Sample records for facilitator superfamily mfs

  1. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    PubMed

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.

    PubMed

    Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping

    2015-01-01

    Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.

  3. A novel major facilitator superfamily transporter in Penicillium digitatum (PdMFS2) is required for prochloraz resistance, conidiation and full virulence.

    PubMed

    Wu, Zhi; Wang, Shengqiang; Yuan, Yongze; Zhang, Tingfu; Liu, Jing; Liu, Deli

    2016-08-01

    To clone a novel major facilitator superfamily (MFS, a large protein family with diverse physiological functions in all kingdoms) transporter gene, Pdmfs2, and characterize its function in Penicillium digitatum. A novel MFS transporter gene, Pdmfs2, was isolated from P. digitatum. The full-length DNA of Pdmfs2 had a 1590 bp ORF encoding a full-size MFS transporter with 529 amino acids. In a prochloraz-resistant strain (PdHS-F6), Pdmfs2 transcript level was up-regulated compared with the prochloraz-sensitive strain (PdHS-E3) and could be induced by 7 μg prochloraz/ml. The deletion of Pdmfs2 (ΔPdmfs2) in PdHS-F6 led to increased susceptibility to prochloraz and lower EC50 value (the concentration of prochloraz producing 50 % growth inhibition) compared with the PdHS-F6 or complementation strain (COPdmfs2). The ΔPdmfs2 strain was defective in conidia yield and virulence towards citrus fruits, while the complementation of Pdmfs2 could restore the phenotypic features to a large extent. Pdmfs2 is the second MFS transporter gene in P. digitatum and is required for prochloraz resistance, conidiation and full virulence.

  4. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola.

    PubMed

    Deng, Huaxiang; Gao, Ruijie; Liao, Xiangru; Cai, Yujie

    2017-09-01

    Reactive oxygen species (ROS) generated by photo-activated hypocrellin from Shiraia bambusicola are detrimental to cellular macromolecules. However, S. bambusicola can still maintain excellent morphology during continuous hypocrellin production, indicating an extraordinary autoresistance system that protects against the harmful ROS. In this study, a major facilitator superfamily transporter (MFS) was isolated from S. bambusicola and deleted using the clustered regularly interspaced short palindromic repeat sequences (CRISPR)/Cas9 system. The ΔMFS mutant abolished hypocrellin production and was slightly sensitive to 40-μM hypocrellin, while the ΔMFS compliment strain restored hypocrellin production and resistance. Hypocrellin treatment also enhanced the relative expression of MFS in wild-type S. bambusicola. Subsequent pathogenicity assays showed that MFS deletion reduced damage to bamboo leaves. By contrast, restoration of hypocrellin production in the MFS compliment strain generated similar necrotic lesions on bamboo leaves to those observed with the wild-type strain. These results revealed that the identified MFS is involved in efflux of hypocrellin from cells, which reduces the hypocrellin toxicity. Furthermore, hypocrellin contributed to the virulence of S. bambusicola on bamboo leaves. These findings could help to reduce plant loss by disrupting hypocrellin biosynthesis in S. bambusicola, or overexpressing the associated resistance gene in transgenic plants. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE

    PubMed Central

    Wisedchaisri, Goragot; Park, Min-Sun; Iadanza, Matthew G.; Zheng, Hongjin; Gonen, Tamir

    2014-01-01

    The major facilitator superfamily (MFS) is the largest collection of structurally related membrane proteins that transport a wide array of substrates. The proton-coupled sugar transporter XylE is the first member of the MFS that has been structurally characterized in multiple transporting conformations, including both the outward and inward-facing states. Here we report the crystal structure of XylE in a new inward-facing open conformation, allowing us to visualize the rocker-switch movement of the N-domain against the C-domain during the transport cycle. Using molecular dynamics simulation, and functional transport assays, we describe the movement of XylE that facilitates sugar translocation across a lipid membrane and identify the likely candidate proton-coupling residues as the conserved Asp27 and Arg133. This study addresses the structural basis for proton-coupled substrate transport and release mechanism for the sugar porter family of proteins. PMID:25088546

  6. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.

    PubMed

    Lemieux, M Joanne

    2007-01-01

    The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.

  7. Isolation and functional analysis of Thmfs1, the first major facilitator superfamily transporter from the biocontrol fungus Trichoderma harzianum.

    PubMed

    Liu, Mu; Liu, Jun; Wang, Wei Min

    2012-10-01

    A novel major facilitator superfamily (MFS) transporter gene, Thmfs1, was isolated from Trichoderma harzianum (T. harzianum). A Thmfs1 over-expressing mutant displayed enhanced antifungal activity and fungicide tolerance, while the Thmfs1 disruption mutant showed the opposite trend. Trichodermin production in Thmfs1 disruption group (185 mg l(-1)) was decreased by less than 17 % compared to the parental strain, suggesting that Thmfs1 is not mainly responsible for trichodermin secretion. Real-time PCR showed that Thmfs1 transcript level could be induced by a certain range of trichodermin concentrations, while expression of Tri5, encoding a trichodiene synthase, was strongly inhibited under these conditions. To our knowledge, Thmfs1 is the first MFS transporter gene identified in T. harzianum.

  8. A Major Facilitator Superfamily Transporter Plays a Dual Role in Polar Auxin Transport and Drought Stress Tolerance in Arabidopsis[W

    PubMed Central

    Remy, Estelle; Cabrito, Tânia R.; Baster, Pawel; Batista, Rita A.; Teixeira, Miguel C.; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-01-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H+-coupled K+ transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells. PMID:23524662

  9. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice1[OPEN

    PubMed Central

    Ying, Yinghui; Wang, Shoudong; Secco, David; Liu, Yu; Whelan, James; Tyerman, Stephen D.; Shou, Huixia

    2015-01-01

    To maintain a stable cytosol phosphate (Pi) concentration, plant cells store Pi in their vacuoles. When the Pi concentration in the cytosol decreases, Pi is exported from the vacuole into the cytosol. This export is mediated by Pi transporters on the tonoplast. In this study, we demonstrate that SYG1, PHO81, and XPR1 (SPX)-Major Facility Superfamily (MFS) proteins have a similar structure with yeast (Saccharomyces cerevisiae) low-affinity Pi transporters Phosphatase87 (PHO87), PHO90, and PHO91. OsSPX-MFS1, OsSPX-MFS2, and OsSPX-MFS3 all localized on the tonoplast of rice (Oryza sativa) protoplasts, even in the absence of the SPX domain. At high external Pi concentration, OsSPX-MFS3 could partially complement the yeast mutant strain EY917 under pH 5.5, which lacks all five Pi transporters present in yeast. In oocytes, OsSPX-MFS3 was shown to facilitate Pi influx or efflux depending on the external pH and Pi concentrations. In contrast to tonoplast localization in plants cells, OsSPX-MFS3 was localized to the plasma membrane when expressed in both yeast and oocytes. Overexpression of OsSPX-MFS3 results in decreased Pi concentration in the vacuole of rice tissues. We conclude that OsSPX-MFS3 is a low-affinity Pi transporter that mediates Pi efflux from the vacuole into cytosol and is coupled to proton movement. PMID:26424157

  10. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases

    PubMed Central

    Bazzone, Andre; Madej, M. Gregor; Kaback, H. Ronald

    2016-01-01

    Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6–7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters. PMID:27227677

  11. 76 FR 62470 - MFS Series Trust I, et al.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...] MFS Series Trust I, et al.; Notice of Application September 30, 2011. AGENCY: Securities and Exchange... Series Trust I, MFS Series Trust II, MFS Series Trust III, MFS Series Trust IV, MFS Series Trust V, MFS Series Trust VI, MFS Series Trust VII, MFS Series Trust VIII, MFS Series Trust IX, MFS Series Trust X...

  12. Nitrate transporter genes in apple and the effect of water deficit on their expression

    USDA-ARS?s Scientific Manuscript database

    Nitrogen transporters are members of a large superfamily, the Major Facilitator Superfamily (MFS). This family is ubiquitous and diverse, and includes proteins that facilitate the transport of a wide range of substrates across the cytoplasmic or intracellular membranes. Among the proteins encoded ...

  13. Satisfaction with life in adults with Marfan syndrome (MFS): associations with health-related consequences of MFS, pain, fatigue, and demographic factors.

    PubMed

    Velvin, Gry; Bathen, Trine; Rand-Hendriksen, Svend; Geirdal, Amy Østertun

    2016-07-01

    The objective with this study was to explore satisfaction with life (SWL) among adults with Marfan syndrome (MFS) compared to the general Norwegian population and other patient groups and further to examine the associations between SWL and demographic factors, contact with social and health services, MFS-related health problems, chronic pain, and fatigue. This is a cross-sectional study with postal questionnaire, including the Satisfaction with Life Scale (SWLS), questions on demographic factors, health-related aspects of MFS, and validated instruments measuring chronic pain (Standardized Nordic Questionnaire) and fatigue (Fatigue Severity Scale). One hundred and seventeen adults with MFS were invited to participate, and 73 (62 %) participated. The SWLS mean score in adults with MFS was significantly lower than that reported for the general Norwegian population, but similar to or higher than that reported for other patient groups. Only fatigue, aortic dissection, and having regular contact with psychologist showed significant unique contribution to the SWLS score in the hierarchical multiple linear analyses. The total variance explained by the model was 45.2 % p ≤ 0.000, confirming that the combination of independent variables significantly predicted SWLS. The results reflect that MFS influences people's SWL and that particularly severe fatigue, aortic dissection, and psychological aspects are associated with lower SWL. This is important to take into account in the clinical work with people with MFS. Further investigation is needed, especially on larger sample groups. Studies with combination of qualitative and quantitative approaches are recommended to obtain more comprehensive and accurate knowledge about the consequences of MFS on satisfaction with life.

  14. Uncovering the transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans -Georg

    In this study, uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importermore » required for biogenesis of cbb 3-type cytochrome coxidase ( cbb 3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb 3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb 3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.« less

  15. Uncovering the transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA

    DOE PAGES

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans -Georg; ...

    2016-01-19

    In this study, uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importermore » required for biogenesis of cbb 3-type cytochrome coxidase ( cbb 3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb 3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb 3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.« less

  16. Streptomyces venezuelae ISP5230 Maintains Excretion of Jadomycin upon Disruption of the MFS Transporter JadL Located within the Natural Product Biosynthetic Gene Cluster

    PubMed Central

    Forget, Stephanie M.; McVey, Jennifer; Vining, Leo C.

    2017-01-01

    JadL was identified as a Major Facilitator Superfamily (MFS) transporter (T.C. 2.A.1) through sequence homology. The protein is encoded by jadL, situated within the jadomycin biosynthetic gene cluster. JadL has, therefore, been assigned a putative role in host defense by exporting its probable substrates, the jadomycins, a family of secondary metabolites produced by Streptomyces venezuelae ISP5230. Herein, we evaluate this assumption through the construction and analysis of a jadL disrupted mutant, S. venezuelae VS678 (ΔjadL::aac(3)IV). Quantitative determination of jadomycin production with the jadL disrupted mutant did not show a significant decrease in production in comparison to the wildtype strain, as determined by HPLC and by tandem mass spectrometry. These results suggest that efflux of jadomycin occurs upon disruption of jadL, or that JadL is not involved in jadomycin efflux. Potentially, other transporters within S. venezuelae ISP5230 may adopt this role upon inactivation of JadL to export jadomycins. PMID:28377749

  17. A Major Facilitator Superfamily Protein, HepP, Is Involved in Formation of the Heterocyst Envelope Polysaccharide in the Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    López-Igual, Rocío; Lechno-Yossef, Sigal; Fan, Qing; Herrero, Antonia; Wolk, C. Peter

    2012-01-01

    Some filamentous cyanobacteria such as Anabaena sp. strain PCC 7120 produce cells, termed heterocysts, specialized in nitrogen fixation. Heterocysts bear a thick envelope containing an inner layer of glycolipids and an outer layer of polysaccharide that restrict the diffusion of air (including O2) into the heterocyst. Anabaena sp. mutants impaired in production of either of those layers show a Fox− phenotype (requiring fixed nitrogen for growth under oxic conditions). We have characterized a set of transposon-induced Fox− mutants in which transposon Tn5-1063 was inserted into the Anabaena sp. chromosome open reading frame all1711 which encodes a predicted membrane protein that belongs to the major facilitator superfamily (MFS). These mutants showed higher nitrogenase activities under anoxic than under oxic conditions and altered sucrose uptake. Electron microscopy and alcian blue staining showed a lack of the heterocyst envelope polysaccharide (Hep) layer. Northern blot and primer extension analyses showed that, in a manner dependent on the nitrogen-control transcription factor NtcA, all1711 was strongly induced after nitrogen step-down. Confocal microscopy of an Anabaena sp. strain producing an All1711-green fluorescent protein (All1711-GFP) fusion protein showed induction in all cells of the filament but at higher levels in differentiating heterocysts. All1711-GFP was located in the periphery of the cells, consistent with All1711 being a cytoplasmic membrane protein. Expression of all1711 from the PglnA promoter in a multicopy plasmid led to production of a presumptive exopolysaccharide by vegetative cells. These results suggest that All1711, which we denote HepP, is involved in transport of glycoside(s), with a specific physiological role in production of Hep. PMID:22753066

  18. Two Major Facilitator Superfamily Sugar Transporters from Trichoderma reesei and Their Roles in Induction of Cellulase Biosynthesis*

    PubMed Central

    Zhang, Weixin; Kou, Yanbo; Xu, Jintao; Cao, Yanli; Zhao, Guolei; Shao, Jing; Wang, Hai; Wang, Zhixing; Bao, Xiaoming; Chen, Guanjun; Liu, Weifeng

    2013-01-01

    Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the Δstp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement. PMID:24085297

  19. Facilitators and Barriers of Implementing a Measurement Feedback System in Public Youth Mental Health.

    PubMed

    Kotte, Amelia; Hill, Kaitlin A; Mah, Albert C; Korathu-Larson, Priya A; Au, Janelle R; Izmirian, Sonia; Keir, Scott S; Nakamura, Brad J; Higa-McMillan, Charmaine K

    2016-11-01

    This study examines implementation facilitators and barriers of a statewide roll-out of a measurement feedback system (MFS) in a youth public mental health system. 76 % of all state care coordinators (N = 47) completed interviews, which were coded via content analysis until saturation. Facilitators (e.g., recognition of the MFS's clinical utility) and barriers (e.g., MFS's reliability and validity) emerged paralleling the Exploration, Adoption/Preparation, Implementation, and Sustainment framework outlined by Aarons et al. (Adm Policy Mental Health Mental Health Serv Res, 38:4-23, 2011). Sustainment efforts may leverage innovation fit, individual adopter, and system related facilitators.

  20. A Measurement Feedback System (MFS) Is Necessary to Improve Mental Health Outcomes

    ERIC Educational Resources Information Center

    Bickman, Leonard

    2008-01-01

    The importance of measurement feedback system (MFS) for the improvement of mental health services for youths is discussed. As feedback obtained from clients and families is subject to distortions, a standardized MFS including clinical processes, contexts, outcomes, and feedback to clinicians and supervisors is necessary for improvement in quality…

  1. Work participation in adults with Marfan syndrome: Demographic characteristics, MFS related health symptoms, chronic pain, and fatigue.

    PubMed

    Velvin, Gry; Bathen, Trine; Rand-Hendriksen, Svend; Geirdal, Amy Østertun

    2015-12-01

    Marfan syndrome (MFS) is a severe autosomal dominant connective tissue disorder that might influence peoples work ability. This cross sectional study aims to investigate work participation in adults with verified MFS diagnosis and to explore how the health related consequences of MFS and other factors might influence work participation. The prevalence of health problems in young adults compared to older adults with MFS was examined in association to work participation. A postal questionnaire including questions about work participation, demographic characteristics, MFS related health problems, chronic pain, and fatigue was sent to 117 adults with verified MFS (Ghent 1), and 62% answered. Fifty-nine percent were employed or students, significantly lower work participation than the General Norwegian Population (GNP), but higher than the Norwegian population of people with disability. Most young adults worked full-time despite extensive health problems, but the average age for leaving work was low. Few had received any work adaptations prior to retiring from work. In multiple logistic regression analysis, only age, lower educational level and severe fatigue were significantly associated with low work participation; not MFS related health problems or chronic pain. Fatigue appears to be the most challenging health problem to deal with in work, but the covariance is complex. Focus on vocational guidance early in life, more appropriate work adaptations, and psychosocial support might improve the possibility for sustaining in work for adults with MFS. More research about work challenges in adults with MFS is needed. © 2015 Wiley Periodicals, Inc.

  2. Gating Topology of the Proton-Coupled Oligopeptide Symporters

    PubMed Central

    Fowler, Philip W.; Orwick-Rydmark, Marcella; Radestock, Sebastian; Solcan, Nicolae; Dijkman, Patricia M.; Lyons, Joseph A.; Kwok, Jane; Caffrey, Martin; Watts, Anthony; Forrest, Lucy R.; Newstead, Simon

    2015-01-01

    Summary Proton-coupled oligopeptide transporters belong to the major facilitator superfamily (MFS) of membrane transporters. Recent crystal structures suggest the MFS fold facilitates transport through rearrangement of their two six-helix bundles around a central ligand binding site; how this is achieved, however, is poorly understood. Using modeling, molecular dynamics, crystallography, functional assays, and site-directed spin labeling combined with double electron-electron resonance (DEER) spectroscopy, we present a detailed study of the transport dynamics of two bacterial oligopeptide transporters, PepTSo and PepTSt. Our results identify several salt bridges that stabilize outward-facing conformations and we show that, for all the current structures of MFS transporters, the first two helices of each of the four inverted-topology repeat units form half of either the periplasmic or cytoplasmic gate and that these function cooperatively in a scissor-like motion to control access to the peptide binding site during transport. PMID:25651061

  3. Computation-Facilitated Assignment of Function in the Enolase Superfamily: A Regiochemically Distinct Galactarate Dehydratase from Oceanobacillus iheyensis†

    PubMed Central

    Rakus, John F.; Kalyanaraman, Chakrapani; Fedorov, Alexander A.; Fedorov, Elena V.; Mills-Groninger, Fiona P.; Toro, Rafael; Bonanno, Jeffrey; Bain, Kevin; Sauder, J. Michael; Burley, Stephen K.; Almo, Steven C.; Jacobson, Matthew P.; Gerlt, John A.

    2009-01-01

    The structure of an uncharacterized member of the enolase superfamily from Oceanobacillus iheyensis (GI: 23100298; IMG locus tag Ob2843; PDB Code 2OQY) was determined by the New York SGX Research Center for Structural Genomics (NYSGXRC). The structure contained two Mg2+ ions located 10.4 Å from one another, with one located in the canonical position in the (β/α)7β-barrel domain (although the ligand at the end of the fifth β-strand is His, unprecedented in structurally characterized members of the superfamily); the second is located in a novel site within the capping domain. In silico docking of a library of mono- and diacid sugars to the active site predicted a diacid sugar as a likely substrate. Activity screening of a physical library of acid sugars identified galactarate as the substrate (kcat = 6.8 s−1, KM = 620 μM; kcat/KM = 1.1 × 104 M−1 s−1), allowing functional assignment of Ob2843 as galactarate dehydratase (GalrD-II) The structure of a complex of the catalytically impaired Y90F mutant with Mg2+ and galactarate allowed identification of a Tyr 164-Arg 162 dyad as the base that initiates the reaction by abstraction of the α-proton and Tyr 90 as the acid that facilitates departure of the β-OH leaving group. The enzyme product is 2-keto-3-deoxy-D-threo-4,5-dihydroxyadipate, the enantiomer of the product obtained in the GalrD reaction catalyzed by a previously characterized bifunctional L-talarate/galactarate dehydratase (TalrD/GalrD). On the basis of the different active site structures and different regiochemistries, we recognize that these functions represent an example of apparent, not actual, convergent evolution of function. The structure of GalrD-II and its active site architecture allow identification of the seventh functionally and structurally characterized subgroup in the enolase superfamily. This study provides an additional example that an integrated sequence/structure-based strategy employing computational approaches is a viable

  4. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi.

    PubMed

    Li, Juan; Gu, Fei; Wu, Runian; Yang, JinKui; Zhang, Ke-Qin

    2017-03-30

    Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.

  5. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    PubMed Central

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  6. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA

    PubMed Central

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-01-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402

  7. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    PubMed

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  8. The improvements of the ships of opportunity program in MFS-TEP

    NASA Astrophysics Data System (ADS)

    Manzella, G. M. R.; Reseghetti, F.; Coppini, G.; Borghini, M.; Cruzado, A.; Galli, C.; Gertman, I.; Gervais, T.; Hayes, D.; Millot, C.; Murashkovsky, A.; Özsoy, E.; Tziavos, C.; Velasquez, Z.; Zodiatis, G.

    2007-05-01

    The Ships Of Opportunity Program in the Mediterranean Sea was established at the end of 1999, in the framework of the Mediterranean Forecasting System - Pilot Project (MFS-PP). Many improvements have been made in data collection, transmission and management. Calibration of selected XBTs and a comparison of XBTs vs. CTDs during some research cruises have assured the quality of the data. Transmission now allows receiving data in full resolution by using GSM or satellite telecommunication services; management is offering access to high quality data and view services. The effects of technological and methodological improvements in the observing system are assessed in terms of capability to represent the most important circulation features. The improved methodologies have been tested during the Mediterranean Forecasting System - Toward Environmental Prediction (MFS-TEP) - Targeted Operational Period (MFS-TOP), lasting from September 2004 to February 2005. In spite of the short period of measurements, several important aspects of the Mediterranean Sea circulation have been verified, such as eddies and gyres in the various sub-basins, and dense water formation processes in some of them (vertical homogeneous profiles of about 13°C down to ~800 m in the Provençal, and of about 14.9°C down to ~300 m in the Levantine have allowed defining an index of dense water formation).

  9. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily

    PubMed Central

    Akiva, Eyal; Copp, Janine N.; Tokuriki, Nobuhiko; Babbitt, Patricia C.

    2017-01-01

    Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold. PMID:29078300

  10. Positional cloning of a gene responsible for the cts mutation of the silkworm, Bombyx mori.

    PubMed

    Ito, Katsuhiko; Kidokoro, Kurako; Katsuma, Susumu; Shimada, Toru; Yamamoto, Kimiko; Mita, Kazuei; Kadono-Okuda, Keiko

    2012-07-01

    The larval head cuticle and anal plates of the silkworm mutant cheek and tail spot (cts) have chocolate-colored spots, unlike the entirely white appearance of the wild-type (WT) strain. We report the identification and characterization of the gene responsible for the cts mutation. Positional cloning revealed a cts candidate on chromosome 16, designated BmMFS, based on the high similarity of the deduced amino acid sequence between the candidate gene from the WT strain and the major facilitator superfamily (MFS) protein. BmMFS likely encodes a membrane protein with 11 putative transmembrane domains, while the putative structure deduced from the cts-type allele possesses only 10-pass transmembrane domains owing to a deletion in its coding region. Quantitative RT-PCR analysis showed that BmMFS mRNA was strongly expressed in the integument of the head and tail, where the cts phenotype is observed; expression markedly increased at the molting and newly ecdysed stages. These results indicate that the novel BmMFS gene is cts and the membrane structure of its protein accounts for the cts phenotype. These expression profiles and the cts phenotype are quite similar to those of melanin-related genes, such as Bmyellow-e and Bm-iAANAT, suggesting that BmMFS is involved in the melanin synthesis pathway.

  11. Phylogenetic Characterization of Transport Protein Superfamilies: Superiority of SuperfamilyTree Programs over Those Based on Multiple Alignments

    PubMed Central

    Chen, Jonathan S.; Reddy, Vamsee; Chen, Joshua H.; Shlykov, Maksim A.; Zheng, Wei Hao; Cho, Jaehoon; Yen, Ming Ren; Saier, Milton H.

    2012-01-01

    Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation: Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids. PMID:22286036

  12. TNF superfamily: costimulation and clinical applications

    PubMed Central

    Vinay, Dass S; Kwon, Byoung S

    2009-01-01

    The molecules concerned with costimulation belong either to the immunoglobulin (Ig) or tumor necrosis factor (TNF) superfamilies. The tumor necrosis superfamily comprises molecules capable of providing both costimulation and cell death. In this review we briefly summarize certain TNF superfamily receptor-ligand pairs that are endowed with costimulatory properties and their importance in health and disease. PMID:19230849

  13. Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121

    PubMed Central

    Quistgaard, Esben M.; Martinez Molledo, Maria

    2017-01-01

    Major facilitator superfamily (MFS) peptide transporters (typically referred to as PepT, POT or PTR transporters) mediate the uptake of di- and tripeptides, and so play an important dietary role in many organisms. In recent years, a better understanding of the molecular basis for this process has emerged, which is in large part due to a steep increase in structural information. Yet, the conformational transitions underlying the transport mechanism are still not fully understood, and additional data is therefore needed. Here we report in detail the detergent screening, crystallization, experimental MIRAS phasing, and refinement of the peptide transporter PepTSt from Streptococcus thermophilus. The space group is P3121, and the protein is crystallized in a monomeric inward facing form. The binding site is likely to be somewhat occluded, as the lobe encompassing transmembrane helices 10 and 11 is markedly bent towards the central pore of the protein, but the extent of this potential occlusion could not be determined due to disorder at the apex of the lobe. Based on structural comparisons with the seven previously determined P212121 and C2221 structures of inward facing PepTSt, the structural flexibility as well as the conformational changes mediating transition between the inward open and inward facing occluded states are discussed. In conclusion, this report improves our understanding of the structure and conformational cycle of PepTSt, and can furthermore serve as a case study, which may aid in supporting future structure determinations of additional MFS transporters or other integral membrane proteins. PMID:28264013

  14. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.

    PubMed

    Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2014-06-01

    Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down

  15. The SUPERFAMILY database in 2004: additions and improvements.

    PubMed

    Madera, Martin; Vogel, Christine; Kummerfeld, Sarah K; Chothia, Cyrus; Gough, Julian

    2004-01-01

    The SUPERFAMILY database provides structural assignments to protein sequences and a framework for analysis of the results. At the core of the database is a library of profile Hidden Markov Models that represent all proteins of known structure. The library is based on the SCOP classification of proteins: each model corresponds to a SCOP domain and aims to represent an entire superfamily. We have applied the library to predicted proteins from all completely sequenced genomes (currently 154), the Swiss-Prot and TrEMBL databases and other sequence collections. Close to 60% of all proteins have at least one match, and one half of all residues are covered by assignments. All models and full results are available for download and online browsing at http://supfam.org. Users can study the distribution of their superfamily of interest across all completely sequenced genomes, investigate with which other superfamilies it combines and retrieve proteins in which it occurs. Alternatively, concentrating on a particular genome as a whole, it is possible first, to find out its superfamily composition, and secondly, to compare it with that of other genomes to detect superfamilies that are over- or under-represented. In addition, the webserver provides the following standard services: sequence search; keyword search for genomes, superfamilies and sequence identifiers; and multiple alignment of genomic, PDB and custom sequences.

  16. Substrate transport pathway inside outward open conformation of EmrD: a molecular dynamics simulation study.

    PubMed

    Xianwei, Tan; Diannan, Lu; Boxiong, Wang

    2016-07-19

    The EmrD transporter, which is a classical major facilitator superfamily (MFS) protein, can extrude a range of drug molecules out of E. coil. The drug molecules transport through the channel of MFS in an outward open state, an important issue in research about bacterial drug resistance, which however, is still unknown. In this paper, we construct a starting outward-open model of the EmrD transporter using a state transition method. The starting model is refined by a conventional molecular dynamics simulation. Locally enhanced sampling simulation (LES) is used to validate the outward-open model of EmrD. In the locally enhanced sampling simulation, ten substrates are placed along the channel of the outward-open EmrD, and these substrates are sampled in the outward-open center cavity. It is found that the translocation pathway of these substrates from the inside to the outside of the cell through the EmrD transporter is composed of two sub-pathways, one sub-pathway, including H2, H4, and H5, and another sub-pathway, including H8, H10, and H11. The results give us have a further insight to the ways of substrate translocation of an MFS protein. The model method is based on common features of an MFS protein, so this modeling method can be used to construct various MFS protein models which have a desired state with other conformations not known in the alternating-access mechanism.

  17. Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.

    PubMed

    Lee, Yingying; Mehra-Chaudhary, Ritcha; Furdui, Cristina; Beamer, Lesa J

    2013-06-01

    Enzymes in the α-d-phosphohexomutase superfamily catalyze the conversion of 1-phosphosugars to their 6-phospho counterparts. Their phosphoryl transfer reaction has long been proposed to require general acid-base catalysts, but candidate residues for these key roles have not been identified. In this study, we show through mutagenesis and kinetic studies that a histidine (His329) in the active site is critical for enzyme activity in a well-studied member of the superfamily, phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa. Crystallographic characterization of an H329A mutant protein showed no significant changes from the wild-type enzyme, excluding structural disruption as the source of its compromised activity. Mutation of the structurally analogous lysine residue in a related protein, phosphoglucomutase from Salmonella typhimurium, also results in significant catalytic impairment. Analyses of protein-ligand complexes of the P. aeruginosa enzyme show that His329 is appropriately positioned to abstract a proton from the O1/O6 hydroxyl of the phosphosugar substrates, and thus may serve as the general base in the reaction. Histidine is strongly conserved at this position in many proteins in the superfamily, and lysine is also often conserved at a structurally corresponding position, particularly in the phosphoglucomutase enzyme sub-group. These studies shed light on the mechanism of this important enzyme superfamily, and may facilitate the design of mechanism-based inhibitors. Structural data have been deposited in the Protein Data Bank with accession number 4IL8. © 2013 The Authors Journal compilation © 2013 FEBS.

  18. Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level.

    PubMed

    Fischer, Jana; Kleinau, Gunnar; Rutz, Claudia; Zwanziger, Denise; Khajavi, Noushafarin; Müller, Anne; Rehders, Maren; Brix, Klaudia; Worth, Catherine L; Führer, Dagmar; Krude, Heiko; Wiesner, Burkhard; Schülein, Ralf; Biebermann, Heike

    2018-06-01

    G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of G q/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.

  19. Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships.

    PubMed

    Baier, F; Copp, J N; Tokuriki, N

    2016-11-22

    The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional "space" have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain "function connectivity" via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.

  20. SUPERFAMILY 1.75 including a domain-centric gene ontology method.

    PubMed

    de Lima Morais, David A; Fang, Hai; Rackham, Owen J L; Wilson, Derek; Pethica, Ralph; Chothia, Cyrus; Gough, Julian

    2011-01-01

    The SUPERFAMILY resource provides protein domain assignments at the structural classification of protein (SCOP) superfamily level for over 1400 completely sequenced genomes, over 120 metagenomes and other gene collections such as UniProt. All models and assignments are available to browse and download at http://supfam.org. A new hidden Markov model library based on SCOP 1.75 has been created and a previously ignored class of SCOP, coiled coils, is now included. Our scoring component now uses HMMER3, which is in orders of magnitude faster and produces superior results. A cloud-based pipeline was implemented and is publicly available at Amazon web services elastic computer cloud. The SUPERFAMILY reference tree of life has been improved allowing the user to highlight a chosen superfamily, family or domain architecture on the tree of life. The most significant advance in SUPERFAMILY is that now it contains a domain-based gene ontology (GO) at the superfamily and family levels. A new methodology was developed to ensure a high quality GO annotation. The new methodology is general purpose and has been used to produce domain-based phenotypic ontologies in addition to GO.

  1. Structural diversity of domain superfamilies in the CATH database.

    PubMed

    Reeves, Gabrielle A; Dallman, Timothy J; Redfern, Oliver C; Akpor, Adrian; Orengo, Christine A

    2006-07-14

    The CATH database of domain structures has been used to explore the structural variation of homologous domains in 294 well populated domain structure superfamilies, each containing at least three sequence diverse relatives. Our analyses confirm some previously detected trends relating sequence divergence to structural variation but for a much larger dataset and in some superfamilies the new data reveal exceptional structural variation. Use of a new algorithm (2DSEC) to analyse variability in secondary structure compositions across a superfamily sheds new light on how structures evolve. 2DSEC detects inserted secondary structures that embellish the core of conserved secondary structures found throughout the superfamily. Analysis showed that for 56% of highly populated superfamilies (>9 sequence diverse relatives), there are twofold or more increases in the numbers of secondary structures in some relatives. In some families fivefold increases occur, sometimes modifying the fold of the domain. Manual inspection of secondary structure insertions or embellishments in 48 particularly variable superfamilies revealed that although these insertions were usually discontiguous in the sequence they were often co-located in 3D resulting in a larger structural motif that often modified the geometry of the active site or the surface conformation promoting diverse domain partnerships and protein interactions. These observations, supported by automatic analysis of all well populated CATH families, suggest that accretion of small secondary structure insertions may provide a simple mechanism for evolving new functions in diverse relatives. Some layered domain architectures (e.g. mainly-beta and alpha-beta sandwiches) that recur highly in the genomes more frequently exploit these types of embellishments to modify function. In these architectures, aggregation occurs most often at the edges, top or bottom of the beta-sheets. Information on structural variability across domain

  2. Two different groups of signal sequence in M-superfamily conotoxins.

    PubMed

    Wang, Qi; Jiang, Hui; Han, Yu-Hong; Yuan, Duo-Duo; Chi, Cheng-Wu

    2008-04-01

    M-superfamily conotoxins can be divided into four branches (M-1, M-2, M-3 and M-4) according to the number of amino acid residues in the third Cys loop. In general, it is widely accepted that the conotoxin signal peptides of each superfamily are strictly conserved. Recently, we cloned six cDNAs of novel M-superfamily conotoxins from Conus leopardus, Conus marmoreus and Conus quercinus, belonging to either M-1 or M-3 branch. These conotoxins, judging from the putative peptide sequences deducted from cDNAs, are rich in acidic residues and share highly conserved signal and pro-peptide region. However, they are quite different from the reported conotoxins of M-2 and M-4 branches even in their signal peptides, which in general are considered highly conserved for each superfamily of conotoxins. The signal sequences of M-1 and M-3 conotoxins composed of 24 residues start with MLKMGVVL-, while those of M-2 and M-4 conotoxins composed of 25 residues start with MMSKLGVL-. It is another example that different types of signal peptides can exist within a superfamily besides the I-conotoxin superfamily. In addition to the different disulfide connectivity of M-1 conotoxins from that of M-4 or M-2 conotoxins, the sequence alignment, preferential Cys codon usage and phylogenetic tree analysis suggest that M-1 and M-3 conotoxins have much closer relationship, being different from the conotoxins of other two branches (M-4 and M-2) of M-superfamily.

  3. Origin and evolution of TNF and TNF receptor superfamilies

    USDA-ARS?s Scientific Manuscript database

    The tumor necrosis factor superfamily (TNFSF) and the TNF receptor superfamily (TNFRSF) have an ancient evolutionary origin that can be traced back to single copy genes within Arthropods. In humans, 18 TNFSF and 29 TNFRSF genes have been identified. Evolutionary models account for the increase in g...

  4. MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals

    PubMed Central

    Nishihara, Hidenori; Plazzi, Federico; Passamonti, Marco; Okada, Norihiro

    2016-01-01

    SINEs (short interspersed elements) are transposable elements that typically originate independently in each taxonomic clade (order/family). However, some SINE families share a highly similar central sequence and are thus categorized as a SINE superfamily. Although only four SINE superfamilies (CORE-SINEs, V-SINEs, DeuSINEs, and Ceph-SINEs) have been reported so far, it is expected that new SINE superfamilies would be discovered by deep exploration of new SINEs in metazoan genomes. Here we describe 15 SINEs, among which 13 are novel, that have a similar 66-bp central region and therefore constitute a new SINE superfamily, MetaSINEs. MetaSINEs are distributed from fish to cnidarians, suggesting their common evolutionary origin at least 640 Ma. Because the 3′ tails of MetaSINEs are variable, these SINEs most likely survived by changing their partner long interspersed elements for retrotransposition during evolution. Furthermore, we examined the presence of members of other SINE superfamilies in bivalve genomes and characterized eight new SINEs belonging to the CORE-SINEs, V-SINEs, and DeuSINEs, in addition to the MetaSINEs. The broad distribution of bivalve SINEs suggests that at least three SINEs originated in the common ancestor of Bivalvia. Our comparative analysis of the central domains of the SINEs revealed that, in each superfamily, only a restricted region is shared among all of its members. Because the functions of the central domains of the SINE superfamilies remain unknown, such structural information of SINE superfamilies will be useful for future experimental and comparative analyses to reveal why they have been retained in metazoan genomes during evolution. PMID:26872770

  5. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Mannonate Dhydratase from Novosphingobium aromaticivorans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakus,J.; Fedorov, A.; Fedorov, E.

    2007-01-01

    The d-mannonate dehydratase (ManD) function was assigned to a group of orthologous proteins in the mechanistically diverse enolase superfamily by screening a library of acid sugars. Structures of the wild type ManD from Novosphingobium aromaticivorans were determined at pH 7.5 in the presence of Mg2+ and also in the presence of Mg2+ and the 2-keto-3-keto-d-gluconate dehydration product; the structure of the catalytically active K271E mutant was determined at pH 5.5 in the presence of the d-mannonate substrate. As previously observed in the structures of other members of the enolase superfamily, ManD contains two domains, an N-terminal a+{beta} capping domain andmore » a ({beta}/a)7{beta}-barrel domain. The barrel domain contains the ligands for the essential Mg2+, Asp 210, Glu 236, and Glu 262, at the ends of the third, fourth, and fifth {beta}-strands of the barrel domain, respectively. However, the barrel domain lacks both the Lys acid/base catalyst at the end of the second {beta}-strand and the His-Asp dyad acid/base catalyst at the ends of the seventh and sixth {beta}-strands, respectively, that are found in many members of the superfamily. Instead, a hydrogen-bonded dyad of Tyr 159 in a loop following the second {beta}-strand and Arg 147 at the end of the second {beta}-strand are positioned to initiate the reaction by abstraction of the 2-proton. Both Tyr 159 and His 212, at the end of the third {beta}-strand, are positioned to facilitate both syn-dehydration and ketonization of the resulting enol intermediate to yield the 2-keto-3-keto-d-gluconate product with the observed retention of configuration. The identities and locations of these acid/base catalysts as well as of cationic amino acid residues that stabilize the enolate anion intermediate define a new structural strategy for catalysis (subgroup) in the mechanistically diverse enolase superfamily. With these differences, we provide additional evidence that the ligands for the essential Mg2+ are the

  6. MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals.

    PubMed

    Nishihara, Hidenori; Plazzi, Federico; Passamonti, Marco; Okada, Norihiro

    2016-02-12

    SINEs (short interspersed elements) are transposable elements that typically originate independently in each taxonomic clade (order/family). However, some SINE families share a highly similar central sequence and are thus categorized as a SINE superfamily. Although only four SINE superfamilies (CORE-SINEs, V-SINEs, DeuSINEs, and Ceph-SINEs) have been reported so far, it is expected that new SINE superfamilies would be discovered by deep exploration of new SINEs in metazoan genomes. Here we describe 15 SINEs, among which 13 are novel, that have a similar 66-bp central region and therefore constitute a new SINE superfamily, MetaSINEs. MetaSINEs are distributed from fish to cnidarians, suggesting their common evolutionary origin at least 640 Ma. Because the 3' tails of MetaSINEs are variable, these SINEs most likely survived by changing their partner long interspersed elements for retrotransposition during evolution. Furthermore, we examined the presence of members of other SINE superfamilies in bivalve genomes and characterized eight new SINEs belonging to the CORE-SINEs, V-SINEs, and DeuSINEs, in addition to the MetaSINEs. The broad distribution of bivalve SINEs suggests that at least three SINEs originated in the common ancestor of Bivalvia. Our comparative analysis of the central domains of the SINEs revealed that, in each superfamily, only a restricted region is shared among all of its members. Because the functions of the central domains of the SINE superfamilies remain unknown, such structural information of SINE superfamilies will be useful for future experimental and comparative analyses to reveal why they have been retained in metazoan genomes during evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  8. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily

    PubMed Central

    2016-01-01

    Naively one might have expected an early division between phosphate monoesterases and diesterases of the alkaline phosphatase (AP) superfamily. On the contrary, prior results and our structural and biochemical analyses of phosphate monoesterase PafA, from Chryseobacterium meningosepticum, indicate similarities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodiesterase (NPP)] and distinct differences from the three metal ion AP superfamily monoesterase, from Escherichia coli AP (EcAP). We carried out a series of experiments to map out and learn from the differences and similarities between these enzymes. First, we asked why there would be independent instances of monoesterases in the AP superfamily? PafA has a much weaker product inhibition and slightly higher activity relative to EcAP, suggesting that different metabolic evolutionary pressures favored distinct active-site architectures. Next, we addressed the preferential phosphate monoester and diester catalysis of PafA and NPP, respectively. We asked whether the >80% sequence differences throughout these scaffolds provide functional specialization for each enzyme’s cognate reaction. In contrast to expectations from this model, PafA and NPP mutants with the common subset of active-site groups embedded in each native scaffold had the same monoesterase:diesterase specificities; thus, the >107-fold difference in native specificities appears to arise from distinct interactions at a single phosphoryl substituent. We also uncovered striking mechanistic similarities between the PafA and EcAP monoesterases, including evidence for ground-state destabilization and functional active-site networks that involve different active-site groups but may play analogous catalytic roles. Discovering common network functions may reveal active-site architectural connections that are critical for function, and identifying regions of functional modularity may facilitate the design of new enzymes

  9. Practice expenses in the MFS (Medicare fee schedule): the service-class approach.

    PubMed

    Latimer, E A; Kane, N M

    1995-01-01

    The practice expense component of the Medicare fee schedule (MFS), which is currently based on historical charges and rewards physician procedures at the expense of cognitive services, is due to be changed by January 1, 1998. The Physician Payment Review Commission (PPRC) and others have proposed microcosting direct costs and allocating all indirect costs on a common basis, such as physician time or work plus direct costs. Without altering the treatment of direct costs, the service-class approach disaggregates indirect costs into six practice function costs. The practice function costs are then allocated to classes of services using cost-accounting and statistical methods. This approach would make the practice expense component more resource-based than other proposed alternatives.

  10. Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure.

    PubMed

    Byers, T J; Beggs, A H; McNally, E M; Kunkel, L M

    1995-07-24

    Actin-crosslinking proteins link F-actin into the bundles and networks that constitute the cytoskeleton. Dystrophin, beta-spectrin, alpha-actinin, ABP-120, ABP-280, and fimbrin share homologous actin-binding domains and comprise an actin crosslinker superfamily. We have identified a novel member of this superfamily (ACF7) using a degenerate primer-mediated PCR strategy that was optimized to resolve less-abundant superfamily sequences. The ACF7 gene is on human chromosome 1 and hybridizes to high molecular weight bands on northern blots. Sequence comparisons argue that ACF7 does not fit into one of the existing families, but represents a new class within the superfamily.

  11. Functions of the poly(ADP-ribose) polymerase superfamily in plants.

    PubMed

    Lamb, Rebecca S; Citarelli, Matteo; Teotia, Sachin

    2012-01-01

    Poly(ADP-ribosyl)ation is the covalent attachment of ADP-ribose subunits from NAD(+) to target proteins and was first described in plants in the 1970s. This post-translational modification is mediated by poly(ADP-ribose) polymerases (PARPs) and removed by poly(ADP-ribose) glycohydrolases (PARGs). PARPs have important functions in many biological processes including DNA repair, epigenetic regulation and transcription. However, these roles are not always associated with enzymatic activity. The PARP superfamily has been well studied in animals, but remains under-investigated in plants. Although plants lack the variety of PARP superfamily members found in mammals, they do encode three different types of PARP superfamily proteins, including a group of PARP-like proteins, the SRO family, that are plant specific. In plants, members of the PARP family and/or poly(ADP-ribosyl)ation have been linked to DNA repair, mitosis, innate immunity and stress responses. In addition, members of the SRO family have been shown to be necessary for normal sporophytic development. In this review, we summarize the current state of plant research into poly(ADP-ribosyl)ation and the PARP superfamily in plants.

  12. Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators

    PubMed Central

    Oliveira, Patrícia; Sanges, Remo; Huntsman, David; Stupka, Elia; Oliveira, Carla

    2012-01-01

    Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer. PMID:22317972

  13. Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*

    PubMed Central

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul

    2012-01-01

    The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022

  14. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects E scherichia coli from bile salt stress

    PubMed Central

    Paul, Stephanie; Alegre, Kamela O; Holdsworth, Scarlett R; Rice, Matthew; Brown, James A; McVeigh, Paul; Kelly, Sharon M; Law, Christopher J

    2014-01-01

    Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as E scherichia coli. Although the tripartite AcrAB–TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E . coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E . coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB–TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H+ antiport. PMID:24684269

  15. Structures of bacterial homologues of SWEET transporters in two distinct conformations.

    PubMed

    Xu, Yan; Tao, Yuyong; Cheung, Lily S; Fan, Chao; Chen, Li-Qing; Xu, Sophia; Perry, Kay; Frommer, Wolf B; Feng, Liang

    2014-11-20

    SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar

  16. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    PubMed

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. P-type ATPase superfamily: evidence for critical roles for kingdom evolution.

    PubMed

    Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio

    2003-04-01

    The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.

  18. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been

  19. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders.

    PubMed

    Pineda, Sandy S; Sollod, Brianna L; Wilson, David; Darling, Aaron; Sunagar, Kartik; Undheim, Eivind A B; Kely, Laurence; Antunes, Agostinho; Fry, Bryan G; King, Glenn F

    2014-03-05

    Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.

  20. Ancient expansion of the ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals.

    PubMed

    Cho, Soochin; Zhang, Jianzhi

    2006-05-24

    Members of the ribonuclease (RNase) A superfamily participate in a diverse array of biological processes, including digestion, angiogenesis, innate immunity, and possibly male reproduction. The superfamily is vertebrate-specific, with 13-20 highly divergent members in primates and rodents, but only a few members in chicken and fish. This has led to the proposal that the superfamily started off from a progenitor with structural similarities to angiogenin and that the superfamily underwent a dramatic expansion during mammalian evolution. To date this evolutionary expansion and understand the functional diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of dog, cow, and opossum. We identified 7, 20, and 21 putatively functional RNase genes from these three species, respectively. Many of the identified genes are highly divergent from all previously known RNase genes, thus representing new lineages within the superfamily. Phylogenetic analysis indicates that the superfamily expansion predated the separation of placental and marsupial mammals and that differential gene loss and duplication occurred in different species, generating a great variation in gene number and content among extant mammals.

  1. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Rhamnonate Dehydratase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakus,J.; Fedorov, A.; Fedorov, E.

    2008-01-01

    The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy-l-mannonate) has the 'best' kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg2+; the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy-l-rhamnonatemore » (obtained by reduction of the product with NaBH4). Like other members of the enolase superfamily, RhamD contains an N-terminal a + {beta} capping domain and a C-terminal ({beta}/a)7{beta}-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining '20s loop' in the capping domain is extended in length and the '50s loop' is truncated. The ligands for the Mg2+ are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth {beta}-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth {beta}-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg2+-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to

  2. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    PubMed

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  3. Comparison of molecular dynamics and superfamily spaces of protein domain deformation.

    PubMed

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-02-17

    It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.

  4. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.

    PubMed

    Michnick, S W; Shakhnovich, E

    1998-01-01

    Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.

  5. The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing

    2016-06-01

    Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.

  6. Comparison of molecular dynamics and superfamily spaces of protein domain deformation

    PubMed Central

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-01-01

    Background It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Results Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Conclusion Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding. PMID:19220918

  7. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    PubMed

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  8. Evolution of genes and repeats in the Nimrod superfamily.

    PubMed

    Somogyi, Kálmán; Sipos, Botond; Pénzes, Zsolt; Kurucz, Eva; Zsámboki, János; Hultmark, Dan; Andó, István

    2008-11-01

    The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.

  9. Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.

    PubMed

    Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar

    2011-12-01

    Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.

  10. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shanshan; Li, Han; Gao, Feng

    2015-08-07

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryomore » development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. - Highlights: • The crystal structure of recombinant fTHEM2 is presented. • fTHEM2 is capable of hydrolyzing palmitoyl-CoA. • The influence of fTHEM2 on early embryo development is demonstrated.« less

  11. Lectins of beneficial microbes: system organisation, functioning and functional superfamily.

    PubMed

    Lakhtin, M; Lakhtin, V; Alyoshkin, V; Afanasyev, S

    2011-06-01

    In this review our last results and proposals with respect to general aspects of lectin studies are summarised and compared. System presence, organisation and functioning of lectins are proposed, and accents on beneficial symbiotic microbial lectins studies are presented. The proposed general principles of lectin functioning allows for a comparison of lectins with other carbohydrate-recognition systems. A new structure-functional superfamily of symbiotic microbial lectins is proposed and its main properties are described. The proposed superfamily allows for extended searches of the biological activities of any microbial member. Prospects of lectins of beneficial symbiotic microorganisms are discussed.

  12. Immunoglobulin superfamily proteins in Caenorhabditis elegans.

    PubMed

    Teichmann, S A; Chothia, C

    2000-03-10

    The predicted proteins of the genome of Caenorhabditis elegans were analysed by various sequence comparison methods to identify the repertoire of proteins that are members of the immunoglobulin superfamily (IgSF). The IgSF is one of the largest families of protein domain in this genome and likely to be one of the major families in other multicellular eukaryotes too. This is because members of the superfamily are involved in a variety of functions including cell-cell recognition, cell-surface receptors, muscle structure and, in higher organisms, the immune system. Sixty-four proteins with 488 I set IgSF domains were identified largely by using Hidden Markov models. The domain architectures of the protein products of these 64 genes are described. Twenty-one of these had been characterised previously. We show that another 25 are related to proteins of known function. The C. elegans IgSF proteins can be classified into five broad categories: muscle proteins, protein kinases and phosphatases, three categories of proteins involved in the development of the nervous system, leucine-rich repeat containing proteins and proteins without homologues of known function, of which there are 18. The 19 proteins involved in nervous system development that are not kinases or phosphatases are homologues of neuroglian, axonin, NCAM, wrapper, klingon, ICCR and nephrin or belong to the recently identified zig gene family. Out of the set of 64 genes, 22 are on the X chromosome. This study should be seen as an initial description of the IgSF repertoire in C. elegans, because the current gene definitions may contain a number of errors, especially in the case of long sequences, and there may be IgSF genes that have not yet been detected. However, the proteins described here do provide an overview of the bulk of the repertoire of immunoglobulin superfamily members in C. elegans, a framework for refinement and extension of the repertoire as gene and protein definitions improve, and the basis

  13. Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.

    PubMed

    Narayanan, Chitra; Bernard, David N; Bafna, Khushboo; Gagné, Donald; Chennubhotla, Chakra S; Doucet, Nicolas; Agarwal, Pratul K

    2018-03-06

    Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 10 5 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Functional diversity of the superfamily of K⁺ transporters to meet various requirements.

    PubMed

    Diskowski, Marina; Mikusevic, Vedrana; Stock, Charlott; Hänelt, Inga

    2015-09-01

    The superfamily of K+ transporters unites proteins from plants, fungi, bacteria, and archaea that translocate K+ and/or Na+ across membranes. These proteins are key components in osmotic regulation, pH homeostasis, and resistance to high salinity and dryness. The members of the superfamily are closely related to K+ channels such as KcsA but also show several striking differences that are attributed to their altered functions. This review highlights these functional differences, focusing on the bacterial superfamily members KtrB, TrkH, and KdpA. The functional variations within the family and comparison to MPM-type K+ channels are discussed in light of the recently solved structures of the Ktr and Trk systems.

  15. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    PubMed

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  16. Basic Residues R260 and K357 Affect the Conformational Dynamics of the Major Facilitator Superfamily Multidrug Transporter LmrP

    PubMed Central

    Wang, Wei; van Veen, Hendrik W.

    2012-01-01

    Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H+(Na+) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by

  17. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    PubMed Central

    Alegre, Kamela O.; Law, Christopher J.

    2015-01-01

    Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters. PMID:27025617

  18. A Loose Relationship: Incomplete H+/Sugar Coupling in the MFS Sugar Transporter GlcP.

    PubMed

    Bazzone, Andre; Zabadne, Annas J; Salisowski, Anastasia; Madej, M Gregor; Fendler, Klaus

    2017-12-19

    The glucose transporter from Staphylococcus epidermidis, GlcP Se , is a homolog of the human GLUT sugar transporters of the major facilitator superfamily. Together with the xylose transporter from Escherichia coli, XylE Ec , the other prominent prokaryotic GLUT homolog, GlcP Se , is equipped with a conserved proton-binding site arguing for an electrogenic transport mode. However, the electrophysiological analysis of GlcP Se presented here reveals important differences between the two GLUT homologs. GlcP Se , unlike XylE Ec , does not perform steady-state electrogenic transport at symmetrical pH conditions. Furthermore, when a pH gradient is applied, partially uncoupled transport modes can be generated. In contrast to other bacterial sugar transporters analyzed so far, in GlcP Se sugar binding, translocation and release are also accomplished by the deprotonated transporter. Based on these experimental results, we conclude that coupling of sugar and H + transport is incomplete in GlcP Se . To verify the viability of the observed partially coupled GlcP Se transport modes, we propose a universal eight-state kinetic model in which any degree of coupling is realized and H + /sugar symport represents only a specific instance. Furthermore, using sequence comparison with strictly coupled XylE Ec and similar sugar transporters, we identify an additional charged residue that may be essential for effective H + /sugar symport. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.

    PubMed

    Robertson, Hugh M; Warr, Coral G; Carlson, John R

    2003-11-25

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.

  20. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster

    PubMed Central

    Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.

    2003-01-01

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037

  1. Discovering Novel Bile Protection Systems in Bifidobacterium breve UCC2003 through Functional Genomics

    PubMed Central

    Ruiz, Lorena; Zomer, Aldert; O'Connell-Motherway, Mary; van Sinderen, Douwe

    2012-01-01

    Tolerance of gut commensals to bile salt exposure is an important feature for their survival in and colonization of the intestinal environment. A transcriptomic approach was employed to study the response of Bifidobacterium breve UCC2003 to bile, allowing the identification of a number of bile-induced genes with a range of predicted functions. The potential roles of a selection of these bile-inducible genes in bile protection were analyzed following heterologous expression in Lactococcus lactis. Genes encoding three transport systems belonging to the major facilitator superfamily (MFS), Bbr_0838, Bbr_0832, and Bbr_1756, and three ABC-type transporters, Bbr_0406-0407, Bbr_1804-1805, and Bbr_1826-1827, were thus investigated and shown to provide enhanced resistance and survival to bile exposure. This work significantly improves our understanding as to how bifidobacteria respond to and survive bile exposure. PMID:22156415

  2. Homologues of insulinase, a new superfamily of metalloendopeptidases.

    PubMed Central

    Rawlings, N D; Barrett, A J

    1991-01-01

    On the basis of a statistical analysis of an alignment of the amino acid sequences, a new superfamily of metalloendopeptidases is proposed, consisting of human insulinase, Escherichia coli protease III and mitochondrial processing endopeptidases from Saccharomyces and Neurospora. These enzymes do not contain the 'HEXXH' consensus sequence found in all previously recognized zinc metalloendopeptidases. PMID:2025223

  3. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution

    DOE PAGES

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem; ...

    2017-10-25

    Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less

  4. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem

    Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less

  5. Self-assembly in the ferritin nano-cage protein superfamily.

    PubMed

    Zhang, Yu; Orner, Brendan P

    2011-01-01

    Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.

  6. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes.

    PubMed

    Anantharaman, Vivek; Aravind, L

    2003-01-01

    Peptidoglycan is hydrolyzed by a diverse set of enzymes during bacterial growth, development and cell division. The N1pC/P60 proteins define a family of cell-wall peptidases that are widely represented in various bacterial lineages. Currently characterized members are known to hydrolyze D-gamma-glutamyl-meso-diaminopimelate or N-acetylmuramate-L-alanine linkages. Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. In addition to the well characterized P60-like proteins, this superfamily includes the AcmB/LytN and YaeF/YiiX families of bacterial proteins, the amidase domain of bacterial and kinetoplastid glutathionylspermidine synthases (GSPSs), and several proteins from eukaryotes, phages, poxviruses, positive-strand RNA viruses, and certain archaea. The eukaryotic members include lecithin retinol acyltransferase (LRAT), nematode developmental regulator Egl-26, and candidate tumor suppressor H-rev107. These eukaryotic proteins, along with the bacterial YaeF/poxviral G6R family, show a circular permutation of the catalytic domain. We identified three conserved residues, namely a cysteine, a histidine and a polar residue, that are involved in the catalytic activities of this superfamily. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them. Several related, but distinct, catalytic activities, such as murein degradation, acyl transfer and amide hydrolysis, have emerged in the N1pC/P60 superfamily. The three conserved catalytic residues of this superfamily are shown to be equivalent to the catalytic triad of the papain-like thiol peptidases. The predicted structural features indicate that the N1pC/P60 enzymes contain a fold similar to the papain-like peptidases, transglutaminases and arylamine acetyltransferases.

  7. Atomic resolution structure of the E. coli YajR transporter YAM domain.

    PubMed

    Jiang, Daohua; Zhao, Yan; Fan, Junping; Liu, Xuehui; Wu, Yan; Feng, Wei; Zhang, Xuejun C

    2014-07-25

    YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies

    PubMed Central

    2014-01-01

    Background Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. Results A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. Conclusion This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have

  9. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    PubMed Central

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  10. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    PubMed

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  11. Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species.

    PubMed

    Morphew, Russell M; Wilkinson, Toby J; Mackintosh, Neil; Jahndel, Veronika; Paterson, Steve; McVeigh, Paul; Abbas Abidi, Syed M; Saifullah, Khalid; Raman, Muthusamy; Ravikumar, Gopalakrishnan; LaCourse, James; Maule, Aaron; Brophy, Peter M

    2016-09-02

    The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a foodborne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on triclabendazole (TCBZ), and overuse has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty-acid-binding protein (FABP) superfamily has proposed multifunctional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterized FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome, and EST data mining with proteomics and phylogenetics to reveal a liver fluke FABP superfamily of seven clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analyzed using bioinformatics and cloned from both liver flukes. The extended FABP data set will provide new study tools to research the role of FABPs in parasite biology and as therapy targets.

  12. Experiment Pamir-2. Fianit: A giant super-family with halo (Epsilon sub 0 at approximately 10(17) eV)

    NASA Technical Reports Server (NTRS)

    Zatsepin, G. T.

    1985-01-01

    A superfamily with halo of extremely high energy named Fianit was recorded in X-ray emulsion chamber (XEC) at the Pamirs (atmospheric depth 600 g/sq.cm.). Detailed description of the superfamily and results of its analysis are presented.

  13. Exploring the Interaction of SV2A with Racetams Using Homology Modelling, Molecular Dynamics and Site-Directed Mutagenesis

    PubMed Central

    Lee, Joanna; Daniels, Veronique; Sands, Zara A.; Lebon, Florence; Shi, Jiye; Biggin, Philip C.

    2015-01-01

    The putative Major Facilitator Superfamily (MFS) transporter, SV2A, is the target for levetiracetam (LEV), which is a successful anti-epileptic drug. Furthermore, SV2A knock out mice display a severe seizure phenotype and die after a few weeks. Despite this, the mode of action of LEV is not known at the molecular level. It would be extremely desirable to understand this more fully in order to aid the design of improved anti-epileptic compounds. Since there is no structure for SV2A, homology modelling can provide insight into the ligand-binding site. However, it is not a trivial process to build such models, since SV2A has low sequence identity to those MFS transporters whose structures are known. A further level of complexity is added by the fact that it is not known which conformational state of the receptor LEV binds to, as multiple conformational states have been inferred by tomography and ligand binding assays or indeed, if binding is exclusive to a single state. Here, we explore models of both the inward and outward facing conformational states of SV2A (according to the alternating access mechanism for MFS transporters). We use a sequence conservation analysis to help guide the homology modelling process and generate the models, which we assess further with Molecular Dynamics (MD). By comparing the MD results in conjunction with docking and simulation of a LEV-analogue used in radioligand binding assays, we were able to suggest further residues that line the binding pocket. These were confirmed experimentally. In particular, mutation of D670 leads to a complete loss of binding. The results shed light on the way LEV analogues may interact with SV2A and may help with the on-going design of improved anti-epileptic compounds. PMID:25692762

  14. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    PubMed

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Takeda, Hironori; Kato, Hideaki E.; Doki, Shintaro; Ito, Koichi; Maturana, Andrés D.; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-01

    NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for nitrate transport, remained elusive. Here we demonstrate that NarK is a nitrate/nitrite antiporter, using an in vitro reconstituted system. Furthermore, we present the high-resolution crystal structures of NarK from Escherichia coli in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states. The integrated structural, functional and computational analyses reveal the nitrate/nitrite antiport mechanism of NarK, in which substrate recognition is coupled to the transport cycle by the concomitant movement of the transmembrane helices and the key tyrosine and arginine residues in the substrate-binding site.

  16. Proteomics investigation reveals cell death-associated proteins of basidiomycete fungus Trametes versicolor treated with Ferruginol.

    PubMed

    Chen, Yu-Han; Yeh, Ting-Feng; Chu, Fang-Hua; Hsu, Fu-Lan; Chang, Shang-Tzen

    2015-01-14

    Ferruginol has antifungal activity against wood-rot fungi (basidiomycetes). However, specific research on the antifungal mechanisms of ferruginol is scarce. Two-dimensional gel electrophoresis and fluorescent image analysis were employed to evaluate the differential protein expression of wood-rot fungus Trametes versicolor treated with or without ferruginol. Results from protein identification of tryptic peptides via liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) analyses revealed 17 protein assignments with differential expression. Downregulation of cytoskeleton β-tubulin 3 indicates that ferruginol has potential to be used as a microtubule-disrupting agent. Downregulation of major facilitator superfamily (MFS)–multiple drug resistance (MDR) transporter and peroxiredoxin TSA1 were observed, suggesting reduction in self-defensive capabilities of T. versicolor. In addition, the proteins involved in polypeptide sorting and DNA repair were also downregulated, while heat shock proteins and autophagy-related protein 7 were upregulated. These observations reveal that such cellular dysfunction and damage caused by ferruginol lead to growth inhibition and autophagic cell death of fungi.

  17. Exploring Fold Space Preferences of New-born and Ancient Protein Superfamilies

    PubMed Central

    Edwards, Hannah; Abeln, Sanne; Deane, Charlotte M.

    2013-01-01

    The evolution of proteins is one of the fundamental processes that has delivered the diversity and complexity of life we see around ourselves today. While we tend to define protein evolution in terms of sequence level mutations, insertions and deletions, it is hard to translate these processes to a more complete picture incorporating a polypeptide's structure and function. By considering how protein structures change over time we can gain an entirely new appreciation of their long-term evolutionary dynamics. In this work we seek to identify how populations of proteins at different stages of evolution explore their possible structure space. We use an annotation of superfamily age to this space and explore the relationship between these ages and a diverse set of properties pertaining to a superfamily's sequence, structure and function. We note several marked differences between the populations of newly evolved and ancient structures, such as in their length distributions, secondary structure content and tertiary packing arrangements. In particular, many of these differences suggest a less elaborate structure for newly evolved superfamilies when compared with their ancient counterparts. We show that the structural preferences we report are not a residual effect of a more fundamental relationship with function. Furthermore, we demonstrate the robustness of our results, using significant variation in the algorithm used to estimate the ages. We present these age estimates as a useful tool to analyse protein populations. In particularly, we apply this in a comparison of domains containing greek key or jelly roll motifs. PMID:24244135

  18. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily.

    PubMed

    Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju

    2015-01-01

    Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.

  19. '2TM proteins': an antigenically diverse superfamily with variable functions and export pathways.

    PubMed

    Kaur, Jasweer; Hora, Rachna

    2018-01-01

    Malaria is a disease that affects millions of people annually. An intracellular habitat and lack of protein synthesizing machinery in erythrocytes pose numerous difficulties for survival of the human pathogen Plasmodium falciparum . The parasite refurbishes the infected red blood cell (iRBC) by synthesis and export of several proteins in an attempt to suffice its metabolic needs and evade the host immune response. Immune evasion is largely mediated by surface display of highly polymorphic protein families known as variable surface antigens. These include the two trans-membrane (2TM) superfamily constituted by multicopy repetitive interspersed family (RIFINs), subtelomeric variable open reading frame (STEVORs) and Plasmodium falciparum Maurer's cleft two trans-membrane proteins present only in P. falciparum and some simian infecting Plasmodium species. Their hypervariable region flanked by 2TM domains exposed on the iRBC surface is believed to generate antigenic diversity. Though historically named "2TM superfamily," several A-type RIFINs and some STEVORs assume one trans-membrane topology. RIFINs and STEVORs share varied functions in different parasite life cycle stages like rosetting, alteration of iRBC rigidity and immune evasion. Additionally, a member of the STEVOR family has been implicated in merozoite invasion. Differential expression of these families in laboratory strains and clinical isolates propose them to be important for host cell survival and defense. The role of RIFINs in modulation of host immune response and presence of protective antibodies against these surface exposed molecules in patient sera highlights them as attractive targets of antimalarial therapies and vaccines. 2TM proteins are Plasmodium export elements positive, and several of these are exported to the infected erythrocyte surface after exiting through the classical secretory pathway within parasites. Cleaved and modified proteins are trafficked after packaging in vesicles to reach

  20. A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli.

    PubMed

    Wood, Janet M; Culham, Doreen E; Hillar, Alexander; Vernikovska, Yaroslava I; Liu, Feng; Boggs, Joan M; Keates, Robert A B

    2005-04-19

    Transporter ProP of Escherichia coli, a member of the major facilitator superfamily (MFS), acts as an osmosensor and an osmoregulator in cells and after purification and reconstitution in proteoliposomes. H(+)-osmoprotectant symport via ProP is activated when medium osmolality is elevated with membrane impermeant osmolytes. The three-dimensional structure of ProP was modeled with the crystal structure of MFS member GlpT as a template. This GlpT structure represents the inward (or cytoplasm)-facing conformation predicted by the alternating access model for transport. LacZ-PhoA fusion analysis and site-directed fluorescence labeling substantiated the membrane topology and orientation predicted by this model and most hydropathy analyses. The model predicts the presence of a proton pathway within the N-terminal six-helix bundle of ProP (as opposed to the corresponding pathway found within the C-terminal helix bundle of its paralogue, LacY). Replacement of residues within the N-terminal helix bundle impaired the osmotic activation of ProP, providing the first indication that residues outside the C-terminal domain are involved in osmosensing. Some residues that were accessible from the periplasmic side, as predicted by the structural model, were more susceptible to covalent labeling in permeabilized membrane fractions than in intact bacteria. These residues may be accessible from the cytoplasmic side in structures not represented by our current model, or their limited exposure in vivo may reflect constraints on transporter structure that are related to its osmosensory mechanism.

  1. Checklist of the Diptera superfamilies Tephritoidea and Sciomyzoidea of Finland (Insecta)

    PubMed Central

    Kahanpää, Jere; Winqvist, Kaj

    2014-01-01

    Abstract A revised checklist of the flies of superfamilies Tephritoidea and Sciomyzoidea of Finland is provided. The following families are covered: Eurygnathomyiidae, Lonchaeidae, Neottiophilidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulidiidae (Tephritoidea); Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyiidae, Sciomyzidae, Sepsidae (Sciomyzoidea). PMID:25337022

  2. A global view of structure–function relationships in the tautomerase superfamily

    PubMed Central

    Davidson, Rebecca; Baas, Bert-Jan; Akiva, Eyal; Holliday, Gemma L.; Polacco, Benjamin J.; LeVieux, Jake A.; Pullara, Collin R.; Zhang, Yan Jessie; Whitman, Christian P.

    2018-01-01

    The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure–function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis-3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase–like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies. PMID:29184004

  3. Implementing a Measurement Feedback System in Community Mental Health Clinics: A Case Study of Multilevel Barriers and Facilitators

    PubMed Central

    Gleacher, Alissa A.; Olin, Serene S.; Nadeem, Erum; Pollock, Michele; Ringle, Vanesa; Bickman, Leonard; Douglas, Susan; Hoagwood, Kimberly

    2015-01-01

    Measurement feedback systems (MFSs) have been proposed as a means of improving practice. The present study examined the implementation of a MFS, the Contextualized Feedback System (CFS), in two community-based clinic sites. Significant implementation differences across sites provided a basis for examining factors that influenced clinician uptake of CFS. Following the theoretical implementation framework of Aarons, Hurlburt & Horwitz (2011), we coded qualitative data collected from eighteen clinicians (13 from Clinic U and 5 from Clinic R) who participated in semi-structured interviews about their experience with CFS implementation. Results suggest that clinicians at both clinics perceived more barriers than facilitators to CFS implementation. Interestingly, clinicians at the higher implementing clinic reported a higher proportion of barriers to facilitators (3:1 vs. 2:1); however, these clinicians also reported a significantly higher level of organizational and leadership supports for CFS implementation. Implications of these findings are discussed. PMID:25735619

  4. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    PubMed Central

    Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan

    2018-01-01

    Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum. PMID:29706976

  5. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum.

    PubMed

    Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan

    2018-01-01

    Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum , are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium . In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum , suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum , are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 ( PUT2-2 ) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum .

  6. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    PubMed Central

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  7. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    PubMed

    Parton, Daniel L; Grinaway, Patrick B; Hanson, Sonya M; Beauchamp, Kyle A; Chodera, John D

    2016-06-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs)-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine kinase

  8. Structure and function of POTRA domains of Omp85/TPS superfamily.

    PubMed

    Simmerman, Richard F; Dave, Ashita M; Bruce, Barry D

    2014-01-01

    The Omp85/TPS (outer-membrane protein of 85 kDa/two-partner secretion) superfamily is a ubiquitous and major class of β-barrel proteins. This superfamily is restricted to the outer membranes of gram-negative bacteria, mitochondria, and chloroplasts. The common architecture, with an N-terminus consisting of repeats of soluble polypeptide-transport-associated (POTRA) domains and a C-terminal β-barrel pore is highly conserved. The structures of multiple POTRA domains and one full-length TPS protein have been solved, yet discovering roles of individual POTRA domains has been difficult. This review focuses on similarities and differences between POTRA structures, emphasizing POTRA domains in autotrophic organisms including plants and cyanobacteria. Unique roles, specific for certain POTRA domains, are examined in the context of POTRA location with respect to their attachment to the β-barrel pore, and their degree of biological dispensability. Finally, because many POTRA domains may have the ability to interact with thousands of partner proteins, possible modes of these interactions are also explored. © 2014 Elsevier Inc. All rights reserved.

  9. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery

    PubMed Central

    Pan, Shu-Ting; Xue, Danfeng; Li, Zhi-Ling; Zhou, Zhi-Wei; He, Zhi-Xu; Yang, Yinxue; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2016-01-01

    The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA (“Orthologous MAtrix”) Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery. PMID:27367670

  10. Comparative analysis of cation/proton antiporter superfamily in plants.

    PubMed

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games.

    PubMed

    Hehlgans, Thomas; Pfeffer, Klaus

    2005-05-01

    The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunobiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed.

  12. Implementing a Measurement Feedback System in Community Mental Health Clinics: A Case Study of Multilevel Barriers and Facilitators.

    PubMed

    Gleacher, Alissa A; Olin, Serene S; Nadeem, Erum; Pollock, Michele; Ringle, Vanesa; Bickman, Leonard; Douglas, Susan; Hoagwood, Kimberly

    2016-05-01

    Measurement feedback systems (MFSs) have been proposed as a means of improving practice. The present study examined the implementation of a MFS, the Contextualized Feedback System (CFS), in two community-based clinic sites. Significant implementation differences across sites provided a basis for examining factors that influenced clinician uptake of CFS. Following the theoretical implementation framework of Aarons et al. (Adm Policy Mental Health Mental Health Serv Res 38(1):4-23, 2011), we coded qualitative data collected from eighteen clinicians (13 from Clinic U and 5 from Clinic R) who participated in semi-structured interviews about their experience with CFS implementation. Results suggest that clinicians at both clinics perceived more barriers than facilitators to CFS implementation. Interestingly, clinicians at the higher implementing clinic reported a higher proportion of barriers to facilitators (3:1 vs. 2:1); however, these clinicians also reported a significantly higher level of organizational and leadership supports for CFS implementation. Implications of these findings are discussed.

  13. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  14. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  15. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    PubMed Central

    2010-01-01

    Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants

  16. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide.

    PubMed

    Bienert, Gerd P; Chaumont, François

    2014-05-01

    Hydrogen peroxide (H2O2) is an important signaling compound that has recently been identified as a new substrate for several members of the aquaporin superfamily in various organisms. Evidence is emerging about the physiological significance of aquaporin-facilitated H2O2 diffusion. This review summarizes current knowledge about aquaporin-facilitated H2O2 diffusion across cellular membranes. It focuses on physicochemical and experimental evidence demonstrating the involvement of aquaporins in the transport of this redox signaling compound and discusses the regulation and structural prerequisites of these channels to transmit this signal. It also provides perspectives about the potential importance of aquaporin-facilitated H2O2 diffusion processes and places this knowledge in the context of the current understanding of transmembrane redox signaling processes. Specific aquaporin isoforms facilitate the passive diffusion of H2O2 across biological membranes and control H2O2 membrane permeability and signaling in living organisms. Redox signaling is a very important process regulating the physiology of cells and organisms in a similar way to the well-characterized hormonal and calcium signaling pathways. Efficient transmembrane diffusion of H2O2, a key molecule in the redox signaling network, requires aquaporins and makes these channels important players in this signaling process. Channel-mediated membrane transport allows the fine adjustment of H2O2 levels in the cytoplasm, intracellular organelles, the apoplast, and the extracellular space, which are essential for it to function as a signal molecule. This article is part of a Special Issue entitled Aquaporins. © 2013.

  17. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom.

    PubMed

    Mindrebo, Jeffrey T; Nartey, Charisse M; Seto, Yoshiya; Burkart, Michael D; Noel, Joseph P

    2016-12-01

    The alpha/beta hydrolase (ABH) superfamily is a widespread and functionally malleable protein fold recognized for its diverse biochemical activities across all three domains of life. ABH enzymes possess unexpected catalytic activity in the green plant lineage through selective alterations in active site architecture and chemistry. Furthermore, the ABH fold serves as the core structure for phytohormone and ligand receptors in the gibberellin, strigolactone, and karrikin signaling pathways in plants. Despite recent discoveries, the ABH family is sparsely characterized in plants, a sessile kingdom known to evolve complex and specialized chemical adaptations as survival responses to widely varying biotic and abiotic ecologies. This review calls attention to the ABH superfamily in the plant kingdom to highlight the functional adaptability of the ABH fold. Copyright © 2016. Published by Elsevier Ltd.

  18. The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera

    PubMed Central

    Zhou, Zhijun; Shi, Fuming; Zhao, Ling

    2014-01-01

    Hagloidea Handlirsch, 1906 was an ancient group of Ensifera, that was much more diverse in the past extending at least into the Triassic, apparently diminishing in diversity through the Cretaceous, and now only represented by a few extant species. In this paper, we report the complete mitochondrial genome (mitogenome) of Tarragoilus diuturnus Gorochov, 2001, representing the first mitogenome of the superfamily Hagloidea. The size of the entire mitogenome of T. diuturnus is 16144 bp, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The order and orientation of the gene arrangement pattern is identical to that of D. yakuba and most ensiferans species. A phylogenomic analysis was carried out based on the concatenated dataset of 13 PCGs and 2 rRNA genes from mitogenome sequences of 15 ensiferan species, comprising four superfamilies Grylloidea, Tettigonioidae, Rhaphidophoroidea and Hagloidea. Both maximum likelihood and Bayesian inference analyses strongly support Hagloidea T. diuturnus and Rhaphidophoroidea Troglophilus neglectus as forming a monophyletic group, sister to the Tettigonioidea. The relationships among four superfamilies of Ensifera were (Grylloidea, (Tettigonioidea, (Hagloidea, Rhaphidophoroidea))). PMID:24465850

  19. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  20. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.

    PubMed

    Reddy, Abhinay; Cho, Jaehoon; Ling, Sam; Reddy, Vamsee; Shlykov, Maksim; Saier, Milton H

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. © 2014 S. Karger AG, Basel.

  1. Multidrug efflux transporter, AcrB--the pumping mechanism.

    PubMed

    Murakami, Satoshi

    2008-08-01

    Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.

  2. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves

  3. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution

    PubMed Central

    Heinz, Eva; Lithgow, Trevor

    2014-01-01

    Members of the Omp85/TpsB protein superfamily are ubiquitously distributed in Gram-negative bacteria, and function in protein translocation (e.g., FhaC) or the assembly of outer membrane proteins (e.g., BamA). Several recent findings are suggestive of a further level of variation in the superfamily, including the identification of the novel membrane protein assembly factor TamA and protein translocase PlpD. To investigate the diversity and the causal evolutionary events, we undertook a comprehensive comparative sequence analysis of the Omp85/TpsB proteins. A total of 10 protein subfamilies were apparent, distinguished in their domain structure and sequence signatures. In addition to the proteins FhaC, BamA, and TamA, for which structural and functional information is available, are families of proteins with so far undescribed domain architectures linked to the Omp85 β-barrel domain. This study brings a classification structure to a dynamic protein superfamily of high interest given its essential function for Gram-negative bacteria as well as its diverse domain architecture, and we discuss several scenarios of putative functions of these so far undescribed proteins. PMID:25101071

  4. Discovery and characterization of two Nimrod superfamily members in Anopheles gambiae.

    PubMed

    Midega, Janet; Blight, Joshua; Lombardo, Fabrizio; Povelones, Michael; Kafatos, Fotis; Christophides, George K

    2013-12-01

    Anti-bacterial proteins in mosquitoes are known to play an important modulatory role on immune responses to infections with human pathogens including malaria parasites. In this study we characterized two members of the Anopheles gambiae Nimrod superfamily, namely AgNimB2 and AgEater. We confirm that current annotation of the An. gambiae genome incorrectly identifies AgNimB2 and AgEater as a single gene, AGAP009762. Through in silico and experimental approaches, it has been shown that AgNimB2 is a secreted protein that mediates phagocytosis of Staphylococcus aureus but not of Escherichia coli bacteria. We also reveal that this function does not involve a direct interaction of AgNimB2 with S. aureus. Therefore, AgNimB2 may act downstream of complement-like pathway activation, first requiring bacterial opsonization. In addition, it has been shown that AgNimB2 has an anti-Plasmodium effect. Conversely, AgEater is a membrane-bound protein that either functions redundantly or is dispensable for phagocytosis of E. coli or S. aureus. Our study provides insights into the role of members of the complex Nimrod superfamily in An. gambiae, the most important African vector of human malaria.

  5. Discovery and characterization of two Nimrod superfamily members in Anopheles gambiae

    PubMed Central

    Midega, Janet; Blight, Joshua; Lombardo, Fabrizio; Povelones, Michael; Kafatos, Fotis; Christophides, George K

    2013-01-01

    Anti-bacterial proteins in mosquitoes are known to play an important modulatory role on immune responses to infections with human pathogens including malaria parasites. In this study we characterized two members of the Anopheles gambiae Nimrod superfamily, namely AgNimB2 and AgEater. We confirm that current annotation of the An. gambiae genome incorrectly identifies AgNimB2 and AgEater as a single gene, AGAP009762. Through in silico and experimental approaches, it has been shown that AgNimB2 is a secreted protein that mediates phagocytosis of Staphylococcus aureus but not of Escherichia coli bacteria. We also reveal that this function does not involve a direct interaction of AgNimB2 with S. aureus. Therefore, AgNimB2 may act downstream of complement-like pathway activation, first requiring bacterial opsonization. In addition, it has been shown that AgNimB2 has an anti-Plasmodium effect. Conversely, AgEater is a membrane-bound protein that either functions redundantly or is dispensable for phagocytosis of E. coli or S. aureus. Our study provides insights into the role of members of the complex Nimrod superfamily in An. gambiae, the most important African vector of human malaria. PMID:24428830

  6. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold.

    PubMed

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen

    2018-01-01

    Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER.

  7. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold

    PubMed Central

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel

    2018-01-01

    Background Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER. PMID:29579071

  8. Structural basis for amino acid export by DMT superfamily transporter YddG.

    PubMed

    Tsuchiya, Hirotoshi; Doki, Shintaro; Takemoto, Mizuki; Ikuta, Tatsuya; Higuchi, Takashi; Fukui, Keita; Usuda, Yoshihiro; Tabuchi, Eri; Nagatoishi, Satoru; Tsumoto, Kouhei; Nishizawa, Tomohiro; Ito, Koichi; Dohmae, Naoshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-06-16

    The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4 Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins.

  9. The drug:H+ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H+ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts

    PubMed Central

    2013-01-01

    Background The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S. cerevisiae, the four ARN/SIT family members encode siderophore transporters and the two GEX family members encode glutathione extrusion pumps. The evolutionary history of DHA2, ARN and GEX genes, encoding 14-spanner MFS transporters, is reconstructed in this study. Results The translated ORFs of 31 strains from 25 hemiascomycetous species, including 10 pathogenic Candida species, were compared using a local sequence similarity algorithm. The constraining and traversing of a network representing the pairwise similarity data gathered 355 full size proteins and retrieved ARN and GEX family members together with DHA2 transporters, suggesting the existence of a close phylogenetic relationship among these 14-spanner major facilitators. Gene neighbourhood analysis was combined with tree construction methodologies to reconstruct their evolutionary history and 7 DHA2 gene lineages, 5 ARN gene lineages, and 1 GEX gene lineage, were identified. The S. cerevisiae DHA2 proteins Sge1, Azr1, Vba3 and Vba5 co-clustered in a large phylogenetic branch, the ATR1 and YMR279C genes were proposed to be paralogs formed during the Whole Genome Duplication (WGD) whereas the closely related ORF YOR378W resides in its own lineage. Homologs of S. cerevisiae DHA2 vacuolar proteins Vba1, Vba2 and Vba4 occur widespread in the Hemiascomycetes. Arn1/Arn2 homologs were only found in species belonging to the Saccharomyces complex and are more abundant in the pre-WGD species. Arn4 homologs were only found in sub-telomeric regions of species belonging to the Sacharomyces sensu strictu group (SSSG). Arn3 type

  10. Modeling of Glycerol-3-Phosphate Transporter Suggests a Potential ‘Tilt’ Mechanism involved in its Function

    PubMed Central

    Tsigelny, Igor F.; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K.

    2009-01-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane α-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family — the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY) — have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational “switching” mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible “switch” mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.23 We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a “tilt” of 9°–10° rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the “tilted” structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while

  11. Short interspersed elements (SINEs) of the Geomyoidea superfamily rodents.

    PubMed

    Gogolevsky, Konstantin P; Kramerov, Dmitri A

    2006-05-24

    A new short interspersed element (SINE) was isolated from the genome of desert kangaroo rat (Dipodomys deserti) using single-primer PCR. This SINE consists of two monomers: the left monomer (IDL) resembles rodent ID element and other tRNAAla(CGC)-derived SINEs, whereas the right one (Geo) shows no similarity with known SINE sequences. PCR and hybridization analyses demonstrated that IDL-Geo SINE is restricted to the rodent superfamily Geomyoidea (families Geomyidea and Heteromyidea). Isolation and analysis of IDL-Geo from California pocket mouse (Chaetodipus californicus) and Botta's pocket gopher (Thomomys bottae) revealed some species-specific features of this SINE family. The structure and evolution of known dimeric SINEs are discussed.

  12. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    PubMed

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  13. Electrophysiological evidence of cerebellar fiber system involvement in the Miller Fisher syndrome.

    PubMed

    Lo, Y L; Fook-Chong, S; Chan, L L; Ong, W Y; Ratnagopal, P

    2010-01-15

    In the Miller Fisher syndrome (MFS), ataxia may be due involvement of Ia afferents and the cerebellum. Transcranial magnetic stimulation (TMS) over the cerebellum is known to interfere transiently with normal function. In this study, we utilized a previously described TMS protocol over the cerebellum in combination with ballistic movements to investigate cerebellar dysfunction in MFS patients. The agonist (biceps) reaction time in MFS patients during a motor cancellation task was not significantly reduced during the initial TMS study. However, during the repeat TMS study, significant reduction was seen for all patients, in tandem with clinical recovery. There was significant correlation between anti-GQ1b IgG titers and change in agonist reaction time between the initial and repeat TMS studies. TMS likely affected horizontally orientated parallel fibers in the cerebellar molecular layer. During disease onset, antibody binding may have interfered with facilitation of reaction time during motor cancellation tasks seen in normal subjects. Normalization of reaction time facilitation corresponded to resolution of antibody-mediated interference in the molecular layer. Our study has provided evidence suggesting parallel fiber involvement in MFS, and suggested a role of anti-GQ1b IgG antibody in these changes.

  14. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey

    PubMed Central

    Gupta, Subash C.; Kim, Ji Hye

    2012-01-01

    Although activity that induced tumor regression was observed and termed tumor necrosis factor (TNF) as early as the 1960s, the true identity of TNF was not clear until 1984, when Aggarwal and coworkers reported, for the first time, the isolation of 2 cytotoxic factors: one, derived from macrophages (molecular mass 17 kDa), was named TNF, and the second, derived from lymphocytes (20 kDa), was named lymphotoxin. Because the 2 cytotoxic factors exhibited 50% amino acid sequence homology and bound to the same receptor, they came to be called TNF-α and TNF-β. Identification of the protein sequences led to cloning of their cDNA. Based on sequence homology to TNF-α, now a total of 19 members of the TNF superfamily have been identified, along with 29 interacting receptors, and several molecules that interact with the cytoplasmic domain of these receptors. The roles of the TNF superfamily in inflammation, apoptosis, proliferation, invasion, angiogenesis, metastasis, and morphogenesis have been documented. Their roles in immunologic, cardiovascular, neurologic, pulmonary, and metabolic diseases are becoming apparent. TNF superfamily members are active targets for drug development, as indicated by the recent approval and expanding market of TNF blockers used to treat rheumatoid arthritis, psoriasis, Crohns disease, and osteoporosis, with a total market of more than US $20 billion. As we learn more about this family, more therapeutics will probably emerge. In this review, we summarize the initial discovery of TNF-α, and the insights gained regarding the roles of this molecule and its related family members in normal physiology and disease. PMID:22053109

  15. Mechanistic Study of Human Glucose Transport Mediated by GLUT1.

    PubMed

    Fu, Xuegang; Zhang, Gang; Liu, Ran; Wei, Jing; Zhang-Negrerie, Daisy; Jian, Xiaodong; Gao, Qingzhi

    2016-03-28

    The glucose transporter 1 (GLUT1) belongs to the major facilitator superfamily (MFS) and is responsible for the constant uptake of glucose. However, the molecular mechanism of sugar transport remains obscure. In this study, homology modeling and molecular dynamics (MD) simulations in lipid bilayers were performed to investigate the combination of the alternate and multisite transport mechanism of glucose with GLUT1 in atomic detail. To explore the substrate recognition mechanism, the outward-open state human GLUT1 homology model was generated based on the template of xylose transporter XylE (PDB ID: 4GBZ), which shares up to 29% sequence identity and 49% similarity with GLUT1. Through the MD simulation study of glucose across lipid bilayer with both the outward-open GLUT1 and the GLUT1 inward-open crystal structure, we investigated six different conformational states and identified four key binding sites in both exofacial and endofacial loops that are essential for glucose recognition and transport. The study further revealed that four flexible gates consisting of W65/Y292/Y293-M420/TM10b-W388 might play important roles in the transport cycle. The study showed that some side chains close to the central ligand binding site underwent larger position changes. These conformational interchanges formed gated networks within an S-shaped central channel that permitted staged ligand diffusion across the transporter. This study provides new inroads for the understanding of GLUT1 ligand recognition paradigm and configurational features which are important for molecular, structural, and physiological research of the MFS members, especially for GLUT1-targeted drug design and discovery.

  16. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases.

    PubMed

    Croft, Michael; Siegel, Richard M

    2017-04-01

    TNF blockers are highly efficacious at dampening inflammation and reducing symptoms in rheumatic diseases such as rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis, and also in nonrheumatic syndromes such as inflammatory bowel disease. As TNF belongs to a superfamily of 19 structurally related proteins that have both proinflammatory and anti-inflammatory activity, reagents that disrupt the interaction between proinflammatory TNF family cytokines and their receptors, or agonize the anti-inflammatory receptors, are being considered for the treatment of rheumatic diseases. Biologic agents that block B cell activating factor (BAFF) and receptor activator of nuclear factor-κB ligand (RANKL) have been approved for the treatment of systemic lupus erythematosus and osteoporosis, respectively. In this Review, we focus on additional members of the TNF superfamily that could be relevant for the pathogenesis of rheumatic disease, including those that can strongly promote activity of immune cells or increase activity of tissue cells, as well as those that promote death pathways and might limit inflammation. We examine preclinical mouse and human data linking these molecules to the control of damage in the joints, muscle, bone or other tissues, and discuss their potential as targets for future therapy of rheumatic diseases.

  17. ConoDictor: a tool for prediction of conopeptide superfamilies.

    PubMed

    Koua, Dominique; Brauer, Age; Laht, Silja; Kaplinski, Lauris; Favreau, Philippe; Remm, Maido; Lisacek, Frédérique; Stöcklin, Reto

    2012-07-01

    ConoDictor is a tool that enables fast and accurate classification of conopeptides into superfamilies based on their amino acid sequence. ConoDictor combines predictions from two complementary approaches-profile hidden Markov models and generalized profiles. Results appear in a browser as tables that can be downloaded in various formats. This application is particularly valuable in view of the exponentially increasing number of conopeptides that are being identified. ConoDictor was written in Perl using the common gateway interface module with a php submission page. Sequence matching is performed with hmmsearch from HMMER 3 and ps_scan.pl from the pftools 2.3 package. ConoDictor is freely accessible at http://conco.ebc.ee.

  18. The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis

    PubMed Central

    De Trez, Carl; Ware, Carl F.

    2008-01-01

    Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Stromal cell and myeloid-associated Lymphotoxin-β receptor (LTβR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses the LTβR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the Immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, Herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTβR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets. PMID:18511331

  19. The PYRIN domain: A member of the death domain-fold superfamily

    PubMed Central

    Fairbrother, Wayne J.; Gordon, Nathaniel C.; Humke, Eric W.; O'Rourke, Karen M.; Starovasnik, Melissa A.; Yin, Jian-Ping; Dixit, Vishva M.

    2001-01-01

    PYRIN domains were identified recently as putative protein–protein interaction domains at the N-termini of several proteins thought to function in apoptotic and inflammatory signaling pathways. The ∼95 residue PYRIN domains have no statistically significant sequence homology to proteins with known three-dimensional structure. Using secondary structure prediction and potential-based fold recognition methods, however, the PYRIN domain is predicted to be a member of the six-helix bundle death domain-fold superfamily that includes death domains (DDs), death effector domains (DEDs), and caspase recruitment domains (CARDs). Members of the death domain-fold superfamily are well established mediators of protein–protein interactions found in many proteins involved in apoptosis and inflammation, indicating further that the PYRIN domains serve a similar function. An homology model of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1, a member of the Apaf-1/Ced-4 family of proteins, was constructed using the three-dimensional structures of the FADD and p75 neurotrophin receptor DDs, and of the Apaf-1 and caspase-9 CARDs, as templates. Validation of the model using a variety of computational techniques indicates that the fold prediction is consistent with the sequence. Comparison of a circular dichroism spectrum of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1 with spectra of several proteins known to adopt the death domain-fold provides experimental support for the structure prediction. PMID:11514682

  20. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family.

    PubMed

    Xuan, Yuan Hu; Hu, Yi Bing; Chen, Li-Qing; Sosso, Davide; Ducat, Daniel C; Hou, Bi-Huei; Frommer, Wolf B

    2013-09-24

    Eukaryotic sugar transporters of the MFS and SWEET superfamilies consist of 12 and 7 α-helical transmembrane domains (TMs), respectively. Structural analyses indicate that MFS transporters evolved from a series of tandem duplications of an ancestral 3-TM unit. SWEETs are heptahelical proteins carrying a tandem repeat of 3-TM separated by a single TM. Here, we show that prokaryotes have ancestral SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SWEET11, mediates sucrose transport. Eukaryotic SWEETs most likely evolved by internal duplication of the 3-TM, suggesting that SemiSWEETs form oligomers to create a functional pore. However, it remains elusive whether the 7-TM SWEETs are the functional unit or require oligomerization to form a pore sufficiently large to allow for sucrose passage. Split ubiquitin yeast two-hybrid and split GFP assays indicate that Arabidopsis SWEETs homo- and heterooligomerize. We examined mutant SWEET variants for negative dominance to test if oligomerization is necessary for function. Mutation of the conserved Y57 or G58 in SWEET1 led to loss of activity. Coexpression of the defective mutants with functional A. thaliana SWEET1 inhibited glucose transport, indicating that homooligomerization is necessary for function. Collectively, these data imply that the basic unit of SWEETs, similar to MFS sugar transporters, is a 3-TM unit and that a functional transporter contains at least four such domains. We hypothesize that the functional unit of the SWEET family of transporters possesses a structure resembling the 12-TM MFS structure, however, with a parallel orientation of the 3-TM unit.

  1. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family

    PubMed Central

    Xuan, Yuan Hu; Hu, Yi Bing; Chen, Li-Qing; Sosso, Davide; Ducat, Daniel C.; Hou, Bi-Huei; Frommer, Wolf B.

    2013-01-01

    Eukaryotic sugar transporters of the MFS and SWEET superfamilies consist of 12 and 7 α-helical transmembrane domains (TMs), respectively. Structural analyses indicate that MFS transporters evolved from a series of tandem duplications of an ancestral 3-TM unit. SWEETs are heptahelical proteins carrying a tandem repeat of 3-TM separated by a single TM. Here, we show that prokaryotes have ancestral SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SWEET11, mediates sucrose transport. Eukaryotic SWEETs most likely evolved by internal duplication of the 3-TM, suggesting that SemiSWEETs form oligomers to create a functional pore. However, it remains elusive whether the 7-TM SWEETs are the functional unit or require oligomerization to form a pore sufficiently large to allow for sucrose passage. Split ubiquitin yeast two-hybrid and split GFP assays indicate that Arabidopsis SWEETs homo- and heterooligomerize. We examined mutant SWEET variants for negative dominance to test if oligomerization is necessary for function. Mutation of the conserved Y57 or G58 in SWEET1 led to loss of activity. Coexpression of the defective mutants with functional A. thaliana SWEET1 inhibited glucose transport, indicating that homooligomerization is necessary for function. Collectively, these data imply that the basic unit of SWEETs, similar to MFS sugar transporters, is a 3-TM unit and that a functional transporter contains at least four such domains. We hypothesize that the functional unit of the SWEET family of transporters possesses a structure resembling the 12-TM MFS structure, however, with a parallel orientation of the 3-TM unit. PMID:24027245

  2. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase superfamily.

    PubMed

    Narayanan, Buvaneswari C; Niu, Weiling; Han, Ying; Zou, Jiwen; Mariano, Patrick S; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-01-08

    Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 A resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an alpha/beta barrel fold and two subunits swapping their barrel's C-terminal alpha-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nepsilon of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into alpha-oxocarboxylate-containing compounds was confirmed by 1H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an alpha-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s(-1) and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s(-1) and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.

  3. Expression of 6-Cys gene superfamily defines babesia bovis sexual stage development within rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) and t...

  4. Revised phylogeny of the Cellulose Synthase gene superfamily: insights into cell wall evolution.

    PubMed

    Little, Alan; Schwerdt, Julian G; Shirley, Neil J; Khor, Shi F; Neumann, Kylie; O'Donovan, Lisa A; Lahnstein, Jelle; Collins, Helen M; Henderson, Marilyn; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-20

    Cell walls are crucial for the integrity and function of all land plants, and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterisation of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was previously thought to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-β-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  5. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein

    PubMed Central

    Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger

    2017-01-01

    Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570

  6. Evolution of Enzymatic Activities in the Enolase Superfamily: Stereochemically Distinct Mechanisms in Two Families of cis,cis-Muconate Lactonizing Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, A.; Fedorov, A; Fedorov, E

    2009-01-01

    The mechanistically diverse enolase superfamily is a paradigm for elucidating Nature's strategies for divergent evolution of enzyme function. Each of the different reactions catalyzed by members of the superfamily is initiated by abstraction of the a-proton of a carboxylate substrate that is coordinated to an essential Mg2+. The muconate lactonizing enzyme (MLE) from Pseudomonas putida, a member of a family that catalyzes the syn-cycloisomerization of cis,cis-muconate to (4S)-muconolactone in the e-ketoadipate pathway, has provided critical insights into the structural bases for evolution of function within the superfamily. A second, divergent family of homologous MLEs that catalyzes anti-cycloisomerization has been identified.more » Structures of members of both families liganded with the common (4S)-muconolactone product (syn, Pseudomonas fluorescens, gi 70731221; anti, Mycobacterium smegmatis, gi 118470554) document that the conserved Lys at the end of the second e-strand in the (e/a)7e-barrel domain serves as the acid catalyst in both reactions. The different stereochemical courses (syn and anti) result from different structural strategies for determining substrate specificity: although the distal carboxylate group of the cis,cis-muconate substrate attacks the same face of the proximal double bond, opposite faces of the resulting enolate anion intermediate are presented to the conserved Lys acid catalyst. The discovery of two families of homologous, but stereochemically distinct, MLEs likely provides an example of 'pseudoconvergent' evolution of the same function from different homologous progenitors within the enolase superfamily, in which different spatial arrangements of active site functional groups and substrate specificity determinants support catalysis of the same reaction.« less

  7. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.

  8. Cloning of a new member of the insulin gene superfamily (INSL4) expressed in human placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, D.; Laurent, A.; Janneau, J.L.

    1995-09-20

    A new member of the insulin gene superfamily was identified by screening a subtracted cDNA library of first-trimester human placenta and, hence, was tentatively named early placenta insulin-like peptide (EPIL). In this paper, we report the cloning and sequencing of the EPIL cDNA and the EPIL gene (INSL4). Comparison of the deduced amino acid sequence of the early placenta insulin-like peptide revealed significant overall and structural homologies with members of the insulin-like hormone superfamily. Moreover, the organization of the early placenta insulin-like gene, which is composed of two exons and one intron, is similiar to that of insulin and relaxin.more » By in situ hybridization, the INSL4 gene was assigned to band p24 of the short arm of chromosome 9. RT-PCR analysis of EPIL tissue distribution revealed that its transcripts are expressed in the placenta and uterus. 22 refs., 3 figs.« less

  9. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity.

    PubMed

    Shagin, Dmitry A; Barsova, Ekaterina V; Yanushevich, Yurii G; Fradkov, Arkady F; Lukyanov, Konstantin A; Labas, Yulii A; Semenova, Tatiana N; Ugalde, Juan A; Meyers, Ann; Nunez, Jose M; Widder, Edith A; Lukyanov, Sergey A; Matz, Mikhail V

    2004-05-01

    Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.

  10. Building a Phylogenetic Tree of the Human and Ape Superfamily Using DNA-DNA Hybridization Data

    ERIC Educational Resources Information Center

    Maier, Caroline Alexander

    2004-01-01

    The study describes the process of DNA-DNA hybridization and the history of its use by Sibley and Alquist in simple, straightforward, and interesting language that students easily understand to create their own phylogenetic tree of the hominoid superfamily. They calibrate the DNA clock and use it to estimate the divergence dates of the various…

  11. An Efficient Strategy for Small-Scale Screening and Production of Archaeal Membrane Transport Proteins in Escherichia coli

    PubMed Central

    Ma, Pikyee; Varela, Filipa; Magoch, Malgorzata; Silva, Ana Rita; Rosário, Ana Lúcia; Brito, José; Oliveira, Tânia Filipa; Nogly, Przemyslaw; Pessanha, Miguel; Stelter, Meike; Kletzin, Arnulf; Henderson, Peter J. F.; Archer, Margarida

    2013-01-01

    Background Membrane proteins play a key role in many fundamental cellular processes such as transport of nutrients, sensing of environmental signals and energy transduction, and account for over 50% of all known drug targets. Despite their importance, structural and functional characterisation of membrane proteins still remains a challenge, partially due to the difficulties in recombinant expression and purification. Therefore the need for development of efficient methods for heterologous production is essential. Methodology/Principal Findings Fifteen integral membrane transport proteins from Archaea were selected as test targets, chosen to represent two superfamilies widespread in all organisms known as the Major Facilitator Superfamily (MFS) and the 5-Helix Inverted Repeat Transporter superfamily (5HIRT). These proteins typically have eleven to twelve predicted transmembrane helices and are putative transporters for sugar, metabolite, nucleobase, vitamin or neurotransmitter. They include a wide range of examples from the following families: Metabolite-H+-symporter; Sugar Porter; Nucleobase-Cation-Symporter-1; Nucleobase-Cation-Symporter-2; and neurotransmitter-sodium-symporter. Overproduction of transporters was evaluated with three vectors (pTTQ18, pET52b, pWarf) and two Escherichia coli strains (BL21 Star and C43 (DE3)). Thirteen transporter genes were successfully expressed; only two did not express in any of the tested vector-strain combinations. Initial trials showed that seven transporters could be purified and six of these yielded quantities of ≥ 0.4 mg per litre suitable for functional and structural studies. Size-exclusion chromatography confirmed that two purified transporters were almost homogeneous while four others were shown to be non-aggregating, indicating that they are ready for up-scale production and crystallisation trials. Conclusions/Significance Here, we describe an efficient strategy for heterologous production of membrane transport

  12. Structure and Function of PA4872 from Pseudomonas aeruginosa, a Novel Class of Oxaloacetate Decarboxylase from the PEP Mutase/Isocitrate Lyase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Buvaneswari C.; Niu, Weiling; Han, Ying

    2008-06-30

    Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family R-oxyanion carboxylate intermediate/transition state) and Mg{sup 2+} was determined at 1.9 {angstrom} resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an {alpha}/{beta} barrel fold and two subunits swapping their barrel's C-terminal {alpha}-helices. Mg2+more » and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The N{sup {epsilon}} of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into {alpha}-oxocarboxylate-containing compounds was confirmed by {sup 1}H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an {alpha}-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (k{sub cat}) = 7500 s{sup -1} and K{sub m} = 2.2 mM) and 3-methyloxaloacetate (k{sub cat}) = 250 s{sup -1} and K{sub m} = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.« less

  13. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion.

    PubMed

    Farré, Domènec; Martínez-Vicente, Pablo; Engel, Pablo; Angulo, Ana

    2017-05-01

    Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    USDA-ARS?s Scientific Manuscript database

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  15. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics

    PubMed Central

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.

    2012-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  16. Structure of a eukaryotic SWEET transporter in a homotrimeric complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yuyong; Cheung, Lily S.; Li, Shuo

    Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loadingmore » for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. In this paper, we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Finally, insights into the structure–function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.« less

  17. Structure of a eukaryotic SWEET transporter in a homotrimeric complex

    DOE PAGES

    Tao, Yuyong; Cheung, Lily S.; Li, Shuo; ...

    2015-10-19

    Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loadingmore » for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. In this paper, we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Finally, insights into the structure–function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.« less

  18. Structure of a eukaryotic SWEET transporter in a homotrimeric complex.

    PubMed

    Tao, Yuyong; Cheung, Lily S; Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B; Feng, Liang

    2015-11-12

    Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.

  19. Structure of a eukaryotic SWEET transporter in a homo-trimeric complex

    PubMed Central

    Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B.; Feng, Liang

    2016-01-01

    Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use related proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter Family (SSF; only animal kingdom), and SWEETs1-5. SWEETs carry mono- and disaccharides6 across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion7, phloem loading for long distance translocation8, pollen nutrition9, and seed filling10. Plant SWEETs cause pathogen susceptibility by sugar leakage from infected cells3,11,12. The vacuolar AtSWEET2 sequesters sugars in root vacuoles; loss-of-function increases susceptibility to Pythium infection13. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice, consists of an asymmetrical pair of triple-helix-bundles (THBs), connected by an inversion linker helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first THB within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs is valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux. PMID:26479032

  20. Extending the family table: insights into the FGF superfamily from beyond vertebrates

    PubMed Central

    2014-01-01

    Since the discovery of Fibroblast Growth Factors much focus has been placed on elucidating the roles for each vertebrate FGF ligand, receptor, and regulating molecules in the context of vertebrate development, human disorders and cancer. Studies in human, mouse, Xenopus, chick, and zebrafish have gone a long way to help us understand [AS1]which FGFs are involved in which processes. However, in recent years, as more genomes are sequenced, more information is becoming available from many non-vertebrate models and a more complete picture of the FGF superfamily as a whole is emerging. In some cases less redundancy in the FGF signaling system in invertebrate models may allow for more mechanistic insights. Studies in cnidaria have highlighted how ancient FGF signaling is, and helped provide insight into the evolution of the FGF gene family. Work in C. elegans has shown that different splice forms can be used for functional specificity in invertebrate FGF signaling. Comparing FGFs from Ciona to those in vertebrates and FGFs from Tribolium to Drosophila reveals some important clues as to the process of gene loss, duplication and subfunctionalization of FGFs throughout evolution. Finally, comparing all members of the FGF ligand superfamily reveals variability in many properties, which may point to a feature of FGFs as being highly adaptable with regards to protein structure and mechanism. Further studies on FGF signaling outside of vertebrates is likely to complement work in vertebrates by contributing many insights to the FGF field as a whole and providing unexpected information that could be used for medical applications. PMID:20860061

  1. An orphan viral TNF receptor superfamily member identified in lymphocystis disease virus.

    PubMed

    Pontejo, Sergio M; Sánchez, Carolina; Martín, Rocío; Mulero, Victoriano; Alcami, Antonio; Alejo, Alí

    2013-06-07

    Lymphocystis disease virus (LCDV) is a large icosahedral dsDNA-containing virus of the Lymphocystivirus genus within the Iridoviridae family that can cause disease in more than 140 marine and freshwater fish species. While several isolates have been charcaterized and classified into distinct genotypes the complete genomic sequence is currently only available from two species, the LCDV-1, isolated from flounder (Platichtys flesus) in Europe and the LCDV-C, isolated from Japanese cultured flounder (Paralichthys olivaceus) in China. Analysis of the genome of LCDV-C showed it to encode a protein named LDVICp016 with similarities to the Tumour necrosis factor receptor (TNFR) superfamily with immunomodulatory potential. We have expressed and purified the recombinant protein LDVICp016 and screened for potential interaction partners using surface plasmon resonance. Commercially available human and mouse members of the TNF superfamily (TNFSF), along with a representative set of fish-derived TNFSF were tested.We have found the LDVICp016 protein to be secreted and we have identified a second viral TNFR encoded by ORF 095 of the same virus. None of the 42 tested proteins were found to interact with LDVICp016. We show that LDVICp016 is a secreted protein belonging to the TNF receptor family that may be part of a larger gene family in Lymphocystiviruses. While the ligand of this protein remains unknown, possibly due to the species specific nature of this interaction, further investigations into the potential role of this protein in the blockade of immune responses in its fish host are required.

  2. An orphan viral TNF receptor superfamily member identified in lymphocystis disease virus

    PubMed Central

    2013-01-01

    Background Lymphocystis disease virus (LCDV) is a large icosahedral dsDNA-containing virus of the Lymphocystivirus genus within the Iridoviridae family that can cause disease in more than 140 marine and freshwater fish species. While several isolates have been charcaterized and classified into distinct genotypes the complete genomic sequence is currently only available from two species, the LCDV-1, isolated from flounder (Platichtys flesus) in Europe and the LCDV-C, isolated from Japanese cultured flounder (Paralichthys olivaceus) in China. Analysis of the genome of LCDV-C showed it to encode a protein named LDVICp016 with similarities to the Tumour necrosis factor receptor (TNFR) superfamily with immunomodulatory potential. Findings We have expressed and purified the recombinant protein LDVICp016 and screened for potential interaction partners using surface plasmon resonance. Commercially available human and mouse members of the TNF superfamily (TNFSF), along with a representative set of fish-derived TNFSF were tested. We have found the LDVICp016 protein to be secreted and we have identified a second viral TNFR encoded by ORF 095 of the same virus. None of the 42 tested proteins were found to interact with LDVICp016. Conclusions We show that LDVICp016 is a secreted protein belonging to the TNF receptor family that may be part of a larger gene family in Lymphocystiviruses. While the ligand of this protein remains unknown, possibly due to the species specific nature of this interaction, further investigations into the potential role of this protein in the blockade of immune responses in its fish host are required. PMID:23758704

  3. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.

    PubMed

    Simon, Gabriel M; Cravatt, Benjamin F

    2010-04-09

    Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.

  4. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms.

    PubMed

    De Bortoli, Sara; Teardo, Enrico; Szabò, Ildikò; Morosinotto, Tomas; Alboresi, Alessandro

    2016-11-01

    Photosynthetic eukaryotes have a complex evolutionary history shaped by multiple endosymbiosis events that required a tight coordination between the organelles and the rest of the cell. Plant ionotropic glutamate receptors (iGLRs) form a large superfamily of proteins with a predicted or proven non-selective cation channel activity regulated by a broad range of amino acids. They are involved in different physiological processes such as C/N sensing, resistance against fungal infection, root and pollen tube growth and response to wounding and pathogens. Most of the present knowledge is limited to iGLRs located in plasma membranes. However, recent studies localized different iGLR isoforms to mitochondria and/or chloroplasts, suggesting the possibility that they play a specific role in bioenergetic processes. In this work, we performed a comparative analysis of GLR sequences from bacteria and various photosynthetic eukaryotes. In particular, novel types of selectivity filters of bacteria are reported adding new examples of the great diversity of the GLR superfamily. The highest variability in GLR sequences was found among the algal sequences (cryptophytes, diatoms, brown and green algae). GLRs of land plants are not closely related to the GLRs of green algae analyzed in this work. The GLR family underwent a great expansion in vascular plants. Among plant GLRs, Clade III includes sequences from Physcomitrella patens, Marchantia polymorpha and gymnosperms and can be considered the most ancient, while other clades likely emerged later. In silico analysis allowed the identification of sequences with a putative target to organelles. Sequences with a predicted localization to mitochondria and chloroplasts are randomly distributed among different type of GLRs, suggesting that no compartment-related specific function has been maintained across the species. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  6. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs.

    PubMed

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

  7. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid

    PubMed Central

    Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.

    2015-01-01

    ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long

  8. Identification, immunolocalization, and characterization analyses of an exopeptidase of papain superfamily, (cathepsin C) from Clonorchis sinensis.

    PubMed

    Liang, Pei; He, Lei; Xu, Yanquan; Chen, Xueqing; Huang, Yan; Ren, Mengyu; Liang, Chi; Li, Xuerong; Xu, Jin; Lu, Gang; Yu, Xinbing

    2014-10-01

    Cathepsin C is an important exopeptidase of papain superfamily and plays a number of great important roles during the parasitic life cycle. The amino acid sequence of cathepsin C from Clonorchis sinensis (C. sinensis) showed 54, 53, and 49% identities to that of Schistosoma japonicum, Schistosoma mansoni, and Homo sapiens, respectively. Phylogenetic analysis utilizing the sequences of papain superfamily of C. sinensis demonstrated that cathepsin C and cathepsin Bs came from a common ancestry. Cathepsin C of C. sinensis (Cscathepsin C) was identified as an excretory/secretory product by Western blot analysis. The results of transcriptional level and translational level of Cscathepsin C at metacercaria stage were higher than that at adult worms. Immunolocalization analysis indicated that Cscathepsin C was specifically distributed in the suckers (oral sucker and ventral sucker), eggs, vitellarium, intestines, and testis of adult worms. In the metacercaria, it was mainly detected on the cyst wall and excretory bladder. Combining with the results mentioned above, it implies that Cscathepsin C may be an essential proteolytic enzyme for proteins digestion of hosts, nutrition assimilation, and immune invasion of C. sinensis. Furthermore, it may be a potential diagnostic antigen and drug target against C. sinensis infection.

  9. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis).

    PubMed

    Ito, T M; Polido, P B; Rampim, M C; Kaschuk, G; Souza, S G H

    2014-09-26

    Sweet orange (Citrus sinensis) plays an important role in the economy of more than 140 countries, but it is grown in areas with intermittent stressful soil and climatic conditions. The stress tolerance could be addressed by manipulating the ethylene response factor (ERF) transcription factors because they orchestrate plant responses to environmental stress. We performed an in silico study on the ERFs in the expressed sequence tag database of C. sinensis to identify potential genes that regulate plant responses to stress. We identified 108 putative genes encoding protein sequences of the AP2/ERF superfamily distributed within 10 groups of amino acid sequences. Ninety-one genes were assembled from the ERF family containing only one AP2/ERF domain, 13 genes were assembled from the AP2 family containing two AP2/ERF domains, and four other genes were assembled from the RAV family containing one AP2/ERF domain and a B3 domain. Some conserved domains of the ERF family genes were disrupted into a few segments by introns. This irregular distribution of genes in the AP2/ERF superfamily in different plant species could be a result of genomic losses or duplication events in a common ancestor. The in silico gene expression revealed that 67% of AP2/ERF genes are expressed in tissues with usual plant development, and 14% were expressed in stressed tissues. Because the AP2/ERF superfamily is expressed in an orchestrated way, it is possible that the manipulation of only one gene may result in changes in the whole plant function, which could result in more tolerant crops.

  10. Galatheoidea are not monophyletic - molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.

    PubMed

    Schnabel, K E; Ahyong, S T; Maas, E W

    2011-02-01

    The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis

    PubMed Central

    Perera, Varahenage R.; Lapek, John D.; Newton, Gerald L.; Gonzalez, David J.; Pogliano, Kit

    2018-01-01

    Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants. PMID:29451913

  12. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding.

    PubMed

    Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence

    2011-10-01

    LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.

  13. Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance.

    PubMed

    Remy, Estelle; Niño-González, María; Godinho, Cláudia P; Cabrito, Tânia R; Teixeira, Miguel C; Sá-Correia, Isabel; Duque, Paula

    2017-07-03

    Soil contamination is a major hindrance for plant growth and development. The lack of effective strategies to remove chemicals released into the environment has raised the need to increase plant resilience to soil pollutants. Here, we investigated the ability of two Saccharomyces cerevisiae plasma-membrane transporters, the Major Facilitator Superfamily (MFS) member Tpo1p and the ATP-Binding Cassette (ABC) protein Pdr5p, to confer Multiple Drug Resistance (MDR) in Arabidopsis thaliana. Transgenic plants expressing either of the yeast transporters were undistinguishable from the wild type under control conditions, but displayed tolerance when challenged with the herbicides 2,4-D and barban. Plants expressing ScTPO1 were also more resistant to the herbicides alachlor and metolachlor as well as to the fungicide mancozeb and the Co 2+ , Cu 2+ , Ni 2+ , Al 3+ and Cd 2+ cations, while ScPDR5-expressing plants exhibited tolerance to cycloheximide. Yeast mutants lacking Tpo1p or Pdr5p showed increased sensitivity to most of the agents tested in plants. Our results demonstrate that the S. cerevisiae Tpo1p and Pdr5p transporters are able to mediate resistance to a broad range of compounds of agricultural interest in yeast as well as in Arabidopsis, underscoring their potential in future biotechnological applications.

  14. Virtual screening for novel Staphylococcus Aureus NorA efflux pump inhibitors from natural products.

    PubMed

    Thai, Khac-Minh; Ngo, Trieu-Du; Phan, Thien-Vy; Tran, Thanh-Dao; Nguyen, Ngoc-Vinh; Nguyen, Thien-Hai; Le, Minh-Tri

    2015-01-01

    NorA is a member of the Major Facilitator Superfamily (MFS) drug efflux pumps that have been shown to mediate antibiotic resistance in Staphylococcus aureus (SA). In this study, QSAR analysis, virtual screening and molecular docking were implemented in an effort to discover novel SA NorA efflux pump inhibitors. Originally, a set of 47 structurally diverse compounds compiled from the literature was used to develop linear QSAR models and another set of 15 different compounds were chosen for extra validation. The final model which was estimated by statistical values for the full data set (n = 45, Q(2) = 0.80, RMSE = 0.20) and for the external test set (n = 15, R(2) = 0.60, |res|max = 0.75, |res|min = 0.02) was applied on the collection of 182 flavonoides and the traditional Chinese medicine (TCM) database to screen for novel NorA inhibitors. Finally, 33 lead compounds that met the Lipinski's rules of five/three and had good predicted pIC50 values from in silico screening process were employed to analyze the binding ability by docking studies on NorA homology model in place of its unavailable crystal structures at two active sites, the central channel and the Walker B.

  15. The Aldo-Keto Reductase Superfamily and its Role in Drug Metabolism and Detoxification

    PubMed Central

    Barski, Oleg A.; Tipparaju, Srinivas M.; Bhatnagar, Aruni

    2008-01-01

    The Aldo-Keto Reductase (AKR) superfamily comprises of several enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism and detoxification. Substrates of the family include glucose, steroids, glycosylation end products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (β/α)8 barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the Phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics. PMID:18949601

  16. Giant mini-clusters as possible origin of halo phenomena observed in super-families

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Among 91 mini-clusters from 30 high energy Chiron-type families in Chacaltaya emulsion chambers, there were observed several extremely large multiplicity clusters in the highest energy range, far beyond the average of ordinary type clusters. Some details of microscopic observation of those giant mini-clusters in nuclear emulsion plates and some phenomenological regularity found in common among them are described. Such giant mini-clusters are possible candidates for the origin of narrow symmetric single halo phenomena in X-ray films which are frequently observed in super-families of visible energy greater than 1,000 TeV.

  17. Software and database for the analysis of mutations in the human FBN1 gene.

    PubMed Central

    Collod, G; Béroud, C; Soussi, T; Junien, C; Boileau, C

    1996-01-01

    Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS and many mutations will have to be accumulated before genotype/phenotype relationships emerge. To facilitate mutational analysis of the FBN1 gene, a software package along with a computerized database (currently listing 63 entries) have been created. PMID:8594563

  18. Phospholipase A2 superfamily members play divergent roles after spinal cord injury

    PubMed Central

    López-Vales, Rubèn; Ghasemlou, Nader; Redensek, Adriana; Kerr, Bradley J.; Barbayianni, Efrosini; Antonopoulou, Georgia; Baskakis, Constantinos; Rathore, Khizr I.; Constantinou-Kokotou, Violetta; Stephens, Daren; Shimizu, Takao; Dennis, Edward A.; Kokotos, George; David, Samuel

    2011-01-01

    Spinal cord injury (SCI) results in permanent loss of motor functions. A significant aspect of the tissue damage and functional loss may be preventable as it occurs, secondary to the trauma. We show that the phospholipase A2 (PLA2) superfamily plays important roles in SCI. PLA2 enzymes hydrolyze membrane glycerophospholipids to yield a free fatty acid and lysophospholipid. Some free fatty acids (arachidonic acid) give rise to eicosanoids that promote inflammation, while some lysophospholipids (lysophosphatidylcholine) cause demyelination. We show in a mouse model of SCI that two cytosolic forms [calcium-dependent PLA2 group IVA (cPLA2 GIVA) and calcium-independent PLA2 group VIA (iPLA2 GVIA)], and a secreted form [secreted PLA2 group IIA (sPLA2 GIIA)] are up-regulated. Using selective inhibitors and null mice, we show that these PLA2s play differing roles. cPLA2 GIVA mediates protection, whereas sPLA2 GIIA and, to a lesser extent, iPLA2 GVIA are detrimental. Furthermore, completely blocking all three PLA2s worsens outcome, while the most beneficial effects are seen by partial inhibition of all three. The partial inhibitor enhances expression of cPLA2 and mediates its beneficial effects via the prostaglandin EP1 receptor. These findings indicate that drugs that inhibit detrimental forms of PLA2 (sPLA2 and iPLA2) and up-regulate the protective form (cPLA2) may be useful for the treatment of SCI.—López-Vales, R., Ghasemlou, N., Redensek, A., Kerr, B. J., Barbayianni, E., Antonopoulou, G., Baskakis, C., Rathore, K. I., Constantinou-Kokotou, V., Stephens, D., Shimizu, T., Dennis, E. A., Kokotos, G., David, S. Phospholipase A2 superfamily members play divergent roles after spinal cord injury. PMID:21868473

  19. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  20. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity.

    PubMed

    Degrave, Alexandre; Siamer, Sabrina; Boureau, Tristan; Barny, Marie-Anne

    2015-10-01

    The AvrE superfamily of type III effectors (T3Es) is widespread among type III-dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE-T3Es contribute significantly to virulence by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity. They inhibit salicylic acid-mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE-T3Es elicit cell death in both host and non-host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  1. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    PubMed

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  2. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE PAGES

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; ...

    2016-04-06

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  3. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  4. Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV.

    PubMed

    van Bruggen, A H; Jochimsen, K N; Steinberger, E M; Segers, P; Gillis, M

    1993-01-01

    Thermal melting profiles of hybrids between 3H-labeled rRNA of Rhizomonas suberifaciens, the causal agent of corky root of lettuce, and chromosomal DNAs from 27 species of gram-negative bacteria indicated that the genus Rhizomonas belongs to superfamily IV of De Ley. On the basis of the melting temperatures of DNA hybrids with rRNAs from the type strains of R. suberifaciens, Sphingomonas paucimobilis, and Sphingomonas capsulata, Rhizomonas strains constitute a separate branch in superfamily IV, which is closely related to but separate from branches containing Zymomonas mobilis, Sphingomonas spp., and S. capsulata. Sphingomonas yanoikuyae and Rhizomonas sp. strain WI4 are located toward the base of the Rhizomonas rRNA branch. DNA-DNA hybridization indicated that S. yanoikuyae is equidistant from Rhizomonas sp. strain WI4 and S. paucimobilis. Sequences of 270 bp of 16S ribosomal DNAs from eight strains of Rhizomonas spp., eight strains of Sphingomonas spp., and Agrobacterium tumefaciens indicated that S. yanoikuyae and Rhizomonas sp. strains WI4 and CA16 are genetically more closely related to R. suberifaciens than to Sphingomonas spp. Thus, S. yanoikuyae may need to be transferred to the genus Rhizomonas on the basis of the results of further study.

  5. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  6. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  7. Phospholipid Regulation of the Nuclear Receptor Superfamily

    PubMed Central

    Crowder, Mark K.; Seacrist, Corey D.; Blind, Raymond D.

    2016-01-01

    Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can “present” a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid / nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors. PMID:27838257

  8. New insights into the phylogeny of the TMBIM superfamily across the three of life: Comparative genomics and synteny networks reveal independent evolution of the BI and LFG families in plants.

    PubMed

    Gamboa-Tuz, Samuel D; Pereira-Santana, Alejandro; Zhao, Tao; Schranz, M Eric; Castano, Enrique; Rodriguez-Zapata, Luis C

    2018-04-25

    The Transmembrane BAX Inhibitor Motif containing (TMBIM) superfamily, divided into BAX Inhibitor (BI) and Lifeguard (LFG) families, comprises a group of cytoprotective cell death regulators conserved in prokaryotes and eukaryotes. However, no research has focused on the evolution of this superfamily in plants. We identified 685 TMBIM proteins in 171 organisms from Archaea, Bacteria, and Eukarya, and provided a phylogenetic overview of the whole TMBIM superfamily. Then, we used orthology and synteny network analyses to further investigate the evolution and expansion of the BI and LFG families in 48 plants from diverse taxa. Plant BI family forms a single monophyletic group; however, monocot BI sequences transposed to another genomic context during evolution. Plant LFG family, which expanded trough whole genome and tandem duplications, is subdivided in LFG I, LFG IIA, and LFG IIB major phylogenetic groups, and retains synteny in angiosperms. Moreover, two orthologous groups (OGs) are shared between bryophytes and seed plants. Other several lineage-specific OGs are present in plants. This work clarifies the phylogenetic classification of the TMBIM superfamily across the three domains of life. Furthermore, it sheds new light on the evolution of the BI and LFG families in plants providing a benchmark for future research. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    PubMed

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  10. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila.

    PubMed

    Ladevèze, Véronique; Chaminade, Nicole; Lemeunier, Françoise; Periquet, Georges; Aulard, Sylvie

    2012-09-01

    The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.

  11. Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase

    PubMed Central

    Gimenez, Gregory; Metcalf, Peter; Paterson, Neil G.; Sharpe, Miriam L.

    2016-01-01

    The Japanese firefly squid Hotaru-ika (Watasenia scintillans) produces intense blue light from photophores at the tips of two arms. These photophores are densely packed with protein microcrystals that catalyse the bioluminescent reaction using ATP and the substrate coelenterazine disulfate. The squid is the only organism known to produce light using protein crystals. We extracted microcrystals from arm tip photophores and identified the constituent proteins using mass spectrometry and transcriptome libraries prepared from arm tip tissue. The crystals contain three proteins, wsluc1–3, all members of the ANL superfamily of adenylating enzymes. They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and the unrelated firefly luciferin substrate. We propose that wsluc1–3 form a complex that crystallises inside the squid photophores, and that in the crystal one or more of the proteins catalyses the production of light using coelenterazine disulfate and ATP. These results suggest that ANL superfamily enzymes have independently evolved in distant species to produce light using unrelated substrates. PMID:27279452

  12. Sugar transporter genes of the brown planthopper, Nilaparvata lugens: A facilitated glucose/fructose transporter.

    PubMed

    Kikuta, Shingo; Kikawada, Takahiro; Hagiwara-Komoda, Yuka; Nakashima, Nobuhiko; Noda, Hiroaki

    2010-11-01

    The brown planthopper (BPH), Nilaparvata lugens, attacks rice plants and feeds on their phloem sap, which contains large amounts of sugars. The main sugar component of phloem sap is sucrose, a disaccharide composed of glucose and fructose. Sugars appear to be incorporated into the planthopper body by sugar transporters in the midgut. A total of 93 expressed sequence tags (ESTs) for putative sugar transporters were obtained from a BPH EST database, and 18 putative sugar transporter genes (Nlst1-18) were identified. The most abundantly expressed of these genes was Nlst1. This gene has previously been identified in the BPH as the glucose transporter gene NlHT1, which belongs to the major facilitator superfamily. Nlst1, 4, 6, 9, 12, 16, and 18 were highly expressed in the midgut, and Nlst2, 7, 8, 10, 15, 17, and 18 were highly expressed during the embryonic stages. Functional analyses were performed using Xenopus oocytes expressing NlST1 or 6. This showed that NlST6 is a facilitative glucose/fructose transporter that mediates sugar uptake from rice phloem sap in the BPH midgut in a manner similar to NlST1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Sequencing of T-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry.

    PubMed

    Mandal, Amit Kumar; Ramasamy, Mani Ramakrishnan Santhana; Sabareesh, Varatharajan; Openshaw, Matthew E; Krishnan, Kozhalmannom S; Balaram, Padmanabhan

    2007-08-01

    De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH(2), and Vi1361, ZCCPTMPECCRI-NH(2), which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation of w(n)- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.

  14. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.

    PubMed

    Li, Yubin; Harris, Linda; Dooner, Hugo K

    2013-09-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.

  15. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  16. Sequence-based protein superfamily classification using computational intelligence techniques: a review.

    PubMed

    Vipsita, Swati; Rath, Santanu Kumar

    2015-01-01

    Protein superfamily classification deals with the problem of predicting the family membership of newly discovered amino acid sequence. Although many trivial alignment methods are already developed by previous researchers, but the present trend demands the application of computational intelligent techniques. As there is an exponential growth in size of biological database, retrieval and inference of essential knowledge in the biological domain become a very cumbersome task. This problem can be easily handled using intelligent techniques due to their ability of tolerance for imprecision, uncertainty, approximate reasoning, and partial truth. This paper discusses the various global and local features extracted from full length protein sequence which are used for the approximation and generalisation of the classifier. The various parameters used for evaluating the performance of the classifiers are also discussed. Therefore, this review article can show right directions to the present researchers to make an improvement over the existing methods.

  17. Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda).

    PubMed

    Uribe, Juan E; Colgan, Don; Castro, Lyda R; Kano, Yasunori; Zardoya, Rafael

    2016-11-01

    Despite the extraordinary morphological and ecological diversity of Neritimorpha, few studies have focused on the phylogenetic relationships of this lineage of gastropods, which includes four extant superfamilies: Neritopsoidea, Hydrocenoidea, Helicinoidea, and Neritoidea. Here, the nucleotide sequences of the complete mitochondrial genomes of Georissa bangueyensis (Hydrocenoidea), Neritina usnea (Neritoidea), and Pleuropoma jana (Helicinoidea) and the nearly complete mt genomes of Titiscania sp. (Neritopsoidea) and Theodoxus fluviatilis (Neritoidea) were determined. Phylogenetic reconstructions using probabilistic methods were based on mitochondrial (13 protein coding genes and two ribosomal rRNA genes), nuclear (partial 28S rRNA, 18S rRNA, actin, and histone H3 genes) and combined sequence data sets. All phylogenetic analyses except one converged on a single, highly supported tree in which Neritopsoidea was recovered as the sister group of a clade including Helicinoidea as the sister group of Hydrocenoidea and Neritoidea. This topology agrees with the fossil record and supports at least three independent invasions of land by neritimorph snails. The mitochondrial genomes of Titiscania sp., G. bangueyensis, N. usnea, and T. fluviatilis share the same gene organization previously described for Nerita mt genomes whereas that of P. jana has undergone major rearrangements. We sequenced about half of the mitochondrial genome of another species of Helicinoidea, Viana regina, and confirmed that this species shares the highly derived gene order of P. jana. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batot, Gaëlle; Michalska, Karolina; Ekberg, Greg

    Contact-dependent growth inhibition (CDI) is an important mechanism of inter-bacterial competition found in many Gram-negative pathogens. CDI+ cells express cell-surface CdiA proteins that bind neighboring bacteria and deliver C-terminal toxin domains (CdiA-CT) to inhibit target-cell growth. CDI+ bacteria also produce CdiI immunity proteins, which specifically neutralize cognate CdiA-CT toxins to prevent self-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(Ykris) complex from Yersinia kris-tensenii ATCC 33638. CdiA-CTYkris adopts the same fold as angiogenin and other RNase A paralogs, but the toxin does not share sequence similarity with these nucleases and lacks the characteristic disulfide bonds of the superfamily. Consistentmore » with the structural homology, CdiA-CTYkris has potent RNase activity in vitro and in vivo. Structure-guided mutagenesis reveals that His175, Arg186, Thr276 and Tyr278 contribute to CdiA-CTYkris activity, suggesting that these residues participate in substrate binding and/or catalysis. CdiI(Ykris) binds directly over the putative active site and likely neutralizes toxicity by blocking access to RNA substrates. Significantly, CdiA-CTYkris is the first non-vertebrate protein found to possess the RNase A superfamily fold, and homologs of this toxin are associated with secretion systems in many Gram-negative and Gram-positive bacteria. These observations suggest that RNase Alike toxins are commonly deployed in inter-bacterial competition.« less

  19. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    PubMed

    Eom, Dae Seok; Inoue, Shinya; Patterson, Larissa B; Gordon, Tiffany N; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  20. Melanophore Migration and Survival during Zebrafish Adult Pigment Stripe Development Require the Immunoglobulin Superfamily Adhesion Molecule Igsf11

    PubMed Central

    Patterson, Larissa B.; Gordon, Tiffany N.; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M.

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation. PMID:22916035

  1. TED, an Autonomous and Rare Maize Transposon of the Mutator Superfamily with a High Gametophytic Excision Frequency[W

    PubMed Central

    Li, Yubin; Harris, Linda; Dooner, Hugo K.

    2013-01-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor. PMID:24038653

  2. A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats and Other mRNAs[W][OA

    PubMed Central

    Shivaprasad, Padubidri V.; Chen, Ho-Ming; Patel, Kanu; Bond, Donna M.; Santos, Bruno A.C.M.; Baulcombe, David C.

    2012-01-01

    Analysis of tomato (Solanum lycopersicum) small RNA data sets revealed the presence of a regulatory cascade affecting disease resistance. The initiators of the cascade are microRNA members of an unusually diverse superfamily in which miR482 and miR2118 are prominent members. Members of this superfamily are variable in sequence and abundance in different species, but all variants target the coding sequence for the P-loop motif in the mRNA sequences for disease resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. We confirm, using transient expression in Nicotiana benthamiana, that miR482 targets mRNAs for NBS-LRR disease resistance proteins with coiled-coil domains at their N terminus. The targeting causes mRNA decay and production of secondary siRNAs in a manner that depends on RNA-dependent RNA polymerase 6. At least one of these secondary siRNAs targets other mRNAs of a defense-related protein. The miR482-mediated silencing cascade is suppressed in plants infected with viruses or bacteria so that expression of mRNAs with miR482 or secondary siRNA target sequences is increased. We propose that this process allows pathogen-inducible expression of NBS-LRR proteins and that it contributes to a novel layer of defense against pathogen attack. PMID:22408077

  3. Murine c-mpl: a member of the hematopoietic growth factor receptor superfamily that transduces a proliferative signal.

    PubMed Central

    Skoda, R C; Seldin, D C; Chiang, M K; Peichel, C L; Vogt, T F; Leder, P

    1993-01-01

    The murine myeloproliferative leukemia virus has previously been shown to contain a fragment of the coding region of the c-mpl gene, a member of the cytokine receptor superfamily. We have isolated cDNA and genomic clones encoding murine c-mpl and localized the c-mpl gene to mouse chromosome 4. Since some members of this superfamily function by transducing a proliferative signal and since the putative ligand of mpl is unknown, we have generated a chimeric receptor to test the functional potential of mpl. The chimera consists of the extracellular domain of the human interleukin-4 receptor and the cytoplasmic domain of mpl. A mouse hematopoietic cell line transfected with this construct proliferates in response to human interleukin-4, thereby demonstrating that the cytoplasmic domain of mpl contains all elements necessary to transmit a growth stimulatory signal. In addition, we show that 25-40% of mpl mRNA found in the spleen corresponds to a novel truncated and potentially soluble isoform of mpl and that both full-length and truncated forms of mpl protein can be immunoprecipitated from lysates of transfected COS cells. Interestingly, however, although the truncated form of the receptor possesses a functional signal sequence and lacks a transmembrane domain, it is not detected in the culture media of transfected cells. Images PMID:8334987

  4. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus.

    PubMed

    Hwang, Dae-Sik; Lee, Bo-Young; Kim, Hui-Su; Lee, Min Chul; Kyung, Do-Hyun; Om, Ae-Son; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-18

    Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution.

  5. A Glutathione-independent Glyoxalase of the DJ-1 Superfamily Plays an Important Role in Managing Metabolically Generated Methylglyoxal in Candida albicans*

    PubMed Central

    Hasim, Sahar; Hussin, Nur Ahmad; Alomar, Fadhel; Bidasee, Keshore R.; Nickerson, Kenneth W.; Wilson, Mark A.

    2014-01-01

    Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys136-His137-Glu168. Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mm and kcat = 7.8 s−1) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response. PMID:24302734

  6. Assessing molecular initiating events (MIEs), key events (KEs) and modulating factors (MFs) for styrene responses in mouse lungs using whole genome gene expression profiling following 1-day and multi-week exposures.

    PubMed

    Andersen, Melvin E; Cruzan, George; Black, Michael B; Pendse, Salil N; Dodd, Darol; Bus, James S; Sarang, Satinder S; Banton, Marcy I; Waites, Robbie; McMullen, Patrick D

    2017-11-15

    Styrene increased lung tumors in mice at chronic inhalation exposures of 20ppm and greater. MIEs, KEs and MFs were examined using gene expression in three strains of male mice (the parental C57BL/6 strain, a CYP2F2(-/-) knock out and a CYP2F2(-/-) transgenic containing human CYP2F1, 2A13 and 2B6). Exposures were for 1-day and 1, 4 and 26weeks. After 1-day exposures at 1, 5, 10, 20, 40 and 120ppm significant increases in differentially expressed genes (DEGs) occurred only in parental strain lungs where there was already an increase in DEGs at 5ppm and then many thousands of DEGs by 120ppm. Enrichment for 1-day and 1-week exposures included cell cycle, mitotic M-M/G1 phases, DNA-synthesis and metabolism of lipids and lipoproteins pathways. The numbers of DEGs decreased steadily over time with no DEGs meeting both statistical significance and fold-change criteria at 26weeks. At 4 and 26weeks, some key transcription factors (TFs) - Nr1d1, Nr1d2, Dbp, Tef, Hlf, Per3, Per2 and Bhlhe40 - were upregulated (|FC|>1.5), while others - Npas, Arntl, Nfil3, Nr4a1, Nr4a2, and Nr4a3 - were down-regulated. At all times, consistent changes in gene expression only occurred in the parental strain. Our results support a MIE for styrene of direct mitogenicity from mouse-specific CYP2F2-mediated metabolites activating Nr4a signaling. Longer-term MFs include down-regulation of Nr4a genes and shifts in both circadian clock TFs and other TFs, linking circadian clock to cellular metabolism. We found no gene expression changes indicative of cytotoxicity or activation of p53-mediated DNA-damage pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. The SLCO (former SLC21) superfamily of transporters.

    PubMed

    Hagenbuch, Bruno; Stieger, Bruno

    2013-01-01

    The members of the organic anion transporting polypeptide superfamily (OATPs) are classified within the SLCO solute carrier family. All functionally well characterized members are predicted to have 12 transmembrane domains and are sodium-independent transport systems that mediate the transport of a broad range of endo- as well as xenobiotics. Substrates are mainly amphipathic organic anions with a molecular weight of more than 300Da, but some of the known transported substrates are also neutral or even positively charged. Among the well characterized substrates are numerous drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives and anticancer drugs. Based on their amino acid sequence identities, the different OATPs cluster into families (in general with more than 40% amino acid sequence identity) and subfamilies (more than 60% amino acid identity). With the sequencing of genomes from different species and the computerized prediction of encoded proteins more than 300 OATPs can be found in the databases, however only a fraction of them have been identified in humans, rodents, and some additional species important for pharmaceutical research like the rhesus monkey (Macaca mulatta), the dog (Canis lupus familiaris) and the pig (Sus scrofa). These OATPs form 6 families (OATP1-OATP6) and 13 subfamilies. In this review we try to summarize what is currently known about OATPs with respect to endogenous substrates, tissue distribution, transport mechanisms, regulation of expression, structure-function relationship and mutations and polymorphisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Biocuration in the structure-function linkage database: the anatomy of a superfamily.

    PubMed

    Holliday, Gemma L; Brown, Shoshana D; Akiva, Eyal; Mischel, David; Hicks, Michael A; Morris, John H; Huang, Conrad C; Meng, Elaine C; Pegg, Scott C-H; Ferrin, Thomas E; Babbitt, Patricia C

    2017-01-01

    With ever-increasing amounts of sequence data available in both the primary literature and sequence repositories, there is a bottleneck in annotating molecular function to a sequence. This article describes the biocuration process and methods used in the structure-function linkage database (SFLD) to help address some of the challenges. We discuss how the hierarchy within the SFLD allows us to infer detailed functional properties for functionally diverse enzyme superfamilies in which all members are homologous, conserve an aspect of their chemical function and have associated conserved structural features that enable the chemistry. Also presented is the Enzyme Structure-Function Ontology (ESFO), which has been designed to capture the relationships between enzyme sequence, structure and function that underlie the SFLD and is used to guide the biocuration processes within the SFLD. http://sfld.rbvi.ucsf.edu/. © The Author 2017. Published by Oxford University Press.

  9. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.

    PubMed

    Dong, Zheng; Zhou, Hongyu; Tao, Peng

    2018-02-01

    PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.

  10. Structural and Biochemical Investigation of PglF from Campylobacter jejuni Reveals a New Mechanism for a Member of the Short Chain Dehydrogenase/Reductase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riegert, Alexander S.; Thoden, James B.; Schoenhofen, Ian C.

    Within recent years it has become apparent that protein glycosylation is not limited to eukaryotes. Indeed, in Campylobacter jejuni, a Gram-negative bacterium, more than 60 of its proteins are known to be glycosylated. One of the sugars found in such glycosylated proteins is 2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, hereafter referred to as QuiNAc4NAc. The pathway for its biosynthesis, initiating with UDP-GlcNAc, requires three enzymes referred to as PglF, PglE, and PlgD. The focus of this investigation is on PglF, an NAD+-dependent sugar 4,6-dehydratase known to belong to the short chain dehydrogenase/reductase (SDR) superfamily. Specifically, PglF catalyzes the first step in the pathway, namely, themore » dehydration of UDP-GlcNAc to UDP-2-acetamido-2,6-dideoxy-α-d-xylo-hexos-4-ulose. Most members of the SDR superfamily contain a characteristic signature sequence of YXXXK where the conserved tyrosine functions as a catalytic acid or a base. Strikingly, in PglF, this residue is a methionine. Here we describe a detailed structural and functional investigation of PglF from C. jejuni. For this investigation five X-ray structures were determined to resolutions of 2.0 Å or better. In addition, kinetic analyses of the wild-type and site-directed variants were performed. On the basis of the data reported herein, a new catalytic mechanism for a SDR superfamily member is proposed that does not require the typically conserved tyrosine residue.« less

  11. Stonefish toxin defines an ancient branch of the perforin-like superfamily

    PubMed Central

    Ellisdon, Andrew M.; Reboul, Cyril F.; Huynh, Kitmun; Oellig, Christine A.; Winter, Kelly L.; Hodgson, Wayne C.; Seymour, Jamie; Dearden, Peter K.; Tweten, Rodney K.; Whisstock, James C.; McGowan, Sheena

    2015-01-01

    The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and β), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom. PMID:26627714

  12. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    PubMed

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  13. Tracing the Evolutionary History of the CAP Superfamily of Proteins Using Amino Acid Sequence Homology and Conservation of Splice Sites.

    PubMed

    Abraham, Anup; Chandler, Douglas E

    2017-10-01

    Proteins of the CAP superfamily play numerous roles in reproduction, innate immune responses, cancer biology, and venom toxicology. Here we document the breadth of the CAP (Cysteine-RIch Secretory Protein (CRISP), Antigen 5, and Pathogenesis-Related) protein superfamily and trace the major events in its evolution using amino acid sequence homology and the positions of exon/intron borders within their genes. Seldom acknowledged in the literature, we find that many of the CAP subfamilies present in mammals, where they were originally characterized, have distinct homologues in the invertebrate phyla. Early eukaryotic CAP genes contained only one exon inherited from prokaryotic predecessors and as evolution progressed an increasing number of introns were inserted, reaching 2-5 in the invertebrate world and 5-15 in the vertebrate world. Focusing on the CRISP subfamily, we propose that these proteins evolved in three major steps: (1) origination of the CAP/PR/SCP domain in bacteria, (2) addition of a small Hinge domain to produce the two-domain SCP-like proteins found in roundworms and anthropoids, and (3) addition of an Ion Channel Regulatory domain, borrowed from invertebrate peptide toxins, to produce full length, three-domain CRISP proteins, first seen in insects and later to diversify into multiple subtypes in the vertebrate world.

  14. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushegian, Arcady R., E-mail: mushegian2@gmail.com; Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es; The Santa Fe Institute, Santa Fe, NM 87501

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, andmore » positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.« less

  15. Expansion and stress responses of the AP2/EREBP superfamily in cotton.

    PubMed

    Liu, Chunxiao; Zhang, Tianzhen

    2017-01-31

    The allotetraploid cotton originated from one hybridization event between an extant progenitor of Gosssypium herbaceum (A 1 ) or G. arboreum (A 2 ) and another progenitor, G. raimondii Ulbrich (D 5 ) 1-1.5 million years ago (Mya). The APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plants. They are characterized by their AP2 domain, which comprises 60-70 amino acids, and are classified into four main subfamilies: the APETALA2 (AP2), Related to ABI3/VP1 (RAV), Dehydration-Responsive Element Binding protein (DREB) and Ethylene-Responsive Factor (ERF) subfamilies. The AP2/EREBP genes play crucial roles in plant growth, development and biotic and abiotic stress responses. Hence, understanding the molecular characteristics of cotton stress tolerance and gene family expansion would undoubtedly facilitate cotton resistance breeding and evolution research. A total of 269 AP2/EREBP genes were identified in the G. raimondii (D5) cotton genome. The protein domain architecture and intron/exon structure are simple and relatively conserved within each subfamily. They are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem duplication. We identified 73 tandem duplicated genes and 221 segmental duplicated gene pairs which contributed to the expansion of AP2/EREBP superfamily. Of them, tandem duplication was the most important force of the expansion of the B3 group. Transcriptome analysis showed that 504 AP2/EREBP genes were expressed in at least one tested G. hirsutum TM-1 tissues. In G. hirsutum, 151 non-repeated genes of the DREB and ERF subfamily genes were responsive to different stresses: 132 genes were induced by cold, 63 genes by drought and 94 genes by heat. qRT-PCR confirmed that 13 GhDREB and 15 GhERF genes were induced by cold and/or drought. No transcripts detected for 53 of the 111 tandem duplicated genes in TM-1

  16. Molding Compound For Inspection Of Internal Contours

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Ricklefs, Steve

    1988-01-01

    Material clean, sets rapidly, and easy to use. Silicone elastomer, Citrocon or equivalent, commonly used in dentistry, in combination with mold-release agent (Also see MFS-29240), speeds and facilitates making of impressions of interior surfaces so surface contours examined. Elastomer easily moved around in cavity until required location found.

  17. Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.

    PubMed

    Fortunato, Antonio Emidio; Sordino, Paolo; Andreakis, Nikos

    2016-06-01

    SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.

  18. Common folds and transport mechanisms of secondary active transporters.

    PubMed

    Shi, Yigong

    2013-01-01

    Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.

  19. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity.

    PubMed

    Bloudoff, Kristjan; Schmeing, T Martin

    2017-11-01

    Nonribosomal peptide synthetases (NRPSs) are incredible macromolecular machines that produce a wide range of biologically- and therapeutically-relevant molecules. During synthesis, peptide elongation is performed by the condensation (C) domain, as it catalyzes amide bond formation between the nascent peptide and the amino acid it adds to the chain. Since their discovery more than two decades ago, C domains have been subject to extensive biochemical, bioinformatic, mutagenic, and structural analyses. They are composed of two lobes, each with homology to chloramphenicol acetyltransferase, have two binding sites for their two peptidyl carrier protein-bound ligands, and have an active site with conserved motif HHxxxDG located between the two lobes. This review discusses some of the important insights into the structure, catalytic mechanism, specificity, and gatekeeping functions of C domains revealed since their discovery. In addition, C domains are the archetypal members of the C domain superfamily, which includes several other members that also function as NRPS domains. The other family members can replace the C domain in NRP synthesis, can work in concert with a C domain, or can fulfill diverse and novel functions. These domains include the epimerization (E) domain, the heterocyclization (Cy) domain, the ester-bond forming C domain, the fungal NRPS terminal C domain (C T ), the β-lactam ring forming C domain, and the X domain. We also discuss structural and function insight into C, E, Cy, C T and X domains, to present a holistic overview of historical and current knowledge of the C domain superfamily. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Structure of the human CD97 gene: Exon shuffling has generated a new type of seven-span transmembrane molecule related to the secretin receptor superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, J.; Van Lier, R.A.W.; Hartmann, E.

    1996-02-15

    This article reports on the structure and genetic mapping of the human CD97 gene, a homologue to the secretin receptor superfamily of cell surface proteins. The detailed organization of the gene, which maps to the short arm of chromosome 19, is given. 18 refs., 1 fig., 1 tab.

  1. Presence of Foraminifera of Superfamily Komokioidea (Order Astrorhizida) in Colombian deep Caribbean waters.

    PubMed

    Tavera-Martínez, Laura; Marchant, Margarita

    2017-10-20

    Research regarding deep-sea benthic foraminifera in the Colombian Caribbean requires further development given the complete lack of information related to the different groups that constitute associations and the ecological functions they fulfill. For this purpose, a taxonomic description of Superfamily Komokioidea was composed from macrofauna samples from between 1,215 m and 3,179 m depth, obtained during the research cruise ANH-COL 4 and COL 5 carried out in 2014. Results showed foraminifera belonging to the three families: Komokiidae, Baculellidae, and Normaninidae, inclu-ding five genera (Lana, Komokia, Ipoa, Normaninam, and Catena) and five species (Lana neglecta, Komokia multiramosa, Normanina conferta, Ipoa fragila, and Catena piriformis). This study presents knowledge regarding deep-sea Colombian Caribbean benthic foraminifera, which to date have not been recorded from this region. Their depth distribution when compared with other studies from the Atlantic and Pacific, allows the expansion of taxonomic inventories and the characterization of biodiversity within poorly explored regions.

  2. Marfan syndrome associated aortic disease in neonates and children: a clinical-morphologic review.

    PubMed

    Ware, Adam L; Miller, Dylan V; Erickson, Lance K; Menon, Shaji C

    2016-01-01

    Marfan syndrome (MFS) is a multisystem connective tissue disorder that can lead to aortic dilation requiring aortic root replacement. Neonatal MFS (nMFS) is a rare and severe form of MFS compared to classic MFS (cMFS). Aortic root histology in MFS is thought to demonstrate predominantly medial degeneration (MD) of a translamellar mucoid extracellular matrix accumulation (MEMA-T) vs. the intralamellar mucoid extracellular matrix accumulation (MEMA-I) seen in other aortopathies. The objective of this study was to describe the clinical and histopathologic features of nMFS and cMFS patients undergoing aortic root replacement. Children with MFS who underwent aortic root replacement between 2000 and 2012 at a single institution were included. Medical records including clinical details, aortic dimensions (Z scores), and histology including MD type were obtained. Statistics were descriptive with univariate analysis of age at surgery and type of MD. Eleven patients, 3 (27%) with nMFS, were included. Root dilation at time of surgery was greater in nMFS compared to cMFS (Z=12.8 vs. 7.6, P=.005), and nMFS patients were younger at time of surgery (7.3 vs. 18.8 years, P=.002). Histology in the nMFS group demonstrated MEMA-I in one and no MD in two. In the cMFS group, there were three with MEMA-T, four with MEMA-I, and one with both types. In summary, nMFS has earlier root dilation often in the absence of MD. Both forms of MD were present in our cohort, and there was no correlation between age at surgery and type of MD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Facilitating Facilitators: Enhancing PBL through a Structured Facilitator Development Program

    ERIC Educational Resources Information Center

    Salinitri, Francine D.; Wilhelm, Sheila M.; Crabtree, Brian L.

    2015-01-01

    With increasing adoption of the problem-based learning (PBL) model, creative approaches to enhancing facilitator training and optimizing resources to maintain effective learning in small groups is essential. We describe a theoretical framework for the development of a PBL facilitator training program that uses the constructivist approach as the…

  4. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity

    PubMed Central

    Aslam, Kiran; Hazbun, Tony R.

    2016-01-01

    ABSTRACT Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses. PMID:27097320

  5. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons.

    PubMed

    Di Loreto, Silvia; Falone, Stefano; Caracciolo, Valentina; Sebastiani, Pierluigi; D'Alessandro, Antonella; Mirabilio, Alessandro; Zimmitti, Vincenzo; Amicarelli, Fernanda

    2009-05-01

    Large research activity has raised around the mechanisms of interaction between extremely low-frequency magnetic fields (ELF-MFs) and biological systems. ELF-MFs may interfere with chemical reactions involving reactive oxygen species (ROS), thus facilitating oxidative damages in living cells. Cortical neurons are particularly susceptible to oxidative stressors and are also highly dependent on the specific factors and proteins governing neuronal development, activity and survival. The aim of the present work was to investigate the effects of exposures to two different 50 Hz sinusoidal ELF-MFs intensities (0.1 and 1 mT) in maturing rat cortical neurons' major anti-oxidative enzymatic and non-enzymatic cellular protection systems, membrane peroxidative damage, as well as growth factor, and cytokine expression pattern. Briefly, our results showed that ELF-MFs affected positively the cell viability and concomitantly reduced the levels of apoptotic death in rat neuronal primary cultures, with no significant effects on the main anti-oxidative defences. Interestingly, linear regression analysis suggested a positive correlation between reduced glutathione (GSH) and ROS levels in 1 mT MF-exposed cells. On this basis, our hypothesis is that GSH could play an important role in the antioxidant defence towards the ELF-MF-induced redox challenge. Moreover, the GSH-based cellular response was achieved together with a brain-derived neurotrophic factor over-expression as well as with the interleukin 1beta-dependent regulation of pro-survival signaling pathways after ELF-MF exposure.

  6. Analysis of the Active-Site Mechanism of Tyrosyl-DNA Phosphodiesterase I: A Member of the Phospholipase D Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajewski, Stefan; Comeaux, Evan Q.; Jafari, Nauzanene

    2012-03-15

    Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines - one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observedmore » in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK{sub a} of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.« less

  7. Analysis of the active site mechanism of Tyrosyl-DNA phosphodiesterase I: a member of the phospholipase D superfamily

    PubMed Central

    Gajewski, Stefan; Comeaux, Evan Q.; Jafari, Nauzanene; Bharatham, Nagakumar; Bashford, Donald; White, Stephen W.; van Waardenburg, Robert C.A.M.

    2011-01-01

    Tyrosyl DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily and hydrolyzes 3′phospho-DNA adducts via two conserved catalytic histidines, one acting as the lead nucleophile and the second as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease SCAN1. We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics and theoretical chemistry. The structures of wild type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts access of a nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitution with Asn, Gln, Leu, Ala, Ser and Thr all result in severely compromised enzymes and Top1-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate which suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pKa of this histidine is crucially dependent upon the second histidine and the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily. PMID:22155078

  8. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    PubMed

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.

  9. Abnormal Morphology of Fibrillin Microfibrils in Fibroblast Cultures from Patients with Neonatal Marfan Syndrome

    PubMed Central

    Godfrey, Maurice; Raghunath, Michael; Cisler, Jason; Bevins, Charles L.; DePaepe, Anne; Di Rocco, Maja; Gregoritch, Jane; Imaizumi, Kiyoshi; Kaplan, Paige; Kuroki, Yoshikazu; Silberbach, Michael; Superti-Furga, Andrea; Van Thienen, Marie-Noëlle; Vetter, Ulrich; Steinmann, Beat

    1995-01-01

    The Marfan syndrome (MFS) is a connective tissue disorder manifested by variable and pleiotropic features in the skeletal, ocular, and cardiovascular systems. The average life span in MFS is about 35 years. A group with much more severe cardiovascular disease and a mean life span of approximately I year also exists. We refer to this latter group as “neonatal Marfan syndrome” (nMFS). Fibrillin defects are now known to be the cause of MFS and nMFS. Immunofluorescence studies were the first to demonstrate this association. Here we describe immunofluorescence studies in a series of 10 neonates and summarize their salient clinical features. In vitro accumulation of fibrillin reactive fibers was assayed using monoclonal antibodies to fibrillin in hyperconfluent fibroblast cultures. As was previously observed in MFS, fibroblast cultures from nMFS patients showed an apparent decrease in accumulation of immunostainable fibrillin. Significantly, however, the morphology of the immunostained fibrils in the nMFS cultures were abnormal and differed not only from control cultures, but also from those seen in cultures of MFS fibroblasts. The nMFS fibrils appeared short, fragmented, and frayed, characteristics that are not seen in MFS. Both the clinical and fibrillin morphology data provide evidence to suggest a useful subclassification of nMFS in the spectrum of MFS. ImagesFigure 1Figure 2 PMID:7778680

  10. Correlated Mutation in the Evolution of Catalysis in Uracil DNA Glycosylase Superfamily

    NASA Astrophysics Data System (ADS)

    Xia, Bo; Liu, Yinling; Guevara, Jose; Li, Jing; Jilich, Celeste; Yang, Ye; Wang, Liangjiang; Dominy, Brian N.; Cao, Weiguo

    2017-04-01

    Enzymes in Uracil DNA glycosylase (UDG) superfamily are essential for the removal of uracil. Family 4 UDGa is a robust uracil DNA glycosylase that only acts on double-stranded and single-stranded uracil-containing DNA. Based on mutational, kinetic and modeling analyses, a catalytic mechanism involving leaving group stabilization by H155 in motif 2 and water coordination by N89 in motif 3 is proposed. Mutual Information analysis identifies a complexed correlated mutation network including a strong correlation in the EG doublet in motif 1 of family 4 UDGa and in the QD doublet in motif 1 of family 1 UNG. Conversion of EG doublet in family 4 Thermus thermophilus UDGa to QD doublet increases the catalytic efficiency by over one hundred-fold and seventeen-fold over the E41Q and G42D single mutation, respectively, rectifying the strong correlation in the doublet. Molecular dynamics simulations suggest that the correlated mutations in the doublet in motif 1 position the catalytic H155 in motif 2 to stabilize the leaving uracilate anion. The integrated approach has important implications in studying enzyme evolution and protein structure and function.

  11. Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial12

    PubMed Central

    Stroup, Bridget M; Clayton, Murray K; Murali, Sangita G; Rice, Gregory M; Rohr, Frances; Levy, Harvey L

    2016-01-01

    Background: To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. Objective: We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. Design: This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15–49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. Results: The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (−85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. Conclusions: GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance

  12. Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial.

    PubMed

    Ney, Denise M; Stroup, Bridget M; Clayton, Murray K; Murali, Sangita G; Rice, Gregory M; Rohr, Frances; Levy, Harvey L

    2016-08-01

    To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15-49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (-85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria

  13. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.

    PubMed

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.

  14. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  15. The structure of human DNase I bound to magnesium and phosphate ions points to a catalytic mechanism common to members of the DNase I-like superfamily.

    PubMed

    Parsiegla, Goetz; Noguere, Christophe; Santell, Lydia; Lazarus, Robert A; Bourne, Yves

    2012-12-21

    Recombinant human DNase I (Pulmozyme, dornase alfa) is used for the treatment of cystic fibrosis where it improves lung function and reduces the number of exacerbations. The physiological mechanism of action is thought to involve the reduction of the viscoelasticity of cystic fibrosis sputum by hydrolyzing high concentrations of DNA into low-molecular mass fragments. Here we describe the 1.95 Å resolution crystal structure of recombinant human DNase I (rhDNase I) in complex with magnesium and phosphate ions, both bound in the active site. Complementary mutagenesis data of rhDNase I coupled to a comprehensive structural analysis of the DNase I-like superfamily argue for the key catalytic role of Asn7, which is invariant among mammalian DNase I enzymes and members of this superfamily, through stabilization of the magnesium ion coordination sphere. Overall, our combined structural and mutagenesis data suggest the occurrence of a magnesium-assisted pentavalent phosphate transition state in human DNase I during catalysis, where Asp168 may play a key role as a general catalytic base.

  16. Crystal structure of YHI9, the yeast member of the phenazine biosynthesis PhzF enzyme superfamily.

    PubMed

    Liger, Dominique; Quevillon-Cheruel, Sophie; Sorel, Isabelle; Bremang, Michael; Blondeau, Karine; Aboulfath, Ilham; Janin, Joël; van Tilbeurgh, Herman; Leulliot, Nicolas

    2005-09-01

    In the Pseudomonas bacterial genomes, the PhzF proteins are involved in the production of phenazine derivative antibiotic and antifungal compounds. The PhzF superfamily however also encompasses proteins in all genomes from bacteria to eukaryotes, for which no function has been assigned. We have determined the three dimensional crystal structure at 2.05 A resolution of YHI9, the yeast member of the PhzF family. YHI9 has a fold similar to bacterial diaminopimelate epimerase, revealing a bimodular structure with an internal symmetry. Residue conservation identifies a putative active site at the interface between the two domains. Evolution of this protein by gene duplication, gene fusion and domain swapping from an ancestral gene containing the "hot dog" fold, identifies the protein as a "kinked double hot dog" fold. Copyright 2005 Wiley-Liss, Inc.

  17. Defining the Phosphodiesterase Superfamily Members in Rat Brain Microvessels

    PubMed Central

    2011-01-01

    Eleven phosphodiesterase (PDE) families are known, each having several different isoforms and splice variants. Recent evidence indicates that expression of individual PDE family members is tissue-specific. Little is known concerning detailed PDE component expression in brain microvessels where the blood-brain-barrier and the local cerebral blood flow are thought to be regulated by PDEs. The present study attempted to identify PDE family members that are expressed in brain microvessels. Adult male F344 rats were sacrificed and blocks of the cerebral cortex and infratentorial areas were dissected. Microvessels were isolated using a filtration method, and total RNA was extracted. RNA quality and quantity were determined using an Agilent bioanalyzer. The isolated cortical and infratentorial microvessel total RNA amounts were 2720 ± 750 ng (n = 2) and 250 ± 40 ng (n = 2), respectively. Microarrays with 22 000 transcripts demonstrated that there were 16 PDE transcripts in the PDE superfamily, exhibiting quantifiable density in the microvessels. An additional immunofluorescent study verified that PDE4D (cAMP-specific) and PDE5A (cGMP-specific) were colocalized with RECA-1 (an endothelial marker) in the cerebral cortex using both F344 rats and Sprague–Dawley rats (n = 3–6/strain). In addition, PDE4D and PDE5A were found to be colocalized with alpha-smooth muscle actin which delineates cerebral arteries and arterioles as well as pericytes. In conclusion, a filtration method followed by microarray analyses allows PDE components to be identified in brain microvessels, and confirmed that PDE4D and PDE5A are the primary forms expressed in rat brain microvessels. PMID:22860158

  18. 77 FR 57596 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ...; NASA Case No.: MFS-32940-1: Weld Nugget Temperature Control in Thermal Stir Welding; NASA Case No.: MFS-31559-2-DIV: Thermal Stir Welding Process; NASA Case No.: MFS-32611-1: Mass Gauging Demonstrator for Any....: MFS-32859-1: Pulsed Ultrasonic Stir Welding System; NASA Case No.: MFS-32655-1: Aerospace Laser...

  19. Corneal curvature, pachymetry, and endothelial cell density in Marfan syndrome.

    PubMed

    Konradsen, Tiina R; Koivula, Annemari; Kugelberg, Maria; Zetterström, Charlotta

    2012-06-01

    To evaluate corneal curvature, pachymetry, and endothelial cell density (ECD) in Marfan syndrome (MFS). A case-control study in which K values, pachymetry, and ECD were compared in 39 MFS eyes and 40 control eyes matched for age and refraction was conducted. MFS eyes with lens subluxation also were compared with eyes without subluxation. The mean K(med) value in MFS eyes was lower than in the control eyes, 42.2 ± 1.9 versus 43.4 ± 1.4 dioptres (D), respectively (p = 0.02). Fifteen MFS eyes (38%) and three control eyes (8%) had K(med) values below 41.5 D (p = 0.0012). MFS eyes had generally more corneal astigmatism than control eyes, 1.1 ± 0.9 versus 0.8 ± 0.4 D (p = 0.035), and MFS eyes with lens subluxation had more corneal astigmatism than those without, 1.6 ± 1.1 versus 0.6 ± 0.3 D (p = 0.0002). Nine MFS eyes with corneal astigmatism exceeding 1.5 D also had a subluxated lens. No eyes had keratoconus. The mean pachymetry value was lower in MFS eyes compared to the controls, 485 ± 54.5 versus 514 ± 37.3 μm (p = 0.007); 24 MFS eyes (62%) and 10 control eyes (25%) had measurements below 500 μm (p = 0.01). The mean ECD values were similar in MFS and control eyes, 2815 ± 430 versus 2858 ± 458 cells/mm(2) (p = 0.66). The mean K value, pachymetry, and ECD values did not differ between MFS eyes with and without lens subluxation. Decreased K values and pachymetry could indicate MFS regardless of subluxation. High corneal astigmatism is associated with subluxation in MFS. Subluxation should be identified in MFS eyes with high corneal astigmatism. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  20. Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily

    PubMed Central

    Goblirsch, Brandon; Kurker, Richard C.; Streit, Bennett R.; Wilmot, Carrie M.; DuBois, Jennifer L.

    2011-01-01

    Heme proteins are extremely diverse, widespread, and versatile biocatalysts, sensors, and molecular transporters. The chlorite dismutase family of hemoproteins received its name due to the ability of the first-isolated members to detoxify anthropogenic ClO2−, a function believed to have evolved only in the last few decades. Family members have since been found in fifteen bacterial and archaeal genera, suggesting ancient roots. A structure- and sequence-based examination of the family is presented, in which key sequence and structural motifs are identified and possible functions for family proteins are proposed. Newly identified structural homologies moreover demonstrate clear connections to two other large, ancient, and functionally mysterious protein families. We propose calling them collectively the CDE superfamily of heme proteins. PMID:21354424

  1. The Evolutionary Ecology of Biotic Association in a Megadiverse Bivalve Superfamily: Sponsorship Required for Permanent Residency in Sediment

    PubMed Central

    Li, Jingchun; Ó Foighil, Diarmaid; Middelfart, Peter

    2012-01-01

    Background Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. Methodology/Principal Findings Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host’s bioturbation. Conclusions/Significance The formation of commensal associations by galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host’s burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily. PMID

  2. Biometric and structural ocular manifestations of Marfan syndrome.

    PubMed

    Gehle, Petra; Goergen, Barbara; Pilger, Daniel; Ruokonen, Peter; Robinson, Peter N; Salchow, Daniel J

    2017-01-01

    To study biometric and structural ocular manifestations of Marfan syndrome (MFS). Observational, retrospective, comparative cohort study in a tertiary referral center on 285 MFS patients and 267 controls. Structural and biometric ocular characteristic were compared. MFS eyes were longer (axial length 24.25 ± 1.74 mm versus 23.89 ± 1.31 mm, p < 0.001) and had a flatter cornea than control eyes (mean keratometry 41.78 ± 1.80 diopters (D) versus 43.05 ± 1.51 D, p < 0.001). Corneal astigmatism was greater and the central cornea was thinner in MFS eyes (530.14 ± 41.31 μm versus 547.02 ± 39.18 μm, p < 0.001). MFS eyes were more myopic than control eyes (spherical equivalent -2.16 ± 3.75 D versus -1.17 ± 2.58 D, p < 0.001). Visual acuity was reduced (0.13 ± 0.25 logMAR versus 0.05 ± 0.18 logMAR, p < 0.001) and intraocular pressure was lower in MFS eyes (14.6 ± 3.4 mmHg versus 15.1 ± 3.2 mmHg, p = 0.01). Iris transillumination defects (ITD) were significantly more common in MFS eyes (odds ratio for MFS in the presence of ITD, 3.7). Ectopia lentis (EL) was only present in MFS eyes (33.4%). History of retinal detachment was significantly more common in MFS eyes. Glaucoma was equally common in both groups. ITD and EL are most characteristic findings in MFS. ITD and corneal curvature should be studied as diagnostic criteria for MFS. Visual acuity is reduced in MFS. MFS patients need regular eye exams to identify serious ocular complications.

  3. Recurrent Guillain-Barré syndrome, Miller Fisher syndrome and Bickerstaff brainstem encephalitis.

    PubMed

    Ishii, Junko; Yuki, Nobuhiro; Kawamoto, Michi; Yoshimura, Hajime; Kusunoki, Susumu; Kohara, Nobuo

    2016-05-15

    Guillain-Barré syndrome (GBS), Miller Fisher syndrome (MFS), and Bickerstaff brainstem encephalitis (BBE) are usually monophasic, but some patients experience recurrences after long asymptomatic intervals. We aimed to investigate clinical features of recurrent GBS, MFS, and BBE at a single hospital. Records from 97 consecutive patients with GBS, MFS or BBE who were admitted to a tertiary hospital between 2001 and 2013 were reviewed. Clinical and laboratory features of patients with recurrent GBS, MFS, or BBE were investigated. Patients included 55 (32 males) with GBS, 34 (22 males) with MFS, and 8 (6 males) with BBE. Recurrent cases occurred in 2 (4%) of the 55 patients with GBS, 4 (12%) of the 34 patients with MFS, and 2 (25%) of the 8 patients with BBE. Patients with recurrent MFS had a tendency to be younger at the first episode than patients with non-recurrent MFS (median, 22 versus 37years old). Symptoms and signs were less severe during relapses than during the initial episode in recurrent patients. Recurrences occurred more frequently in patients with MFS or BBE compared with those with GBS. Patients with recurrent MFS might be younger than those with non-recurrent MFS. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Structure and Activity Analyses of Escherichia coli K-12 NagD Provide Insight into the Evolution of Biochemical Function in the Haloakanoic Acid Dehlogenase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay,L.; Dunaway-Mariano, D.; Allen, K.

    2006-01-01

    The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamilies I, IIA, IIB, and III, based on the topology and insertion site of a cap domain that provides substrate specificity. This structural and functional division implies that members of a given HAD structural subclass may target substrates that have similar structural characteristics. To understand the structure/function relationships in all of the subfamilies, a type IIA subfamily member, NagD from Escherichia colimore » K-12, was selected (type I, IIB, and III members have been more extensively studied). The structure of the NagD protein was solved to 1.80 Angstroms with R{sub work} = 19.8% and R{sub free} = 21.8%. Substrate screening and kinetic analysis showed NagD to have high specificity for nucleotide monophosphates with kcat/Km = 3.12 x 10{sup 4} and 1.28 x 10{sup 4} {micro}M{sup -1} s{sup -1} for UMP and GMP, respectively. This specificity is consistent with the presence of analogues of NagD that exist as fusion proteins with a nucleotide pyrophosphatase from the Nudix family. Docking of the nucleoside substrate in the active site brings it in contact with conserved residues from the cap domain that can act as a substrate specificity loop (NagD residues 144-149) in the type IIA subfamily. NagD and other subfamily IIA and IIB members show the common trait that substrate specificity and catalytic efficiencies (k{sub cat}/K{sub m}) are low (1 x 10{sup 4} M{sup -1} s{sup -1}) and the boundaries defining physiological substrates are somewhat overlapping. The ability to catabolize other related secondary metabolites indicates that there is regulation at the genetic level.« less

  5. Perspectives on the revised Ghent criteria for the diagnosis of Marfan syndrome

    PubMed Central

    von Kodolitsch, Yskert; De Backer, Julie; Schüler, Helke; Bannas, Peter; Behzadi, Cyrus; Bernhardt, Alexander M; Hillebrand, Mathias; Fuisting, Bettina; Sheikhzadeh, Sara; Rybczynski, Meike; Kölbel, Tilo; Püschel, Klaus; Blankenberg, Stefan; Robinson, Peter N

    2015-01-01

    Three international nosologies have been proposed for the diagnosis of Marfan syndrome (MFS): the Berlin nosology in 1988; the Ghent nosology in 1996 (Ghent-1); and the revised Ghent nosology in 2010 (Ghent-2). We reviewed the literature and discussed the challenges and concepts of diagnosing MFS in adults. Ghent-1 proposed more stringent clinical criteria, which led to the confirmation of MFS in only 32%–53% of patients formerly diagnosed with MFS according to the Berlin nosology. Conversely, both the Ghent-1 and Ghent-2 nosologies diagnosed MFS, and both yielded similar frequencies of MFS in persons with a causative FBN1 mutation (90% for Ghent-1 versus 92% for Ghent-2) and in persons not having a causative FBN1 mutation (15% versus 13%). Quality criteria for diagnostic methods include objectivity, reliability, and validity. However, the nosology-based diagnosis of MFS lacks a diagnostic reference standard and, hence, quality criteria such as sensitivity, specificity, or accuracy cannot be assessed. Medical utility of diagnosis implies congruency with the historical criteria of MFS, as well as with information about the etiology, pathogenesis, diagnostic triggers, prognostic triggers, and potential complications of MFS. In addition, social and psychological utilities of diagnostic criteria include acceptance by patients, patient organizations, clinicians and scientists, practicability, costs, and the reduction of anxiety. Since the utility of a diagnosis or exclusion of MFS is context-dependent, prioritization of utilities is a strategic decision in the process of nosology development. Screening tests for MFS should be used to identify persons with MFS. To confirm the diagnosis of MFS, Ghent-1 and Ghent-2 perform similarly, but Ghent-2 is easier to use. To maximize the utility of the diagnostic criteria of MFS, a fair and transparent process of nosology development is essential. PMID:26124674

  6. Biometric and structural ocular manifestations of Marfan syndrome

    PubMed Central

    Gehle, Petra; Goergen, Barbara; Pilger, Daniel; Ruokonen, Peter; Robinson, Peter N.

    2017-01-01

    Background To study biometric and structural ocular manifestations of Marfan syndrome (MFS). Methods Observational, retrospective, comparative cohort study in a tertiary referral center on 285 MFS patients and 267 controls. Structural and biometric ocular characteristic were compared. Results MFS eyes were longer (axial length 24.25 ± 1.74 mm versus 23.89 ± 1.31 mm, p < 0.001) and had a flatter cornea than control eyes (mean keratometry 41.78 ± 1.80 diopters (D) versus 43.05 ± 1.51 D, p < 0.001). Corneal astigmatism was greater and the central cornea was thinner in MFS eyes (530.14 ± 41.31 μm versus 547.02 ± 39.18 μm, p < 0.001). MFS eyes were more myopic than control eyes (spherical equivalent -2.16 ± 3.75 D versus -1.17 ± 2.58 D, p < 0.001). Visual acuity was reduced (0.13 ± 0.25 logMAR versus 0.05 ± 0.18 logMAR, p < 0.001) and intraocular pressure was lower in MFS eyes (14.6 ± 3.4 mmHg versus 15.1 ± 3.2 mmHg, p = 0.01). Iris transillumination defects (ITD) were significantly more common in MFS eyes (odds ratio for MFS in the presence of ITD, 3.7). Ectopia lentis (EL) was only present in MFS eyes (33.4%). History of retinal detachment was significantly more common in MFS eyes. Glaucoma was equally common in both groups. Conclusions ITD and EL are most characteristic findings in MFS. ITD and corneal curvature should be studied as diagnostic criteria for MFS. Visual acuity is reduced in MFS. MFS patients need regular eye exams to identify serious ocular complications. PMID:28931008

  7. Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo.

    PubMed

    Zhang, Wei; Mulieri, Philip J; Gaio, Ursula; Bae, Gyu-Un; Krauss, Robert S; Kang, Jong-Sun

    2009-10-01

    Vertebrate eye development requires a series of complex morphogenetic and inductive events to produce a lens vesicle centered within the bilayered optic cup and a posteriorly positioned optic stalk. Multiple congenital eye defects, including microphthalmia and coloboma, result from defects in early eye morphogenesis. Cdo is a multifunctional cell surface immunoglobulin superfamily member that interacts with and mediates signaling by cadherins and netrins to regulate myogenesis. In addition, Cdo plays an essential role in early forebrain development by functioning as coreceptor for sonic hedgehog. It is reported here that Cdo is expressed in a dynamic, but dorsally restricted, fashion during early eye development, and that mice lacking Cdo display multiple eye defects. Anomalies seen in Cdo(-/-) mice include coloboma (failure to close the optic fissure); failure to form a proper boundary between the retinal pigmented epithelium and optic stalk; defective lens formation, including failure to separate from the surface ectoderm; and microphthalmia. Consistent with this wide array of defects, developing eyes of Cdo(-/-) mice show altered expression of several regulators of dorsoventral eye patterning, including Pax6, Pax2, and Tbx5. Taken together, these findings show that Cdo is required for normal eye development and is required for normal expression of patterning genes in both the ventral and dorsal domains. The multiple eye development defects seen in Cdo(-/-) mice suggest that mutations in human Cdo could contribute to congenital eye anomalies, such as Jacobsen syndrome, which is frequently associated with ocular defects, including coloboma and Peters' anomaly.

  8. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics

  9. Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: The case of the fold-type I, pyridoxal-5′-phosphate-dependent enzymes

    PubMed Central

    Paiardini, Alessandro; Bossa, Francesco; Pascarella, Stefano

    2004-01-01

    The wealth of biological information provided by structural and genomic projects opens new prospects of understanding life and evolution at the molecular level. In this work, it is shown how computational approaches can be exploited to pinpoint protein structural features that remain invariant upon long evolutionary periods in the fold-type I, PLP-dependent enzymes. A nonredundant set of 23 superposed crystallographic structures belonging to this superfamily was built. Members of this family typically display high-structural conservation despite low-sequence identity. For each structure, a multiple-sequence alignment of orthologous sequences was obtained, and the 23 alignments were merged using the structural information to obtain a comprehensive multiple alignment of 921 sequences of fold-type I enzymes. The structurally conserved regions (SCRs), the evolutionarily conserved residues, and the conserved hydrophobic contacts (CHCs) were extracted from this data set, using both sequence and structural information. The results of this study identified a structural pattern of hydrophobic contacts shared by all of the superfamily members of fold-type I enzymes and involved in native interactions. This profile highlights the presence of a nucleus for this fold, in which residues participating in the most conserved native interactions exhibit preferential evolutionary conservation, that correlates significantly (r = 0.70) with the extent of mean hydrophobic contact value of their apolar fraction. PMID:15498941

  10. Management of Marfan Syndrome during pregnancy: A real world experience from a Joint Cardiac Obstetric Service.

    PubMed

    Lim, Joanna C E-S; Cauldwell, Matthew; Patel, Roshni R; Uebing, Anselm; Curry, Ruth A; Johnson, Mark R; Gatzoulis, Michael A; Swan, Lorna

    2017-09-15

    Pregnancy in Marfan Syndrome (MFS) is associated with increased maternal risk of cardiovascular events. Given the maternal and genetic risks, pre-conception counselling is essential to facilitate informed choices. Multidisciplinary antenatal care with regular imaging is mandatory and best delivered through a Joint Cardiac Obstetric Service (JCOS). The aim of this study was to compare the care delivered in a JCOS against recognised international standards (European Society of Cardiology (ESC)). Pregnancies in women with MFS from 2005 to 2015 were identified from our institutional database. Patient records were reviewed and practice assessed against pre-determined standards based on ESC guidelines. There were 23 pregnancies in 15 women with MFS. 13/23 (57%) occurred in women with aortic dilatation at baseline. There were 3 important maternal cardiac events (type A dissection; deterioration in left ventricular function; significant left ventricular and progressive aortic dilatation). Four women did not have access to expert pre-conception counselling. These women were all referred to the JCOS late in established pregnancy. Imaging was often delayed and only 7/23 cases (30%) met the standard for minimum frequency of echocardiographic surveillance. Only 12/23 (52%) had pre-conception imaging of the whole aorta with CT/MRI. Distal aortic dilatation was identified in 7/23 cases but none of these underwent further MRI evaluation during pregnancy. Despite having a dedicated JCOS, our data show that facilitating complete obstetric and cardiac care for this group remains challenging. Education of local care providers and timely referral for expert pre-conception counselling in a JCOS are key. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2010-09-30

    In part 2 (Bonazzi et al., 2010), the impact of the ensemble forecast methodology based on MFS-Wind-BHM perturbations is documented. Forecast...absence of dt data stage inputs, the forecast impact of MFS-Error-BHM is neutral. Experiments are underway now to introduce dt back into the MFS-Error...BHM and quantify forecast impacts at MFS. MFS-SuperEnsemble-BHM We have assembled all needed datasets and completed algorithmic development

  12. Miltefosine has post-antifungal effect and induces apoptosis in Cryptococcus yeasts.

    PubMed

    Spadari, Cristina de Castro; Vila, Taissa; Rozental, Sonia; Ishida, Kelly

    2018-05-29

    Cryptococcus spp. are common opportunistic fungal pathogens, particularly in HIV patients. The approved drug miltefosine (MFS) has potential as an alternative antifungal against cryptococcosis; however, the mechanism of action of MFS in Cryptococcus is poorly understood. Here, we examined the effects of MFS on C. neoformans and C. gattii yeasts (planktonic and biofilm lifestyles), to clarify its mechanism of action. MFS presented inhibitory and fungicidal effects against planktonic Cryptococcus cells, with similar activity against dispersion biofilm cells, while sessile biofilm cells were less sensitive to MFS. Interestingly, MFS had post-antifungal effect on Cryptococcus , with a proliferation delay of up to 8.15 h after short exposure to fungicidal doses. MFS at fungicidal concentrations increased plasma membrane permeability, likely due to direct interaction with ergosterol, as suggested by competition assays with exogenous ergosterol. Moreover, MFS reduced the mitochondrial membrane potential, increased ROS production, and induced DNA fragmentation and condensation, all of which are hallmarks of apoptosis. Transmission electron microscopy analysis showed that MFS-treated yeasts had a reduced mucopolysaccharide capsule (confirmed by morphometry in light microscopy), plasma membrane irregularities, mitochondrial swelling and a less conspicuous cell wall. Our results suggest that MFS increases plasma membrane permeability in Cryptococcus via interaction with ergosterol, and also affects the mitochondrial membrane, eventually leading to apoptosis, in line with its fungicidal activity. These findings confirm the potential of MFS as an antifungal against C. neoformans and C. gattii, and warrants further studies to establish clinical protocols for MFS use against cryptococcosis. Copyright © 2018 American Society for Microbiology.

  13. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agusa, Tetsuro; Center for Marine Environmental Studies; Iwata, Hisato, E-mail: iwatah@agr.ehime-u.ac.j

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As{sup V} thanmore » the wild homo type. Higher percentage of DMA{sup V} in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As{sup V} to As{sup III}. Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.« less

  14. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam.

    PubMed

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As(V) than the wild homo type. Higher percentage of DMA(V) in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As(V) to As(III). Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Biomechanical properties of the thoracic aorta in Marfan patients

    PubMed Central

    Sulejmani, Fatiesa; Pokutta-Paskaleva, Anastassia; Ziganshin, Bulat; Leshnower, Bradley; Iannucci, Glen; Elefteriades, John

    2017-01-01

    Background Marfan syndrome (MFS), a genetic disorder of the connective tissue, has been strongly linked to dilation of the thoracic aorta, among other cardiovascular complications. As a result, MFS patients frequently suffer from aortic dissection and rupture, contributing to the high rate of mortality and morbidity among MFS patients. Despite the significant effort devoted to the investigation of mechanical and structural properties of aneurysmal tissue, studies on Marfan aneurysmal biomechanics are scarce. Ex vivo mechanical characterization of MFS aneurysmal tissue can provide a better insight into tissue strength outside the physiologic loading range and serve as a basis for improved risk assessment and failure prediction. Methods The mechanical and microstructural properties of MFS aneurysmal thoracic aorta (MFS, n=15, 39.5±3.91 years), non-MFS aneurysmal thoracic aorta (TAA, n=8, 52.8±4.9 years), healthy human thoracic aorta (HH, n=8, 75.4±6.1 years), and porcine thoracic aorta (n=10) are investigated. Planar biaxial tensile testing and uniaxial failure testing were utilized to characterize the mechanical and failure properties of the tissue, respectively. Verhoeff-Van Gieson (VVG) and PicroSirius Red stains were utilized to visualize the elastin and collagen fiber architecture, respectively. Results MFS tissue was found to have age-dependent but diameter-independent mechanical, structural, and morphological properties, also showing extensive elastin fiber degradation. Non-MFS thoracic aneurysmal aorta was thicker and stiffer than age-matched MFS tissue. Moreover, non-MFS thoracic aneurysmal mechanics resembled closely the mechanics of older healthy human tissue. Younger MFS tissue (<40 years) exhibited similar mechanical and structural properties to aged porcine tissue. Conclusions Both age and aneurysmal presence were found to be factors associated with increased stiffness in aortic tissue, and aortic diameter was not a significant determinant of

  16. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1997-01-01

    To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.

  17. Practice Facilitators' and Leaders' Perspectives on a Facilitated Quality Improvement Program.

    PubMed

    McHugh, Megan; Brown, Tiffany; Liss, David T; Walunas, Theresa L; Persell, Stephen D

    2018-04-01

    Practice facilitation is a promising approach to helping practices implement quality improvements. Our purpose was to describe practice facilitators' and practice leaders' perspectives on implementation of a practice facilitator-supported quality improvement program and describe where their perspectives aligned and diverged. We conducted interviews with practice leaders and practice facilitators who participated in a program that included 35 improvement strategies aimed at the ABCS of heart health (aspirin use in high-risk individuals, blood pressure control, cholesterol management, and smoking cessation). Rapid qualitative analysis was used to collect, organize, and analyze the data. We interviewed 17 of the 33 eligible practice leaders, and the 10 practice facilitators assigned to those practices. Practice leaders and practice facilitators both reported value in the program's ability to bring needed, high-quality resources to practices. Practice leaders appreciated being able to set the schedule for facilitation and select among the 35 interventions. According to practice facilitators, however, relying on practice leaders to set the pace of the intervention resulted in a lower level of program intensity than intended. Practice leaders preferred targeted assistance, particularly electronic health record documentation guidance and linkages to state smoking cessation programs. Practice facilitators reported that the easiest interventions were those that did not alter care practices. The dual perspectives of practice leaders and practice facilitators provide a more holistic picture of enablers and barriers to program implementation. There may be greater opportunities to assist small practices through simple, targeted practice facilitator-supported efforts rather than larger, comprehensive quality improvement projects. © 2018 Annals of Family Medicine, Inc.

  18. Implementing for Sustainability: Promoting Use of a Measurement Feedback System for Innovation and Quality Improvement.

    PubMed

    Douglas, Susan; Button, Suzanne; Casey, Susan E

    2016-05-01

    Measurement feedback systems (MFSs) are increasingly recognized as evidence-based treatments for improving mental health outcomes, in addition to being a useful administrative tool for service planning and reporting. Promising research findings have driven practice administrators and policymakers to emphasize the incorporation of outcomes monitoring into electronic health systems. To promote MFS integrity and protect against potentially negative outcomes, it is vital that adoption and implementation be guided by scientifically rigorous yet practical principles. In this point of view, the authors discuss and provide examples of three user-centered and theory-based principles: emphasizing integration with clinical values and workflow, promoting administrative leadership with the 'golden thread' of data-informed decision-making, and facilitating sustainability by encouraging innovation. In our experience, enacting these principles serves to promote sustainable implementation of MFSs in the community while also allowing innovation to occur, which can inform improvements to guide future MFS research.

  19. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39.

    PubMed

    Kong, Dexin; Dan, Shingo; Yamazaki, Kanami; Yamori, Takao

    2010-04-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in various diseases particularly cancer, considerable competition occurs in development of PI3K inhibitors. Consequently, novel PI3K inhibitors such as ZSTK474, GDC-0941 and NVP-BEZ235 have been developed. Even though all these inhibitors were reported to inhibit class I PI3K but not dozens of protein kinases, whether they have different molecular targets remained unknown. To investigate such molecular target specificity, we have determined the inhibitory effects of these novel inhibitors together with classical PI3K inhibitor LY294002 on PI3K superfamily (including classes I, II, and III PI3Ks, PI4K and PI3K-related kinases) by using several novel non-radioactive biochemical assays. As a result, ZSTK474 and GDC-0941 indicated highly similar inhibition profiles for PI3K superfamily, with class I PI3K specificity much higher than NVP-BEZ235 and LY294002. We further investigated their growth inhibition effects on JFCR39, a human cancer cell line panel which we established for molecular target identification, and analysed their cell growth inhibition profiles (fingerprints) by using COMPARE analysis programme. Interestingly, we found ZSTK474 exhibited a highly similar fingerprint with GDC-0941 (r=0.863), more similar than with that of either NVP-BEZ235 or LY294002, suggesting that ZSTK474 shares more in molecular targets with GDC-0941 than with either of the other two PI3K inhibitors, consistent with the biochemical assay result. The biological implication of the difference in molecular target specificity of these PI3K inhibitors is under investigation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.

    PubMed

    Goldman, Aaron David; Beatty, Joshua T; Landweber, Laura F

    2016-01-01

    The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.

  1. Multistage Computerized Adaptive Testing with Uniform Item Exposure

    ERIC Educational Resources Information Center

    Edwards, Michael C.; Flora, David B.; Thissen, David

    2012-01-01

    This article describes a computerized adaptive test (CAT) based on the uniform item exposure multi-form structure (uMFS). The uMFS is a specialization of the multi-form structure (MFS) idea described by Armstrong, Jones, Berliner, and Pashley (1998). In an MFS CAT, the examinee first responds to a small fixed block of items. The items comprising…

  2. Effect of the Antioxidant Lipoic Acid in Aortic Phenotype in a Marfan Syndrome Mouse Model.

    PubMed

    Guido, Maria C; Debbas, Victor; Salemi, Vera M; Tavares, Elaine R; Meirelles, Thayna; Araujo, Thaís L S; Nolasco, Patricia; Ferreira-Filho, Julio C A; Takimura, Celso K; Pereira, Lygia V; Laurindo, Francisco R

    2018-01-01

    Marfan syndrome (MFS) cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mgΔ loxPneo mouse model. MFS and WT (wild-type) 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid. At 6 months old, echocardiography, ROS production, and morphological analysis of aortas were performed. Aortic ROS generation in 6-month-old MFS animals was higher at advanced stages of disease in MFS. An unprecedented finding in MFS mice analyzed by OCT was the occurrence of focal inhomogeneous regions in the aortic arch, either collagen-rich extremely thickened or collagen-poor hypotrophic regions. MFS animals treated with lipoic acid showed markedly reduced ROS production and lower ERK1/2 phosphorylation; meanwhile, aortic dilation and elastic fiber breakdown were unaltered. Of note, lipoic acid treatment associated with the absence of focal inhomogeneous regions in MFS animals. Losartan reduced aortic dilation and elastic fiber breakdown despite no change in ROS generation. In conclusion, oxidant generation by itself seems neutral with respect to aneurysm progression in MFS; however, lipoic acid-mediated reduction of inhomogeneous regions may potentially associate with less anisotropy and reduced chance of dissection/rupture.

  3. Characterization of a Novel Conus bandanus Conopeptide Belonging to the M-Superfamily Containing Bromotryptophan

    PubMed Central

    Nguyen, Bao; Le Caer, Jean-Pierre; Mourier, Gilles; Thai, Robert; Lamthanh, Hung; Servent, Denis; Benoit, Evelyne; Molgó, Jordi

    2014-01-01

    A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman’s degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions “4”, “5”, and “15”, respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (–CCx1x2x3x4Cx1x2x3Cx1CC–) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM. PMID:24905483

  4. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches

    PubMed Central

    Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding. PMID:29771985

  5. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches.

    PubMed

    Durairaj, Rajesh; Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.

  6. The Influence of Facilitator and Facilitation Characteristics on Participants' Ratings of Stepfamily Education

    ERIC Educational Resources Information Center

    Higginbotham, Brian J.; Myler, Cory

    2010-01-01

    We examine the relative importance of facilitator and facilitation characteristics on participant ratings of a stepfamily education program. Data from 48 facilitators and 598 participants suggest that quality facilitation is more meaningful to participants than whether facilitators have comparable demographic characteristics or life experiences.…

  7. Corneal Curvature, Astigmatism, and Aberrations in Marfan Syndrome with Lens Subluxation: Evaluation by Pentacam HR System.

    PubMed

    Chen, Jiahui; Jing, Qinghe; Tang, Yating; Qian, Dongjin; Lu, Yi; Jiang, Yongxiang

    2018-03-06

    Marfan syndrome (MFS) is associated with abnormalities of corneal biometric characteristics. We conducted a retrospective case-control study including 55 eyes of the MFS patients with lens subluxation and 53 normal eyes of the control subjects to evaluate the corneal curvature, astigmatism and aberrations using a rotating Scheimpflug camera (Pentacam HR). Compared with the control group, the anterior, posterior, and total corneal curvature were flatter in the MFS group. The anterior and total corneal astigmatism were higher in the MFS patients, whereas the posterior corneal astigmatism was not significantly different between the two groups. Regarding the total corneal aberrations, the root mean square (RMS) aberrations, RMS higher-order aberrations and RMS lower-order aberrations increased, whereas the spherical aberration decreased in the MFS patients. Corneal parameters had potential diagnostic values for MFS patients with lens subluxation and the more reasonable cutoffs were the values of corneal curvature <41.35 D, corneal astigmatism >0.85 D and spherical aberration <0.188 μm. Corneal biometric characteristics of MFS patients with lens subluxation include decreased corneal curvature, higher corneal astigmatism, larger corneal aberrations, and lower spherical aberration. Corneal curvature, corneal astigmatism, and spherical aberration are better diagnostic tools for suspicious MFS.

  8. Observation of Majorana fermions in the vortex on topological insulator-superconductor heterostructure Bi2Te3/NbSe2

    NASA Astrophysics Data System (ADS)

    Jia, Jinfeng

    Majorana fermion (MF) zero modes have been predicted in a wide variety of condensed matter systems and proposed as a potential building block for fault-tolerant quantum computer. Signatures of the MFs have been reported in the form of zero-energy conductance peak in various systems. As predicted, MFs appear as zero-energy vortex core modes with distinctive spatial profile in proximity-induced superconducting surface states of topological insulators. Furthermore, MFs can induce spin selective Andreev reflection (SSAR), a unique signature of MFs. We report the observation of all the three features for the MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which proximity-induced superconducting gap on topological surface states was previously established. Especially, by using spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we observed the spin dependent tunneling effect, and fully supported by theoretical analyses, which is a direct evidence for the SSAR from MFs. More importantly, all evidences are self-consistent. Our work provides definitive evidences of MFs and will stimulate the MFs research on their novel physical properties, hence a step towards their non-Abelian statistics and application in quantum computing.

  9. Using learning theory, interprofessional facilitation competencies, and behavioral indicators to evaluate facilitator training.

    PubMed

    LeGros, Theresa A; Amerongen, Helen M; Cooley, Janet H; Schloss, Ernest P

    2015-01-01

    Despite the increasing need for faculty and preceptors skilled in interprofessional facilitation (IPF), the relative novelty of the field poses a challenge to the development and evaluation of IPF programs. We use learning theory and IPF competencies with associated behavioral indicators to develop and evaluate six key messages in IPF training and experience. Our mixed methods approach included two phases: quantitative data collection with embedded qualitative data, followed by qualitative data collection in explanatory sequential fashion. This enabled triangulated analyses of both data types and of facilitation behaviors from facilitator and student perspectives. Results indicate the competency-based training was effective. Facilitators felt comfortable performing behaviors associated with IPF competencies; student observations of those behaviors supported facilitator self-reported performance. Overall, students perceived more facilitation opportunities than facilitators. Findings corroborate the importance of recruiting seasoned facilitators and establishing IPF guidelines that acknowledge variable team dynamics and help facilitators recognize teachable moments.

  10. Effect of the Antioxidant Lipoic Acid in Aortic Phenotype in a Marfan Syndrome Mouse Model

    PubMed Central

    Debbas, Victor; Salemi, Vera M.; Tavares, Elaine R.; Meirelles, Thayna; Ferreira-Filho, Julio C. A.; Takimura, Celso K.; Pereira, Lygia V.; Laurindo, Francisco R.

    2018-01-01

    Marfan syndrome (MFS) cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mgΔloxPneo mouse model. MFS and WT (wild-type) 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid. At 6 months old, echocardiography, ROS production, and morphological analysis of aortas were performed. Aortic ROS generation in 6-month-old MFS animals was higher at advanced stages of disease in MFS. An unprecedented finding in MFS mice analyzed by OCT was the occurrence of focal inhomogeneous regions in the aortic arch, either collagen-rich extremely thickened or collagen-poor hypotrophic regions. MFS animals treated with lipoic acid showed markedly reduced ROS production and lower ERK1/2 phosphorylation; meanwhile, aortic dilation and elastic fiber breakdown were unaltered. Of note, lipoic acid treatment associated with the absence of focal inhomogeneous regions in MFS animals. Losartan reduced aortic dilation and elastic fiber breakdown despite no change in ROS generation. In conclusion, oxidant generation by itself seems neutral with respect to aneurysm progression in MFS; however, lipoic acid-mediated reduction of inhomogeneous regions may potentially associate with less anisotropy and reduced chance of dissection/rupture. PMID:29765495

  11. Magnetic fields: how is plant growth and development impacted?

    PubMed

    da Silva, Jaime A Teixeira; Dobránszki, Judit

    2016-03-01

    This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.

  12. Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?

    PubMed

    Grewal, Nimrat; Franken, Romy; Mulder, Barbara J M; Goumans, Marie-José; Lindeman, Johannes H N; Jongbloed, Monique R M; DeRuiter, Marco C; Klautz, Robert J M; Bogers, Ad J J C; Poelmann, Robert E; Groot, Adriana C Gittenberger-de

    2016-05-01

    Patients with bicuspid aortic valve (BAV) and patients with Marfan syndrome (MFS) are more prone to develop aortic dilation and dissection compared to persons with a tricuspid aortic valve (TAV). To elucidate potential common and distinct pathways of clinical relevance, we compared the histopathological substrates of aortopathy. Ascending aortic wall biopsies were divided in five groups: BAV (n = 36) and TAV (n = 23) without and with dilation and non-dilated MFS (n = 8). General histologic features, apoptosis, the expression of markers for vascular smooth muscle cell (VSMC) maturation, markers predictive for ascending aortic dilation in BAV, and expression of fibrillin-1 were investigated. Both MFS and BAV showed an altered distribution and decreased fibrillin-1 expression in the aorta and a significantly lower level of differentiated VSMC markers. Interestingly, markers predictive for aortic dilation in BAV were not expressed in the MFS aorta. The aorta in MFS was similar to the aorta in dilated TAV with regard to the presence of medial degeneration and apoptosis, while other markers for degeneration and aging like inflammation and progerin expression were low in MFS, comparable to BAV. Both MFS and BAV aortas have immature VSMCs, while MFS and TAV patients have a similar increased rate of medial degeneration. However, the mechanism leading to apoptosis is expected to be different, being fibrillin-1 mutation induced increased angiotensin-receptor-pathway signaling in MFS and cardiovascular aging and increased progerin in TAV. Our findings could explain why angiotensin inhibition is successful in MFS and less effective in TAV and BAV patients.

  13. Aortopathy in a Mouse Model of Marfan Syndrome Is Not Mediated by Altered Transforming Growth Factor β Signaling.

    PubMed

    Wei, Hao; Hu, Jie Hong; Angelov, Stoyan N; Fox, Kate; Yan, James; Enstrom, Rachel; Smith, Alexandra; Dichek, David A

    2017-01-24

    Marfan syndrome (MFS) is caused by mutations in the gene encoding fibrillin-1 (FBN1); however, the mechanisms through which fibrillin-1 deficiency causes MFS-associated aortopathy are uncertain. Recently, attention was focused on the hypothesis that MFS-associated aortopathy is caused by increased transforming growth factor-β (TGF-β) signaling in aortic medial smooth muscle cells (SMC). However, there are many reasons to doubt that TGF-β signaling drives MFS-associated aortopathy. We used a mouse model to test whether SMC TGF-β signaling is perturbed by a fibrillin-1 variant that causes MFS and whether blockade of SMC TGF-β signaling prevents MFS-associated aortopathy. MFS mice (Fbn1 C1039G/+ genotype) were genetically modified to allow postnatal SMC-specific deletion of the type II TGF-β receptor (TBRII; essential for physiologic TGF-β signaling). In young MFS mice with and without superimposed deletion of SMC-TBRII, we measured aortic dimensions, histopathology, activation of aortic SMC TGF-β signaling pathways, and changes in aortic SMC gene expression. Young Fbn1 C1039G/+ mice had ascending aortic dilation and significant disruption of aortic medial architecture. Both aortic dilation and disrupted medial architecture were exacerbated by superimposed deletion of TBRII. TGF-β signaling was unaltered in aortic SMC of young MFS mice; however, SMC-specific deletion of TBRII in Fbn1 C1039G/+ mice significantly decreased activation of SMC TGF-β signaling pathways. In young Fbn1 C1039G/+ mice, aortopathy develops in the absence of detectable alterations in SMC TGF-β signaling. Loss of physiologic SMC TGF-β signaling exacerbates MFS-associated aortopathy. Our data support a protective role for SMC TGF-β signaling during early development of MFS-associated aortopathy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-10-04

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.

  15. Identification and Characterization of a Novel Member of the Radical AdoMet Enzyme Superfamily and Implications for the Biosynthesis of the Hmd Hydrogenase Active Site Cofactor▿ †

    PubMed Central

    McGlynn, Shawn E.; Boyd, Eric S.; Shepard, Eric M.; Lange, Rachel K.; Gerlach, Robin; Broderick, Joan B.; Peters, John W.

    2010-01-01

    The genetic context, phylogeny, and biochemistry of a gene flanking the H2-forming methylene-H4-methanopterin dehydrogenase gene (hmdA), here designated hmdB, indicate that it is a new member of the radical S-adenosylmethionine enzyme superfamily. In contrast to the characteristic CX3CX2C or CX2CX4C motif defining this family, HmdB contains a unique CX5CX2C motif. PMID:19897660

  16. The venom gland transcriptome of the Desert Massasauga Rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)

    PubMed Central

    Pahari, Susanta; Mackessy, Stephen P; Kini, R Manjunatha

    2007-01-01

    Background Snake venoms are complex mixtures of pharmacologically active proteins and peptides which belong to a small number of superfamilies. Global cataloguing of the venom transcriptome facilitates the identification of new families of toxins as well as helps in understanding the evolution of venom proteomes. Results We have constructed a cDNA library of the venom gland of a threatened rattlesnake (a pitviper), Sistrurus catenatus edwardsii (Desert Massasauga), and sequenced 576 ESTs. Our results demonstrate a high abundance of serine proteinase and metalloproteinase transcripts, indicating that the disruption of hemostasis is a principle mechanism of action of the venom. In addition to the transcripts encoding common venom proteins, we detected two varieties of low abundance unique transcripts in the library; these encode for three-finger toxins and a novel toxin possibly generated from the fusion of two genes. We also observed polyadenylated ribosomal RNAs in the venom gland library, an interesting preliminary obsevation of this unusual phenomenon in a reptilian system. Conclusion The three-finger toxins are characteristic of most elapid venoms but are rare in viperid venoms. We detected several ESTs encoding this group of toxins in this study. We also observed the presence of a transcript encoding a fused protein of two well-characterized toxins (Kunitz/BPTI and Waprins), and this is the first report of this kind of fusion in a snake toxin transcriptome. We propose that these new venom proteins may have ancillary functions for envenomation. The presence of a fused toxin indicates that in addition to gene duplication and accelerated evolution, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms. The detection of low abundance toxins, as observed in this and other studies, indicates a greater compositional similarity of venoms (though potency will differ) among

  17. Structural basis of transport function in major facilitator superfamily protein from Trichoderma harzianum.

    PubMed

    Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2017-02-01

    Trichothecenes are the sesquiterpenes secreted by Trichoderma spp. residing in the rhizosphere. These compounds have been reported to act as plant growth promoters and bio-control agents. The structural knowledge for the transporter proteins of their efflux remained limited. In this study, three-dimensional structure of Thmfs1 protein, a trichothecene transporter from Trichoderma harzianum, was homology modelled and further Molecular Dynamics (MD) simulations were used to decipher its mechanism. Fourteen transmembrane helices of Thmfs1 protein are observed contributing to an inward-open conformation. The transport channel and ligand binding sites in Thmfs1 are identified based on heuristic, iterative algorithm and structural alignment with homologous proteins. MD simulations were performed to reveal the differential structural behaviour occurring in the ligand free and ligand bound forms. We found that two discrete trichothecene binding sites are located on either side of the central transport tunnel running from the cytoplasmic side to the extracellular side across the Thmfs1 protein. Detailed analysis of the MD trajectories showed an alternative access mechanism between N and C-terminal domains contributing to its function. These results also demonstrate that the transport of trichodermin occurs via hopping mechanism in which the substrate molecule jumps from one binding site to another lining the transport tunnel. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Activation of Two Different Resistance Mechanisms in Saccharomyces cerevisiae upon Exposure to Octanoic and Decanoic Acids▿ †

    PubMed Central

    Legras, J. L.; Erny, C.; Le Jeune, C.; Lollier, M.; Adolphe, Y.; Demuyter, C.; Delobel, P.; Blondin, B.; Karst, F.

    2010-01-01

    Medium-chain fatty acids (octanoic and decanoic acids) are well known as fermentation inhibitors. During must fermentation, the toxicity of these fatty acids is enhanced by ethanol and low pH, which favors their entrance in the cell, resulting in a decrease of internal pH. We present here the characterization of the mechanisms involved in the establishment of the resistance to these fatty acids. The analysis of the transcriptome response to the exposure to octanoic and decanoic acids revealed that two partially overlapping mechanisms are activated; both responses share many genes with an oxidative stress response, but some key genes were activated differentially. The transcriptome response to octanoic acid stress can be described mainly as a weak acid response, and it involves Pdr12p as the main transporter. The phenotypic analysis of knocked-out strains confirmed the role of the Pdr12p transporter under the control of WAR1 but also revealed the involvement of the Tpo1p major facilitator superfamily proteins (MFS) transporter in octanoic acid expulsion. In contrast, the resistance to decanoic acid is composite. It also involves the transporter Tpo1p and includes the activation of several genes of the beta-oxidation pathway and ethyl ester synthesis. Indeed, the induction of FAA1 and EEB1, coding for a long-chain fatty acyl coenzyme A synthetase and an alcohol acyltransferase, respectively, suggests a detoxification pathway through the production of decanoate ethyl ester. These results are confirmed by the sensitivity of strains bearing deletions for the transcription factors encoded by PDR1, STB5, OAF1, and PIP2 genes. PMID:20851956

  19. Increasing Avermectin Production in Streptomyces avermitilis by Manipulating the Expression of a Novel TetR-Family Regulator and Its Target Gene Product.

    PubMed

    Liu, Wenshuai; Zhang, Qinling; Guo, Jia; Chen, Zhi; Li, Jilun; Wen, Ying

    2015-08-01

    Avermectins produced by Streptomyces avermitilis are commercially important anthelmintic agents. The detailed regulatory mechanisms of avermectin biosynthesis remain unclear. Here, we identified SAV3619, a TetR-family transcriptional regulator designated AveT, to be an activator for both avermectin production and morphological differentiation in S. avermitilis. AveT was shown to indirectly stimulate avermectin production by affecting transcription of the cluster-situated activator gene aveR. AveT directly repressed transcription of its own gene (aveT), adjacent gene pepD2 (sav_3620), sav_7490 (designated aveM), and sav_7491 by binding to an 18-bp perfect palindromic sequence (CGAAACGKTKYCGTTTCG, where K is T or G and Y is T or C and where the underlining indicates inverted repeats) within their promoter regions. aveM (which encodes a putative transmembrane efflux protein belonging to the major facilitator superfamily [MFS]), the important target gene of AveT, had a striking negative effect on avermectin production and morphological differentiation. Overexpression of aveT and deletion of aveM in wild-type and industrial strains of S. avermitilis led to clear increases in the levels of avermectin production. In vitro gel-shift assays suggested that C-5-O-B1, the late pathway precursor of avermectin B1, acts as an AveT ligand. Taken together, our findings indicate positive-feedback regulation of aveT expression and avermectin production by a late pathway intermediate and provide the basis for an efficient strategy to increase avermectin production in S. avermitilis by manipulation of AveT and its target gene product, AveM. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Characterization of the complete mitochondrial genome of Marshallagia marshalli and phylogenetic implications for the superfamily Trichostrongyloidea.

    PubMed

    Sun, Miao-Miao; Han, Liang; Zhang, Fu-Kai; Zhou, Dong-Hui; Wang, Shu-Qing; Ma, Jun; Zhu, Xing-Quan; Liu, Guo-Hua

    2018-01-01

    Marshallagia marshalli (Nematoda: Trichostrongylidae) infection can lead to serious parasitic gastroenteritis in sheep, goat, and wild ruminant, causing significant socioeconomic losses worldwide. Up to now, the study concerning the molecular biology of M. marshalli is limited. Herein, we sequenced the complete mitochondrial (mt) genome of M. marshalli and examined its phylogenetic relationship with selected members of the superfamily Trichostrongyloidea using Bayesian inference (BI) based on concatenated mt amino acid sequence datasets. The complete mt genome sequence of M. marshalli is 13,891 bp, including 12 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. All protein-coding genes are transcribed in the same direction. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes supported the monophylies of the families Haemonchidae, Molineidae, and Dictyocaulidae with strong statistical support, but rejected the monophyly of the family Trichostrongylidae. The determination of the complete mt genome sequence of M. marshalli provides novel genetic markers for studying the systematics, population genetics, and molecular epidemiology of M. marshalli and its congeners.

  1. The association between maternal perception of her child weight and maternal feeding styles

    PubMed

    Flores-Peña, Yolanda; Acuña-Blanco, América; Cárdenas-Villarreal, Velia M; Amaro-Hinojosa, Marily D; Pérez-Campa, María E; Elenes-Rodríguez, Jesús R

    2017-02-01

    Introduction: Mothers do not recognize when their child is overweight or obese (OW-OB), and the evidence suggests a relationship between inadequate maternal perception of her child weight (MPCW), and maternal feeding style (MFS). Objectives: a) To assess the reliability of the Caregiver Feeding Style Questionnaire (CFSQ); b) to verify association between MPCW and child’ nutritional status; c) to describe the MFS; d) to verify differences between MPCW and child’s body mass index (BMI); e) and to verify the association between MPCW and MFS. Methods: 566 dyads participated (mother/preschool child). Mothers circle the image that more resembled their child (MPCW), and answered the CFSQ. Cronbach alpha coeffi cient was calculated. V Cramer, ANOVA and Chi-square were applied. Results: The internal consistency of CFSQ was 0.88. The 8.4% (n = 12) mothers of children are OW-OB had adequate MPCW (V = 0.26, p = 0.001). The most frequent MFS was authoritarian (34.5%, n = 195), MFS uninvolved presented the highest child’ BMI (F = 3.91, p < 0.05). When mothers perceive her child is OW-OB have a MFS uninvolved (χ2 = 15,384, df = 6, p < 0.05). Conclusions: Mothers of children with OW-OB have an inadequate MPCW and more frequently have a MFS authoritarian. When the mother perceive their child is OW-OB has MFS uninvolved. Interventions to help the mothers to recognize their child is OW-OB and teaching strategies that promote MFS authoritative are recommended.

  2. Kid-Short Marfan Score (Kid-SMS) Is a Useful Diagnostic Tool for Stratifying the Pre-Test Probability of Marfan Syndrome in Childhood

    PubMed Central

    Stark, Veronika C.; Arndt, Florian; Harring, Gesa; von Kodolitsch, Yskert; Kozlik-Feldmann, Rainer; Mueller, Goetz C.; Steiner, Kristoffer J.; Mir, Thomas S.

    2015-01-01

    Due to age dependent organ manifestation, diagnosis of Marfan syndrome (MFS) is a challenge, especially in childhood. It is important to identify children at risk of MFS as soon as possible to direct those to appropriate treatment but also to avoid stigmatization due to false diagnosis. We published the Kid-Short Marfan Score (Kid-SMS) in 2012 to stratify the pre-test probability of MFS in childhood. Hence we now evaluate the predictive performance of Kid-SMS in a new cohort of children. We prospectively investigated 106 patients who were suspected of having MFS. At baseline, children were examined according to Kid-SMS. At baseline and follow-up visit, diagnosis of MFS was established or rejected using standard current diagnostic criteria according to the revised Ghent Criteria (Ghent-2). At baseline 43 patients were identified with a risk of MFS according to Kid-SMS whereas 21 patients had Ghent-2 diagnosis of MFS. Sensitivity was 100%, specificity 77%, negative predictive value 100% and Likelihood ratio of Kid-SMS 4.3. During follow-up period, three other patients with a stratified risk for MFS were diagnosed according to Ghent-2. We confirm very good predictive performance of Kid-SMS with excellent sensitivity and negative predictive value but restricted specificity. Kid-SMS avoids stigmatization due to diagnosis of MFS and thus restriction to quality of life. Especially outpatient pediatricians and pediatric cardiologists can use it for primary assessment. PMID:28943606

  3. Kid-Short Marfan Score (Kid-SMS) Is a Useful Diagnostic Tool for Stratifying the Pre-Test Probability of Marfan Syndrome in Childhood.

    PubMed

    Stark, Veronika C; Arndt, Florian; Harring, Gesa; von Kodolitsch, Yskert; Kozlik-Feldmann, Rainer; Mueller, Goetz C; Steiner, Kristoffer J; Mir, Thomas S

    2015-03-12

    Due to age dependent organ manifestation, diagnosis of Marfan syndrome (MFS) is a challenge, especially in childhood. It is important to identify children at risk of MFS as soon as possible to direct those to appropriate treatment but also to avoid stigmatization due to false diagnosis. We published the Kid-Short Marfan Score (Kid-SMS) in 2012 to stratify the pre-test probability of MFS in childhood. Hence we now evaluate the predictive performance of Kid-SMS in a new cohort of children. We prospectively investigated 106 patients who were suspected of having MFS. At baseline, children were examined according to Kid-SMS. At baseline and follow-up visit, diagnosis of MFS was established or rejected using standard current diagnostic criteria according to the revised Ghent Criteria (Ghent-2). At baseline 43 patients were identified with a risk of MFS according to Kid-SMS whereas 21 patients had Ghent-2 diagnosis of MFS. Sensitivity was 100%, specificity 77%, negative predictive value 100% and Likelihood ratio of Kid-SMS 4.3. During follow-up period, three other patients with a stratified risk for MFS were diagnosed according to Ghent-2. We confirm very good predictive performance of Kid-SMS with excellent sensitivity and negative predictive value but restricted specificity. Kid-SMS avoids stigmatization due to diagnosis of MFS and thus restriction to quality of life. Especially outpatient pediatricians and pediatric cardiologists can use it for primary assessment.

  4. Probing the non-locality of Majorana fermions via quantum correlations

    PubMed Central

    Li, Jun; Yu, Ting; Lin, Hai-Qing; You, J. Q.

    2014-01-01

    Majorana fermions (MFs) are exotic particles that are their own anti-particles. Recently, the search for the MFs occurring as quasi-particle excitations in solid-state systems has attracted widespread interest, because of their fundamental importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Here we study the quantum correlations between two spatially separate quantum dots induced by a pair of MFs emerging at the two ends of a semiconductor nanowire, in order to develop a new method for probing the MFs. We find that without the tunnel coupling between these paired MFs, quantum entanglement cannot be induced from an unentangled (i.e., product) state, but quantum discord is observed due to the intrinsic nonlocal correlations of the paired MFs. This finding reveals that quantum discord can indeed demonstrate the intrinsic non-locality of the MFs formed in the nanowire. Also, quantum discord can be employed to discriminate the MFs from the regular fermions. Furthermore, we propose an experimental setup to measure the onset of quantum discord due to the nonlocal correlations. Our approach provides a new, and experimentally accessible, method to study the Majorana bound states by probing their intrinsic non-locality signature. PMID:24816484

  5. Differences in the Thoracic Aorta by Region and Sex in a Murine Model of Marfan Syndrome.

    PubMed

    Jiménez-Altayó, Francesc; Siegert, Anna-Maria; Bonorino, Fabio; Meirelles, Thayna; Barberà, Laura; Dantas, Ana P; Vila, Elisabet; Egea, Gustavo

    2017-01-01

    Marfan syndrome (MFS) is a hereditary disorder of the connective tissue that causes life-threatening aortic aneurysm, which initiates at the aortic root and can progress into the ascending portion. However, analysis of ascending aorta reactivity in animal models of MFS has remained elusive. Epidemiologic evidence suggests that although MFS is equally prevalent in men and women, men are at a higher risk of aortic complications than non-pregnant women. Nevertheless, there is no experimental evidence to support this hypothesis. The aim of this study was to explore whether there are regional and sex differences in the thoracic aorta function of mice heterozygous for the fibrillin 1 ( Fbn1 ) allele encoding a missense mutation ( Fbn1 C1039G/+ ), the most common class of mutation in MFS. Ascending and descending thoracic aorta reactivity was evaluated by wire myography. Ascending aorta mRNA and protein levels, and elastic fiber integrity were assessed by qRT-PCR, Western blotting, and Verhoeff-Van Gieson histological staining, respectively. MFS differently altered reactivity in the ascending and descending thoracic aorta by either increasing or decreasing phenylephrine contractions, respectively. When mice were separated by sex, contractions to phenylephrine increased progressively from 3 to 6 months of age in MFS ascending aortas of males, whereas contractions in females were unchanged. Endothelium-dependent relaxation was unaltered in the MFS ascending aorta of either sex; an effect related to augmented endothelium-dependent hyperpolarization-type dilations. In MFS males, the non-selective cyclooxygenase (COX) inhibitor indomethacin prevented the MFS-induced enhancement of phenylephrine contractions linked to increased COX-2 expression. In MFS mice of both sexes, the non-selective nitric oxide synthase inhibitor L-NAME revealed negative feedback of nitric oxide on phenylephrine contractions, which was associated with upregulation of eNOS in females. Finally, MFS

  6. Differences in the Thoracic Aorta by Region and Sex in a Murine Model of Marfan Syndrome

    PubMed Central

    Jiménez-Altayó, Francesc; Siegert, Anna-Maria; Bonorino, Fabio; Meirelles, Thayna; Barberà, Laura; Dantas, Ana P.; Vila, Elisabet; Egea, Gustavo

    2017-01-01

    Marfan syndrome (MFS) is a hereditary disorder of the connective tissue that causes life-threatening aortic aneurysm, which initiates at the aortic root and can progress into the ascending portion. However, analysis of ascending aorta reactivity in animal models of MFS has remained elusive. Epidemiologic evidence suggests that although MFS is equally prevalent in men and women, men are at a higher risk of aortic complications than non-pregnant women. Nevertheless, there is no experimental evidence to support this hypothesis. The aim of this study was to explore whether there are regional and sex differences in the thoracic aorta function of mice heterozygous for the fibrillin 1 (Fbn1) allele encoding a missense mutation (Fbn1C1039G/+), the most common class of mutation in MFS. Ascending and descending thoracic aorta reactivity was evaluated by wire myography. Ascending aorta mRNA and protein levels, and elastic fiber integrity were assessed by qRT-PCR, Western blotting, and Verhoeff-Van Gieson histological staining, respectively. MFS differently altered reactivity in the ascending and descending thoracic aorta by either increasing or decreasing phenylephrine contractions, respectively. When mice were separated by sex, contractions to phenylephrine increased progressively from 3 to 6 months of age in MFS ascending aortas of males, whereas contractions in females were unchanged. Endothelium-dependent relaxation was unaltered in the MFS ascending aorta of either sex; an effect related to augmented endothelium-dependent hyperpolarization-type dilations. In MFS males, the non-selective cyclooxygenase (COX) inhibitor indomethacin prevented the MFS-induced enhancement of phenylephrine contractions linked to increased COX-2 expression. In MFS mice of both sexes, the non-selective nitric oxide synthase inhibitor L-NAME revealed negative feedback of nitric oxide on phenylephrine contractions, which was associated with upregulation of eNOS in females. Finally, MFS ascending

  7. Natural Occurrence and Characterization of Two Internal Ribosome Entry Site Elements in a Novel Virus, Canine Picodicistrovirus, in the Picornavirus-Like Superfamily

    PubMed Central

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Choi, Garnet K. Y.; Huang, Yi; Teng, Jade L. L.; Tsoi, Hoi-Wah; Tse, Herman; Yeung, Man Lung; Chan, Kwok-Hung; Jin, Dong-Yan

    2012-01-01

    Dicistroviridae and Picornaviridae are two phylogenetically related families of positive-sense single-stranded RNA viruses in the picornavirus-like superfamily with similar gene contents but different genome organizations and hosts. In a surveillance study involving 1,472 samples from 368 dogs over a 22-month period, we identified a novel picornavirus-like virus from 47 fecal and urine samples by the use of reverse transcription-PCR (RT-PCR). Sequencing and phylogenetic analysis of three complete genomes revealed that, although it seemed that the virus was most closely related to other picornaviruses, P1, P2, and P3 of the virus possessed very low amino acid identities of <30% to those of all other known picornaviruses and that the amino acid identities between the 3Dpol and 2C of the virus and the RNA-dependent RNA polymerases and helicases of all other picornaviruses were <35%. Distinct from other picornaviruses, the genomes of the virus contain two putative internal ribosome entry sites (IRESs) and two open reading frames, encoding two polyprotein precursors (844 and 1,406 amino acids), separated by an intergenic region (IGR) of 588 bases. A dual-luciferase activity assay using DNA and RNA transfection revealed that both IRESs were functional. Quantitative RT-PCR showed that numbers of viral RNAs ranged from 7.55 × 106 to 1.26 × 109 copies/ml of urine and 1.82 × 106 to 4.97 × 1010 copies/ml of fecal sample. This is the first report of the natural occurrence of two functional IRESs in nondicistroviruses. Based on our results, we have proposed a novel species, canine picodicistrovirus (CPDV), to describe this novel member of the picornavirus-like superfamily, which could represent a novel family of viruses. PMID:22205729

  8. Reference Values for the Pediatric Quality of Life Inventory and the Multidimensional Fatigue Scale in Adolescent Athletes by Sport and Sex.

    PubMed

    Snyder Valier, Alison R; Welch Bacon, Cailee E; Bay, R Curtis; Molzen, Eileen; Lam, Kenneth C; Valovich McLeod, Tamara C

    2017-10-01

    Effective use of patient-rated outcome measures to facilitate optimal patient care requires an understanding of the reference values of these measures within the population of interest. Little is known about reference values for commonly used patient-rated outcome measures in adolescent athletes. To determine reference values for the Pediatric Quality of Life Inventory (PedsQL) and the Multidimensional Fatigue Scale (MFS) in adolescent athletes by sport and sex. Cross-sectional study; Level of evidence, 3. A convenience sample of interscholastic adolescent athletes from 9 sports was used. Participants completed the PedsQL and MFS during one testing session at the start of their sport season. Data were stratified by sport and sex. Dependent variables included the total PedsQL score and the 5 PedsQL subscale scores: physical functioning, psychosocial functioning, emotional functioning, social functioning, and school functioning. Dependent variables for the MFS included 3 subscale scores: general functioning, sleep functioning, and cognitive functioning. Summary statistics were reported for total and subscale scores by sport and sex. Among 3574 males and 1329 female adolescent athletes, the PedsQL scores (100 possible points) generally indicated high levels of health regardless of sport played. Mean PedsQL total and subscales scores ranged from 82.6 to 95.7 for males and 83.9 to 95.2 for females. Mean MFS subscale scores (100 possible points) ranged from 74.2 to 90.9 for males and 72.8 to 87.4 for females. Healthy male and female adolescent athletes reported relatively high levels of health on the PedsQL subscales and total scores regardless of sport; no mean scores were lower than 82.6 points for males or 83.9 points for females. On the MFS, males and females tended to report low effect of general and cognitive fatigue regardless of sport; mean scores were higher than 83.5 points for males and 83.8 points for females. Clinically, athletes who score below the

  9. Applying the method of fundamental solutions to harmonic problems with singular boundary conditions

    NASA Astrophysics Data System (ADS)

    Valtchev, Svilen S.; Alves, Carlos J. S.

    2017-07-01

    The method of fundamental solutions (MFS) is known to produce highly accurate numerical results for elliptic boundary value problems (BVP) with smooth boundary conditions, posed in analytic domains. However, due to the analyticity of the shape functions in its approximation basis, the MFS is usually disregarded when the boundary functions possess singularities. In this work we present a modification of the classical MFS which can be applied for the numerical solution of the Laplace BVP with Dirichlet boundary conditions exhibiting jump discontinuities. In particular, a set of harmonic functions with discontinuous boundary traces is added to the MFS basis. The accuracy of the proposed method is compared with the results form the classical MFS.

  10. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing.

    PubMed

    Anantharaman, Vivek; Makarova, Kira S; Burroughs, A Maxwell; Koonin, Eugene V; Aravind, L

    2013-06-15

    The major role of enzymatic toxins that target nucleic acids in biological conflicts at all levels has become increasingly apparent thanks in large part to the advances of comparative genomics. Typically, toxins evolve rapidly hampering the identification of these proteins by sequence analysis. Here we analyze an unexpectedly widespread superfamily of toxin domains most of which possess RNase activity. The HEPN superfamily is comprised of all α-helical domains that were first identified as being associated with DNA polymerase β-type nucleotidyltransferases in prokaryotes and animal Sacsin proteins. Using sensitive sequence and structure comparison methods, we vastly extend the HEPN superfamily by identifying numerous novel families and by detecting diverged HEPN domains in several known protein families. The new HEPN families include the RNase LS and LsoA catalytic domains, KEN domains (e.g. RNaseL and Ire1) and the RNase domains of RloC and PrrC. The majority of HEPN domains contain conserved motifs that constitute a metal-independent endoRNase active site. Some HEPN domains lacking this motif probably function as non-catalytic RNA-binding domains, such as in the case of the mannitol repressor MtlR. Our analysis shows that HEPN domains function as toxins that are shared by numerous systems implicated in intra-genomic, inter-genomic and intra-organismal conflicts across the three domains of cellular life. In prokaryotes HEPN domains are essential components of numerous toxin-antitoxin (TA) and abortive infection (Abi) systems and in addition are tightly associated with many restriction-modification (R-M) and CRISPR-Cas systems, and occasionally with other defense systems such as Pgl and Ter. We present evidence of multiple modes of action of HEPN domains in these systems, which include direct attack on viral RNAs (e.g. LsoA and RNase LS) in conjunction with other RNase domains (e.g. a novel RNase H fold domain, NamA), suicidal or dormancy-inducing attack on self

  11. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing

    PubMed Central

    2013-01-01

    Background The major role of enzymatic toxins that target nucleic acids in biological conflicts at all levels has become increasingly apparent thanks in large part to the advances of comparative genomics. Typically, toxins evolve rapidly hampering the identification of these proteins by sequence analysis. Here we analyze an unexpectedly widespread superfamily of toxin domains most of which possess RNase activity. Results The HEPN superfamily is comprised of all α-helical domains that were first identified as being associated with DNA polymerase β-type nucleotidyltransferases in prokaryotes and animal Sacsin proteins. Using sensitive sequence and structure comparison methods, we vastly extend the HEPN superfamily by identifying numerous novel families and by detecting diverged HEPN domains in several known protein families. The new HEPN families include the RNase LS and LsoA catalytic domains, KEN domains (e.g. RNaseL and Ire1) and the RNase domains of RloC and PrrC. The majority of HEPN domains contain conserved motifs that constitute a metal-independent endoRNase active site. Some HEPN domains lacking this motif probably function as non-catalytic RNA-binding domains, such as in the case of the mannitol repressor MtlR. Our analysis shows that HEPN domains function as toxins that are shared by numerous systems implicated in intra-genomic, inter-genomic and intra-organismal conflicts across the three domains of cellular life. In prokaryotes HEPN domains are essential components of numerous toxin-antitoxin (TA) and abortive infection (Abi) systems and in addition are tightly associated with many restriction-modification (R-M) and CRISPR-Cas systems, and occasionally with other defense systems such as Pgl and Ter. We present evidence of multiple modes of action of HEPN domains in these systems, which include direct attack on viral RNAs (e.g. LsoA and RNase LS) in conjunction with other RNase domains (e.g. a novel RNase H fold domain, NamA), suicidal or dormancy

  12. Age Differences in Axial Length, Corneal Curvature, and Corneal Astigmatism in Marfan Syndrome with Ectopia Lentis

    PubMed Central

    Jing, Qinghe; Tang, Yating; Qian, Dongjin

    2018-01-01

    Purpose To investigate the differences in axial length, corneal curvature, and corneal astigmatism with age in patients with Marfan syndrome (MFS) and ectopia lentis. Methods A retrospective case series study was conducted. MFS patients with ectopia lentis were divided into groups according to age. Axial length, corneal curvature, and corneal astigmatism were measured. Results This study included 114 MFS patients (215 eyes) with a mean age of 19.0 ± 13.9 years. Axial length differed significantly across age groups in MFS patients (P < 0.001), whereas corneal curvature did not (P = 0.767). Corneal astigmatism was statistically significant throughout the MFS cohort (P = 0.009), but no significant difference was found in young MFS patients (P = 0.838). With increasing age, the orientation of the corneal astigmatism changed from with-the-rule astigmatism to against-the-rule or oblique astigmatism (P < 0.001). A linear correlation analysis showed weak correlations between age and axial length for both eyes and with corneal astigmatism for the left eye, but there was no correlation between age and corneal curvature. Conclusions In MFS, axial length varies with age, corneal curvature remains stable, and corneal astigmatism is higher in young patients and tends to shift toward against-the-rule or oblique astigmatism. Therefore, it is important to consider age when diagnosing MFS with ocular biometric data. PMID:29854424

  13. Myxofibrosarcoma primary cultures: molecular and pharmacological profile

    PubMed Central

    De Vita, Alessandro; Recine, Federica; Mercatali, Laura; Miserocchi, Giacomo; Liverani, Chiara; Spadazzi, Chiara; Casadei, Roberto; Bongiovanni, Alberto; Pieri, Federica; Riva, Nada; Amadori, Dino; Ibrahim, Toni

    2017-01-01

    Background: Myxofibrosarcoma (MFS), formerly considered as a myxoid variant of malignant fibrous histiocytoma, is the most common sarcoma of the extremities in adults and is characterized by a high frequency of local recurrence. The clinical behavior of MFS is unpredictable and the efficacy of chemotherapy is still not well documented. Furthermore, given the relatively recent recognition of MFS as a distinct pathologic entity its cellular and molecular biology has still not been extensively studied in patient-derived preclinical models. We examined the molecular biology and treatment outcomes of high-grade, patient-derived MFS primary cultures. Methods: A total of three patient-derived MFS primary cultures were analyzed. We evaluated the role of CD109 expression and also looked for a correlation between transforming growth factor-beta (TGF-β) expression and sensitivity of the primary cultures to different drugs. Results: CD109 was a promising marker for the identification of more aggressive high-grade MFS and a potential therapeutic target. The results also highlighted the potential role of TGF-β in chemoresistance. Pharmacological analysis confirmed the sensitivity of the cultures to chemotherapy. The most active treatments were epirubicin alone and epirubicin in combination with ifosfamide, the latter representing the current standard of care for soft tissue sarcomas (STSs), including MFS. Conclusions: Our results provide a starting point for further research aimed at improving the management of MFS patients undergoing chemotherapy. PMID:29449896

  14. Understanding Facilitation: Theory and Principles.

    ERIC Educational Resources Information Center

    Hogan, Christine

    This book introduces newcomers to the concept of facilitation, and it presents a critical analysis of established and current theory on facilitation for existing practitioners. The following are among the topics discussed: (1) emergence of the field of facilitation; (2) development of facilitation in management; (3) development of facilitation in…

  15. Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling.

    PubMed

    Ersoy, Baran A; Tarun, Akansha; D'Aquino, Katharine; Hancer, Nancy J; Ukomadu, Chinweike; White, Morris F; Michel, Thomas; Manning, Brendan D; Cohen, David E

    2013-07-30

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenced by insulin-independent IRS2 activation after knockdown, genetic ablation, or chemical inhibition of PC-TP. In addition, IRS2 was activated after knockdown of THEM2, providing support for a role for the interaction of PC-TP with THEM2 in suppressing insulin signaling. Additionally, we showed that PC-TP bound to tuberous sclerosis complex 2 (TSC2) and stabilized the components of the TSC1-TSC2 complex, which functions to inhibit mTORC1. Preventing phosphatidylcholine from binding to PC-TP disrupted interactions of PC-TP with THEM2 and TSC2, and disruption of the PC-TP-THEM2 complex was associated with increased activation of both IRS2 and mTORC1. In livers of mice with genetic ablation of PC-TP or that had been treated with a PC-TP inhibitor, steady-state amounts of IRS2 were increased, whereas those of TSC2 were decreased. These findings reveal a phospholipid-dependent mechanism that suppresses insulin signaling downstream of its receptor.

  16. Phosphatidylcholine Transfer Protein Interacts with Thioesterase Superfamily Member 2 to Attenuate Insulin Signaling

    PubMed Central

    Ersoy, Baran A.; Tarun, Akansha; D’Aquino, Katharine; Hancer, Nancy J.; Ukomadu, Chinweike; White, Morris F.; Michel, Thomas; Manning, Brendan D.; Cohen, David E.

    2014-01-01

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenced by insulin-independent IRS2 activation following knockdown, genetic ablation, or chemical inhibition of PC-TP. In addition, IRS2 was activated after knockdown of THEM2, providing support for a role for the interaction of PC-TP with THEM2 in suppressing insulin signaling. Additionally, we showed that PC-TP bound to tuberous sclerosis complex 2 (TSC2) and stabilized the components of the TSC1-TSC2 complex, which functions to inhibit mTORC1. Preventing phosphatidylcholine from binding to PC-TP disrupted interactions of PC-TP with THEM2 and TSC2, and disruption of the PC-TP–THEM2 complex was associated with increased activation of both IRS2 and mTORC1. In livers of mice with genetic ablation of PC-TP or that had been treated with a PC-TP inhibitor, steady-state amounts of IRS2 were increased, whereas those of TSC2 were decreased. These findings reveal a phospholipid-dependent mechanism that suppresses insulin signaling downstream of its receptor. PMID:23901139

  17. Tuning magnetofluidic spreading in microchannels

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomeng; Varma, V. B.; Wang, Z. P.; Ramanujan, R. V.

    2015-12-01

    Magnetofluidic spreading (MFS) is a phenomenon in which a uniform magnetic field is used to induce spreading of a ferrofluid core cladded by diamagnetic fluidic streams in a three-stream channel. Applications of MFS include micromixing, cell sorting and novel microfluidic lab-on-a-chip design. However, the relative importance of the parameters which govern MFS is still unclear, leading to non-optimal control of MFS. Hence, in this work, the effect of various key parameters on MFS was experimentally and numerically studied. Our multi-physics model, which combines magnetic and fluidic analysis, showed excellent agreement between theory and experiment. It was found that spreading was mainly due to cross-sectional convection induced by magnetic forces, and can be enhanced by tuning various parameters. Smaller flow rate ratio, higher magnetic field, higher core stream or lower cladding stream dynamic viscosity, and larger magnetic particle size can increase MFS. These results can be used to tune magnetofluidic spreading in microchannels.

  18. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    PubMed Central

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-01-01

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. This article was reviewed by Eugene Koonin and Mark Ragan. PMID:18834537

  19. A membrane film sensor with encapsulated fluorescent dyes towards express freshness monitoring of packaged food.

    PubMed

    Kiryukhin, Maxim V; Lau, Hooi Hong; Goh, Seok Hong; Teh, Cathleen; Korzh, Vladimir; Sadovoy, Anton

    2018-05-15

    A new Membrane Film Sensor (MFS) has been developed to measure pH of fluids. MFS comprises a polyelectrolyte multilayer film with uniformly distributed compartments (microchambers) where a fluorescent sensing dye is encapsulated. Fabricated film is sealed onto a polyethylene film for a future use. MFS was applied to report changes in golden pomfret fillet upon its storage at 5 °C. MFS pH readings were correlated to bacteriological analysis of fish samples. A hike in pH of fish juices happens after 10 days of storage signaling bacterial spoilage of fish. The design of developed MFS allows easy integration with transparent packaging materials for future development of "SMART" packaging sensing food freshness. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Directed Evolution of a Thermostable Quorum-quenching Lactonase from the Amidohydrolase Superfamily*

    PubMed Central

    Chow, Jeng Yeong; Xue, Bo; Lee, Kang Hao; Tung, Alvin; Wu, Long; Robinson, Robert C.; Yew, Wen Shan

    2010-01-01

    A thermostable quorum-quenching lactonase from Geobacillus kaustophilus HTA426 (GI: 56420041) was used as an initial template for in vitro directed evolution experiments. This enzyme belongs to the phosphotriesterase-like lactonase (PLL) group of enzymes within the amidohydrolase superfamily that hydrolyze N-acylhomoserine lactones (AHLs) that are involved in virulence pathways of quorum-sensing pathogenic bacteria. Here we have determined the N-butyryl-l-homoserine lactone-liganded structure of the catalytically inactive D266N mutant of this enzyme to a resolution of 1.6 Å. Using a tunable, bioluminescence-based quorum-quenching molecular circuit, the catalytic efficiency was enhanced, and the AHL substrate range increased through two point mutations on the loops at the C-terminal ends of the third and seventh β-strands. This E101N/R230I mutant had an increased value of kcat/Km of 72-fold toward 3-oxo-N-dodecanoyl-l-homoserine lactone. The evolved mutant also exhibited lactonase activity toward N-butyryl-l-homoserine lactone, an AHL that was previously not hydrolyzed by the wild-type enzyme. Both the purified wild-type and mutant enzymes contain a mixture of zinc and iron and are colored purple and brown, respectively, at high concentrations. The origin of this coloration is suggested to be because of a charge transfer complex involving the β-cation and Tyr-99 within the enzyme active site. Modulation of the charge transfer complex alters the lactonase activity of the mutant enzymes and is reflected in enzyme coloration changes. We attribute the observed enhancement in catalytic reactivity of the evolved enzyme to favorable modulations of the active site architecture toward productive geometries required for chemical catalysis. PMID:20980257

  1. Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily.

    PubMed

    Chow, Jeng Yeong; Xue, Bo; Lee, Kang Hao; Tung, Alvin; Wu, Long; Robinson, Robert C; Yew, Wen Shan

    2010-12-24

    A thermostable quorum-quenching lactonase from Geobacillus kaustophilus HTA426 (GI: 56420041) was used as an initial template for in vitro directed evolution experiments. This enzyme belongs to the phosphotriesterase-like lactonase (PLL) group of enzymes within the amidohydrolase superfamily that hydrolyze N-acylhomoserine lactones (AHLs) that are involved in virulence pathways of quorum-sensing pathogenic bacteria. Here we have determined the N-butyryl-L-homoserine lactone-liganded structure of the catalytically inactive D266N mutant of this enzyme to a resolution of 1.6 Å. Using a tunable, bioluminescence-based quorum-quenching molecular circuit, the catalytic efficiency was enhanced, and the AHL substrate range increased through two point mutations on the loops at the C-terminal ends of the third and seventh β-strands. This E101N/R230I mutant had an increased value of k(cat)/K(m) of 72-fold toward 3-oxo-N-dodecanoyl-L-homoserine lactone. The evolved mutant also exhibited lactonase activity toward N-butyryl-L-homoserine lactone, an AHL that was previously not hydrolyzed by the wild-type enzyme. Both the purified wild-type and mutant enzymes contain a mixture of zinc and iron and are colored purple and brown, respectively, at high concentrations. The origin of this coloration is suggested to be because of a charge transfer complex involving the β-cation and Tyr-99 within the enzyme active site. Modulation of the charge transfer complex alters the lactonase activity of the mutant enzymes and is reflected in enzyme coloration changes. We attribute the observed enhancement in catalytic reactivity of the evolved enzyme to favorable modulations of the active site architecture toward productive geometries required for chemical catalysis.

  2. Mechanism of One-Way Traffic of Hexameric Phi29 DNA Packaging Motor with Four Electropositive Relaying Layers Facilitating Antiparallel Revolution

    PubMed Central

    2013-01-01

    The importance of nanomotors in nanotechnology is akin to that of mechanical engines to daily life. The AAA+ superfamily is a class of nanomotors performing various functions. Their hexagonal arrangement facilitates bottom-up assembly for stable structures. The bacteriophage phi29 DNA translocation motor contains three coaxial rings: a dodecamer channel, a hexameric ATPase ring, and a hexameric pRNA ring. The viral DNA packaging motor has been believed to be a rotational machine. However, we discovered a revolution mechanism without rotation. By analogy, the earth revolves around the sun while rotating on its own axis. One-way traffic of dsDNA translocation is facilitated by five factors: (1) ATPase changes its conformation to revolve dsDNA within a hexameric channel in one direction; (2) the 30° tilt of the channel subunits causes an antiparallel arrangement between two helices of dsDNA and channel wall to advance one-way translocation; (3) unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal; (4) 5′–3′ single-direction movement of one DNA strand along the channel wall ensures single direction; and (5) four electropositive layers interact with one strand of the electronegative dsDNA phosphate backbone, resulting in four relaying transitional pauses during translocation. The discovery of a riding system along one strand provides a motion nanosystem for cargo transportation and a tool for studying force generation without coiling, friction, and torque. The revolution of dsDNA among 12 subunits offers a series of recognition sites on the DNA backbone to provide additional spatial variables for nucleotide discrimination for sensing applications. PMID:23510192

  3. Facilitated versus Non-Facilitated Online Case Discussions: Comparing Differences in Problem Space Coverage

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Koehler, Adrie A.

    2015-01-01

    The facilitator plays a key role in guiding students' efforts during case discussions. However, few studies have compared differences in learning outcomes for students participating in facilitated versus non-facilitated discussions. In this research, we used "problem space coverage" as a learning measure to compare outcomes between…

  4. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  5. A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans.

    PubMed

    Chen, Chun-Chieh G; Simard, Martin J; Tabara, Hiroaki; Brownell, Daniel R; McCollough, Jennifer A; Mello, Craig C

    2005-02-22

    RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.

  6. The X-ray Crystallographic Structure and Activity Analysis of a Pseudomonas-Specific Subfamily of the HAD Enzyme Superfamily Evidences a Novel Biochemical Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisach,E.; Wang, L.; Burroughs, A.

    2008-01-01

    The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved Rossmanniod core domain and a C1-type cap domain. Other members of this family do not possess a cap domain and because the cap domain of phosphonatase plays an important role in active site desolvation and catalysis, the function of the capless family members must be unique. A representative of the capless subfamily, PSPTO{_}2114, from the plant pathogenmore » Pseudomonas syringae, was targeted for catalytic activity and structure analyses. The X-ray structure of PSPTO{_}2114 reveals a capless homodimer that conserves some but not all of the intersubunit contacts contributed by the core domains of the phosphonatase homodimer. The region of the PSPTO{_}2114 that corresponds to the catalytic scaffold of phosphonatase (and other HAD phosphotransfereases) positions amino acid residues that are ill suited for Mg+2 cofactor binding and mediation of phosphoryl group transfer between donor and acceptor substrates. The absence of phosphotransferase activity in PSPTO{_}2114 was confirmed by kinetic assays. To explore PSPTO{_}2114 function, the conservation of sequence motifs extending outside of the HADSF catalytic scaffold was examined. The stringently conserved residues among PSPTO{_}2114 homologs were mapped onto the PSPTO{_}2114 three-dimensional structure to identify a surface region unique to the family members that do not possess a cap domain. The hypothesis that this region is used in protein-protein recognition is explored to define, for the first time, HADSF proteins which have acquired a function other than that of a catalyst. Proteins 2008.« less

  7. Cardiovascular outcomes of pregnancy in Marfan's syndrome patients: A literature review.

    PubMed

    Kim, So Yeon; Wolfe, Diana S; Taub, Cynthia C

    2018-03-01

    Pregnancy in patients with Marfan's syndrome (MFS) carries an increased risk of cardiovascular complications, resulting in increased maternal and fetal mortality and morbidity. Literature on MFS pregnant patients is relatively sparse, and there has yet to be a concrete consensus on the management of this unique patient population. The purpose of our paper is to provide a literature review of case reports and studies on MFS during pregnancy (published between 2005 and 2015) and to explore cardiovascular outcomes of patients with MFS. Of the 852 women in our review, there were 1112 pregnancies, with an aortic dissection rate of 7.9% and mortality of 1.2%. Data demonstrated a trend that patients whose aortic diameter ≥40 mm had a greater rate of dissection than MFS patients whose aortic diameter <40 mm (Fisher's exact test, P = .0504). Fetal outcome included a 5.6% mortality rate and 41% of births were cesarean deliveries and of those reported, 75% secondary to cardiac emergencies. Patients with MFS, especially those whose initial aortic diameters ≥40 mm, planning a pregnancy or currently pregnant should be carefully counseled about the maternal and fetal risks throughout pregnancy. MFS patients whose aortic diameters ≥40 mm should be advised to ideally await pregnancy until prophylactic aortic surgery. As MFS varies in its phenotypic expression, each patient's risk of adverse cardiac events should be assessed individually through a joint Maternal Fetal Medicine and Cardiology Center. © 2017 Wiley Periodicals, Inc.

  8. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

    2014-02-01

    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  9. Vinorine synthase from Rauvolfia: the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily.

    PubMed

    Ma, Xueyan; Koepke, Juergen; Bayer, Anja; Linhard, Verena; Fritzsch, Günter; Zhang, Bin; Michel, Hartmut; Stöckigt, Joachim

    2004-09-01

    Crystals of vinorine synthase (VS) from medicinal plant Rauvolfia serpentina expressed in Escherichia coli have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. The enzyme is involved in the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure of a member of this enzyme family is known. The crystals belong to the space group P2(1)2(1)2(1) with cell dimensions of a=82.3 A, b=89.6 A and c=136.2 A. Under cryoconditions (120 K), a complete data set up to 2.8 A was collected at a synchrotron source.

  10. Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma

    PubMed Central

    Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula

    2015-01-01

    Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF

  11. Novel members of the adipokinetic hormone family in beetles of the superfamily Scarabaeoidea.

    PubMed

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2016-12-01

    Eight beetle species of the superfamily Scarabaeoidea were investigated with respect to peptides belonging to the adipokinetic hormone (AKH) family in their neurohemal organs, the corpora cardiaca (CC). The following beetle families are represented: Scarabaeidae, Lucanidae, and Geotrupidae. AKH peptides were identified through a heterospecific trehalose-mobilizing bioassay and by sequence analyses, using liquid chromatography coupled to positive electrospray mass spectrometry (LC-ESI-MS) and analysis of the tandem MS 2 spectra obtained by collision-induced dissociation. All the beetle species have octapeptide AKHs; some have two AKHs, while others have only one. Novel AKH members were found in Euoniticellus intermedius and Circellium bacchus (family Scarabaeidae), as well as in Dorcus parallelipipedus (family Lucanidae). Two species of the family Geotrupidae and two species of the Scarabaeidae subfamily Cetoniinae contain one known AKH peptide, Melme-CC, while E. intermedius produces a novel peptide code named Euoin-AKH: pEINFTTGWamide. Two AKH peptides were each identified in CC of C. bacchus and D. parallelipipedus: the novel Cirba-AKH: pEFNFSAGWamide and the known peptide, Scade-CC-I in the former, and the novel Dorpa-AKH: pEVNYSPVW amide and the known peptide, Melme-CC in the latter. Kheper bonelli (subfamily Scarabaeinae) also has two AKHs, the known Scade-CC-I and Scade-CC-II. All the novel peptides were synthesized and the amino acid sequence assignments were unequivocally confirmed by co-elution of the synthetic peptides with their natural equivalent, and identical MS parameters of the two forms. The novel synthetic peptides are all active in inducing hypertrehalosemia in cockroaches.

  12. Accelerated partial breast irradiation for elderly women with early breast cancer: A compromise between whole breast irradiation and omission of radiotherapy.

    PubMed

    Sumodhee, Shakeel; Levy, Johan; Chamorey, Emmanuel; Lam Cham Kee, Daniel; Chand, Marie-Eve; Gautier, Mathieu; Peyrottes, Isabelle; Barranger, Emmanuel; Hannoun-Levi, Jean-Michel

    Regarding adjuvant radiation therapy making decision for elderly women, Albert (2013) published a nomogram predicting the mastectomy-free survival (MFS) rate with or without adjuvant irradiation. Based on this approach, we proposed to investigate the use of accelerated partial breast irradiation (APBI) vs. whole breast irradiation (WBI) or endocrine therapy alone in elderly low-risk breast cancer patients. For each elderly woman treated by conserving surgery and APBI (multicatheter interstitial high-dose-rate brachytherapy), 5- and 10-year MFS rates were calculated. For each treated patient, using the Albert nomogram, we calculated the estimated MFS rates at 5 and 10 years, with and without WBI. Then, we compared the estimated MFS rates after no irradiation and WBI vs. observed MFS rates after APBI. From 2005 to 2016, 79 patients were treated. Median followup was 96.8 months [68.6-104.9], median age was 77 years [66-89]. Expected 5- and 10-year mastectomy rates calculated with the Albert nomogram without WBI were 2.95% and 7.25%, respectively, leading to a 10-year MFS rate of 92.7%. Expected 5- and 10-year mastectomy rates after WBI were 1.41% and 3.66%, respectively, leading to a 10-year MFS rate of 96.3%. Regarding observed MFS rate, 1 pt (1.3%) experienced a salvage mastectomy. The 10-year MFS rate after APBI was 97.4% vs. 96.3% after WBI (p = 1) and 92.7% after no irradiation (p = 0.27). No toxicity Grade 3 or more was observed. APBI seems to be an attractive compromise between WBI and no irradiation for elderly women with early stage breast cancer as far as local control, quality of life and cost benefit is concerned. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome.

    PubMed

    Oller, Jorge; Méndez-Barbero, Nerea; Ruiz, E Josue; Villahoz, Silvia; Renard, Marjolijn; Canelas, Lizet I; Briones, Ana M; Alberca, Rut; Lozano-Vidal, Noelia; Hurlé, María A; Milewicz, Dianna; Evangelista, Arturo; Salaices, Mercedes; Nistal, J Francisco; Jiménez-Borreguero, Luis Jesús; De Backer, Julie; Campanero, Miguel R; Redondo, Juan Miguel

    2017-02-01

    Heritable thoracic aortic aneurysms and dissections (TAAD), including Marfan syndrome (MFS), currently lack a cure, and causative mutations have been identified for only a fraction of affected families. Here we identify the metalloproteinase ADAMTS1 and inducible nitric oxide synthase (NOS2) as therapeutic targets in individuals with TAAD. We show that Adamts1 is a major mediator of vascular homeostasis, given that genetic haploinsufficiency of Adamts1 in mice causes TAAD similar to MFS. Aortic nitric oxide and Nos2 levels were higher in Adamts1-deficient mice and in a mouse model of MFS (hereafter referred to as MFS mice), and Nos2 inactivation protected both types of mice from aortic pathology. Pharmacological inhibition of Nos2 rapidly reversed aortic dilation and medial degeneration in young Adamts1-deficient mice and in young or old MFS mice. Patients with MFS showed elevated NOS2 and decreased ADAMTS1 protein levels in the aorta. These findings uncover a possible causative role for the ADAMTS1-NOS2 axis in human TAAD and warrant evaluation of NOS2 inhibitors for therapy.

  14. Heterozygous TGFBR2 mutations in Marfan syndrome

    PubMed Central

    Mizuguchi, Takeshi; Collod-Beroud, Gwenaëlle; Akiyama, Takushi; Abifadel, Marianne; Harada, Naoki; Morisaki, Takayuki; Allard, Delphine; Varret, Mathilde; Claustres, Mireille; Morisaki, Hiroko; Ihara, Makoto; Kinoshita, Akira; Yoshiura, Koh-ichiro; Junien, Claudine; Kajii, Tadashi; Jondeau, Guillaume; Ohta, Tohru; Kishino, Tatsuya; Furukawa, Yoichi; Nakamura, Yusuke; Niikawa, Norio; Boileau, Catherine; Matsumoto, Naomichi

    2004-01-01

    Marfan syndrome (MFS) is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton, and cardiovascular systems and associated with defects in the fibrillin gene (FBN1) at 15q21.1 1. We previously mapped the second locus for MFS (MFS type 2, MFS2, OMIM *154705), at 3p24.2-p25 in a large French family (MS1)2. Identification of a 3p24.1 chromosomal breakpoint disrupting the TGF-beta receptor 2 gene (TGFBR2) in a Japanese MFS patient led us to consider TGFBR2 as the MSF2 gene. We found a Q508Q mutation of TGFBR2 that resulted in abnormal splicing and segregated with MFS2 in MS1. Three other missense mutations were found in four unrelated probands and were shown by luciferase-assays to lead to loss of function of the TGF-β signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders. PMID:15235604

  15. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1.

    PubMed

    Bieber, A J; Snow, P M; Hortsch, M; Patel, N H; Jacobs, J R; Traquina, Z R; Schilling, J; Goodman, C S

    1989-11-03

    Drosophila neuroglian is an integral membrane glycoprotein that is expressed on a variety of cell types in the Drosophila embryo, including expression on a large subset of glial and neuronal cell bodies in the central and peripheral nervous systems and on the fasciculating axons that extend along them. Neuroglian cDNA clones were isolated by expression cloning. cDNA sequence analysis reveals that neuroglian is a member of the immunoglobulin superfamily. The extracellular portion of the protein consists of six immunoglobulin C2-type domains followed by five fibronectin type III domains. Neuroglian is closely related to the immunoglobulin-like vertebrate neural adhesion molecules and, among them, shows most extensive homology to mouse L1. Its homology to L1 and its embryonic localization suggest that neuroglian may play a role in neural and glial cell adhesion in the developing Drosophila embryo. We report here on the identification of a lethal mutation in the neuroglian gene.

  16. Development and Initial Validation of the Medical Fear Survey-Short Version

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Ebesutani, Chad; Sawchuk, Craig N.; McKay, Dean; Lohr, Jeffrey M.; Kleinknecht, Ronald A.

    2012-01-01

    The present investigation employs item response theory (IRT) to develop an abbreviated Medical Fear Survey (MFS). Application of IRT analyses in Study 1 (n = 931) to the original 50-item MFS resulted in a 25-item shortened version. Examination of the location parameters also resulted in a reduction of the Likert-type scaling of the MFS by removing…

  17. Comparison and evaluation of mitotic figures in oral epithelial dysplasia using crystal violet and Feulgen stain.

    PubMed

    Rao, Roopa S; Patil, Shankargouda; Agarwal, Anveeta

    2014-05-01

    Routine staining procedures often pose a problem in differentiating a mitotic cell from an apoptotic cell, deteriorating the reliability of histology grading. Although various new methods have been recommended for identifying mitotic figures (MFs) in tissues, the time factor and cost makes them less feasible. Thus, an attempt was made to evaluate the efficacy of crystal violet and Feulgen reaction in identifying MFs and also to see for any variation in the number of MFs in various grades of Epithelial dysplasia. 1. Using crystal violet and Feulgen stain in the identification and counting of MFs on diagnosed cases of epithelial dysplasia and thereby to evaluate their efficacy. 2. To evaluate the variation in the number of MFs in various grades of epithelial dysplasia. The study sample includes retrieval of 30 formalin fixed paraffin embedded tissue sections diagnosed for different grades of epithelial dysplasia (WHO grading system, 2005) from the archives, Department of Oral Pathology, MSRDC, Bengaluru. Ten tissue sections each of mild, moderate and severe epithelial dysplasia were stained with H&E, Feulgen and 1% crystal violet stains and the number of MFs were counted. Five cases of cervical carcinoma were taken as control. Stained sections were compared, and data obtained was statistically analyzed using the Kruskal-Wallis test. A significant increase in the number of MFs (p = 0.02) was observed in Feulgen stained sections as compared to H&E stain. Feulgen stain can be considered as a simple, reliable, cost-effective and reproducible method of staining MFs.

  18. Effects of separation of resources on behaviour, physical condition and production of laying hens in furnished cages.

    PubMed

    Shimmura, T; Azuma, T; Eguchi, Y; Uetake, K; Tanaka, T

    2009-01-01

    1. Based on our previous studies, we designed a medium-sized furnished cage with a dust bath and nest box on both sides of the cage (MFS) and evaluated its usefulness. 2. We used 180 White Leghorn layers. At the age of 17 weeks, the birds were distributed at random into one of the 4 cage designs: conventional cages (CC; 6 cages and 5 hens per cage), small (SF; 6 cages and 5 hens per cage) and medium furnished cages (MFL; 6 cages and 10 hens per cage) with a 'localised' dust bath and nest box on one side of the cage, and MFS (6 cages and 10 hens per cage). The total allocation of resources per bird was similar for all furnished cage designs. Behaviour, physical condition and production were measured in each cage. 3. Moving was more frequent in MFS and MFL than in CC and SF. The proportion of hens performing aggressive pecking and severe feather pecking was higher in MFL than CC and SF. These aggressive interactions occurred frequently in the dust bath area in MFL; however, these tendencies were not found in MFS. Egg production and egg mass were lower in MFL than in SF, while the production in MFS was similar to those in CC and SF. MFS hens laid eggs on the cage floor more often than in MFL. 4. In conclusion, these results demonstrate the possible usefulness of MFS. However, some inconsistent results and ways of improving MFS design were also identified.

  19. Discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is a novel biomarker of myxofibrosarcoma invasion identified by global protein expression profiling.

    PubMed

    Kikuta, Kazutaka; Kubota, Daisuke; Yoshida, Akihiko; Qiao, Zhiwei; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Chuman, Hirokazu; Kawai, Akira; Kondo, Tadashi

    2017-09-01

    Myxofibrosarcoma (MFS) is a mesenchymal malignancy characterized by frequent recurrence even after radical wide resection. To optimize therapy for MFS patients, we aimed to identify candidate tissue biomarkers of MFS invasion potential. Invasion characteristics of MFS were evaluated by magnetic resonance imaging and protein expression profiling of primary tumor tissues performed using two-dimensional difference gel electrophoresis (2D-DIGE). Protein expression profiles were compared between invasive and non-invasive tumors surgically resected from 11 patients. Among the 3453 protein spots observed, 59 demonstrated statistically significant difference in intensity (≥2-fold) between invasive and non-invasive tumors (p<0.01 by Wilkoxon test), and were identified by mass spectrometry as 47 individual proteins. Among them, we further focused on discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2), a receptor tyrosine kinase with aberrant expression in malignant tumors. Immunohistochemistry analysis of 21 additional MFS cases revealed that higher DCBLD2 expression was significantly associated with invasive properties of tumor cells. DCBLD2 sensitivity and specificity, and positive and negative predictive values for MFS invasion were 69.2%, 87.5%, 90%, and 63.6%, respectively. The expression level of DCBLD2 was consistent in different portions of tumor tissues. Thus, DCBLD2 expression can be a useful biomarker to evaluate invasive properties of MFS. Further validation studies based on multi-institutional collaboration and comprehensive analysis of DCBLD2 biological functions in MFS are required to confirm its prognostic utility for clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fauna Europaea: Coleoptera 2 (excl. series Elateriformia, Scarabaeiformia, Staphyliniformia and superfamily Curculionoidea)

    PubMed Central

    Alonso Zarazaga, Miguel-Angel; Slipinski, Adam; Nilsson, Anders; Jelínek, Josef; Taglianti, Augusto Vigna; Turco, Federica; Otero, Carlos; Canepari, Claudio; Kral, David; Liberti, Gianfranco; Sama, Gianfranco; Nardi, Gianluca; Löbl, Ivan; Horak, Jan; Kolibac, Jiri; Háva, Jirí; Sapiejewski, Maciej; Jäch, Manfred; Bologna, Marco Alberto; Biondi, Maurizio; Nikitsky, Nikolai B.; Mazzoldi, Paolo; Zahradnik, Petr; Wegrzynowicz, Piotr; Constantin, Robert; Gerstmeier, Roland; Zhantiev, Rustem; Fattorini, Simone; Tomaszewska, Wioletta; Rücker, Wolfgang H.; Vazquez-Albalate, Xavier; Cassola, Fabio; Angelini, Fernando; Johnson, Colin; Schawaller, Wolfgang; Regalin, Renato; Baviera, Cosimo; Rocchi, Saverio; Cianferoni, Fabio; Beenen, Ron; Schmitt, Michael; Sassi, David; Kippenberg, Horst; Zampetti, Marcello Franco; Trizzino, Marco; Chiari, Stefano; Carpaneto, Giuseppe Maria; Sabatelli, Simone

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Coleoptera represent a huge assemblage of holometabolous insects, including as a whole more than 200 recognized families and some 400,000 described species worldwide. Basic information is summarized on their biology, ecology, economic relevance, and estimated number of undescribed species worldwide. Little less than 30,000 species are listed from Europe. The Coleoptera 2 section of the Fauna Europaea database (Archostemata, Myxophaga, Adephaga and Polyphaga excl. the series Elateriformia, Scarabaeiformia, Staphyliniformia and the superfamily Curculionoidea) encompasses 80 families (according to the previously accepted family-level systematic framework) and approximately 13,000 species. Tabulations included a complete list of the families dealt with, the number of species in each, the names of all involved specialists, and, when possible, an estimate of the gaps in terms of total number of species at an European level. A list of some recent useful references is appended. Most families included in the Coleoptera 2 Section have been updated in the most recent release of the Fauna Europaea index, or are ready to be updated as soon as the FaEu data management environment completes its migration from Zoological Museum Amsterdam to Berlin Museum für Naturkunde

  1. Water Quality and Biological Characteristics of the Middle Fork of the Saline River, Arkansas, 2003-06

    USGS Publications Warehouse

    Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.

    2008-01-01

    The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a

  2. Rice Phospholipase A Superfamily: Organization, Phylogenetic and Expression Analysis during Abiotic Stresses and Development

    PubMed Central

    Singh, Amarjeet; Baranwal, Vinay; Shankar, Alka; Kanwar, Poonam; Ranjan, Rajeev; Yadav, Sandeep; Pandey, Amita; Kapoor, Sanjay; Pandey, Girdhar K.

    2012-01-01

    Background Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice. Methodology/Principal Findings A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A1 (PLA1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling. Conclusion/Significance The comprehensive analysis and expression profiling would provide a critical platform for the functional characterization of the candidate PLA genes in crop plants. PMID:22363522

  3. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa. Results Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco. Conclusions Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene

  4. Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine

    PubMed Central

    Bock, Lucy J.; Bonney, Laura C.

    2016-01-01

    ABSTRACT Klebsiella pneumoniae is an opportunistic pathogen that is often difficult to treat due to its multidrug resistance (MDR). We have previously shown that K. pneumoniae strains are able to “adapt” (become more resistant) to the widely used bisbiguanide antiseptic chlorhexidine. Here, we investigated the mechanisms responsible for and the phenotypic consequences of chlorhexidine adaptation, with particular reference to antibiotic cross-resistance. In five of six strains, adaptation to chlorhexidine also led to resistance to the last-resort antibiotic colistin. Here, we show that chlorhexidine adaptation is associated with mutations in the two-component regulator phoPQ and a putative Tet repressor gene (smvR) adjacent to the major facilitator superfamily (MFS) efflux pump gene, smvA. Upregulation of smvA (10- to 27-fold) was confirmed in smvR mutant strains, and this effect and the associated phenotype were suppressed when a wild-type copy of smvR was introduced on plasmid pACYC. Upregulation of phoPQ (5- to 15-fold) and phoPQ-regulated genes, pmrD (6- to 19-fold) and pmrK (18- to 64-fold), was confirmed in phoPQ mutant strains. In contrast, adaptation of K. pneumoniae to colistin did not result in increased chlorhexidine resistance despite the presence of mutations in phoQ and elevated phoPQ, pmrD, and pmrK transcript levels. Insertion of a plasmid containing phoPQ from chlorhexidine-adapted strains into wild-type K. pneumoniae resulted in elevated expression levels of phoPQ, pmrD, and pmrK and increased resistance to colistin, but not chlorhexidine. The potential risk of colistin resistance emerging in K. pneumoniae as a consequence of exposure to chlorhexidine has important clinical implications for infection prevention procedures. PMID:27799211

  5. Proposal to probe quantum nonlocality of Majorana fermions in tunneling experiments

    NASA Astrophysics Data System (ADS)

    Sau, Jay D.; Swingle, Brian; Tewari, Sumanta

    2015-07-01

    Topological Majorana fermion (MF) quasiparticles have been recently suggested to exist in semiconductor quantum wires with proximity induced superconductivity and a Zeeman field. Although the experimentally observed zero bias tunneling peak and a fractional ac-Josephson effect can be taken as necessary signatures of MFs, neither of them constitutes a sufficient "smoking gun" experiment. Since one pair of Majorana fermions share a single conventional fermionic degree of freedom, MFs are in a sense fractionalized excitations. Based on this fractionalization we propose a tunneling experiment that furnishes a nearly unique signature of end state MFs in semiconductor quantum wires. In particular, we show that a "teleportation"-like experiment is not enough to distinguish MFs from pairs of MFs, which are equivalent to conventional zero energy states, but our proposed tunneling experiment, in principle, can make this distinction.

  6. In vitro assessment of the immunity of implantable cardioverter-defibrillators to magnetic fields of 50/60 Hz.

    PubMed

    Katrib, J; Nadi, M; Kourtiche, D; Magne, I; Schmitt, P; Souques, M; Roth, P

    2013-10-01

    Public concern for the compatibility of electromagnetic (EM) sources with active implantable medical devices (AIMD) has prompted the development of new systems that can perform accurate exposure studies. EM field interference with active cardiac implants (e.g. implantable cardioverter-defibrillators (ICDs)) can be critical. This paper describes a magnetic field (MF) exposure system and the method developed for testing the immunity of ICD to continuous-wave MFs. The MFs were created by Helmholtz coils, housed in a Faraday cage. The coils were able to produce highly uniform MFs up to 4000 µT at 50 Hz and 3900 µT at 60 Hz, within the test space. Four ICDs were tested. No dysfunctions were found in the generated MFs. These results confirm that the tested ICDs were immune to low frequency MFs.

  7. Vitamin D Inhibits COX-2 Expression and Inflammatory Response by Targeting Thioesterase Superfamily Member 4*

    PubMed Central

    Wang, Qingsong; He, Yuhu; Shen, Yujun; Zhang, Qianqian; Chen, Di; Zuo, Caojian; Qin, Jing; Wang, Hui; Wang, Junwen; Yu, Ying

    2014-01-01

    Inadequate vitamin D status has been linked to increased risk of type 2 diabetes and cardiovascular disease. Inducible cyclooxygenase (COX) isoform COX-2 has been involved in the pathogenesis of such chronic inflammatory diseases. We found that the active form of vitamin D, 1,25(OH)2D produces dose-dependent inhibition of COX-2 expression in murine macrophages under both basal and LPS-stimulated conditions and suppresses proinflammatory mediators induced by LPS. Administration of 1,25(OH)2D significantly alleviated local inflammation in a carrageenan-induced paw edema mouse model. Strikingly, the phosphorylation of both Akt and its downstream target IκBα in macrophages were markedly suppressed by 1,25(OH)2D in the presence and absence of LPS stimulation through up-regulation of THEM4 (thioesterase superfamily member 4), an Akt modulator protein. Knockdown of both vitamin D receptor and THEM4 attenuated the inhibitory effect of 1,25(OH)2D on COX-2 expression in macrophages. A functional vitamin D-responsive element in the THEM4 promoter was identified by chromatin immunoprecipitation and luciferase reporter assay. Our results indicate that vitamin D restrains macrophage-mediated inflammatory processes by suppressing the Akt/NF-κB/COX-2 pathway, suggesting that vitamin D supplementation might be utilized for adjunctive therapy for inflammatory disease. PMID:24619416

  8. Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian.

    PubMed

    Fusaoka, Eri; Inoue, Takeshi; Mineta, Katsuhiko; Agata, Kiyokazu; Takeuchi, Kosei

    2006-05-01

    Precise wiring and proper remodeling of the neural network are essential for its normal function. The freshwater planarian is an attractive animal in which to study the formation and maintenance of the neural network due to its high regenerative capability and developmental plasticity. Although a recent study revealed that homologs of netrin and its receptors are required for regeneration and maintenance of the planarian central nervous system (CNS), the roles of cell adhesion in the formation and maintenance of the planarian neural network remain poorly understood. In the present study, we found primitive immunoglobulin superfamily cell adhesion molecules (IgCAMs) in a planarian that are homologous to vertebrate neural IgCAMs. We identified planarian orthologs of NCAM, L1CAM, contactin and DSCAM, and designated them DjCAM, DjLCAM, DjCTCAM and DjDSCAM, respectively. We further confirmed that they function as cell adhesion molecules using cell aggregation assays. DjCAM and DjDSCAM were found to be differentially expressed in the CNS. Functional analyses using RNA interference revealed that DjCAM is partly involved in axon formation, and that DjDSCAM plays crucial roles in neuronal cell migration, axon outgrowth, fasciculation and projection.

  9. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less

  10. Facilitating Facilitators to Facilitate, in Problem or Enquiry Based Learning Sessions

    ERIC Educational Resources Information Center

    Coelho, Catherine

    2014-01-01

    Problem based learning (PBL) has been used in dental education over the past 20 years and uses a patient case scenario to stimulate learning in a small group setting, where a trained facilitator does not teach but guides the group to bring about deep contextualized learning, to be empathetic to each other and to encourage fair and equitable…

  11. Does altered aortic flow in marfan syndrome relate to aortic root dilatation?

    PubMed

    Wang, Hung-Hsuan; Chiu, Hsin-Hui; Tseng, Wen-Yih Isaac; Peng, Hsu-Hsia

    2016-08-01

    To examine possible hemodynamic alterations in adolescent to adult Marfan syndrome (MFS) patients with aortic root dilatation. Four-dimensional flow MRI was performed in 20 MFS patients and 12 age-matched normal subjects with a 3T system. The cross-sectional areas of 10 planes along the aorta were segmented for calculating the axial and circumferential wall shear stress (WSSaxial , WSScirc ), oscillatory shear index (OSIaxial , OSIcirc ), and the nonroundness (NR), presenting the asymmetry of segmental WSS. Pearson's correlation analysis was performed to present the correlations between the quantified indices and the body surface area (BSA), aortic root diameter (ARD), and Z score of the ARD. P < 0.05 indicated statistical significance. Patients exhibited lower WSSaxial in the aortic root and the WSScirc in the arch (P < 0.05-0.001). MFS patients exhibited higher OSIaxial and OSIcirc in the sinotubular junction and arch, but lower OSIcirc in the descending aorta (all P < 0.05). The NR values were lower in patients (P < 0.05). The WSSaxial or WSScirc exhibited moderate to strong correlations with BSA, ARD, or Z score (R(2)  = 0.50-0.72) in MFS patients. The significant differences in the quantified indices, which were associated with BSA, ARD, or Z score, in MFS were opposite to previous reports for younger MFS patients, indicating that altered flows in MFS patients may depend on the disease progress. The possible time dependency of hemodynamic alterations in MFS patients strongly suggests that longitudinal follow-up of 4D Flow is needed to comprehend disease progress. J. Magn. Reson. Imaging 2016;44:500-508. © 2016 Wiley Periodicals, Inc.

  12. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome

    PubMed Central

    Uriarte, Juan J.; Meirelles, Thayna; Gorbenko del Blanco, Darya; Nonaka, Paula N.; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  13. Distinct Immunoglobulin Class and Immunoglobulin G Subclass Patterns against Ganglioside GQ1b in Miller Fisher Syndrome following Different Types of Infection

    PubMed Central

    Schwerer, Beatrix; Neisser, Andrea; Bernheimer, Hanno

    1999-01-01

    We studied serum antibodies against gangliosides GQ1b and GM1 in 13 patients with Miller Fisher syndrome (MFS) and in 18 patients with Guillain-Barré syndrome (GBS) with cranial nerve involvement. Anti-GQ1b titers were elevated in all patients with MFS cases (immunoglobulin G [IgG] > IgA, IgM), and in 8 of the 18 with GBS. Lower frequencies of increased anti-GM1 titers were observed in MFS patients (3 of 13), as well as in GBS patients (5 of 18). During the course of MFS, anti-GQ1b titers of all Ig classes decreased within 3 weeks after onset. By contrast, anti-GM1 titers (mainly IgM) transiently increased during the course of MFS in five of six patients, suggesting a nonspecific secondary immune response. In patients with MFS following respiratory infections, IgG was the major anti-GQ1b Ig class (six of six patients) and IgG3 was the major subclass (five of six). In contrast, four of five patients with MFS following gastrointestinal infections showed predominance of anti-GQ1b IgA or IgM over IgG and predominance of the IgG2 subclass; anti-GQ1b IgG (IgG3) prevailed in one patient only. These distinct Ig patterns strongly suggest that different infections may trigger different mechanisms of anti-GQ1b production, such as via T-cell-dependent as opposed to T-cell-independent pathways. Thus, the origin of antibodies against GQ1b in MFS may be determined by the type of infectious agent that precipitates the disease. PMID:10225903

  14. Does altered aortic flow in marfan syndrome relate to aortic root dilatation?

    PubMed Central

    Wang, Hung‐Hsuan; Chiu, Hsin‐Hui; Tseng, Wen‐Yih Isaac

    2016-01-01

    Purpose To examine possible hemodynamic alterations in adolescent to adult Marfan syndrome (MFS) patients with aortic root dilatation. Materials and Methods Four‐dimensional flow MRI was performed in 20 MFS patients and 12 age‐matched normal subjects with a 3T system. The cross‐sectional areas of 10 planes along the aorta were segmented for calculating the axial and circumferential wall shear stress (WSSaxial, WSScirc), oscillatory shear index (OSIaxial, OSIcirc), and the nonroundness (NR), presenting the asymmetry of segmental WSS. Pearson's correlation analysis was performed to present the correlations between the quantified indices and the body surface area (BSA), aortic root diameter (ARD), and Z score of the ARD. P < 0.05 indicated statistical significance. Results Patients exhibited lower WSSaxial in the aortic root and the WSScirc in the arch (P < 0.05–0.001). MFS patients exhibited higher OSIaxial and OSIcirc in the sinotubular junction and arch, but lower OSIcirc in the descending aorta (all P < 0.05). The NR values were lower in patients (P < 0.05). The WSSaxial or WSScirc exhibited moderate to strong correlations with BSA, ARD, or Z score (R2 = 0.50–0.72) in MFS patients. Conclusion The significant differences in the quantified indices, which were associated with BSA, ARD, or Z score, in MFS were opposite to previous reports for younger MFS patients, indicating that altered flows in MFS patients may depend on the disease progress. The possible time dependency of hemodynamic alterations in MFS patients strongly suggests that longitudinal follow‐up of 4D Flow is needed to comprehend disease progress. J. Magn. Reson. Imaging 2016;44:500–508. PMID:26854646

  15. Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls.

    PubMed

    Ryu, J H; Takagi, S; Nagai, R

    1995-04-01

    In mesophyll cells of the aquatic angiosperm Vallisneria gigantea, bundles of microfilaments (MFs) serve as tracks for the rotational streaming of the cytoplasm, which occurs along the two longer side walls and the two shorter end walls. The stationary organization of these bundles has been shown to depend on the association of the bundles with the plasma membrane at the end walls. To identify the sites of such association, the effects of cytochalasin B (CB) on the configuration of the bundles of MFs were examined. In the case of the side walls, MFs were completely disrupted after treatment with CB at 100 micrograms/ml for 24 hours. By contrast, in the case of the end walls, a number of partially disrupted MFs remained even after 48 hours of treatment. After removal of CB, a completely normal arrangement of bundles of MFs was once again evident within 24 hours after a rather complicated process of reassembly. When reassembly had been completed, the direction of cytoplasmic streaming was reversed only in a small fraction of the treated cells, suggesting that bundles of MFs are anchored and stabilized at the end walls of each cell and that the polarity of reorganized bundles and, therefore, the direction of the cytoplasmic streaming is determined in a manner that depends on the original polarity of MFs that remained in spite of the disruptive action of CB. By contrast, the direction of reinitiated cytoplasmic streaming was reversed in 50% of cells in which the bundles of MFs had been completely disrupted by exogenously applied trypsin prior treatment with CB.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. TGFβ Superfamily Members Mediate Androgen Deprivation Therapy-Induced Obese Frailty in Male Mice

    PubMed Central

    Pan, Chunliu; Singh, Shalini; Sahasrabudhe, Deepak M.; Chakkalakal, Joe V.; Krolewski, John J.

    2016-01-01

    First line treatment for recurrent and metastatic prostate cancer is androgen deprivation therapy (ADT). Use of ADT has been increasing in frequency and duration, such that side effects increasingly impact patient quality of life. One of the most significant side effects of ADT is sarcopenia, which leads to a loss of skeletal muscle mass and function, resulting in a clinical disability syndrome known as obese frailty. Using aged mice, we developed a mouse model of ADT-induced sarcopenia that closely resembles the phenotype seen in patients, including loss of skeletal muscle strength, reduced lean muscle mass, and increased adipose tissue. Sarcopenia onset occurred about 6 weeks after castration and was blocked by a soluble receptor (ActRIIB-Fc) that binds multiple TGFβ superfamily members, including myostatin, growth differentiation factor 11, activin A, activin B, and activin AB. Analysis of ligand expression in both gastrocnemius and triceps brachii muscles demonstrates that each of these proteins is induced in response to ADT, in 1 of 3 temporal patterns. Specifically, activin A and activin AB levels increase and decline before onset of strength loss at 6 weeks after castration, and myostatin levels increase coincident with the onset of strength loss and then decline. In contrast, activin B and growth differentiation factor 11 levels increase after the onset of strength loss, 8–10 weeks after castration. The observed patterns of ligand induction may represent differential contributions to the development and/or maintenance of sarcopenia. We hypothesize that some or all of these ligands are targets for therapy to ameliorate ADT-induced sarcopenia in prostate cancer patients. PMID:27611336

  17. Manganese-enhanced magnetic resonance imaging detects mossy fiber sprouting in the pilocarpine model of epilepsy

    PubMed Central

    Malheiros, Jackeline M.; Polli, Roberson S.; Paiva, Fernando F.; Longo, Beatriz M.; Mello, Luiz E.; Silva, Afonso C.; Tannús, Alberto; Covolan, Luciene

    2012-01-01

    Summary Purpose Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese-enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well-established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). Methods To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was co-administered with Pilo in a sub-group of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo-Timm histological labeling of zinc mossy fiber terminals in the dentate gyrus (DG). Key findings Chronically epileptic rats displaying MFS as detected by neo-Timm histology had a hyperintense MEMRI signal in the DG, while chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to non-epileptic control animals. A strong correlation (r = 0.81, P<0.001) was found between MEMRI signal enhancement and MFS. Significance This study shows that MEMRI is an attractive non-invasive method to detect mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy. PMID:22642664

  18. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    PubMed

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  19. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855

  20. Seasonal and clonal variation in cellulose microfibril orientation during cell wall formation of tracheids in Cryptomeria japonica.

    PubMed

    Jyske, Tuula; Fujiwara, Takeshi; Kuroda, Katsushi; Iki, Taiichi; Zhang, Chunhua; Jyske, Tuomas K; Abe, Hisashi

    2014-08-01

    To investigate the biological mechanism by which trees control the changes in microfibril (MF) orientation among secondary cell wall layers of conifer tracheids, we studied seasonal variation in the orientation of newly deposited MFs during tracheid cell wall development in Japanese cedar (Cryptomeria japonica D. Don) trees growing in Central Japan (36°36'N, 140°39'E). Sample blocks were repeatedly collected from four 16-year-old clones of different origins during the growing season of 2010 to investigate the hypotheses that changes in cellulose MF orientation between wall layers exhibited seasonal and clonal differences. The progressive change in the orientation of newly deposited MFs on the primary and secondary cell wall layers of tracheids was detected by field-emission-scanning electron microscopy. Tracheid production and differentiation was studied by light microscopy. We observed a decreasing trend in the orientation of deposited MFs from earlywood to latewood in the S2 and S1 layers, where MFs appeared in a Z-helix. In contrast, no seasonal pattern in the orientation of the MFs in the S-helix was observed. Minor clonal variation was observed in the phenology of tracheid production and differentiation. We concluded that a seasonal decreasing trend in the orientation of the MFs in the Z-helix in S1 and S2 was present, whereas the MFs in other layers exhibited minor random variations. Thus, the orientation of the MFs in S2 was affected by seasonal factors, whereas the MFs in other layers were more intrinsically controlled. The within-ring variations in the MF orientation and thus the resulting average MF angle might also be related to genotypic differences in the tracheid production and differentiation rate. However, our results do not exclude other intrinsic and environmental regulations in the change in MF orientation, which remains a topic for future studies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions

  1. Difficulties in diagnosing Marfan syndrome using current FBN1 databases.

    PubMed

    Groth, Kristian A; Gaustadnes, Mette; Thorsen, Kasper; Østergaard, John R; Jensen, Uffe Birk; Gravholt, Claus H; Andersen, Niels H

    2016-01-01

    The diagnostic criteria of Marfan syndrome (MFS) highlight the importance of a FBN1 mutation test in diagnosing MFS. As genetic sequencing becomes better, cheaper, and more accessible, the expected increase in the number of genetic tests will become evident, resulting in numerous genetic variants that need to be evaluated for disease-causing effects based on database information. The aim of this study was to evaluate genetic variants in four databases and review the relevant literature. We assessed background data on 23 common variants registered in ESP6500 and classified as causing MFS in the Human Gene Mutation Database (HGMD). We evaluated data in four variant databases (HGMD, UMD-FBN1, ClinVar, and UniProt) according to the diagnostic criteria for MFS and compared the results with the classification of each variant in the four databases. None of the 23 variants was clearly associated with MFS, even though all classifications in the databases stated otherwise. A genetic diagnosis of MFS cannot reliably be based on current variant databases because they contain incorrectly interpreted conclusions on variants. Variants must be evaluated by time-consuming review of the background material in the databases and by combining these data with expert knowledge on MFS. This is a major problem because we expect even more genetic test results in the near future as a result of the reduced cost and process time for next-generation sequencing.Genet Med 18 1, 98-102.

  2. Chronobiology of Acute Aortic Dissection in the Marfan Syndrome (from the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions and the International Registry of Acute Aortic Dissection).

    PubMed

    Siddiqi, Hasan K; Luminais, Steven N; Montgomery, Dan; Bossone, Eduardo; Dietz, Harry; Evangelista, Arturo; Isselbacher, Eric; LeMaire, Scott; Manfredini, Roberto; Milewicz, Dianna; Nienaber, Christoph A; Roman, Mary; Sechtem, Udo; Silberbach, Michael; Eagle, Kim A; Pyeritz, Reed E

    2017-03-01

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disease associated with acute aortic dissection (AAD). We used 2 large registries that include patients with MFS to investigate possible trends in the chronobiology of AAD in MFS. We queried the International Registry of Acute Aortic Dissection (IRAD) and the Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC) registry to extract data on all patients with MFS who had suffered an AAD. The group included 257 patients with MFS who suffered an AAD from 1980 to 2012. The chi-square tests were used for statistical testing. Mean subject age at time of AAD was 38 years, and 61% of subjects were men. AAD was more likely in the winter/spring season (November to April) than the other half of the year (57% vs 43%, p = 0.05). Dissections were significantly more likely to occur during the daytime hours, with 65% of dissections occurring from 6 a.m. to 6 p.m. (p = 0.001). Men were more likely to dissect during the daytime hours (6 a.m. to 6 p.m.) than women (74% vs 51%, p = 0.01). These insights offer a glimpse of the times of greatest vulnerability for patients with MFS who suffer from this catastrophic event. In conclusion, the chronobiology of AAD in MFS reflects that of AAD in the general population. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Prognostic significance of ligands belonging to tumour necrosis factor superfamily in acute lymphoblastic leukaemia.

    PubMed

    Bolkun, L; Lemancewicz, D; Jablonska, E; Szumowska, A; Bolkun-Skornicka, U; Moniuszko, M; Dzieciol, J; Kloczko, J

    2015-03-01

    Altered activities of ligands belonging to tumour necrosis factor (TNF) superfamily, namely B-cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and apoptosis inducing ligand (TRAIL) were demonstrated in several haematological diseases including acute lymphoblastic leukaemia (ALL). BAFF, APRIL and TRAIL provide crucial survival signals to immature, naive and activated B cells. These ligands are capable of activating a broad spectrum of intracellular signalling cascades that can either induce apoptosis or protect from programmed cell death. BAFF and APRIL, which can directly activate the NF-κB pathway, have been identified as crucial survival factors for ALL cells. Here, we have analyzed serum BAFF, APRIL and TRAIL concentrations in 48 patients with newly diagnosed ALL and 44 healthy volunteers. The levels of APRIL and BAFF were significantly higher in ALL patients as compared to healthy volunteers. In contrast, concentrations of TRAIL were significantly lower in ALL patients. Moreover, following induction, the levels of APRIL, but not BAFF or TRAIL, were significantly lower in a group of patients with complete remission (CR) as compared to non-respondent (NR) ALL patients. Furthermore, we demonstrated statistically significant differences in concentrations of APRIL between CR MRD-negative and CR, MRD-positive ALL patients. Notably detection of higher concentrations of APRIL was associated with shorter leukaemia-free survival and overall survival. Altogether, our data indicate that APRIL can play an important role in the pathogenesis of ALL and the measurement of APRIL levels can improve prognostication in ALL patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Developing facilitation skills--a narrative.

    PubMed

    Newton, Jennifer M

    2003-07-01

    Effective facilitation has been identified in the literature as one of three elements, along with context and evidence, that have a dynamic and coexisting relationship to enable the successful uptake of evidence into practice. This paper presents an overview of the concept of facilitation within the context of practice development, ahead of a personal and professional reflective account of a 'developing facilitator'. In the summer of 2001, the author was instrumental in organising the first Practice Development School in Melbourne. Thrown in at the deep end, she found herself co-facilitating with an experienced practice developer from the United Kingdom. Having never facilitated in the arena of an action learning group, nor worked in the field of practice development, there was initially a sense of impending overload and drowning in the new knowledge and skills that needed to be acquired. Drawing upon the work of narrative inquiry the author shares her experiences in the anticipation that in telling her story it will assist others in their journey of becoming a facilitator.

  5. Spreading of a ferrofluid core in three-stream micromixer channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaomeng; Varma, V. B.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg

    2015-05-15

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flowmore » rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.« less

  6. Topological superfluids with finite-momentum pairing and Majorana fermions.

    PubMed

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  7. Spreading of a ferrofluid core in three-stream micromixer channels

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomeng; Varma, V. B.; Xia, Huan Ming; Wang, Z. P.; Ramanujan, R. V.

    2015-05-01

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.

  8. Medical students' and facilitators' experiences of an Early Professional Contact course: active and motivated students, strained facilitators.

    PubMed

    von Below, Bernhard; Hellquist, Gunilla; Rödjer, Stig; Gunnarsson, Ronny; Björkelund, Cecilia; Wahlqvist, Mats

    2008-12-02

    Today, medical students are introduced to patient contact, communication skills, and clinical examination in the preclinical years of the curriculum with the purpose of gaining clinical experience. These courses are often evaluated from the student perspective. Reports with an additional emphasis on the facilitator perspective are scarce. According to constructive alignment, an influential concept from research in higher education, the learning climate between students and teachers is also of great importance. In this paper, we approach the learning climate by studying both students' and facilitators' course experiences.In 2001, a new "Early Professional Contact" longitudinal strand through term 1-4, was introduced at the Sahlgrenska Academy, University of Gothenburg, Sweden. General practitioners and hospital specialists were facilitators.The aim of this study was to assess and analyse students' and clinical facilitators' experiences of the Early Professional Contact course and to illuminate facilitators' working conditions. Inspired by a Swedish adaptation of the Course Experience Questionnaire, an Early Professional Contact Questionnaire was constructed. In 2003, on the completion of the first longitudinal strand, a student and facilitator version was distributed to 86 students and 21 facilitators. In the analysis, both Chi-square and the Mann-Whitney tests were used. Sixty students (70%) and 15 facilitators (71%) completed the questionnaire. Both students and facilitators were satisfied with the course. Students reported gaining iiration for their future work as doctors along with increased confidence in meeting patients. They also reported increased motivation for biomedical studies. Differences in attitudes between facilitators and students were found. Facilitators experienced a greater workload, less reasonable demands and less support, than students. In this project, a new Early Professional Contact course was analysed from both student and facilitator

  9. Pregnancy and Marfan syndrome

    PubMed Central

    Goland, Sorel

    2017-01-01

    Pregnancy in women with Marfan syndrome (MFS) presents challenges to the clinician and the patient due to the increased incidence of maternal complications and involvement of the fetus, and deserves special consideration. The leading cause of morbidity and mortality in MFS is aortic dissection. This article presents an extensive review of available clinical information and provides recommendations for the management of patients with MFS during pregnancy. PMID:29270376

  10. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K+/Na+ Ratio, and Antioxidant Machinery

    PubMed Central

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K.; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil. PMID:27313584

  11. Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in Caenorhabditis elegans

    PubMed Central

    Pandey, Pratima; Bhardwaj, Ashwani; Babu, Kavita

    2017-01-01

    Perturbations in synaptic function could affect the normal behavior of an animal, making it important to understand the regulatory mechanisms of synaptic signaling. Previous work has shown that in Caenorhabditis elegans an immunoglobulin superfamily protein, RIG-3, functions in presynaptic neurons to maintain normal acetylcholine receptor levels at the neuromuscular junction (NMJ). In this study, we elucidate the molecular and functional mechanism of RIG-3. We demonstrate by genetic and BiFC (Bi-molecular Fluorescence Complementation) assays that presynaptic RIG-3 functions by directly interacting with the immunoglobulin domain of the nonconventional Wnt receptor, ROR receptor tyrosine kinase (RTK), CAM-1, which functions in postsynaptic body-wall muscles. This interaction in turn inhibits Wnt/LIN-44 signaling through the ROR/CAM-1 receptor, and allows for maintenance of normal acetylcholine receptor, AChR/ACR-16, levels at the neuromuscular synapse. Further, this work reveals that RIG-3 and ROR/CAM-1 function through the β-catenin/HMP-2 at the NMJ. Taken together, our results demonstrate that RIG-3 functions as an inhibitory molecule of the Wnt/LIN-44 signaling pathway through the RTK, CAM-1. PMID:28515212

  12. Crystal violet stain as a selective stain for the assessment of mitotic figures in oral epithelial dysplasia and oral squamous cell carcinoma.

    PubMed

    Jadhav, Kiran B; Ahmed Mujib, B R; Gupta, Nidhi

    2012-01-01

    Assessment of mitotic figures (MFs) is routinely practiced as prognostic indicator in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC), but identification of MFs poses a problem in terms of staining characteristics. To evaluate effectiveness of crystal violet stain for staining of MFs and its comparison with hematoxylin and eosin (H and E) stain. Study sample includes archival tissues embedded in paraffin blocks diagnosed as OED (n = 30) and OSCC (n = 30). The control group comprised of tissue specimen from oral mucosa of healthy volunteers (n = 30). Two serial sections of each tissue specimen were stained separately with H and E stain and 1% crystal violet stain. The stained sections were observed under microscope for identification and counting of MFs. Data obtained was statistically analyzed by using the Man-Whitney U test. A significant increase in number of MFs was observed in OED and OSCC in comparison with normal oral mucosa. There was a highly significant increase in number of MFs in crystal violet stained tissue sections when compared with H and E stain. Metaphase is the most commonly observed phase of mitosis in crystal violet stain when compared with H and E stain for all three groups. Crystal violet stain can be considered as selective stain for mitotic figures.

  13. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields.

    PubMed

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-07-03

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density.

  14. The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex

    PubMed Central

    Weiner, Kevin S.; Golarai, Golijeh; Caspers, Julian; Chuapoco, Miguel R.; Mohlberg, Hartmut; Zilles, Karl; Amunts, Katrin; Grill-Spector, Kalanit

    2014-01-01

    Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7–40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitechtonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain. PMID:24021838

  15. Biventricular and atrial diastolic function assessment using conventional echocardiography and tissue-Doppler imaging in adults with Marfan syndrome.

    PubMed

    Kiotsekoglou, Anatoli; Moggridge, James C; Bijnens, Bart H; Kapetanakis, Venediktos; Alpendurada, Francisco; Mullen, Michael J; Saha, Samir; Nassiri, Dariush K; Camm, John; Sutherland, George R; Child, Anne H

    2009-12-01

    Previous studies provided evidence about left ventricular systolic and diastolic dysfunction in adults with Marfan syndrome (MFS). However, in the literature, data on right ventricular and bi-atrial diastolic function are limited. We aimed to investigate whether, in the absence of significant valvular disease, diastolic dysfunction is present not only in both ventricles but also in the atrial cavities. Seventy-two adult unoperated MFS patients and 73 controls without significant differences in age, sex, and body surface area from the patient group were studied using two-dimensional, pulsed, and colour-Doppler and tissue-Doppler imaging (TDI). Biventricular early filling measurements were significantly decreased in MFS patients when compared with controls (P < 0.001). Pulsed TDI early filling measurements obtained from five mitral annular regions and over the lateral tricuspid valve corner were significantly reduced in the patient group (P < 0.001). Indices reflecting atrial function at the reservoir, conduit and contractile phases were also significantly decreased in MFS patients (P < 0.001). This study demonstrated significant biventricular diastolic and biatrial systolic and diastolic dysfunction in MFS patients. Our findings suggest that MFS affects diastolic function independently. Diastolic abnormalities could be attributed to fibrillin-1 deficiency and dysregulation of transforming growth factor-beta activity in the cardiac extracellular matrix.

  16. Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome

    PubMed Central

    Zilberberg, Lior; Phoon, Colin K. L.; Robertson, Ian; Dabovic, Branka; Ramirez, Francesco; Rifkin, Daniel B.

    2015-01-01

    Marfan syndrome (MFS) is an autosomal dominant disorder of connective tissue, caused by mutations of the microfibrillar protein fibrillin-1, that predisposes affected individuals to aortic aneurysm and rupture and is associated with increased TGFβ signaling. TGFβ is secreted from cells as a latent complex consisting of TGFβ, the TGFβ propeptide, and a molecule of latent TGFβ binding protein (LTBP). Improper extracellular localization of the latent complex can alter active TGFβ levels, and has been hypothesized as an explanation for enhanced TGFβ signaling observed in MFS. We previously reported the absence of LTBP-3 in matrices lacking fibrillin-1, suggesting that perturbed TGFβ signaling in MFS might be due to defective interaction of latent TGFβ complexes containing LTBP-3 with mutant fibrillin-1 microfibrils. To test this hypothesis, we genetically suppressed Ltbp3 expression in a mouse model of progressively severe MFS. Here, we present evidence that MFS mice lacking LTBP-3 have improved survival, essentially no aneurysms, reduced disruption and fragmentation of medial elastic fibers, and decreased Smad2/3 and Erk1/2 activation in their aortas. These data suggest that, in MFS, improper localization of latent TGFβ complexes composed of LTBP-3 and TGFβ contributes to aortic disease progression. PMID:26494287

  17. Systematic review of chronic pain in persons with Marfan syndrome.

    PubMed

    Velvin, G; Bathen, T; Rand-Hendriksen, S; Geirdal, A Ø

    2016-06-01

    The purpose of this study was to explore the literature on chronic pain in adults with Marfan syndrome (MFS), critically appraising and synthesizing relevant literature. A systematic review was conducted by searching the published literature databases using available medical, physical, psychological, social databases and other sources. All studies that addressed pain in MFS, published in peer-reviewed journals were assessed. Of 351 search results, 18 articles satisfied the eligibility criteria. All studies were cross-sectional and quantitative; no randomized controlled trials or intervention studies were found. Most studies had small sample sizes, low response rates and mainly dealt with other aspects of the diagnosis than pain. Only one article dealt mainly with pain. The research on chronic pain in MFS is limited in size and quality. Despite these limitations, studies describe that the prevalence of pain in patients with MFS is high, varying from 47 to 92% and affecting several anatomic sites. In addition, chronic pain limits daily function and few studies describe treatment options for pain in patients with MFS. Research is needed to obtain more evidence-based knowledge for developing more appropriate rehabilitation programs for people with MFS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. A pragmatic approach to the diagnosis and treatment of mixed features in adults with mood disorders.

    PubMed

    McIntyre, Roger S; Lee, Yena; Mansur, Rodrigo B

    2016-12-01

    Mixed features specifier (MFS) is a new nosological entity defined and operationalized in the Diagnostic and Statistical Manual of Mental Disorders (DSM), 5th Edition. The impetus to introduce the MFS and supplant mixed states was protean, including the lack of ecological validity, high rates of misdiagnosis, and guideline discordant treatment for mixed states. Mixed features specifier identifies a phenotype in psychiatry with greater illness burden, as evidenced by earlier age at onset, higher episode frequency and chronicity, psychiatric and medical comorbidity, suicidality, and suboptimal response to conventional antidepressants. Mixed features in psychiatry have historical, conceptual, and nosological relevance; MFS according to DSM-5, is inherently neo-Kraepelinian insofar as individuals with either Major Depressive Disorder (MDD) or Bipolar Disorder (BD) may be affected by MFS. Clinicians are encouraged to screen all patients presenting with a major depressive episode (or hypomanic episode) for MFS. Although "overlapping symptoms" were excluded from the diagnostic criteria (eg, agitation, anxiety, irritability, insomnia), clinicians are encouraged to probe for these nonspecific symptoms as a possible proxy of co-existing MFS. In addition to conventional antidepressants, second generation antipsychotics and/or conventional mood stabilizers (eg, lithium) may be considered as first-line therapies for individuals with a depressive episode as part of MDD or BD with mixed features.

  19. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    PubMed Central

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  20. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.

  1. New species and records of mites of the superfamily Sarcoptoidea (Acariformes: Psoroptidia) from mammals in Brazil.

    PubMed

    Bochkov, Andre V; Valim, Michel P

    2016-01-01

    Sixteen species of the superfamily Sarcoptoidea (Acariformes: Psoroptidia) belonging to 10 genera of the families Atopomelidae, Listrophoridae, Chirodiscidae, and Listropsoralgidae are recorded in Brazil. Among them, three species, Prolistrophorus hylaeamys sp. nov. from Hylaeamys laticeps (Lund, 1840) (Cricetidae: Sigmodontinae) from Minas Gerais, Lynxacarus serrafreirei sp. nov. from Galictis cuja (Molina, 1782) (Carnivora: Mustelidae) from Rio de Janeiro (Listrophoridae), and Didelphoecius micoureus sp. nov. (Atopomelidae) from Micoureus paraguayanus (Tate, 1931) (Didelphimorphia: Didelphidae) from Minas Gerais are described as new for science. Three species of the family Listrophoridae, Prolistrophorus bidentatus Fain et Lukoschus, 1984 from Akodon cursor (Winge, 1887) (Rodentia: Cricetidae) (new host), Prolistrophorus ctenomys Fain, 1970 from Ctenomys torquatus Lichtenstein, 1830 (Rodentia: Ctenomyidae) (new host), and Leporacarus sylvilagi Fain, Whitaker et Lukoschus, 1981 from Sylvilagus brasiliensis (Linnaeus, 1758) (Lagomorpha: Leporidae) (new host) -from Minas Gerais and Rio Grande do Sul, and one species of the family Chirodiscidae, Parakosa tadarida McDaniel and Lawrence, 1962 from Molossus molossus (Pallas, 1766) (Chiroptera: Molossidae) are recorded for the first time in Brazil. The previously unknown female of Didelphoecius validus Fain, Zanatta-Coutinho et Fonseca, 1996 (Atopomelidae) from Metachirus nudicaudatus (Geoffroy, 1803) (Didelphimorphia: Didelphidae) from Minas Gerais is described. All data on host-parasite associations of sarcoptoids in Brazil are summarized. Totally, 61 sarcoptoid species of 8 families are recorded in Brazil.

  2. Kinetic and Structural Characterization of a Heterohexamer 4-Oxalocrotonate Tautomerase from Chloroflexus aurantiacus J-10-fl: Implications for Functional and Structural Diversity in the Tautomerase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burks, Elizabeth A.; Fleming, Christopher D.; Mesecar, Andrew D.

    2010-09-30

    4-Oxalocrotonate tautomerase (4-OT) isozymes play prominent roles in the bacterial utilization of aromatic hydrocarbons as sole carbon sources. These enzymes catalyze the conversion of 2-hydroxy-2,4-hexadienedioate (or 2-hydroxymuconate) to 2-oxo-3-hexenedioate, where Pro-1 functions as a general base and shuttles a proton from the 2-hydroxyl group of the substrate to the C-5 position of the product. 4-OT, a homohexamer from Pseudomonas putida mt-2, is the most extensively studied 4-OT isozyme and the founding member of the tautomerase superfamily. A search of five thermophilic bacterial genomes identified a coded amino acid sequence in each that had been annotated as a tautomerase-like protein butmore » lacked Pro-1. However, a nearby sequence has Pro-1, but the sequence is not annotated as a tautomerase-like protein. To characterize this group of proteins, two genes from Chloroflexus aurantiacus J-10-fl were cloned, and the corresponding proteins were expressed. Kinetic, biochemical, and X-ray structural analyses show that the two expressed proteins form a functional heterohexamer 4-OT (hh4-OT), composed of three {alpha}{beta} dimers. Like the P. putida enzyme, hh4-OT requires the amino-terminal proline and two arginines for the conversion of 2-hydroxymuconate to the product, implicating an analogous mechanism. In contrast to 4-OT, hh4-OT does not exhibit the low-level activity of another tautomerase superfamily member, the heterohexamer trans-3-chloroacrylic acid dehalogenase (CaaD). Characterization of hh4-OT enables functional assignment of the related enzymes, highlights the diverse ways the {beta}-{alpha}-{beta} building block can be assembled into an active enzyme, and provides further insight into the molecular basis of the low-level CaaD activity in 4-OT.« less

  3. Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies.

    PubMed

    Sukhwal, Anshul; Sowdhamini, Ramanathan

    2013-07-01

    and its remote homologue-interacting partner pair. We found that, in exceptional cases, homologous proteins belonging to the same superfamily, but with remote sequence similarity, can share similar interfaces.

  4. Online interprofessional education facilitation: A scoping review.

    PubMed

    Evans, Sherryn Maree; Ward, Catherine; Reeves, Scott

    2018-04-22

    The use of online media to deliver interprofessional education (IPE) is becoming more prevalent across health professions education settings. Facilitation of IPE activities is known to be critical to the effective delivery of IPE, however, specifics about the nature of online IPE facilitation remains unclear. To explore the health professions education literature to understand the extent, range and nature of research on online IPE facilitation. Scoping review methodology was used to guide a search of four electronic databases for relevant papers. Of the 2095 abstracts initially identified, after screening of both abstracts and full-text papers, 10 studies were selected for inclusion in this review. Following abstraction of key information from each study, a thematic analysis was undertaken. Three key themes emerged to describe the nature of the IPE facilitation literature: (1) types of online IPE facilitation contributions, (2) the experience of online IPE facilitation and (3) personal outcomes of online IPE facilitation. These IPE facilitation themes were particularly focused on facilitation of interprofessional student teams on an asynchronous basis. While the included studies provide some insight into the nature of online IPE facilitation, future research is needed to better understand facilitator contributions, and the facilitation experience and associated outcomes, both relating to synchronous and asynchronous online environments.

  5. Microparticle Flow Sensor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  6. Early onset marfan syndrome: Atypical clinical presentation of two cases

    PubMed Central

    Ozyurt, A; Baykan, A; Argun, M; Pamukcu, O; Halis, H; Korkut, S; Yuksel, Z; Gunes, T; Narin, N

    2015-01-01

    Early onset Marfan Syndrome (eoMFS) is a rare, severe form of Marfan Syndrome (MFS). The disease has a poor prognosis and most patients present with resistance to heart failure treatment during the newborn period. This report presents two cases of eoMFS with similar clinical features diagnosed in the newborn period and who died at an early age due to the complications related to the involvement of the cardiovascular system. PMID:26929908

  7. The Resourceful Facilitator: Teacher Leaders Constructing Identities as Facilitators of Teacher Peer Groups

    ERIC Educational Resources Information Center

    Allen, David

    2016-01-01

    The use of teacher peer groups is a prevalent strategy for school-based professional development and instructional improvement. Facilitation of such groups is an increasingly vital dimension of teacher leadership as a component of school improvement efforts. Drawing on a qualitative study of facilitation of teacher peer groups, the article…

  8. Marfan Syndrome in an Iranian Family: A Case Series

    PubMed Central

    Davari, Mohammad Hossein; Kazemi, Toba

    2014-01-01

    Marfan syndrome (MFS) is a genetic disorder which is inherited by autosomal dominant traits. In MFS, lens displacement and cardiovascular involvement are important causes of morbidity and mortality in the clinical course of the disease. In this case study, the ocular involvement in a family with severe penetration of MFS is reported. Twelve members of a family (father, two daughters, three sons, and six grandchildren) had MFS. Lens ectopia was the most common ophthalmic involvement among the family (100%). Other ocular involvements were as follows; Hypoplastic iris or ciliary’s muscle hypoplasia (50%), on gated eyeball (42%), flat cornea (30%), glaucoma and cataract (25%), retinal detachment (16%). Three members of the family underwent eye surgery including lens extraction, glaucoma surgery and retinal surgery. PMID:25031493

  9. Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome.

    PubMed

    Wanga, Shaynah; Hibender, Stijntje; Ridwan, Yanto; van Roomen, Cindy; Vos, Mariska; van der Made, Ingeborg; van Vliet, Nicole; Franken, Romy; van Riel, Luigi Amjg; Groenink, Maarten; Zwinderman, Aeilko H; Mulder, Barbara Jm; de Vries, Carlie Jm; Essers, Jeroen; de Waard, Vivian

    2017-11-01

    Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1 C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin

  10. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    PubMed Central

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  11. An unusual case of Miller Fisher syndrome presenting with proptosis and chemosis

    PubMed Central

    Waung, Maggie W.; Singer, Mike A.

    2012-01-01

    Miller Fisher syndrome (MFS), a rare variant of Guillan-Barré syndrome, is characterized by ophthalmoplegia, ataxia, and areflexia. In addition to this classic triad, symptoms may include bulbar palsy, weakness, and sensory loss. The anti-GQ1b IgG antibody is a sensitive and specific marker for MFS; it is found in more than 90% of affected patients. We describe an unusual case of MFS that presented with dramatic bilateral proptosis and chemosis. PMID:22499110

  12. Evaluation of the Facilitated Communication Pilot

    ERIC Educational Resources Information Center

    Cooper-Martin, Elizabeth

    2014-01-01

    The Office of Special Education and Student Services asked the Office of Shared Accountability to evaluate the "Facilitated Communication Pilot." In facilitated communication (FC), people with communication impairments express themselves by typing with the aid of a communication partner, called a facilitator, who provides physical (and…

  13. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields

    PubMed Central

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-01-01

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density. PMID:26138388

  14. Clinical classification of 103 Japanese patients with Guillain-Barré syndrome.

    PubMed

    Wakerley, Benjamin R; Kokubun, N; Funakoshi, K; Nagashima, T; Hirata, K; Yuki, N

    2016-10-15

    Guillain-Barré syndrome (GBS) is the commonest cause of flaccid paralysis worldwide. Miller Fisher syndrome (MFS) is a variant of GBS characterized by ophthalmoplegia and ataxia. Together GBS and MFS form a continuum of discrete and overlapping subtypes, the frequency of which remains unknown. We retrospectively analysed the clinical features (antecedent symptoms, pattern of neurological weakness or ataxia, presence of hypersomnolence) of 103 patients at a single hospital in Japan. Patients were then classified according to new diagnostic criteria (Wakerley et al., 2014). Laboratory data (neurophysiology and anti-ganglioside antibody profiles) were also analysed. According to the new diagnostic criteria, the 103 patients could be classified as follows: classic GBS 73 (71%), pharyngeal-cervical-brachial weakness 2 (2%), acute pharyngeal weakness 0 (0%), paraparetic GBS 1 (1%), bifacial weakness with paraesthesias 1 (1%), polyneuritis cranialis 0 (0%), classic MFS 18 (17%), acute ophthalmoparesis 1 (1%), acute ptosis 0 (0%), acute mydriasis 0 (0%), acute ataxic neuropathy 1 (1%), Bickerstaff brainstem encephalitis 3 (3%), acute ataxic hypersomnolence 0 (0%), GBS and MFS overlap 1 (1%), GBS and Bickerstaff brainstem encephalitis overlap 1 (1%), MFS and pharyngeal-cervical-brachial weakness overlap 1 (1%). Application of the new clinical diagnostic criteria allowed accurate retrospective diagnosis and classification of GBS and MFS subtypes. Copyright © 2016. Published by Elsevier B.V.

  15. The interdigitating loop of the enolase superfamily as a specificity binding determinant or 'flying buttress'.

    PubMed

    Bearne, Stephen L

    2017-05-01

    Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction (abstraction of the α-proton from a carboxylate substrate). While the catalytic machinery responsible for the deprotonation reaction has been conserved, divergent evolution has led to numerous ENS members that catalyze different overall reactions. This rich functional diversity has made the ENS an excellent model system for developing the approaches necessary to validate enzyme function. However, enzymes of the ENS also share a common bidomain structure ((β/α) 7 β-barrel domain and α+β capping domain) which makes validation of function from structural information challenging. This review presents a comparative survey of the structural data obtained over the past decade for enzymes from all seven subgroups that comprise the ENS. Of the seven ENS subgroups (enolase, mandelate racemase (MR), muconate lactonizing enzyme, β-methylaspartate ammonia lyase, d-glucarate dehydratase, d-mannonate dehydratase (ManD), and galactarate dehydratase 2), only enzymes of the MR and ManD subgroups exhibit an additional feature of structural complexity-an interdigitating loop. This loop emanates from one protomer of a homodimeric pair and penetrates into the adjacent, symmetry-related protomer to either contribute a binding determinant to the active site of the adjacent protomer, or act as a 'flying buttress' to support residues of the active site. The analysis presented in this review suggests that the interdigitating loop is the only gross structural element that permits functional distinction between ENS subgroups at the tertiary level of protein structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evolution of the stellar mass function in multiple-population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale

    2018-05-01

    We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.

  17. Aortic dilatation in Marfan syndrome: role of arterial stiffness and fibrillin-1 variants.

    PubMed

    Salvi, Paolo; Grillo, Andrea; Marelli, Susan; Gao, Lan; Salvi, Lucia; Viecca, Maurizio; Di Blasio, Anna Maria; Carretta, Renzo; Pini, Alessandro; Parati, Gianfranco

    2018-01-01

    Marfan syndrome (MFS) is an autosomal dominant genetic disorder characterized by aortic root dilation and dissection and an abnormal fibrillin-1 synthesis. In this observational study, we evaluated aortic stiffness in MFS and its association with ascending aorta diameters and fibrillin-1 genotype. A total of 116 Marfan adult patients without history of cardiovascular surgery, and 144 age, sex, blood pressure and heart rate matched controls were enrolled. All patients underwent arterial stiffness evaluation through carotid-femoral pulse wave velocity (PWV) and central blood pressure waveform analysis (PulsePen tonometer). Fibrillin-1 mutations were classified based on the effect on the protein, into 'dominant negative' and 'haploinsufficient' mutations. PWV and central pulse pressure were significantly higher in MFS patients than in controls [respectively 7.31 (6.81-7.44) vs. 6.69 (6.52-6.86) m/s, P = 0.0008; 41.3 (39.1-43.5) vs. 34.0 (32.7-35.3) mmHg, P < 0.0001], with a higher age-related increase of PWV in MFS (β 0.062 vs. 0.036). Pressure amplification was significantly reduced in MFS [18.2 (15.9-20.5) vs. 33.4 (31.6-35.2)%, P < 0.0001]. Central pressure profile was altered even in MFS patients without aortic dilatation. Multiple linear regression models showed that PWV independently predicted aortic diameters at the sinuses of Valsalva (ß = 0.243, P = 0.002) and at the sinotubular junction (ß = 0.186, P = 0.048). PWV was higher in 'dominant negative' than 'haploinsufficient' fibrillin-1 mutations [7.37 (7.04-7.70) vs. 6.60 (5.97-7.23) m/s, P = 0.035], although this difference was not significant after adjustment. Aortic stiffness is increased in MFS, independently from fibrillin-1 genotype and is associated with diameters of ascending aorta. Alterations in central hemodynamics are present even when aortic diameter is within normal limits. Our findings suggest an accelerated arterial aging in MFS.

  18. Rationale and design of a trial evaluating the effects of losartan vs. nebivolol vs. the association of both on the progression of aortic root dilation in Marfan syndrome with FBN1 gene mutations.

    PubMed

    Gambarin, Fabiana I; Favalli, Valentina; Serio, Alessandra; Regazzi, Mario; Pasotti, Michele; Klersy, Catherine; Dore, Roberto; Mannarino, Savina; Viganò, Mario; Odero, Attilio; Amato, Simona; Tavazzi, Luigi; Arbustini, Eloisa

    2009-04-01

    The major clinical problem of Marfan syndrome (MFS) is the aortic root aneurysm, with risk of dissection when the root diameter approximates 5 cm. In MFS, a key molecule, transforming growth factor-beta (TGF-beta), normally bound to the extracellular matrix, is free and activated. In an experimental setting, TGF-beta blockade prevents the aortic root structural damage and dilatation. The angiotensin receptor 1 blockers (sartanics) exert an anti-TGF-beta effect; trials are now ongoing for evaluating the effect of losartan compared with atenolol in MFS. beta-Adrenergic blockers are the drugs most commonly used in MFS. The third-generation beta-adrenergic blocker nebivolol retains the beta-adrenergic blocker effects on heart rate and further exerts antistiffness effects, typically increased in MFS. The open-label phase III study will include 291 patients with MFS and proven FBN1 gene mutations, with aortic root dilation (z-score > or =2.5). The patients will be randomized to nebivolol, losartan and the combination of the two drugs. The primary end point is the comparative evaluation of the effects of losartan, nebivolol and the association of both on the progression of aortic root growth rate. Secondary end points include the pharmacokinetics of the two drugs, comparative evaluation of serum levels of total and active TGF-beta, quantitative assessment of the expression of the mutated gene (FBN1, both 5' and 3'), pharmacogenetic bases of drug responsiveness. The quality of life evaluation in the three groups will be assessed. Statistical evaluation includes an interim analysis at month 24 and conclusive analyses at month 48. The present study will add information about pharmacological therapy in MFS, supporting the new application of angiotensin receptor 1 blockers and finding beta-adrenergic blockers that may give more specific effects. Moreover, the study will further deepen understanding of the pathogenetic mechanisms that are active in Marfan syndrome through the

  19. Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.).

    PubMed

    Fujino, Kenji; Sekiguchi, Hiroshi

    2011-08-01

    Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0-13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.

  20. Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Wu, S-F; Yu, H-Y; Jiang, T-T; Gao, C-F; Shen, J-L

    2015-08-01

    G protein-coupled receptors (GPCRs) are the largest and most versatile superfamily of cell membrane proteins, which mediate various physiological processes including reproduction, development and behaviour. The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), is one of the most notorious insect pests, preferentially feeding on cruciferous plants. P. xylostella is not only one of the world's most widespread lepidopteran insects, but has also developed resistance to nearly all classes of insecticides. Although the mechanisms of insecticide resistance have been studied extensively in many insect species, few investigations have been carried out on GPCRs in P. xylostella. In the present study, we identified 95 putative GPCRs in the P. xylostella genome. The identified GPCRs were compared with their homologues in Bombyx mori and Drosophila melanogaster. Our results suggest that GPCRs in different insect species may have evolved by a birth-and-death process. One of the differences among compared insects is the duplication of short neuropeptide F receptor and adipokinetic hormone receptors in P. xylostella and B. mori. Another divergence is the decrease in quantity and diversity of the stress-tolerance gene, Mth, in P. xylostella. The evolution by the birth-and-death process is probably involved in adaptation to the feeding behaviour, reproduction and stress responses of P. xylostella. Some of the genes identified in the present study could be potential targets for the development of novel pesticides. © 2015 The Royal Entomological Society.

  1. Microfluidic Systems for Biosensing

    PubMed Central

    Liu, Kuo-Kang; Wu, Ren-Guei; Chuang, Yun-Ju; Khoo, Hwa Seng; Huang, Shih-Hao; Tseng, Fan-Gang

    2010-01-01

    In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected. PMID:22163570

  2. Group Facilitation: Functions and Skills.

    ERIC Educational Resources Information Center

    Anderson, L. Frances; Robertson, Sharon E.

    1985-01-01

    Discusses a model based on a specific set of assumptions about causality and effectiveness in interactional groups. Discusses personal qualities of group facilitators and proposes five major functions and seven skill clusters central to effective group facilitation. (Author/BH)

  3. Characterization of 2-Oxindole Forming Heme Enzyme MarE, Expanding the Functional Diversity of the Tryptophan Dioxygenase Superfamily.

    PubMed

    Zhang, Yuyang; Zou, Yi; Brock, Nelson L; Huang, Tingting; Lan, Yingxia; Wang, Xiaozheng; Deng, Zixin; Tang, Yi; Lin, Shuangjun

    2017-08-30

    3-Substituted 2-oxindoles are important structural motifs found in many biologically active natural products and pharmaceutical lead compounds. Here, we report an enzymatic formation of the 3-substituted 2-oxindoles catalyzed by MarE in the maremycin biosynthetic pathway in Streptomyces sp. B9173. MarE is a homologue of Fe II /heme-dependent tryptophan 2,3-dioxygenases (TDOs). Typical TDOs usually catalyze the insertion of two oxygen atoms from O 2 into an indole ring to generate N-formylkynurenine (NFK)-like products. In contrast, MarE catalyzes the insertion of a single oxygen atom from O 2 into an indole ring, to probably generate an epoxyindole intermediate that undergoes an unprecedented 2,3-hydride migration to form 2-oxindole structure. MarE shows substrate robustness to catalyze the conversion of a series of 3-substituted indoles into their corresponding 3-substituted 2-oxindoles. Although containing most key amino acid residues conserved in well-known TDO homologues, MarE falls into a separate new subgroup in the phylogenetic tree. The characterization of MarE and its homologue enriches the functional diversities of TDO superfamily and provides a new strategy for discovering novel natural products containing 3-substituted 2-oxindole pharmacophores by genome mining.

  4. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings

    PubMed Central

    McGowan, C P; Skinner, J; Biewener, A A

    2008-01-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129

  5. Effects of Student-Facilitated Learning on Instructional Facilitators

    ERIC Educational Resources Information Center

    Bonner, Sarah M.; Somers, Jennifer A.; Rivera, Gwendelyn J.; Keiler, Leslie S.

    2017-01-01

    We investigated perceptions about learning strategy use and instructional roles among a sample of high needs adolescents (n = 230) who acted as near-peer instructional facilitators. The sample was drawn from science and mathematics classes in nonselective public secondary schools in New York City. Students participated in an inschool intervention…

  6. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft.

    PubMed

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-10-14

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.

  7. A Streptomyces-specific member of the metallophosphatase superfamily contributes to spore dormancy and interaction with Aspergillus proliferans.

    PubMed

    Lamp, Jessica; Weber, Maren; Cingöz, Gökhan; Ortiz de Orué Lucana, Darío; Schrempf, Hildgund

    2013-05-01

    We have identified, cloned and characterized a formerly unknown protein from Streptomyces lividans spores. The deduced protein belongs to a novel member of the metallophosphatase superfamily and contains a phosphatase domain and predicted binding sites for divalent ions. Very close relatives are encoded in the genomic DNA of many different Streptomyces species. As the deduced related homologues diverge from other known phosphatase types, we named the protein MptS (metallophosphatase type from Streptomyces). Comparative physiological and biochemical investigations and analyses by fluorescence microscopy of the progenitor strain, designed mutants carrying either a disruption of the mptS gene or the reintroduced gene as fusion with histidine codons or the egfp gene led to the following results: (i) the mptS gene is transcribed in the course of aerial mycelia formation. (ii) The MptS protein is produced during the late stages of growth, (iii) accumulates within spores, (iv) functions as an active enzyme that releases inorganic phosphate from an artificial model substrate, (v) is required for spore dormancy and (vi) MptS supports the interaction amongst Streptomyces lividans spores with conidia of the fungus Aspergillus proliferans. We discuss the possible role(s) of MptS-dependent enzymatic activity and the implications for spore biology. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport

    PubMed Central

    Cockerell, Steven R.; Rutkovsky, Alex C.; Zayner, Josiah P.; Cooper, Rebecca E.; Porter, Lindsay R.; Pendergraft, Sam S.; Parker, Zach M.; McGinnis, Marcus W.

    2014-01-01

    The polyamines norspermidine and spermidine are among the environmental signals that regulate Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction. PMID:24530989

  9. Discovery of a Distinct Superfamily of Kunitz-Type Toxin (KTT) from Tarantulas

    PubMed Central

    Diao, Jian-Bo; Jiang, Li-Ping; Tang, Xing; Liang, Song-Ping

    2008-01-01

    Background Kuntiz-type toxins (KTTs) have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking) were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle. Principal Findings Here we report the presence of a new superfamily of KTTs in spiders (Tarantulas: Ornithoctonus huwena and Ornithoctonus hainana), which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI) as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (ω) for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins) derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications. Conclusions

  10. Facilitated Communication: An Experimental Evaluation.

    ERIC Educational Resources Information Center

    Regal, Robert A.; And Others

    1994-01-01

    Nineteen adults with developmental disabilities, judged competent in facilitated communication, participated in a validation study using an information passing design requiring short-term recall of stimulus cards with shapes, colors, and numbers. Results failed to validate facilitated communication for the group as a whole, any individual…

  11. Virtual OD: Facilitating Groups Online

    ERIC Educational Resources Information Center

    Milton, Judy; Watkins, Karen E.; Daley, Barbara J.

    2005-01-01

    This study examined the role of facilitators in nine virtual action learning groups. A qualitative analysis of the facilitators' interventions across all groups resulted in a typology that included group management, group process, and support interventions. A model showing the relationship among these categories proposes that effective…

  12. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm.

    PubMed

    Jiménez-Altayó, Francesc; Meirelles, Thayna; Crosas-Molist, Eva; Sorolla, M Alba; Del Blanco, Darya Gorbenko; López-Luque, Judit; Mas-Stachurska, Aleksandra; Siegert, Ana-Maria; Bonorino, Fabio; Barberà, Laura; García, Carolina; Condom, Enric; Sitges, Marta; Rodríguez-Pascual, Fernando; Laurindo, Francisco; Schröder, Katrin; Ros, Joaquim; Fabregat, Isabel; Egea, Gustavo

    2018-04-01

    Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1 C1039G/+ -Nox4 -/- ). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1 C1039G/+ -Nox4 -/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1 C1039G/+ -Nox4 -/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H 2 O 2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model.

    PubMed

    Hibender, Stijntje; Franken, Romy; van Roomen, Cindy; Ter Braake, Anique; van der Made, Ingeborg; Schermer, Edith E; Gunst, Quinn; van den Hoff, Maurice J; Lutgens, Esther; Pinto, Yigal M; Groenink, Maarten; Zwinderman, Aeilko H; Mulder, Barbara J M; de Vries, Carlie J M; de Waard, Vivian

    2016-08-01

    Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure-lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell-specific sirtuin-1-deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1(C1039G/+) MFS mouse model. Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal-regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent. Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS. © 2016 The Authors.

  14. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model

    PubMed Central

    Hibender, Stijntje; Franken, Romy; van Roomen, Cindy; ter Braake, Anique; van der Made, Ingeborg; Schermer, Edith E.; Gunst, Quinn; van den Hoff, Maurice J.; Lutgens, Esther; Pinto, Yigal M.; Groenink, Maarten; Zwinderman, Aeilko H.; Mulder, Barbara J.M.; de Vries, Carlie J.M.

    2016-01-01

    Objective— Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure–lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell–specific sirtuin-1–deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1C1039G/+ MFS mouse model. Approach and Results— Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal–regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent. Conclusions— Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS. PMID:27283746

  15. Facilitating Dialogues about Racial Realities

    ERIC Educational Resources Information Center

    Quaye, Stephen John

    2014-01-01

    Background/Context: Facilitating dialogues about racial issues in higher education classroom settings continues to be a vexing problem facing postsecondary educators. In order for students to discuss race with their peers, they need skilled facilitators who are knowledgeable about racial issues and able to support students in these difficult…

  16. The Essential Elements of Facilitation.

    ERIC Educational Resources Information Center

    Priest, Simon; Gass, Michael; Gillis, Lee

    Most organizations find it difficult to implement change, and only about 10 percent of learning from training and development experiences is actually applied in the workplace. This book advocates facilitation as a means of enhancing change and increasing productivity. Facilitation engages employees by enhancing the processes associated with their…

  17. Lack of myeloid Fatp1 increases atherosclerotic lesion size in Ldlr-/- mice

    USDA-ARS?s Scientific Manuscript database

    Altered metabolism is an important regulator of macrophage (MF) phenotype, which contributes to inflammatory diseases such as atherosclerosis. Broadly, pro-inflammatory, classically-activated MFs (CAM) are glycolytic while alternatively-activated MFs (AAM) oxidize fatty acids, although there is prof...

  18. Clinical education facilitators: a literature review.

    PubMed

    Lambert, Veronica; Glacken, Michèle

    2005-07-01

    The aim of this literature review, set within an Irish context, is to present a broad overview of former and existing clinical support personnel, explore the concept of facilitation and examine what is known about the role of the clinical education facilitator. The importance of providing a supportive clinical environment to enhance clinical teaching and learning is strongly portrayed in the literature. While the past two decades have borne witness to various clinical support personnel, the literature identifies conflicting demands that these personnel face. No suggestions are advanced as to how to overcome these difficulties, which inevitably influence the quality and quantity of their clinical teaching role. An identifiable gap exists over who has prime responsibility for clinical teaching. It is timely that alternative possibilities for organizing clinical teaching are investigated. A new post emerging in practice settings is that of the clinical education facilitator who is meant to be the key linchpin in clinical areas for reducing the theory-practice gap. Relevant literature for this review was sourced using the computerized databases CINAHL, Medline and Synergy. Manual searching of relevant nursing journals and sourcing of secondary references extended the search. Government reports and other relevant documents were obtained through pertinent websites. Papers that explicitly examined the concept of facilitation and explored the posts of clinical education facilitators were included; six research papers were accessed and reviewed. In addition seven non-empirical papers were included. It is clear that considerable lack of role clarity resides over what constitutes clinical facilitation and the role of the clinical facilitator. Thus, it is paramount to strengthen this support role with Irish empirical evidence. A major advantage in having a ward-based clinical education facilitator is the benefit of having access to someone who can concentrate solely on

  19. Evolution of enzymatic activity in the enolase superfamily: structural and mutagenic studies of the mechanism of the reaction catalyzed by o-succinylbenzoate synthase from Escherichia coli.

    PubMed

    Klenchin, Vadim A; Taylor Ringia, Erika A; Gerlt, John A; Rayment, Ivan

    2003-12-16

    o-Succinylbenzoate synthase (OSBS) from Escherichia coli, a member of the enolase superfamily, catalyzes an exergonic dehydration reaction in the menaquinone biosynthetic pathway in which 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) is converted to 4-(2'-carboxyphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB). Our previous structural studies of the Mg(2+).OSB complex established that OSBS is a member of the muconate lactonizing enzyme subgroup of the superfamily: the essential Mg(2+) is coordinated to carboxylate ligands at the ends of the third, fourth, and fifth beta-strands of the (beta/alpha)(7)beta-barrel catalytic domain, and the OSB product is located between the Lys 133 at the end of the second beta-strand and the Lys 235 at the end of the sixth beta-strand [Thompson, T. B., Garrett, J. B., Taylor, E. A, Meganathan, R., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 10662-76]. Both Lys 133 and Lys 235 were separately replaced with Ala, Ser, and Arg residues; all six mutants displayed no detectable catalytic activity. The structure of the Mg(2+).SHCHC complex of the K133R mutant has been solved at 1.62 A resolution by molecular replacement starting from the structure of the Mg(2+).OSB complex. This establishes the absolute configuration of SHCHC: the C1-carboxylate and the C6-OH leaving group are in a trans orientation, requiring that the dehydration proceed via a syn stereochemical course. The side chain of Arg 133 is pointed out of the active site so that it cannot function as a general base, whereas in the wild-type enzyme complexed with Mg(2+).OSB, the side chain of Lys 133 is appropriately positioned to function as the only acid/base catalyst in the syn dehydration. The epsilon-ammonium group of Lys 235 forms a cation-pi interaction with the cyclohexadienyl moiety of SHCHC, suggesting that Lys 235 also stabilizes the enediolate anion intermediate in the syn dehydration via a similar interaction.

  20. Cross-Species Analyses Identify the BNIP-2 and Cdc42GAP Homology (BCH) Domain as a Distinct Functional Subclass of the CRAL_TRIO/Sec14 Superfamily

    PubMed Central

    Gupta, Anjali Bansal; Wee, Liang En; Zhou, Yi Ting; Hortsch, Michael; Low, Boon Chuan

    2012-01-01

    The CRAL_TRIO protein domain, which is unique to the Sec14 protein superfamily, binds to a diverse set of small lipophilic ligands. Similar domains are found in a range of different proteins including neurofibromatosis type-1, a Ras GTPase-activating Protein (RasGAP) and Rho guanine nucleotide exchange factors (RhoGEFs). Proteins containing this structural protein domain exhibit a low sequence similarity and ligand specificity while maintaining an overall characteristic three-dimensional structure. We have previously demonstrated that the BNIP-2 and Cdc42GAP Homology (BCH) protein domain, which shares a low sequence homology with the CRAL_TRIO domain, can serve as a regulatory scaffold that binds to Rho, RhoGEFs and RhoGAPs to control various cell signalling processes. In this work, we investigate 175 BCH domain-containing proteins from a wide range of different organisms. A phylogenetic analysis with ∼100 CRAL_TRIO and similar domains from eight representative species indicates a clear distinction of BCH-containing proteins as a novel subclass within the CRAL_TRIO/Sec14 superfamily. BCH-containing proteins contain a hallmark sequence motif R(R/K)h(R/K)(R/K)NL(R/K)xhhhhHPs (‘h’ is large and hydrophobic residue and ‘s’ is small and weekly polar residue) and can be further subdivided into three unique subtypes associated with BNIP-2-N, macro- and RhoGAP-type protein domains. A previously unknown group of genes encoding ‘BCH-only’ domains is also identified in plants and arthropod species. Based on an analysis of their gene-structure and their protein domain context we hypothesize that BCH domain-containing genes evolved through gene duplication, intron insertions and domain swapping events. Furthermore, we explore the point of divergence between BCH and CRAL-TRIO proteins in relation to their ability to bind small GTPases, GAPs and GEFs and lipid ligands. Our study suggests a need for a more extensive analysis of previously uncharacterized BCH,

  1. Safety of High Speed Guided Ground Transportation Systems - The Biological Effects of Maglev Magnetic Field Exposures

    DOT National Transportation Integrated Search

    1993-08-01

    This report describes selected biological effects on transformed human cell lines and on rats from exposure to simulated : maglev magnetic fields (MFs). Rats (n = 6 per group) were exposed at various times throughout the 24-h day to MFs : simulating ...

  2. Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes.

    PubMed

    Nikolaidis, Nikolas; Nei, Masatoshi

    2004-03-01

    We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.

  3. Myelin-oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham-Dinh, D.; Dautigny, A.; Mattei, M.G.

    1993-09-01

    Myelin/oligodendrocyte glycoprotein (MOG) is found on the surface of myelinating oligodendrocytes and external lamellae of myelin sheaths in the central nervous system, and it is target antigen in experimental autoimmune encephalomyelitis and multiple sclerosis. The authors have isolated bovine, mouse, and rat MOG cDNA clones and shown that the developmental pattern of MOG expression in the rat central nervous system coincides with the late stages of myelination. The amino-terminal, extracellular domain of MOG has characteristics of an immunoglobulin variable domain and is 46% and 41% identical with the amino terminus of bovine butyrophilin (expressed in the lactating mammary gland) andmore » B-G antigens of the chicken major histocompatibility complex (MHC), respectively; these proteins thus form a subset of the immunoglobulin superfamily. The homology between MOG and B-G extends beyond their structure and genetic mapping to their ability to induce strong antibody responses and has implications for the role of MOG in pathological, autoimmune conditions. The authors colocalized the MOG and BT genes to the human MHC on chromosome 6p21.3-p22. The mouse MOG gene was mapped to the homologous band C of chromosome 17, within the M region of the mouse MHC. 38 refs., 6 figs.« less

  4. Comparative Bioinformatic Analysis of Active Site Structures in Evolutionarily Remote Homologues of α,β-Hydrolase Superfamily Enzymes.

    PubMed

    Suplatov, D A; Arzhanik, V K; Svedas, V K

    2011-01-01

    Comparative bioinformatic analysis is the cornerstone of the study of enzymes' structure-function relationship. However, numerous enzymes that derive from a common ancestor and have undergone substantial functional alterations during natural selection appear not to have a sequence similarity acceptable for a statistically reliable comparative analysis. At the same time, their active site structures, in general, can be conserved, while other parts may largely differ. Therefore, it sounds both plausible and appealing to implement a comparative analysis of the most functionally important structural elements - the active site structures; that is, the amino acid residues involved in substrate binding and the catalytic mechanism. A computer algorithm has been developed to create a library of enzyme active site structures based on the use of the PDB database, together with programs of structural analysis and identification of functionally important amino acid residues and cavities in the enzyme structure. The proposed methodology has been used to compare some α,β-hydrolase superfamily enzymes. The insight has revealed a high structural similarity of catalytic site areas, including the conservative organization of a catalytic triad and oxyanion hole residues, despite the wide functional diversity among the remote homologues compared. The methodology can be used to compare the structural organization of the catalytic and substrate binding sites of various classes of enzymes, as well as study enzymes' evolution and to create of a databank of enzyme active site structures.

  5. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    PubMed

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.

  6. Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme.

    PubMed Central

    Jankowsky, E; Schwenzer, B

    1996-01-01

    Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems. PMID:8602353

  7. Facilitation of contrast detection in near-peripheral vision.

    PubMed

    Giorgi, Robert G; Soong, Grace P; Woods, Russell L; Peli, Eli

    2004-12-01

    Foveal detection of a Gabor patch (target) is facilitated by collinear, displaced high-contrast flankers. Polat and Sagi reported that the same phenomenon occurred in the periphery, but no data were presented [Proc. Natl. Acad. Sci. 91 (1994) 1206]. Others have found no facilitation in a limited number of conditions tested. To resolve this apparent conflict, we measured lateral facilitation in the near-periphery using a range of stimulus parameters. We found facilitation for a range of target-flanker distances for peripheral eccentricities up to 6 degrees , but the magnitude of the effect was less than found in central vision. Facilitation varied across subjects and with spatial frequency. Flanker contrast had no effect over the range evaluated (10-80%). Equal facilitation was found for two global arrangements of the stimulus pattern. Facilitation was found using a temporal, but not a spatial two-alternative forced-choice paradigm, accounting for the different results among previous studies. This finding supports previous indications of the role of attention in altering such facilitation. The value of facilitation from lateral interactions for persons with central vision impairment, who have to shift their attention to a peripheral locus constantly, needs to be examined.

  8. The Decompensated Monofixation Syndrome (An American Ophthalmological Society Thesis)

    PubMed Central

    Siatkowski, R. Michael

    2011-01-01

    Purpose To describe the clinical features and response to treatment of patients with decompensated monofixation syndrome (MFS) and to propose a hypothesis for a decompensation mechanism in such patients. Methods Fourteen adults with MFS who had been symptomatically stable for a mean duration of 25 years developed diplopia in the absence of neurologic or orbital disease. After retrospective chart review, they underwent detailed orthoptic testing. Results from this cross-sectional analysis were compared with similar data from 16 control subjects with stable MFS. Results Compared to stable MFS patients, decompensated subjects had significantly poorer horizontal fusional amplitudes but greater torsional fusional amplitudes; they were also more likely to have a small vertical strabismus and to have received initial treatment later. Stable subjects, however, also had subnormal horizontal as well as torsional fusional amplitudes. There was no difference between groups with respect to refractive error, amblyopia, type or prior treatment of strabismus, stereoacuity, or angle of deviation. After treatment, all patients regained monofixational alignment, but up to one-third had continued diplopia. Symptoms recurred in two patients whose treatment was initially successful. Conclusions Patients with MFS lose fusional amplitudes over time. In some cases this results in development of sensory torsion with secondary decompensation and diplopia. The rate of decompensation averages 7% per year from ages 20 to 70. Treatment for decompensation offers excellent motor results, but sensory symptoms may persist and recurrent symptoms may develop. Monitoring and maintenance of fusional vergence amplitudes should be part of the routine care for patients with MFS. PMID:22253490

  9. Effect of Masked Regions on Weak-lensing Statistics

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi

    2013-09-01

    Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation. We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple χ2 analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg2 survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting χ2/n dof = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard ΛCDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.

  10. EFFECT OF MASKED REGIONS ON WEAK-LENSING STATISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp

    2013-09-10

    Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation.more » We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple {chi}{sup 2} analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg{sup 2} survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting {chi}{sup 2}/n{sub dof} = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard {Lambda}CDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.« less

  11. Conotoxin Φ-MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Anti-Apoptotic Activity.

    PubMed

    Jin, Ai-Hua; Dekan, Zoltan; Smout, Michael J; Wilson, David; Dutertre, Sébastien; Vetter, Irina; Lewis, Richard J; Loukas, Alex; Daly, Norelle L; Alewood, Paul F

    2017-11-20

    Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks that target a broad range of ion channels and receptors. We recently discovered the 33-residue conotoxin Φ-MiXXVIIA from Conus miles with a novel cysteine framework comprising three consecutive cysteine residues and four disulfide bonds. Regioselective chemical synthesis helped decipher the disulfide bond connectivity and the structure of Φ-MiXXVIIA was determined by NMR spectroscopy. The 3D structure displays a unique topology containing two β-hairpins that resemble the N-terminal domain of granulin. Similar to granulin, Φ-MiXXVIIA promotes cell proliferation (EC 50 17.85 μm) while inhibiting apoptosis (EC 50 2.2 μm). Additional framework XXVII sequences were discovered with homologous signal peptides that define the new conotoxin superfamily G2. The novel structure and biological activity of Φ-MiXXVIIA expands the repertoire of disulfide-rich conotoxins that recognize mammalian receptors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women.

    PubMed

    Moore, A G; Brown, D A; Fairlie, W D; Bauskin, A R; Brown, P K; Munier, M L; Russell, P K; Salamonsen, L A; Wallace, E M; Breit, S N

    2000-12-01

    Macrophage inhibitory cytokine-1 (MIC-1) is a recently described divergent member of the transforming growth factor-ss superfamily. MIC-1 transcription up-regulation is associated with macrophage activation, and this observation led to its cloning. Northern blots indicate that MIC-1 is also present in human placenta. A sensitive sandwich enzyme-linked immunosorbent assay for the quantification of MIC-1 was developed and used to examine the role of this cytokine in pregnancy. High levels of MIC-1 are present in the sera of pregnant women. The level rises substantially with progress of gestation. MIC-1 can also be detected, in large amounts, in amniotic fluid and placental extracts. In addition, the BeWo placental trophoblastic cell line was found to constitutively express the MIC-1 transcript and secrete large amounts of MIC-1. These findings suggest that the placental trophoblast is a major source of the MIC-1 present in maternal serum and amniotic fluid. We suggest that MIC-1 may promote fetal survival by suppressing the production of maternally derived proinflammatory cytokines within the uterus.

  13. Simultaneous Occurrence of Duane Retraction Syndrome with Marfan Syndrome

    PubMed Central

    Kothari, Mihir; Manurung, Florence; Mithiya, Bhavesh

    2011-01-01

    Marfan syndrome (MFS) is an autosomal dominant disorder of connective tissue, while Duane retraction syndrome (DRS) is a congenital cranial dysinnervation disorder (CCDD) which can be transmitted as autosomal dominant disorder in 5–10% of patients. In this paper, we present an 8-year-old girl who presented with left eye DRS and bilateral subluxation of the lens associated with MFS in absence of familial involvement. To our knowledge this is the first case report of DRS with MFS. The occurrence of these syndromes together is very rare and appears to be coincidental. PMID:22606474

  14. Glutathione system participation in thoracic aneurysms from patients with Marfan syndrome.

    PubMed

    Zúñiga-Muñoz, Alejandra María; Pérez-Torres, Israel; Guarner-Lans, Verónica; Núñez-Garrido, Elías; Velázquez Espejel, Rodrigo; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Soto, María Elena

    2017-05-01

    Aortic dilatation in Marfan syndrome (MFS) is progressive. It is associated with oxidative stress and endothelial dysfunction that contribute to the early acute dissection of the vessel and can result in rupture of the aorta and sudden death. We evaluated the participation of the glutathione (GSH) system, which could be involved in the mechanisms that promote the formation and progression of the aortic aneurysms in MFS patients. Aortic aneurysm tissue was obtained during chest surgery from eight control subjects and 14 MFS patients. Spectrophotometrical determination of activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO) index, carbonylation, total antioxidant capacity (TAC), and concentration of reduced and oxidized glutathione (GSH and GSSG respectively), was performed in the homogenate from aortic aneurysm tissue. LPO index, carbonylation, TGF-β1, and GR activity were increased in MFS patients (p < 0.04), while TAC, GSH/GSSG ratio, GPx, and GST activity were significantly decreased (p < 0.04). The depletion of GSH, in spite of the elevated activity of GR, not only diminished the activity of GSH-depend GST and GPx, but increased LPO, carbonylation and decreased TAC. These changes could promote the structural and functional alterations in the thoracic aorta of MFS patients.

  15. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    NASA Astrophysics Data System (ADS)

    Wang, Wenxia; Huang, Guohe; An, Chunjiang; Xin, Xiaying; Zhang, Yan; Liu, Xia

    2017-05-01

    From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  16. NCX-DB: a unified resource for integrative analysis of the sodium calcium exchanger super-family.

    PubMed

    Bode, Katrin; O'Halloran, Damien M

    2018-04-13

    Na + /Ca 2+ exchangers are low-affinity high-capacity transporters that mediate Ca 2+ extrusion by coupling Ca 2+ efflux to the influx of Na + ions. The Na + /Ca 2+ exchangers form a super-family comprised of three branches each differing in ion-substrate selectivity: Na + /Ca 2+ exchangers (NCX), Na + /Ca 2+ /K + exchangers, and Ca 2+ /cation exchangers. Their primary function is to maintain Ca 2+ homeostasis and play a particularly important role in excitable cells that experience transient Ca 2+ fluxes. Research into the role and activity of Na + /Ca 2+ exchangers has focused extensively on the cardio-vascular system, however, growing evidence suggests that Na + /Ca 2+ exchangers play a key role in neuronal processes such as memory formation, learning, oligodendrocyte differentiation, neuroprotection during brain ischemia and axon guidance. They have also been implicated in pathologies such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis and Epilepsy, however, a clear understanding of their mechanism during disease is lacking. To date, there has never been a central resource or database for Na + /Ca 2+ exchangers. With clear disease relevance and ever-increasing research on Na + /Ca 2+ exchangers from both model and non-model species, a database that unifies the data on Na + /Ca 2+ exchangers is needed for future research. NCX-DB is a publicly available database with a web interface that enables users to explore various Na + /Ca 2+ exchangers, perform cross-species sequence comparison, identify new exchangers, and stay-up to date with recent literature. NCX-DB is available on the web via an interactive user interface with an intuitive design, which is applicable for the identification and comparison of Na + /Ca 2+ exchanger proteins across diverse species.

  17. Technologies and Techniques for Supporting Facilitated Video

    ERIC Educational Resources Information Center

    Linnell, Natalie

    2011-01-01

    Worldwide, demand for education of all kinds is increasing beyond the capacity to provide it. One approach that shows potential for addressing this demand is facilitated video. In facilitated video, an educator is recorded teaching, and that video is sent to a remote site where it is shown to students by a facilitator who creates interaction…

  18. Transducer model produces facilitation from opposite-sign flanks

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Watson, A. B.; Morgan, M. J.

    1999-01-01

    Small spots, lines and Gabor patterns can be easier to detect when they are superimposed upon similar spots, lines and Gabor patterns. Traditionally, such facilitation has been understood to be a consequence of nonlinear contrast transduction. Facilitation has also been reported to arise from non-overlapping patterns with opposite sign. We point out that this result does not preclude the traditional explanation for superimposed targets. Moreover, we find that facilitation from opposite-sign flanks is weaker than facilitation from same-sign flanks. Simulations with a transducer model produce opposite-sign facilitation.

  19. What can we learn from facilitator and student perceptions of facilitation skills and roles in the first year of a problem-based learning curriculum?

    PubMed Central

    McLean, Michelle

    2003-01-01

    Background The small group tutorial is a cornerstone of problem-based learning. By implication, the role of the facilitator is of pivotal importance. The present investigation canvassed perceptions of facilitators with differing levels of experience regarding their roles and duties in the tutorial. Methods In January 2002, one year after problem-based learning implementation at the Nelson R. Mandela School of Medicine, facilitators with the following experience were canvassed: trained and about to facilitate, facilitated once only and facilitated more than one six-week theme. Student comments regarding facilitator skills were obtained from a 2001 course survey. Results While facilitators generally agreed that the three-day training workshop provided sufficient insight into the facilitation process, they become more comfortable with increasing experience. Many facilitators experienced difficulty not providing content expertise. Again, this improved with increasing experience. Most facilitators saw students as colleagues. They agreed that they should be role models, but were less enthusiastic about being mentors. Students were critical of facilitators who were not up to date with curriculum implementation or who appeared disinterested. While facilitator responses suggest that there was considerable intrinsic motivation, this might in fact not be the case. Conclusions Even if they had facilitated on all six themes, facilitators could still be considered as novices. Faculty support is therefore critical for the first few years of problem-based learning, particularly for those who had facilitated once only. Since student and facilitator expectations in the small group tutorial may differ, roles and duties of facilitators must be explicit for both parties from the outset. PMID:14585108

  20. What can we learn from facilitator and student perceptions of facilitation skills and roles in the first year of a problem-based learning curriculum?

    PubMed

    McLean, Michelle

    2003-10-30

    The small group tutorial is a cornerstone of problem-based learning. By implication, the role of the facilitator is of pivotal importance. The present investigation canvassed perceptions of facilitators with differing levels of experience regarding their roles and duties in the tutorial. In January 2002, one year after problem-based learning implementation at the Nelson R. Mandela School of Medicine, facilitators with the following experience were canvassed: trained and about to facilitate, facilitated once only and facilitated more than one six-week theme. Student comments regarding facilitator skills were obtained from a 2001 course survey. While facilitators generally agreed that the three-day training workshop provided sufficient insight into the facilitation process, they become more comfortable with increasing experience. Many facilitators experienced difficulty not providing content expertise. Again, this improved with increasing experience. Most facilitators saw students as colleagues. They agreed that they should be role models, but were less enthusiastic about being mentors. Students were critical of facilitators who were not up to date with curriculum implementation or who appeared disinterested. While facilitator responses suggest that there was considerable intrinsic motivation, this might in fact not be the case. Even if they had facilitated on all six themes, facilitators could still be considered as novices. Faculty support is therefore critical for the first few years of problem-based learning, particularly for those who had facilitated once only. Since student and facilitator expectations in the small group tutorial may differ, roles and duties of facilitators must be explicit for both parties from the outset.

  1. X-ray studies of neutron stars and their magnetic fields

    PubMed Central

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  2. The effects of Bi4Ti3O12 interfacial ferroelectric layer on the dielectric properties of Au/n-Si structures

    NASA Astrophysics Data System (ADS)

    Gökçen, Muharrem; Yıldırım, Mert

    2015-06-01

    Au/n-Si metal-semiconductor (MS) and Au/Bi4Ti3O12/n-Si metal-ferroelectric-semiconductor (MFS) structures were fabricated and admittance measurements were held between 5 kHz and 1 MHz at room temperature so that dielectric properties of these structures could be investigated. The ferroelectric interfacial layer Bi4Ti3O12 decreased the polarization voltage by providing permanent dipoles at metal/semiconductor interface. Depending on different mechanisms, dispersion behavior was observed in dielectric constant, dielectric loss and loss tangent versus bias voltage plots of both MS and MFS structures. The real and imaginary parts of complex modulus of MFS structure take smaller values than those of MS structure, because permanent dipoles in ferroelectric layer cause a large spontaneous polarization mechanism. While the dispersion in AC conductivity versus frequency plots of MS structure was observed at high frequencies, for MFS structure it was observed at lower frequencies.

  3. Facilitator training program: The Université Laval Interprofessional Initiative.

    PubMed

    Milot, Élise; Museux, Anne-Claire; Careau, Emmanuelle

    2017-03-01

    A facilitator training program (FTP) for interprofessional learning (IPL) facilitators has been developed at Université Laval. This article describes the impacts of this program as perceived by the 22 IPL facilitators involved and outlines recommendations. Two qualitative data collection strategies were used to document the facilitators' pedagogical needs and views of the program's impacts. Results suggest that the FTP's pedagogical approach was effective. The IPL facilitators became more aware of their challenges and identified concrete strategies to use. Training initiatives should equip IPL facilitators to cope with uncertainty, create a climate supporting active learning, and facilitate positive interactions between students.

  4. 49 CFR 38.2 - Equivalent facilitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Equivalent facilitation. 38.2 Section 38.2 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES General § 38.2 Equivalent facilitation. Departures from particular...

  5. Improved inflammatory activity with peginterferon alfa-2b maintenance therapy in non-cirrhotic prior non-responders: a randomized study.

    PubMed

    Poynard, Thierry; Bruix, Jordi; Schiff, Eugene R; Diago, Moises; Berg, Thomas; Moreno-Otero, Ricardo; Lyra, Andre C; Carrilho, Flair; Griffel, Louis H; Boparai, Navdeep; Jiang, Ruiyun; Burroughs, Margaret; Brass, Clifford A; Albrecht, Janice K

    2013-03-01

    Therapeutic options for patients failing hepatitis C retreatment are limited. EPIC(3) included a prospective trial assessing long-term peginterferon alfa-2b (PegIFNα-2b) maintenance therapy in patients with METAVIR fibrosis scores (MFS) of F2 or F3 who previously failed hepatitis C retreatment. Patients with F2/F3 MFS who failed retreatment were randomized to PegIFNα-2b (0.5 μg/kg/week, n=270) or observation (n=270) for 36 months. Blinded liver biopsies obtained before retreatment and after maintenance therapy were evaluated using MFS and activity scores, and confirmatory testing was performed using FibroTest and ActiTest. In total, 348 patients had paired biopsies: 192 patients had missing post-treatment biopsies and were considered as having no change in fibrosis/activity scores. In total, 16% of patients receiving PegIFNα-2b and 11% of observation patients had improvement in MFS (p=0.32). More PegIFNα-2b than observation patients had improvement in activity score (20% vs. 9%; p <0.001). Among patients treated for >2.5 years, improvement in MFS or activity score was more common with PegIFNα-2b than observation (21% vs. 14%, p=0.08 and 26% vs. 10%, p <0.001). FibroTest and ActiTest evaluations indicated significant benefit associated with PegIFNα-2b in terms of reduced fibrosis progression and improved activity score. The safety profile of PegIFNα-2b was similar to previous studies. PegIFNα-2b did not significantly improve MFS estimated by biopsy compared with observation; however, activity scores were significantly improved and MFS trended toward increased improvement with treatment durations >2.5 years. Both FibroTest and ActiTest were significantly improved during maintenance therapy. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype.

    PubMed

    Haine, Elsa; Salles, Jean-Pierre; Khau Van Kien, Philippe; Conte-Auriol, Françoise; Gennero, Isabelle; Plancke, Aurélie; Julia, Sophie; Dulac, Yves; Tauber, Maithé; Edouard, Thomas

    2015-08-01

    Marfan syndrome (MFS) is a rare connective tissue disorder caused by mutation in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1), leading to transforming growth factor-beta (TGF-β) signaling dysregulation. Although decreased axial and peripheral bone mineral density (BMD) has been reported in adults with MFS, data about the evolution of bone mass during childhood and adolescence are limited. The aim of the present study was to evaluate bone and muscle characteristics in children, adolescents, and young adults with MFS. The study population included 48 children and young adults (22 girls) with MFS with a median age of 11.9 years (range 5.3 to 25.2 years). The axial skeleton was analyzed at the lumbar spine using dual-energy X-ray absorptiometry (DXA), whereas the appendicular skeleton (hand) was evaluated using the BoneXpert system (with the calculation of the Bone Health Index). Muscle mass was measured by DXA. Compared with healthy age-matched controls, bone mass at the axial and appendicular levels and muscle mass were decreased in children with MFS and worsened from childhood to adulthood. Vitamin D deficiency (<50 nmol/L) was found in about a quarter of patients. Serum vitamin D levels were negatively correlated with age and positively correlated with lumbar spine areal and volumetric BMD. Lean body mass (LBM) Z-scores were positively associated with total body bone mineral content (TB-BMC) Z-scores, and LBM was an independent predictor of TB-BMC values, suggesting that muscle hypoplasia could explain at least in part the bone loss in MFS. Patients with a FBN1 premature termination codon mutation had a more severe musculoskeletal phenotype than patients with an inframe mutation, suggesting the involvement of TGF-β signaling dysregulation in the pathophysiologic mechanisms. In light of these results, we recommend that measurement of bone mineral status should be part of the longitudinal clinical investigation of MFS children. © 2015

  7. Biometry Characteristics in Adults and Children With Marfan Syndrome: From the Marfan Eye Consortium of Chicago.

    PubMed

    Kinori, Michael; Wehrli, Sarah; Kassem, Iris S; Azar, Nathalie F; Maumenee, Irene H; Mets, Marilyn B

    2017-05-01

    To report on the biometric findings of adults and children with Marfan syndrome (MFS) recruited from 2 annual National Marfan Foundation conferences (2012 and 2015). Cross-sectional study. Subjects diagnosed with MFS by Ghent 2 nosology were included for analysis. Subjects were divided into "adults" (≥16 years of age) and "children" (5-15 years of age). Biometric data included values for refractive error, axial length (AL), corneal curvature, anterior chamber depth, lens thickness, and central corneal thickness. Of the 117 subjects evaluated, 74 (35 adults, 32 children, and 7 children <5 years of age) had a definite diagnosis of MFS and were included in the study. The AL was longer (25.25 ± 0.32 mm vs 24.24 ± 0.33 mm, P = .03) and the lens was thicker (3.94 ± 0.09 mm vs 3.62 ± 0.10 mm, P = .03) in adults. Both groups had flat corneas (average keratometry [K med ] of 41.59 ± 0.35 diopters [D] in adults vs 40.89 ± 0.36 D in children, P = .17). A negative correlation was found between AL and K med (-0.33, P < .001). The corneas of patients with MFS with ectopia lentis (EL) were significantly flatter and with higher degree of corneal astigmatism compared to patients without EL (K med of 40.68 ± 0.31 D vs 41.75 ± 0.28 D, P < .01 and corneal astigmatism of 1.68 ± 0.16 D vs 1.13 ± 0.14 D, P = .01). Children with established MFS have flat corneas at least to the same degree as adults. Corneas of patients with MFS with EL are flatter and have a higher degree of corneal astigmatism. We strongly suggest that corneal parameters should be measured if MFS is suspected, especially in children that may not yet have developed EL. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Biometry Characteristics in Adults and Children With Marfan Syndrome: From the Marfan Eye Consortium of Chicago

    PubMed Central

    KINORI, MICHAEL; WEHRLI, SARAH; KASSEM, IRIS S.; AZAR, NATHALIE F.; MAUMENEE, IRENE H.; METS, MARILYN B.

    2017-01-01

    PURPOSE To report on the biometric findings of adults and children with Marfan syndrome (MFS) recruited from 2 annual National Marfan Foundation conferences (2012 and 2015). DESIGN Cross-sectional study. METHODS Subjects diagnosed with MFS by Ghent 2 nosology were included for analysis. Subjects were divided into “adults” (≥16 years of age) and “children” (5–15 years of age). Biometric data included values for refractive error, axial length (AL), corneal curvature, anterior chamber depth, lens thickness, and central corneal thickness. RESULTS Of the 117 subjects evaluated, 74 (35 adults, 32 children, and 7 children <5 years of age) had a definite diagnosis of MFS and were included in the study. The AL was longer (25.25 ± 0.32 mm vs 24.24 ± 0.33 mm, P [ .03) and the lens was thicker (3.94 ± 0.09 mm vs 3.62 ± 0.10 mm, P [ .03) in adults. Both groups had flat corneas (average keratometry [Kmed] of 41.59 ± 0.35 diopters [D] in adults vs 40.89 ± 0.36 D in children, P [ .17). A negative correlation was found between AL and Kmed (L0.33, P < .001). The corneas of patients with MFS with ectopia lentis (EL) were significantly flatter and with higher degree of corneal astigmatism compared to patients without EL (Kmed of 40.68 ± 0.31 D vs 41.75 ± 0.28 D, P < .01 and corneal astigmatism of 1.68 ± 0.16 D vs 1.13 ± 0.14 D, P =.01). CONCLUSIONS Children with established MFS have flat corneas at least to the same degree as adults. Corneas of patients with MFS with EL are flatter and have a higher degree of corneal astigmatism. We strongly suggest that corneal parameters should be measured if MFS is suspected, especially in children that may not yet have developed EL. PMID:28257833

  9. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Tartrate Dehydratase from Bradyrhizobium japonicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yew,W.; Fedorov, A.; Fedorov, E.

    2006-01-01

    We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second {beta}-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth -strands, respectively, as well as ligands for an essential Mg{sup 2+}, Asp 213, Glu 239, andmore » Glu 265 at the ends of the third, fourth, and fifth {beta}-strands, respectively. We screened a library of 46 acid sugars and discovered that only D-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (k{sub cat} = 7.3 s{sup -1}; k{sub cat}/K{sub M} = 8.5 x 10{sup 4} M{sup -1} s{sup -1}) are consistent with assignment of the D-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the {alpha}-proton to generate a Mg{sup 2+}-stabilized enediolate intermediate, and the vinylogous -elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by {sup 1}H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a 'simple' extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg{sup 2+}-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.« less

  10. Disruption of M-T5, a novel myxoma virus gene member of poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits.

    PubMed Central

    Mossman, K; Lee, S F; Barry, M; Boshkov, L; McFadden, G

    1996-01-01

    Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of

  11. Disruption of M-T5, a novel myxoma virus gene member of poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits.

    PubMed

    Mossman, K; Lee, S F; Barry, M; Boshkov, L; McFadden, G

    1996-07-01

    Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of

  12. An exploration of tutors' experiences of facilitating problem-based learning. Part 2--implications for the facilitation of problem based learning.

    PubMed

    Haith-Cooper, Melanie

    2003-01-01

    This paper is the second of two parts exploring a study that was undertaken to investigate the role of the tutor in facilitating problem-based learning (PBL). The first part focussed on the methodological underpinnings of the study. This paper aims to focus on the findings of the study and their implications for the facilitation of PBL. Six essential themes emerged from the findings that described the facilitation role. The tutors believed that their facilitation role was essentially structured around the decision of when to intervene and how to intervene in the PBL process. Modelling and non-verbal communication were seen as essential strategies for the facilitator. Underpinning these decisions was the need to trust in the philosophy of PBL. However, within many of the themes, there was a divergence of opinion as to how the role should actually be undertaken. Despite this, these findings have implications for the future role of PBL facilitators in Health Professional Education.

  13. An integrative computational analysis provides evidence for FBN1-associated network deregulation in trisomy 21.

    PubMed

    Vilardell, Mireia; Civit, Sergi; Herwig, Ralf

    2013-08-15

    Although approximately 50% of Down Syndrome (DS) patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS). The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS). Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue) and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%), such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

  14. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes

    PubMed Central

    Tae, Hyun-Jin; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2015-01-01

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/− mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2–4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6–14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS. PMID:26566724

  15. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    PubMed

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  16. Familiarity facilitates feature-based face processing.

    PubMed

    Visconti di Oleggio Castello, Matteo; Wheeler, Kelsey G; Cipolli, Carlo; Gobbini, M Ida

    2017-01-01

    Recognition of personally familiar faces is remarkably efficient, effortless and robust. We asked if feature-based face processing facilitates detection of familiar faces by testing the effect of face inversion on a visual search task for familiar and unfamiliar faces. Because face inversion disrupts configural and holistic face processing, we hypothesized that inversion would diminish the familiarity advantage to the extent that it is mediated by such processing. Subjects detected personally familiar and stranger target faces in arrays of two, four, or six face images. Subjects showed significant facilitation of personally familiar face detection for both upright and inverted faces. The effect of familiarity on target absent trials, which involved only rejection of unfamiliar face distractors, suggests that familiarity facilitates rejection of unfamiliar distractors as well as detection of familiar targets. The preserved familiarity effect for inverted faces suggests that facilitation of face detection afforded by familiarity reflects mostly feature-based processes.

  17. Facilitating LOS Debriefings: A Training Manual

    NASA Technical Reports Server (NTRS)

    McDonnell, Lori K.; Jobe, Kimberly K.; Dismukes, R. Key

    1997-01-01

    This manual is a practical guide to help airline instructors effectively facilitate debriefings of Line Oriented Simulations (LOS). It is based on a recently completed study of Line Oriented Flight Training (LOFT) debriefings at several U.S. airlines. This manual presents specific facilitation tools instructors can use to achieve debriefing objectives. The approach of the manual is to be flexible so it can be tailored to the individual needs of each airline. Part One clarifies the purpose and objectives of facilitation in the LOS setting. Part Two provides recommendations for clarifying roles and expectations and presents a model for organizing discussion. Part Tree suggests techniques for eliciting active crew participation and in-depth analysis and evaluation. Finally, in Part Four, these techniques are organized according to the facilitation model. Examples of how to effectively use the techniques are provided throughout, including strategies to try when the debriefing objectives are not being fully achieved.

  18. A structural determinant in the uracil DNA glycosylase superfamily for the removal of uracil from adenine/uracil base pairs

    PubMed Central

    Lee, Dong-Hoon; Liu, Yinling; Lee, Hyun-Wook; Xia, Bo; Brice, Allyn R.; Park, Sung-Hyun; Balduf, Hunter; Dominy, Brian N.; Cao, Weiguo

    2015-01-01

    The uracil DNA glycosylase superfamily consists of several distinct families. Family 2 mismatch-specific uracil DNA glycosylase (MUG) from Escherichia coli is known to exhibit glycosylase activity on three mismatched base pairs, T/U, G/U and C/U. Family 1 uracil N-glycosylase (UNG) from E. coli is an extremely efficient enzyme that can remove uracil from any uracil-containing base pairs including the A/U base pair. Here, we report the identification of an important structural determinant that underlies the functional difference between MUG and UNG. Substitution of a Lys residue at position 68 with Asn in MUG not only accelerates the removal of uracil from mismatched base pairs but also enables the enzyme to gain catalytic activity on A/U base pairs. Binding and kinetic analysis demonstrate that the MUG-K68N substitution results in enhanced ground state binding and transition state interactions. Molecular modeling reveals that MUG-K68N, UNG-N123 and family 5 Thermus thermophiles UDGb-A111N can form bidentate hydrogen bonds with the N3 and O4 moieties of the uracil base. Genetic analysis indicates the gain of function for A/U base pairs allows the MUG-K68N mutant to remove uracil incorporated into the genome during DNA replication. The implications of this study in the origin of life are discussed. PMID:25550433

  19. Crystal structure of SgcJ, an NTF2-like superfamily protein involved in biosynthesis of the nine-membered enediyne antitumor antibiotic C-1027

    DOE PAGES

    Huang, Tingting; Chang, Chin -Yuan; Lohman, Jeremy R.; ...

    2016-10-01

    Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us tomore » propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. In conclusion, these findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis.« less

  20. Self-Surveillance by Adolescents and Young Adults Transitioning to Self-Management of a Chronic Genetic Disorder

    ERIC Educational Resources Information Center

    Giarelli, Ellen; Bernhardt, Barbara A.; Pyeritz, Reed E.

    2010-01-01

    Adolescents and young adults with Marfan syndrome (MFS) use information from self-surveillance to manage their disorder. Thirty-seven male and female adolescents with MFS aged 14 to 21 years were interviewed. They identified 58 distinct self-surveillance behaviors that fell into four categories and multiple subcategories (SCs): tracking phenotype…

  1. Toward Facilitative Mentoring and Catalytic Interventions

    ERIC Educational Resources Information Center

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  2. Facilitators for practice change in Spanish community pharmacy.

    PubMed

    Gastelurrutia, Miguel A; Benrimoj, S I Charlie; Castrillon, Carla C; de Amezua, María J Casado; Fernandez-Llimos, Fernando; Faus, Maria J

    2009-02-01

    To identify and prioritise facilitators for practice change in Spanish community pharmacy. Spanish community pharmacies. Qualitative study. Thirty-three semi-structured interviews were conducted with community pharmacists (n = 15) and pharmacy strategists (n = 18), and the results were examined using the content analysis method. In addition, two nominal groups (seven community pharmacists and seven strategists) were formed to identify and prioritise facilitators. Results of both techniques were then triangulated. Facilitators for practice change. Twelve facilitators were identified and grouped into four domains (D1: Pharmacist; D2: Pharmacy as an organisation; D3: Pharmaceutical profession; D4: Miscellaneous). Facilitators identified in D1 include: the need for more clinical education at both pre- and post-graduate levels; the need for clearer and unequivocal messages from professional leaders about the future of the professional practice; and the need for a change in pharmacists' attitudes. Facilitators in D2 are: the need to change the reimbursement system to accommodate cognitive service delivery as well as dispensing; and the need to change the front office of pharmacies. Facilitators identified in D3 are: the need for the Spanish National Professional Association to take a leadership role in the implementation of cognitive services; the need to reduce administrative workload; and the need for universities to reduce the gap between education and research. Other facilitators identified in this study include: the need to increase patients' demand for cognitive services at pharmacies; the need to improve pharmacist-physician relationships; the need for support from health care authorities; and the need for improved marketing of cognitive services and their benefits to society, including physicians and health care authorities. Twelve facilitators were identified. Strategists considered clinical education and pharmacists' attitude as the most important, and

  3. Producing Gestures Facilitates Route Learning

    PubMed Central

    So, Wing Chee; Ching, Terence Han-Wei; Lim, Phoebe Elizabeth; Cheng, Xiaoqin; Ip, Kit Yee

    2014-01-01

    The present study investigates whether producing gestures would facilitate route learning in a navigation task and whether its facilitation effect is comparable to that of hand movements that leave physical visible traces. In two experiments, we focused on gestures produced without accompanying speech, i.e., co-thought gestures (e.g., an index finger traces the spatial sequence of a route in the air). Adult participants were asked to study routes shown in four diagrams, one at a time. Participants reproduced the routes (verbally in Experiment 1 and non-verbally in Experiment 2) without rehearsal or after rehearsal by mentally simulating the route, by drawing it, or by gesturing (either in the air or on paper). Participants who moved their hands (either in the form of gestures or drawing) recalled better than those who mentally simulated the routes and those who did not rehearse, suggesting that hand movements produced during rehearsal facilitate route learning. Interestingly, participants who gestured the routes in the air or on paper recalled better than those who drew them on paper in both experiments, suggesting that the facilitation effect of co-thought gesture holds for both verbal and nonverbal recall modalities. It is possibly because, co-thought gesture, as a kind of representational action, consolidates spatial sequence better than drawing and thus exerting more powerful influence on spatial representation. PMID:25426624

  4. Detection of the effect of nanoparticles on myelin figures growth using a compact digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samira; Soltani, Peyman; Moradi, Ali-Reza; Tayebi, Lobat

    2013-11-01

    Digital holographic microscopy (DHM) is an effective and non-destructive technique for quantitative phase contrast imaging of biological samples and living organelles. In this paper, using a simple and stable common-path DHM setup we study lipid bilayer dynamics and detect their morphological changes. Stacks of lipid amphiphilic molecules in excess water and at the presence of an external stimulus, stress, or force have great capability for the formation of multilamellar cylindrical tubes that are called myelin figures(MFs). MFs can be found in various healthy and diseased living cells and their formation and dynamics in various conditions involve mysterious configurations that have been of high interest. We utilized nanoparticles solved in water with different concentrations as an external stimulus for MFs of POPC lipid. The nanoparticles are injected into the sample container via a microinjection pump in a constant rate and MFs growth rate and their volume changes are measured by a compact digital holographic system. The setup is based on a binocular conventional microscope making the setup very stable against vibrations and noises. The recorded holograms are then computationally reconstructed. The measurements and investigations are performed by analyzing the reconstruction process. We showed that nanoparticles increase the growth rate of MFs during the first few seconds. However, after few seconds, the growth rate does not alter significantly comparing to the absence of nanoparticles.

  5. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome.

    PubMed

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients.

  6. Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice

    PubMed Central

    MacFarlane, Elena Gallo; Takimoto, Eiki; Chaudhary, Rahul; Nagpal, Varun; Rainer, Peter P.; Bindman, Julia G.; Gerber, Elizabeth E.; Bedja, Djahida; Schiefer, Christopher; Miller, Karen L.; Zhu, Guangshuo; Myers, Loretha; Amat-Alarcon, Nuria; Lee, Dong I.; Koitabashi, Norimichi; Judge, Daniel P.; Dietz, Harry C.

    2017-01-01

    Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-β, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-β ligand expression that culminates in both autocrine and paracrine overdrive of TGF-β signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation. PMID:28768908

  7. Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice.

    PubMed

    Rouf, Rosanne; MacFarlane, Elena Gallo; Takimoto, Eiki; Chaudhary, Rahul; Nagpal, Varun; Rainer, Peter P; Bindman, Julia G; Gerber, Elizabeth E; Bedja, Djahida; Schiefer, Christopher; Miller, Karen L; Zhu, Guangshuo; Myers, Loretha; Amat-Alarcon, Nuria; Lee, Dong I; Koitabashi, Norimichi; Judge, Daniel P; Kass, David A; Dietz, Harry C

    2017-08-03

    Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-β, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-β ligand expression that culminates in both autocrine and paracrine overdrive of TGF-β signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation.

  8. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome

    PubMed Central

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients. PMID:27413258

  9. Facilitating classroom based interprofessional learning: a grounded theory study of university educators' perceptions of their role adequacy as facilitators.

    PubMed

    Derbyshire, Julie A; Machin, Alison I; Crozier, Suzanne

    2015-01-01

    The provision of inter professional learning (IPL) within undergraduate programmes is now well established within many Higher Education Institutions (HEIs). IPL aims to better equip nurses and other health professionals with effective collaborative working skills and knowledge to improve the quality of patient care. Although there is still ambiguity in relation to the optimum timing and method for delivering IPL, effective facilitation is seen as essential. This paper reports on a grounded theory study of university educators' perceptions of the knowledge and skills needed for their role adequacy as IPL facilitators. Data was collected using semi structured interviews with nine participants who were theoretically sampled from a range of professional backgrounds, with varied experiences of education and involvement in facilitating IPL. Constant comparative analysis was used to generate four data categories: creating and sustaining an IPL group culture through transformational IPL leadership (core category), readiness for IPL facilitation, drawing on past interprofessional learning and working experiences and role modelling an interprofessional approach. The grounded theory generated from this study, although propositional, suggests that role adequacy for IPL facilitation is dependent on facilitator engagement in a process of 'transformational interprofessional learning leadership' to create and sustain a group culture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Facilitating Cognitive Development.

    ERIC Educational Resources Information Center

    Schwebel, Milton

    1985-01-01

    Human cognition research is shifting away from the importance of IQ and is emphasizing the stimulation and acceleration of a child's mental development. The emerging field of instructional psychology is trying to facilitate cognitive development. Current experimental programs--a university-school project in Belgium and a family project in…

  11. Physically facilitating drug-delivery systems

    PubMed Central

    Rodriguez-Devora, Jorge I; Ambure, Sunny; Shi, Zhi-Dong; Yuan, Yuyu; Sun, Wei; Xu, Tao

    2012-01-01

    Facilitated/modulated drug-delivery systems have emerged as a possible solution for delivery of drugs of interest to pre-allocated sites at predetermined doses for predefined periods of time. Over the past decade, the use of different physical methods and mechanisms to mediate drug release and delivery has grown significantly. This emerging area of research has important implications for development of new therapeutic drugs for efficient treatments. This review aims to introduce and describe different modalities of physically facilitating drug-delivery systems that are currently in use for cancer and other diseases therapy. In particular, delivery methods based on ultrasound, electrical, magnetic and photo modulations are highlighted. Current uses and areas of improvement for these different physically facilitating drug-delivery systems are discussed. Furthermore, the main advantages and drawbacks of these technologies reviewed are compared. The review ends with a speculative viewpoint of how research is expected to evolve in the upcoming years. PMID:22485192

  12. Emotion processing facilitates working memory performance.

    PubMed

    Lindström, Björn R; Bohlin, Gunilla

    2011-11-01

    The effect of emotional stimulus content on working memory performance has been investigated with conflicting results, as both emotion-dependent facilitation and impairments are reported in the literature. To clarify this issue, 52 adult participants performed a modified visual 2-back task with highly arousing positive stimuli (sexual scenes), highly arousing negative stimuli (violent death) and low-arousal neutral stimuli. Emotional stimulus processing was found to facilitate task performance relative to that of neutral stimuli, both in regards to response accuracy and reaction times. No emotion-dependent differences in false-alarm rates were found. These results indicate that emotional information can have a facilitating effect on working memory maintenance and processing of information.

  13. Facilitating the Design of a Campus Leadership Team

    ERIC Educational Resources Information Center

    Meyers, Renee A.; Johnson, John R.

    2008-01-01

    This essay describes how we facilitated the design of a campus leadership team. What is particularly interesting about this consultative project is that both authors participated--one as facilitator and the other as participant. The facilitation included a needs assessment prior to the event, the use of structured controversy techniques,…

  14. RISE-306; State Facilitator Program Evaluation, 1975-1976.

    ERIC Educational Resources Information Center

    Communication Technology Corp., Marlton, NJ.

    As an arm of the National Diffusion Network, the Pennsylvania State Facilitator's responsibilities include informing the schools about Title III approved programs and aiding in the actual adoption of such programs by school districts. Two aspects of the facilitator's role were identified for evaluation: (1) whether the facilitator had implemented…

  15. Facilitating Distance Education.

    ERIC Educational Resources Information Center

    Rossman, Mark H., Ed.; Rossman, Maxine E., Ed.

    1995-01-01

    This collection of articles on distance learning reflects the perspectives and concerns of the learner and the facilitator of learning in distance education setting. Eight chapters are included: (1) "The Evolution and Advantages of Distance Education" (John E. Cantelon) traces the history of distance education and demonstrates how it transcends…

  16. Facilitators in Ambivalence

    ERIC Educational Resources Information Center

    Karlsson, Mikael R.; Erlandson, Peter

    2018-01-01

    This is part of a larger ethnographical study concerning how school development in a local educational context sets cultural and social life in motion. The main data "in this article" consists of semi-structural interviews with teachers (facilitators) who have the responsibility of carrying out a project about formative assessment in…

  17. 50 CFR 600.752 - Use of conveners and facilitators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Use of conveners and facilitators. 600.752..., by consensus. The facilitator may be the same person as the convener used under paragraph (a) of this... facilitator, the FNP shall select, by consensus, a person to serve as facilitator. A person designated to...

  18. Mouse RC/BTB2, a Member of the RCC1 Superfamily, Localizes to Spermatid Acrosomal Vesicles

    PubMed Central

    Shen, Xuening; Nagarkatti-Gude, David R.; Hess, Rex A.; Henderson, Scott C.; Strauss, Jerome F.; Zhang, Zhibing

    2012-01-01

    Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5′-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation. PMID:22768142

  19. Metabolism of the Synthetic Progestogen Norethynodrel by Human Ketosteroid Reductases of the Aldo-Keto Reductase Superfamily

    PubMed Central

    Jin, Yi; Duan, Ling; Chen, Mo; Penning, Trevor M; Kloosterboer, Helenius J.

    2012-01-01

    Human ketosteroid reductases of the aldo-keto reductase (AKR) superfamily, i.e. AKR1C1-4, are implicated in the biotransformation of synthetic steroid hormones. Norethynodrel (NOR, 17α-ethynyl-17β-hydroxy-estra-5(10)-en-3-one), the progestin component of the first marketed oral contraceptive, is known to undergo rapid and extensive metabolism to 3α- and 3β-hydroxy metabolites. The ability of the four human AKR1C enzymes to catalyze the metabolism of NOR has now been characterized. AKR1C1 and AKR1C2 almost exclusively converted NOR to 3β-hydroxy NOR, while AKR1C3 gave 3β-hydroxy NOR as the main product and AKR1C4 predominantly formed 3α-hydroxy NOR. Individual AKR1C enzymes also displayed distinct kinetic properties in the reaction of NOR. In contrast, norethindrone (NET), the Δ4-isomer of NOR and the most commonly used synthetic progestin, was not a substrate for the AKR1C enzymes. NOR is also structurally identical to the hormone replacement therapeutic tibolone (TIB), except TIB has a methyl group at the 7α-position. Product profiles and kinetic parameters for the reduction of NOR catalyzed by each individual AKR1C isoform were identical to those for the reduction of TIB catalyzed by the respective isoform. These data suggest that the presence of the 7α-methyl group has a minimal effect on the stereochemical outcome of the reaction and kinetic behavior of each enzyme. Results indicate a role of AKR1C in the hepatic and peripheral metabolism of NOR to 3α- and 3β-hydroxy NOR and provide insights into the differential pharmacological properties of NOR, NET and TIB. PMID:22210085

  20. New insights into family relationships within the avian superfamily Sylvioidea (Passeriformes) based on seven molecular markers

    PubMed Central

    2012-01-01

    Background The circumscription of the avian superfamily Sylvioidea is a matter of long ongoing debate. While the overall inclusiveness has now been mostly agreed on and 20 families recognised, the phylogenetic relationships among the families are largely unknown. We here present a phylogenetic hypothesis for Sylvioidea based on one mitochondrial and six nuclear markers, in total ~6.3 kbp, for 79 ingroup species representing all currently recognised families and some species with uncertain affinities, making this the most comprehensive analysis of this taxon. Results The resolution, especially of the deeper nodes, is much improved compared to previous studies. However, many relationships among families remain uncertain and are in need of verification. Most families themselves are very well supported based on the total data set and also by indels. Our data do not support the inclusion of Hylia in Cettiidae, but do not strongly reject a close relationship with Cettiidae either. The genera Scotocerca and Erythrocercus are closely related to Cettiidae, but separated by relatively long internodes. The families Paridae, Remizidae and Stenostiridae clustered among the outgroup taxa and not within Sylvioidea. Conclusions Although the phylogenetic position of Hylia is uncertain, we tentatively support the recognition of the family Hyliidae Bannerman, 1923 for this genus and Pholidornis. We propose new family names for the genera Scotocerca and Erythrocercus, Scotocercidae and Erythrocercidae, respectively, rather than including these in Cettiidae, and we formally propose the name Macrosphenidae, which has been in informal use for some time. We recommend that Paridae, Remizidae and Stenostiridae are not included in Sylvioidea. We also briefly discuss the problems of providing a morphological diagnosis when proposing a new family-group name (or genus-group name) based on a clade. PMID:22920688

  1. Role of TGFBR1 and TGFBR2 genetic variants in Marfan syndrome.

    PubMed

    De Cario, Rosina; Sticchi, Elena; Lucarini, Laura; Attanasio, Monica; Nistri, Stefano; Marcucci, Rossella; Pepe, Guglielmina; Giusti, Betti

    2017-08-25

    Genetic variants in transforming growth factor beta (TGF-β) receptors type 1 (TGFBR1) and type 2 (TGFBR2) genes have been associated with different hereditary connective tissue disorders sharing thoracic aortic aneurysm and dissection (TAA/D). Mutations in both TGFBR1/2 genes have been described in patients with TAA/D and Marfan syndrome (MFS), and they are associated consistently with Loeys-Dietz syndrome. The existing literature shows discordant data resulting from mutational screening of TGFBR1/2 genes in patients with MFS. The aim of the study was to investigate the role of TGFBR1/2 genetic variants in determining and/or modulating MFS clinical phenotype. We investigated 75 unrelated patients with MFS referred to the Center for Marfan Syndrome and Related Disorders (Careggi University Hospital, Florence) who were subjected to FBN1 and TGFBR1/2 Sanger mutational screening. Forty-seven patients with MFS (63%) carried a pathogenetic FBN1 mutation. No pathogenetic mutations were detected in TGFBR1/2 genes. Ten common polymorphisms were identified in TGFBR2 and 6 in TGFBR1. Their association with cardiovascular manifestations was evaluated. Carriers of the A allele of rs11466512, delA allele of c.383delA or delT allele of c.1256-15del1T polymorphisms had a trend toward or significantly reduced z-scores (median [interquartile range (IQR)], 2.2 [1.13-4.77]; 2.1 [1.72-3.48]; 2.5 [1.85-3.86]) with respect to homozygous patients with wild-type MFS (median [IQR], 4.20 [2.39-7.25]; 3.9 [2.19-7.00]; 3.9 [2.14-6.93]). Carriers of the A allele of the rs2276767 polymorphism showed a trend toward increased z-score (median [IQR], 4.9 [2.14-7.16]) with respect to patients with wild-type MFS (median [IQR], 3.3 [1.75-5.45]). The protective effect of TGFBR1/2 genetic score including all the 4 variants was also evaluated. Patients with MFS with two or more protective alleles included in the score had statistically significant reduced aortic z-scores (median [IQR], 2.20 [1

  2. Development of an interprofessional lean facilitator assessment scale.

    PubMed

    Bravo-Sanchez, Cindy; Dorazio, Vincent; Denmark, Robert; Heuer, Albert J; Parrott, J Scott

    2018-05-01

    High reliability is important for optimising quality and safety in healthcare organisations. Reliability efforts include interprofessional collaborative practice (IPCP) and Lean quality/process improvement strategies, which require skilful facilitation. Currently, no validated Lean facilitator assessment tool for interprofessional collaboration exists. This article describes the development and pilot evaluation of such a tool; the Interprofessional Lean Facilitator Assessment Scale (ILFAS), which measures both technical and 'soft' skills, which have not been measured in other instruments. The ILFAS was developed using methodologies and principles from Lean/Shingo, IPCP, metacognition research and Bloom's Taxonomy of Learning Domains. A panel of experts confirmed the initial face validity of the instrument. Researchers independently assessed five facilitators, during six Lean sessions. Analysis included quantitative evaluation of rater agreement. Overall inter-rater agreement of the assessment of facilitator performance was high (92%), and discrepancies in the agreement statistics were analysed. Face and content validity were further established, and usability was evaluated, through primary stakeholder post-pilot feedback, uncovering minor concerns, leading to tool revision. The ILFAS appears comprehensive in the assessment of facilitator knowledge, skills, abilities, and may be useful in the discrimination between facilitators of different skill levels. Further study is needed to explore instrument performance and validity.

  3. Personal resources and satisfaction with life in Marfan syndrome patients with aortic pathology and in abdominal aortic aneurysm patients.

    PubMed

    Stanišić, Michał-Goran; Rzepa, Teresa; Gawrońska, Alicja; Kubaszewski, Przemysław; Putowski, Maciej; Stefaniak, Sebastian; Perek, Bartłomiej

    2018-03-01

    Whether or not the source of aortic pathology is Marfan syndrome (MFS) or other processes leading to development of abdominal aorta aneurysms (AAA), the awareness of pathology may lead to an emotional upset and low assessment of satisfaction with life. To assess, in regard to MFS patients with aortic pathology and to abdominal aortic aneurysm patients: 1) whether or not self-efficacy (SE) and health locus of control (HLoC) affect the patients' satisfaction with life; 2) whether the two groups of patients differ in terms of mental dispositions. The study population consisted of 16 MFS patients with aortic pathology and 16 AAA patients, 9 men and 7 women in each group. The mean age of the MFS patients was 28.5 ±8.214, and of the AAA patients 64.25 ±7.019. The following scales were applied: Generalized Self-Efficacy Scale, Satisfaction With Life Scale, Multidimensional Health Locus of Control Scale. Abdominal aorta aneurysms patients compared to MFS patients gave a higher rating for SE ( MD = 33.94 and MD = 29.56), internal health locus of control ( MD = 25.00 and MD = 21.13), external personal HL o C ( MD = 24.50 and MD = 19.25), external impersonal HLoC ( MD = 23.06 and MD = 18.25), and satisfaction with life ( M = 22.06 and M = 20.13). Internal and external HL o C were significantly lower in MFS patients compared to AAA patients. In patients with aortic diseases, special attention must be paid to the state of personal resources (PR). Interactions made by medical professionals should focus on enhancing PR supporting the patients' self-knowledge on their SE. This will help to improve their satisfaction with life and form a positive attitude to the illness.

  4. Homozygous and compound heterozygous mutations in the FBN1 gene: unexpected findings in molecular diagnosis of Marfan syndrome.

    PubMed

    Arnaud, Pauline; Hanna, Nadine; Aubart, Mélodie; Leheup, Bruno; Dupuis-Girod, Sophie; Naudion, Sophie; Lacombe, Didier; Milleron, Olivier; Odent, Sylvie; Faivre, Laurence; Bal, Laurence; Edouard, Thomas; Collod-Beroud, Gwenaëlle; Langeois, Maud; Spentchian, Myrtille; Gouya, Laurent; Jondeau, Guillaume; Boileau, Catherine

    2017-02-01

    Marfan syndrome (MFS) is an autosomal-dominant connective tissue disorder usually associated with heterozygous mutations in the gene encoding fibrillin-1 (FBN1). Homozygous and compound heterozygous cases are rare events and have been associated with a clinical severe presentation. Report unexpected findings of homozygosity and compound heterozygosity in the course of molecular diagnosis of heterozygous MFS and compare the findings with published cases. In the context of molecular diagnosis of heterozygous MFS, systematic sequencing of the FBN1 gene was performed in 2500 probands referred nationwide. 1400 probands carried a heterozygous mutation in this gene. Unexpectedly, among them four homozygous cases (0.29%) and five compound heterozygous cases (0.36%) were identified (total: 0.64%). Interestingly, none of these cases carried two premature termination codon mutations in the FBN1 gene. Clinical features for these carriers and their families were gathered and compared. There was a large spectrum of severity of the disease in probands carrying two mutated FBN1 alleles, but none of them presented extremely severe manifestations of MFS in any system compared with carriers of only one mutated FBN1 allele. This observation is not in line with the severe clinical features reported in the literature for four homozygous and three compound heterozygous probands. Homozygotes and compound heterozygotes were unexpectedly identified in the course of molecular diagnosis of MFS. Contrary to previous reports, the presence of two mutated alleles was not associated with severe forms of MFS. Although homozygosity and compound heterozygosity are rarely found in molecular diagnosis, they should not be overlooked, especially among consanguineous families. However, no predictive evaluation of severity should be provided. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Possible extracardiac predictors of aortic dissection in Marfan syndrome

    PubMed Central

    2014-01-01

    Background According to previous studies, aortic diameter alone seems to be insufficient to predict the event of aortic dissection in Marfan syndrome (MFS). Determining the optimal schedule for preventive aortic root replacement (ARR) aortic growth rate is of importance, as well as family history, however, none of them appear to be decisive. Thus, the aim of this study was to search for potential predictors of aortic dissection in MFS. Methods A Marfan Biobank consisting of 79 MFS patients was established. Thirty-nine MFS patients who underwent ARR were assigned into three groups based on the indication for surgery (dissection, annuloaortic ectasia and prophylactic surgery). The prophylactic surgery group was excluded from the study. Transforming growth factor-β (TGF-β) serum levels were measured by ELISA, relative expression of c-Fos, matrix metalloproteinase 3 and 9 (MMP-3 and −9) were assessed by RT-PCR. Clinical parameters, including anthropometric variables - based on the original Ghent criteria were also analyzed. Results Among patients with aortic dissection, TGF-β serum level was elevated (43.78 ± 6.51 vs. 31.64 ± 4.99 ng/l, p < 0.0001), MMP-3 was up-regulated (Ln2α = 1.87, p = 0.062) and striae atrophicae were more common (92% vs. 41% p = 0.027) compared to the annuloaortic ectasia group. Conclusions We found three easily measurable parameters (striae atrophicae, TGF-β serum level, MMP-3) that may help to predict the risk of aortic dissection in MFS. Based on these findings a new classification of MFS, that is benign or malignant is also proposed, which could be taken into consideration in determining the timing of prophylactic ARR. PMID:24720641

  6. NADPH oxidase 4 attenuates cerebral artery changes during the progression of Marfan syndrome.

    PubMed

    Onetti, Yara; Meirelles, Thayna; Dantas, Ana P; Schröder, Katrin; Vila, Elisabet; Egea, Gustavo; Jiménez-Altayó, Francesc

    2016-05-01

    Marfan syndrome (MFS) is a connective tissue disorder that is often associated with the fibrillin-1 (Fbn1) gene mutation and characterized by cardiovascular alterations, predominantly ascending aortic aneurysms. Although neurovascular complications are uncommon in MFS, the improvement in Marfan patients' life expectancy is revealing other secondary alterations, potentially including neurovascular disorders. However, little is known about small-vessel pathophysiology in MFS. MFS is associated with hyperactivated transforming growth factor (TGF)-β signaling, which among numerous other downstream effectors, induces the NADPH oxidase 4 (Nox4) isoform of NADPH oxidase, a strong enzymatic source of H2O2 We hypothesized that MFS induces middle cerebral artery (MCA) alterations and that Nox4 contributes to them. MCA properties from 3-, 6-, or 9-mo-old Marfan (Fbn1(C1039G/+)) mice were compared with those from age/sex-matched wild-type littermates. At 6 mo, Marfan compared with wild-type mice developed higher MCA wall/lumen (wild-type: 0.081 ± 0.004; Marfan: 0.093 ± 0.002; 60 mmHg; P < 0.05), coupled with increased reactive oxygen species production, TGF-β, and Nox4 expression. However, wall stiffness and myogenic autoregulation did not change. To investigate the influence of Nox4 on cerebrovascular properties, we generated Marfan mice with Nox4 deficiency (Nox4(-/-)). Strikingly, Nox4 deletion in Marfan mice aggravated MCA wall thickening (cross-sectional area; Marfan: 6,660 ± 363 μm(2); Marfan Nox4(-/-): 8,795 ± 824 μm(2); 60 mmHg; P < 0.05), accompanied by decreased TGF-β expression and increased collagen deposition and Nox1 expression. These findings provide the first evidence that Nox4 mitigates cerebral artery structural changes in a murine model of MFS. Copyright © 2016 the American Physiological Society.

  7. Drop-Out in Schools in India: Minor Field Studies in Orissa 1990. Educational and Psychological Interactions. No. 112.

    ERIC Educational Resources Information Center

    Ekstrand, Gudrun, Ed.

    This document consists of a report on the Minor Field Studies (MFS) program of the Swedish International Development Authority (SIDA) and contains two MFS papers by teacher trainees at the Malmo School of Education in Sweden. The papers presented are "Drop-outs in Orissa," by Elisabeth Rosen, and "Education in India: A Study of…

  8. Everyday attention lapses and memory failures: the affective consequences of mindlessness.

    PubMed

    Carriere, Jonathan S A; Cheyne, J Allan; Smilek, Daniel

    2008-09-01

    We examined the affective consequences of everyday attention lapses and memory failures. Significant associations were found between self-report measures of attention lapses (MAAS-LO), attention-related cognitive errors (ARCES), and memory failures (MFS), on the one hand, and boredom (BPS) and depression (BDI-II), on the other. Regression analyses confirmed previous findings that the ARCES partially mediates the relation between the MAAS-LO and MFS. Further regression analyses also indicated that the association between the ARCES and BPS was entirely accounted for by the MAAS-LO and MFS, as was that between the ARCES and BDI-II. Structural modeling revealed the associations to be optimally explained by the MAAS-LO and MFS influencing the BPS and BDI-II, contrary to current conceptions of attention and memory problems as consequences of affective dysfunction. A lack of conscious awareness of one's actions, signaled by the propensity to experience brief lapses of attention and related memory failures, is thus seen as having significant consequences in terms of long-term affective well-being.

  9. Actin dynamics involved in gravity perception in Arabidopsis inflorescense stem

    NASA Astrophysics Data System (ADS)

    Tasaka, Masao; Nakamura, Moritaka; Morita, Miyo T.

    The amyloplasts sedimentation in the endodermal cells is important for gravity perception in Arabidopsis shoot. Our previous study suggests that SGR5(SHOOT GRAVITROPISM 5) and SGR9 are synergistically involved in regulation of amyloplast movement in these cells, and shows that sgr5 sgr9 double mutant completely loses gravitropic response. SGR5 encodes putative transcription factor and SGR9 encodes a ring finger containing protein, which surrounds amyloplasts. It has been reported that amyloplasts are surrounded by actin microfilaments (MFs), and that treatment with actin polymerization inhibitor enhances gravitropic organ curvature. However, not only the molecular link between amyolplasts and MFs, but also regulatory role of MFs in gravitropic response is still unclear. Here, we found that treatment with actin polymerization inhibitor restored gravitropic response of sgr5 sgr9 double mutant stems. The result suggests that abnormal amyloplasts movement in the double mutant could result from inhibition of MFs depolymerization, leading to abnormal gravitropism. We are investigating whether SGR5 and SGR9 are involved in amyloplasts movement by regulating actin remodeling in gravity perceptive cells.

  10. Serum antibodies against gangliosides and Campylobacter jejuni lipopolysaccharides in Miller Fisher syndrome.

    PubMed Central

    Neisser, A; Bernheimer, H; Berger, T; Moran, A P; Schwerer, B

    1997-01-01

    Seven patients with Miller Fisher syndrome (MFS), six in the acute phase and one in the recovery phase, were investigated for serum antibodies against gangliosides and purified lipopolysaccharides (LPS) from different strains of Campylobacter jejuni, including the MFS-associated serotypes O:2 and O:23. Immunoglobulin G antibodies against gangliosides GT1a and GQ1b were found in five of six patients in the acute phase of disease. Three of these patients also displayed antibodies to ganglioside GD2, a finding not previously reported for MFS. All anti-GT1a- and anti-GQ1b-seropositive patients showed antibody binding to C. jejuni LPS, predominantly to O:2 and O:23 LPS. Antibody cross-reactivity between gangliosides GT1a and GQ1b and O:2 and O:23 LPS was demonstrated by adsorption studies. This cross-reactivity between gangliosides and C.jejuni LPS, which is obviously due to oligosaccharide homologies, may be an important pathogenetic factor in the development of MFS after C. jejuni infection. PMID:9317004

  11. Irregular chiasm-C-roughest, a member of the immunoglobulin superfamily, affects sense organ spacing on the Drosophila antenna by influencing the positioning of founder cells on the disc ectoderm.

    PubMed

    Venugopala Reddy, G; Reiter, C; Shanbhag, S; Fischbach, K F; Rodrigues, V

    1999-10-01

    We describe a role for Irregular chiasmC-roughest (IrreC-rst), an immunoglobulin (Ig) superfamily member, in patterning sense organs on the Drosophila antenna. IrreC-rst protein is initially expressed homogeneously on apical profiles of ectodermal cells in regions of the antennal disc. During specification of founder cells (FCs), the intracellular protein distribution changes and becomes concentrated in regions where specific intercellular contacts presumably occur. Loss of function mutations as well as misexpression of irreC-rst results in an altered arrangement of FCs within the disc compared to wildtype. Sense organ development occurs normally, although spacing is affected. Unlike its role in interommatidial spacing, irreC-rst does not affect apoptosis during antennal development. We propose that IrreC-rst affects the spatial relationship between sensory and ectodermal cells during FC delamination.

  12. Magnetosheath Filamentary Structures

    NASA Astrophysics Data System (ADS)

    Rojas-Castillo, D. I.; Blanco-Cano, X.; Omidi, N.; Kajdic, P.

    2014-12-01

    The terrestrial magnetosheath is full of highly perturbed plasma. The inhomogeneity of this region leads to temperature anisotropies that can originate waves; e.g, mirror mode and ion cyclotron waves. Other structures like the magnetosheath filamentary structures (MFS) can also be present. These are structures reported from results of global hybrid simulations by Omidi et al. (2014) that are formed in the quasi-parallel region of the bow shock and they are convected into the magnetosheath. The MFS are characterized by field aligned enhancements of density and temperature that are anti-correlated. In this work we analyze magnetic field and plasma data from the THEMIS mission to explore the possible existence of MFS.

  13. Regarding the influence of heating and the Soret effect on a magnetic fluid seal

    NASA Astrophysics Data System (ADS)

    Krakov, M. S.; Nikiforov, I. V.

    2017-06-01

    The influence of a temperature gradient and the Soret effect on the distribution of particles in a magnetic fluid seal (MFS) is studied. The heating of the MFS is found to be an effective method of homogenizing the magnetic fluid in the seal; in addition, the influence of the Soret effect on this process is found to be essential.

  14. The Plant Short-Chain Dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns

    PubMed Central

    2012-01-01

    Background Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs), improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce. Results Wide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM) based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types — ‘classical’, ‘extended’ and ‘divergent’ — but a minority (10% of the predicted SDRs) could not be classified into these general types (‘unknown’ or ‘atypical’ types). In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families — tropinone reductase-like proteins (SDR65C), ‘ABA2-like’-NAD dehydrogenase (SDR110C), ‘salutaridine/menthone-reductase-like’ proteins (SDR114C), ‘dihydroflavonol 4-reductase’-like proteins (SDR108E) and ‘isoflavone-reductase-like’ (SDR460A) proteins — have undergone significant functional diversification within vascular plants since they diverged from Bryophytes. Interestingly, these diversified families are either involved in the secondary metabolism routes (terpenoids, alkaloids, phenolics) or participate in developmental processes (hormone biosynthesis or catabolism, flower

  15. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus.

    PubMed

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-02-26

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs.

  16. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus

    PubMed Central

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-01-01

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs. PMID:18287066

  17. Saccharomyces cerevisiae sigma 1278b has novel genes of the N-acetyltransferase gene superfamily required for L-proline analogue resistance.

    PubMed

    Takagi, H; Shichiri, M; Takemura, M; Mohri, M; Nakamori, S

    2000-08-01

    We discovered on the chromosome of Saccharomyces cerevisiae Sigma 1278b novel genes involved in L-proline analogue L-azetidine-2-carboxylic acid resistance which are not present in the standard laboratory strains. The 5.4 kb-DNA fragment was cloned from the genomic library of the L-azetidine-2-carboxylic acid-resistant mutant derived from a cross between S. cerevisiae strains S288C and Sigma 1278b. The nucleotide sequence of a 4.5-kb segment exhibited no identity with the sequence in the genome project involving strain S288C. Deletion analysis indicated that one open reading frame encoding a predicted protein of 229 amino acids is indispensable for L-azetidine-2-carboxylic acid resistance. The protein sequence was found to be a member of the N-acetyltransferase superfamily. Genomic Southern analysis and gene disruption showed that two copies of the novel gene with one amino acid change at position 85 required for L-azetidine-2-carboxylic acid resistance were present on chromosomes X and XIV of Sigma 1278b background strains. When this novel MPR1 or MPR2 gene (sigma 1278b gene for L-proline analogue resistance) was introduced into the other S. cerevisiae strains, all of the recombinants were resistant to L-azetidine-2-carboxylic acid, indicating that both MPR1 and MPR2 are expressed and have a global function in S. cerevisiae.

  18. Immunohistochemical evaluation of myofibroblast density in odontogenic cysts and tumors.

    PubMed

    Kouhsoltani, Maryam; Halimi, Monireh; Jabbari, Golchin

    2016-01-01

    Background. The aim of this study was to investigate myofibroblast (MF) density in a broad spectrum of odontogenic cysts and tumors and the relation between the density of MFs and the clinical behavior of these lesions. Methods. A total of 105 cases of odontogenic lesions, including unicystic ameloblastoma (UAM), solid ameloblastoma (SA), odontogenic keratocyst (OKC), dentigerous cyst (DC), radicular cyst (RC) (15 for each category), and odontogenic myxoma (OM), adenomatoid odontogenic tumor (AOT), calcifying odontogenic cyst (COC) (10 for each category), were immunohistochemically stained with anti-α-smooth muscle actin antibody. The mean percentage of positive cells in 10 high-power fields was considered as MF density for each case. Results. A statistically significant difference was observed in the mean scores between the study groups (P < 0.001). The intensity of MFs was significantly higher in odontogenic tumors compared to odontogenic cysts (P < 0.001). There was no statistically significant difference between odontogenic tumors, except between UAM and OM (P = 0.041). The difference between OKC and odontogenic tumors was not statistically significant (P > 0.05). The number of MFs was significantly higher in OKC and lower in COC compared to other odontogenic cysts (P = 0.007 and P = 0.045, respectively). Conclusion. The results of the present study suggest a role for MFs in the aggressive behavior of odontogenic lesions. MFs may represent an important target of therapy, especially for aggressive odontogenic lesions. Our findings support the classification of OKC in the category of odontogenic tumors.

  19. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    PubMed

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  20. Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome

    PubMed Central

    2014-01-01

    Background Bicuspid aortic valve (BAV) is the most frequent congenital heart disease with frequent involvement in thoracic aortic dilatation, aneurysm and dissection. Although BAV and Marfan syndrome (MFS) share some clinical features, and some MFS patients with BAV display mutations in FBN1, the gene encoding fibrillin-1, the genetic background of isolated BAV is poorly defined. Methods Ten consecutive BAV patients [8 men, age range 24–42 years] without MFS were clinically characterized. BAV phenotype and function, together with evaluation of aortic morphology, were comprehensively assessed by Doppler echocardiography. Direct sequencing of each FBN1 exon with flanking intron sequences was performed on eight patients. Results We detected three FBN1 mutations in two patients (aged 24 and 25 years) displaying aortic root aneurysm ≥50 mm and moderate aortic regurgitation. In particular, one patient had two mutations (p.Arg2726Trp and p.Arg636Gly) one of which has been previously associated with variable Marfanoid phenotypes. The other patient showed a pArg529Gln substitution reported to be associated with an incomplete MFS phenotype. Conclusions The present findings enlarge the clinical spectrum of isolated BAV to include patients with BAV without MFS who have involvement of FBN1 gene. These results underscore the importance of accurate phenotyping of BAV aortopathy and of clinical characterization of BAV patients, including investigation of systemic connective tissue manifestations and genetic testing. PMID:24564502

  1. Facilitation of learning: part 1.

    PubMed

    Warburton, Tyler; Trish, Houghton; Barry, Debbie

    2016-04-06

    This article, the fourth in a series of 11, discusses the context for the facilitation of learning. It outlines the main principles and theories for understanding the process of learning, including examples which link these concepts to practice. The practical aspects of using these theories in a practice setting will be discussed in the fifth article of this series. Together, these two articles will provide mentors and practice teachers with knowledge of the learning process, which will enable them to meet the second domain of the Nursing and Midwifery Council's Standards to Support Learning and Assessment in Practice on facilitation of learning.

  2. Evolution of local facilitation in arid ecosystems.

    PubMed

    Kéfi, Sonia; van Baalen, Minus; Rietkerk, Max; Loreau, Michel

    2008-07-01

    In harsh environments, sessile organisms can make their habitat more hospitable by buffering environmental stress or increasing resource availability. Although the ecological significance of such local facilitation is widely established, the evolutionary aspects have been seldom investigated. Yet addressing the evolutionary aspects of local facilitation is important because theoretical studies show that systems with such positive interactions can exhibit alternative stable states and that such systems may suddenly become extinct when they evolve (evolutionary suicide). Arid ecosystems currently experience strong changes in climate and human pressures, but little is known about the effects of these changes on the selective pressures exerted on the vegetation. Here, we focus on the evolution of local facilitation in arid ecosystems, using a lattice-structured model explicitly considering local interactions among plants. We found that the evolution of local facilitation depends on the seed dispersal strategy. In systems characterized by short-distance seed dispersal, adaptation to a more stressful environment leads to high local facilitation, allowing the population to escape extinction. In contrast, systems characterized by long-distance seed dispersal become extinct under increased stress even when allowed to adapt. In this case, adaptation in response to climate change and human pressures could give the final push to the desertification of arid ecosystems.

  3. Parent Involvement Facilitators: Unlocking Social Capital Wealth

    ERIC Educational Resources Information Center

    Ferrara, Margaret M.

    2015-01-01

    This case study provides an overview of a family outreach intervention that supports student retention in school through a school-home communication link. This intervention structure, which employs staff appropriately called parent involvement facilitators (PIFs), is one that school districts have employed to facilitate family engagement in…

  4. Disturbance-mediated facilitation by an intertidal ecosystem engineer.

    PubMed

    Wright, Jeffrey T; Gribben, Paul E

    2017-09-01

    Ecosystem engineers facilitate communities by providing a structural habitat that reduces abiotic stress or predation pressure for associated species. However, disturbance may damage or move the engineer to a more stressful environment, possibly increasing the importance of facilitation for associated communities. In this study, we determined how disturbance to intertidal boulders (i.e., flipping) and the subsequent movement of a structural ecosystem engineer, the tube-forming serpulid worm Galeolaria caespitosa, from the bottom (natural state, low abiotic stress) to the top (disturbed state, high abiotic stress) surface of boulders influenced the importance of facilitation for intertidal communities across two intertidal zones. Theory predicts stronger relative facilitation should occur in the harsher environments of the top of boulders and the high intertidal zone. To test this prediction, we experimentally positioned boulders with the serpulids either face up or face down for 12 months in low and high zones in an intertidal boulder field. There were very different communities associated with the different boulders and serpulids had the strongest facilitative effects on the more stressful top surface of boulders with approximately double the species richness compared to boulders lacking serpulids. Moreover, within the serpulid matrix itself there was also approximately double the species richness (both zones) and abundance (high zone only) of small invertebrates on the top of boulders compared to the bottom. The high relative facilitation on the top of boulders reflected a large reduction in temperature by the serpulid matrix on that surface (up to 10°C) highlighting a key role for modification of the abiotic environment in determining the community-wide facilitation. This study has demonstrated that disturbance and subsequent movement of an ecosystem engineer to a more stressful environment increased the importance of facilitation and allowed species to

  5. When orthographic neighbors fail to facilitate.

    PubMed

    Janack, Tracy; Pastizzo, Matthew J; Beth Feldman, Laurie

    2004-01-01

    Forward masked word primes that differed from the target in the initial, the final or both the initial and final positions tended to slow target decision latencies and there were no significant differences among prime types. After forward masked nonword primes we observed non significant facilitation when primes differed from the target by one letter in either the initial or final position and significant inhibition when primes differed in both initial and final positions. The patterns did not differ significantly for targets with large and with small neighborhoods. Only in post hoc analyses was there any indication of facilitation after nonword neighbor primes and it appeared only when body neighborhood was small. For slower participants, neighbors tended to facilitate target decision latencies while for relatively fast readers showed neighbors made inhibition that tended to vary with amount of mismatch.

  6. The Role of Touch in Facilitated Communication.

    ERIC Educational Resources Information Center

    Kezuka, Emiko

    1997-01-01

    A study investigated the role of touch in the use of facilitated communication with Japanese individuals with autism. Five experiments were conducted involving a "telepathy game" using a rod with an attached strain gauge. Results found the facilitator's contact controlled the motor responses of the subjects. (Author/CR)

  7. Facilitating North-South Partnerships for Sustainable Agriculture

    ERIC Educational Resources Information Center

    Termeer, C. J. A. M.; Hilhorst, T.; Oorthuizen, J.

    2010-01-01

    The increased number of development cooperation and sustainable agriculture partnerships brings with it new challenges for professionals who are asked to facilitate these partnering processes. In this article we shed more light on the world of development cooperation and we explore questions that facilitators working with North-South partnerships…

  8. A Model of Small Group Facilitator Competencies

    ERIC Educational Resources Information Center

    Kolb, Judith A.; Jin, Sungmi; Song, Ji Hoon

    2008-01-01

    This study used small group theory, quantitative and qualitative data collected from experienced practicing facilitators at three points of time, and a building block process of collection, analysis, further collection, and consolidation to develop a model of small group facilitator competencies. The proposed model has five components:…

  9. (DARPA) Topologically Protected Quantum Information Processing In Spin-Orbit Compled Semiconductors

    DTIC Science & Technology

    2013-12-17

    expression for the disorder suppression of the superconducting quasiparticle gap in the topological superconducting states carrying MFs. Our principle...assisted electron transfer amplitude (derived from the fractionalization property of the MFs) the quasiparticle tunneling from to through the...mesoscopic rings, the energy-level of such a quasiparticle excitation spectrum in the ring is expected to develop a periodic dependence on

  10. A Physical Education Teacher's Journey: From District Coordinator to Facilitator

    ERIC Educational Resources Information Center

    Hunuk, Deniz

    2017-01-01

    Background: Despite the accumulating evidence highlighting the significant roles of an effective facilitator and appropriate pedagogies that a facilitator employs in shaping the professional learning environment, there is a paucity of research that explores how facilitators learn to facilitate. Purpose: The overall purpose of this study was to…

  11. Genetic testing of the FBN1 gene in Chinese patients with Marfan/Marfan-like syndrome.

    PubMed

    Yang, Hang; Luo, Mingyao; Chen, Qianlong; Fu, Yuanyuan; Zhang, Jing; Qian, Xiangyang; Sun, Xiaogang; Fan, Yuxin; Zhou, Zhou; Chang, Qian

    2016-08-01

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder typically involving the ocular, skeletal and cardiovascular systems, and aortic aneurysms/dissection mainly contributes to its mortality. Here, we performed genetic testing of the FBN1 gene in 39 Chinese probands with Marfan/Marfan-like syndrome and their related family members by Sanger sequencing. In total, 29 pathogenic/likely pathogenic FBN1 mutations, including 17 novel ones, were identified. In addition, most MFS patients with aortic disease (62%) had a truncating or splicing mutation. These results expand the FBN1 mutation spectrum and enrich our knowledge of genotype-phenotype correlations. Genetic testing for MFS and its related aortic diseases is increasingly important for early intervention and treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    PubMed

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.

  13. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  14. Why (we think) facilitation works: insights from organizational learning theory.

    PubMed

    Berta, Whitney; Cranley, Lisa; Dearing, James W; Dogherty, Elizabeth J; Squires, Janet E; Estabrooks, Carole A

    2015-10-06

    Facilitation is a guided interactional process that has been popularized in health care. Its popularity arises from its potential to support uptake and application of scientific knowledge that stands to improve clinical and managerial decision-making, practice, and ultimately patient outcomes and organizational performance. While this popular concept has garnered attention in health services research, we know that both the content of facilitation and its impact on knowledge implementation vary. The basis of this variation is poorly understood, and understanding is hampered by a lack of conceptual clarity. In this paper, we argue that our understanding of facilitation and its effects is limited in part by a lack of clear theoretical grounding. We propose a theoretical home for facilitation in organizational learning theory. Referring to extant literature on facilitation and drawing on theoretical literature, we discuss the features of facilitation that suggest its role in contributing to learning capacity. We describe how facilitation may contribute to generating knowledge about the application of new scientific knowledge in health-care organizations. Facilitation's promise, we suggest, lies in its potential to stimulate higher-order learning in organizations through experimenting with, generating learning about, and sustaining small-scale adaptations to organizational processes and work routines. The varied effectiveness of facilitation observed in the literature is associated with the presence or absence of factors known to influence organizational learning, since facilitation itself appears to act as a learning mechanism. We offer propositions regarding the relationships between facilitation processes and key organizational learning concepts that have the potential to guide future work to further our understanding of the role that facilitation plays in learning and knowledge generation.

  15. "Stepping Up": A Focus on Facilitator Development

    ERIC Educational Resources Information Center

    Kostouros, Patricia; Warthe, D. Gaye; Carter-Snell, Catherine; Burnett, Che

    2016-01-01

    This article examines the impact on peer facilitators in "Stepping Up," a dating violence prevention program at a Canadian university. A focus group held eight months following the delivery of the program determined the personal impact of involvement in the program. Results indicate that peer facilitators experienced personal growth as…

  16. Facilitating Language Tests Delivery through Tablet PCs

    ERIC Educational Resources Information Center

    Garcia Laborda, Jesus; Magal Royo, Teresa; Rodriguez Lazaro, Nieves; Marugan, L. Fuentes

    2015-01-01

    Modern trends in educational technology have evidenced the increasing importance of mobile devices in language learning. The need of sophisticated devices that can facilitate lifelong learning wherever the students might be. Facilitating learning, however, implies that students have to be assessed through the same delivery models that are used in…

  17. Caring and Sharing: Becoming a Peer Facilitator.

    ERIC Educational Resources Information Center

    Myrick, Robert D.; Erney, Tom

    This book contains information and skill-building activities designed to train adolescents as peer facilitators. The first chapter describes peer facilitation and provides an overview of the book. The second chapter discusses principles, concepts, and ideas to help better understand how people learn, make decisions, change, and develop their own…

  18. Reconceptualizing the Pedagogical Value of Student Facilitation

    ERIC Educational Resources Information Center

    Oztok, Murat

    2016-01-01

    Sustained discourse is critical to the learning potential of online courses. And, while research has surfaced many factors that mediate interaction, it further suggests that sustained interaction remains elusive. In this paper, I propose that student facilitation may have an impact on the quality of facilitators' interactions following a week of…

  19. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  20. The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles

    PubMed Central

    Xu, Bing; Fu, Ying; Liu, Yan; Agvanian, Sosse; Wirka, Robert C.; Baum, Rachel; Zhou, Kang; Shaw, Robin M.

    2017-01-01

    Microparticles (MPs) are cell–cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17) creates transverse-tubule (t-tubule) membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA), and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT)-III subunit charged multivesicular body protein 4B (CHMP4B) colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR) domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily to the ESCRT