CH(sub4) at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium, in the protosolar nebula, and on icy bodies of the Solar System.

  13. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

    PubMed Central

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-01-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  14. Nucleobases and other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Milam, S. N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no Nheterocycles have ever been observed in the ISM, the positions of the 6.2-m interstellar emission features suggest a population of such molecules is likely to be present. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H2O, NH3, CH3OH, and CH4 ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System. Experimental: Gas mixtures are prepared in a glass mixing line (background pressure approx. 10(exp -6)-10(exp -5) mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15-20 K) and simultaneously irradiated with an H2 lamp emitting UV photons (Lyman and a continuum at approx.160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies. Results: These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photoproducts derived from pyrimidine, including the nucleobases uracil and cytosine, as well as their precursors 4(3H)-pyrimidone and 4-aminopyrimidine (Fig. 1). Theoretical quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways. In

  15. 49 CFR 38.2 - Equivalent facilitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Equivalent facilitation. 38.2 Section 38.2 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES General § 38.2 Equivalent facilitation. Departures from...

  16. Effect of monosaccharide sugars on LH-induced differentiation and sugar transport facilitator (SLC2A) expression in sheep theca cells in vitro.

    PubMed

    Campbell, B K; Kendall, N R; Onions, V; Guo, L; Scaramuzzi, R J

    2014-03-01

    The aim of the present study was to investigate the effects of glucose, galactose and fructose on the LH-induced differentiation and mRNA expression of sugar transport facilitators (SLC2A) by sheep thecal cells derived from small antral follicles cultured under serum-free conditions for 6 days. The dose and type of monosaccharide had a significant effect on LH-induced androstenedione production by theca cells and there was a significant interaction (P<0.001). Glucose and galactose were used with equal efficiency so that cell numbers and androstenedione production at the end of the culture were comparable. Pharmacological doses of glucose (16.7 mM) inhibited steroidogenesis (P<0.05). Cell numbers and androstenedione production by cells cultured with fructose were lower than for cells cultured with either glucose or galactose (P<0.001). None of the monosaccharides resulted in the production of lactate. Expression of SLC2A1, SLC2A4 and SLC2A8, but not SLC2A5, mRNA was detected in fresh and cultured theca cells. Large doses (16.7 mM) of glucose and fructose, but not galactose, suppressed (P<0.05) SLC2A expression. The results show that glucose and galactose, but not fructose, are readily metabolised via oxidative pathways to support LH-induced differentiation of sheep theca cells. Further work is required to determine the mechanisms resulting in these differences in relation to the established effects of nutrition on reproductive function. PMID:23711112

  17. Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture.

    PubMed

    Lee, Jaslyn J L; Chen, Liwei; Cao, Bin; Chen, Wei Ning

    2016-01-01

    The oleaginous yeast Rhodosporidium toruloides has great biotechnological potential. It accumulates a high amount of lipids which can be used for biofuels and also produces carotenoids which are valuable in the food and pharmaceutical industry. However, the location of these two hydrophobic products in the cell membrane prohibits its efficient harvesting and separation. Here, the transporter Pdr10 was engineered into R. toruloides and cultured in two-phase media containing oil. This enabled the production and in situ export of carotenoids into the oil and concurrent separation from intracellular lipids in the cells. When Pdr10 strain was cultured in the two-phase media, carotenoids and fatty acids yield increased from 1.9 to 2.9 μg/mg and 0.07 to 0.09 mg/mg, respectively. A total of 1.8 μg/mg carotenoids was exported by Pdr10 strain, as compared to 0.3 μg/mg in the wild type. In the Pdr10 strain, the composition of carotenoids and fatty acid it produced also changed. Torulene became the major carotene produced instead of torularhodin. Also, the unsaturated fatty acid C18:2 became the dominant fatty acid produced instead of the saturated C16:0, which was similar to the grape seed oil used in the two-phase media. This indicated that oil was being consumed by the cells, which was supported by the increased intracellular glycerol levels detected by gas chromatography-mass spectrometry (GC-MS). Our approach represents an easy and greener extraction method which could serve to increase the yield and facilitate separation of carotenoids and fatty acids.

  18. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  19. H-bonding-directed self-assembly of synthetic copolymers containing nucleobases: organization and colloidal fusion in a noncompetitive solvent.

    PubMed

    Lutz, Jean-François; Pfeifer, Sebastian; Chanana, Munish; Thünemann, Andreas F; Bienert, Ralf

    2006-08-15

    The self-organization of random copolymers composed of a nucleobase monomer (either 1-(4-vinylbenzyl)thymine or 9-(4-vinylbenzyl)adenine) and dodecyl methacrylate (DMA) was studied in dilute chloroform solutions. The balance between the molar fractions of the nucleobase monomer (leading to intermolecular H-bonding) and DMA (soluble moiety in chloroform) in the polymer chains was found to be the parameter that principally influences the self-organization. DMA-rich copolymers are molecularly soluble in chloroform, whereas nucleobase-rich copolymers are insoluble in this solvent. Copolymers possessing an equimolar comonomer composition self-assemble into micrometer-sized particles physically cross-linked by intermolecular H-bonds (either thymine-thymine or adenine-adenine interactions, depending on the studied copolymer). Nevertheless, when mixed together, thymine- and adenine-based colloids fuse into thermodynamically stable microspheres cross linked by adenine-thymine interactions.

  20. Nonempirically Tuned Range-Separated DFT Accurately Predicts Both Fundamental and Excitation Gaps in DNA and RNA Nucleobases

    PubMed Central

    2012-01-01

    Using a nonempirically tuned range-separated DFT approach, we study both the quasiparticle properties (HOMO–LUMO fundamental gaps) and excitation energies of DNA and RNA nucleobases (adenine, thymine, cytosine, guanine, and uracil). Our calculations demonstrate that a physically motivated, first-principles tuned DFT approach accurately reproduces results from both experimental benchmarks and more computationally intensive techniques such as many-body GW theory. Furthermore, in the same set of nucleobases, we show that the nonempirical range-separated procedure also leads to significantly improved results for excitation energies compared to conventional DFT methods. The present results emphasize the importance of a nonempirically tuned range-separation approach for accurately predicting both fundamental and excitation gaps in DNA and RNA nucleobases. PMID:22904693

  1. Ab Initio Inverstagation of the Excited States of Nucleobases and Nucleosides

    NASA Astrophysics Data System (ADS)

    Szalay, Péter G.; Fogarasi, Géza; Watson, Thomas; Perera, Ajith; Lotrich, Victor; Bartlett, Rod J.

    2011-06-01

    Most living bodies are exposed to sunlight, essential life sustaining processes are using this natural radiation. Sunlight has, however, several components (has a broad "spectrum") and in particular the invisible component (UV, ultraviolet) is harmful for living organisms. Scientists around the word are busy to understand what happens in the cell when it is exposed to light: it seems that the building blocks of cells and in particular those carrying the genetic information (DNA and RNA) are highly protected against this exposition. Our research focuses on the spectral properties of the building blocks of DNA and RNA, the so called nucleobases and nucleosides, in order to understand this mechanism. Due to improvement in computer technology both at hardware and software side we are now able to use the most accurate methods of ab initio quantum chemistry to investigate the spectroscopic properties of these building blocks. These calculations provide direct information on the properties of these molecules but also provide important benchmarks for cheaper methods which can be used for even larger systems. We have calculated the excited state properties for the nucleobases (cytosine, guanine and adenine), their complexes with water and with each other (Watson-Crick base pairs and stacks) as well as corresponding nucleosides at the EOM-CCSD(T)/aug-cc-pVDZ level of theory and try to answer the following questions: (1) how the order of excited states varies in different nucleobases; (2) how hydration influences the excitation energy and order of excited states; (3) is there any effect of the sugar substituent; (4) how do close lying other bases change the spectrum. The calculations involve over hundred correlated electrons and up to thousand basis functions. Such calculations are now routinely available with the recently developed ACESIII code and can make use of hundreds or even several thousand of processors. V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens

  2. Ice world: the origin of nucleobases in ice-liquid water coexistence conditions.

    NASA Astrophysics Data System (ADS)

    Menor Salvan, C.

    2013-09-01

    We could define the ice world as the chemical evolution in the range between freezing point of water and the limit of stability of liquid brines, ≈273 to 210 K. In this environment, the synthesis of nitrogen heterocycles using urea as nitrogen source and methane as precursor of active intermediates is favorable from a prebiotic chemistry standpoint, leading to a mixture dominated by pyrimidines and hydantoins. Hence, the synthesis in ice matrix constitutes an experimental model for the study of origin of nucleobases in Solar System bodies.

  3. Mass Spectrometric Investigation of Anions Formed upon Free Electron Attachment to Nucleobase Molecules and Clusters Embedded in Superfluid Helium Droplets

    SciTech Connect

    Denifl, Stephan; Zappa, Fabio; Maehr, Ingo; Lecointre, Julien; Probst, Michael; Maerk, Tilmann D.; Scheier, Paul

    2006-07-28

    Here we report the first mass spectrometric study of negative ions formed via free electron attachment (EA) to nucleobases (NBs) embedded in helium clusters. Pure and mixed clusters of adenine and thymine have been formed by pickup of isolated NB molecules by cold helium droplets. In contrast to EA of isolated molecules in the gas phase we observe a long-lived parent anion NB{sup -} and, in addition, parent cluster ions NB{sub n}{sup -} up to size n=6. Moreover, we show that a low energy electron penetrating into a doped helium droplet causes efficient damage of the embedded nucleobases via resonant, site selective, dissociative electron attachment.

  4. Nucleoside transport and associated metabolism.

    PubMed

    Möhlmann, T; Bernard, C; Hach, S; Ekkehard Neuhaus, H

    2010-09-01

    Nucleosides are intermediates of nucleotide metabolism. Nucleotide de novo synthesis generates the nucleoside monophosphates AMP and UMP, which are further processed to all purine and pyrimidine nucleotides involved in multiple cellular reactions, including the synthesis of nucleic acids. Catabolism of these substances results in the formation of nucleosides, which are further degraded by nucleoside hydrolase to nucleobases. Both nucleosides and nucleobases can be exchanged between cells and tissues through multiple isoforms of corresponding transport proteins. After uptake into a cell, nucleosides and nucleobases can undergo salvage reactions or catabolism. Whereas energy is preserved by salvage pathway reactions, catabolism liberates ammonia, which is then incorporated into amino acids. Keeping the balance between nitrogen consumption during nucleotide de novo synthesis and ammonia liberation by nucleotide catabolism is essential for correct plant development. Senescence and seed germination represent situations in plant development where marked fluctuations in nucleotide pools occur. Furthermore, extracellular nucleotide metabolism has become an immensely interesting research topic. In addition, selected aspects of nucleoside transport in yeast, protists and humans are discussed.

  5. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    PubMed

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-01

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases.

  6. New approach for designing single-chain magnets: organization of chains via hydrogen bonding between nucleobases.

    PubMed

    Zhang, Wei-Xiong; Shiga, Takuya; Miyasaka, Hitoshi; Yamashita, Masahiro

    2012-04-25

    Two one-dimensional (1D) manganese complexes, [Mn(2)(naphtmen)(2)(L)](ClO(4))·2Et(2)O·2MeOH·H(2)O (1) and [Mn(2)(naphtmen)(2)(HL)](ClO(4))(2)·MeOH (2), were synthesized by using a bridging ligand with a nucleobase moiety, 6-amino-9-β-carboxyethylpurine, and a salen-type manganese(III) dinuclear complex, [Mn(2)(naphtmen)(2)(H(2)O)(2)](ClO(4))(2) (naphtmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(naphthylideneiminato) dianion). In 1 and 2, the carboxylate-bridged Mn(III) dinuclear units are alternately linked by two kinds of weak Mn···O interactions into 1D chains. As a result, canted antiferromagnetic and ferromagnetic interactions are alternately present along the chains, leading to a 1D chain with non-cancellation of anisotropic spins. Since the chains connected via H-bonds between nucleobase moieties are magnetically isolated, both 1 and 2 act as single-chain magnets (SCMs). More importantly, this result shows the smaller canting angles hinder long-range ordering in favor of SCM dynamics.

  7. Enthalpy-Entropy Tuning in the Adsorption of Nucleobases at the Au(111) Surface.

    PubMed

    Rosa, Marta; Corni, Stefano; Di Felice, Rosa

    2014-04-01

    The interaction of DNA molecules with hard substrates is of paramount importance both for the study of DNA itself and for the variety of possible technological applications. Interaction with inorganic surfaces strongly modifies the helical shape of DNA. Hence, an accurate understanding of DNA structure and function at interfaces is a fundamental question with enormous impact in science and society. This work sets the fundamentals for the simulation of entire DNA oligomers on gold surfaces in dry and wet conditions. Thanks to the new GolDNA-AMBER force field, which was derived from first principles and includes dispersion interactions and polarization effects, we simulated self-assembled guanine and adenine monolayers on Au(111) in vacuo and the adsorption of all nucleobases on the same substrate in aqueous conditions. The periodic monolayers obtained from classical simulations match very well those from first principle calculations and experiments, assessing the robustness of the force field and motivating the application to more complex systems for which quantum calculations are not affordable and experiments are elusive. The energetics of nucleobases on Au(111) in solution reveal fundamental physicochemical effects: we find that the adsorption paradigm shifts from purely enthalpic to dominantly entropic by changing the environment and aggregation phase.

  8. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    PubMed

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  9. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites.

    PubMed

    Burton, Aaron S; Stern, Jennifer C; Elsila, Jamie E; Glavin, Daniel P; Dworkin, Jason P

    2012-08-21

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return missions.

  10. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Photo-Stability of Nucleobases

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments.

  11. Physisorption of nucleobases on graphene: a comparative van der Waals study.

    PubMed

    Le, Duy; Kara, Abdelkader; Schröder, Elsebeth; Hyldgaard, Per; Rahman, Talat S

    2012-10-24

    The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ~ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ~ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.

  12. Physisorption of nucleobases on graphene: a comparative van der Waals study

    NASA Astrophysics Data System (ADS)

    Le, Duy; Kara, Abdelkader; Schröder, Elsebeth; Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ˜ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ˜ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.

  13. The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1989-01-01

    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars.

  14. Exploring the Roles of Nucleobase Desolvation and Shape Complementarity during the Misreplication of O6-Methylguanine

    PubMed Central

    Chavarria, Delia; Ramos-Serrano, Andrea; Hirao, Ichiro; Berdis, Anthony J.

    2011-01-01

    O6-methylguanine is a miscoding DNA lesion arising from the alkylation of guanine. This report uses the bacteriophage T4 DNA polymerase as a model to probe the roles hydrogen-bonding interactions, shape/size, and nucleobase desolvation during the replication of this miscoding lesion. This was accomplished by using transient kinetic techniques to monitor the kinetic parameters for incorporating and extending natural and non-natural nucleotides. In general, the efficiency of nucleotide incorporation does not depend on the hydrogen-bonding potential of the incoming nucleotide. Instead, nucleobase hydrophobicity and shape complementarity appear to be the preeminent factors controlling nucleotide incorporation. In addition, shape complementarity plays a large role in controlling the extension of various mispairs containing O6-methylguanine. This is evident as the rate constants for extension correlate with proper interglycosyl distances and symmetry between the base angles of the formed mispair. Base pairs not conforming to an acceptable geometry within the polymerase’s active site are refractory to elongation and are processed via exonuclease proofreading. The collective data set encompassing nucleotide incorporation, extension, and excision is used to generate a model accounting for the mutagenic potential of O6-methylguanine observed in vivo. In addition, kinetic studies monitoring the incorporation and extension of non-natural nucleotides identified an analog that displays high selectivity for incorporation opposite O6-methylguanine compared to unmodified purines. The unusual selectivity of this analog for replicating damaged DNA provides a novel biochemical tool to study translesion DNA synthesis. PMID:21819995

  15. Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase

    PubMed Central

    Liu, Xinran; Musser, Derek M.; Lee, Cheri A.; Yang, Xiaorong; Arnold, Jamie J.; Cameron, Craig E.; Boehr, David D.

    2015-01-01

    The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation. PMID:26516899

  16. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly.

    PubMed

    Wu, Liming; Chen, Lanzhen; Selvaraj, Jonathan Nimal; Wei, Yue; Wang, Yong; Li, Yi; Zhao, Jing; Xue, Xiaofeng

    2015-04-15

    Nucleotides, nucleosides and nucleobases play a greater role in the physiological activity of organisms which are highly present in royal jelly (RJ). The objective of the present study is to develop a HPLC method to simultaneous determine nucleotides, nucleosides and nucleobases in RJ and access them in fresh and commercial RJ samples. The LOD and LOQ were 12.2-99.6 μg/L and 40.8-289.4 μg/L, respectively with nearly 100.9% recoveries. Except uric acid, all other compounds were found in RJ samples. Significant difference in the average content of compounds in fresh (2682.93 mg/kg) and commercial samples (3152.78 mg/kg) were observed. AMP, adenosine and adenine were found predominant in all the samples. Significant higher levels of ATP, ADP and AMP was seen in fresh RJ samples, and IMP, uridine, guanosine, and thymidine was seen in commercial RJ samples. The investigated compounds can be used as indexes for assessment RJ freshness and quality.

  17. Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons.

  18. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  19. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  20. Simultaneous determination of 16 nucleosides and nucleobases by hydrophilic interaction chromatography and its application to the quality evaluation of Ganoderma.

    PubMed

    Chen, Yi; Bicker, Wolfgang; Wu, Junyan; Xie, Mingyong; Lindner, Wolfgang

    2012-05-01

    In order to develop a simple, efficient, and sensitive method for comprehensive analysis of the nucleosides and nucleobases in natural products, a zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) method for the simultaneous determination of 16 nucleosides and nucleobases has been studied. A mechanistic study confirmed that ZIC-HILIC separation showed a mixed-mode effect of both hydrophilic and electrostatic interactions. This method was validated to be precise, accurate, and sensitive with overall precision (intra- and interday) less than 1.8% (RSD), and LOD and LOQ was in the range of 0.005-0.029 μg/mL and 0.018-0.096 μg/mL, respectively. With this method, the nucleosides and nucleobases in Ganoderma of different species (G. atrum, G. lucidum, and G. sinense) and origins were quantified. The results showed that the contents varied with the species and origins. With the aid of hierarchical cluster analysis (HCA), cultivated Ganoderma from different origins and species were successfully discriminated. It is for the first time that the content of nucleosides and nucleobases in G. atrum is reported and compared. Our data showed that HILIC had advantages as a useful and potential tool for the study of the bioactive components in Ganoderma as well as their quality control, and could therefore be used for the determination of the analytes in other natural products.

  1. Physiology of nucleoside transporters: back to the future. . . .

    PubMed

    Rose, Jennifer B; Coe, Imogen R

    2008-02-01

    Nucleoside transporters (NTs) are integral membrane proteins responsible for mediating and facilitating the flux of nucleosides and nucleobases across cellular membranes. NTs are also responsible for the uptake of nucleoside analog drugs used in the treatment of cancer and viral infections, and they are the target of certain compounds used in the treatment of some types of cardiovascular disease. The important role of NTs as drug transporters and therapeutic targets has necessarily led to intense interest into their structure and function and the relationship between these proteins and drug efficacy. In contrast, we still know relatively little about the fundamental physiology of NTs. In this review, we discuss various aspects of the physiology of NTs in mammalian systems, particularly noting tissues and cells where there has been little recent research. Our central thesis is reference back to some of the older literature, combined with current findings, will provide direction for future research into NT physiology that will lead to a fuller understanding of the role of these intriguing proteins in the everyday lives of cells, tissues, organs, and whole animals.

  2. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  3. Modeling of Calcite Precipitation Driven by Bacteria-facilitated Urea Hydrolysis in A Flow Column Using A Fully Coupled, Fully Implicit Parallel Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.

    2009-12-01

    One approach for immobilizing subsurface metal contaminants involves stimulating the in situ production of mineral phases that sequester or isolate contaminants. One example is using calcium carbonate to immobilize strontium. The success of such approaches depends on understanding how various processes of flow, transport, reaction and resulting porosity-permeability change couple in subsurface systems. Reactive transport models are often used for such purpose. Current subsurface reactive transport simulators typically involve a de-coupled solution approach, such as operator-splitting, that solves the transport equations for components and batch chemistry sequentially, which has limited applicability for many biogeochemical processes with fast kinetics and strong medium property-reaction interactions. A massively parallel, fully coupled, fully implicit reactive transport simulator has been developed based on a parallel multi-physics object oriented software environment computing framework (MOOSE) developed at the Idaho National Laboratory. Within this simulator, the system of transport and reaction equations is solved simultaneously in a fully coupled manner using the Jacobian Free Newton-Krylov (JFNK) method with preconditioning. The simulator was applied to model reactive transport in a one-dimensional column where conditions that favor calcium carbonate precipitation are generated by urea hydrolysis that is catalyzed by urease enzyme. Simulation results are compared to both laboratory column experiments and those obtained using the reactive transport simulator STOMP in terms of: the spatial and temporal distributions of precipitates and reaction rates and other major species in the reaction system; the changes in porosity and permeability; and the computing efficiency based on wall clock simulation time.

  4. Synthesis Structure and Imaging of Oligodeoxyribonucleotides with Tellurium-nucleobase Derivatization

    SciTech Connect

    J Sheng; A Hassan; W Zhang; J Zhou; B Xu; A Soares; Z Huang

    2011-12-31

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  5. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

    SciTech Connect

    Sheng, J.; Soares, A.; Hassan, A. E. A.; Zhang, W.; Zhou, J.; Xu, B.; Huang, Z.

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  6. New size-expanded RNA nucleobase analogs: A detailed theoretical study

    NASA Astrophysics Data System (ADS)

    Zhang, Laibin; Zhang, Zhenwei; Ren, Tingqi; Tian, Jianxiang; Wang, Mei

    2015-04-01

    Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined.

  7. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.

    PubMed

    Hwu, Jih Ru; Kapoor, Mohit; Li, Rou-Ying; Lin, Yung-Chieh; Horng, Jia-Cherng; Tsay, Shwu-Chen

    2014-12-01

    For the first time ssDNA (25-aptamer of mixed dA, dT, dG, and dC) was wrapped around functionalized single-walled carbon nanotubes (SWCNTs), whose external surfaces were attached to multiple triazole-(ethylene glycol)-dA ligands. This method of hybridization involved the formation of hydrogen bonds between dT of ssDNA and dA of functionalized SWCNTs. It deviates from the reported π-π stacking between the nucleobases of DNA and the external sidewalls of nanotubes. The structural properties of the functionalized SWCNTs and its ssDNA complex were characterized by spectroscopic (including CD and Raman), thermogravimetric, and microscopic (TEM) methods. The results thus obtained establish a new platform of DNA delivery by use of nanotubes as a new vehicle with great potential in biomedical applications and drug development.

  8. Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing.

    PubMed

    Fan, Ming; Yan, Jingxuan; Tan, Huaping; Ben, Dandan; He, Qiuling; Huang, Zhongwei; Hu, Xiaohong

    2014-11-01

    Biopolymer-based gel scaffolds have great potential in the field of tissue regenerative medicine. In this work, a nanostructured biopolymer gel scaffold via specific pairing of functionalized nucleobases was developed for specifically targeted drug delivery and in vitro osteogenesis. The biopolymer gel system was established by the Watson-Crick base pairing between thymine and adenine via the hydrogen bonding. As gel scaffold precursors, opposite charged polysaccharide derivatives, e.g. quaternized cellulose and heparin, could be additionally crosslinked by extra electrostatic interactions. The potential application of this gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. In combination with cell growth factor, e.g. bone morphogenetic protein, the nanostructured gel scaffold exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss.

  9. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.

    PubMed

    Singh, Prabhpreet; Toma, Francesca Maria; Kumar, Jitendra; Venkatesh, V; Raya, Jesus; Prato, Maurizio; Verma, Sandeep; Bianco, Alberto

    2011-06-01

    Single-walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid-state NMR spectroscopy. The uracil-functionalized SWCNTs are able to self-assemble into regular nanorings with a diameter of 50-70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil-uracil base-pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.

  10. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine and Adenine

    SciTech Connect

    Sen, Ananya; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-08-05

    We report the first low-temperature photodetachment photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are model systems for understanding platinum-complex photodynamic therapies, and knowledge of the intrinsic photodetachment properties is crucial for understanding their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra consistent with the complexes where the Pt(CN)42- moiety is largely intact. The adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be between 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV, values that are lower than for the bare Pt(CN)42- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photodetachment spectra of the four nucleobase-dianion complexes, and also in the 266 nm spectra of the Pt(CN)42-∙thymine and Pt(CN)42-∙adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)42-∙T]* and [Pt(CN)42-∙A]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the resonant electron detachment bands observed here for Pt(CN)42-∙T and Pt(CN)42-∙A but not for Pt(CN)42-∙U and Pt(CN)42-∙C to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)42- dianion in the Pt(CN)42-∙M clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase disaplys a long-lived excited state.

  11. CsNIP2;1 is a Plasma Membrane Transporter from Cucumis sativus that Facilitates Urea Uptake When Expressed in Saccharomyces cerevisiae and Arabidopsis thaliana.

    PubMed

    Zhang, Lu; Yan, Jiapei; Vatamaniuk, Olena K; Du, Xiangge

    2016-03-01

    Urea is an important source of nitrogen (N) for the growth and development of plants. It occurs naturally in soils, is the major N source in agricultural fertilizers and is an important N metabolite in plants. Therefore, the identification and characterization of urea transporters in higher plants is important for the fundamental understanding of urea-based N nutrition in plants and for designing novel strategies for improving the N-use efficiency of urea based-fertilizers. Progress in this area, however, is hampered due to scarce knowledge of plant urea transporters. From what is known, urea uptake from the soil into plant roots is mediated by two types of transporters: the major intrinsic proteins (MIPs) and the DUR3 orthologs, mediating low- and high-affinity urea transport, respectively. Here we characterized a MIP family member from Cucumis sativus, CsNIP2;1, with regard to its contribution to urea transport. We show that CsNIP2;1 is a plasma membrane transporter that mediates pH-dependent urea uptake when expressed in yeast. We also found that ectopic expression of CsNIP2;1 improves growth of wild-type Arabidopsis thaliana and rescues growth and development of the atdur3-3 mutant on medium with urea as the sole N source. In addition, CsNIP2;1 is transcriptionally up-regulated by N deficiency, urea and NO3 (-). These data and results from the analyses of the pattern of CsNIP2;1 expression in A. thaliana and cucumber suggest that CsNIP2;1 might be involved in multiple steps of urea-based N nutrition, including urea uptake and internal transport during N remobilization throughout seed germination and N delivery to developing tissues.

  12. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric iron across the outer membrane of Francisella tularensis live vaccine strain.

    PubMed

    Ramakrishnan, Girija; Sen, Bhaswati

    2014-02-01

    Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore-ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used (55)Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. (55)Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore-ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation.

  13. Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action.

    PubMed Central

    Weisser, P; Krämer, R; Sahm, H; Sprenger, G A

    1995-01-01

    The Zymomonas mobilis genes encoding the glucose facilitator (glf), glucokinase (glk), or fructokinase (frk) were cloned and expressed in a lacIq-Ptac system using Escherichia coli K-12 mutants deficient in uptake and phosphorylation of glucose and fructose. Growth on glucose or fructose was restored when the respective genes (glf-glk or glf-frk) were expressed. In E. coli glf+ strains, both glucose and fructose were taken up via facilitated diffusion (Km, 4.1 mM for glucose and 39 mM for fructose; Vmax at 15 degrees C, 75 and 93 nmol min-1 mg-1 [dry weight] for glucose and fructose, respectively). For both substrates, counterflow maxima were observed. PMID:7768841

  14. Uptake of L-nicotine and of 6-hydroxy-L-nicotine by Arthrobacter nicotinovorans and by Escherichia coli is mediated by facilitated diffusion and not by passive diffusion or active transport.

    PubMed

    Ganas, Petra; Brandsch, Roderich

    2009-06-01

    The mechanism by which l-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[(14)C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K(m) of 6.2+/-0.1 microM and a V(max) of 0.70+/-0.08 micromol min(-1) (mg protein)(-1). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1(-)) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[(14)C]nicotine took place. A. nicotinovorans pAO1(-) and Escherichia coli were also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound. l-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood-brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.

  15. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport

    PubMed Central

    Cockerell, Steven R.; Rutkovsky, Alex C.; Zayner, Josiah P.; Cooper, Rebecca E.; Porter, Lindsay R.; Pendergraft, Sam S.; Parker, Zach M.; McGinnis, Marcus W.

    2014-01-01

    The polyamines norspermidine and spermidine are among the environmental signals that regulate Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction. PMID:24530989

  16. Formation of nucleobases from formamide in the presence of iron oxides: implication in chemical evolution and origin of life.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2011-04-01

    Simple compounds like HCN, which have one C and one N, are proposed as the probable precursors for biomonomers. Formamide, a hydrolysis product of HCN, is known as the precursor of various biologically important compounds, for example, nucleobases (purines and pyrimidines). In this paper, we report our results on the synthesis of nucleobases, adenine, cytosine, purine, 9-(hydroxyacetyl) purine, and 4(3H)-pyrimidinone from formamide, using iron oxide (hematite) and oxide hydroxides (goethite and akaganeite) as a catalyst. Goethite and hematite produced purine in higher yield. The products formed were characterized by high-performance liquid chromatography and electrospray ionization mass spectrometry techniques. Results of our study reveal that iron oxides might have worked as efficient prebiotic catalysts.

  17. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis1[OPEN

    PubMed Central

    Li, Bo; Baumann, Ute; Hrmova, Maria; Evrard, Aurelie; Johnson, Alexander A.T.; Birnbaum, Kenneth D.; Mayo, Gwenda M.; Jha, Deepa

    2016-01-01

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress. PMID:26662602

  18. Asymmetric Hydrogenation of α-Purine Nucleobase-Substituted Acrylates with Rhodium Diphosphine Complexes: Access to Tenofovir Analogues.

    PubMed

    Sun, Huan-Li; Chen, Fei; Xie, Ming-Sheng; Guo, Hai-Ming; Qu, Gui-Rong; He, Yan-Mei; Fan, Qing-Hua

    2016-05-01

    The first asymmetric hydrogenation of α-purine nucleobase-substituted α,β-unsaturated esters, catalyzed by a chiral rhodium (R)-Synphos catalyst, has been developed. A wide range of mono- and disubstituted acrylates were successfully hydrogenated under very mild conditions in high yields with good to excellent enantioselectivities (up to 99% ee). This method provides a convenient approach to the synthesis of a new kind of optically pure acyclic nucleoside and Tenofovir analogues. PMID:27112983

  19. A Search for Amino Acids and Nucleobases in the Martian Meteorite Roberts Massif 04262 Using Liquid Chromatography-Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of beta-alanine and gamma-amino-eta-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal eta-omega-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites. A carbon isotope ratio of -24(0/00) +/- 6(0/00) for beta-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of eta-omega-amino acids may be due to a high temperature Fischer-Tropschtype synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  20. A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-05-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of β-alanine and γ-amino-n-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal n-ω-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of -24‰ ± 6‰ for β-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n-ω-amino acids may be due to a high temperature Fischer-Tropsch-type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  1. Formamide-based synthesis of nucleobases by metal(II) octacyanomolybdate(IV): implication in prebiotic chemistry.

    PubMed

    Kumar, Anand; Sharma, Rachana; Kamaluddin

    2014-09-01

    We propose that double metal cyanides that formed in primeval seas might have played a vital role in chemical evolution and the origin of life. An array of metal octacyanomolybdates (MOCMos) has been synthesized, and their role as catalyst in the formation of nucleobases from formamide has been studied. Formamide, a hydrolysis product of HCN, was taken as starting material for the formation of nucleobases. Recent studies support the presence of formamide on some celestial bodies. Metal octacyanomolybdates, MOCMos (M = Mn, Fe, Co, Ni, Cu, Zn, Cd), are found to be highly efficient catalysts in the conversion of formamide into different nucleobases. Neat formamide is converted to purine, 4(3H)-pyrimidinone, cytosine, adenine, 9-(hydroxyacetyl)-purine, and thymine in good yield when using MOCMos. The products formed were characterized by high-performance liquid chromatography and electrospray ionization mass spectrometry techniques. The results of our study show that insoluble double metal cyanides might have acted as efficient catalysts in the synthesis of various biologically important compounds (e.g., purines, pyrimidines) under primeval seas on Earth or elsewhere in our solar system.

  2. Emergent functionality of nucleobase radical cations in duplex DNA: prediction of reactivity using qualitative potential energy landscapes.

    PubMed

    Joseph, Joshy; Schuster, Gary B

    2006-05-10

    The one-electron oxidation of a series of DNA oligonucleotides was examined. Each oligomer contains a covalently linked anthraquinone (AQ) group. Irradiation of the AQ group with near-UV light results in a one-electron oxidation of the DNA that generates a radical cation (electron "hole"). The radical cation migrates through the DNA by a hopping mechanism and is trapped by reaction with water or molecular oxygen, which results in chemical reaction at particular nucleobases. This reaction is revealed as strand cleavage when the irradiated oligonucleotide is treated with piperidine. The specific oligomers examined reveal the existence of three categories of nucleobase sequences: charge shuttles, charge traps, and barriers to charge migration. The characterization of a sequence is not independent of the identity of other sequences in the oligonucleotide, and for this reason, the function of a particular sequence emerges from an analysis of the entire structure. Qualitative potential energy landscapes are introduced as a tool to assist in the rationalization and prediction of the reactions of nucleobases in oxidized DNA. PMID:16669676

  3. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  4. Formamide-based synthesis of nucleobases by metal(II) octacyanomolybdate(IV): implication in prebiotic chemistry.

    PubMed

    Kumar, Anand; Sharma, Rachana; Kamaluddin

    2014-09-01

    We propose that double metal cyanides that formed in primeval seas might have played a vital role in chemical evolution and the origin of life. An array of metal octacyanomolybdates (MOCMos) has been synthesized, and their role as catalyst in the formation of nucleobases from formamide has been studied. Formamide, a hydrolysis product of HCN, was taken as starting material for the formation of nucleobases. Recent studies support the presence of formamide on some celestial bodies. Metal octacyanomolybdates, MOCMos (M = Mn, Fe, Co, Ni, Cu, Zn, Cd), are found to be highly efficient catalysts in the conversion of formamide into different nucleobases. Neat formamide is converted to purine, 4(3H)-pyrimidinone, cytosine, adenine, 9-(hydroxyacetyl)-purine, and thymine in good yield when using MOCMos. The products formed were characterized by high-performance liquid chromatography and electrospray ionization mass spectrometry techniques. The results of our study show that insoluble double metal cyanides might have acted as efficient catalysts in the synthesis of various biologically important compounds (e.g., purines, pyrimidines) under primeval seas on Earth or elsewhere in our solar system. PMID:25192494

  5. Mechanistic aspects of photoconversion at semiconductor-liquid junctions and in facilitated transport membranes. Final report, March 15, 1994--March 14, 1998

    SciTech Connect

    Koval, C.A.

    1998-06-01

    A major portion of the research completed during this funding period involved the use of rotating ring-disk electrochemical techniques in conjunction with carefully chosen solution redox systems to investigate hot electron transfer reactions at the semiconductor electrolyte interface. This paper cover the following topics: photoreduction reactions at GaAs/AlGaAs superlattice electrodes; photoelectrochemistry at GaInP{sub 2} capped p-GaAs electrodes; further investigation of p-InP photocathodes; rotating ring disk photoelectrochemistry at TiO{sub 2} films; and photomodulation of interfacial mass transport rates.

  6. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and

  7. The importin protein karyopherin-β1 regulates the mice fibroblast-like synoviocytes inflammation via facilitating nucleus transportation of STAT3 transcription factor.

    PubMed

    Sun, Chi; Yu, Zhaohui; Wang, Youhua; Tao, Tao

    2016-03-18

    Karyopherin-β1 (KPNB1) which is an adaptor protein which transports several proteins to the nucleus. We study the functions and possible mechanisms of KPNB1 in collagen-induced arthritis (CIA). Western blotting and immunohistochemistry shows the protein expression of KPNB1 is increased in synovial tissue of CIA mice compared with the controls. Double immunofluorescent staining suggests that KPNB1 is expressed in CIA mice fibroblast-like synoviocytes (FLS). Moreover, the expression of KPNB1 in FLS is upregulated in time-dependent manner by IL-1β stimulation. Both immunoprecipitation and immunofluorescent staining assay reveals the interaction between KPNB1 and STAT3 and their translocation from cytoplasm to nucleus in IL-1β-treated FLS. Furthermore, suppression of KPNB1 inhibits IL-1β-induced the nucleus expression of STAT3 in FLS and decreases the expression of IL-6 and MMP-1, leading to attenuation of FLS invasion. Finally, the transport function of KPNB1 is depended on KPNA2. Therefore, we infer that KPNB1 may play a key role in the inflammation process of RA via STAT3 signal transduction pathway. PMID:26879143

  8. Facilitated transport of Mn2+ in sycamore (Acer pseudoplatanus) cells and excised maize root tips. A comparative 31P n.m.r. study in vivo.

    PubMed

    Roby, C; Bligny, R; Douce, R; Tu, S I; Pfeffer, P E

    1988-06-01

    Movement of paramagnetic Mn2+ into sycamore (Acer pseudoplatanus) cells has been indirectly examined by observing the line broadening exhibited in its 31P n.m.r. spectra. Mn2+ was observed to pass into the vacuole, while exhibiting a very minor accumulation in the cytoplasm. With time, gradual leakage of phosphate from the vacuole to the cytoplasm was observed along with an increase in glucose-6-phosphate. Anoxia did not appear to affect the relative distribution of Mn2+ in the cytoplasm and vacuole. Under hypoxic conditions restriction of almost all movement of Mn2+ across the plasmalemma as well as the tonoplast was observed. In contrast, maize root tips showed entry and complete complexation of nucleotide triphosphate by Mn2+ during hypoxia. The rate of passage of Mn2+ across the tonoplast in both sycamore and maize root cells is approximately the same. However, the rates of facilitated movement across the respective plasma membranes appear to differ. More rapid movement of Mn2+ across the plasmalemma in maize root tip cells allows a gradual build-up of metal ion in the cytoplasm prior to its diffusion across the tonoplast. Sycamore cells undergo a slower uptake of Mn2+ into their cytoplasms (comparable with the rate of diffusion through the tonoplast), so little or no observable accumulation of Mn2+ is observed in this compartment.

  9. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle.

    PubMed

    Poncet, Nadège; Mitchell, Fiona E; Ibrahim, Adel F M; McGuire, Victoria A; English, Grant; Arthur, J Simon C; Shi, Yun-Bo; Taylor, Peter M

    2014-01-01

    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance

  10. Glycerol uptake is by passive diffusion in the heart but by facilitated transport in RBCs at high glycerol levels in cold acclimated rainbow smelt (Osmerus mordax).

    PubMed

    Clow, Kathy A; Driedzic, William R

    2012-04-15

    Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ∼1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver. PMID:22319051

  11. Glycerol uptake is by passive diffusion in the heart but by facilitated transport in RBCs at high glycerol levels in cold acclimated rainbow smelt (Osmerus mordax).

    PubMed

    Clow, Kathy A; Driedzic, William R

    2012-04-15

    Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ∼1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver.

  12. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    PubMed Central

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring. PMID:26750747

  13. Preliminary studies on unusual polymorphs of thymine: Structural comparison with other nucleobases

    NASA Astrophysics Data System (ADS)

    Chennuru, Ramanaiah; Muthudoss, Prakash; Ramakrishnan, Srividya; Mohammad, Amjad Basha; Ravi Chandra Babu, R.; Mahapatra, Sudarshan; Nayak, Susanta K.

    2016-09-01

    Two polymorphs Form-R2 and Form-R4 of anhydrous thymine, one of the four nucleobases in the nucleic acid of DNA were obtained via sublimation crystallization and desolvation technique respectively. Form-R2 crystallizes in monoclinic C 2/c with a = 25.107(7) Å, b = 6.846(2) Å, c = 6.715(2) Å, β = 90.529(6)⁰ and V = 1154.1(5) Å3. The supramolecular assembly in Form-R2 is a sheet of hydrogen bonded network similar to that found in the crystal structures of other reported anhydrous form of thymine (Form-R1). Interestingly the thermal behavior is similar for these two forms with a minor difference in powder X-ray diffraction pattern. Further thymine Form-R2 closely matches with one of the predicted form of thymine using Polymorph module of Accelrys. Form-R4 is obtained by the dehydration of the mono hydrated form (Form-R3) and characterized by powder X-ray diffraction, FTIR spectroscopic techniques and thermal analysis.

  14. Low-energy positron scattering from DNA nucleobases: the effects from permanent dipoles

    NASA Astrophysics Data System (ADS)

    Franz, Jan; Gianturco, Francesco Antonio

    2014-10-01

    Ab initio quantum calculations for low-energy positron scattering from gas-phase isolated molecular nucleobases which are part of the DNA structure are presented and discussed over the range of 1 eV to 25 eV. The calculations report the integral cross sections (ICSs) and the momentum-transfer cross sections (MTCSs) for Adenine, Guanine, Thymine and Cytosine. The calculations show very clearly the important role of the dominant long-range interaction between the positron projectile and the permanent dipole-moments of the target molecules in deciding the relative sizes of the ICSs and MTCSs for the present series of molecules. Such results confirm the largely repulsive interaction between positron and DNA bases, which is nevertheless producing very large cross sections and marked deflection functions from the latter molecules. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  15. High-resolution photoelectron spectra of the pyrimidine-type nucleobases

    SciTech Connect

    Fulfer, K. D.; Hardy, D.; Poliakoff, E. D.; Aguilar, A. A.

    2015-06-14

    High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.

  16. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring.

  17. Determination of pKa values for deprotonable nucleobases in short model oligonucleotides.

    PubMed

    González-Olvera, Julio C; Martínez-Reyes, José; González-Jasso, Eva; Pless, Reynaldo C

    2015-11-01

    The deprotonation of ionizable nucleobases centrally placed in short model oligonucleotides was examined under different physical conditions, using UV absorption spectroscopy. The oligonucleotide sequences were designed so that only the central base would be ionized over the pH range examined. pKa values of 9.90±0.01 and 9.34±0.04 were determined for the guanine group in the oligomer d-ACAGCAC and 2'-deoxyguanosine, respectively, both at 25°C and 0.1M NaCl. Lengthening the oligonucleotide up to the tridecamer stage further increases the pKa of the central guanine moiety. Electrolyte concentration, temperature, and mixed water-ethanol solvents affect the acidity of the central base. Changes in the sequence surrounding the central guanine can also have a significant effect, especially in the case of strongly stacking sequences. The pKa values were also determined for the hepta(2'-O-methyl)ribonucleotide and the heptamer PNA of identical sequence, as well as for oligodeoxyribonucleotides with different deprotonable bases, viz. thymine, uracil, or hypoxanthine, in the central position. The results are interpreted in terms of the electric-field effect exerted on the departing proton by the negative electric charges located on the internucleotide phosphate groups, and calculations show this effect to approximately explain the magnitude of the pKa difference observed between the deoxyriboheptanucleotide and its electroneutral PNA analogue. PMID:26188860

  18. High-energy chemistry of formamide: A unified mechanism of nucleobase formation

    PubMed Central

    Ferus, Martin; Nesvorný, David; Šponer, Jiří; Kubelík, Petr; Michalčíková, Regina; Shestivská, Violetta; Šponer, Judit E.; Civiš, Svatopluk

    2015-01-01

    The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules. PMID:25489115

  19. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases.

    PubMed

    Improta, Roberto; Santoro, Fabrizio; Blancafort, Lluís

    2016-03-23

    The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.

  20. Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Wen; Chen, Jem-Kun; Cheng, Chih-Chia; Kuo, Shiao-Wei

    2013-04-01

    In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to generate PNIPAAm-adenine supramolecular complexes. A nucleobase-like hydrogen bonding (NLHB) between PNIPAAm and adenine was found that changed the morphology, crystalline structure, and temperature responsiveness of PNIPAAm microgels relatively to the adenine concentrations. With increasing the adenine concentration, the PNIPAAm-adenine supramolecular complexes gradually altered their morphologies from microgel particles to thin film structures and suppressed the thermodynamical coil-to-globule transition of PNIPAAm because of the NLHB existed between the PNIPAAm amide and ester groups and the adenine amide groups (Cdbnd O⋯Hsbnd N and Nsbnd H⋯Nsbnd R), verified by FTIR spectral analysis. NLHB was also diverse and extensive upon increasing the temperature; therefore, the thermoresponsive behavior of the complexes was altered with the NLBH intensity, evaluated by the inter-association equilibrium constant (Ka) above and below their LCST. Therefore, PNIPAAm can be as a medium to recognize adenine in various concentrations, which could potentially be applied in DNA recognition.

  1. High-energy chemistry of formamide: a unified mechanism of nucleobase formation.

    PubMed

    Ferus, Martin; Nesvorný, David; Šponer, Jiří; Kubelík, Petr; Michalčíková, Regina; Shestivská, Violetta; Šponer, Judit E; Civiš, Svatopluk

    2015-01-20

    The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules. PMID:25489115

  2. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies

    PubMed Central

    Chawla, Mohit; Oliva, Romina; Bujnicki, Janusz M.; Cavallo, Luigi

    2015-01-01

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in. PMID:26117545

  3. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies.

    PubMed

    Chawla, Mohit; Oliva, Romina; Bujnicki, Janusz M; Cavallo, Luigi

    2015-08-18

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. 'modified base pairs'. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson-Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in. PMID:26117545

  4. Facilitating Facilitators: Enhancing PBL through a Structured Facilitator Development Program

    ERIC Educational Resources Information Center

    Salinitri, Francine D.; Wilhelm, Sheila M.; Crabtree, Brian L.

    2015-01-01

    With increasing adoption of the problem-based learning (PBL) model, creative approaches to enhancing facilitator training and optimizing resources to maintain effective learning in small groups is essential. We describe a theoretical framework for the development of a PBL facilitator training program that uses the constructivist approach as the…

  5. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    PubMed

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events.

  6. Specific armadillo repeat sequences facilitate β-catenin nuclear transport in live cells via direct binding to nucleoporins Nup62, Nup153, and RanBP2/Nup358.

    PubMed

    Sharma, Manisha; Jamieson, Cara; Johnson, Michael; Molloy, Mark P; Henderson, Beric R

    2012-01-01

    β-Catenin transduces the Wnt signal from the membrane to nucleus, and certain gene mutations trigger its nuclear accumulation leading to cell transformation and cancer. β-Catenin shuttles between the nucleus and cytoplasm independent of classical Ran/transport receptor pathways, and this movement was previously hypothesized to involve the central Armadillo (Arm) domain. Fluorescence recovery after photobleaching (FRAP) assays were used to delineate functional transport regions of the Arm domain in living cells. The strongest nuclear import/export activity was mapped to Arm repeats R10-12 using both in vivo FRAP and in vitro export assays. By comparison, Arm repeats R3-8 of β-catenin were highly active for nuclear import but displayed a comparatively weak export activity. We show for the first time using purified components that specific Arm sequences of β-catenin interact directly in vitro with the FG repeats of the nuclear pore complex (NPC) components Nup62, Nup98, and Nup153, indicating an independent ability of β-catenin to traverse the NPC. Moreover, a proteomics screen identified RanBP2/Nup358 as a binding partner of Arm R10-12, and β-catenin was confirmed to interact with endogenous and ectopic forms of Nup358. We further demonstrate that knock-down of endogenous Nup358 and Nup62 impeded the rate of nuclear import/export of β-catenin to a greater extent than that of importin-β. The Arm R10-12 sequence facilitated transport even when β-catenin was bound to the Arm-binding partner LEF-1, and its activity was stimulated by phosphorylation at Tyr-654. These findings provide functional evidence that the Arm domain contributes to regulated β-catenin transport through direct interaction with the NPC.

  7. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine

    SciTech Connect

    Lee, S.; Bowman, B.R.; Ueno, Y.; Wang, S.; Verdine, G.L.

    2008-11-03

    The predominant product of aberrant DNA methylation is the genotoxic lesion N7-methyl-2{prime}-deoxyguanosine (m{sup 7}dG). M{sup 7}dG is recognized and excised by lesion-specific DNA glycosylases, namely AlkA in E. coli and Aag in humans. Structural studies of m{sup 7}dG recognition and catalysis by these enzymes have been hampered due to a lack of efficient means by which to incorporate the chemically labile m{sup 7}dG moiety site-specifically into DNA on a preparative scale. Here we report a solution to this problem. We stabilized the lesion toward acid-catalyzed and glycosylase-catalyzed depurination by 2{prime}-fluorination and toward base-catalyzed degradation using mild, nonaqueous conditions in the DNA deprotection reaction. Duplex DNA containing 2{prime}-fluoro-m{sup 7}dG (Fm{sup 7}dG) cocrystallized with AlkA as a host-guest complex in which the lesion-containing segment of DNA was nearly devoid of protein contacts, thus enabling the first direct visualization of the N7-methylguanine lesion nucleobase in DNA. The structure reveals that the base-pairing mode of Fm{sup 7}dG:C is nearly identical to that of G:C, and Fm{sup 7}dG does not induce any apparent structural disturbance of the duplex structure. These observations suggest that AlkA and Aag must perform a structurally invasive interrogation of DNA in order to detect the presence of intrahelical m{sup 7}dG lesions.

  8. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-01

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution.

  9. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.

    PubMed

    Liu, Zhang; Wang, Dong; Cao, Meiwen; Han, Yuchun; Xu, Hai; Wang, Yilin

    2015-07-15

    Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.

  10. Multicomponent click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: promising acidic corrosion inhibitors for steel.

    PubMed

    González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa

    2013-12-06

    A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.

  11. Nucleobase-mediated, photocatalytic production of amphiphiles to promote the self-assembly of a simple self-replicating protocell.

    NASA Astrophysics Data System (ADS)

    Monnard, Pierre-Alain; Maurer, Sarah, E.; Albertsen, Anders, N.; Boncella, James, M.; Cape, Jonathan, L.

    replaced by a single nucleobase, 8-oxoguanine, which is tethered to one bipyridine ligand of the metal center. We report here the following major steps towards this chemical protocell: 1) the spontaneous formation of chemical structures consisting of decanoic acid, its precursor, and the simplified NA-ruthenium complexes. 2) the metabolism mediation by a nucleobase to effectively promote the photochemical amphiphile synthesis. 3) the demonstration of reaction selectivity dependent on the nature of the information molecule since only one specific nucleobase that has the required redox potential allows the metabolism to function. Finally, 4) the photochemical formation of amphiphiles can occur efficiently within a preformed membrane, i.e., the protocell compartment. The next step is the integration of short nucleic acid oligomers as opposed to a single nucleobase as the information material to study their photocatalytic activity mediation and polymerization.

  12. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Motomura, K.; Kukk, E.; Fukuzawa, H.; Wada, S.; Tachibana, T.; Ito, Y.; Mondal, S.; Sakai, T.; Matsunami, K.; Koga, R.; Ohmura, S.; Takahashi, Y.; Kanno, M.; Rudenko, A.; Nicolas, C.; Liu, X.-J.; Zhang, Y.; Chen, J.; Anand, M.; Jiang, Y. H.; Kim, D.-E.; Tono, K.; Yabashi, M.; Kono, H.; Miron, C.; Yao, M.; Ueda, K.

    2016-04-01

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil. This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. This validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.

  13. Dispersion interactions between urea and nucleobases contribute to the destabilization of RNA by urea in aqueous solution.

    PubMed

    Kasavajhala, Koushik; Bikkina, Swetha; Patil, Indrajit; MacKerell, Alexander D; Priyakumar, U Deva

    2015-03-01

    Urea has long been used to investigate protein folding and, more recently, RNA folding. Studies have proposed that urea denatures RNA by participating in stacking interactions and hydrogen bonds with nucleic acid bases. In this study, the ability of urea to form unconventional stacking interactions with RNA bases is investigated using ab initio calculations (RI-MP2 and CCSD(T) methods with the aug-cc-pVDZ basis set). A total of 29 stable nucleobase-urea stacked complexes are identified in which the intermolecular interaction energies (up to -14 kcal/mol) are dominated by dispersion effects. Natural bond orbital (NBO) and atoms in molecules (AIM) calculations further confirm strong interactions between urea and nucleobases. Calculations on model systems with multiple urea and water molecules interacting with a guanine base lead to a hypothesis that urea molecules along with water are able to form cage-like structures capable of trapping nucleic acid bases in extrahelical states by forming both hydrogen-bonded and dispersion interactions, thereby contributing to the unfolding of RNA in the presence of urea in aqueous solution.

  14. Fast Simultaneous Determination of 13 Nucleosides and Nucleobases in Cordyceps sinensis by UHPLC-ESI-MS/MS.

    PubMed

    Zong, Shi-Yu; Han, Han; Wang, Bing; Li, Ning; Dong, Tina Ting-Xia; Zhang, Tong; Tsim, Karl W K

    2015-01-01

    A reliable ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the fast simultaneous determination of 13 nucleosides and nucleobases in Cordyceps sinensis (C. sinensis) with 2-chloroadenosine as internal standard was developed and validated. Samples were ultrasonically extracted in an ice bath thrice, and the optimum analyte separation was performed on an ACQUITY UPLC(TM) HSS C18 column (100 mm × 2.1 mm, 1.8 μm) with gradient elution. All targeted analytes were separated in 5.5 min. Furthermore, all calibration curves showed good linear regression (r > 0.9970) within the test ranges, and the limits of quantitation and detection of the 13 analytes were less than 150 and 75 ng/mL, respectively. The relative standard deviations (RSDs) of intra- and inter-day precisions were <6.23%. Recoveries of the quantified analytes ranged within 85.3%-117.3%, with RSD < 6.18%. The developed UHPLC-ESI-MS/MS method was successfully applied to determine nucleosides and nucleobases in 11 batches of C. sinensis samples from different regions in China. The range for the total content in the analyzed samples was 1329-2057 µg/g. PMID:26690105

  15. A Novel [15N] Glutamine Flux using LC-MS/MS-SRM for Determination of Nucleosides and Nucleobases

    PubMed Central

    Jin, Feng; Bhowmik, Salil Kumar; Putluri, Vasanta; Gu, Franklin; Gohlke, Jie; Von Rundstedt, Friedrich Carl; Dasgupta, Subhamoy; Krishnapuram, Rashmi; O’Malley, Bert W.; Sreekumar, Arun; Putluri, Nagireddy

    2016-01-01

    The growth of cancer cells relies more on increased proliferation and autonomy compared to non-malignant cells. The rate of de novo nucleotide biosynthesis correlates with cell proliferation rates. In part, glutamine is needed to sustain high rates of cellular proliferation as a key nitrogen donor in purine and pyrimidine nucleotide biosynthesis. In addition, glutamine serves as an essential substrate for key enzymes involved in the de novo synthesis of purine and pyrimidine nucleotides. Here, we developed a novel liquid chromatography (LC-MS) to quantify glutamine-derived [15N] nitrogen flux into nucleosides and nucleobases (purines and pyrimidines). For this, DNA from 5637 bladder cancer cell line cultured in 15N labelled glutamine and then enzymatically hydrolyzed by sequential digestion. Subsequently, DNA hydrolysates were separated by LC-MS and Selected Reaction Monitoring (SRM) was employed to identify the nucleobases and nucleosides. Thus, high sensitivity and reproducibility of the method make it a valuable tool to identify the nitrogen flux primarily derived from glutamine and can be further adaptable for high throughput analysis of large set of DNA in a clinical setting. PMID:27158554

  16. Strikingly different effects of hydrogen bonding on the photodynamics of individual nucleobases in DNA: comparison of guanine and cytosine.

    PubMed

    Zelený, Tomáš; Ruckenbauer, Matthias; Aquino, Adelia J A; Müller, Thomas; Lankaš, Filip; Dršata, Tomáš; Hase, William L; Nachtigallova, Dana; Lischka, Hans

    2012-08-22

    Ab initio surface hopping dynamics calculations were performed to study the photophysical behavior of cytosine and guanine embedded in DNA using a quantum mechanical/molecular mechanics (QM/MM) approach. It was found that the decay rates of photo excited cytosine and guanine were affected in a completely different way by the hydrogen bonding to the DNA environment. In case of cytosine, the geometrical restrictions exerted by the hydrogen bonds did not influence the relaxation time of cytosine significantly due to the generally small cytosine ring puckering required to access the crossing region between excited and ground state. On the contrary, the presence of hydrogen bonds significantly altered the photodynamics of guanine. The analysis of the dynamics indicates that the major contribution to the lifetime changes comes from the interstrand hydrogen bonds. These bonds considerably restricted the out-of-plane motions of the NH(2) group of guanine which are necessary for the ultrafast decay to the ground state. As a result, only a negligible amount of trajectories decayed into the ground state for guanine embedded in DNA within the simulation time of 0.5 ps, while for comparison, the isolated guanine relaxed to the ground state with a lifetime of about 0.22 ps. These examples show that, in addition to phenomena related to electronic interactions between nucleobases, there also exist relatively simple mechanisms in DNA by which the lifetime of a nucleobase is significantly enhanced as compared to the gas phase. PMID:22845192

  17. Characterization of nucleosides and nucleobases in natural Cordyceps by HILIC-ESI/TOF/MS and HILIC-ESI/MS.

    PubMed

    Zhao, Heng-Qiang; Wang, Xiao; Li, Hong-Mei; Yang, Bin; Yang, Hong-Jun; Huang, Luqi

    2013-08-15

    A method combining hydrophilic interaction chromatography (HILIC) and electrospray ionization mass spectrometry (ESI-MS) was developed for the characterization and determination of natural Cordyceps. Separation was achieved on a Waters Xbridge Amide column with gradient elution. Identification of 15 target nucleosides and nucleobases was based on retention time, UV spectra and mass measurements of the protonated molecules ([M+H]⁺) and main fragment ions (ESI-TOF/MS). Eight non-target compounds were tentatively identified by ESI-TOF/MS. The 15 target compounds were quantified by HILIC-ESI-MS/MS using time-programmed selective ion monitoring or multiple reaction monitoring in positive-ion mode under optimized mass conditions. This technique showed good linearity, repeatability and recovery. This approach was also successfully implemented in the analysis of nucleosides and nucleobases in 12 batches of natural Cordyceps samples that were collected from different regions in China. The developed HILIC-ESI-MS method exhibited clear advantages in identifying and determining highly polar bioactive components in Cordyceps, as well as their quality control.

  18. Fast Simultaneous Determination of 13 Nucleosides and Nucleobases in Cordyceps sinensis by UHPLC-ESI-MS/MS.

    PubMed

    Zong, Shi-Yu; Han, Han; Wang, Bing; Li, Ning; Dong, Tina Ting-Xia; Zhang, Tong; Tsim, Karl W K

    2015-12-04

    A reliable ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the fast simultaneous determination of 13 nucleosides and nucleobases in Cordyceps sinensis (C. sinensis) with 2-chloroadenosine as internal standard was developed and validated. Samples were ultrasonically extracted in an ice bath thrice, and the optimum analyte separation was performed on an ACQUITY UPLC(TM) HSS C18 column (100 mm × 2.1 mm, 1.8 μm) with gradient elution. All targeted analytes were separated in 5.5 min. Furthermore, all calibration curves showed good linear regression (r > 0.9970) within the test ranges, and the limits of quantitation and detection of the 13 analytes were less than 150 and 75 ng/mL, respectively. The relative standard deviations (RSDs) of intra- and inter-day precisions were <6.23%. Recoveries of the quantified analytes ranged within 85.3%-117.3%, with RSD < 6.18%. The developed UHPLC-ESI-MS/MS method was successfully applied to determine nucleosides and nucleobases in 11 batches of C. sinensis samples from different regions in China. The range for the total content in the analyzed samples was 1329-2057 µg/g.

  19. Connectivity patterns and rotamer states of nucleobases determine acid-base properties of metalated purine quartets.

    PubMed

    Lüth, Marc Sven; Freisinger, Eva; Kampf, Gunnar; Garijo Anorbe, Marta; Griesser, Rolf; Operschall, Bert P; Sigel, Helmut; Lippert, Bernhard

    2015-07-01

    Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference.

  20. Connectivity patterns and rotamer states of nucleobases determine acid-base properties of metalated purine quartets.

    PubMed

    Lüth, Marc Sven; Freisinger, Eva; Kampf, Gunnar; Garijo Anorbe, Marta; Griesser, Rolf; Operschall, Bert P; Sigel, Helmut; Lippert, Bernhard

    2015-07-01

    Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference. PMID:25773716

  1. Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation

    PubMed Central

    De, Mithu; Abazeed, Mohamed E.; Fuller, Robert S.

    2013-01-01

    Human Golgi-localized, γ-ear–containing, ADP-ribosylation factor–binding proteins (Ggas) bind directly to acidic dileucine sorting motifs in the cytosolic tails (C-tails) of intracellular receptors. Despite evidence for a role in recruiting ubiquitinated cargo, it remains unclear whether yeast Ggas also function by binding peptide-sorting signals directly. Two-hybrid analysis shows that the Gga1p and Gga2p Vps27, Hrs, Stam (VHS) domains both bind a site in the Kex2p C-tail and that the Gga2p VHS domain binds a site in the Vps10p C-tail. Binding requires deletion of an apparently autoinhibitory sequence in the Gga2p hinge. Ser780 in the Kex2p C-tail is crucial for binding: an Ala substitution blocks but an Asp substitution permits binding. Biochemical assays using purified Gga2p VHS–GGA and TOM1 (GAT) and glutathione S-transferase–Kex2p C-tail fusions show that Gga2p binds directly to the Kex2p C-tail, with relative affinities Asp780 > Ser780 > Ala780. Affinity-purified antibody against a peptide containing phospho-Ser­780 recognizes wild-type Kex2p but not S780A Kex2p, showing that Ser780 is phosphorylated in vivo; phosphorylation of Ser780 is up-regulated by cell wall–damaging drugs. Finally, mutation of Ser780 alters trafficking of Kex2p both in vivo and in cell-free trans-Golgi network (TGN)–prevacuolar compartment (PVC) transport. Thus yeast Gga adaptors facilitate TGN–PVC transport by direct binding of noncanonical phosphoregulated Gga-binding sites in cargo molecules. PMID:23408788

  2. Astragaloside IV facilitates glucose transport in C2C12 myotubes through the IRS1/AKT pathway and suppresses the palmitate-induced activation of the IKK/IκBα pathway.

    PubMed

    Zhu, Rongfeng; Zheng, Jianjun; Chen, Lizhen; Gu, Bin; Huang, Shengli

    2016-06-01

    Astragaloside IV is a monomer isolated from Astragalus membranaceus (Fisch.) Bunge, which is one of the most widely used plant-derived drugs in traditional Chinese medicine for diabetes therapy. In the present study, we aimed to examine the effects of astragaloside IV on glucose in C2C12 myotubes and the underlying molecular mechanisms responsible for these effects. Four-day differentiated C2C12 myotubes were exposed to palmitate for 16 h in order to establish a model of insulin resistance and 3H glucose uptake, using 2-Deoxy‑D‑[1,2-3H(N)]-glucose (radiolabeled 2-DG), was detected. Astragaloside IV was added 2 h prior to palmitate exposure. The translocation of glucose transporter 4 (GLUT4) was evaluated by subcellular fractionation, and the expression of insulin signaling molecules such as insulin receptor β (IRβ), insulin receptor substrate (IRS)1/protein kinase B (AKT) and inhibitory κB kinase (IKK)/inhibitor-κBα (IκBα), which are associated with insulin signal transduction, were assessed in the basal or the insulin‑stimulated state using western blot analysis or RT-PCR. We also examined the mRNA expression of monocyte chemotactic protein 1 (MCP-1), interleukin 6 (IL-6), tumor necrosis factor α (TNFα) and Toll‑like receptor 4 (TLR4). Taken together, these findings demonstrated that astragaloside IV facilitates glucose transport in C2C12 myotubes through a mechanism involving the IRS1/AKT pathway, and suppresses the palmitate-induced activation of the IKK/IκBα pathway.

  3. HILIC-UPLC-MS/MS combined with hierarchical clustering analysis to rapidly analyze and evaluate nucleobases and nucleosides in Ginkgo biloba leaves.

    PubMed

    Yao, Xin; Zhou, Guisheng; Tang, Yuping; Guo, Sheng; Qian, Dawei; Duan, Jin-Ao

    2015-02-01

    Ginkgo biloba leaf extract has been widely used in dietary supplements and more recently in some foods and beverages. In addition to the well-known flavonol glycosides and terpene lactones, G. biloba leaves are also rich in nucleobases and nucleosides. To determine the content of nucleobases and nucleosides in G. biloba leaves at trace levels, a reliable method has been established by using hydrophilic interaction ultra performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HILIC-UPLC-TQ-MS/MS) working in multiple reaction monitoring mode. Eleven nucleobases and nucleosides were simultaneously determined in seven min. The proposed method was fully validated in terms of linearity, sensitivity, and repeatability, as well as recovery. Furthermore, hierarchical clustering analysis (HCA) was performed to evaluate and classify the samples according to the contents of the eleven chemical constituents. The established approach could be helpful for evaluation of the potential values as dietary supplements and the quality control of G. biloba leaves, which might also be utilized for the investigation of other medicinal herbs containing nucleobases and nucleosides.

  4. State-transitions facilitate robust quantum yields and cause an over-estimation of electron transport in Dunaliella tertiolecta cells held at the CO₂ compensation point and re-supplied with DIC.

    PubMed

    Ihnken, Sven; Kromkamp, Jacco C; Beardall, John; Silsbe, Greg M

    2014-03-01

    Photosynthetic energy consumption and non-photosynthetic energy quenching processes are inherently linked. Both processes must be controlled by the cell to allow cell maintenance and growth, but also to avoid photodamage. We used the chlorophyte algae Dunaliella tertiolecta to investigate how the interactive regulation of photosynthetic and non-photosynthetic pathways varies along dissolved inorganic carbon (DIC) and photon flux gradients. Specifically, cells were transferred to DIC-deplete media to reach a CO₂ compensation before being re-supplied with DIC at various concentrations and different photon flux levels. Throughout these experiments we monitored and characterized the photophysiological responses using pulse amplitude modulated fluorescence, oxygen evolution, 77 K fluorescence emission spectra, and fast-repetition rate fluorometry. O₂ uptake was not significantly stimulated at DIC depletion, which suggests that O₂ production rates correspond to assimilatory photosynthesis. Fluorescence-based measures of relative electron transport rates (rETRs) over-estimated oxygen-based photosynthetic measures due to a strong state-transitional response that facilitated high effective quantum yields. Adoption of an alternative fluorescence-based rETR calculation that accounts for state-transitions resulted in improved linear oxygen versus rETR correlation. This study shows the extraordinary capacity of D. tertiolecta to maintain stable effective quantum yields by flexible regulation of state-transitions. Uncertainties about the control mechanisms of state-transitions are presented.

  5. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO₂ Separation from CH₄ and N₂.

    PubMed

    Otvagina, Ksenia V; Mochalova, Alla E; Sazanova, Tatyana S; Petukhov, Anton N; Moskvichev, Alexandr A; Vorotyntsev, Andrey V; Afonso, Carlos A M; Vorotyntsev, Ilya V

    2016-06-09

    CO₂ separation was found to be facilitated by transport membranes based on novel chitosan (CS)-poly(styrene) (PS) and chitosan (CS)-poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF₄], [bmim][PF₆], and [bmim][Tf₂N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75-104 MPa for CS-PAN and 69-75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO₂ permeability 400 Barrers belongs to CS-b-PS/[bmim][BF₄]. The highest selectivity α (CO₂/N₂) = 15.5 was achieved for CS-b-PAN/[bmim][BF₄]. The operational temperature of the membranes is under 220 °C.

  6. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    PubMed Central

    Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.

    2016-01-01

    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964

  7. Controlled synthesis of Pt nanoparticles array through electroreduction of cisplatin bound at nucleobases terminated surface and application into H2O2 sensing.

    PubMed

    Ji, Shujun; Guo, Qingqing; Yue, Qiaoli; Wang, Lei; Wang, Huaisheng; Zhao, Jinsheng; Dong, Ruixin; Liu, Jifeng; Jia, Jianbo

    2011-01-15

    Fabrication of sub-monolayer array of Pt nanoparticles (PtNPs) assembled at nucleobases terminated layers and their application into H(2)O(2) and glucose sensing were reported. To prepare such a PtNPs assembly, 3-mercaptopropionic acid (MPA), Zr(4+), nucleotide-5'-monophosphate (NTMP including guanosine, adenosine, cytidine, uridine-5'-monophosphate, and abbreviations were GMP, AMP, CMP, UMP, respectively) were adsorbed onto Au substrate sequentially to form nucleobases terminated surface and Zr(4+) acted as binder to link carboxylic and phosphoric groups (NTMP/Zr(4+)/MPA/Au). Complexation of cisplatin, cis-Pt(NH(3))(2)Cl(2), with terminated nucleobases and following electrochemical reduction of surface-bound cisplatin gave PtNPs attached surface. Different PtNPs coverage or particle density was obtained depending on the NTMP used and decreased in the order: PtNPs/GMP/Zr(4+)/MPA/Au>PtNPs/AMP/Zr(4+)/MPA/Au>PtNPs/CMP/Zr(4+)/MPA/Au>PtNPs/UMP/Zr(4+)/MPA/Au. The surface loading of Pt was between 160 and 16 ng/cm(2). The as prepared PtNPs can be used as electrocatalysts for H(2)O(2) sensing (detection limit of H(2)O(2)<100 nM) and the sensitivity increased with decreasing PtNPs density. After adsorption of glucose oxidase, the modified electrode can be used as enzymatic electrode for glucose sensing and a detection limit of 38.5 μM was achieved. This study provided an example of fabricating PtNP arrays utilising surface complexation of cisplatin with nucleobases. The advantage of this method is that the NP density can be controlled through changing nucleobases or Pt complexes used to obtain suitable kinetics of the complexation reactions. Additionally, the PtNPs sub-monolayer as prepared has high sensitivity for H(2)O(2) sensing even at a very low loading of Pt.

  8. Determination of the nucleosides and nucleobases in Tuber samples by dispersive solid-phase extraction combined with liquid chromatography-mass spectrometry.

    PubMed

    Liu, Ping; Li, Yuan-Yuan; Li, Hong-Mei; Wan, Duan-Ji; Tang, Ya-Jie

    2011-02-21

    A simple, fast and inexpensive method based on dispersive solid phase extraction (DSPE) combined with LC-MS was developed for simultaneous determination of 7 nucleosides and nucleobases (i.e., adenine, hypoxanthine, uridine, adenosine, guanine, guanosine, and inosine) in Tuber fruiting-bodies and fermentation mycelia. The DSPE procedure was firstly introduced to remove the protein interference from sample solutions, and D3520 macroporous resin was chosen as the DSPE sorbent because of its high removal capability on protein interferences, but low adsorption rate on analytes. Besides, key parameters on DSPE procedure (i.e., macroporous resin type, macroporous resin amount, methanol concentration, and vortex time) were optimized, and the protein removal efficacy could achieve about 95% after the process optimization. Though the method validation test, the DSPE-LC-MS method was confirmed to be precise, accurate and sensitive, and the column blinding problem was solved successfully. By using this established method, the total amount of nucleosides and nucleobases in the fermentation mycelia was determined to range from 4881.5 to 12,592.9μgg⁻¹, which was about 2-25 times higher than the fruiting-bodies (from 498.1 to 2274.1μgg⁻¹). The formulation of nucleosides and nucleobases in the fermentation mycelia maintained relatively constant, while the formulation in Tuber fruiting-bodies varied significantly with their species. Hierarchical cluster analysis (HCA) showed the formulation similarity of nucleosides and nucleobases between Tuber fermentation mycelia and the fruiting-bodies of Tuber indicum and Tuber himalayense. From the viewpoint of nucleosides and nucleobases, this work confirms the potentiality of Tuber fermentation mycelia as the alternative resource for its fruiting-bodies.

  9. Rational design of a DNA wire possessing an extremely high hole transport ability.

    PubMed

    Okamoto, Akimitsu; Tanaka, Kazuo; Saito, Isao

    2003-04-30

    DNA is a promising conductive biopolymer. However, there are problems that need to be solved to realize real DNA wires. These include the low efficiency of hole transport and the serious oxidative damage that can occur during hole transport. We have demonstrated a protocol for the design of a DNA wire that can effectively mediate hole transport that is not adversely affected by oxidation during hole transport through the DNA duplex. We have synthesized a stable and effective DNA wire by incorporating a designer nucleobase, benzodeazaadenine derivatives, which have lower oxidation potentials and wider stacking areas but are not decomposed during hole transport.

  10. GAS PHASE SYNTHESIS OF (ISO)QUINOLINE AND ITS ROLE IN THE FORMATION OF NUCLEOBASES IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Parker, Dorian S. N.; Kaiser, Ralf I.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Mebel, Alexander M.; Tielens, Alexander G. G. M.

    2015-04-20

    Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellar shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.

  11. Synthesis and evaluation of the biostability and cell compatibility of novel conjugates of nucleobase, peptidic epitope, and saccharide

    PubMed Central

    Yuan, Dan; Du, Xuewen; Shi, Junfeng; Zhou, Ning; Baoum, Abdulgader Ahmed; Al Footy, Khalid Omar; Badahdah, Khadija Omar

    2015-01-01

    Summary This article reports the synthesis of a new class of conjugates containing a nucleobase, a peptidic epitope, and a saccharide and the evalution of their gelation, biostability, and cell compatibility. We demonstrate a facile synthetic process, based on solid-phase peptide synthesis of nucleopeptides, to connect a saccharide with the nucleopeptides for producing the target conjugates. All the conjugates themselves (1–8) display excellent solubility in water without forming hydrogels. However, a mixture of 5 and 8 self-assembles to form nanofibers and results in a supramolecular hydrogel. The proteolytic stabilities of the conjugates depend on the functional peptidic epitopes. We found that TTPV is proteolytic resistant and LGFNI is susceptible to proteolysis. In addition, all the conjugates are compatible to the mammalian cells tested. PMID:26425189

  12. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials.

    PubMed

    Mukhopadhyay, Saikat; Gowtham, S; Scheicher, Ralph H; Pandey, Ravindra; Karna, Shashi P

    2010-04-23

    We investigate the adsorption of the nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U)-on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first-principles density functional theory calculations. The calculated binding energy shows the order: G > A approximately C approximately T approximately U, implying that the interaction strength of the high curvature BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G-BNNT conjugate appears to result from hybridization of the molecular orbitals of G and the BNNT. A smaller energy gap predicted for the G-BNNT conjugate relative to that of the pristine BNNT may be useful in the application of this class of biofunctional materials to the design of next-generation sensing devices. PMID:20351402

  13. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Saikat; Gowtham, S.; Scheicher, Ralph H.; Pandey, Ravindra; Karna, Shashi P.

    2010-04-01

    We investigate the adsorption of the nucleic acid bases—adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U)—on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first-principles density functional theory calculations. The calculated binding energy shows the order: G > A≈C≈T≈U, implying that the interaction strength of the high curvature BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G-BNNT conjugate appears to result from hybridization of the molecular orbitals of G and the BNNT. A smaller energy gap predicted for the G-BNNT conjugate relative to that of the pristine BNNT may be useful in the application of this class of biofunctional materials to the design of next-generation sensing devices.

  14. On modeling biomolecular-surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces.

    PubMed

    Akdim, B; Pachter, R; Day, P N; Kim, S S; Naik, R R

    2012-04-27

    In this work we explored the selectivity of single nucleobases towards adsorption on chiral single-wall carbon nanotubes (SWCNTs) by density functional theory calculations. Specifically, the adsorption of molecular models of guanine (G), adenine (A), thymine (T), and cytosine (C), as well as of AT and GC Watson-Crick (WC) base pairs on chiral SWCNT C(6, 5), C(9, 1) and C(8, 3) model structures, was analyzed in detail. The importance of correcting the exchange-correlation functional for London dispersion was clearly demonstrated, yet limitations in modeling such interactions by considering the SWCNT as a molecular model may mask subtle effects in a molecular-macroscopic material system. The trend in the calculated adsorption energies of the nucleobases on same diameter C(6, 5) and C(9, 1) SWCNT surfaces, i.e., G > A > T > C, was consistent with related computations and experimental work on graphitic surfaces, however contradicting experimental data on the adsorption of single-strand short homo-oligonucleotides on SWCNTs that demonstrated a trend of G > C > A > T (Albertorio et al 2009 Nanotechnology 20 395101). A possible role of electrostatic interactions in this case was partially captured by applying the effective fragment potential method, emphasizing that the interplay of the various contributions in modeling nonbonded interactions is complicated by theoretical limitations. Finally, because the calculated adsorption energies for Watson-Crick base pairs have shown little effect upon adsorption of the base pair farther from the surface, the results on SWCNT sorting by salmon genomic DNA could be indicative of partial unfolding of the double helix upon adsorption on the SWCNT surface.

  15. Facilitating Organizational Change.

    ERIC Educational Resources Information Center

    1999

    The first of the three papers in this symposium, "Conflicts that Arise in Small Group Facilitation: A Descriptive Study of Accounts, Actions, Outcomes, and Assessments" (Judith A. Kolb, William J. Rothwell), contains self-report verbatim accounts contributed by facilitators and the results of a literature review on small group conflict. "A Test of…

  16. A Facilitation Performance Aid.

    ERIC Educational Resources Information Center

    Chevalier, Roger

    1997-01-01

    Presents a guide, derived from the Situational Leadership model, which describes the process that should be used in facilitating a group discussion. The process includes preparation, assessment, diagnosis, prescription, development, reinforcement, and follow-up. Three figures depict the Situational Leadership model, the facilitation process, and…

  17. A straightforward entry to chiral carbocyclic nucleoside analogues via the enantioselective [3+2] cycloaddition of α-nucleobase substituted acrylates.

    PubMed

    Xie, Ming-Sheng; Wang, Yong; Li, Jian-Ping; Du, Cong; Zhang, Yan-Yan; Hao, Er-Jun; Zhang, Yi-Ming; Qu, Gui-Rong; Guo, Hai-Ming

    2015-08-11

    A straightforward entry to chiral carbocyclic nucleoside analogues has been realized via the enantioselective [3+2] cycloaddition of α-nucleobase substituted acrylates to vinyl cyclopropanes for the first time. With Pd2(dba)3-L5 as the catalyst, carbocyclic purine, uracil, and thymine nucleoside analogues with quaternary stereocenters were obtained in excellent yields (up to 99% yield) and good enantioselectivities (up to 92% ee). PMID:26145719

  18. Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH(3) and H(2)O+NH(3) ices.

    PubMed

    Nuevo, Michel; Milam, Stefanie N; Sandford, Scott A

    2012-04-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H(2)O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH(3):pyrimidine and H(2)O:NH(3):pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces. PMID:22519971

  19. A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene.

    PubMed

    Menor-Salván, César; Marín-Yaseli, Margarita R

    2013-05-10

    The origin of nucleobases and other heterocycles is a classic question in the chemistry of the origins of life. The construction of laboratory models for the abiotic synthesis of nitrogen heterocycles in plausible natural conditions also aids the understanding and prediction of chemical species in the Solar System. Here, we report a new explanation for the origin of hydantoins, purines, and pyrimidines in eutectic water/ice/urea solutions driven by ultraviolet irradiation (in the 185-254 nm range, UVC) of acetylene under anoxic conditions. An analysis of the products indicates the synthesis of hydantoin and 5-hydroxyhydantoin, the purines uric acid, xanthine, and guanine, and the pyrimidines uracil and cytosine. The synthesis occurred together with the photo-oxidation of bases in a complex process for which possible pathways are proposed. In conclusion, an acetylene-containing atmosphere could contribute to the origin of nucleobases in the presence of a urea/water system by an HCN-independent mechanism. The presence of ice has a dual role as a favorable medium for the synthesis of nucleobases and protection against degradation and as a source of free radicals for the synthesis of highly oxidized heterocycles. A mechanism for the origin of hydantoins and uracil from urea in plausible conditions for prebiotic chemistry is also proposed.

  20. Comparative characterization of nucleotides, nucleosides and nucleobases in Abelmoschus manihot roots, stems, leaves and flowers during different growth periods by UPLC-TQ-MS/MS.

    PubMed

    Du, Le-yue; Qian, Da-wei; Jiang, Shu; Shang, Er-xin; Guo, Jian-ming; Liu, Pei; Su, Shu-lan; Duan, Jin-ao; Zhao, Min

    2015-12-01

    Nucleotides, nucleosides and nucleobases have been proven as important bioactive compounds related to many physiological processes. Abelmoschus manihot (L.) Medicus from the family of Malvaceae is an annual herbal plant of folk medicine widely distributed in Oceania and Asia. However, up to now, no detailed information could be available for the types and contents of nucleotides, nucleosides and nucleobases contained in A. manihot roots, stems, leaves as well as the flowers. In the present study, an UPLC-TQ-MS/MS method was established for detection of the twelve nucleotides, nucleosides and nucleobases. The validated method was successfully applied to identify the 12 analytes in different parts of A. manihot harvested at ten growth periods. 2'-deoxyinosine was not detected in all of the A. manihot samples. The data demonstrated that the distribution and concentration of the 12 compounds in A. manihot four parts were arranged in a decreasing order as leaf>flower>stem>root. Based on the results, the leaves and flowers of A. manihot could be developed as health products possessed nutraceutical and bioactive properties in the future. This method might also be utilized for the quality control of the A. manihot leaves and other herbal medicines being rich in nucleotides, nucleosides and nulecobases.

  1. A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene.

    PubMed

    Menor-Salván, César; Marín-Yaseli, Margarita R

    2013-05-10

    The origin of nucleobases and other heterocycles is a classic question in the chemistry of the origins of life. The construction of laboratory models for the abiotic synthesis of nitrogen heterocycles in plausible natural conditions also aids the understanding and prediction of chemical species in the Solar System. Here, we report a new explanation for the origin of hydantoins, purines, and pyrimidines in eutectic water/ice/urea solutions driven by ultraviolet irradiation (in the 185-254 nm range, UVC) of acetylene under anoxic conditions. An analysis of the products indicates the synthesis of hydantoin and 5-hydroxyhydantoin, the purines uric acid, xanthine, and guanine, and the pyrimidines uracil and cytosine. The synthesis occurred together with the photo-oxidation of bases in a complex process for which possible pathways are proposed. In conclusion, an acetylene-containing atmosphere could contribute to the origin of nucleobases in the presence of a urea/water system by an HCN-independent mechanism. The presence of ice has a dual role as a favorable medium for the synthesis of nucleobases and protection against degradation and as a source of free radicals for the synthesis of highly oxidized heterocycles. A mechanism for the origin of hydantoins and uracil from urea in plausible conditions for prebiotic chemistry is also proposed. PMID:23536286

  2. Comparative characterization of nucleotides, nucleosides and nucleobases in Abelmoschus manihot roots, stems, leaves and flowers during different growth periods by UPLC-TQ-MS/MS.

    PubMed

    Du, Le-yue; Qian, Da-wei; Jiang, Shu; Shang, Er-xin; Guo, Jian-ming; Liu, Pei; Su, Shu-lan; Duan, Jin-ao; Zhao, Min

    2015-12-01

    Nucleotides, nucleosides and nucleobases have been proven as important bioactive compounds related to many physiological processes. Abelmoschus manihot (L.) Medicus from the family of Malvaceae is an annual herbal plant of folk medicine widely distributed in Oceania and Asia. However, up to now, no detailed information could be available for the types and contents of nucleotides, nucleosides and nucleobases contained in A. manihot roots, stems, leaves as well as the flowers. In the present study, an UPLC-TQ-MS/MS method was established for detection of the twelve nucleotides, nucleosides and nucleobases. The validated method was successfully applied to identify the 12 analytes in different parts of A. manihot harvested at ten growth periods. 2'-deoxyinosine was not detected in all of the A. manihot samples. The data demonstrated that the distribution and concentration of the 12 compounds in A. manihot four parts were arranged in a decreasing order as leaf>flower>stem>root. Based on the results, the leaves and flowers of A. manihot could be developed as health products possessed nutraceutical and bioactive properties in the future. This method might also be utilized for the quality control of the A. manihot leaves and other herbal medicines being rich in nucleotides, nucleosides and nulecobases. PMID:26551204

  3. Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott

    2012-01-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.

  4. Multiple Condensation Reactions Involving Pt(II) /Pd(II) -OH2 , Pt-NH3 , and Cytosine-NH2 Groups: New Twists in Cisplatin-Nucleobase Chemistry.

    PubMed

    Yin-Bandur, Lu; Sanz Miguel, Pablo J; Rodríguez-Santiago, Luis; Sodupe, Mariona; Berghaus, Melanie; Lippert, Bernhard

    2016-09-12

    The coordination chemistry of the antitumor agent cisplatin and related complexes with DNA and its constituents, that is, the nucleobases, appears to be dominated by 1:1 and 1:2 adducts of the types cis-[Pta2 (nucleobase)X] and cis-[Pta2 (nucleobase)2 ] (a=NH3 or amine; a2 =diamine or diimine; X=Cl, OH or OH2 ). Here, we have studied the interactions of the putative 1:1 adducts cis-[Pta2 (1-MeC-N3)(OH2 )](2+) (with a=NH3 , a2 =2,2'-bpy (2,2'-bipyridine), 1-MeC=model nucleobase 1-methylcytosine) with additional cis-[Pt(NH3 )2 (OH2 )2 ](2+) or its kinetically superior analogues [Pd(en)(OH2 )2 ](2+) (en=ethylenediamine) and [Pd(2,2'-bpy)(OH2 )2 ](2+) . Depending upon the conditions applied different compounds of different nuclearity are formed. Without exception they represent condensation products of the components, containing μ-1-MeC-H , μ-OH(-) , as well as μ-NH2 (-) bridges. In the presence of Ag(+) ions, the isolated products in several cases display additionally Pt→Ag dative bonds. On the basis of the cytosine-containing structures established by X-ray crystallography, it is proposed that any of the feasible initial 1:1 nucleobase adducts of cisplatin could form dinuclear Pt complexes upon reaction with additional hydrolyzed cisplatin, thereby generating nucleobase adducts other than the presently established ones. Two findings appear to be of particular significance: First, hydrolyzed cisplatin can have a moderately accelerating effect on the formation of a secondary nucleobase product. Second, NH3 ligands of the cisplatin moiety can be converted into bridging amido ligands following condensation with the diaqua species of cisplatin.

  5. Understanding Facilitation: Theory and Principles.

    ERIC Educational Resources Information Center

    Hogan, Christine

    This book introduces newcomers to the concept of facilitation, and it presents a critical analysis of established and current theory on facilitation for existing practitioners. The following are among the topics discussed: (1) emergence of the field of facilitation; (2) development of facilitation in management; (3) development of facilitation in…

  6. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure.

    PubMed

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron-doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951

  7. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    PubMed Central

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951

  8. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    NASA Astrophysics Data System (ADS)

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-09-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.

  9. Molecular mechanism of diaminomaleonitrile to diaminofumaronitrile photoisomerization: an intermediate step in the prebiotic formation of purine nucleobases.

    PubMed

    Szabla, Rafał; Góra, Robert W; Sponer, Jiří; Sponer, Judit E

    2014-02-24

    The photoinduced isomerization of diaminomaleonitrile (DAMN) to diaminofumaronitrile (DAFN) was suggested to play a key role in the prebiotically plausible formation of purine nucleobases and nucleotides. In this work we analyze two competitive photoisomerization mechanisms on the basis of state-of-the-art quantum-chemical calculations. Even though it was suggested that this process might occur on the triplet potential-energy surface, our results indicate that the singlet reaction channel should not be disregarded either. In fact, the peaked topography of the S1 /S0 conical intersection suggests that the deexcitation should most likely occur on a sub-picosecond timescale and the singlet photoisomerization mechanism might effectively compete even with a very efficient intersystem crossing. Such a scenario is further supported by the relatively small spin-orbit coupling of the S1 and T2 states in the Franck-Condon region, which does not indicate a very effective triplet bypass for this photoreaction. Therefore, we conclude that the triplet reaction channel in DAMN might not be as prominent as was previously thought.

  10. Membrane Transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The selective movement and redistribution of ions and small organic molecules is essential for plant growth and cellular homeostasis. Because of this, plants have evolved numerous proteins that facilitate the transport of minerals, sugars, metabolites, and other compounds through the limiting membra...

  11. Facilitative Strategies in Action.

    ERIC Educational Resources Information Center

    Fuller, Thara M. A.; Haugabrook, Adrian K.

    2001-01-01

    Describes campus-based strategies to facilitate collaboration by examining the process of restructuring a division of student affairs as an educational partner with academic affairs. Describes three collaborative efforts at the University of Massachusetts Boston: the Beacon Leadership Project, the Diversity Research Initiative, and the Beacon…

  12. The Inclusion Facilitator's Guide

    ERIC Educational Resources Information Center

    Jorgensen, Cheryl M.; Schuh, Mary C.; Nisbet, Jan

    2005-01-01

    Inclusion facilitators are educators who do more than teach children with disabilities--they advocate for change in schools and communities, sparking a passion for inclusion in teachers, administrators, and families and giving them the practical guidance they need to make it work. This is an essential new role in today's schools, and this guide…

  13. Facilitating Cognitive Development.

    ERIC Educational Resources Information Center

    Schwebel, Milton

    1985-01-01

    Human cognition research is shifting away from the importance of IQ and is emphasizing the stimulation and acceleration of a child's mental development. The emerging field of instructional psychology is trying to facilitate cognitive development. Current experimental programs--a university-school project in Belgium and a family project in…

  14. Formation of Freirian Facilitators.

    ERIC Educational Resources Information Center

    Noble, Phyllis

    This paper is written for people who are already familiar with the philosophy and methodology of Paulo Freire's liberatory education and are interested in creating a formation program for adult education facilitators using his ideas. The author describes the paper as "a collection of thoughts, of things to consider," when organizing such a…

  15. Facilitating Distance Education.

    ERIC Educational Resources Information Center

    Rossman, Mark H., Ed.; Rossman, Maxine E., Ed.

    1995-01-01

    This collection of articles on distance learning reflects the perspectives and concerns of the learner and the facilitator of learning in distance education setting. Eight chapters are included: (1) "The Evolution and Advantages of Distance Education" (John E. Cantelon) traces the history of distance education and demonstrates how it transcends…

  16. Facilitation of Adult Development

    ERIC Educational Resources Information Center

    Boydell, Tom

    2016-01-01

    Taking an autobiographical approach, I tell the story of my experiences facilitating adult development, in a polytechnic and as a management consultant. I relate these to a developmental framework of Modes of Being and Learning that I created and elaborated with colleagues. I connect this picture with a number of related models, theories,…

  17. Electronic Transport and Thermopower in Aperiodic DNA Sequences

    NASA Astrophysics Data System (ADS)

    Roche, Stephan; Maciá, Enrique

    A detailed study of charge transport properties of synthetic and genomic DNA sequences is reported. Genomic sequences of the Chromosome 22, λ-bacteriophage, and D1s80 genes of Human and Pygmy chimpanzee are considered in this work, and compared with both periodic and quasiperiodic (Fibonacci) sequences of nucleotides. Charge transfer efficiency is compared for all these different sequences, and large variations in charge transfer efficiency, stemming from sequence-dependent effects, are reported. In addition, basic characteristics of tunneling currents, including contact effects, are described. Finally, the thermoelectric power of nucleobases connected in between metallic contacts at different temperatures is presented.

  18. Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers.

    PubMed

    Thurtle-Schmidt, Bryan H; Stroud, Robert M

    2016-09-20

    Boron is essential for plant growth because of its incorporation into plant cell walls; however, in excess it is toxic to plants. Boron transport and homeostasis in plants is regulated in part by the borate efflux transporter Bor1, a member of the solute carrier (SLC) 4 transporter family with homology to the human bicarbonate transporter Band 3. Here, we present the 4.1-Å resolution crystal structure of Arabidopsis thaliana Bor1. The structure displays a dimeric architecture in which dimerization is mediated by centralized Gate domains. Comparisons with a structure of Band 3 in an outward-open state reveal that the Core domains of Bor1 have rotated inwards to achieve an occluded state. Further structural comparisons with UapA, a xanthine transporter from the nucleobase-ascorbate transporter family, show that the downward pivoting of the Core domains relative to the Gate domains may access an inward-open state. These results suggest that the SLC4, SLC26, and nucleobase-ascorbate transporter families all share an elevator transport mechanism in which alternating access is provided by Core domains that carry substrates across a membrane. PMID:27601653

  19. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases.

    PubMed

    Mikulski, Damian; Szeląg, Małgorzata; Molski, Marcin

    2011-12-01

    Trans-resveratrol, a natural phytoalexin present in red wine and grapes, has gained considerable attention because of its antiproliferative, chemopreventive and proapoptotic activity against human cancer cells. The accurate quantum-chemical computations based on the density functional theory (DFT) and ab initio second-order Møller-Plesset perturbation method (MP2) have been performed for the first time to study interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-derived nitrogenous bases: adenine, guanine, cytosine and thymine in vacuum and water medium. This compound is found to show high affinity to nitrogenous bases and guanine-thymine dinucleotide. The electrostatic interactions from intermolecular hydrogen bonding increase the stability of complexes studied. In particular, significantly strong hydrogen bonds between 4'-H atom of trans-resveratrol and imidazole nitrogen as well as carbonyl oxygen atoms of nucleobases studied stabilize these systems. The stabilization energies computed reveal that the negatively charged trans-resveratrol-dinucleotide complex is more energetically stable in water medium than in vacuum. MP2 method gives more reliable and significantly high values of stabilization energy of trans-resveratrol-dinucleotide, trans-resveratrol-guanine and trans-resveratrol-thymine complexes than B3LYP exchange-correlation functional because it takes into account London dispersion energy. According to the results, in the presence of trans-resveratrol the 3'-5' phosphodiester bond in dinucleotide can be cleaved and the proton from 4'-OH group of trans-resveratrol migrates to the 3'-O atom of dinucleotide. It is concluded that trans-resveratrol is able to break the DNA strand. Hence, the findings obtained help understand antiproliferative and anticancer properties of this polyphenol.

  20. A Computational Study of the Interaction and Polarization Effects of Complexes Involving Molecular Graphene and C60 or a Nucleobases.

    PubMed

    Avramopoulos, Aggelos; Otero, Nicolás; Karamanis, Panaghiotis; Pouchan, Claude; Papadopoulos, Manthos G

    2016-01-21

    A systematic analysis of the molecular structure, energetics, electronic (hyper)polarizabilities and their interaction-induced counterparts of C60 with a series of molecular graphene (MG) models, CmHn, where m = 24, 84, 114, 222, 366, 546 and n = 12, 24, 30, 42, 54, 66, was performed. All the reported data were computed by employing density functional theory and a series of basis sets. The main goal of the study is to investigate how alteration of the size of the MG model affects the strength of the interaction, charge rearrangement, and polarization and interaction-induced polarization of the complex, C60-MG. A Hirshfeld-based scheme has been employed in order to provide information on the intrinsic polarizability density representations of the reported complexes. It was found that the interaction energy increases approaching a limit of -26.98 kcal/mol for m = 366 and 546; the polarizability and second hyperpolarizability increase with increasing the size of MG. An opposite trend was observed for the dipole moment. Interestingly, the variation of the first hyperpolarizability is relatively small with m. Since polarizability is a key factor for the stability of molecular graphene with nucleobases (NB), a study of the magnitude of the interaction-induced polarizability of C84H24-NB complexes is also reported, aiming to reveal changes of its magnitude with the type of NB. The binding strength of C84H24-NB complexes is also computed and found to be in agreement with available theoretical and experimental data. The interaction involved in C60 B12N12H24-NB complexes has also been considered, featuring the effect of contamination on the binding strength between MG and NBs.

  1. Cation radii induced structural variation in fluorescent alkaline earth networks constructed from tautomers of a nucleobase analogue.

    PubMed

    Deng, Zhao-Peng; Kang, Wei; Zhu, Zhi-Biao; Huo, Li-Hua; Zhao, Hui; Gao, Shan

    2012-07-21

    Nucleobase tautomers and their metal complexes have attracted considerable attention due to their fascinating architectures along with wide applications. In this paper, 4,6-dihydroxypyrimidine (H(2)DHP), an analogue of uracil and thymine, was employed to react with the vital elements of alkaline earth metals in an aqueous solution and lead to the formation of four novel complexes, [Mg(HDHP)(2) (H(2)O)(4)] (1), [Ca(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (2), [Sr(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (3), and [Ba(HDHP)(2)(H(2)O)(2)](n)·nH(2)O (4), which have been characterized by elemental analysis, IR, TG, UV-Vis, PL, powder and single-crystal X-ray diffraction and progressively evolve from zero-dimensional (0D) mononuclear, one-dimensional (1D) zig-zag double chain, two-dimensional (2D) double layer, to a three-dimensional (3D) porous network along with the increase of cation radii. This tendency in dimensionality follows salient crystal engineering principles and can be explained by considering factors such as hard-soft acid-base principles and cation radii. The deprotonated H(2)DHP ligand exhibits four new coordination modes, namely, O-monodentate (complex 1), N,O-chelating (complexes 2 and 3), O,O-bridging (complexes 2 and 3), and κ(1)O:κ(2)O-bridging mode (complex 4). Interestingly, the structural investigation indicates that the HDHP(-) monoanion shows three unusual types of tautomers, which are essential for the diagnosis of disease and investigation of medicine. Furthermore, the four complexes exhibit strong blue emission compared to free H(2)DHP ligand at room temperature and may be potential candidates for blue fluorescent biological materials used in organisms.

  2. Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives

    PubMed Central

    2015-01-01

    The excited-state dynamics of the purine free base and 9-methylpurine are investigated using experimental and theoretical methods. Femtosecond broadband transient absorption experiments reveal that excitation of these purine derivatives in aqueous solution at 266 nm results primarily in ultrafast conversion of the S2(ππ*) state to the vibrationally excited 1nπ* state. Following vibrational and conformational relaxation, the 1nπ* state acts as a doorway state in the efficient population of the triplet manifold with an intersystem crossing lifetime of hundreds of picoseconds. Experiments show an almost 2-fold increase in the intersystem crossing rate on going from polar aprotic to nonpolar solvents, suggesting that a solvent-dependent energy barrier must be surmounted to access the singlet-to-triplet crossing region. Ab initio static and surface-hopping dynamics simulations lend strong support to the proposed relaxation mechanism. Collectively, the experimental and computational results demonstrate that the accessibility of the nπ* states and the topology of the potential energy surfaces in the vicinity of conical intersections are key elements in controlling the excited-state dynamics of the purine derivatives. From a structural perspective, it is shown that the purine chromophore is not responsible for the ultrafast internal conversion in the adenine and guanine monomers. Instead, C6 functionalization plays an important role in regulating the rates of radiative and nonradiative relaxation. C6 functionalization inhibits access to the 1nπ* state while simultaneously facilitating access to the 1ππ*(La)/S0 conical intersection, such that population of the 1nπ* state cannot compete with the relaxation pathways to the ground state involving ring puckering at the C2 position. PMID:25763596

  3. Topology of RNA-protein nucleobase-amino acid π-π interactions and comparison to analogous DNA-protein π-π contacts.

    PubMed

    Wilson, Katie A; Holland, Devany J; Wetmore, Stacey D

    2016-05-01

    The present work analyzed 120 high-resolution X-ray crystal structures and identified 335 RNA-protein π-interactions (154 nonredundant) between a nucleobase and aromatic (W, H, F, or Y) or acyclic (R, E, or D) π-containing amino acid. Each contact was critically analyzed (including using a visual inspection protocol) to determine the most prevalent composition, structure, and strength of π-interactions at RNA-protein interfaces. These contacts most commonly involve F and U, with U:F interactions comprising one-fifth of the total number of contacts found. Furthermore, the RNA and protein π-systems adopt many different relative orientations, although there is a preference for more parallel (stacked) arrangements. Due to the variation in structure, the strength of the intermolecular forces between the RNA and protein components (as determined from accurate quantum chemical calculations) exhibits a significant range, with most of the contacts providing significant stability to the associated RNA-protein complex (up to -65 kJ mol(-1)). Comparison to the analogous DNA-protein π-interactions emphasizes differences in RNA- and DNA-protein π-interactions at the molecular level, including the greater abundance of RNA contacts and the involvement of different nucleobase/amino acid residues. Overall, our results provide a clearer picture of the molecular basis of nucleic acid-protein binding and underscore the important role of these contacts in biology, including the significant contribution of π-π interactions to the stability of nucleic acid-protein complexes. Nevertheless, more work is still needed in this area in order to further appreciate the properties and roles of RNA nucleobase-amino acid π-interactions in nature.

  4. Facilitation as a teaching strategy : experiences of facilitators.

    PubMed

    Lekalakala-Mokgele, E

    2006-08-01

    Changes in nursing education involve the move from traditional teaching approaches that are teacher-centred to facilitation, a student centred approach. The student-centred approach is based on a philosophy of teaching and learning that puts the learner on centre-stage. The aim of this study was to identify the challenges of facilitators of learning using facilitation as a teaching method and recommend strategies for their (facilitators) development and support. A qualitative, explorative and contextual design was used. Four (4) universities in South Africa which utilize facilitation as a teaching/ learning process were identified and the facilitators were selected to be the sample of the study. The main question posed during in-depth group interviews was: How do you experience facilitation as a teaching/learning method?. Facilitators indicated different experiences and emotions when they first had to facilitate learning. All of them indicated that it was difficult to facilitate at the beginning as they were trained to lecture and that no format for facilitation was available. They experienced frustrations and anxieties as a result. The lack of knowledge of facilitation instilled fear in them. However they indicated that facilitation had many benefits for them and for the students. Amongst the ones mentioned were personal and professional growth. Challenges mentioned were the fear that they waste time and that they do not cover the content. It is therefore important that facilitation be included in the training of nurse educators. PMID:17131610

  5. On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event.

    PubMed

    Ferus, Martin; Civiš, Svatopluk; Mládek, Arnošt; Šponer, Jiří; Juha, Libor; Šponer, Judit E

    2012-12-26

    The formamide-based synthesis of nucleic acids is considered as a nonaqueous scenario for the emergence of biomolecules from inorganic matter. In the current study, we scrutinized the chemical composition of formamide ices mixed with an FeNi meteorite material treated with laser-induced dielectric breakdown plasma created in nitrogen buffer gas. These experiments aimed to capture the first steps of those chemical transformations that may lead to the formation of nucleobases during the impact of an extraterrestrial icy body containing formamide on an early Earth atmosphere. High-resolution FT-IR spectroscopy combined with quantum chemical calculations was used to analyze the volatile fraction of the products formed during such an event. We have found that the spectrum of the evaporated formamide ices is dominated by the spectral signatures of the dimeric form of formamide. Upon exposure to laser sparks, new well-defined bands appear in the spectrum centered at ~820, ~995, and ~1650 cm(-1). On the basis of quantum chemical calculations, these bands can be assigned to the absorptions of 2-amino-2-hydroxy-acetonitrile and to 2-amino-2-hydroxy-malononitrile, which are formed in a direct reaction between formamide and CN(•) radicals upon the high-energy impact event. We also show that there is an exergonic reaction route via these intermediates leading to diaminomaleonitrile, which is generally considered to play a key role in the synthesis of nucleobases.

  6. Measurements of single nucleotide electronic states as nanoelectronic fingerprints for identification of DNA nucleobases, their protonated and unprotonated states, isomers, and tautomers.

    PubMed

    Ribot, Josep Casamada; Chatterjee, Anushree; Nagpal, Prashant

    2015-04-16

    Several nanoelectronic techniques have been explored to distinguish the sequence of nucleic acids in DNA macromolecules. Identification of unique electronic signatures using nanopore conductance, tunneling spectroscopy, or other nanoelectronic techniques depends on electronic states of the DNA nucleotides. While several experimental and computational studies have focused on interaction of nucleobases with different substrates, the effect of nucleic acid biochemistry on its electronic properties has been largely unexplored. Here, we present correlated measurements of frontier molecular orbitals and higher-order electronic states for four DNA nucleobases (adenine, cytosine, thymine, and guanine), and first-principle quantum chemical density functional theoretical (DFT) computations. Using different pH conditions in our experiments, we show that small changes in the biochemical state of these nucleic acids strongly affect the intrinsic electronic structure, measured using scanning tunneling spectroscopy (STS). In our experimental measurements and computations, significant differences were observed between the position of frontier orbitals and higher-energy states between protonated and unprotonated nucleic acids, isomers, and different keto-enol tautomer's formed in these nucleotides, leading to their facile identification. Furthermore, we show unique "electronic fingerprints" for all nucleotides (A, G, T, C) using STS, with most distinct states identified at acidic pH. These results can have important implications for identification of nucleic acid sequences in DNA molecules using a high-throughput nanoelectronic identification technique.

  7. On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event.

    PubMed

    Ferus, Martin; Civiš, Svatopluk; Mládek, Arnošt; Šponer, Jiří; Juha, Libor; Šponer, Judit E

    2012-12-26

    The formamide-based synthesis of nucleic acids is considered as a nonaqueous scenario for the emergence of biomolecules from inorganic matter. In the current study, we scrutinized the chemical composition of formamide ices mixed with an FeNi meteorite material treated with laser-induced dielectric breakdown plasma created in nitrogen buffer gas. These experiments aimed to capture the first steps of those chemical transformations that may lead to the formation of nucleobases during the impact of an extraterrestrial icy body containing formamide on an early Earth atmosphere. High-resolution FT-IR spectroscopy combined with quantum chemical calculations was used to analyze the volatile fraction of the products formed during such an event. We have found that the spectrum of the evaporated formamide ices is dominated by the spectral signatures of the dimeric form of formamide. Upon exposure to laser sparks, new well-defined bands appear in the spectrum centered at ~820, ~995, and ~1650 cm(-1). On the basis of quantum chemical calculations, these bands can be assigned to the absorptions of 2-amino-2-hydroxy-acetonitrile and to 2-amino-2-hydroxy-malononitrile, which are formed in a direct reaction between formamide and CN(•) radicals upon the high-energy impact event. We also show that there is an exergonic reaction route via these intermediates leading to diaminomaleonitrile, which is generally considered to play a key role in the synthesis of nucleobases. PMID:23193998

  8. Facilitating post traumatic growth

    PubMed Central

    Turner, de Sales; Cox, Helen

    2004-01-01

    Background Whilst negative responses to traumatic injury have been well documented in the literature, there is a small but growing body of work that identifies posttraumatic growth as a salient feature of this experience. We contribute to this discourse by reporting on the experiences of 13 individuals who were traumatically injured, had undergone extensive rehabilitation and were discharged from formal care. All participants were injured through involvement in a motor vehicle accident, with the exception of one, who was injured through falling off the roof of a house. Methods In this qualitative study, we used an audio-taped in-depth interview with each participant as the means of data collection. Interviews were transcribed verbatim and analysed thematically to determine the participants' unique perspectives on the experience of recovery from traumatic injury. In reporting the findings, all participants' were given a pseudonym to assure their anonymity. Results Most participants indicated that their involvement in a traumatic occurrence was a springboard for growth that enabled them to develop new perspectives on life and living. Conclusion There are a number of contributions that health providers may make to the recovery of individuals who have been traumatically injured to assist them to develop new views of vulnerability and strength, make changes in relationships, and facilitate philosophical, physical and spiritual growth. PMID:15248894

  9. Simultaneous Determination of 16 Nucleosides and Nucleobases in Euryale ferox Salisb. by Liquid Chromatography Coupled with Electro Spray Ionization Tandem Triple Quadrupole Mass Spectrometry (HPLC-ESI-TQ-MS/MS) in Multiple Reaction Monitoring (MRM) Mode.

    PubMed

    Wang, Hong; Wu, Qinan; Wu, Chengying; Jiang, Zheng

    2015-09-01

    In this study, a simple, rapid, efficient analytical method was established for the qualification and quantification of 16 nucleosides and nucleobases in Euryale ferox Salisb. by using liquid chromatography coupled with electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-TQ-MS/MS) in multiple-reaction monitoring (MRM) mode. Ideal separation of 16 target compounds was achieved on Xbridge Amide HILIC column (4.6 × 150 mm, 3.5 μm) with gradient elution in 11 min by optimized conditions. Variations of nucleosides and nucleobase in samples from different cultivation regions ranging from 190.50 to 1594.30 μg/g were obvious. The total nucleoside contents were higher than total nucleobases, especially in the compositions of guanosine, cytidine and 2'-deoxyguanosine. Samples 1-18 with dense thorns were better characters than samples 19-26 without thorns in terms of nucleosides and nucleobases concentrations in general. The limits of detection (LODs) and quantification (LOQs) for 16 analytical substances were investigated to be 0.11-6.33 ng/mL and 0.35-21.1 ng/mL, respectively. And the method was first applied to large aquatic plants with good linearity, precision, repeatability and accuracy. All present information provided a scientific and rational reference for quality assessment and control of Euryale ferox Salisb.

  10. Simultaneous Determination of 16 Nucleosides and Nucleobases in Euryale ferox Salisb. by Liquid Chromatography Coupled with Electro Spray Ionization Tandem Triple Quadrupole Mass Spectrometry (HPLC-ESI-TQ-MS/MS) in Multiple Reaction Monitoring (MRM) Mode.

    PubMed

    Wang, Hong; Wu, Qinan; Wu, Chengying; Jiang, Zheng

    2015-09-01

    In this study, a simple, rapid, efficient analytical method was established for the qualification and quantification of 16 nucleosides and nucleobases in Euryale ferox Salisb. by using liquid chromatography coupled with electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-TQ-MS/MS) in multiple-reaction monitoring (MRM) mode. Ideal separation of 16 target compounds was achieved on Xbridge Amide HILIC column (4.6 × 150 mm, 3.5 μm) with gradient elution in 11 min by optimized conditions. Variations of nucleosides and nucleobase in samples from different cultivation regions ranging from 190.50 to 1594.30 μg/g were obvious. The total nucleoside contents were higher than total nucleobases, especially in the compositions of guanosine, cytidine and 2'-deoxyguanosine. Samples 1-18 with dense thorns were better characters than samples 19-26 without thorns in terms of nucleosides and nucleobases concentrations in general. The limits of detection (LODs) and quantification (LOQs) for 16 analytical substances were investigated to be 0.11-6.33 ng/mL and 0.35-21.1 ng/mL, respectively. And the method was first applied to large aquatic plants with good linearity, precision, repeatability and accuracy. All present information provided a scientific and rational reference for quality assessment and control of Euryale ferox Salisb. PMID:25947362

  11. Rickettsia prowazekii transports UMP and GMP, but not CMP, as building blocks for RNA synthesis.

    PubMed

    Winkler, H H; Daugherty, R; Hu, F

    1999-05-01

    Rickettsia prowazekii, the etiological agent of epidemic typhus, is an obligate intracellular bacterium and is apparently unable to synthesize ribonucleotides de novo. Here, we show that as an alternative, isolated, purified R. prowazekii organisms transported exogenous uridyl- and guanylribonucleotides and incorporated these labeled precursors into their RNA in a rifampin-sensitive manner. Transport systems for nucleotides, which we have shown previously and show here are present in rickettsiae, have never been reported in free-living bacteria, and the usual nucleobase and nucleoside transport systems are absent in rickettsiae. There was a clear preference for the monophosphate form of ribonucleotides as the transported substrate. In contrast, rickettsiae did not transport cytidylribonucleotides. The source of rickettsial CTP appears to be the transport of UMP followed by its phosphorylation and the amination of intrarickettsial UTP to CTP by CTP synthetase. A complete schema of nucleotide metabolism in rickettsiae is presented that is based on a combination of biochemical, physiological, and genetic information. PMID:10322027

  12. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases.

    PubMed

    Yang, Wen; Fellinger, Tim-Patrick; Antonietti, Markus

    2011-01-19

    Mesoporous nitrogen-doped carbon materials with high surface areas up to 1500 m(2) g(-1) were conveniently made by the carbonization of nucleobases dissolved in an all-organic ionic liquid (1-ethyl-3-methylimidazolium dicyanamide). Using hard templating with silica nanoparticles, this process yields high-surface-area nitrogen-doped carbon materials with nitrogen contents as high as 12 wt %, narrow mesopore size distribution of ca. 12 nm diameter, and local graphitic carbon structure. It is demonstrated that the resulting nitrogen-doped carbons show very high catalytic activity, even in the metal-free case in the oxygen reduction reaction (ORR) for fuel cells. Specifically, the as-prepared materials exhibit a low onset voltage for ORR in alkaline medium and a high methanol tolerance, compared with those of commercial 20 wt % Pt/C catalyst. We regard this as a first step toward an all-sustainable fuel cell, avoiding noble metals. PMID:21155583

  13. Role of the heat capacity change in understanding and modeling melting thermodynamics of complementary duplexes containing standard and nucleobase-modified LNA.

    PubMed

    Hughesman, Curtis B; Turner, Robin F B; Haynes, Charles A

    2011-06-14

    Melting thermodynamic data obtained by differential scanning calorimetry (DSC) are reported for 43 duplexed oligonucleotides containing one or more locked nucleic acid (LNA) substitutions. The measured heat capacity change (ΔC(p)) for the helix-to-coil transition is used to compute the changes in enthalpy and entropy for melting of an LNA-bearing duplex at the T(m) of its corresponding isosequential unmodified DNA duplex to allow rigorous thermodynamic analysis of the stability enhancements provided by LNA substitutions. Contrary to previous studies, our analysis shows that the origin of the improved stability is almost exclusively a net reduction (ΔΔS° < 0) in the entropy gain accompanying the helix-to-coil transition, with the magnitude of the reduction dependent on the type of nucleobase and its base pairing properties. This knowledge and our average measured value for ΔC(p) of 42 ± 11 cal mol(-1) K(-1) bp(-1) are then used to derive a new model that accurately predicts melting thermodynamics and the increased melting temperature (ΔT(m)) of heteroduplexes formed between an unmodified DNA strand and a complementary strand containing any number and configuration of standard LNA nucleotides A, T, C, and G. This single-base thermodynamic (SBT) model requires only four entropy-related parameters in addition to ΔC(p). Finally, DSC data for 20 duplexes containing the nucleobase-modified LNAs 2-aminoadenine (D) and 2-thiothymine (H) are reported and used to determine SBT model parameters for D and H. The data and model suggest that along with the greater stability enhancement provided by D and H bases relative to their corresponding A and T analogues, the unique pseudocomplementary properties of D-H base pairs may make their use appealing for in vitro and in vivo applications.

  14. The Essential Elements of Facilitation.

    ERIC Educational Resources Information Center

    Priest, Simon; Gass, Michael; Gillis, Lee

    Most organizations find it difficult to implement change, and only about 10 percent of learning from training and development experiences is actually applied in the workplace. This book advocates facilitation as a means of enhancing change and increasing productivity. Facilitation engages employees by enhancing the processes associated with their…

  15. Facilitating Dialogues about Racial Realities

    ERIC Educational Resources Information Center

    Quaye, Stephen John

    2014-01-01

    Background/Context: Facilitating dialogues about racial issues in higher education classroom settings continues to be a vexing problem facing postsecondary educators. In order for students to discuss race with their peers, they need skilled facilitators who are knowledgeable about racial issues and able to support students in these difficult…

  16. Theory of contributon transport

    SciTech Connect

    Painter, J.W.; Gerstl, S.A.W.; Pomraning, G.C.

    1980-10-01

    A general discussion of the physics of contributon transport is presented. To facilitate this discussion, a Boltzmann-like transport equation for contributons is obtained, and special contributon cross sections are defined. However, the main goal of this study is to identify contributon transport equations and investigate possible deterministic solution techniques. Four approaches to the deterministic solution of the contributon transport problem are investigated. These approaches are an attempt to exploit certain attractive properties of the contributon flux, psi = phi phi/sup +/, where phi and phi/sup +/ are the solutions to the forward and adjoint Boltzmann transport equations.

  17. Pathways by which Abeta facilitates tau pathology.

    PubMed

    Blurton-Jones, Mathew; Laferla, Frank M

    2006-12-01

    Since the initial description one hundred years ago by Dr. Alois Alzheimer, the disorder that bears his name has been characterized by the occurrence of two brain lesions: amyloid plaques and neurofibrillary tangles (NFTs). Yet the precise relationship between beta-amyloid (Abeta) and tau, the two proteins that accumulate within these lesions, has proven elusive. Today, a growing body of work supports the notion that Abeta may directly or indirectly interact with tau to accelerate NFT formation. Here we review recent evidence that Abeta can adversely affect distinct molecular and cellular pathways, thereby facilitating tau phosphorylation, aggregation, mis-localization, and accumulation. Studies are presented that support four putative mechanisms by which Abeta may facilitate the development of tau pathology. A great deal of work suggests that Abeta may drive tau pathology by activating specific kinases, providing a straightforward mechanism by which Abeta may enhance tau hyperphosphorylation and NFT formation. In the AD brain, Abeta also triggers a massive inflammatory response and pro-inflammatory cytokines can in turn indirectly modulate tau phosphorylation. Mounting evidence also suggests that Abeta may inhibit tau degradation via the proteasome. Lastly, Abeta and tau may indirectly interact at the level of axonal transport and evidence is presented for two possible scenarios by which axonal transport deficits may play a role. We propose that the four putative mechanisms described in this review likely mediate the interactions between Abeta and tau, thereby leading to the development of AD neurodegeneration.

  18. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.

    PubMed

    Brovarets', Ol'ha O; Yurenko, Yevgen P; Hovorun, Dmytro M

    2014-01-01

    This study aims to cast light on the physico-chemical nature and energetic of the non-conventional CH···O/N H-bonds in the biologically important natural nucleobase pairs using a comprehensive quantum-chemical approach. As a whole, the 36 biologically important pairs, involving canonical and rare tautomers of nucleobases, were studied by means of all available up-to-date state-of-the-art quantum-chemical techniques along with quantum theory "Atoms in molecules" (QTAIM), Natural Bond Orbital (NBO) analysis, Grunenberg's compliance constants theory, geometrical and vibrational analyses to identify the CH···O/N interactions, reveal their physico-chemical nature and estimate their strengths as well as contribution to the overall base-pairs stability. It was shown that all the 38 CH···O/N contacts (25 CH···O and 13 CH···N H-bonds) completely satisfy all classical geometrical, electron-topological, in particular Bader's and "two-molecule" Koch and Popelier's, and vibrational criteria of H-bonding. The positive values of Grunenberg's compliance constants prove that the CH···O/N contacts in nucleobase pairs are stabilizing interactions unlike electrostatic repulsion and anti-H-bonds. NBO analysis indicates the electron density transfer from the lone electron pair of the acceptor atom (O/N) to the antibonding orbital corresponding to the donor group σ(∗)(CH). Moreover, significant increase in the frequency of the out-of-plane deformation modes γ (CH) under the formation of the CH···O (by 17.2÷81.3/10.8÷84.7 cm(-1)) and CH···N (by 32.7÷85.9/9.0÷77.9 cm(-1)) H-bonds at the density functional theory (DFT)/second-order Møller-Plesset (MP2) levels of theory, respectively, and concomitant changes of their intensities can be considered as reliable indicators of H-bonding. The strengths of the CH···O/N interactions, evaluated by means of Espinosa-Molins-Lecomte formula, lie within the range 0.45÷3.89/0.62÷4.10 kcal/mol for the CH

  19. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).

    PubMed

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-01

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  20. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    NASA Astrophysics Data System (ADS)

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-01

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1- and π2- states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  1. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    SciTech Connect

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-07

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N–H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N–H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π{sub 1}{sup −} and π{sub 2}{sup −} states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  2. Comparative Analysis of Amino Acids, Nucleosides, and Nucleobases in Thais clavigera from Different Distribution Regions by Using Hydrophilic Interaction Ultra-Performance Liquid Chromatography Coupled with Triple Quadrupole Tandem Mass Spectrometry

    PubMed Central

    Ge, Yahui; Tang, Yuping; Guo, Sheng; Liu, Xin; Zhu, Zhenhua; Liu, Pei; Duan, Jin-ao

    2015-01-01

    Thais clavigera, as function food, is distributed widely along the coasts of China. To compare and tap its potentially nutritional and functional values, hydrophilic interaction ultra-performance liquid chromatography coupled with triplequadrupole tandem mass spectrometry (HILIC-UPLC-TQ-MS/MS) was used for simultaneous identification and quantification of amino acids, nucleosides, and nucleobases in the extracts of T. clavigera from 19 sea areas in China, and a PCA was further performed for comparing their content variation in different distribution regions. The total contents of amino acids varied from 116.74 mg/g to 298.58 mg/g being higher than contents of nucleosides and nucleobases that varied from 2.65 mg/g and 20.49 mg/g. Among the habitats, Hainan province had content advantages on others. By PCA, samples collected from different regions were classified into three groups. For specific constituents, lysine accounted for large part of essential amino acids; glycine and taurine also play important roles in the delicate taste and health care function of it. Inosine takes up most of total contents of nucleosides and nucleobases. These results provided good data for establishing quality standard of T. clavigera related products and their further development and utilization. PMID:26290666

  3. CHEMICAL TRANSPORT FACILITATED BY COLLOIDAL-SIZED ORGANIC MOLECULES

    EPA Science Inventory

    The fluid passing through the pores of soils and geologic materials is not just water with dissolved inorganic chemicals, but a complex mixture of organic and inorganic molecules. Large organic molecules such as humic and fulvic materials may impact the movement of contaminants. ...

  4. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    SciTech Connect

    Flury, Markus

    2005-06-01

    In the previous reporting period, we have clarified the qualitative mineral transformation pathways when Hanford sediments are reacted with caustic Hanford tank waste. The major finding was that cancrinite, sodalite, zeolite A and allophane form when Hanford tank waste leaks into subsurface sediments. Cancrinite and sodalite are the most stable phases. The morphology and crystallinity of the minerals formed vary with alkalinity, salinity, and the Si/Al ratio. Temperature affects the reaction rates, but not the reaction pathways. In this project period, we have further refined the reaction pathways by quantification of XRD patterns and determination of weight fractions of individual minerals. This allowed us to generalize the results as function of solution chemistry.

  5. Colloid-Facilitated Transport of Radionuclides Through the Vadose Zone

    SciTech Connect

    Flury, Markus

    2005-06-01

    In the previous reporting period, we have clarified the qualitative mineral transformation pathways when Hanford sediments are reacted with caustic Hanford tank waste. The major finding was that cancrinite, sodalite, zeolite A and allophane form when Hanford tank waste leaks into subsurface sediments. Cancrinite and sodalite are the most stable phases. The morphology and crystallinity of the minerals formed vary with alkalinity, salinity, and the Si/Al ratio. Temperature affects the reaction rates, but not the reaction pathways. In this project period, we have further refined the reaction pathways by quantification of XRD patterns and determination of weight fractions of individual minerals. This allowed us to generalize the results as function of solution chemistry.

  6. Colloid-Facilitated Transport of Radionuclides Through the Vadose Zone

    SciTech Connect

    Flury, Markus; Lichtner, Peter C.; McCarthy, John F.

    2003-06-01

    We have completed the studies on reactions of minerals with caustic Hanford tank waste solutions. Systematic studies on the effects of different anions, cations, and the radionuclide Cs-137 were completed and technical manuscripts on these experiments were submitted for publication. The concentration of NaOH and the type of anion played the dominant roles in determining minerals formed. Increasing NaOH concentration and temperature enhanced the formation of feldspathoids; when NaOH concentration was high (e.g.,16 M), stable cancrinite and sodalite formed rapidly. Cancrinite formed in the presence of nitrate or sulfate; sodalite formed in the presence of chloride, carbonate or without added anions. Low concentration of Cs (< 100 mM) did not affect the formation of lepispheric cancrinite and sodalite, whereas only highly crystalline cancrinite formed when Cs concentration was >250mM. The presence of K did not alter but slowed down the formation of cancrinite and sodalite. The presence of divalent cations led to the formation of intermediate or stable silicates, aluminates, hydroxides or even aluminosilicates. We investigated the incorporation of Cs and the stability of the incorporated Cs in feldspathoids, zeolites, and allophane that may form in the sediments under conditions mimicking Hanford tank leaks. The incorporated Cs was quantified by atomic absorption spectroscopy after digestion in 1 M HCl. Cancrinite, sodalite, LTA zeolite, the 3-D cross-shaped zeolite, and allophane were capable to preferentially incorporate Cs when they form in the alkaline simulants.

  7. Charge-transfer solids using nucleobases: supramolecular architectures composed of cytosine and [Ni(dmit)2] assembled by multiple hydrogen bonds and heteroatomic contacts.

    PubMed

    Yoshida, Yukihiro; Maesato, Mitsuhiko; Ishikawa, Manabu; Nakano, Yoshiaki; Hiramatsu, Takaaki; Yamochi, Hideki; Saito, Gunzi

    2013-09-01

    Protonated species of the nucleobase cytosine (C), namely the monoprotonated CH(+) and the hemiprotonated CHC(+), were used to obtain four charge-transfer complexes of [Ni(dmit)2] (dmit: 1,3-dithiole-2-thione-4,5-dithiolate). Diffusion methods afforded two semiconducting [Ni(dmit)2](-) salts; (CH)[Ni(dmit)2](CH3CN) (1) and (CHC)[Ni(dmit)2] (2). In salt 1, the [Ni(dmit)2](-) ions with a S = 1/2 spin construct a uniform one-dimensional array along the molecular long axis, and the significant intermolecular interaction along the face-to-face direction results in a spin-singlet ground state. In contrast, salt 2 exhibits the Mott insulating behavior associated with uniform 1D arrays of [Ni(dmit)2](-), which assemble a two-dimensional layer that is sandwiched between the layers of hydrogen-bonded CHC(+) ribbons. Multiple hydrogen bonds between CHC(+) and [Ni(dmit)2](-) seem to result in the absence of structural phase transition down to 0.5 K. Electrooxidation of [Ni(dmit)2](-) afforded the polymorphs of the [Ni(dmit)2](0.5-) salts, (CHC(+))[{Ni(dmit)2}(0.5-)]2 (3 and 4), which are the first mixed-valence salts of nucleobase cations with metal complex anions. Similar to 2, salt 3 contains CHC(+) ribbons that are sandwiched between the 2D [Ni(dmit)2](0.5-) layers. In the layer, the [Ni(dmit)2](0.5-) ions form dimers with a S = 1/2 spin and the narrow electronic bandwidth causes a semiconducting behavior. In salt 4, the CHC(+) units form an unprecedented corrugated 2D sheet, which is sandwiched between the 2D [Ni(dmit)2](0.5-) layers that involve ring-over-atom and spanning overlaps. In contrast to 3, salt 4 exhibits metallic behavior down to 1.8 K, associated with a wide bandwidth and a 2D Fermi surface. The ability of hydrogen-bonded CHC(+) sheets as a template for the anion radical arrangements is demonstrated.

  8. High School Facilitators and Inhibitors.

    ERIC Educational Resources Information Center

    Gnagey, William J.

    1981-01-01

    Teachers in a small high school nominated students whose classroom behavior facilitates or inhibits (disrupts) the learning process. These two groups were compared on locus of control, Maslow motive hierarchies, attitudes toward crime prevention, and achievement. Results are discussed and suggestions for helping disruptive students are made. (SJL)

  9. Sign Facilitation in Word Recognition.

    ERIC Educational Resources Information Center

    Wauters, Loes N.; Knoors, Harry E. T.; Vervloed, Mathijs P. J.; Aarnoutse, Cor A. J.

    2001-01-01

    This study examined whether use of sign language would facilitate reading word recognition by 16 deaf children (6- to 1 years-old) in the Netherlands. Results indicated that if words were learned through speech, accompanied by the relevant sign, accuracy of word recognition was greater than if words were learned solely through speech. (Contains…

  10. Producing Gestures Facilitates Route Learning

    PubMed Central

    So, Wing Chee; Ching, Terence Han-Wei; Lim, Phoebe Elizabeth; Cheng, Xiaoqin; Ip, Kit Yee

    2014-01-01

    The present study investigates whether producing gestures would facilitate route learning in a navigation task and whether its facilitation effect is comparable to that of hand movements that leave physical visible traces. In two experiments, we focused on gestures produced without accompanying speech, i.e., co-thought gestures (e.g., an index finger traces the spatial sequence of a route in the air). Adult participants were asked to study routes shown in four diagrams, one at a time. Participants reproduced the routes (verbally in Experiment 1 and non-verbally in Experiment 2) without rehearsal or after rehearsal by mentally simulating the route, by drawing it, or by gesturing (either in the air or on paper). Participants who moved their hands (either in the form of gestures or drawing) recalled better than those who mentally simulated the routes and those who did not rehearse, suggesting that hand movements produced during rehearsal facilitate route learning. Interestingly, participants who gestured the routes in the air or on paper recalled better than those who drew them on paper in both experiments, suggesting that the facilitation effect of co-thought gesture holds for both verbal and nonverbal recall modalities. It is possibly because, co-thought gesture, as a kind of representational action, consolidates spatial sequence better than drawing and thus exerting more powerful influence on spatial representation. PMID:25426624

  11. Producing gestures facilitates route learning.

    PubMed

    So, Wing Chee; Ching, Terence Han-Wei; Lim, Phoebe Elizabeth; Cheng, Xiaoqin; Ip, Kit Yee

    2014-01-01

    The present study investigates whether producing gestures would facilitate route learning in a navigation task and whether its facilitation effect is comparable to that of hand movements that leave physical visible traces. In two experiments, we focused on gestures produced without accompanying speech, i.e., co-thought gestures (e.g., an index finger traces the spatial sequence of a route in the air). Adult participants were asked to study routes shown in four diagrams, one at a time. Participants reproduced the routes (verbally in Experiment 1 and non-verbally in Experiment 2) without rehearsal or after rehearsal by mentally simulating the route, by drawing it, or by gesturing (either in the air or on paper). Participants who moved their hands (either in the form of gestures or drawing) recalled better than those who mentally simulated the routes and those who did not rehearse, suggesting that hand movements produced during rehearsal facilitate route learning. Interestingly, participants who gestured the routes in the air or on paper recalled better than those who drew them on paper in both experiments, suggesting that the facilitation effect of co-thought gesture holds for both verbal and nonverbal recall modalities. It is possibly because, co-thought gesture, as a kind of representational action, consolidates spatial sequence better than drawing and thus exerting more powerful influence on spatial representation. PMID:25426624

  12. Facilitating Creativity in Adult Learners

    ERIC Educational Resources Information Center

    Tsai, Kuan Chen

    2013-01-01

    Creativity in education research has received increasing attention, although the major focus of this research has been on children. Despite pleas by several adult educators for promoting creativity, very few studies have focused on adult learners, leaving to it to be explored what approaches are useful for adult educators to facilitate creativity…

  13. Facilitation of Mourning During Childhood.

    ERIC Educational Resources Information Center

    Kliman, Gilbert; And Others

    This paper discusses case studies of children psychologically disturbed by the death of parents or siblings. Illustrations of mourning facilitation were mainly gathered from 16 orphaned children, ages 3-14. Some techniques used in helping children mourn include: discussing physical details of the illness, discussing previous deaths of animals and…

  14. Social Facilitation of Aiding Responses.

    ERIC Educational Resources Information Center

    Bartell, Patricia; And Others

    Research on individual's response to emergency situations in the presence of others has produced conflicting results. The bystander effect is the label applied to inaction or the unlikelihood of assistance with others present. The social facilitation effect occurs when the presence of others energizes response; strong habit responses are…

  15. Protein expression and subcellular localization of the general purine transporter UapC from Aspergillus nidulans.

    PubMed

    Valdez-Taubas, J; Diallinas, G; Scazzocchio, C; Rosa, A L

    2000-07-01

    The uapC gene of Aspergillus nidulans belongs to a family of nucleobase-specific transporters conserved in prokaryotic and eucaryotic organisms. We report the use of immunological and green fluorescent protein based strategies to study protein expression and subcellular distribution of UapC. A chimeric protein containing a plant-adapted green fluorescent protein (sGFP) fused to the C-terminus of UapC was shown to be functional in vivo, as it complements a triple mutant (i.e., uapC(-) uapA(-) azgA(-)) unable to grow on uric acid as the sole nitrogen source. UapC-GFP is located in the plasma membrane and, secondarily, in internal structures observed as fluorescent dots. A strong correlation was found between cellular levels of UapC-GFP fluorescence and known patterns of uapC gene expression. This work represents the first in vivo study of protein expression and subcellular localization of a filamentous fungal nucleobase transporter.

  16. Animal transportation networks.

    PubMed

    Perna, Andrea; Latty, Tanya

    2014-11-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research.

  17. Animal transportation networks

    PubMed Central

    Perna, Andrea; Latty, Tanya

    2014-01-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598

  18. Facilitating Facilitators to Facilitate, in Problem or Enquiry Based Learning Sessions

    ERIC Educational Resources Information Center

    Coelho, Catherine

    2014-01-01

    Problem based learning (PBL) has been used in dental education over the past 20 years and uses a patient case scenario to stimulate learning in a small group setting, where a trained facilitator does not teach but guides the group to bring about deep contextualized learning, to be empathetic to each other and to encourage fair and equitable…

  19. Conformation dependent electronic transport in a DNA double-helix

    SciTech Connect

    Kundu, Sourav Karmakar, S. N.

    2015-10-15

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effect of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally.

  20. Counterfactual Thinking Facilitates Behavioral Intentions

    PubMed Central

    Smallman, Rachel; Roese, Neal J.

    2009-01-01

    People often ponder what might have been, and these counterfactual inferences have been linked to behavior regulation. Counterfactuals may enhance performance by either a content-specific pathway (via shift in behavioral intentions) and/or a content-neutral pathway (via mindsets or motivation). Three experiments provided new specification of the content-specific pathway. A sequential priming paradigm revealed that counterfactual judgments facilitated RTs to complete behavioral intention judgments relative to control judgments and to a no-judgment baseline (Experiment 1). This facilitation effect was found only for intention judgments that matched the information content of the counterfactual (Experiment 2) and only for intention judgments as opposed to a different judgment that nevertheless focused on the same information content (Experiment 3). These findings clarify the content-specific pathway by which counterfactuals influence behavior. PMID:20161221

  1. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets

    PubMed Central

    Pastor-Anglada, Marçal; Pérez-Torras, Sandra

    2015-01-01

    Nucleoside and nucleobase analogs are currently used in the treatment of solid tumors, lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some inflammatory diseases such as Crohn. Two gene families are implicated in the uptake of nucleosides and nucleoside analogs into cells, SCL28 and SLC29. The former encodes hCNT1, hCNT2, and hCNT3 proteins. They translocate nucleosides in a Na+ coupled manner with high affinity and some substrate selectivity, being hCNT1 and hCNT2 pyrimidine- and purine-preferring, respectively, and hCNT3 a broad selectivity transporter. SLC29 genes encode four members, being hENT1 and hENT2 the only two which are unequivocally implicated in the translocation of nucleosides and nucleobases (the latter mostly via hENT2) at the cell plasma membrane. Some nucleoside-derived drugs can also interact with and be translocated by members of the SLC22 gene family, particularly hOCT and hOAT proteins. Inter-individual differences in transporter function and perhaps, more importantly, altered expression associated with the disease itself might modulate the transporter profile of target cells, thereby determining drug bioavailability and action. Drug transporter pharmacology has been periodically reviewed. Thus, with this contribution we aim at providing a state-of-the-art overview of the clinical evidence generated so far supporting the concept that these membrane proteins can indeed be biomarkers suitable for diagnosis and/or prognosis. Last but not least, some of these transporter proteins can also be envisaged as drug targets, as long as they can show “transceptor” functions, in some cases related to their role as modulators of extracellular adenosine levels, thereby providing a functional link between P1 receptors and transporters. PMID:25713533

  2. How We Think and Talk about Facilitation

    ERIC Educational Resources Information Center

    Kato, Fumitoshi

    2010-01-01

    Over the past few years, the notion of "facilitation" has been increasingly gaining attention and acceptance in Japan, especially in the context of education and training. Today, Japanese educators think and talk about facilitation, even if it is not yet clear what facilitation is. Interestingly enough, the term "facilitation" does not exist in…

  3. Inositol transport proteins.

    PubMed

    Schneider, Sabine

    2015-04-28

    The cyclic polyol myo-inositol is a key molecule in many different metabolic pathways among all organisms; in addition, it is fundamental for osmotic balance in the mammalian brain. This review sums up inositol transporters from eukaryotic organisms, elucidating their vital role in regulating the intracellular distribution and uptake of inositol. They can be divided into two groups according to their transport mechanisms: (1) sodium ion coupled inositol transporters that belong to the Solute Carrier Families 5 and 6-like Superfamily and, (2) proton coupled inositol symporters that are members of the Major Facilitator Superfamily. Intriguingly members of both families offer promising targets for medical treatment of a variety of diseases.

  4. Stochastic facilitation in the brain?

    NASA Astrophysics Data System (ADS)

    Ward, Lawrence M.; Greenwood, Priscilla E.

    2016-05-01

    We describe the context for three unsolved problems of noise in the brain as well as provide some new results relevant to one of them. The problems are: are neural oscillations better described as noisy limit cycles or as noise-driven quasicycles, does noise facilitate synchronization and information transmission in the brain, and do noise-driven spatial patterns (quasipatterns) coexist with noise-driven quasicycles in the brain? We provide a few new results indicating that, in models at least, spatial quasipatterns of quasicycles can occur, and resemble patterns observed in other areas, such as predator-prey systems and chemical reactions.

  5. Yeast Fps1 glycerol facilitator functions as a homotetramer.

    PubMed

    Beese-Sims, Sara E; Lee, Jongmin; Levin, David E

    2011-12-01

    The Saccharomyces cerevisiae Fps1 glycerol channel is a member of the major intrinsic protein (MIP) family of plasma membrane channel proteins that functions in osmoregulatory pathways to transport glycerol passively out of the cell. The MIP family is subdivided into members that are selectively permeable to water (aquaporins) and those permeated by glycerol (aquaglyceroporins or glycerol facilitators). Although aquaporins function as homo-tetramers with each monomer possessing its own channel, previous studies have suggested that aquaglyceroporins may function as monomers. Here we provide both genetic and biochemical evidence that Fps1 functions as a homotetramer to regulate glycerol transport in yeast. PMID:22030956

  6. Positive Emotion Facilitates Audiovisual Binding

    PubMed Central

    Kitamura, Miho S.; Watanabe, Katsumi; Kitagawa, Norimichi

    2016-01-01

    It has been shown that positive emotions can facilitate integrative and associative information processing in cognitive functions. The present study examined whether emotions in observers can also enhance perceptual integrative processes. We tested 125 participants in total for revealing the effects of emotional states and traits in observers on the multisensory binding between auditory and visual signals. Participants in Experiment 1 observed two identical visual disks moving toward each other, coinciding, and moving away, presented with a brief sound. We found that for participants with lower depressive tendency, induced happy moods increased the width of the temporal binding window of the sound-induced bounce percept in the stream/bounce display, while no effect was found for the participants with higher depressive tendency. In contrast, no effect of mood was observed for a simple audiovisual simultaneity discrimination task in Experiment 2. These results provide the first empirical evidence of a dependency of multisensory binding upon emotional states and traits, revealing that positive emotions can facilitate the multisensory binding processes at a perceptual level. PMID:26834585

  7. Tobacco use prevention and health facilitator effectiveness.

    PubMed

    Young, R L; Elder, J P; Green, M; de Moor, C; Wildey, M B

    1988-11-01

    Tobacco prevention programs often use peers to teach refusal skills to other adolescents. College undergraduate health facilitators delivered a tobacco prevention intervention to sixth and seventh grade students in six schools. Outside observers evaluated facilitators in seven categories: being prepared, maintaining class control, keeping students' attention, encouraging participation, communication, relating to students, and working well in a team. Facilitators were rated highly in all categories. Higher rated health facilitators had more effect in reducing tobacco use than poorly rated facilitators. Facilitators who worked well in a team, related well to students, and were well-prepared were especially effective in positively influencing program outcomes.

  8. The Influence of Facilitator and Facilitation Characteristics on Participants' Ratings of Stepfamily Education

    ERIC Educational Resources Information Center

    Higginbotham, Brian J.; Myler, Cory

    2010-01-01

    We examine the relative importance of facilitator and facilitation characteristics on participant ratings of a stepfamily education program. Data from 48 facilitators and 598 participants suggest that quality facilitation is more meaningful to participants than whether facilitators have comparable demographic characteristics or life experiences.…

  9. Guanidinium Pairing Facilitates Membrane Translocation.

    PubMed

    Allolio, Christoph; Baxova, Katarina; Vazdar, Mario; Jungwirth, Pavel

    2016-01-14

    Ab initio free energy calculations of guanidinium pairing in aqueous solution confirm the counterintuitive conjecture that the like-charge ion pair is thermodynamically stable. Transferring the guanidinium pair to the inside of a POPC lipid bilayer, like-charge ion pairing is found to occur also inside the membrane defect. It is found to contribute to the nonadditivity of ion transfer, thereby facilitating the presence of ions inside the bilayer. The effect is quantified by free energy decomposition and comparison with ammonium ions, which do not form a stable pair. The presence of two charges inside the center of the bilayer leads to the formation of a pore. Potential consequences for cell penetrating peptides and ion conduction are drawn.

  10. Facilitating submetering implementation. Final report

    SciTech Connect

    Bowers, M.A.

    1996-05-01

    Residential submetering is the measurement and billing of electric use in individual apartments in master-metered buildings. In master-metered building situations, residents do not bear electricity costs in proportion to consumption levels. As a result, studies have confirmed that residents in master-metered buildings tend to consume more electricity than residents with individual apartment metering, and have established electrical submetering as an effective energy conservation measure. The New York State Energy Research & Development Authority (NYSERDA) has commissioned a project called Facilitating Submetering Implementation to identify and analyze barriers to the implementation of residential electrical submetering in New York and to formulate recommendations that would facilitate the removal of these barriers, streamlining the process. Experienced professionals in the technical, legal, regulatory, analytical, financial, and other aspects of submetering were retained to interview key interested parties and conduct public forums. This and other data were then analyzed to ascertain the barriers to submetering and develop recommendations designed to reduce or eliminate these barriers. The key barriers to submetering implementation were found to be the Public Service Commission (PSC) requirement for a vote of a majority of shareholders (for coops and condos) and the high initial cost that cannot easily be recouped by owners of both rental and shareholder-owned buildings. The key recommendations are to repeal the voting requirement, maintain the utility incentives, adopt a uniform dispute resolution mechanism, and increase awareness through an Ad-hoc Submetering Committee and supporting educational materials. Other funding sources not fully available can also be made available with regulatory agency support.

  11. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.

    PubMed

    Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping

    2015-01-01

    Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.

  12. Evaluation of the Facilitated Communication Pilot

    ERIC Educational Resources Information Center

    Cooper-Martin, Elizabeth

    2014-01-01

    The Office of Special Education and Student Services asked the Office of Shared Accountability to evaluate the "Facilitated Communication Pilot." In facilitated communication (FC), people with communication impairments express themselves by typing with the aid of a communication partner, called a facilitator, who provides physical (and…

  13. An experimental analysis of facilitated communication.

    PubMed Central

    Montee, B B; Miltenberger, R G; Wittrock, D; Watkins, N; Rheinberger, A; Stackhaus, J

    1995-01-01

    We evaluated the authorship of messages produced through facilitated communication by 7 adults with moderate or severe mental retardation and their facilitators. The clients had been reported to be communicating fluently through facilitated communication. We controlled the facilitators' access to information to be communicated in two evaluation formats, naming pictures and describing activities. In both formats we conducted three conditions: (a) the facilitator and client had access to the same information, (b) the facilitator did not have access to the picture or activity, and (c) the facilitator was given false information about the picture or activity. The results showed that the clients typed the correct answer only when the facilitator had access to the same information, never typed the correct answer when the facilitator had no information or false information, and typed the picture or activity presented to the facilitator when it was different from the one experienced by the client. These results provide unequivocal evidence for facilitator control of typing during facilitated communication. PMID:7601804

  14. The Teacher and Town Planner as Facilitator.

    ERIC Educational Resources Information Center

    Peel, Deborah

    2000-01-01

    Discussion of theories of facilitation in teaching focuses on citizen participation and the role of the facilitator in town planning. Highlights include hierarchies of learning; student-centered learning; facilitating community participation; information technology skills and interpersonal skills; and a rationale for participation. (LRW)

  15. Technologies and Techniques for Supporting Facilitated Video

    ERIC Educational Resources Information Center

    Linnell, Natalie

    2011-01-01

    Worldwide, demand for education of all kinds is increasing beyond the capacity to provide it. One approach that shows potential for addressing this demand is facilitated video. In facilitated video, an educator is recorded teaching, and that video is sent to a remote site where it is shown to students by a facilitator who creates interaction…

  16. Hypothesis of Lithocoding: Origin of the Genetic Code as a "Double Jigsaw Puzzle" of Nucleobase-Containing Molecules and Amino Acids Assembled by Sequential Filling of Apatite Mineral Cellules.

    PubMed

    Skoblikow, Nikolai E; Zimin, Andrei A

    2016-05-01

    The hypothesis of direct coding, assuming the direct contact of pairs of coding molecules with amino acid side chains in hollow unit cells (cellules) of a regular crystal-structure mineral is proposed. The coding nucleobase-containing molecules in each cellule (named "lithocodon") partially shield each other; the remaining free space determines the stereochemical character of the filling side chain. Apatite-group minerals are considered as the most preferable for this type of coding (named "lithocoding"). A scheme of the cellule with certain stereometric parameters, providing for the isomeric selection of contacting molecules is proposed. We modelled the filling of cellules with molecules involved in direct coding, with the possibility of coding by their single combination for a group of stereochemically similar amino acids. The regular ordered arrangement of cellules enables the polymerization of amino acids and nucleobase-containing molecules in the same direction (named "lithotranslation") preventing the shift of coding. A table of the presumed "LithoCode" (possible and optimal lithocodon assignments for abiogenically synthesized α-amino acids involved in lithocoding and lithotranslation) is proposed. The magmatic nature of the mineral, abiogenic synthesis of organic molecules and polymerization events are considered within the framework of the proposed "volcanic scenario". PMID:27048216

  17. Chemometrics for comprehensive analysis of nucleobases, nucleosides, and nucleotides in Siraitiae Fructus by hydrophilic interaction ultra high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry.

    PubMed

    Zhou, Guisheng; Wang, Mengyue; Xu, Renjie; Li, Xiao-Bo

    2015-10-01

    A rapid and sensitive hydrophilic interaction ultra high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry method was validated for the simultaneous determination of 20 nucleobases, nucleosides, and nucleotides (within 3.5 min), and then was employed to test the functional food of Luo-Han-Guo samples. The analysis showed that the Luo-Han-Guo was rich in guanosine and uridine, but contained trace levels of the other target compounds. Chemometrics methods were employed to identify 40 batches of Luo-Han-Guo samples from different cultivated forms, regions and varieties. Unsupervised hierarchical cluster analysis and principal component analysis were used to classify Luo-Han-Guo samples based on the level of the 20 target compounds, and the supervised learning method of counter propagation artificial neural network was utilized to further separate clusters and validate the established model. As a result, the samples could be clustered into three primary groups, in which correlation with cultivated varieties was observed. The present strategy could be applied to the investigation of other edible plants containing nucleobases, nucleosides, or nucleotides. PMID:26249158

  18. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  19. An experimental assessment of facilitated communication.

    PubMed

    Wheeler, D L; Jacobson, J W; Paglieri, R A; Schwartz, A A

    1993-02-01

    This report presents a quantitative study of facilitated communication. Participants were 12 people living at an institutional autism program and 9 people who provided them with facilitated communication support. These subjects were the 12 most competent producers of facilitated communication in the program. They were shown pictures of familiar objects and asked to type the names of the objects under three conditions: (a) assisted typing with facilitators unaware of the content of the stimulus picture, (b) unassisted typing, and (c) a condition in which the participants and facilitators were each shown pictures at the same time. In this last condition the paired pictures were either the same or different, and the participant's typing was facilitated to label or describe the picture. These participants were unable to succeed in the tasks without facilitator assistance. On trials when the facilitators and participants had different pictures, the only "correct" labels were for pictures shown to the facilitators and not shown to the participants. This finding demonstrates that the facilitators were unknowingly determining what was typed.

  20. Vesicular neurotransmitter transporters: mechanistic aspects.

    PubMed

    Anne, Christine; Gasnier, Bruno

    2014-01-01

    Secondary transporters driven by a V-type H⁺-ATPase accumulate nonpeptide neurotransmitters into synaptic vesicles. Distinct transporter families are involved depending on the neurotransmitter. Monoamines and acetylcholine on the one hand, and glutamate and ATP on the other hand, are accumulated by SLC18 and SLC17 transporters, respectively, which belong to the major facilitator superfamily (MFS). GABA and glycine accumulate through a common SLC32 transporter from the amino acid/polyamine/organocation (APC) superfamily. Although crystallographic structures are not yet available for any vesicular transporter, homology modeling studies of MFS-type vesicular transporters based on distantly related bacterial structures recently provided significant advances, such as the characterization of substrate-binding pockets or the identification of spatial clusters acting as hinge points during the alternating-access cycle. However, several basic issues, such as the ion stoichiometry of vesicular amino acid transporters, remain unsettled.

  1. Tonoplast Aquaporins Facilitate Lateral Root Emergence.

    PubMed

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée; Beebo, Azeez; Swarup, Kamal; Voß, Ute; Bouhidel, Karim; Frigerio, Lorenzo; Schjoerring, Jan K; Bennett, Malcolm J; Chaumont, Francois

    2016-03-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.

  2. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  3. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or...

  4. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or...

  5. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or...

  6. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or...

  7. 50 CFR 17.107 - Facilitating enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or...

  8. Simple scale interpolator facilitates reading of graphs

    NASA Technical Reports Server (NTRS)

    Fetterman, D. E., Jr.

    1965-01-01

    Simple transparent overlay with interpolation scale facilitates accurate, rapid reading of graph coordinate points. This device can be used for enlarging drawings and locating points on perspective drawings.

  9. INFLUENCE OF MACROMOLECULES ON CHEMICAL TRANSPORT

    EPA Science Inventory

    Macromolecules in the pore fluid influence the mobility of hydrophobic compounds through soils. his study evaluated the significance of macromolecules in facilitating chemical transport under laboratory conditions. Partition coefficients between 14C-labeled hexachlorobenzene and ...

  10. Using learning theory, interprofessional facilitation competencies, and behavioral indicators to evaluate facilitator training.

    PubMed

    LeGros, Theresa A; Amerongen, Helen M; Cooley, Janet H; Schloss, Ernest P

    2015-01-01

    Despite the increasing need for faculty and preceptors skilled in interprofessional facilitation (IPF), the relative novelty of the field poses a challenge to the development and evaluation of IPF programs. We use learning theory and IPF competencies with associated behavioral indicators to develop and evaluate six key messages in IPF training and experience. Our mixed methods approach included two phases: quantitative data collection with embedded qualitative data, followed by qualitative data collection in explanatory sequential fashion. This enabled triangulated analyses of both data types and of facilitation behaviors from facilitator and student perspectives. Results indicate the competency-based training was effective. Facilitators felt comfortable performing behaviors associated with IPF competencies; student observations of those behaviors supported facilitator self-reported performance. Overall, students perceived more facilitation opportunities than facilitators. Findings corroborate the importance of recruiting seasoned facilitators and establishing IPF guidelines that acknowledge variable team dynamics and help facilitators recognize teachable moments. PMID:26230378

  11. Using learning theory, interprofessional facilitation competencies, and behavioral indicators to evaluate facilitator training.

    PubMed

    LeGros, Theresa A; Amerongen, Helen M; Cooley, Janet H; Schloss, Ernest P

    2015-01-01

    Despite the increasing need for faculty and preceptors skilled in interprofessional facilitation (IPF), the relative novelty of the field poses a challenge to the development and evaluation of IPF programs. We use learning theory and IPF competencies with associated behavioral indicators to develop and evaluate six key messages in IPF training and experience. Our mixed methods approach included two phases: quantitative data collection with embedded qualitative data, followed by qualitative data collection in explanatory sequential fashion. This enabled triangulated analyses of both data types and of facilitation behaviors from facilitator and student perspectives. Results indicate the competency-based training was effective. Facilitators felt comfortable performing behaviors associated with IPF competencies; student observations of those behaviors supported facilitator self-reported performance. Overall, students perceived more facilitation opportunities than facilitators. Findings corroborate the importance of recruiting seasoned facilitators and establishing IPF guidelines that acknowledge variable team dynamics and help facilitators recognize teachable moments.

  12. Manned transportation system study - Evaluation of candidate transportation architectures

    NASA Technical Reports Server (NTRS)

    Lance, Nicholas; Klemer, R.; Sooter, C.

    1992-01-01

    The overall evaluation process, the tool developed to perform the evaluation, and the evaluation results in determining the right approach to meet the nation's mannned transportation needs are presented. To address the various considerations, architecture sets consisting of the candidate transportation systems are constructed. As this methodology results in multiple architectures to examine, an architecture evaluation tool was developed to facilitate the evaluation of the architecture attribute values from the system values of the attributes.

  13. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  14. Interaction between facilitated diffusion of glucose across the plasma membrane and its metabolism in Trichomonas vaginalis.

    PubMed

    ter Kuile, B H; Müller, M

    1993-06-01

    The parasitic protist Trichomonas vaginalis transports glucose across the plasma membrane by facilitated diffusion. The Km of the transporter for glucose was 1.6 mM. The uptake of labelled glucose in a minimal medium not allowing growth reached saturation only after 2.5 h, indicating the turnover of storage carbohydrate. Organisms grown on glucose showed higher activities both of the transporter and of the subsequent metabolic pathway than organisms grown on maltose. At low external glucose concentrations the transport step was rate limiting, at higher levels a subsequent enzymatic step. The uptake mechanism for glucose of T. vaginalis resembled that of parasitic kinetoplastid protists and Entamoeba histolytica.

  15. "Stepping Up": A Focus on Facilitator Development

    ERIC Educational Resources Information Center

    Kostouros, Patricia; Warthe, D. Gaye; Carter-Snell, Catherine; Burnett, Che

    2016-01-01

    This article examines the impact on peer facilitators in "Stepping Up," a dating violence prevention program at a Canadian university. A focus group held eight months following the delivery of the program determined the personal impact of involvement in the program. Results indicate that peer facilitators experienced personal growth as…

  16. Peervention: Training Peer Facilitators for Prevention Education.

    ERIC Educational Resources Information Center

    Myrick, Robert D.; Folk, Betsy E.

    This book introduces students to the helping relationship and appropriate methods of responding to others through a variety of experiential training activities. The first chapter discusses the need for peer facilitators. The peer facilitator movement is traced to the 1970s, and the power of peer relationships is described. Four basic helping roles…

  17. Parent Involvement Facilitators: Unlocking Social Capital Wealth

    ERIC Educational Resources Information Center

    Ferrara, Margaret M.

    2015-01-01

    This case study provides an overview of a family outreach intervention that supports student retention in school through a school-home communication link. This intervention structure, which employs staff appropriately called parent involvement facilitators (PIFs), is one that school districts have employed to facilitate family engagement in…

  18. Facilitated Communication: The Clinical and Social Phenomenon.

    ERIC Educational Resources Information Center

    Shane, Howard C., Ed.

    This text explains the phenomenon of facilitated communication (FC) from an empirical, data-based, and/or clinical perspective. It is not a how-to-facilitate text, but one that explores the clinical and sociological reality of FC. A common theme running through each of the papers in the book is the question of FC's legitimacy. The papers reveal…

  19. A Model of Small Group Facilitator Competencies

    ERIC Educational Resources Information Center

    Kolb, Judith A.; Jin, Sungmi; Song, Ji Hoon

    2008-01-01

    This study used small group theory, quantitative and qualitative data collected from experienced practicing facilitators at three points of time, and a building block process of collection, analysis, further collection, and consolidation to develop a model of small group facilitator competencies. The proposed model has five components:…

  20. 75 FR 64641 - Facilitating Shareholder Director Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... COMMISSION 17 CFR Parts 200, 232, 240, and 249 RIN 3235-AK27 Facilitating Shareholder Director Nominations... rules that the Commission adopted to facilitate the effective exercise of shareholders' traditional state law rights to nominate and elect directors to company boards of directors. We are publishing...

  1. Escaping Homelessness: Anticipated and Perceived Facilitators

    ERIC Educational Resources Information Center

    Patterson, Allisha; Tweed, Roger

    2009-01-01

    One study with two distinct sections was conducted to identify factors facilitating escape from homelessness. In Section 1, 58 homeless individuals rated possible facilitators of escape (factors they believed would help them become more independent and self-sufficient). In Section 2, 80 participants who had already exited homelessness rated the…

  2. A Multitask Controlled Evaluation of Facilitated Communication.

    ERIC Educational Resources Information Center

    Vazquez, Carol A.

    1994-01-01

    This study tested the validity of facilitated communication with 2 students (ages 10 and 12) with autism, using a picture identification task, video task, and object identification. Subjects were able to report information unknown to the facilitator in one out of four controlled sessions. Strong evidence for direct cuing between subject and…

  3. Facilitator's Manual: Summer Transitions. Fifth Edition.

    ERIC Educational Resources Information Center

    Kuenzli, Linda A., Ed.

    A facilitator's manual for the Summer Transition Enrichment Program at Bowling Green State University is presented. The overall objectives of the program are: (1) to facilitate the transition of entering freshmen into the academic and cultural life of the university; and (2) to assist students in their personal growth and adjustment to the…

  4. The Role of Touch in Facilitated Communication.

    ERIC Educational Resources Information Center

    Kezuka, Emiko

    1997-01-01

    A study investigated the role of touch in the use of facilitated communication with Japanese individuals with autism. Five experiments were conducted involving a "telepathy game" using a rod with an attached strain gauge. Results found the facilitator's contact controlled the motor responses of the subjects. (Author/CR)

  5. Toward Facilitative Mentoring and Catalytic Interventions

    ERIC Educational Resources Information Center

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  6. Reconceptualizing the Pedagogical Value of Student Facilitation

    ERIC Educational Resources Information Center

    Oztok, Murat

    2016-01-01

    Sustained discourse is critical to the learning potential of online courses. And, while research has surfaced many factors that mediate interaction, it further suggests that sustained interaction remains elusive. In this paper, I propose that student facilitation may have an impact on the quality of facilitators' interactions following a week of…

  7. A Dialogic Approach to Online Facilitation

    ERIC Educational Resources Information Center

    Swann, Jennie

    2010-01-01

    Social construction of understanding has long been a significant underlying principle of learning and teaching, and while there are many models for the design of online activities to promote this, there are considerably fewer models for the facilitation of such dialogue. This paper examines some of these facilitation models from the point of view…

  8. Social Facilitation: A Test of Two Theories.

    ERIC Educational Resources Information Center

    Ryujin, Donald H.; And Others

    Social facilitation can be defined as the effect of an audience or coactors on performance. Research on social facilitation effects has produced some contradictory and confusing findings. Some studies have found that the presence of others enhances performance; other studies have found that the presence of an audience or coactors impairs…

  9. Facilitator Talk in EAP Reading Classes

    ERIC Educational Resources Information Center

    Wilson, Kate

    2008-01-01

    Current sociocultural perspectives on language learning call on teachers to reinvent themselves in ways which facilitate student learning rather than transmit knowledge. For teachers, this means adopting new roles, and acquiring a new repertoire of teacher talk. This paper aims to further the work on facilitator talk begun by Clifton (2006) and…

  10. Interaction Patterns and Facilitation of Peer Learning.

    ERIC Educational Resources Information Center

    Shaw, Marvin E.; And Others

    1979-01-01

    Data show that giving information to members of a group is more important in determining the perception by others that the person is facilitating group performance. Asking for information and opinions is more important in actual facilitation of group learning. Social-emotional support becomes important after initial phases of group interaction.…

  11. Vesicular GABA transporter (VGAT) transports β-alanine.

    PubMed

    Juge, Narinobu; Omote, Hiroshi; Moriyama, Yoshinori

    2013-11-01

    Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In this study, we show that VGAT recognizes β-alanine as a substrate. Proteoliposomes containing purified VGAT transport β-alanine using Δψ but not ΔpH as a driving force. The Δψ-driven β-alanine uptake requires Cl(-). VGAT also facilitates Cl(-) uptake in the presence of β-alanine. A previously described VGAT mutant (Glu213Ala) that disrupts GABA and glycine transport similarly abrogates β-alanine uptake. These findings indicated that VGAT transports β-alanine through a mechanism similar to those for GABA and glycine, and functions as a vesicular β-alanine transporter. Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In the present study, we showed that proteoliposomes containing purified VGAT transport β-alanine using Δψ as a driving force. VGAT also facilitates Cl(-) uptake. Our findings indicated that VGAT functions as a vesicular β-alanine transporter.

  12. Mechanistic characterization of the 5′-triphosphate-dependent activation of PKR: Lack of 5′-end nucleobase specificity, evidence for a distinct triphosphate binding site, and a critical role for the dsRBD

    PubMed Central

    Toroney, Rebecca; Hull, Chelsea M.; Sokoloski, Joshua E.; Bevilacqua, Philip C.

    2012-01-01

    The protein kinase PKR is activated by RNA to phosphorylate eIF-2α, inhibiting translation initiation. Long dsRNA activates PKR via interactions with the dsRNA-binding domain (dsRBD). Weakly structured RNA also activates PKR and does so in a 5′-triphosphate (ppp)–dependent fashion, however relatively little is known about this pathway. We used a mutant T7 RNA polymerase to incorporate all four triphosphate-containing nucleotides into the first position of a largely single-stranded RNA and found absence of selectivity, in that all four transcripts activate PKR. Recognition of 5′-triphosphate, but not the nucleobase at the 5′-most position, makes this RNA-mediated innate immune response sensitive to a broad array of viruses. PKR was neither activated in the presence of γ-GTP nor recognized NTPs other than ATP in activation competition and ITC binding assays. This indicates that the binding site for ATP is selective, which contrasts with the site for the 5′ end of ppp-ssRNA. Activation experiments reveal that short dsRNAs compete with 5′-triphosphate RNAs and heparin for activation, and likewise gel-shift assays reveal that activating 5′-triphosphate RNAs and heparin compete with short dsRNAs for binding to PKR's dsRBD. The dsRBD thus plays a critical role in the activation of PKR by ppp-ssRNA and even heparin. At the same time, cross-linking experiments indicate that ppp-ssRNA interacts with PKR outside of the dsRBD as well. Overall, 5′-triphosphate-containing, weakly structured RNAs activate PKR via interactions with both the dsRBD and a distinct triphosphate binding site that lacks 5′-nucleobase specificity, allowing the innate immune response to provide broad-spectrum protection from pathogens. PMID:22912486

  13. Transport proteins.

    PubMed

    Thatcher, Jack D

    2013-04-16

    This Teaching Resource provides and describes two animated lessons that illustrate general properties of transport proteins. The lesson called "transport protein classes" depicts major classes and subclasses of transport proteins. The "transporters, mechanism of action" lesson explains how transporters and P class ATPase (adenosine triphosphatase) pumps function. These animations serve as valuable resources for any collegiate-level course that describes these important factors. Courses that might use them include introductory biology, biochemistry, cell biology, physiology, and biophysics.

  14. Nanoengineered membranes for controlled transport

    DOEpatents

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  15. Facilitated versus Non-Facilitated Online Case Discussions: Comparing Differences in Problem Space Coverage

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Koehler, Adrie A.

    2015-01-01

    The facilitator plays a key role in guiding students' efforts during case discussions. However, few studies have compared differences in learning outcomes for students participating in facilitated versus non-facilitated discussions. In this research, we used "problem space coverage" as a learning measure to compare outcomes between…

  16. Forensic toxicology in drug-facilitated sexual assault.

    PubMed

    Dinis-Oliveira, Ricardo Jorge; Magalhães, Teresa

    2013-09-01

    The low rates of reporting, prosecution and conviction that characterize sexual assault, is likely even more evident in drug-facilitated cases. Typically, in these crimes, victims are incapacitated and left unable to resist sexual advances, unconscious, unable to fight off the abuser or to say "no" and unable to clearly remember the circumstances surrounding the events due to anterograde amnesia. The consequence is the delay in performing toxicological analysis aggravated by the reluctance of the victim to disclose the crime. Moreover since "date rape drugs" are often consumed with ethanol and exhibit similar toxicodynamic effects, the diagnosis is erroneously performed as being classical ethanol intoxication. Therefore, it is imperative to rapidly consider toxicological analysis in drug-facilitated sexual assaults. The major focus of this review is to harmonize practical approaches and guidelines to rapidly uncover drug-facilitated sexual assault, namely issues related to when to perform toxicological analysis, toxicological requests, samples to be collected, storage, preservation and transport precautions and xenobiotics or endobiotics to be analyzed. PMID:23581559

  17. Inflatable stretcher to transport patients

    NASA Technical Reports Server (NTRS)

    Clark, C. C.; Gordon, F. T., Jr.; Schmidt, C. B.

    1970-01-01

    Inflatable plastic bag inside strong, inflexible outer bag facilitates emergency transport of seriously burned or disabled patients. When the bag is inflated the patient is completely immobilized and cushioned from external shock. Air for breathing, temperature controls and communications may be provided by appropriate plug-in connections.

  18. Facilitating LOS Debriefings: A Training Manual

    NASA Technical Reports Server (NTRS)

    McDonnell, Lori K.; Jobe, Kimberly K.; Dismukes, R. Key

    1997-01-01

    This manual is a practical guide to help airline instructors effectively facilitate debriefings of Line Oriented Simulations (LOS). It is based on a recently completed study of Line Oriented Flight Training (LOFT) debriefings at several U.S. airlines. This manual presents specific facilitation tools instructors can use to achieve debriefing objectives. The approach of the manual is to be flexible so it can be tailored to the individual needs of each airline. Part One clarifies the purpose and objectives of facilitation in the LOS setting. Part Two provides recommendations for clarifying roles and expectations and presents a model for organizing discussion. Part Tree suggests techniques for eliciting active crew participation and in-depth analysis and evaluation. Finally, in Part Four, these techniques are organized according to the facilitation model. Examples of how to effectively use the techniques are provided throughout, including strategies to try when the debriefing objectives are not being fully achieved.

  19. Dream Deprivation and Facilitation with Hypnosis

    ERIC Educational Resources Information Center

    Albert, Ira B.; Boone, Donald

    1975-01-01

    The present study attempted to deprive human subjects of dreaming through the administration of a posthypnotic suggestion and to increase or facilitate dreaming through a second suggestion that was used with another group of subjects. (Author/RK)

  20. 36 CFR 1194.5 - Equivalent facilitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COMPLIANCE BOARD ELECTRONIC AND INFORMATION TECHNOLOGY ACCESSIBILITY STANDARDS General § 1194.5 Equivalent facilitation. Nothing in this part is intended to prevent the use of designs or technologies as alternatives...

  1. Managing and facilitating innovation and nurse satisfaction.

    PubMed

    Weston, Marla J

    2009-01-01

    Behaviors and actions that foster innovation are complementary to those associated with managing and facilitating nurse satisfaction. These include creating an organizational climate that encourages the generation, sharing, and implementation of new ideas; managing with the skills to hire and retain competent and creative individuals; and establishing the infrastructure and processes to recognize and embed best and promising practices into the organization. The ability to innovate and to manage and facilitate nurse satisfaction is a necessary competency for organizational success. PMID:19893447

  2. Categorical facilitation with equally discriminable colors.

    PubMed

    Witzel, Christoph; Gegenfurtner, Karl R

    2015-01-01

    This study investigates the impact of language on color perception. By categorical facilitation, we refer to an aspect of categorical perception, in which the linguistic distinction between categories affects color discrimination beyond the low-level, sensory sensitivity to color differences. According to this idea, discrimination performance for colors that cross a category border should be better than for colors that belong to the same category when controlling for low-level sensitivity. We controlled for sensitivity by using colors that were equally discriminable according to empirically measured discrimination thresholds. To test for categorical facilitation, we measured response times and error rates in a speeded discrimination task for suprathreshold stimuli. Robust categorical facilitation occurred for five out of six categories with a group of inexperienced observers, namely for pink, orange, yellow, green, and purple. Categorical facilitation was robust against individual variations of categories or the laterality of target presentation. However, contradictory effects occurred in the blue category, most probably reflecting the difficulty to control effects of sensory mechanisms at the green-blue boundary. Moreover, a group of observers who were highly familiar with the discrimination task did not show consistent categorical facilitation in the other five categories. This trained group had much faster response times than the inexperienced group without any speed-accuracy trade-off. Additional analyses suggest that categorical facilitation occurs when observers pay attention to the categorical distinction but not when they respond automatically based on sensory feed-forward information. PMID:26129860

  3. School Transportation.

    ERIC Educational Resources Information Center

    Executive Educator, 1990

    1990-01-01

    This special section on student transportation offers a case study of a school system that recycles buses for safety drills; articles on fuel-saving strategies, the pros and cons of contracting for transportation services or operating a publicly owned bus fleet, and advice on full cost accounting for transportation costs; and a transportation…

  4. Transport Experiments

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Wuebbles, Donald J.; Boering, Kristie A.; Eckman, Richard S.; Lerner, Jean; Plumb, R. Alan; Rind, David H.; Rinsland, Curtis P.; Waugh, Darryn W.; Wei, Chu-Feng

    1999-01-01

    MM II defined a series of experiments to better understand and characterize model transport and to assess the realism of this transport by comparison to observations. Measurements from aircraft, balloon, and satellite, not yet available at the time of MM I [Prather and Remsberg, 1993], provide new and stringent constraints on model transport, and address the limits of our transport modeling abilities. Simulations of the idealized tracers the age spectrum, and propagating boundary conditions, and conserved HSCT-like emissions probe the relative roles of different model transport mechanisms, while simulations of SF6 and C02 make the connection to observations. Some of the tracers are related, and transport diagnostics such as the mean age can be derived from more than one of the experiments for comparison to observations. The goals of the transport experiments are: (1) To isolate the effects of transport in models from other processes; (2) To assess model transport for realistic tracers (such as SF6 and C02) for comparison to observations; (3) To use certain idealized tracers to isolate model mechanisms and relationships to atmospheric chemical perturbations; (4) To identify strengths and weaknesses of the treatment of transport processes in the models; (5) To relate evaluated shortcomings to aspects of model formulation. The following section are included:Executive Summary, Introduction, Age Spectrum, Observation, Tropical Transport in Models, Global Mean Age in Models, Source-Transport Covariance, HSCT "ANOY" Tracer Distributions, and Summary and Conclusions.

  5. 31 CFR 538.407 - Facilitation by a United States person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... planning; decision making; designing, ordering or transporting goods; and financial, insurance, and other... against facilitation by a United States person of the exportation or reexportation of goods, technology, or services between Sudan and any destination (including the United States) bars any...

  6. Sucrose transporters of higher plants.

    PubMed

    Kühn, Christina; Grof, Christopher P L

    2010-06-01

    Recent advances have provided new insights into how sucrose is moved from sites of synthesis to sites of utilisation or storage in sink organs. Sucrose transporters play a central role, as they orchestrate sucrose allocation both intracellularly and at the whole plant level. Sucrose produced in mesophyll cells of leaves may be effluxed into the apoplasm of mesophyll or phloem parenchyma cells by a mechanism that remains elusive, but experimentally consistent with facilitated transport or energy-dependent sucrose/H(+) antiport. From the apoplasm, sucrose/H(+) symporters transport sucrose across the plasma membrane of cells making up the sieve element/companion cell (SE/CC) complex, the long distance conduits of the phloem. Phloem unloading of sucrose in key sinks such as developing seeds involves two sequential transport steps, sucrose efflux followed by sucrose influx. Besides plasma membrane specific sucrose transporters, sucrose transporters on the tonoplast contribute to the capacity for elevated sucrose accumulation in storage organs such as sugar beet roots or sugarcane culms. Except for several sucrose facilitators from seed coats of some leguminous plants all sucrose transporters cloned to date, including recently identified vacuolar sucrose transporters, have been characterised as sucrose/H(+) symporters. Transporters functioning to efflux sucrose into source or sink apoplasms as well as those supporting sucrose/H(+) antiport on tonoplasts, remain to be identified. Sucrose transporter expression and activity is tightly regulated at the transcriptional, post-transcriptional as well as post-translational levels. Light quality and phytohormones play essential regulatory roles and the sucrose molecule itself functions as a signal.

  7. Crew Transportation Plan

    NASA Technical Reports Server (NTRS)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  8. Use of complementary nucleobase-containing synthetic polymers to prepare complex self-assembled morphologies in water† †Electronic supplementary information (ESI) available: Characterization of monomers, polymers and particles: NMR, SEC, TEM, SAXS, and DLS. See DOI: 10.1039/c6py00263c Click here for additional data file.

    PubMed Central

    Kang, Yan; Pitto-Barry, Anaïs; S. Rolph, Marianne; Hua, Zan; Hands-Portman, Ian; Kirby, Nigel

    2016-01-01

    Amphiphilic nucleobase-containing block copolymers with poly(oligo(ethylene glycol) methyl ether methacrylate) as the hydrophilic block and nucleobase-containing blocks as the hydrophobic segments were successfully synthesized using RAFT polymerization and then self-assembled via solvent switch in aqueous solutions. Effects of the common solvent on the resultant morphologies of the adenine (A) and thymine (T) homopolymers, and A/T copolymer blocks and blends were investigated. These studies highlighted that depending on the identity of the common solvent, DMF or DMSO, spherical micelles or bicontinuous micelles were obtained. We propose that this is due to the presence of A–T interactions playing a key role in the morphology and stability of the resultant nanoparticles, which resulted in a distinct system compared to individual adenine or thymine polymers. Finally, the effects of annealing on the self-assemblies were explored. It was found that annealing could lead to better-defined spherical micelles and induce a morphology transition from bicontinuous micelles to onion-like vesicles, which was considered to occur due to a structural rearrangement of complementary nucleobase interactions resulting from the annealing process. PMID:27358655

  9. Physically facilitating drug-delivery systems

    PubMed Central

    Rodriguez-Devora, Jorge I; Ambure, Sunny; Shi, Zhi-Dong; Yuan, Yuyu; Sun, Wei; Xu, Tao

    2012-01-01

    Facilitated/modulated drug-delivery systems have emerged as a possible solution for delivery of drugs of interest to pre-allocated sites at predetermined doses for predefined periods of time. Over the past decade, the use of different physical methods and mechanisms to mediate drug release and delivery has grown significantly. This emerging area of research has important implications for development of new therapeutic drugs for efficient treatments. This review aims to introduce and describe different modalities of physically facilitating drug-delivery systems that are currently in use for cancer and other diseases therapy. In particular, delivery methods based on ultrasound, electrical, magnetic and photo modulations are highlighted. Current uses and areas of improvement for these different physically facilitating drug-delivery systems are discussed. Furthermore, the main advantages and drawbacks of these technologies reviewed are compared. The review ends with a speculative viewpoint of how research is expected to evolve in the upcoming years. PMID:22485192

  10. Facilitation: An Essential Ingredient in Online Coursework

    NASA Astrophysics Data System (ADS)

    Ristvey, J.; Bogner, D.

    2003-12-01

    Mid-continent Research for Education and Learning (McREL) partnered with the Colorado School of Mines (CSM) to offer the ESSEA Earth System Science Online Course for Middle School Teachers during the 2002-2003 school year. During the two semesters that the course was offered, we were able to retain 75% of our enrollees. We found that course facilitation was the key ingredient in retaining this large number of students-who are not only scattered across the U.S., but around the world-in a rigorous online course. In this poster session, we will share what we have learned about online facilitation as part of this course, and how this knowledge might translate into other online coursework. Online facilitation begins as soon as a student enrolls in the course. When a student registers online or at CSM, McREL receives notification and then sends course materials and e-mail and written confirmation to the enrollee within 24 hours. This sets the tone for the type of communications that students can expect during the 16-week course. McREL facilitators know how time consuming monitoring participant progress can be, but feel strongly about its importance when facilitating learners who are working in small groups and are completing independent research. Timely monitoring of discussion spaces and e-mail messages is essential to maintaining a high student-retention rate. Kearsley (2000) confirms this when he states that, "the most important role of the instructor in online classes is to ensure that there is a high degree of interactivity and participation." In the ESSEA courses, the isolation of students working independently on classroom applications and reflection is balanced with group construction of interactions and causal chains. Each step of the way facilitators use guided questioning in group discussion sessions and serve as a mentor when participants develop individualized classroom assignments, giving participants the opportunity to apply what they have learned in a

  11. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  12. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    SciTech Connect

    Goodman, Samuel M.; Singh, Vivek; Noh, Hyunwoo; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-23

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  13. Barriers to and facilitators of sports participation for people with physical disabilities: a systematic review.

    PubMed

    Jaarsma, E A; Dijkstra, P U; Geertzen, J H B; Dekker, R

    2014-12-01

    Most people with physical disabilities do not participate in sports regularly, which could increase the chances of developing secondary health conditions. Therefore, knowledge about barriers to and facilitators of sports participation is needed. Barriers and facilitators for people with physical disabilities other than amputation or spinal cord injuries (SCI) are unknown. The aim of this study was to provide an overview of the literature focusing on barriers to and facilitators of sports participation for all people with various physical disabilities. Four databases were searched using MeSH terms and free texts up to April 2012. The inclusion criteria were articles focusing on people with physical disabilities, sports and barriers and/or facilitators. The exclusion criteria were articles solely focusing on people with cognitive disabilities, sensory impairments or disabilities related to a recent organ transplant or similar condition. Fifty-two articles were included in this review, with 27 focusing on people with SCI. Personal barriers were disability and health; environmental barriers were lack of facilities, transport and difficulties with accessibility. Personal facilitators were fun and health, and the environmental facilitator was social contacts. Experiencing barriers to and facilitators of sports participation depends on age and type of disability and should be considered when advising people about sports. The extent of sports participation for people with physical disabilities also increases with the selection of the most appropriate sport. PMID:24730752

  14. Barriers to and facilitators of sports participation for people with physical disabilities: a systematic review.

    PubMed

    Jaarsma, E A; Dijkstra, P U; Geertzen, J H B; Dekker, R

    2014-12-01

    Most people with physical disabilities do not participate in sports regularly, which could increase the chances of developing secondary health conditions. Therefore, knowledge about barriers to and facilitators of sports participation is needed. Barriers and facilitators for people with physical disabilities other than amputation or spinal cord injuries (SCI) are unknown. The aim of this study was to provide an overview of the literature focusing on barriers to and facilitators of sports participation for all people with various physical disabilities. Four databases were searched using MeSH terms and free texts up to April 2012. The inclusion criteria were articles focusing on people with physical disabilities, sports and barriers and/or facilitators. The exclusion criteria were articles solely focusing on people with cognitive disabilities, sensory impairments or disabilities related to a recent organ transplant or similar condition. Fifty-two articles were included in this review, with 27 focusing on people with SCI. Personal barriers were disability and health; environmental barriers were lack of facilities, transport and difficulties with accessibility. Personal facilitators were fun and health, and the environmental facilitator was social contacts. Experiencing barriers to and facilitators of sports participation depends on age and type of disability and should be considered when advising people about sports. The extent of sports participation for people with physical disabilities also increases with the selection of the most appropriate sport.

  15. SLC Transporters as Therapeutic Targets: Emerging Opportunities

    PubMed Central

    Lin, Lawrence; Yee, Sook Wah; Kim, Richard B.; Giacomini, Kathleen M.

    2015-01-01

    Solute carrier (SLC) transporters — a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes — have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets. PMID:26111766

  16. SLC transporters as therapeutic targets: emerging opportunities.

    PubMed

    Lin, Lawrence; Yee, Sook Wah; Kim, Richard B; Giacomini, Kathleen M

    2015-08-01

    Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.

  17. The Resourceful Facilitator: Teacher Leaders Constructing Identities as Facilitators of Teacher Peer Groups

    ERIC Educational Resources Information Center

    Allen, David

    2016-01-01

    The use of teacher peer groups is a prevalent strategy for school-based professional development and instructional improvement. Facilitation of such groups is an increasingly vital dimension of teacher leadership as a component of school improvement efforts. Drawing on a qualitative study of facilitation of teacher peer groups, the article…

  18. International Collaborative Learning--The Facilitation Process.

    ERIC Educational Resources Information Center

    Clear, A. G.

    International collaborative learning is becoming more viable through a variety of Internet enabled software products. Group Support Systems appear to offer promise. But it is not well understood how to facilitate the teaching and learning process in electronic environments. If education is to involve an interactive process of collaborative inquiry…

  19. Grief Support Group Curriculum: Facilitator's Handbook.

    ERIC Educational Resources Information Center

    Lehmann, Linda; Jimerson, Shane R.; Gaasch, Ann

    This handbook is designed for facilitators of grief support groups for mourning children. The first chapter discusses the history, philosophy, and format of a specific curriculum - the Mourning Child curriculum. This curriculum, originally written in 1986 and later expanded and revised, has been used with hundreds of children. Chapter two covers…

  20. Facilitating Learning Spaces in Forum Theatre

    ERIC Educational Resources Information Center

    Rae, Jan

    2013-01-01

    Purpose: The purpose of this paper is to evaluate the extent to which forum theatre interventions can support non-hierarchical approaches to learning, development and change management initiatives in organisations. Design/methodology/approach: Semi-structured interviews were carried out with theatre consultancies, actors/facilitators,…