Sample records for facilities awaiting decommissioning

  1. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi

  2. An analysis of decommissioning costs for the AFRRI TRIGA reactor facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsbacka, Matt

    1990-07-01

    A decommissioning cost analysis for the AFRRI TRIGA Reactor Facility was made. AFRRI is not at this time suggesting that the AFRRI TRIGA Reactor Facility be decommissioned. This report was prepared to be in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations which requires the assurance of availability of future decommissioning funding. The planned method of decommissioning is the immediate decontamination of the AFRRI TRIGA Reactor site to allow for restoration of the site to full public access - this is called DECON. The cost of DECON for the AFRRI TRIGA Reactor Facility in 1990 dollars ismore » estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment is an additional $600,000. Thus the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for this cost estimate is a study of the decommissioning costs of a similar reactor facility that was performed by Battelle Pacific Northwest Laboratory (PNL) as provided in USNRC publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA. (author)« less

  3. Analysis of decommissioning costs for the AFRRI TRIGA reactor facility. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsbacka, M.; Moore, M.

    1989-12-01

    This report provides a cost analysis for decommissioning the Armed Forces Radiobiology Research Institute (AFRRI) TRIGA reactor facility. AFRRI is not suggesting that the AFRRI TRIGA reactor facility be decommissioned. This report was prepared in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations, which requires that funding for the decommissioning of reactor facilities be available when licensed activities cease. The planned method of decommissioning is complete decontamination (DECON) of the AFRRI TRIGA reactor site to allow for restoration of the site to full public access. The cost of DECON in 1990 dollars is estimated to be $3,200,000.more » The anticipated ancillary costs of facility site demobilization and spent fuel shipment will be an additional $600,000. Thus, the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for developing this cost estimate was a study of the decommissioning costs of similar reactor facility performed by Battelle Pacific Northwest Laboratory, as provided in U.S. Nuclear Regulatory Commission publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA reactor facility.« less

  4. DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Patrick; Henderson, Glenn; Erickson, Peter

    2003-02-27

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department ofmore » Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.« less

  5. Northrop Triga facility decommissioning plan versus actual results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, F.W.

    1986-01-01

    This paper compares the Triga facility decontamination and decommissioning plan to the actual results and discusses key areas where operational activities were impacted upon by the final US Nuclear Regulatory Commission (NRC)-approved decontamination and decommissioning plan. Total exposures for fuel transfer were a factor of 4 less than planned. The design of the Triga reactor components allowed the majority of the components to be unconditionally released.

  6. Development of Safety Assessment Code for Decommissioning of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori

    A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.

  7. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less

  8. Nuclear facility decommissioning and site remedial actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3)more » Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.« less

  9. Northrop TRIGA facility decommissioning plan versus actual results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, F.W.

    1986-01-01

    This paper compares the TRIGA facility decontamination and decommissioning (D and D) plan to the actual results and discusses key areas where operational activities were impacted by the final US Nuclear Regulatory Commission approved D and D plan. A discussion of fuel transport, release criteria, and release survey plans is included.

  10. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2... decommissioning the facilities under your SAP, COP, or GAP, you must submit a decommissioning application and...

  11. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2... decommissioning the facilities under your SAP, COP, or GAP, you must submit a decommissioning application and...

  12. Metrology for decommissioning nuclear facilities: Partial outcomes of joint research project within the European Metrology Research Program.

    PubMed

    Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas

    2018-04-01

    Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Decommissioning Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportationmore » of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.« less

  14. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the

  15. Evaluation of Nuclear Facility Decommissioning Projects program: a reference research reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, B.L.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference research reactor (RRR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program.

  16. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; May, Doug; Howlett, Don

    2013-07-01

    disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less

  17. Enhancing Efficiency of Safeguards at Facilities that are Shutdown or Closed-Down, including those being Decommissioned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, B.; Stern, W.; Colley, J.

    International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less

  18. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources..., Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and GAPs Decommissioning... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2...

  19. Evaluation of Nuclear Facility Decommissioning Projects program: a reference test reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boing, L.E.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference test reactor (RTR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program. During the data extraction process no attempt was made to challenge any of the assumptions used in the original studies nor was any attempt made to update assumed methods or processes to state-of-the-art decommissioning techniques. In a few instances obvious errors were corrected after consultation with the studymore » author.« less

  20. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facilitymore » Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.« less

  1. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uraniummore » Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.« less

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program,more » Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.« less

  3. Decommissioning of magnox Ltd fuel cooling pond facilities in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoncini, Carlo

    2013-07-01

    Magnox reactors were the first generation of nuclear power stations built in the UK; ten sites in total, of which, nine had wet fuel routes with cooling ponds. Five ponds are currently in a decommissioning phase; this paper will focus primarily on Hunterston-A (HNA) Site and the central programme of work which governs its management. During its operation, the Cartridge Cooling Pond at HNA was used to receive the spent fuel discharged from the Site's two reactors, it was then stored for cooling purposes prior to dispatch off site. The current decommissioning phase focusses on draining the 6500 m{sup 3}more » pond. Due to the Site's limited caesium removal facilities, a stand-alone effluent treatment plant was constructed to improve abatement and reduce the pond activity from 200 to 0.7 Bq/ml (β). This was necessary due to increased environmental standards introduced since the site had ceased generation ten years previously. Early characterisation and experience from other sites concluded that if the pond were to be drained without any treatment to the walls, doses to the Operators, during subsequent decommissioning works, would routinely be in excess of 1 mSv.hr{sup -1}(γ). An opportunity was realised within the Ponds Programme that if the surface layer of the pond walls were to be removed during drain-down, ambient dose rates would be reduced by a factor of 10; this would allow for more cost-effective decommissioning options in the future. Ultrahigh pressure water jetting was tested and proved to yield a ∼95% total-activity reduction on treated surfaces. Challenges were overcome in providing safe and secure access to Decommissioning Operators to perform this operation by means of floating platforms on the surface of the pond. As strategies to clear facilities to exemption levels are becoming both cost prohibitive and not reasonably practicable, work is now underway in the Programme to determine the optimum condition for entry into long-term quiescent storage

  4. Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on thismore » analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).« less

  5. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poderis, Reed J.; King, Rebecca A.

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping,more » tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified

  6. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Majormore » chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.« less

  7. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  8. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 285.902 Section 285.902 Mineral Resources... SAP, COP, or GAP? (a) Except as otherwise authorized by MMS under § 285.909, within 2 years following... under your SAP, COP, or GAP, you must submit a decommissioning application and receive approval from the...

  9. Prioritization methodology for the decommissioning of nuclear facilities: a study case on the Iraq former nuclear complex.

    PubMed

    Jarjies, Adnan; Abbas, Mohammed; Monken Fernandes, Horst; Wong, Melanie; Coates, Roger

    2013-05-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site being Al-Tuwaitha. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: i) a quantitative surrogate risk assessment ii) a range of sensitivity analyses and iii) the inclusion of qualitative modifying factors. A group of Tuwaitha facilities presented the highest risk among the evaluated ones, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. The initial order of priority is changed when modifying factors are taken into account. It has to be considered the Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Prevalence and correlates of mental health problems among awaiting trial inmates in a Prison facility in Ibadan, Nigeria

    PubMed Central

    Abdulmalik, JO; Adedokun, BO; Baiyewu, OO

    2014-01-01

    Introduction Prevalence of mental health problems are frequently higher within the prison populations than the general population. Previous studies of prison mental health had focused on convict populations whereas, the awaiting trial segment of the prison population in Nigeria has gradually become the majority of the total lock-up. This study aimed to evaluate the prevalence and correlates of mental health problems among the awaiting trial inmates in a prison facility in Ibadan. Methods A cross sectional study design was employed to interview 725 awaiting trial inmates of Agodi Prison, Ibadan, Nigeria. A two phase procedure was utilized with initial screening using a socio-demographic questionnaire and the General Health Questionnaire (GHQ −12); followed by a second phase with all high scorers on the GHQ −12 and 10% of the low scorers using the MINI International Neuropsychiatric Inventory (MINI). Results A total of 394 respondents participated in the second phase of the study with a mean age of 31.1 years (SD = 8.7), with ages ranging from 18 – 70 years. The mean duration of incarceration at Agodi was 1.1 years (SD = 1.47), with a range of 1 week to 10 years. The prevalence of mental illness was 56.6% with the commonest conditions being depression (20.8%), alcohol dependence (20.6%), substance dependence (20.1%), suicidality (19.8%) and antisocial personality disorder (18%). Conclusion There is a high prevalence of neuropsychiatric disorders among awaiting trial inmates but this does not appear to be significantly different from that of convict populations. PMID:26689928

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  12. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning... facilities, projects, cables, pipelines, and obstructions; (2) Clear the seafloor of all obstructions created...

  13. Status of the NRC Decommissioning Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, D. A.; Camper, L.; Buckley, J.

    2003-02-24

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submitmore » Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.« less

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedialmore » Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.« less

  15. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department ofmore » Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.« less

  16. 30 CFR 285.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS Facilities Decommissioning An Alternate Use Rue § 285...

  17. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A new Block 2A engine awaits processing in the low bay of the Space Shuttle Main Engine Processing Facility (SSMEPF). Officially opened on July 6, the new facility replaces the Shuttle Main Engine Shop. The SSMEPF is an addition to the existing Orbiter Processing Facility Bay 3. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998.

  18. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilitiesmore » Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626

  19. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  1. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning ofmore » Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  2. Decommissioning of the TRIGA mark II and III and radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doo Seong Hwang; Yoon Ji Lee; Gyeong Hwan Chung

    2013-07-01

    KAERI has carried out decommissioning projects for two research reactors (KRR-1 and 2). The decommissioning project of KRR-1 (TRIGA Mark II) and 2 (TRIGA Mark III) was launched in 1997 with a total budget of 23.25 million US dollars. KRR-2 and all auxiliary facilities were already decommissioned, and KRR-1 is being decommissioned now. Much more dismantled waste is generated than in any other operations of nuclear facilities. Thus, the waste needs to be reduced and stabilized through decontamination or treatment before disposal. This paper introduces the current status of the decommissioning projects and describes the volume reduction and conditioning ofmore » decommissioning waste for final disposal. (authors)« less

  3. International Research Reactor Decommissioning Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less

  4. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission tomore » Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  5. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less

  6. Evaluation of nuclear-facility decommissioning projects. Summary report: Ames Laboratory Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-07-01

    This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.

  7. 78 FR 11688 - Notice of Issuance of Amendment to Facility License R-77 Incorporating a Decommissioning Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Reactor at the State University of New York at Buffalo AGENCY: Nuclear Regulatory Commission. ACTION... University of New York at Buffalo (UB) decommissioning plan (DP) by amendment to the Facility License R-77... in the NRC Library at http://www.nrc.gov/reading-rm/adams.html . To begin the search, select ``ADAMS...

  8. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) tomore » Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major

  9. Norm - contaminated iodine production facilities decommissioning in Turkmenistan: experience and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander

    2013-07-01

    This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnovermore » is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)« less

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions;more » (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.« less

  11. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application? 285.907 Section 285.907 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... compare your decommissioning application with the decommissioning general concept in your approved SAP...

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmentalmore » restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.« less

  13. Evaluation of nuclear facility decommissioning projects. Summary report: North Carolina State University Research and Training Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-08-01

    This document summarizes information from the decommissioning of the NCSUR-3 (R-3), a 10 KWt university research and training reactor. The decommissioning data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in pre-decommissioning activities with other university reactors of similar design. The information is presented both in some detail in its computer output form and also as a manually assembled summarization which highlights the more significant aspects of the decommissioning project. Decommissioning data from a generic study, NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, and the decommissioning ofmore » the Ames Laboratory Research Reactor (ALRR), a 5 MWt research reactor, is also included for comparison.« less

  14. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, Stephen

    2008-01-15

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development ofmore » a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one

  15. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loosemore » contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less

  16. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and themore » absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less

  17. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  18. 30 CFR 285.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approved decommissioning application? 285.913 Section 285.913 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Compliance with An Approved Decommissioning Application § 285.913 What...

  19. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    PubMed

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  1. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  2. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  3. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  4. Ecological and political issues surrounding decommissioning of offshore oil facilities in the Southern California Bight

    USGS Publications Warehouse

    Schroeder, Donna M.; Love, Milton S.

    2004-01-01

    To aid legislators, resource managers, and the general public, this paper summarizes and clarifies some of the issues and options that the federal government and the state of California face in decommissioning offshore oil and gas production platforms, particularly as these relate to platform ecology. Both local marine ecology and political climate play a role in decommissioning offshore oil production platforms. Compared to the relatively supportive political climate in the Gulf of Mexico for “rigs-to-reefs” programs, conflicting social values among stakeholders in Southern California increases the need for understanding ecological impacts of various decommissioning alternatives (which range from total removal to allowing some or all of platform structure to remain in the ocean). Additional scientific needs in the decommissioning process include further assessment of platform habitat quality, estimation of regional impacts of decommissioning alternatives to marine populations, and determination of biological effects of any residual contaminants. The principal management need is a ranking of environmental priorities (e.g. species-of-interest and marine habitats). Because considerable numbers of economically important species reside near oil platforms, National Oceanic and Atmospheric Administration Fisheries should consider the consequences of decommissioning alternatives in their overall management plans. Management strategies could include designating reefed platforms as marine protected areas. The overarching conclusion from both ecological and political perspectives is that decommissioning decisions should be made on a case-by-case basis.

  5. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1more » was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  6. Decommissioning of the Iraq former nuclear complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Mohammed; Helou, Tuama; Ahmead, Bushra

    2007-07-01

    Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of themore » Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)« less

  7. Research reactor decommissioning experience - concrete removal and disposal -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Mark R.; Gardner, Frederick W.

    1990-07-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limitsmore » for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations.« less

  8. Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.

  9. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial actionmore » contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  10. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  11. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial actionmore » contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  12. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedialmore » action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.« less

  13. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soilmore » beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  14. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial actionmore » contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  15. Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soilmore » beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  16. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate themore » facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.« less

  17. Judy Collins and First Lady Hillary Clinton await the launch of STS-93

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Singer Judy Collins (left) and First Lady Hillary Rodham Clinton await the launch of Space Shuttle mission STS-93 in the Apollo/Saturn V Facility. Liftoff is scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Judy Collins has honored the commander with a song, 'Beyond the Sky,' which was commissioned by NASA through the NASA Art Program.

  18. General hospital resources consumed by an elderly population awaiting long-term care.

    PubMed

    Coughlan, T; O'Neill, D

    2001-01-01

    The provision of extended care facilities in urban Ireland has lagged behind the growth in the numbers of older people. A final pathway for placement is often through the general hospital and the attendant delay results in a diversion of resources. We developed a database of the long-term care waiting lists for the years 1994-present and this was analysed for the six years 1994-1999. We calculated the number of bed-days consumed by elderly patients awaiting placement in long-term care facilities and thus the hospital resources consumed during these periods. The total number of bed-days consumed over the study period was 51,923, the mean being 8653.8 days. Approximately 23.9% of patients die in hospital while awaiting long-term placement. Translating these bed-days into opportunity cost losses in areas relevant to the general hospital we found that 560 extra elective orthopaedic procedures and 1,212 extra transurethral prostatectomies could have been performed per year. The problem of overnight stays in casualty could have been totally abolished if only 65% of these beds were free. Elective theatre is often cancelled with one of the primary reasons being lack of beds. If even a proportion of these beds could be freed up few if any theatre sessions would have to be cancelled, assuming bed availability to be the only factor. This study confirms that the lack of appropriate accommodation for older people requiring extended care is consuming a significant proportion of health care resources. An accelerated program of building of publicly funded long-term placement facilities is urgently required to ameliorate this problem, especially in the greater Dublin area. Further study is required to determine whether this problem exists in other health board areas and if so whether it exists to the same extent.

  19. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  20. 12 CFR 9.10 - Fiduciary funds awaiting investment or distribution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FIDUCIARY ACTIVITIES OF NATIONAL BANKS Regulations § 9.10 Fiduciary funds awaiting investment or distribution. (a) In general. With respect to a fiduciary account for which a national bank has investment... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Fiduciary funds awaiting investment or...

  1. 12 CFR 9.10 - Fiduciary funds awaiting investment or distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FIDUCIARY ACTIVITIES OF NATIONAL BANKS Regulations § 9.10 Fiduciary funds awaiting investment or distribution. (a) In general. With respect to a fiduciary account for which a national bank has investment... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Fiduciary funds awaiting investment or...

  2. 30 CFR 285.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my decommissioning application include? 285.906 Section 285.906 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  3. 30 CFR 285.529 - Can I use a lease- or grant-specific decommissioning account to meet the financial assurance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Payments and Financial Assurance Requirements Requirements for Financial Assurance Instruments § 285.529 Can I use a lease- or... decommissioning account to meet the financial assurance requirements related to decommissioning? 285.529 Section...

  4. Summary of events and geotechnical factors leading to decommissioning of the Strategic Petroleum Reserve (SPR) facility at Weeks Island, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.

    1996-10-01

    A sinkhole discovered over the edge of the Strategic Petroleum Reserve storage facility at Weeks Island salt dome, Louisiana, led to decommissioning the site during 1995--1998, following extensive diagnostics in 1994. The sinkhole resulted from mine-induced fractures in the salt which took may years to develop, eventually causing fresh water to leak into the storage chamber and dissolve the overlying salt, thus causing overburden collapse into the void. Prior to initiating the oil removal, a freeze wall was constructed at depth around the sinkhole in 1995 to prevent water inflow; a freeze plug will remain in place until the minemore » is backfilled with brine in 1997--8, and stability is reached. Residual oil will be removed; environmental monitoring has been initiated and will continue until the facility is completely plugged and abandoned, and environmental surety is achieved.« less

  5. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are

  6. Engineering Evaluation/Cost Analysis (EE/CA) for Decommissioning of TAN-607 Hot Shop Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. P. Floerke

    Test Area North (TAN) -607, the Technical Support Facility, is located at the north end of the Idaho National Laboratory (INL) Site. U.S. Department of Energy Idaho Operations Office (DOE-ID) is proposing to decommission the northern section of the TAN-607 facility, hereinafter referred to as TAN-607 Hot Shop Area, under a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA). Despite significant efforts by the United States (U.S.) Department of Energy (DOE) to secure new business, no future mission has been identified for the TAN-607 Hot Shop Area. Its disposition has been agreed to by the Idahomore » State Historical Preservation Office documented in the Memorandum of Agreement signed October 2005 and it is therefore considered a surplus facility. A key element in DOE's strategy for surplus facilities is decommissioning to the maximum extent possible to ensure risk and building footprint reduction and thereby eliminating operations and maintenance cost. In addition, the DOE's 2006 Strategic Plan is ''complete cleanup of the contaminated nuclear weapons manufacturing and testing sites across the United States. DOE is responsible for the risk reduction and cleanup of the environmental legacy of the Nation's nuclear weapons program, one of the largest, most diverse, and technically complex environmental programs in the world. The Department will successfully achieve this strategic goal by ensuring the safety of the DOE employees and U.S. citizens, acquiring the best resources to complete the complex tasks, and managing projects throughout the United States in the most efficient and effective manner.'' TAN-607 is designated as a historical Signature Property by DOE Headquarters Advisory Council on Historic Preservation and, as such, public participation is required to determine the final disposition of the facility. The decommissioning action will place the TAN-607 Hot Shop Area in a final

  7. Financial Planning as a Tool for Efficient and Timely Decommissioning of Nuclear Research Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cato, Anna; Lindskog, Staffan; Sjoeblom, Rolf

    2008-01-15

    It is generally recognized in the technical and economical literature that reliable cost evaluations with adequate estimates also of the errors and uncertainties involved are necessary in order for rational and appropriate management decisions to be made on any major plant investment. Such estimates are required for the selection of technologies to be applied and for selection to be made between alternative technologies and designs as well as for the overall financing issues including the one of whether to go ahead with the project. Inadequacies in the cost calculations typically lead to suboptimal decisions and ultimately substantial overruns and/or needsmore » for retrofits. Actually, a very strict discipline has to be applied with adaptation of the approach used with regard to the stage of the planning. Deviations from the expected tend to raise the estimated cost much more frequently than they lower it. The same rationale applies to planning and cost calculations for decommissioning of nuclear research facilities. There are, however, many reasons why such estimations may be very treacherous to carry out. This will be dealt with in the following. The knowledge base underlying the present paper has been developed and accumulated as a result of the research that the Swedish Nuclear Power Inspectorate (SKI) has carried out in support of its regulatory oversight over the Swedish system of finance. The findings are, however, equally applicable and appropriate for implementers in their planning, decision, monitoring and evaluation activities. In the nineteen fifties and sixties, Sweden had a comprehensive program for utilization of nuclear power including uranium mining, fuel fabrication, reprocessing and domestically developed heavy water reactors. Examples of facilities are presented in Figures 1-5. Eventually, the development work lead to the present nuclear program with ten modern light water reactors in operation at present. According to Swedish law, those who

  8. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my decommissioning application? 285.907 Section 285.907 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  9. 30 CFR 285.905 - When must I submit my decommissioning application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When must I submit my decommissioning application? 285.905 Section 285.905 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  10. 12 CFR 150.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Where may I deposit fiduciary funds awaiting investment or distribution? 150.300 Section 150.300 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT... Awaiting Investment Or Distribution § 150.300 Where may I deposit fiduciary funds awaiting investment or...

  11. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.; Giumanca, R.

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. Inmore » accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to

  12. Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, E.; Ott, W.R.

    2008-01-15

    The focus of this paper is on a regulatory guide (draft guide DG-4012) being developed by the Office of Nuclear Regulatory Research for the implementation of 10 CFR 20.1406. The draft guide was published in the Federal Register on July 31, 2007 for a 90 day public comment period. Besides being available in the Federal Register, it is also available electronically in NRC's agency data management system (ADAMS). The accession number is ML0712100110. 10 CFR 20.1406 requires license applicants, other than renewals, after August 20, 1997, '..to describe in the application how facility design and procedures for operation will minimize,more » to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize to the extent practicable, the generation of radioactive waste'. The intent of the regulation is to diminish the occurrence and severity of 'legacy sites' by taking measures that will reduce and control contamination and facilitate eventual decommissioning. 10 CFR 20.1406 is significant because it applies to all new facilities and in the very near future (perhaps as soon as the fall of 2007), the U.S. Nuclear Regulatory Commission (NRC) anticipates receiving one or more license applications for new nuclear power plants. The regulatory guide is intended to facilitate that licensing by providing suggestions of things an applicant can do to minimize contamination of the facility and the environment, minimize generation of waste, and to facilitate decommissioning. Over 100 different kinds of activities are covered by license applications submitted to the NRC. They do not all reflect the same potential for contamination of a facility and the environment, or for the generation of radioactive waste. Therefore, an applicant should use sound judgment to evaluate the potential for contamination and the consequences of such contamination in deciding on the extent to which this guide applies to any given facility or

  13. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management datamore » such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were

  14. K-12 Issues Will Await President

    ERIC Educational Resources Information Center

    Hoff, David J.; Klein, Alyson

    2008-01-01

    At the end of a presidential campaign in which education received some attention but never emerged as a top-tier issue, analysts were trying to look beyond the week's election to the K-12 issues awaiting the next president and gauge where they might fit as a new administration prepares to grapple with a global economic crisis. While education…

  15. 75 FR 4803 - Notice of Availability of the Final Environmental Impact Statement for Decommissioning and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ...). The Proposed Action includes the decontamination and decommissioning of the waste storage tanks and... site facilities identified in the Final EIS would be removed; contaminated soil, sediment, and...

  16. 30 CFR 285.908 - What must I include in my decommissioning notice?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my decommissioning notice? 285.908 Section 285.908 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  17. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors - The regulator's perspective.

    PubMed

    Amft, Martin; Leisvik, Mathias; Carroll, Simon

    2017-03-16

    Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.

    2007-07-01

    The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less

  19. Achieving Effective Risk Management Reduction Throughout Decommissioning at the Columbus Closure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.D.

    2006-07-01

    Nuclear facility decontamination, dismantlement, and demolition activities provide a myriad of challenges along the path to reaching a safe, effective, and compliant decommissioning. Among the challenges faced during decommissioning, is the constant management and technical effort to eliminate, mitigate, or minimize the potential of risks of radiation exposures and other hazards to the worker, the surrounding community, and the environment. Management strategies to eliminate, mitigate, or minimize risks include incorporating strong safety and As Low As Reasonably Achievable (ALARA) principles into an integrated work planning process. Technical and operational strategies may include utilizing predictive risk analysis tools to establish contaminationmore » limits for demolition and using remote handling equipment to reduce occupational and radiation exposures to workers. ECC and E2 Closure Services, LLC (Closure Services) have effectively utilized these management and technical tools to eliminate, mitigate, and reduce radiation exposures under contract to the U.S. Department of Energy (DOE) for the decontamination and decommissioning Columbus Closure Project (CCP). In particular, Closure Services achieved significant dose reduction during the dismantling, decontamination, and demolition activities for Building JN-1. Management strategies during the interior dismantlement, decontamination, and demolition of the facility demanded an integrated work planning processes that involved project disciplines. Integrated planning processes identified multiple opportunities to incorporate the use of remote handling equipment during the interior dismantling and demolition activities within areas of high radiation. Technical strategies employed predictive risk analysis tools to set upper bounding contamination limits, allowed for the radiological demolition of the building without exceeding administrative dose limits to the worker, general public, and the environment. Adhering

  20. 75 FR 80697 - Nuclear Decommissioning Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Nuclear Decommissioning Funds AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final regulations... decommissioning nuclear power plants. These final regulations affect taxpayers that own an interest in a nuclear... preamble. 1. Definitional Matters A. Definition of Nuclear Decommissioning Costs One commentator on the...

  1. Quality of life and coping in patients awaiting heart transplantation.

    PubMed

    Muirhead, J; Meyerowitz, B E; Leedham, B; Eastburn, T E; Merrill, W H; Frist, W H

    1992-01-01

    The psychosocial adaptation of patients awaiting heart transplantation has not been defined. Forty-one patients (36 men, 5 women; mean age, 48 years) completed standardized questionnaires before transplantation to assess quality of life, physical symptoms, marital/social adjustment, psychiatric morbidity, coping, and compliance to medical regimens. Also, data were obtained from spouses/partners and the transplantation nurse coordinator. Unlike previously reported findings with patients after transplantation, those awaiting transplantation report moderate dissatisfaction with quality of life. Patients report physical symptoms, functional disabilities, sexual dysfunction, and psychological distress. Nonetheless, reported levels of compliance with the medical regimens and of social support were high, and both patients and spouses/partners provided marital adjustment ratings on the Dyadic Adjustment Scale that were comparable to those of well-adjusted, happily married couples. High levels of coping also were recorded. Having a positive attitude and seeking social support were the most common coping strategies, whereas confrontation, acceptance, and escapism were relatively uncommon. In conclusion, patients awaiting heart transplantation, although dissatisfied with quality of life, maintain positive psychological and social adjustment.

  2. Ecological aspects of decommissioning and decontamination of facilities on the Hanford Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickard, W.H.; Klepper, E.L.

    1976-06-01

    The Hanford environment and biota are described in relation to decommissioning of obsolescent facilities contaminated with low-levels of radioactive materials. The aridity at Hanford limits both the productivity and diversity of biota. Both productivity and diversity are increased when water is added, as for example on the margins of ponds. Certain plants, especially Salsola kali (Russian thistle or tumbleweed), are avid accumulators of minerals and will accumulate radioactive materials if their roots come into contact with contaminated soils. Data on concentration ratios (pCi per gDW of plant/pCi per gDW soil) are given for several native plants for long-lived radionuclides. Plantsmore » are generally more resistant than animals to ionizing radiation so that impacts of high-level radiation sources would be expected to occur primarily in the animals. Mammals and birds are discussed along with information on where they are to be found on the Reservation and what role they may play in the long-term management of radioactive wastes. Food habits of animals are discussed and plants which are palatable to common herbivores are listed. Food chains leading to man are shown to be very limited, including a soil-plant-mule deer-man path for terrestrial sites and a pond-waterfowl-man pathway for pond sites. Retention basins are discussed as an example of how an ecologically sound decommissioningprogram might be planned. Finally, burial of large volumes of low-level wastes can probably be done if barriers to biological invasion are provided.« less

  3. Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe i

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station.

  4. Using probabilistic criteria in an assessment of the potential radiological consequences of the decommissioning of a nuclear research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Christian; Rall, Anna-Maria; Thummerer, Severin

    In order to assess the risk of radiological consequences of incidents and accidents in nuclear facilities it is important to contemplate their frequency of occurrence. It has to be shown that incidents and accidents occur sufficiently seldom according to their radiological consequences i. e. the occurrence frequency of radiological doses has to be limited. This is even demanded by the German radiation protection ordinance (StrlSchV), which says that in nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, the occurrence frequency of incidents and accidents shall be contemplated in order to prove the design of safetymore » measures and safety installations. Based on the ideas of the ICRP64, we developed a risk based assessment concept for nuclear facilities, which fulfils the requirements of the German regulations concerning dose limits in normal operation and design basis accidents. The general use of the concept is dedicated to nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, where the regulation of risk assessment is less sophisticated. The concept specifies occurrence frequency limits for radiation exposure dose ranges, i. e. the occurrence frequency of incidents and accidents has to be limited according to their radiological effects. To apply this concept, scenarios of incidents and accidents are grouped in exposition classes according to their resulting potential effective dose to members of the general public. The occurrence frequencies of the incidents and accidents are summarized in each exposition class whereas the sum must not exceed the frequency limits mentioned above. In the following we introduce the application of this concept in the assessment of the potential radiological consequences of the decommissioning of a nuclear research reactor. We carried out this assessment for the licensing process of the decommissioning on behalf of German authorities. (authors)« less

  5. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, A.M.; Heineman, R.; Norton, S.

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Actmore » of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.« less

  6. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  7. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-12-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness.

  8. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed Central

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-01-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365

  9. 12 CFR 550.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... investment or distribution? 550.300 Section 550.300 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.300 Where may I deposit fiduciary funds awaiting investment or...

  10. 12 CFR 550.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... investment or distribution? 550.300 Section 550.300 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.300 Where may I deposit fiduciary funds awaiting investment or...

  11. 12 CFR 550.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... investment or distribution? 550.300 Section 550.300 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.300 Where may I deposit fiduciary funds awaiting investment or...

  12. 12 CFR 550.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... investment or distribution? 550.300 Section 550.300 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.300 Where may I deposit fiduciary funds awaiting investment or...

  13. 12 CFR 150.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... investment or distribution? 150.300 Section 150.300 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF FEDERAL SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 150.300 Where may I deposit fiduciary funds awaiting investment or...

  14. 12 CFR 150.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... investment or distribution? 150.300 Section 150.300 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF FEDERAL SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 150.300 Where may I deposit fiduciary funds awaiting investment or...

  15. 26 CFR 1.468A-0T - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Nuclear decommissioning costs; table of contents... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Taxable Year for Which Deductions Taken § 1.468A-0T Nuclear...) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A-2TTreatment of...

  16. A dose assessment method for arbitrary geometries with virtual reality in the nuclear facilities decommissioning

    NASA Astrophysics Data System (ADS)

    Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu

    2018-03-01

    During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.

  17. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, T.A.

    1998-11-01

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  18. 76 FR 77431 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... (DG) DG-4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the.... The draft regulatory guide entitled, ``Decommissioning Planning During Operations,'' is temporarily..., 40, 50, 70, and 72 RIN 3150-AI55 [NRC-2011-0286; NRC-2008-0030] Decommissioning Planning During...

  19. 78 FR 663 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...] Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide..., ``Decommissioning Planning During Operations.'' The guide describes a method that the NRC staff considers acceptable for use by holders of licenses in complying with the NRC's Decommissioning Planning Rule (DPR) (76 FR...

  20. 77 FR 41107 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ..., 40, 50, 70, and 72 [NRC-2011-0162] Decommissioning Planning During Operations AGENCY: Nuclear... (DG) 4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the NRC's Decommissioning Planning Rule. The NRC...

  1. Redeployment as an alternative to decommissioning. Conversion of a US Department of Energy facility to fish rearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.N.; Herborn, D.I.

    1994-03-01

    The Hanford Site and the Tri-Cities community have before them an unprecedented opportunity to create an economic renaissance based on the unparalleled environmental cleanup mission. The nation and the world await the emergence of the post-Cold War economy and conversion of the national defense complex into new national economic thrusts. The legacy of the Hanford Site national defense mission must not end up simply with the Site being cleaned up and land being restored to near-original conditions. There also needs to be a future economic legacy of a dynamic Tri-Cities community resulting from the cumulative current activities that will havemore » a positive impact for years to come. In anticipation of the eventual completion of the Hanford Site cleanup mission, the US Department of Energy (DOE) has established the Office of Economic Transition to identify and implement policies and actions that will support the cleanup mission of the Site and the long-term economic development of the Tri-Cities area. In the future, it is envisioned that one phase of a vibrant regional economy with a diversified economic job base will be the capability to compete in national and international environmental services markets. Recently, it was realized that the K Area water treatments facilities might be suitable for the rearing of fish. A `marketing` effort was undertaken to match the facility with potential users. At this time, four fish-rearing projects have either been conducted or are in various stages of progress or implementation. These will be described to explain the participants, the purposes, and the scope of each project.« less

  2. 12 CFR 550.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... investment or distribution? 550.290 Section 550.290 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.290 What must I do with fiduciary funds awaiting investment or...

  3. 12 CFR 550.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... investment or distribution? 550.290 Section 550.290 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.290 What must I do with fiduciary funds awaiting investment or...

  4. 12 CFR 550.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... investment or distribution? 550.290 Section 550.290 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.290 What must I do with fiduciary funds awaiting investment or...

  5. 12 CFR 550.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... investment or distribution? 550.290 Section 550.290 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 550.290 What must I do with fiduciary funds awaiting investment or...

  6. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    PubMed

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  7. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36more » was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  8. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravarik, K.; Medved, J.; Pekar, A.

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementationmore » of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design

  9. 12 CFR 150.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... investment or distribution? 150.290 Section 150.290 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF FEDERAL SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 150.290 What must I do with fiduciary funds awaiting investment or...

  10. 12 CFR 150.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... investment or distribution? 150.290 Section 150.290 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF FEDERAL SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 150.290 What must I do with fiduciary funds awaiting investment or...

  11. 12 CFR 150.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... investment or distribution? 150.290 Section 150.290 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF FEDERAL SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds Awaiting Investment Or Distribution § 150.290 What must I do with fiduciary funds awaiting investment or...

  12. Is Waiting the Hardest Part? Comparing the Emotional Experiences of Awaiting and Receiving Bad News.

    PubMed

    Sweeny, Kate; Falkenstein, Angelica

    2015-11-01

    Awaiting uncertain news is stressful, but is it more stressful than receiving bad news? We compared these emotional experiences in two studies. Participants in Study 1 reflected on a personal experience awaiting news that ultimately turned out badly, and participants in Study 2 were law graduates awaiting their results on the bar exam who ultimately failed the exam. In Study 1, participants were ambivalent as to whether awaiting or receiving bad news was more difficult, and emotion ratings in both studies confirmed this ambivalence. Anxiety was higher in anticipation of bad news (at least at the moment of truth) than in the face of it, whereas other negative emotions were more intense following the news than during the waiting period. Thus, whether waiting is "the hardest part" depends on whether one prefers to be racked with anxiety or afflicted with other negative emotions such as anger, disappointment, depression, and regret. © 2015 by the Society for Personality and Social Psychology, Inc.

  13. Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Joseph K.; Chostner, Stephen M.

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping andmore » equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when

  14. Decontamination, decommissioning, and vendor advertorial issue, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2005-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major interviews, articles and reports in this issue include: Increasing momentum, by Gary Taylor, Entergy Nuclear, Inc.; An acceptable investment, by Tom Chrisopher, Areva, Inc.; Fuel recycling for the U.S. and abroad, by Philippe Knoche, Areva, France; We're bullish on nuclear power, by Dan R. Keuter, Entergy Nuclear, Inc.; Ten key actions for decommissioning, by Lawrence E. Boing, Argonne National Laboratory; Safe, efficient and cost-effective decommissioning, by Dr. Claudio Pescatore and Torsten Eng, OECD Nuclear Energy Agency (NEA), France; and, Plant profile: SONGS decommissioning.

  15. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...

  16. Alpha Particle Detection Using Alpha-Induced Air Radioluminescence: A Review and Future Prospects for Preliminary Radiological Characterisation for Nuclear Facilities Decommissioning

    PubMed Central

    Crompton, Anita J.; Jenkins, Alex

    2018-01-01

    The United Kingdom (UK) has a significant legacy of nuclear installations to be decommissioned over the next 100 years and a thorough characterisation is required prior to the development of a detailed decommissioning plan. Alpha radiation detection is notoriously time consuming and difficult to carry out due to the short range of alpha particles in air. Long-range detection of alpha particles is therefore highly desirable and this has been attempted through the detection of secondary effects from alpha radiation, most notably the air-radioluminescence caused by ionisation. This paper evaluates alpha induced air radioluminescence detectors developed to date and looks at their potential to develop a stand-off, alpha radiation detector which can be used in the nuclear decommissioning field in daylight conditions to detect alpha contaminated materials. PMID:29597340

  17. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY... Commission (NRC) is issuing Revision 1 of regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power... the NRC's regulations relating to the decommissioning process for nuclear power reactors. The revision...

  18. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  19. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.- funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  20. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  1. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  2. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  3. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  4. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  5. Sensor Network Demonstration for In Situ Decommissioning - 13332

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.; Varona, J.; Awwad, A.

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensormore » systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the

  6. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less

  7. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52more » was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  8. Colleges Await High-Stakes Court Verdict in Patent Case

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2008-01-01

    The long-awaited showdown between Blackboard Inc. and Desire2Learn Inc. began this month in a federal courtroom here as lawyers described the humble beginnings of two of the fiercest competitors in the classroom-software industry. The presidents of both companies, flanked by teams of lawyers, listened intently as their lawyers described how young…

  9. Progress in Decommissioning of Ignalina NPP Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancius, Darius; Krenevicius, Rimantas; Kutas, Saulius

    2002-07-01

    The aim of the paper is to present the Lithuanian legal framework regarding the nuclear safety in Decommissioning and Waste Management, and the progress in the Decommissioning Programme of the unit 1 of Ignalina Nuclear Power Plant (INPP). INPP is the only nuclear plant in Lithuania. It comprises two RBMK-1500 reactors. After Lithuania has restored its independence, responsibility for Ignalina NPP was transferred to the Republic of Lithuania. To ensure the control of the Nuclear Safety in Lithuania, The State Nuclear Power Safety Inspectorate (VATESI) was created on 18 October 1991, by a resolution of the Lithuanian Government. Significant workmore » has been performed over the last decade, aiming at upgrading the safety level of the Ignalina NPP with reference to the International standards. On 5 October 1999 the Seimas (Parliament) adopted the National Energy Strategy: It has been decided that unit 1 of Ignalina NPP will be closed down before 2005, The conditions and precise final date of the decommissioning of Unit 2 will be stated in the updated National Energy strategy in 2004. On 20-21 June 2000, the International Donors' Conference for the Decommissioning of Ignalina NPP took place in Vilnius. More than 200 Millions Euro were pledged of which 165 M funded directly from the European Union's budget, as financial support to the Decommissioning projects. The Decommissioning Program encompasses legal, organizational, financial and technical means including the social and economical impacts in the region of Ignalina. The Program is financed from International Support Fund, State budget, National Decommissioning Fund of Ignalina NPP and other funds. Decommissioning of Ignalina NPP is subject to VATESI license according to the Law on Nuclear Energy. The Government established the licensing procedure in the so-called 'Procedure for licensing of Nuclear Activities'; and the document 'General Requirements for Decommissioning of the Ignalina NPP' has been issued by

  10. Mobile laboratories: An innovative and efficient solution for radiological characterization of sites under or after decommissioning.

    PubMed

    Goudeau, V; Daniel, B; Dubot, D

    2017-04-21

    During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main

  11. 77 FR 8751 - Guidance for Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ..., 40, 50, 70, and 72 [NRC-2011-0286] Guidance for Decommissioning Planning During Operations AGENCY... Guide, DG-4014, ``Decommissioning Planning During Operations'' in the Federal Register with a public... Guide DG-4014, ``Decommissioning Planning During Operations.'' This DG refers to NUREG-1757 Volume 3...

  12. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  13. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., COPs and GAPs Decommissioning Applications § 585.907 How will BOEM process my decommissioning... your decommissioning application with the decommissioning general concept in your approved SAP, COP, or... revise your SAP, COP, or GAP, and BOEM will begin the appropriate NEPA analysis and other regulatory...

  14. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  15. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  16. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  17. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  18. Telephone-Based Coping Skills Training for Patients Awaiting Lung Transplantation

    ERIC Educational Resources Information Center

    Blumenthal, James A.; Babyak, Michael A.; Keefe, Francis J.; Davis, R. Duane; LaCaille, Rick A.; Carney, Robert M.; Freedland, Kenneth E.; Trulock, Elbert; Palmer, Scott M.

    2006-01-01

    Impaired quality of life is associated with increased mortality in patients with advanced lung disease. Using a randomized controlled trial with allocation concealment and blinded outcome assessment at 2 tertiary care teaching hospitals, the authors randomly assigned 328 patients with end-stage lung disease awaiting lung transplantation to 12…

  19. Secretary of State Albright awaits the launch of STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    U.S. Secretary of State Madeleine Albright talks with NASA Administrator Daniel Goldin (at left) in the VIP lounge at the Apollo/Saturn V Center while awaiting launch of Mission STS-88, the first U.S. launch for the International Space Station. Astronaut Michael Lopez-Alegria is looking on in background.

  20. When a plant shuts down: The psychology of decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, J.; Crawford, A.C.

    Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant aftermore » a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine.« less

  1. Final cleanup of buildings within in legacy French research facilities: strategy, tools and lessons learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Goaller, C.; Doutreluingne, C.; Berton, M.A.

    2007-07-01

    This paper describes the methodology followed by the French Atomic Energy Commission (CEA) to decommission the buildings of former research facilities for demolition or possible reuse. It is a well known fact that the French nuclear safety authority has decided not to define any general release level for the decommissioning of nuclear facilities, thus effectively prohibiting radiological measurement-driven decommissioning. The decommissioning procedure therefore requires an intensive in-depth examination of each nuclear plant. This requires a good knowledge of the past history of the plant, and should be initiated as early as possible. The paper first describes the regulatory framework recentlymore » unveiled by the French Safety Authority, then, reviews its application to ongoing decommissioning projects. The cornerstone of the strategy is the definition of waste zoning in the buildings to segregate areas producing conventional waste from those generating nuclear waste. After dismantling, suitable measurements are carried out to confirm the conventional state of the remaining walls. This requires low-level measurement methods providing a suitable detection limit within an acceptable measuring time. Although this generally involves particle counting and in-situ low level gamma spectrometry, the paper focuses on y spectrometry. Finally, the lessons learned from ongoing projects are discussed. (authors)« less

  2. 77 FR 37074 - License Amendment Request From the Alan J. Blotcky Reactor Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... the Alan J. Blotcky Reactor Facility AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... section of this document. FOR FURTHER INFORMATION CONTACT: Theodore Smith, Project Manager, Reactor... provided the first time that a document is referenced. The Alan J. Blotcky Reactor Facility Decommissioning...

  3. Astronauts Stafford and Young await pickup by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronauts Thomas P. Stafford, commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, U.S.S. Pinceton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa.

  4. FROM CONCEPT TO REALITY, IN-SITU DECOMMISSIONING OF THE P AND R REACTORS AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musall, J.; Blankenship, J.; Griffin, W.

    2012-01-09

    SRS recently completed an approximately three year effort to decommission two SRS reactors: P-Reactor (Building 105-P) and R-Reactor (Building 105-R). Completed in December 2011, the concurrent decommissionings marked the completion of two relatively complex and difficult facility disposition projects at the SRS. Buildings 105-P and 105-R began operating as production reactors in the early 1950s with the mission of producing weapons material (e.g., tritium and plutonium-239). The 'P' Reactor and was shutdown in 1991 while the 'R' Reactor and was shutdown in 1964. In the intervening period between shutdown and deactivation & decommissioning (D&D), Buildings 105-P and 105-R saw limitedmore » use (e.g., storage of excess heavy water and depleted uranium oxide). For Building 105-P, deactivation was initiated in April 2007 and was essentially complete by June 2010. For Building 105-R, deactivation was initiated in August 2008 and was essentially complete by September 2010. For both buildings, the primary objective of deactivation was to remove/mitigate hazards associated with the remaining hazardous materials, and thus prepare the buildings for in-situ decommissioning. Deactivation removed the following hazardous materials to the extent practical: combustibles/flammables, residual heavy water, acids, friable asbestos (as needed to protect workers performing deactivation and decommissioning), miscellaneous chemicals, lead/brass components, Freon(reg sign), oils, mercury/PCB containing components, mold and some radiologically-contaminated equipment. In addition to the removal of hazardous materials, deactivation included the removal of hazardous energy, exterior metallic components (representing an immediate fall hazard), and historical artifacts along with the evaporation of water from the two Disassembly Basins. Finally, so as to facilitate occupancy during the subsequent in-situ decommissioning, deactivation implemented repairs to the buildings and provided temporary

  5. Astronauts Borman and Lovell sit in life raft while awaiting pickup

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Frank Borman, command pilot, and James A. Lovell Jr., pilot, sit in life raft while awaiting pickup by a helicopter from the aircraft carrier U.S.S. Wasp. The three man Navy frogman team attached the flotation collar to increase the spacecraft's buoyancy prior to recovery.

  6. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  7. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  8. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... set forth in appendix B to part 30 shall submit a decommissioning funding plan as described in paragraph (e) of this section. The decommissioning funding plan must also be submitted when a combination of... funding plan as described in paragraph (e) of this section. The decommissioning funding plan must be...

  9. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... set forth in appendix B to part 30 shall submit a decommissioning funding plan as described in paragraph (e) of this section. The decommissioning funding plan must also be submitted when a combination of... funding plan as described in paragraph (e) of this section. The decommissioning funding plan must be...

  10. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... set forth in appendix B to part 30 shall submit a decommissioning funding plan as described in paragraph (e) of this section. The decommissioning funding plan must also be submitted when a combination of... funding plan as described in paragraph (e) of this section. The decommissioning funding plan must be...

  11. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  12. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  13. Shippingport station decommissioning project ALARA Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crimi, F.P.

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality inmore » December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.« less

  14. KSC-2011-7229

    NASA Image and Video Library

    2011-09-28

    CAPE CANAVERAL, Fla. -- Payload canister #2 awaits decommissioning outside the Reutilization, Recycling and Marketing Facility on Ransom Road at NASA's Kennedy Space Center in Florida. The two payload canisters used to transport space shuttle payloads to the launch pad for installation in the shuttles' cargo bays are being decommissioned following the end of the Space Shuttle Program. Each canister weighs 110,000 pounds and is 65 feet long, 22 feet wide, and 18 feet, 7 inches high. The canisters were prescreened through NASA Headquarters as possible artifacts, but their size makes them difficult to transport to locations off the center. Federal and state agencies now will be given the opportunity to screen the canisters for potential use before a final decision is made on their disposition. For more information, visit http://www.nasa.gov/centers/kennedy/pdf/167403main_CRF-06.pdf. Photo credit: NASA/Jim Grossmann

  15. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivan R. Thomas

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentationmore » within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable

  17. Optimal policies for aggregate recycling from decommissioned forest roads.

    PubMed

    Thompson, Matthew; Sessions, John

    2008-08-01

    To mitigate the adverse environmental impact of forest roads, especially degradation of endangered salmonid habitat, many public and private land managers in the western United States are actively decommissioning roads where practical and affordable. Road decommissioning is associated with reduced long-term environmental impact. When decommissioning a road, it may be possible to recover some aggregate (crushed rock) from the road surface. Aggregate is used on many low volume forest roads to reduce wheel stresses transferred to the subgrade, reduce erosion, reduce maintenance costs, and improve driver comfort. Previous studies have demonstrated the potential for aggregate to be recovered and used elsewhere on the road network, at a reduced cost compared to purchasing aggregate from a quarry. This article investigates the potential for aggregate recycling to provide an economic incentive to decommission additional roads by reducing transport distance and aggregate procurement costs for other actively used roads. Decommissioning additional roads may, in turn, result in improved aquatic habitat. We present real-world examples of aggregate recycling and discuss the advantages of doing so. Further, we present mixed integer formulations to determine optimal levels of aggregate recycling under economic and environmental objectives. Tested on an example road network, incorporation of aggregate recycling demonstrates substantial cost-savings relative to a baseline scenario without recycling, increasing the likelihood of road decommissioning and reduced habitat degradation. We find that aggregate recycling can result in up to 24% in cost savings (economic objective) and up to 890% in additional length of roads decommissioned (environmental objective).

  18. Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posivak, E.J.; Berger, S.R.; Freitag, A.A.

    2008-07-01

    Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to themore » disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)« less

  19. 30 CFR 285.910 - What must I do when I remove my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do when I remove my facility? 285.910 Section 285.910 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning...

  20. The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.

    2008-07-01

    The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facilitymore » at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of

  1. LOFT complex in 1975 awaits renewed mission. Aerial view. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT complex in 1975 awaits renewed mission. Aerial view. Camera facing southwesterly. Left to right: stack, entry building (TAN-624), door shroud, duct shroud and filter hatches, dome (painted white), pre-amp building, equipment and piping building, shielded control room (TAN-630), airplane hangar (TAN-629). Date: 1975. INEEL negative no. 75-3690 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  3. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  4. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  5. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  6. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  7. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  8. 26 CFR 1.468A-4T - Treatment of nuclear decommissioning fund (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Treatment of nuclear decommissioning fund...-4T Treatment of nuclear decommissioning fund (temporary). (a) In general. A nuclear decommissioning... income earned by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes...

  9. Application of Robotics in Decommissioning and Decontamination - 12536

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banford, Anthony; Kuo, Jeffrey A.; Bowen, R.A.

    Decommissioning and dismantling of nuclear facilities is a significant challenge worldwide and one which is growing in size as more plants reach the end of their operational lives. The strategy chosen for individual projects varies from the hands-on approach with significant manual intervention using traditional demolition equipment at one extreme to bespoke highly engineered robotic solutions at the other. The degree of manual intervention is limited by the hazards and risks involved, and in some plants are unacceptable. Robotic remote engineering is often viewed as more expensive and less reliable than manual approaches, with significant lead times and capital expenditure.more » However, advances in robotics and automation in other industries offer potential benefits for future decommissioning activities, with the high probability of reducing worker exposure and other safety risks as well as reducing the schedule and costs required to complete these activities. Some nuclear decommissioning tasks and facility environments are so hazardous that they can only be accomplished by exclusive use of robotic and remote intervention. Less hazardous tasks can be accomplished by manual intervention and the use of PPE. However, PPE greatly decreases worker productivity and still exposes the worker to both risk and dose making remote operation preferable to achieve ALARP. Before remote operations can be widely accepted and deployed, there are some economic and technological challenges that must be addressed. These challenges will require long term investment commitments in order for technology to be: - Specifically developed for nuclear applications; - At a sufficient TRL for practical deployment; - Readily available as a COTS. Tremendous opportunities exist to reduce cost and schedule and improve safety in D and D activities through the use of robotic and/or tele-operated systems. - Increasing the level of remote intervention reduces the risk and dose to an operator. Better

  10. 77 FR 14047 - Guidance for Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...)-4014, ``Decommissioning Planning During Operations.'' This action is necessary to correct the NRC's... NUCLEAR REGULATORY COMMISSION [NRC-2011-0286] Guidance for Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; correction. SUMMARY: The U...

  11. Decommissioning: Nuclear Power's Missing Link. Worldwatch Paper 69.

    ERIC Educational Resources Information Center

    Pollock, Cynthia

    The processes and associated dilemmas of nuclear power plant decommissioning are reviewed in this publication. Decommissioning involves the clearing up and disposal of a retired nuclear plant and its equipment of such a way as to safeguard the public from the dangers of radioactivity. Related problem areas are identified and include: (1) closure…

  12. TES Instrument Decommissioning

    Atmospheric Science Data Center

    2018-03-20

    TES Instrument Decommissioning Tuesday, March 20, 2018 ... PST during a scheduled real time satellite contact the TES IOT along with the Aura FOT commanded the TES instrument to its ... generated from an algorithm update to the base Ground Data System software and will be made available to the scientific community in the ...

  13. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typicallymore » 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  14. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig

    2013-07-01

    benefits and positive impacts on schedule and delivery. A revised organizational structure was implemented in two phases, starting 2011 April 1, to align WL staff with the common goal of decommissioning the site through the direction of the WL Decommissioning Project General Manager. On 2011 September 1, the second phase of the reorganization was implemented and WL Decommissioning staff was organized under five Divisions: Programs and Regulatory Compliance, General Site Services, Decommissioning Strategic Planning, Nuclear Facilities and Project Delivery. A new Mission, Vision and Objectives were developed for the project, and several productivity enhancements are being implemented. These include the use of an integrated and fully re-sourced Site Wide Schedule that is updated and reviewed at Plan-of-the-Week meetings, improved work distribution throughout the year, eliminating scheduling 'push' mentality, project scoreboards, work planning implementation, lean practices and various process improvement initiatives. A revised Strategic Plan is under development that reflects the improved project delivery capabilities. As a result of these initiatives, and a culture change towards a projectized approach, the decommissioning schedule will be advanced by approximately 10 years. (authors)« less

  15. 76 FR 3540 - Proposed Generic Communications Reporting for Decommissioning Funding Status Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-2010-0366] Proposed Generic Communications Reporting for Decommissioning Funding Status Reports AGENCY... and present to the NRC in the Decommissioning Funding Status reports to ensure that the NRC staff... Regulatory Issue Summary 2010-XXX, ``10 CFR 50-75, Reporting for Decommissioning Funding Status Reports'' is...

  16. PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Astronauts Stafford and Young await pickup by recovery helicopter

    NASA Image and Video Library

    1969-05-26

    S69-36595 (26 May 1969) --- Astronauts Thomas P. Stafford, Apollo 10 commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, USS Princeton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa and about four miles from the recovery ship, to conclude a successful eight-day lunar orbit mission.

  18. Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musall, John C.; Cope, Jeff L.

    2008-01-15

    SRS recently completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft{sup 2} laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of {approx}48,000 ft{sup 2}. Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, {approx}1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete {approx}5' thick and {approx}30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete

  19. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian; Miller, Michele

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain onmore » the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.« less

  20. Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II

    NASA Astrophysics Data System (ADS)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang

    2017-09-01

    The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.

  1. Assessing bone status in patients awaiting liver transplantation.

    PubMed

    Wibaux, Cécile; Legroux-Gerot, Isabelle; Dharancy, Sébastien; Boleslawski, Emmanuel; Declerck, Nicole; Canva, Valérie; Mathurin, Philippe; Pruvot, François-René; Cortet, Bernard

    2011-07-01

    Osteoporosis is common in liver transplant recipients as a result of both iatrogenic factors and preexisting hepatic osteodystrophy. To assess the prevalences of osteoporosis and fractures and to identify risk factors for these two abnormalities in patients awaiting liver transplantation for end-stage liver disease. Between January 2006 and December 2007, patients on a liver transplant waiting list underwent a routine evaluation comprising the identification of risk factors for osteoporosis, radiographs of the spine, bone mineral density measurements (BMD), and laboratory tests (phosphate and calcium levels, hormone assays, liver function tests, and bone turnover markers). We studied 99 patients (70 males and 20 females; mean age, 55 ± 8 years) including 75% with alcohol-induced cirrhosis with or without hepatocarcinoma. Among them, 36% had radiographic vertebral fractures, 38% had osteoporosis, 35% had osteopenia, and 88% had vitamin D insufficiency or deficiency (25(OH)vitamin D3<20 ng/mL). Lower BMD values were associated with vertebral fractures; the odds ratios and 95% confidence intervals for each BMD decrease of 1 SD were as follows: spine, 1.45 (95%CI, 1.1-1.9); total hip, 2.1 (95%CI, 1.3-3.2); and femoral neck, 2 (95%CI, 1.3-3.1) (P<0.05). Levels of bone resorption markers correlated negatively with BMD at the spine and hip. The Model for End-Stage Liver Disease score correlated negatively with hip BMD. Our findings suggest high prevalences of low BMD values and vertebral fractures among patients awaiting liver transplantation. Bone status should be evaluated routinely in candidates to liver transplantation. Copyright © 2011 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  2. Asset Decommissioning Risk Metrics for Floating Structures in the Gulf of Mexico.

    PubMed

    Kaiser, Mark J

    2015-08-01

    Public companies in the United States are required to report standardized values of their proved reserves and asset retirement obligations on an annual basis. When compared, these two measures provide an aggregate indicator of corporate decommissioning risk but, because of their consolidated nature, cannot readily be decomposed at a more granular level. The purpose of this article is to introduce a decommissioning risk metric defined in terms of the ratio of the expected value of an asset's reserves to its expected cost of decommissioning. Asset decommissioning risk (ADR) is more difficult to compute than a consolidated corporate risk measure, but can be used to quantify the decommissioning risk of structures and to perform regional comparisons, and also provides market signals of future decommissioning activity. We formalize two risk metrics for decommissioning and apply the ADR metric to the deepwater Gulf of Mexico (GOM) floater inventory. Deepwater oil and gas structures are expensive to construct, and at the end of their useful life, will be expensive to decommission. The value of proved reserves for the 42 floating structures in the GOM circa January 2013 is estimated to range between $37 and $80 billion for future oil prices between 60 and 120 $/bbl, which is about 10 to 20 times greater than the estimated $4.3 billion to decommission the inventory. Eni's Allegheny and MC Offshore's Jolliet tension leg platforms have ADR metrics less than one and are approaching the end of their useful life. Application of the proposed metrics in the regulatory review of supplemental bonding requirements in the U.S. Outer Continental Shelf is suggested to complement the current suite of financial metrics employed. © 2015 Society for Risk Analysis.

  3. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  4. Environmental problems associated with decommissioning the Chernobyl Nuclear Power Plant Cooling Pond.

    PubMed

    Oskolkov, B Ya; Bondarkov, M D; Gaschak, S P; Maksymenko, A M; Maksymenko, V M; Martynenko, V I; Farfán, E B; Jannik, G T; Marra, J C

    2010-11-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination of their territories is an imperative issue. Significant problems may result from decommissioning of cooling ponds with residual radioactive contamination. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained water reservoirs in the Chernobyl region and Ukrainian and Belorussian Polesye region. The 1986 ChNPP Reactor Unit Number Four significantly contaminated the ChNPP Cooling Pond. The total radionuclide inventory in the ChNPP Cooling Pond bottom deposits are as follows: ¹³⁷Cs: 16.28 ± 2.59 TBq; ⁹⁰Sr: 2.4 ± 0.48 TBq; and ²³⁹+²⁴⁰Pu: 0.00518 ± 0.00148 TBq. The ChNPP Cooling Pond is inhabited by over 500 algae species and subspecies, over 200 invertebrate species, and 36 fish species. The total mass of the living organisms in the ChNPP Cooling Pond is estimated to range from about 60,000 to 100,000 tons. The territory adjacent to the ChNPP Cooling Pond attracts many birds and mammals (178 bird species and 47 mammal species were recorded in the Chernobyl Exclusion Zone). This article describes several options for the ChNPP Cooling Pond decommissioning and environmental problems associated with its decommissioning. The article also provides assessments of the existing and potential exposure doses for the shoreline biota. For the 2008 conditions, the estimated total dose rate values were 11.4 40 μGy h⁻¹ for amphibians, 6.3 μGy h⁻¹ for birds, 15.1 μGy h⁻¹ for mammals, and 10.3 μGy h⁻¹ for reptiles, with the recommended maximum dose rate being equal to 40 μGy h⁻¹. However, drying the ChNPP Cooling Pond may increase the exposure doses to 94.5 μGy h⁻¹ for amphibians, 95.2 μGy h⁻¹ for birds, 284.0 μGy h⁻¹ for mammals, and 847.0 μGy h⁻¹ for reptiles. All of these anticipated dose rates exceed the recommended values.

  5. Decontamination, decommissioning, and vendor advertorial issue, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  6. Emotions while awaiting lung transplantation: A comprehensive qualitative analysis.

    PubMed

    Brügger, Aurelia; Aubert, John-David; Piot-Ziegler, Chantal

    2014-07-01

    Patients awaiting lung transplantation are at risk of negative emotional and physical experiences. How do they talk about emotions? Semi-structured interviews were performed (15 patients). Categorical analysis focusing on emotion-related descriptions was organized into positive-negative-neutral descriptions: for primary and secondary emotions, evaluation processes, coping strategies, personal characteristics, emotion descriptions associated with physical states, (and) contexts were listed. Patients develop different strategies to maintain positive identity and attitude, while preserving significant others from extra emotional load. Results are discussed within various theoretical and research backgrounds, in emphasizing their importance in the definition of emotional support starting from the patient's perspective.

  7. 30 CFR 285.909 - When may MMS authorize facilities to remain in place following termination of a lease or grant?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Facility... basis considering the following: (1) Potential impacts to the marine environment; (2) Competing uses of...

  8. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.

    PubMed

    Utkin, S S; Linge, I I

    2016-11-22

    The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m 3 of liquid radioactive waste with a total activity of some 5 × 10 15 Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A nursing diagnosis approach to the patient awaiting cardiac transplantation.

    PubMed

    Cardin, S; Clark, S

    1985-09-01

    The most common reason to perform cardiac transplantation is dilated cardiomyopathy. Alterations in cardiac output secondary to decreased contractility and increased preload and afterload will, over time, lead to progressive deterioration of the patient with this type of end-stage cardiac disease. Heart transplantation is now an accepted therapy for these patients. This article focused on the patient in the period awaiting cardiac transplantation. Five pertinent nursing diagnoses were identified and discussed. A case study approach was utilized to highlight patient problems and nursing interventions.

  10. Dignitaries Await Apollo 11 Lift Off

    NASA Technical Reports Server (NTRS)

    1969-01-01

    From the right, NASA administrator, Dr. Thomas O. Paine talks with U.S. Vice President Spiro T. Agnew while awaiting the launch of Saturn V (AS-506) that carried the Apollo 11 spacecraft to the Moon for man's historic first landing on the lunar surface. At center is astronaut William Anders, a member of the first crew to orbit the moon during the Apollo 8 mission. At left is Lee B. James, director of Program Management at the NASA Marshall Space Flight Center (MSFC) where the Saturn V was developed. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. The moon bound crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (M) pilot. The mission finalized with splashdown in the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  11. Use of internet resources by patients awaiting gastroenterology consultation.

    PubMed

    Teriaky, Anouar; Tangri, Vikram; Chande, Nilesh

    2015-01-01

    The purpose of this study is to understand how outpatients awaiting initial gastroenterology consultation seek medical information on the Internet and how wait times affect Internet usage. A cross-sectional survey of 87 gastroenterology outpatients awaiting consultation was performed at a tertiary care center. Fifty-two patients (60%) utilized the Internet for medical information. The mean age of patients using the Internet was 41 years, whereas the mean age of those not using the Internet was 60 years (p<0.0001). The Internet was used by 71% of females and 47% of males (p<0.05). Regarding the educational level, the Internet was sought by 33% of the patients possessing less than secondary school education, 59% possessing secondary school education, 66% with an undergraduate degree, and 100% with a postgraduate degree (p=0.14). The mean wait time for consultation for patients who utilized the Internet was 158 days, and for patients who did not was 147 days (p=0.60). The most common websites searched were medical, 71%. The most common medical information sought was symptoms and diagnosis by 85% of patients. The reasons for Internet use were wait times for 36% of patients and recommendation by a physician for 10%. Eighty seven percent of the patients who utilized the Internet believed that they suffered from an unidentified disease, whereas 46% of patients who did not utilize the Internet believed the same (p=0.0001). Younger patients and females were more likely to use the Internet, but wait times did not affect Internet usage. The Internet is a powerful patient resource; however, further physician guidance is required to help patients identify reliable resources.

  12. Prolonged incarceration and prisoners’ wellbeing: livid experiences of awaiting trial/pre-trial/remand prisoners in Nigeria

    PubMed Central

    Orjiakor, Charles T.; Ugwu, Dorothy I.; Eze, John E.; Ugwu, Leonard I.; Ibeagha, Peace N.; Onu, Desmond U.

    2017-01-01

    ABSTRACT Purpose: Awaiting trial prisoners (ATPs) are represented in prisons globally, and may stay for long periods in detention. This group is however underrepresented in literature on incarcerated persons. We aim to explore the lived experiences of ATPs detained for prolonged years in a sub-Saharan country; examining what they make of their status and how their conditions have affected their wellbeing. Method: Eight inmates awaiting trial for armed robbery and murder offences, held for between 8 years and 15 years participated in a focus group discussion. Hermeneutic phenomenology guided the interpretation of transcripts. Result: ATPs recount disbelief and negative emotional experiences upon incarceration. Alienated and uncertain about their status, ATPs experience intensified distressful ruminations which impact wellbeing. ATPs re-rationalized incarceration and made social comparisons which breed poor perception of self. ATPs nonetheless recounted hopefulness, made favorable comparisons; and find consolation in religious beliefs. Conclusion: Prolonged years spent awaiting trial fuels a deterioration of wellbeing. Alternatives to incarceration are urgently needed for ATPs. Distressful experiences recalled by the inmates beg for the inclusiveness of ATPs in programs that promote wellbeing. The Good Lives Model holds potentials for building an inclusive framework to accommodate ATPs in prison interventions. PMID:29103371

  13. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall include a decommissioning funding plan in any application for license renewal. (3) Each holder of... not to exceed 3 years. The decommissioning funding plan must also contain a certification by the... until the Commission has terminated the license. (3) An external sinking fund in which deposits are made...

  14. W-007H B Plant Process Condensate Treatment Facility. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rippy, G.L.

    1995-01-20

    B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less

  15. Emotions while awaiting lung transplantation: A comprehensive qualitative analysis

    PubMed Central

    Brügger, Aurelia; Aubert, John-David

    2014-01-01

    Patients awaiting lung transplantation are at risk of negative emotional and physical experiences. How do they talk about emotions? Semi-structured interviews were performed (15 patients). Categorical analysis focusing on emotion-related descriptions was organized into positive–negative–neutral descriptions: for primary and secondary emotions, evaluation processes, coping strategies, personal characteristics, emotion descriptions associated with physical states, (and) contexts were listed. Patients develop different strategies to maintain positive identity and attitude, while preserving significant others from extra emotional load. Results are discussed within various theoretical and research backgrounds, in emphasizing their importance in the definition of emotional support starting from the patient’s perspective. PMID:28070345

  16. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... funding plan as described in paragraph (d) of this section. (b) Each applicant for a specific license... 100 mCi in a readily dispersible form shall either— (1) Submit a decommissioning funding plan as... this section shall submit a decommissioning funding plan as described in paragraph (d) of this section...

  17. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... funding plan as described in paragraph (d) of this section. (b) Each applicant for a specific license... 100 mCi in a readily dispersible form shall either— (1) Submit a decommissioning funding plan as... this section shall submit a decommissioning funding plan as described in paragraph (d) of this section...

  18. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... funding plan as described in paragraph (d) of this section. (b) Each applicant for a specific license... 100 mCi in a readily dispersible form shall either— (1) Submit a decommissioning funding plan as... this section shall submit a decommissioning funding plan as described in paragraph (d) of this section...

  19. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... readily dispersible form shall submit a decommissioning funding plan as described in paragraph (d) of this...— (1) Submit a decommissioning funding plan as described in paragraph (d) of this section; or (2... funding plan as described in paragraph (d) of this section or a certification of financial assurance for...

  20. MA-9 [FAITH 7] SITS ON LAUNCH COMPLEX 14 AWAITING LIFTOFF

    NASA Technical Reports Server (NTRS)

    1963-01-01

    MA-9 [FAITH 7] SITS ON LAUNCH COMPLEX 14 AWAITING LIFTOFF LOC-63C-1410.01 LOC-63C-1410.1, P-06450-A, ARCHIVE-04040 Pre-launch: Mercury-Atlas 9 stands on Pad 14 at Cape Canaveral ready for launch. Lift-off occurred at 8:04 a.m. EST, two and one half hours after Astronaut L. Gordon Cooper was inserted into the spacecraft he named FAITH 7. NASA/Mercury Complex 14, CCMTA, Test 125.

  1. Can we restore the fire process? What awaits us if we don't?

    Treesearch

    R. Gordon Schmidt

    1996-01-01

    This paper's title - "Can we restore the fire process? What awaits us if we don't?" - represents an ecologist's view of the world. I submit that this view is unrealistic. The first clause uses the term "restore" which implies reestablishing the fire process of the past. The second phrase uses the absolute term "don't"...

  2. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich andmore » Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)« less

  3. Decommissioning of offshore oil and gas facilities: a comparative assessment of different scenarios.

    PubMed

    Ekins, Paul; Vanner, Robin; Firebrace, James

    2006-06-01

    A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.

  4. 12 CFR 550.300 - Where may I deposit fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Where may I deposit fiduciary funds awaiting investment or distribution? 550.300 Section 550.300 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds...

  5. Waste management strategy for cost effective and environmentally friendly NPP decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Per Lidar; Arne Larsson; Niklas Bergh

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  6. Greenhouse gas emissions modeling : a tool for federal facility decommissioning

    DOT National Transportation Integrated Search

    2010-10-21

    The Federal Aviation Administration (FAA) facility inventory is constantly changing as newer systems supplant older infrastructure in response to technological advances. Transformational change embodied by the FAAs Next Generation Air Transportati...

  7. Effectiveness of Chinese Hand Massage on Anxiety Among Patients Awaiting Coronary Angiography: A Randomized Controlled Trial.

    PubMed

    Mei, Lijuan; Miao, Xing; Chen, Haiying; Huang, Xiufang; Zheng, Guohua

    Anxiety is the most common negative emotion among the patients awaiting coronary angiography. The increased anxiety may exacerbate coronary heart disease symptoms and possibly contribute to complications during the procedure. Chinese hand massage is a nonpharmaceutical intervention that has been used in several clinical situations in China and might have beneficial effects on reducing anxiety before coronary angiography. The aim of this study was to evaluate the effectiveness and safety of Chinese hand massage care on anxiety among patients awaiting coronary angiography. One hundred eighty-five subjects awaiting coronary angiography in a single hospital in Fuzhou, China, between May 2012 and September 2012 were screened. One hundred eligible participants were recruited and randomly assigned into the control or Chinese hand massage group. The control group received the conventional therapies and care according to the guidelines, and those in the Chinese hand massage group received additional Chinese hand massage care in conjunction with the same conventional therapies and care as the control group. The anxiety scores (evaluated by using the Hamilton Anxiety Rating Scale), heart rate, blood pressure, quality of life (Short-Form Health Survey), and the adverse events were recorded at the baseline and after coronary angiography, respectively. The scores of Hamilton Anxiety Rating Scale in the Chinese hand massage group (11.78 [SD, 2.9]) had a statistically significant decrease compared with those in the control group (15.96 [SD, 3.4]) at post-procedure (P < .01). There was no statistically significant difference on blood pressure, heart rate, and Short-Form Health Survey at postangiography between the Chinese hand massage group and the control group. No adverse event was reported during the intervention period. Chinese hand massage effectively alleviated anxiety without any adverse effects among patients awaiting coronary angiography. Therefore, it might be recommended

  8. Completion of the decommissioning of a former active handling building at UKAEA Winfrith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.; Parkinson, S.J.; Cornell, R.M.

    2007-07-01

    Since July 2000, NUKEM Limited has been carrying out the full decommissioning of a former Active Handling Building A59 at Winfrith in Dorset under contract from the nuclear site licence holder, UKAEA. Work has generally centred upon clearance and decontamination of the two heavily shielded suites of caves originally used to carry out remote examination of irradiated nuclear fuel elements although a number of other supporting facilities are also involved. This work has proceeded successfully to completion following extensive decontamination of the caves and associated facilities and has been followed by the recent demolition of the main containment building structure.more » This has permitted a start to be made on the demolition of the two heavily shielded suites of caves which is to be followed by removal of the building slab and restoration of the site. This paper reviews some of the significant tasks undertaken during the past year in preparation for the building and cave line demolition operations. It also reviews the building structure removal and recent progress made with the demolition of the two heavily reinforced concrete cave lines. The procedure used for monitoring the concrete debris from the cave lines has had to be revised during these operations and the reasons for this and a temporary delay in the cave line demolition will be discussed in the context of the remaining sections of the programme. This decommissioning programme has been achieved throughout by the employment of a non-adversarial team working approach between client and contractor. This has been instrumental in developing cost-effective and safe solutions to a range of problems during the programme, demonstrating the worth of adopting this co-operative approach for mutual benefit. (authors)« less

  9. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... decommissioning application with the decommissioning general concept in your approved SAP, COP, or GAP to..., COP, or GAP, and BOEM will begin the appropriate NEPA analysis and other regulatory reviews as... change in the impacts previously identified and evaluated in your SAP, COP, or GAP; (2) Require any...

  10. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decommissioning application with the decommissioning general concept in your approved SAP, COP, or GAP to..., COP, or GAP, and BOEM will begin the appropriate NEPA analysis and other regulatory reviews as... change in the impacts previously identified and evaluated in your SAP, COP, or GAP; (2) Require any...

  11. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  12. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  13. Radioactive waste from decommissioning of fast reactors (through the example of BN-800)

    NASA Astrophysics Data System (ADS)

    Rybin, A. A.; Momot, O. A.

    2017-01-01

    Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.

  14. President Nixon on deck of U.S.S. Hornet awaiting Apollo 11 crew arrival

    NASA Image and Video Library

    1969-07-24

    S69-21736 (24 July 1969) --- President Richard M. Nixon photographed on the deck of the USS Hornet, prime recovery ship for the Apollo 11 lunar landing mission, awaiting the Apollo 11 crew arrival. Apollo 11 splashed down at 11:40 a.m. (EDT), July 24, 1969, about 812 nautical miles southwest of Hawaii.

  15. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less

  16. TN International and ITS operational feedback regarding the decommissioning of obsolete casks dedicated to the transport and/or storage of nuclear raw materials, fuel and used fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blachet, L.; Bimet, F.; Rennesson, N.

    2008-07-01

    Within the AREVA group, TN International is a major actor regarding the design of casks and transportation for the nuclear cycle. In the early 2005, TN International has started the project of decommissioning some of its own equipment and was hence the first company ever in the AREVA Group to implement this new approach. In order to do so, TN International has based this project by taking into account the AREVA Sustainable Development Charter, the French regulatory framework, the ANDRA (Agence Nationale pour la Gestion des Dechets Radioactifs - National Agency for the radioactive waste management) requirements and has deployedmore » a step by step methodology such as radiological characterization following a logical route. The aim was to define a standardized process with optimized solutions regarding the diversity of the cask's fleet. As a general matter, decommissioning of nuclear casks is a brand new field as the nuclear field is more familiar with the dismantling of nuclear facilities and/or nuclear power plant. Nevertheless existing workshops, maintenance facilities, measurements equipments and techniques have been exploited and adapted by TN International in order to turn an ambitious project into a permanent and cost-effective activity. The decommissioning of the nuclear casks implemented by TN International regarding its own needs and the French regulatory framework is formalized by several processes and is materialized for instance by the final disposal of casks as they are or in ISO container packed with cut-off casks and big bags filled with crushed internal cask equipments, etc. The first part of this paper aims to describe the history of the project that started with a specific environmental analysis which took into account the values of AREVA as regards the Sustainable Development principles that were at the time and are still a topic of current concern in the world. The second part will deal with the definition, the design and the implementation of

  17. President Nixon on deck of U.S.S. Hornet awaiting Apollo 11 crew arrival

    NASA Technical Reports Server (NTRS)

    1969-01-01

    President Richard M. Nixon photographed on the deck of the U.S.S. Hornet, prime recovery ship for the Apollo 11 lunar landing mission, awaiting the Apollo 11 crew arrival. swimmer. All four men are wearing biological isolation garments. Apollo 11 splashed down at 11:40 a.m., July 24, 1969, about 812 nautical miles southwest of Hawaii.

  18. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackintosh, Angela

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for themore » customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)« less

  19. 12 CFR 550.290 - What must I do with fiduciary funds awaiting investment or distribution?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false What must I do with fiduciary funds awaiting investment or distribution? 550.290 Section 550.290 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Funds...

  20. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, N.

    . Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.« less

  1. Reactor Decommissioning - Balancing Remote and Manual Activities - 12159

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Matt

    2012-07-01

    Nuclear reactors come in a wide variety of styles, size, and ages. However, during decommissioned one issue they all share is the balancing of remotely and manually activities. For the majority of tasks there is a desire to use manual methods because remote working can be slower, more expensive, and less reliable. However, because of the unique hazards of nuclear reactors some level of remote activity will be necessary to provide adequate safety to workers and properly managed and designed it does not need to be difficult nor expensive. The balance of remote versus manual work can also affect themore » amount and types of waste that is generated. S.A.Technology (SAT) has worked on a number of reactor decommissioning projects over the last two decades and has a range of experience with projects using remote methods to those relying primarily on manual activities. This has created a set of lessons learned and best practices on how to balance the need for remote handling and manual operations. Finding a balance between remote and manual operations on reactor decommissioning can be difficult but by following certain broad guidelines it is possible to have a very successfully decommissioning. It is important to have an integrated team that includes remote handling experts and that this team plans the work using characterization efforts that are efficient and realistic. The equipment need to be simple, robust and flexible and supported by an on-site team committed to adapting to day-to-day challenges. Also, the waste strategy needs to incorporate the challenges of remote activities in its planning. (authors)« less

  2. Unity connecting module in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  3. Round One? Judge Issues Rulings in Long-Awaited Copyright Infringement Lawsuit against Georgia State University

    ERIC Educational Resources Information Center

    Enghagen, Linda K.

    2014-01-01

    Long-awaited rulings in the copyright infringement lawsuit provide the most specific guidance available to date on the fair use of certain types of materials in e-reserves systems and online course management systems. Unless successfully appealed or otherwise overturned, this case represents a significant victory for Georgia State University…

  4. 30 CFR 585.908 - What must I include in my decommissioning notice?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I include in my decommissioning notice? 585.908 Section 585.908 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... determines that your decommissioning activities would: (1) Result in a significant change in the impacts...

  5. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells

    PubMed Central

    Yang, Ching-Po; Samuels, Tamsin J.; Huang, Yaling; Yang, Lu; Ish-Horowicz, David; Davis, Ilan

    2017-01-01

    The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a ‘decommissioning’ phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages. PMID:28851709

  6. Education in nuclear decommissioning in the north of Scotland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catlow, F.; Reeves, G.M.

    2007-07-01

    This paper describes the work covered and experience gained in the first two years of operation of DERC, a Centre for Decommissioning and Environmental Remediation in the Highlands of Scotland. The Centre is a unique development which was set up to teach nuclear decommissioning as a separate discipline, address the problem of a declining skills base in the field of nuclear technologies and to take advantage of the unique and exceptional innovative, technical and research opportunities offered through the decommissioning of Britain's fast reactor site at Dounreay. The Centre is an offshoot from North Highland College which is a membermore » of UHI, the University in embryo of the Highlands and Islands. The Centre currently supports ten PhD students completing various diverse projects mainly in the field of nuclear environmental remediation. In addition there area number of full and part time MSc students who participate in NTEC (Nuclear Technology Education Consortium) a consortium of British Universities set up specifically to engender interest and skills in nuclear technology at postgraduate level. At undergraduate level, courses are offered in Nuclear Decommissioning and related subjects as part of Electrical and Mechanical degree courses. In addition to our relationship with the United Kingdom Atomic Energy Authority (UKAEA) the Dounreay site licensee, we have links with Rolls-Royce and the Ministry of Defence who also share the Dounreay site and with other stakeholders such as, the UK regulator (HSE/NII), the Scottish Environmental Protection Agency (SEPA), local and international contractors and we liaise with the newly formed Nuclear Decommissioning Authority (NDA), who provide some sponsorship and support. We possess our own equipment and laboratories for taking and analysing soil samples and for conducting environmental surveys. Recently we commissioned an aerial survey of contamination in the locality from natural sources, other background levels such as

  7. Unity connecting module viewed from above in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module is viewed from above while it awaits processing in the Space Station Processing Facility (SSPF). On the side can be seen the connecting hatch. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  8. Evaluation of short-rotation woody crops to stabilize a decommissioned swine lagoon

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C. Hennessey; Chad J. Penn

    2012-01-01

    Fast growing tree stands represent an environmentally friendly, less expensive method for stabilization of decommissioned animal production lagoons than traditional lagoon closure. We tested the feasibility of using short-rotation woody crops (SRWCs) in central Oklahoma to close a decommissioned swine lagoon by evaluating the growth performance and nutrient uptake of...

  9. Decommissioning of the Northrop TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozens, George B.; Woo, Harry; Benveniste, Jack

    1986-07-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  10. 30 CFR 285.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What happens if I fail to comply with my... Decommissioning Application § 285.913 What happens if I fail to comply with my approved decommissioning application? If you fail to comply with your approved decommissioning plan or application: (a) The MMS may...

  11. PROCESS KNOWLEDGE DATA GATHERING AND REPORTING IN SUPPORT OF DECOMMISSIONING Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-06-27

    Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP). Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility. The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators. PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNLmore » guidance) - similar to the MARSSIM historical site assessment. Some types of PK data used to decommission ORNL and ETTP facilities include: (1) Design drawings; (2) Historical documents [e.g., History of the Oak Ridge National Laboratory by Thomas (1963) and A Brief History of the Chemical Technical Division (ORNL/M-2733)]; (3) Historical photographs; (4) Radiological survey reports; (5) Facility-specific databases - (a) Spill history, (b) Waste Information Tracking System (WITS), and (c) Hazardous Materials Management Information System (HMMIS); (6) Facility walkdown summary reports; and (7) Living memory data. Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions. For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following: (1) Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants; (2) Items with physical WAC restriction (e.g., large items, pipes, and concrete); and (3) Too 'hot' for EMWMF. Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities. Interviews often led to more contact names and reports but also

  12. Residual strength and stiffness of lumber from decommissioned chromated copper arsenate-treated southern pine utility poles

    Treesearch

    Cheng Piao; Leslie Groom

    2010-01-01

    The reusability of decommissioned treated wood is primarily dependent on the residual strength of the wood after service. Determining the residual strength can provide useful information for structural design and reuse of the decommissioned treated wood. This study evaluated the residual strength of decommissioned chromated copper arsenate–treated utility pole wood....

  13. 78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...On June 28, 2013, the GPU Nuclear Inc. (GPUN) submitted its Post Shutdown Decommissioning Activity Report (PSDAR) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides an overview of GPUN's proposed decommissioning activities, schedule, and costs for TMI-2. The NRC is requesting public comments on the PSDAR.

  14. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Arne; Lidar, Per; Bergh, Niklas

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  15. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    NASA Technical Reports Server (NTRS)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  16. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to bemore » considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.« less

  17. Carbon-14 Bioassay for Decommissioning of Hanford Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Watson, David J.

    2012-05-01

    The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to bemore » sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.« less

  18. Carbon-14 bioassay for decommissioning of Hanford reactors.

    PubMed

    Carbaugh, Eugene H; Watson, David J

    2012-05-01

    The production reactors at the U.S. Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for ¹⁴C radiobioassay of workers was identified. Technical issues associated with ¹⁴C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S ¹⁴C anticipated to be encountered. However, the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of ¹⁴C are not credible, thus rendering moot the need for such bioassay.

  19. 78 FR 38739 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing Revision 1 of Regulatory Guide (RG) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  20. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1272, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  1. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunkermore » currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  2. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currentlymore » stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  3. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices ofmore » the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)« less

  4. 76 FR 3837 - Nuclear Decommissioning Funds; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [TD 9512] RIN 1545-BF08 Nuclear... trusts maintained for decommissioning nuclear power plants. DATES: This correction is effective on...: Sec. 1.468A-6 Disposition of an interest in a nuclear power plant. * * * * * (e) * * * (3...

  5. Assignment of cytomegalovirus infection status in infants awaiting solid organ transplant: Viral detection methods as adjuncts to serology.

    PubMed

    Burton, Catherine E; Dragan, Tatiana; Mabilangan, Curtis A; O'Brien, Sheila F; Fearon, Margaret; Scalia, Vito; Preiksaitis, Jutta K

    2018-05-24

    Assignment of CMV infection status in infants awaiting SOT is challenging as passive maternal antibody can lead to false-positive serology. Since 2000, our protocol has recommended sending throat and urine samples for CMV viral detection, culture, or NAAT, for CMV-seropositive infants <18 months awaiting SOT. We reviewed pretransplant CMV serology for 152 infants and, for CMV seropositives, examined relationships between CMV IgG OD values, age, and CMV viral detection to explore time to clearance of maternal CMV IgG and evaluate viral detection in assignment of pretransplant CMV infection status. The proportion of CMV-seropositive infants decreased from 52% in infants 0-6 months of age to 28% in those 12-18 months. Among CMV-seropositive infants, median OD was significantly higher in the 6- to 12- and 12- to 18-month groups compared to the 0- to 6-month group. Distribution of OD by age group suggested that maternal antibody cleared before 12 months. Of 59 eligible CMV-seropositive infants, 49 (83%) had CMV viral detection studies and 18 of 49 (36.7%) had detectable CMV: 9 of 30 (30.0%) infants 0-6 months, 7 of 15 (46.7%) infants 6-12 months, and 2 of 4 (50.0%) infants 12-18 months. CMV viral detection studies are useful to confirm positive CMV infection status in CMV-seropositive infants awaiting SOT. Maternal CMV IgG likely clears before 12 months. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Action Memorandum for Decommissioning of TAN-607 Hot Shop Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. A. Pinzel

    The Department of Energy is documenting the selection of an alternative for the TAN-607 Hot Shop Area using a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA). The scope of the removal action is limited to TAN-607 Hot Shop Area. An engineering evaluation/cost analysis (EE/CA) has assisted the Department of Energy Idaho Operations Office in identifuomg the most effective method for performing the decommissioning of this structure whose mission has ended. TAN-607 Hot Shop Area is located at Test Area North Technical Support Facility within the Idaho National Laboratory Site. The selected alternative consists of demolishing themore » TAN-607 aboveground structures and components, removing belowground noninert components (e.g. wood products), and removing the radiologically contaminated debris that does not meet remedial action objectives (RAOs), as defined in the Record of Decision Amendment for the V-Tanks and Explanation of Significant Differences for the PM-2A Tanks at Test Area North, Operable Unit 1-10.« less

  7. GrayQb TM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, J. R.; Immel, D. M.; Serrato, M. G.

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less

  8. Plant security during decommissioning; challenges and lessons learned from German phase out decision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Andrea; Esch, Markus

    2013-07-01

    Purpose of this paper is to point out the security challenges that may occur during the decommissioning, based on the issues and lessons learned from the German phase out decision. Though national regulations may be different in other countries the basic problems and issues will be the same. Therefore presented solutions will be applicable in other countries as well. The radioactive material remaining at the NPP during decommissioning has the most influence on how the security measures have to be designed. The radioactive material defines the risk potential of the plant and this determines the needed security level. The followingmore » aspects have been challenging in Germany: - Scenarios varying from those, used for plants in operation, due to changed operating conditions - Spent fuel will stay in the spent fuel pool for a quite long period before it can be removed from the plant. Risk potential of the plant stays high and requires a high level of security measures - Security measures according to the existing operating license have to stay in place as they are, unless the first license for decommissioning is given respective the spent fuel is removed from the plant site. This even led to the question if improvements of security measures, planned and announced with focus on a plant remaining in operation for another couple of years, need to be done although they will not be required after removing the spent fuel from the plant. A further important aspect for the security design is the fact that a plant under decommissioning has completely different and strongly varying operating procedures, compared to the stable ones of an operating plant. This leads to different needs concerning workspace, infrastructure on plant site, access to buildings etc. An optimized and highly flexible security concept is needed to ensure an adequate level of security as well as an efficient decommissioning. A deep analysis of the vital plant functions, depending on the different

  9. Renewables-to-reefs? - Decommissioning options for the offshore wind power industry.

    PubMed

    Smyth, Katie; Christie, Nikki; Burdon, Daryl; Atkins, Jonathan P; Barnes, Richard; Elliott, Michael

    2015-01-15

    The offshore wind power industry is relatively new but increasing globally, hence it is important that the whole life-cycle is managed. The construction-operation-decommissioning cycle is likely to take 20-30 years and whilst decommissioning may not be undertaken for many years, its management needs to be addressed in both current and future marine management regimes. This can be defined within a Drivers-Activities-Pressures-State Changes-Impacts (on human Welfare)-Responses framework. This paper considers the main decommissioning options - partial or complete removal of all components. A SWOT analysis shows environmental and economic benefits in partial as opposed to complete removal, especially if habitat created on the structures has conservation or commercial value. Benefits (and repercussions) are defined in terms of losses and gains of ecosystem services and societal benefits. The legal precedents and repercussions of both options are considered in terms of the 10-tenets of sustainable marine management. Finally a 'renewables-to-reefs' programme is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Anthony A.

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] itmore » is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)« less

  11. Effect of laughter on mood and heart rate variability in patients awaiting organ transplantation: a pilot study.

    PubMed

    Dolgoff-Kaspar, Rima; Baldwin, Ann; Johnson, Scott; Edling, Nancy; Sethi, Gulshan K

    2012-01-01

    Research shows that laughter has myriad health benefits, yet the medical community has not implemented it formally as a treatment. Patients awaiting organ transplantation have significant physical disabilities and are at risk for psychological distress. Attenuated heart rate variability (HRV) is a risk factor for a negative long-term outcome in some patients. The study intended to evaluate the clinical utility of laughter yoga in improving psychological and physiological measures in outpatients awaiting organ transplantation. Positive results would indicate promising areas to pursue in a follow-up study. Six participants met for 10 sessions over 4 weeks. The research team measured each participant's heart rate, HRV, blood pressure (BP), and immediate mood before and after the laughter and control interventions. The team assessed participants' longer-term mood (anxiety and depression) at the study's initiation, after a no-treatment control week, and at the end of the study. The study occurred at the Department of Surgery and Medicine at the University of Arizona Health Sciences Center, Tucson. Participants were patients awaiting transplants (three heart and three lung), two women and four men (ages 51-69 y). Participants had received no major surgery in the 3 months prior to the intervention, did not have a hernia or uncontrolled hypertension, and did not fall into the New York Heart Association function class 4. The 20-minute laughter intervention involved breathing and stretching exercises, simulated laughter (ie, unconditional laughter that is not contingent on the environment), chanting, clapping, and a meditation. The 20-minute control intervention involved the study's personnel discussing health and study-related topics with the participants. The research team measured BP, heart rate, and HRV and administered the Profile of Mood States, Beck Anxiety Inventory, and Beck Depression Inventory-II to evaluate immediate and longer-term mood. The team had planned

  12. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  13. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  14. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  15. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  16. 78 FR 78338 - Japan-U.S. Decommissioning and Remediation Fukushima Recovery Forum Tokyo, Japan February 18-19...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... nuclear energy research and development, the decommissioning of the Fukushima Dai-ichi Nuclear Power Station, environmental management, emergency management, nuclear security, and safety and regulatory issues. The Decommissioning and Environmental Management Working Group (DEMWG) under the Bilateral...

  17. Association Between Physical Activity Intensity and Physical Capacity Among Individuals Awaiting Bariatric Surgery.

    PubMed

    Rioux, Brittany V; Sénéchal, Martin; Kwok, Karen; Fox, Jill; Gamey, Dean; Bharti, Neha; Vergis, Ashley; Hardy, Krista; Bouchard, Danielle R

    2017-05-01

    Physical activity is a routine component of the lifestyle modification program implemented prior to bariatric surgery, and one of the goals is to improve patients' physical capacity. However, the physical activity intensity recommended to meet that goal is unknown. This study aimed to assess the association between time spent at different physical activity intensities and physical capacity in patients awaiting bariatric surgery. A total of 39 women and 13 men were recruited. The primary outcome was physical capacity measured using six objective tests: 6-min walk, chair stand, sit and reach, unipodal balance (eyes open and eyes closed), and hand grip strength tests. The primary exposure variable was physical activity intensity (i.e., sedentary, light, moderate, and vigorous) measured by accelerometers. The average body mass index was 46.3 ± 5.4 kg/m 2 . Only 6% of total time was spent at moderate to vigorous intensity, while 71% of the time was spent sedentary. When adjusted for body mass index, age, and sex, four of the six physical capacity tests were significantly associated with moderate intensity physical activity β(SE): 6-min walk 9.7 (2.7), chair stand 0.3 (0.1), balance (eyes open) 1.8 (0.7), and hand grip strength 1.2 (0.4), and only the 6-min walk was associated with sedentary activity 1.7 (0.7). These results suggest that physical capacity is associated with time spent at moderate intensity in individuals awaiting bariatric surgery. The next step is to study if an increase in time spent at moderate intensity will translate to improvements in physical capacity.

  18. Decommissioning ALARA programs Cintichem decommissioning experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, J.J.; LaGuardia, T.S.

    1995-03-01

    The Cintichem facility, originally the Union Carbide Nuclear Company (UCNC) Research Center, consisted primarily of a 5MW pool type reactor linked via a four-foot-wide by twelve-foot-deep water-filled canal to a bank of five adjacent hot cells. Shortly after going into operations in the early 1960s, the facility`s operations expanded to provide various reactor-based products and services to a multitude of research, production, medical, and education groups. From 1968 through 1972, the facility developed a process of separating isotopes from mixed fission products generated by irradiating enriched Uranium target capsules. By the late 1970s, 20 to 30 capsules were being processedmore » weekly, with about 200,000 curies being produced per week. Several isotopes such as Mo{sup 99}, I{sup 131}, and Xe{sup 133} were being extracted for medical use.« less

  19. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devgun, Jas S.; Laraia, Michele; Pescatore, Claudio

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimizemore » the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new

  20. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.

    2007-07-01

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuelmore » from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped

  1. Effect of laughter yoga on mood and heart rate variability in patients awaiting organ transplantation: a pilot study.

    PubMed

    Dolgoff-Kaspar, Rima; Baldwin, Ann; Johnson, M Scott; Edling, Nancy; Sethi, Gulshan K

    2012-01-01

    Research shows that laughter has myriad health benefits, yet the medical community has not implemented it formally as a treatment. Patients awaiting organ transplantation have significant physical disabilities and are at risk for psychological distress. Attenuated heart rate variability (HRV) is a risk factor for a negative long-term outcome in some patients. The study intended to evaluate the clinical utility of laughter yoga in improving psychological and physiological measures in outpatients awaiting organ transplantation. Positive results would indicate promising areas to pursue in a follow-up study. Six participants met for 10 sessions over 4 weeks. The research team measured each participant's heart rate, HRV, blood pressure (BP), and immediate mood before and after the laughter and control interventions. The team assessed participants' longer-term mood (anxiety and depression) at the study's initiation, after a no-treatment control week, and at the end of the study. The study occurred at the Department of Surgery and Medicine at the University of Arizona Health Sciences Center, Tucson. Participants were patients awaiting transplants (three heart and three lung), two women and four men (ages 51-69 y). Participants had received no major surgery in the 3 months prior to the intervention, did not have a hernia or uncontrolled hypertension, and did not fall into the New York Heart Association function class 4. The 20-minute laughter intervention involved breathing and stretching exercises, simulated laughter (ie, unconditional laughter that is not contingent on the environment), chanting, clapping, and a meditation. The 20-minute control intervention involved the study's personnel discussing health and study-related topics with the participants. The research team measured BP, heart rate, and HRV and administered the Profile of Mood States, Beck Anxiety Inventory, and Beck Depression Inventory-II to evaluate immediate and longer-term mood. The team had planned

  2. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    PubMed Central

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  3. 30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What happens if I fail to comply with my approved decommissioning application? 585.913 Section 585.913 Mineral Resources BUREAU OF OCEAN ENERGY... § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to...

  4. 30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What happens if I fail to comply with my approved decommissioning application? 585.913 Section 585.913 Mineral Resources BUREAU OF OCEAN ENERGY... § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to...

  5. 30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What happens if I fail to comply with my... Application § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to comply with your approved decommissioning plan or application: (a) BOEM may call for the...

  6. Role of Nutrition and Feeding for the Chronically Ill Pediatric Liver Patient Awaiting Liver Transplant.

    PubMed

    Leon, Carly D G; Lerret, Stacee M

    This article reviews the essential role of nutrition in optimizing care for pediatric patients with liver disease awaiting liver transplant. A review of growth and overall principles of feeding for pediatric patients, from infancy through childhood and into adolescence, is provided including the role of macro- and micronutrients, nutrient distribution, and nutrition supplementation. The importance of a thorough nutrition assessment is reviewed, including focus areas the nurse can address with patients and families such as diet histories, growth, and dietary modifications. Suggestions for monitoring and implementing nutrition strategies are provided.

  7. An investigation of the validity of six measures of physical function in people awaiting joint replacement surgery of the hip or knee.

    PubMed

    Gill, Stephen D; de Morton, Natalie A; Mc Burney, Helen

    2012-10-01

    To assess and compare the validity of six physical function measures in people awaiting hip or knee joint replacement. Eighty-two people awaiting hip or knee replacement were assessed using six physical function measures including the WOMAC Function scale, SF-36 Physical Function scale, SF-36 Physical Component Summary scale, Patient Specific Functional Scale, 30-second chair stand test, and 50-foot timed walk. Validity was assessed using a head-to-head comparison design. Convergent validity was demonstrated with significant correlations between most measures (Spearman's rho 0.22 to 0.71). The Patient Specific Functional Scale had the lowest correlations with other measures of physical function. Discriminant validity was demonstrated with low correlations between mental health and physical function scores (Spearman's rho -0.12 to 0.33). Only the WOMAC Function scale, 30-second chair stand test, and 50-foot timed walk demonstrated known groups validity when scores for participants who walked with a gait aid were compared with those who did not. Standardized response means and Guyatt's responsiveness indexes indicated that the SF-36 was the least responsive measure. For those awaiting joint replacement surgery of the hip or knee, the current investigation found that the WOMAC Function scale, 30-second chair stand test, and 50-foot timed walk demonstrated the most evidence of validity. The Patient Specific Functional Scale might complement other measures by capturing a different aspect of physical function.

  8. Challenges with Final Status Surveys at a Large Decommissioning Site - 13417

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downey, Heath; Collopy, Peter; Shephard, Eugene

    2013-07-01

    As part of decommissioning a former nuclear fuel manufacturing site, one of the crucial final steps is to conduct Final Status Surveys (FSS) in order to demonstrate compliance with the release criteria. At this decommissioning site, the area for FSS was about 100 hectares (248 acres) and included varying terrain, wooded areas, ponds, excavations, buildings and a brook. The challenges in performing the FSS included determining location, identifying FSS units, logging gamma walkover survey data, determining sample locations, managing water in excavations, and diverting water in the brook. The approaches taken to overcome these challenges will be presented in themore » paper. The paper will present and discuss lessons learned that will aid others in the FSS process. (authors)« less

  9. Personality factors versus expectations and self-reported symptoms among patients awaiting advanced prosthodontic treatment.

    PubMed

    Hakestam, U; Söderfeldt, B; Rydén, O; Glantz, P O

    1997-09-01

    To assess simple questions for identifying patient personality traits among a normal Swedish population and to assess possible relationships between personality and symptoms, attitudes, dental problems, and received dental care, a questionnaire was sent to 489 subjects awaiting prosthodontic treatment (response rate 84.2%). Three personality traits could be identified: "Fearful-depressed" subjects consumed more tranquillisers, were worried and had many symptoms, whilst "Open-minded" were optimistic about treatment, had high expectations and few symptoms. "Control-minded" did not reveal worries and guarded their autonomy. It was concluded that personality indicators were related to clinically relevant factors: salience of teeth, perceptions of problems, dental attendance pattern, expectations and perceptions of symptoms.

  10. A Multidisciplinary Approach to Decommissioning Offshore Wells Using Stakeholder Engagement, Risk Identification, and the United Nations Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Battalora, L.; Prasad, M.

    2017-12-01

    Context/PurposeThe typical oil and gas project lifecycle includes acquisition, exploration, drilling, production, and decommissioning phases. The oil and gas industry (Industry) has become proactive in identifying and mitigating health, safety, security, environment, and social responsibility risks during these phases as well as designing for sustainable development. With many fields reaching the end stages of the lifecycle, Industry is faced with the challenge of identifying and evaluating risks in the decommissioning phase. The level of challenge is increased when planning for the decommissioning of offshore wells. This paper describes tools that can be applied in the multidisciplinary design of the decommissioning program including use of the United Nations Sustainable Development Goals (SDGs). MethodsStakeholder engagement is key to a successful project. Typical stakeholders in an oil and gas project include the community, regulatory agencies, federal, state, and local governments, private investors, academia, and non-governmental organizations. Before engagement begins, stakeholders must be identified as well as their level of influence in the project. Relationships between stakeholders are "mapped" providing a better understanding of priorities and areas of concentration. Project risks are identified and ranked according to likelihood and impact. Mitigations are matched to risks. Sustainable development is implemented through acknowledgement of societal, economic, and environmental impacts in engineering design. InterpretationRecently, the United Nations Development Programme (UNDP), the International Finance Corporation (IFC) and IPIECA, the global oil and gas industry association for environmental and social issues, partnered to develop the publication, Mapping the oil and gas industry to the Sustainable Development Goals: An Atlas. SDGs have been linked to Industry operations and can serve as a guide for the offshore decommissioning phase Conclusion

  11. Experience of the nuclear reactors (environmental impact assessment for decommissioning) regulations 1999, as amended, in Great Britain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sarah; Mattress, Elaine; Nettleton, Jo

    2007-07-01

    Available in abstract form only. Full text of publication follows: In Great Britain, the Nuclear Reactors (Environmental Impact Assessment for Decommissioning) Regulations 1999 as amended 2006 (EIADR) requires assessment of the potential environmental impacts of projects to decommission nuclear power stations and reactors. The Health and Safety Executive (HSE) is the competent authority for EIADR. The EIADR implement European Council Directive 85/337/EEC (the EIA Directive) as amended by Council Directive 97/11/EC and Council Directive 2003/35/EC the (Public Participation Directive). The purpose of the EIADR is to assess environmental effects of nuclear reactor decommissioning projects, involve the public through consultation, andmore » make the decision-making process open and transparent. Under the regulations, any licensee wishing to begin to decommission or dismantle a nuclear power station, or other civil nuclear reactor, must apply to HSE for consent to carry out the decommissioning project, undertake an environmental impact assessment and prepare an environmental statement that summarises the environmental effects of the project. HSE will consult on the environmental statement. So far under the EIADR there have been six consents granted for decommissioning projects for Magnox Power Stations. These stations have been required as a condition of consent to submit an Environmental Management Plan on an annual basis. This allows the project to be continually reviewed and assessed to ensure that the licensee can provide detail as agreed during the review of the environmental statement and that any changes to mitigation measures are detailed. This paper summarises the EIADR process, giving particular emphasis to public participation and the decision making process, and discusses HSE's experience of EIADR with reference to specific environmental issues raised by stakeholders and current developments. (authors)« less

  12. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiberteau, Ph.; Nokhamzon, J.G.

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future.more » Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the

  13. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review andmore » reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.« less

  14. Progress on the decommissioning of Zion nuclear generating station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moloney, B. P.; Hess, J.

    2013-07-01

    The decommissioning of the twin 1040 MWe PWRs at Zion, near Chicago USA is a ground breaking programme. The original owner, Exelon Nuclear Corporation, transferred the full responsibility for reactor dismantling and site license termination to a subsidiary of EnergySolutions. The target end state of the Zion site for return to Exelon will be a green field with the exception of the dry fuel storage pad. In return, ZionSolutions has access to the full value of the decommissioning trust fund. There are two potential attractions of this model: lower overall cost and significant schedule acceleration. The Zion programme which commencedmore » in September 2010 is designed to return the cleared site with an Independent Spent Fuel Storage Installation (ISFSI) pad in 2020, 12 years earlier than planned by Exelon. The overall cost, at $500 M per full size power reactor is significantly below the long run trend of $750 M+ per PWR. Implementation of the accelerated programme has been underway for nearly three years and is making good progress. The programme is characterised by numerous projects proceeding in parallel. The critical path is defined by the inspection and removal of fuel from the pond and transfer into dry fuel storage casks on the ISFSI pad and completion of RPV segmentation. Fuel loading is expected to commence in mid- 2013 with completion in late 2014. In parallel, ZionSolutions is proceeding with the segmentation of the Reactor Vessel (RV) and internals in both Units. Removal of large components from Unit 1 is underway. Numerous other projects are underway or have been completed to date. They include access openings into both containments, installation of heavy lift crane capacity, rail upgrades to support waste removal from the site, radiological characterization of facilities and equipment and numerous related tasks. As at February 2013, the programme is just ahead of schedule and within the latest budget. The paper will provide a fuller update. The first

  15. HLRW management during MR reactor decommissioning in NRC 'Kurchatov Institute'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnokov, Alexander; Ivanov, Oleg; Kolyadin, Vyacheslav

    2013-07-01

    A program of decommissioning of MR research reactor in the Kurchatov institute started in 2008. The decommissioning work presumed a preliminary stage, which included: removal of spent fuel from near reactor storage; removal of spent fuel assemble of metal liquid loop channel from a core; identification, sorting and disposal of radioactive objects from gateway of the reactor; identification, sorting and disposal of radioactive objects from cells of HLRW storage of the Kurchatov institute for radwaste creating form the decommissioning of MR. All these works were performed by a remote controlled means with use of a remote identification methods of highmore » radioactive objects. A distribution of activity along high radiated objects was measured by a collimated radiometer installed on the robot Brokk-90, a gamma image of the object was registered by gamma-visor. Spectrum of gamma radiation was measured by a gamma locator and semiconductor detector system. For identification of a presence of uranium isotopes in the HLRW a technique, based on the registration of characteristic radiation of U, was developed. For fragmentation of high radiated objects was used a cold cutting technique and dust suppression system was applied for reduction of volume activity of aerosols in air. The management of HLRW was performed by remote controlled robots Brokk-180 and Brokk-330. They executed sorting, cutting and parking of high radiated part of contaminated equipment. The use of these techniques allowed to reduce individual and collective doses of personal performed the decommissioning. The average individual dose of the personnel was 1,9 mSv/year in 2011, and the collective dose is estimated by 0,0605 man x Sv/year. Use of the remote control machines enables reducing the number of working personal (20 men) and doses. X-ray spectrometric methods enable determination of a presence of the U in high radiated objects and special cans and separation of them for further spent fuel

  16. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  17. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  18. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  19. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  20. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  1. 10 CFR Appendix A to Part 30 - Criteria Relating to Use of Financial Tests and Parent Company Guarantees for Providing...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... based on obtaining a parent company guarantee that funds will be available for decommissioning costs and... decommissioning cost estimates for the total of all facilities or parts thereof (or prescribed amount if a... decommissioning cost estimates for the total of all facilities or parts thereof (or prescribed amount if a...

  2. Estimates of low-level waste volumes and classifications at 2-Unit 1100 MWe reference plants for decommissioning scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Vance, J.N.; James, D.

    1991-01-01

    A number of nuclear utilities and industry organizations in the United States have evaluated the requirements for reactor decommissioning. These broad scope studies have addressed the major issues of technology, methodology, safety and costs of decommissioning and have produced substantial volumes of data to describe, in detail, the issues and impacts which result. The objective of this paper to provide CECo a reasonable basis for discussion low-level waste burial volumes for the most likely decommissioning options and to show how various decontamination and VR technologies can be applied to provide additional reduction of the volumes required to be buried atmore » low-level waste burial grounds.« less

  3. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnakemore » Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation

  4. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review andmore » reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.« less

  5. 10 CFR 72.30 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Financial assurance and recordkeeping for decommissioning. 72.30 Section 72.30 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN...

  6. Development of a reliable estimation procedure of radioactivity inventory in a BWR plant due to neutron irradiation for decommissioning

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi; Ueno, Jun

    2017-09-01

    Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.

  7. Environmental Problems Associated with Decommissioning of Chernobyl Power Plant Cooling Pond

    NASA Astrophysics Data System (ADS)

    Foley, T. Q.; Oskolkov, B. Y.; Bondarkov, M. D.; Gashchak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.; Jannik, G. T.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination is a fairly pressing issue. Significant problems may result from decommissioning of cooling ponds. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained bodies of water in the Chernobyl Region and Ukrainian Polesye with a water surface area of 22.9 km2. The major hydrological feature of the ChNPP Cooling Pond is that its water level is 6-7 m higher than the water level in the Pripyat River and water losses due to seepage and evaporation are replenished by pumping water from the Pripyat River. In 1986, the accident at the ChNPP #4 Reactor Unit significantly contaminated the ChNPP Cooling Pond. According to the 2001 data, the total radionuclide inventory in the ChNPP Cooling Pond bottom deposits was as follows: 16.28 ± 2.59 TBq for 137Cs; 2.4 ± 0.48 TBq for 90Sr, and 0.00518 ± 0.00148 TBq for 239+240Pu. Since ChNPP is being decommissioned, the ChNPP Cooling Pond of such a large size will no longer be needed and cost effective to maintain. However, shutdown of the water feed to the Pond would expose the contaminated bottom deposits and change the hydrological features of the area, destabilizing the radiological and environmental situation in the entire region in 2007 - 2008, in order to assess potential consequences of draining the ChNPP Cooling Pond, the authors conducted preliminary radio-ecological studies of its shoreline ecosystems. The radioactive contamination of the ChNPP Cooling Pond shoreline is fairly variable and ranges from 75 to 7,500 kBq/m2. Three areas with different contamination levels were selected to sample soils, vegetation, small mammals, birds, amphibians, and reptilians in order to measure their 137Cs and 90Sr content. Using the ERICA software, their dose exposures were estimated. For the 2008 conditions, the estimated dose rates were found to be as follows: amphibians - 11

  8. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Financial assurance and recordkeeping for decommissioning. 40.36 Section 40.36 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL... licenses authorizing the receipt, possession, and use of source material for uranium or thorium milling, or...

  9. 10 CFR 50.75 - Reporting and recordkeeping for decommissioning planning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reporting and recordkeeping for decommissioning planning. 50.75 Section 50.75 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND..., Office of Nuclear Material Safety and Safeguards, as applicable, at least 30 working days before the date...

  10. Decontamination, decommissioning, and vendor advertorial issue, 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

  11. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Decommissioning Activities... (obstruction) to navigation and commercial fishing operations, unduly interfere with other uses of the OCS, or...

  12. Decontamination & decommissioning focus area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In Februarymore » 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.« less

  13. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  14. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  15. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  16. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  17. 10 CFR 72.30 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CLASS C WASTE License Application, Form, and Contents § 72.30 Financial assurance and recordkeeping for... review and approval a decommissioning funding plan that must contain: (1) Information on how reasonable... previous cost estimate. (d) If, in surveys made under 10 CFR 20.1501(a), residual radioactivity in soils or...

  18. 10 CFR 72.30 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CLASS C WASTE License Application, Form, and Contents § 72.30 Financial assurance and recordkeeping for... review and approval a decommissioning funding plan that must contain: (1) Information on how reasonable... previous cost estimate. (d) If, in surveys made under 10 CFR 20.1501(a), residual radioactivity in soils or...

  19. Prevention Needs of HIV-Positive Men and Women Awaiting Release from Prison

    PubMed Central

    Thibodeau, Laura; BlueSpruce, June; Yard, Samantha S.; Seal, David W.; Amico, K. Rivet; Bogart, Laura M.; Mahoney, Christine; Balderson, Benjamin H. K.; Sosman, James M.

    2011-01-01

    Greater understanding of barriers to risk reduction among incarcerated HIV+ persons reentering the community is needed to inform culturally tailored interventions. This qualitative study elicited HIV prevention-related information, motivation and behavioral skills (IMB) needs of 30 incarcerated HIV+ men and women awaiting release from state prison. Unmet information needs included risk questions about viral loads, positive sexual partners, and transmission through casual contact. Social motivational barriers to risk reduction included partner perceptions that prison release increases sexual desirability, partners’ negative condom attitudes, and HIV disclosure-related fears of rejection. Personal motivational barriers included depression and strong desires for sex or substance use upon release. Behavioral skills needs included initiating safer behaviors with partners with whom condoms had not been used prior to incarceration, disclosing HIV status, and acquiring clean needles or condoms upon release. Stigma and privacy concerns were prominent prison context barriers to delivering HIV prevention services during incarceration. PMID:21553252

  20. Radiolabeled lipiodol therapy for hepatocellular carcinoma in patients awaiting liver transplantation: pathology of the explant livers and clinical outcome.

    PubMed

    Lambert, Bieke; Praet, Marleen; Vanlangenhove, Peter; Troisi, Roberto; de Hemptinne, Bernard; Gemmel, Filip; Van Vlierberghe, Hans; Van de Wiele, Christophe

    2005-04-01

    Liver transplantation has become an important curative treatment option for hepatocellular carcinoma (HCC). Criteria for transplantation are strict and, therefore, it is crucial that patients awaiting transplantation do not suffer disease progression. One of the therapeutic options to achieve disease stabilization is neoadjuvant radiolabeled lipiodol treatment. This study aimed to document the dropout rate on the waiting list, the pathological findings on the explant livers, and the long-term outcome of patients treated with radionuclide therapy while awaiting transplantation. Patients eligible for transplantation were treated with 2.1 GBq (131)I-lipiodol or 4.1 GBq (188)Re-HDD/lipiodol by transfemoral catheterization of the hepatic arteries. Tumor necrosis was assessed in the explant livers and follow-up data, such as dropout from the waiting list, recurrence, and survival following transplantation were retrospectively documented. In 5 of 22 explants, necrosis exceeded 90%. Two patients died while on the waiting list (10%) and 4 of 20 transplanted patients (20%) suffered recurrent disease. The overall recurrence-free survival was 19.7 months (range, 1.75-56), with a mean follow-up of 20.1 months. Our data support the evaluation on larger patient numbers to confirm the benefit of radiolabeled lipiodol in candidates for liver transplantation who are suffering from HCC.

  1. 10 CFR 50.75 - Reporting and recordkeeping for decommissioning planning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... up to a 2 percent annual real rate of return from the time of future funds' collection through the... annual real rate of return from the time of future funds' collection through the decommissioning period... investment manager for the funds or from giving day-to-day management direction of the funds' investments or...

  2. CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning

    NASA Astrophysics Data System (ADS)

    Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime

    2018-05-01

    , CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with "industrial nuclear" constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR's). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA - Cadarache.

  3. Cost-assessment Analysis of Local Vehicle Scrapping Facility

    NASA Astrophysics Data System (ADS)

    Grabowski, Lukasz; Gliniak, Maciej; Polek, Daria; Gruca, Maria

    2017-12-01

    The purpose of the paper was to analyse the costs of recycling vehicles at local vehicle scrapping facility. The article contains regulations concerning vehicle decommissioning, describes the types of recovery, vehicles recycling networks, analyses the structure of a disassembly station, as well as the financial and institutional system in charge of dealing with the recycling of vehicles in Poland. The authors present the number of scrapped vehicles at local recycling company and the level of achieved recovery and recycling. The research presented in the article shows financial situation of the vehicle scrapping industry. In addition, it has been observed that the number of subsidies are directly proportional to the number of scrapped vehicles, and achieved levels of recycling and recovery depends on the percentage of incomplete vehicles.

  4. Radiation dose optimization in the decommissioning plan for Loviisa NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmberg, R.; Eurajoki, T.

    1995-03-01

    Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated becausemore » of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.« less

  5. Guide of good practices for occupational radiological protection in plutonium facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less

  6. 76 FR 65541 - Assuring the Availability of Funds for Decommissioning Nuclear Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0263] Assuring the Availability of Funds for Decommissioning Nuclear Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision to Regulatory...

  7. An ARM Mobile Facility Designed for Marine Deployments

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2007-05-01

    The U.S. Dept. of Energy's ARM (Atmospheric Radiation Measurements) Program is designing a Mobile Facility exclusively for marine deployments. This marine facility is patterned after ARM's land Mobile Facility, which had its inaugural deployment at Point Reyes, California, in 2005, followed by deployments to Niger in 2006 and Germany in 2007 (ongoing), and a planned deployment to China in 2008. These facilities are primarily intended for the study of clouds, radiation, aerosols, and surface processes with a goal to include these processes accurately in climate models. They are preferably embedded within larger field campaigns which provide context. They carry extensive instrumentation (in several large containers) including: cloud radar, lidar, microwave radiometers, infrared spectrometers, broadband and narrowband radiometers, sonde-launching facilities, extensive surface aerosol measurements, sky imagers, and surface latent and sensible heat flux devices. ARM's Mobile Facilities are designed for 6-10 month deployments in order to capture climatically-relevant datasets. They are available to any scientist, U.S. or international, who wishes to submit a proposal during the annual Spring call. The marine facility will be adapted to, and ruggedized for, the harsh marine environment and will add a scanning two-frequency radar, a boundary-layer wind profiler, a shortwave spectrometer, and aerosol instrumentation adapted to typical marine aerosols like sea salt. Plans also include the use of roving small UAVs, automated small boats, and undersea autonomous vehicles in order to address the point-to-area-average problem which is so crucial for informing climate models. Initial deployments are planned for small islands in climatically- interesting cloud regimes, followed by deployments on oceanic platforms (like decommissioned oil rigs and the quasi-permanent platform of this session's title) and eventually on large ships like car carriers plying routine routes.

  8. "The support I need": women's experiences of social support after having received breast cancer diagnosis and awaiting surgery.

    PubMed

    Drageset, Sigrunn; Lindstrøm, Torill C; Giske, Tove; Underlid, Kjell

    2012-01-01

    Social support is associated with a better adjustment to breast cancer, whereas inadequate social support increases psychological distress. However, the period between diagnosis and surgery is particularly stressful, and few studies have addressed the significance of social support in this period. The purpose of this study was to describe women's individual experiences of social support after having received a breast cancer diagnosis and awaiting surgery. A qualitative descriptive design was used. Individual semistructured interviews were conducted the day before surgery with 21 women aged 41 to 73 years with newly diagnosed breast cancer at a Norwegian university hospital. Methods of qualitative meaning condensation analysis revealed 5 themes: available support, information and advice, care, having confidants, and balancing distance and closeness. Knowing that both family and healthcare professionals were available and caring gave a sense of security. Social support gave strength, although too much could be experienced as difficult and frightening. The women needed a balance between distance from and closeness to their social network. Both professional information and someone professional with whom to talk personally were essential. Social support is an important resource for women with breast cancer but can be a double-edged sword as the network's offered support can sometimes be a burden. Healthcare professionals could call each patient, encourage the patients to call if they want, and, if preferred, offer face-to-face consultations for women with breast cancer awaiting surgery. This contact should be a supportive, informative, and confidential available resource.

  9. 30 CFR 250.1703 - What are the general requirements for decommissioning?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the general requirements for decommissioning? 250.1703 Section 250.1703 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND..., marine, or coastal environment. [67 FR 35406, May 17, 2002, as amended at 74 FR 19807, Apr. 29, 2009] ...

  10. Societal constraints related to environmental remediation and decommissioning programmes.

    PubMed

    Perko, Tanja; Monken-Fernandes, Horst; Martell, Meritxell; Zeleznik, Nadja; O'Sullivan, Patrick

    2017-06-20

    The decisions related to decommissioning or environmental remediation projects (D/ER) cannot be isolated from the socio-political and cultural environment. Experiences of the IAEA Member States point out the importance of giving due attention to the societal aspects in project planning and implementation. The purpose of this paper is threefold: i) to systematically review societal constraints that some organisations in different IAEA Member States encounter when implementing D/ER programmes, ii) to identify different approaches to overcome these constraints and iii) to collect examples of existing practices related to the integration of societal aspects in D/ER programmes worldwide. The research was conducted in the context of the IAEA project Constraints to Decommissioning and Environmental Remediation (CIDER). The research results show that societal constraints arise mostly as a result of the different perceptions, attitudes, opinions and concerns of stakeholders towards the risks and benefits of D/ER programmes and due to the lack of stakeholder involvement in planning. There are different approaches to address these constraints, however all approaches have common points: early involvement, respect for different views, mutual understanding and learning. These results are relevant for all on-going and planned D/ER programmes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Potential for recycling of slightly radioactive metals arising from decommissioning within nuclear sector in Slovakia.

    PubMed

    Hrncir, Tomas; Strazovec, Roman; Zachar, Matej

    2017-09-07

    The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  13. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    PubMed

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.

  14. Sex Differences in Mortality Based on United Network for Organ Sharing Status While Awaiting Heart Transplantation.

    PubMed

    Hsich, Eileen M; Blackstone, Eugene H; Thuita, Lucy; McNamara, Dennis M; Rogers, Joseph G; Ishwaran, Hemant; Schold, Jesse D

    2017-06-01

    There are sex differences in mortality while awaiting heart transplantation, and the reason remains unclear. We included all adults in the Scientific Registry of Transplant Recipients placed on the heart transplant active waitlist from 2004 to 2015. The primary end point was all-cause mortality. Multivariable Cox proportional hazards models were performed to evaluate survival by United Network for Organ Sharing (UNOS) status at the time of listing. Random survival forest was used to identify sex interactions for the competing risk of death and transplantation. There were 33 069 patients (25% women) awaiting heart transplantation. This cohort included 7681 UNOS status 1A (26% women), 13 027 UNOS status 1B (25% women), and 12 361 UNOS status 2 (26% women). During a median follow-up of 4.3 months, 1351 women and 4052 men died. After adjusting for >20 risk factors, female sex was associated with a significant risk of death among UNOS status 1A (adjusted hazard ratio, 1.14; 95% confidence interval, 1.01-1.29) and UNOS status 1B (adjusted hazard ratio, 1.17; 95% confidence interval, 1.05-1.30). In contrast, female sex was significantly protective for time to death among UNOS status 2 (adjusted hazard ratio, 0.85; 95% confidence interval, 0.76-0.95). Sex differences in probability of transplantation were present for every UNOS status, and >20 sex interactions were identified for mortality and transplantation. When stratified by initial UNOS status, women had a higher mortality than men as UNOS status 1 and a lower mortality as UNOS status 2. With >20 sex interactions for mortality and transplantation, further evaluation is warranted to form a more equitable allocation system. © 2017 American Heart Association, Inc.

  15. Chest computed tomography scores are predictive of survival in patients with cystic fibrosis awaiting lung transplantation.

    PubMed

    Loeve, Martine; Hop, Wim C J; de Bruijne, Marleen; van Hal, Peter T W; Robinson, Phil; Aitken, Moira L; Dodd, Jonathan D; Tiddens, Harm A W M

    2012-05-15

    Up to one-third of patients with cystic fibrosis (CF) awaiting lung transplantation (LTX) die while waiting. Inclusion of computed tomography (CT) scores may improve survival prediction models such as the lung allocation score (LAS). This study investigated the association between CT and survival in patients with CF screened for LTX. Clinical data and chest CTs of 411 patients with CF screened for LTX between 1990 and 2005 were collected from 17 centers. CTs were scored with the Severe Advanced Lung Disease (SALD) four-category scoring system, including the components infection/inflammation (INF), air trapping/hypoperfusion (AT), normal/hyperperfusion (NOR), and bulla/cysts (BUL). The volume of each component was computed using semiautomated software. Survival analysis included Kaplan-Meier curves and Cox regression models. Three hundred and sixty-six (186 males) of 411 patients entered the waiting list (median age, 23 yr; range, 5-58 yr). Subsequently, 67 of 366 (18%) died while waiting, 263 of 366 (72%) underwent LTX, and 36 of 366 (10%) were awaiting LTX at the census date. INF and LAS were significantly associated with waiting list mortality in univariate analyses. The multivariate Cox model including INF and LAS grouped in tertiles, and comparing tertiles 2 and 3 with tertile 1, showed waiting list mortality hazard ratios of 1.62 (95% confidence interval [95% CI], 0.78-3.36; P = 0.19) and 2.65 (95% CI, 1.35-5.20; P = 0.005) for INF, and 1.42 (95% CI, 0.63-3.24; P = 0.40), and 2.32 (95% CI, 1.17-4.60; P = 0.016) for LAS, respectively. These results indicated that INF and LAS had significant, independent predictive value for survival. CT score INF correlates with survival, and adds to the predictive value of LAS.

  16. An analytical approach to γ-ray self-shielding effects for radioactive bodies encountered nuclear decommissioning scenarios.

    PubMed

    Gamage, K A A; Joyce, M J

    2011-10-01

    A novel analytical approach is described that accounts for self-shielding of γ radiation in decommissioning scenarios. The approach is developed with plutonium-239, cobalt-60 and caesium-137 as examples; stainless steel and concrete have been chosen as the media for cobalt-60 and caesium-137, respectively. The analytical methods have been compared MCNPX 2.6.0 simulations. A simple, linear correction factor relates the analytical results and the simulated estimates. This has the potential to greatly simplify the estimation of self-shielding effects in decommissioning activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Evaluation of Dam Decommissioning in an Ice-Affected River: Case Study

    DTIC Science & Technology

    2007-09-01

    Abdul-Mohsen 2005 and Kuby et al. 2005). Conyngham et al. (2006) provide an overview of the ecological and engi- neering aspects of dam decommissioning...2007) CRREL Ice Jam Database (http://www.crrel.usace.army.mil/ierd/ijdb/), accessed March 2007. Kuby , M.J., W.F. Fagan, C.S. ReVelle, W.L. Graf (2005

  18. 30 CFR 285.908 - What must I include in my decommissioning notice?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I include in my decommissioning notice? 285.908 Section 285.908 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... the impacts previously identified and evaluated; (2) Require any additional Federal permits; or (3...

  19. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...

  20. 10 CFR Appendix D to Subpart D of... - Classes of Actions That Normally Require EISs

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... average megawatts or more over a 12 month period. This applies to power marketing operations and to siting... Systems D2. Siting/construction/operation/decommissioning of nuclear fuel reprocessing facilities D3. Siting/construction/operation/decommissioning of uranium enrichment facilities D4. Siting/construction...

  1. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattlin, E.; Charboneau, S.; Johnston, G.

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4,more » D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all

  2. Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  3. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less

  4. Web-based training related to NRC staff review of dose modeling aspects of license termination and decommissioning plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LePoire, D.; Arnish, J.; Cheng, J.J.

    NRC licensees at decommissioning nuclear facilities submit License Termination Plans (LTP) or Decommissioning Plans (DP) to NRC for review and approval. To facilitate a uniform and consistent review of these plans, the NRC developed training for its staff. A live classroom course was first developed in 2005, which targeted specific aspects of the LTP and DP review process related to dose-based compliance demonstrations or modeling. A web-based training (WBT) course is being developed in 2006 to replace the classroom-based course. The advantage of the WBT is that it will allow for staff training or refreshers at any time, while themore » advantage of a classroom-based course is that it provides a forum for lively discussion and the sharing of experience of classroom participants. The training course consists of the core and advanced modules tailored to specific NRC job functions. Topics for individual modules include identifying the characteristics of simple and complex sites, identifying when outside expertise or consultation is needed, demonstrating how to conduct acceptance and technical reviews of dose modeling, and providing details regarding the level of justification needed for realistic scenarios for both dose modeling and derivation of DCGLs. Various methods of applying probabilistic uncertainty analysis to demonstrate compliance with dose-based requirements are presented. These approaches include 1) modeling the pathways of radiological exposure and estimating doses to receptors from a combination of contaminated media and radionuclides, and 2) using probabilistic analysis to determine an appropriate set of input parameters to develop derived concentration guideline limits or DCGLs (DCGLs are media- and nuclide-specific concentration limits that will meet dose-based, license termination rule criteria found in 10 CFR Part 20, Subpart E). Calculation of operational (field) DCGL's from media- and nuclide-specific DCGLs and use of operational DCGLs in

  5. Sharing lessons learned and best practices in deactivation and decommissioning techniques among U.S. Department of Energy contractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackey, Michael B.; Waisley, Sandra L.; Dusek, Lansing G.

    2007-07-01

    Approximately $153.2 billion of work currently remains in the United States Department of Energy's (DOE's) Office of Environmental Management (EM) life cycle budget for United States projects. Contractors who manage facilities for the DOE have been challenged to identify transformational changes to reduce the life cycle costs and develop a knowledge management system that identifies, disseminates, and tracks the implementation of lessons learned and best practices. At the request of the DOE's EM Office of Engineering and Technology, the Energy Facility Contractors Group (EFCOG) responded to the challenge with formation of the Deactivation and Decommissioning (D and D) and Facilitymore » Engineering (DD/FE) Working Group. Since October 2006, members have already made significant progress in realizing their goals: adding new D and D best practices to the existing EFCOG Best Practices database; participating in lessons learned forums; and contributing to a DOE initiative on identifying technology needs. The group is also participating in a DOE project management initiative to develop implementation guidelines, as well as a DOE radiation protection initiative to institute a more predictable and standardized approach to approving authorized limits and independently verifying cleanup completion at EM sites. Finally, a D and D hotline to provide real-time solutions to D and D challenges is also being launched. (authors)« less

  6. Decommissioning and PIE of the MEGAPIE spallation target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latge, C.; Henry, J.; Wohlmuther, M.

    2013-07-01

    A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly.more » The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by γ-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from γ-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and α-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.« less

  7. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-10-01

    The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less

  8. Risk of death among those awaiting treatment for HIV infection in Zimbabwe: adolescents are at particular risk

    PubMed Central

    Shroufi, Amir; Ndebele, Wedu; Nyathi, Mary; Gunguwo, Hilary; Dixon, Mark; Saint-Sauveur, Jean F; Taziwa, Fabian; Viñoles, Mari C; Ferrand, Rashida A

    2015-01-01

    Introduction Mortality among HIV-positive adults awaiting antiretroviral therapy (ART) has previously been found to be high. Here, we compare adolescent pre-ART mortality to that of adults in a public sector HIV care programme in Bulawayo, Zimbabwe. Methods In this retrospective cohort study, we compared adolescent pre-ART outcomes with those of adults enrolled for HIV care in the same clinic. Adolescents were defined as those aged 10–19 at the time of registration. Comparisons of means and proportions were carried out using two-tailed sample t-tests and chi-square tests respectively, for normally distributed data, and the Mann–Whitney U-tests for non-normally distributed data. Loss to follow-up (LTFU) was defined as missing a scheduled appointment by three or more months. Results Between 2004 and 2010, 1382 of 1628 adolescents and 7557 of 11,106 adults who registered for HIV care met the eligibility criteria for ART. Adolescents registered at a more advanced disease stage than did adults (83% vs. 73% WHO stage III/IV, respectively, p<0.001), and the median time to ART initiation was longer for adolescents than for adults [21 (10–55) days vs. 15 (7–42) days, p<0.001]. Among the 138 adolescents and 942 adults who never commenced ART, 39 (28%) of adolescents and 135 (14%) of adults died, the remainder being LTFU. Mortality among treatment-eligible adolescents awaiting ART was significantly higher than among adults (3% vs. 1.8%, respectively, p=0.004). Conclusions Adolescents present to ART services at a later clinical stage than adults and are at an increased risk of death prior to commencing ART. Improved and innovative HIV case-finding approaches and emphasis on prompt ART initiation in adolescents are urgently needed. Following registration, defaulter tracing should be used, whether or not ART has been commenced. PMID:25712590

  9. 30 CFR 250.255 - What decommissioning information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What decommissioning information must accompany the DPP or DOCD? 250.255 Section 250.255 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... Information Contents of Development and Production Plans (dpp) and Development Operations Coordination...

  10. Final report on Weeks Island Monitoring Phase : 1999 through 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehgartner, Brian L.; Munson, Darrell Eugene

    2005-05-01

    This Final Report on the Monitoring Phase of the former Weeks Island Strategic Petroleum Reserve crude oil storage facility details the results of five years of monitoring of various surface accessible quantities at the decommissioned facility. The Weeks Island mine was authorized by the State of Louisiana as a Strategic Petroleum Reserve oil storage facility from 1979 until decommissioning of the facility in 1999. Discovery of a sinkhole over the facility in 1992 with freshwater inflow to the facility threatened the integrity of the oil storage and led to the decision to remove the oil, fill the chambers with brine,more » and decommission the facility. Thereafter, a monitoring phase, by agreement between the Department of Energy and the State, addressed facility stability and environmental concerns. Monitoring of the surface ground water and the brine of the underground chambers from the East Fill Hole produced no evidence of hydrocarbon contamination, which suggests that any unrecovered oil remaining in the underground chambers has been contained. Ever diminishing progression of the initial major sinkhole, and a subsequent minor sinkhole, with time was verification of the response of sinkholes to filling of the facility with brine. Brine filling of the facility ostensively eliminates any further growth or new formation from freshwater inflow. Continued monitoring of sinkhole response, together with continued surface surveillance for environmental problems, confirmed the intended results of brine pressurization. Surface subsidence measurements over the mine continued throughout the monitoring phase. And finally, the outward flow of brine was monitored as a measure of the creep closure of the mine chambers. Results of each of these monitoring activities are presented, with their correlation toward assuring the stability and environmental security of the decommissioned facility. The results suggest that the decommissioning was successful and no contamination of

  11. Decontamination, decommissioning, and vendor advertorial issue, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the bestmore » TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.« less

  12. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Lydia Ilaiza, E-mail: lydiailaiza@gmail.com; Ryong, Kim Tae

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of thismore » paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.« less

  13. Measurement Properties of Performance-Specific Pain Ratings of Patients Awaiting Total Joint Arthroplasty as a Consequence of Osteoarthritis

    PubMed Central

    Stratford, Paul W.; Kennedy, Deborah M.; Woodhouse, Linda J.; Spadoni, Gregory

    2008-01-01

    Purpose: To estimate the test–retest reliability of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain sub-scale and performance-specific assessments of pain, as well as the association between these measures for patients awaiting primary total hip or knee arthroplasty as a consequence of osteoarthritis. Methods: A total of 164 patients awaiting unilateral primary hip or knee arthroplasty completed four performance measures (self-paced walk, timed up and go, stair test, six-minute walk) and the WOMAC. Scores for 22 of these patients provided test–retest reliability data. Estimates of test–retest reliability (Type 2,1 intraclass correlation coefficient [ICC] and standard error of measurement [SEM]) and the association between measures were examined. Results: ICC values for individual performance-specific pain ratings were between 0.70 and 0.86; SEM values were between 0.97 and 1.33 pain points. ICC estimates for the four-item performance pain ratings and the WOMAC pain sub-scale were 0.82 and 0.57 respectively. The correlation between the sum of the pain scores for the four performance measures and the WOMAC pain sub-scale was 0.62. Conclusion: Reliability estimates for the performance-specific assessments of pain using the numeric pain rating scale were consistent with values reported for patients with a spectrum of musculoskeletal conditions. The reliability estimate for the WOMAC pain sub-scale was lower than typically reported in the literature. The level of association between the WOMAC pain sub-scale and the various performance-specific pain scales suggests that the scores can be used interchangeably when applied to groups but not for individual patients. PMID:20145758

  14. 30 CFR 250.255 - What decommissioning information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What decommissioning information must accompany the DPP or DOCD? 250.255 Section 250.255 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans (dpp) and...

  15. How Does Decommissioning Forest Roads Effect Hydrologic and Geomorphic Risk?

    NASA Astrophysics Data System (ADS)

    Black, T.; Luce, C.; Cissel, R. M.; Nelson, N.; Staab, B.

    2010-12-01

    The US Forest Service is investigating road decommissioning projects to understand how treatments change hydrologic and geomorphic risks. Road treatment effect was measured using a before after control impact design (BACI), using the Geomorphic Road Analysis and Inventory Package (http://www.fs.fed.us/GRAIP). This suite of inventory and analysis tools evaluates: road-stream hydrologic connectivity, fine sediment production and delivery, shallow landslide risk, gully initiation risk, and risks associated with stream crossing failures. The Skokomish River study site is steep and wet and received a high intensity treatment including the removal of stream crossing pipes and fills, all ditch relief pipes and a full hillslope recontouring. Road to stream hydrologic connectivity was reduced by 70%. The treatments reduced fine sediment delivery by 21.8 tons or 81%. The removal of the stream crossing culverts and large associated road fills eliminated the risk of pipe plugging related failures and the eventual erosion of over 4,000 m3 of fill. The slope stability risk was assessed using a modified version of SINMAP (Pack et al, 2005). Risk below drain point locations on the original road was reduced as water was redistributed across the hillslope to waterbars and diffuse drainage. It is unclear; however, if landslide risk was reduced across the entire treated road length because treatments slightly increased risk in some areas where new concentrated drainage features were added above steep slopes. Similarly, values of a gully index ESI (Istanbulluoglu et al, 2003), were reduced at many of the original drainage points, however some new drainage was added. ESI values still exceed a predicted conservative initiation thresholds at some sites, therefore it is uncertain if gully risk will be changed. Mann Creek occupies a moderately steep mid-elevation site in Southern Idaho. The high intensity treatments removed all constructed road drainage features including stream crossing

  16. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basismore » of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)« less

  17. Mechanical Circulatory Support of the Critically Ill Child Awaiting Heart Transplantation

    PubMed Central

    Gazit, Avihu Z; Gandhi, Sanjiv K; C Canter, Charles

    2010-01-01

    The majority of children awaiting heart transplantation require inotropic support, mechanical ventilation, and/or extracorporeal membrane oxygenation (ECMO) support. Unfortunately, due to the limited pool of organs, many of these children do not survive to transplant. Mechanical circulatory support of the failing heart in pediatrics is a new and rapidly developing field world-wide. It is utilized in children with acute congestive heart failure associated with congenital heart disease, cardiomyopathy, and myocarditis, both as a bridge to transplantation and as a bridge to myocardial recovery. The current arsenal of mechanical assist devices available for children is limited to ECMO, intra-aortic balloon counterpulsation, centrifugal pump ventricular assist devices, the DeBakey ventricular assist device Child; the Thoratec ventricular assist device; and the Berlin Heart. In the spring of 2004, five contracts were awarded by the National Heart, Lung and Blood Institute to support preclinical development for a range of pediatric ventricular assist devices and similar circulatory support systems. The support of early development efforts provided by this program is expected to yield several devices that will be ready for clinical trials within the next few years. Our work reviews the current international experience with mechanical circulatory support in children and summarizes our own experience since 2005 with the Berlin Heart, comparing the indications for use, length of support, and outcome between these modalities. PMID:21286278

  18. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  19. A guideline for interpersonal capabilities enhancement to support sustainable facility management practice

    NASA Astrophysics Data System (ADS)

    Sarpin, Norliana; Kasim, Narimah; Zainal, Rozlin; Noh, Hamidun Mohd

    2018-04-01

    Facility management is the key phase in the development cycle of an assets and spans over a considerable length of time. Therefore, facility managers are in a commanding position to maximise the potential of sustainability through the development phases from construction, operation, maintenance and upgrade leading to decommission and deconstruction. Sustainability endeavours in facility management practices will contribute to reducing energy consumption, waste and running costs. Furthermore, it can also help in improving organisational productivity, financial return and community standing of the organisation. Facility manager should be empowered with the necessary knowledge and capabilities at the forefront facing sustainability challenge. However, literature studies show a gap between the level of awareness, specific knowledge and the necessary skills required to pursue sustainability in the facility management professional. People capability is considered as the key enabler in managing the sustainability agenda as well as being central to the improvement of competency and innovation in an organisation. This paper aims to develop a guidelines for interpersonal capabilities to support sustainability in facility management practice. Starting with a total of 7 critical interpersonal capabilities factors identified from previous questionnaire survey, the authors conducted an interview with 3 experts in facility management to assess the perceived importance of these factors. The findings reveal a set of guidelines for the enhancement of interpersonal capabilities among facility managers by providing what can be done to acquire these factors and how it can support the application of sustainability in their practice. The findings of this paper are expected to form the basis of a mechanism framework developed to equip facility managers with the right knowledge, to continue education and training and to develop new mind-sets to enhance the implementation of sustainability

  20. 26 CFR 1.468A-1T - Nuclear decommissioning costs; general rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... an elective method for taking into account nuclear decommissioning costs for Federal income tax... accrual method of accounting that do not elect the application of section 468A are not allowed a deduction... nuclear power plant means any nuclear power reactor that is used predominantly in the trade or business of...

  1. Radionuclide metrology research for nuclear site decommissioning

    NASA Astrophysics Data System (ADS)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  2. Laser shocking of materials: Toward the national ignition facility

    DOE PAGES

    Meyers, M. A.; Remington, B. A.; Maddox, B.; ...

    2010-01-16

    In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. In this paper, this technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 10 7–10 8 s -1 and resolving details of themore » kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Finally, other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.« less

  3. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  4. Erosion at decommissioned road-stream crossings: case studies from three northern California watersheds

    Treesearch

    Sam A. Flanagan; David Fuller; Leonard Job; Sam Morrison

    2012-01-01

    Post-treatment erosion was observed for 41 decommissioned road stream crossings in three northern California watersheds. Sites were purposefully selected in order to characterize the nature and range of post-treatment erosional responses. Sites with the highest visible erosion were selected in order to better understand the dominant process and incorporate any...

  5. Hydrazine Blending and Storage Facility, Wastewater Treatment and Decommissioning Assessment. Technical Plan, Version 3.2

    DTIC Science & Technology

    1988-04-01

    o CHEMICAL TREATMENT - CHLORINE (VARIOUS FORMS) AND CHLORINE/ULTRAVIOLET LIGHT (UV) - OZONE AND OZONE/UV - PERMANGANATE - HYDROGEN PEROXIDE AND...and placed in drums, rail cars or trucks (Hazard 3 Abatement Plan, 1982). The existing hydrazine blending facility area is a limited access site which...Area 40’-0" x 26’-0" Volume 44,000 gallons Function Receive wastewater and stormwater runoff m Construction Material Concrete 7. Building 759 Size 40’-0

  6. Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

    NASA Astrophysics Data System (ADS)

    Schlömer, Luc; Phlippen, Peter-W.; Lukas, Bernard

    2017-09-01

    The decommissioning of a light water reactor (LWR), which is licensed under § 7 of the German Atomic Energy Act, following the post-operational phase requires a comprehensive licensing procedure including in particular radiation protection aspects and possible impacts to the environment. Decommissioning includes essential changes in requirements for the systems and components and will mainly lead to the direct dismantling. In this context, neutron induced activation calculations for the structural components have to be carried out to predict activities in structures and to estimate future costs for conditioning and packaging. To avoid an overestimation of the radioactive inventory and to calculate the expenses for decommissioning as accurate as possible, modern state-of-the-art Monte-Carlo-Techniques (MCNP™) are applied and coupled with present-day activation and decay codes (ORIGEN-S). In this context ADVANTG is used as weight window generator for MCNP™ i. e. as variance reduction tool to speed up the calculation in deep penetration problems. In this paper the calculation procedure is described and the obtained results are presented with a validation along with measured activities and photon dose rates measured in the post-operational phase. The validation shows that the applied calculation procedure is suitable for the determination of the radioactive inventory of a nuclear power plant. Even the measured gamma dose rates in the post-operational phase at different positions in the reactor building agree within a factor of 2 to 3 with the calculation results. The obtained results are accurate and suitable to support effectively the decommissioning planning process.

  7. Decision Support for Road Decommissioning and Restoration by Using Genetic Algorithms and Dynamic Programming

    Treesearch

    Elizabeth A. Eschenbach; Rebecca Teasley; Carlos Diaz; Mary Ann Madej

    2007-01-01

    Sediment contributions from unpaved forest roads have contributed to the degradation of anadromous fisheries streams in the Pacific Northwest.Efforts to reduce this degradation have included road decommissioning and road upgrading. These expensive activities have usually been implemented on a site specific basis without considering the sediment...

  8. 78 FR 19540 - Dominion Energy Kewaunee, Inc., Kewaunee Power Station Post-Shutdown Decommissioning Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... (KPS) Post-Shutdown Decommissioning Activities Report (PSDAR), Revision 0, on Wednesday, April 24, 2013... Management System (ADAMS) Accession No. ML13058A065. In a prior communication on November 2, 2012 (ADAMS... at KPS pending completion of a grid stability review by the Midwest Independent Transmission System...

  9. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biurrun, E.; Haverkamp, B.; Lazaro, A.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessmentmore » Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)« less

  10. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-05154; NRC-2010-0056] Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry Laboratories, Inc. Sanitary Lagoon... license amendment to Byproduct Material License No. 24- 13365-01 issued to Analytical Bio-Chemistry...

  11. ALARA and decommissioning: The Fort St. Vrain experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borst, T.; Niehoff, M.; Zachary, M.

    1995-03-01

    The Fort St. Vrain Nuclear Generating Station, the first and only commercial High Temperature Gas Cooled Reactor to operate in the United States, completed initial fuel loading in late 1973 and initial startup in early 1974. Due to a series of non-nuclear technical problems, Fort St. Vrain never operated consistently, attaining a lifetime capacity factor of slightly less than 15%. In August of 1989, the decision was made to permanently shut down the plant due to control rod drive and steam generator ring header failures. Public Service Company of Colorado elected to proceed with early dismantlement (DECON) as opposed tomore » SAFSTOR on the bases of perceived societal benefits, rad waste, and exposure considerations, regulatory uncertainties associated with SAFSTOR, and cost. The decommissioning of Fort St. Vrain began in August of 1992, and is scheduled to be completed in early 1996. Decommissioning is being conducted by a team consisting of Westinghouse, MK-Ferguson, and Scientific Ecology Group. Public Service Company of Colorado as the licensee provides contract management and oversight of contractor functions. An aggressive program to maintain project radiation exposures As Low As Reasonably Achievable (ALARA) has been established, with the following program elements: temporary and permanent shielding contamination control; mockup training; engineering controls; worker awareness; integrated work package reviews communication; special instrumentation; video camera usage; robotics application; and project committees. To date, worker exposures have been less than project estimates. from the start of the project through Februrary of 1994, total exposure has been 98.666 person-rem, compared to the project estimate of 433 person-rem and goal of 347 person-rem. The presentation will discuss the site characterization efforts, the radiological performance indicator program, and the final site release survey plans.« less

  12. The safety improvement of Romanian radioactive waste facilities as an example for human and environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2013-07-01

    According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompaniedmore » by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)« less

  13. Exploring environmental and economic trade-offs associated with aggregate recycling from decommissioned forest roads

    Treesearch

    Matthew P. Thompson; John Sessions

    2010-01-01

    Forest road decommissioning is a pro-active mechanism for preventing future habitat degradation and for increasing the likelihood of endangered salmonid survival in the western U.S. High implementation costs however preclude many desirable projects from being undertaken, especially on federally owned land. Previous research and real-world applications have demonstrated...

  14. The Psychological Impact of Awaiting Breast Diagnosis: A Preliminary Picture

    Cancer.gov

    Dr. Sweeny is a social psychologist by training, but she applies the theories and methods of social psychology to address patients' experiences with their health and healthcare. Over the years, her work has examined topics ranging from bad news delivery to physician-patient communication to screening decisions. Her current research program focuses on the stressful but understudied experience of awaiting uncertain news, including news about one's health. She developed the uncertainty navigation model as a theoretical framework for understanding the thoughts, feelings, and behaviors that emerge during the wait for health-relevant news. Her work has provided broad and novel insights into this difficult experience, including how waiting experiences unfold over time, the nature of distress during waiting periods, the relative effectiveness of various strategies people can use to cope with uncertainty, and the implications of stressful waiting periods for sleep and health. Dr. Sweeny’s work has been funded by the National Science Foundation and published in top journals, including Annals of Behavioral Medicine, Health Psychology Review, Journal of Personality & Social Psychology, Psychological Bulletin, and Psychological Science. She received the inaugural Early Career Award from the Social Personality Health Network, and in 2016 she was awarded the APA Distinguished Scientific Award for an Early Career Contribution to Health Psychology. In her other life, Dr. Sweeny is a Middle Eastern dance performer and instructor, a yoga enthusiast, and an avid hiker. If you are a person with a disability and require an assistive device, services or other reasonable accommodations to participate in this activity, please contact the Cancer Prevention Fellowship Program at (240) 276-5626 at least one week in advance of the lecture date to discuss your accommodation needs.

  15. 76 FR 23339 - Notice of Issuance of License Amendment Regarding Decommission Plan Approval; University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-113; NRC-2009-0549] Notice of Issuance of License Amendment Regarding Decommission Plan Approval; University of Arizona Research Reactor The U.S. Nuclear... located within the University of Arizona Nuclear Reactor Laboratory (NRL) on the 325-acre campus of the...

  16. [Cytotoxicity of natural anti-HLA antibodies in Moroccan patients awaiting for kidney transplantation].

    PubMed

    Benseffaj, Nadia; Ouadghiri, Sanae; Bourhanbour, Asmaa Drissi; Zerrouki, Asmae Noor; Essakalli, Malika

    2017-02-01

    The presence of anti-HLA antibodies in the serum of a patient result from an immune response produced during an immunizing event as transfusion, pregnancy or graft. These antibodies can be cytotoxic by activating the complement pathway via C1q and may cause organ rejection during the transplant. Some male patients awaiting kidney transplantation are seropositive for anti-HLA antibodies when they have no immunizing antecedent event. These antibodies are qualified as natural antibodies. Our work is to assess the cytotoxicity of natural anti-HLA antibodies in patients followed at the immunology laboratory of the blood transfusion service and hemovigilance (STSH) as part of the kidney transplant. We evaluated the cytotoxicity of HLA antibodies detected in male Moroccan patients without immunization history using C1qScreen One Lambda reagent for Luminex™. Non-immunized men were positive for HLA antibodies screening in 25.4%. These antibodies are not cytotoxic. Our study showed a positivity rate of natural HLA antibody low than the literature (25.4% against 63%). It appears that these natural antibodies are not cytotoxic and their involvement in renal transplant remains to be determined. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  17. The application of decommissioned GEO satellites to CAPS

    NASA Astrophysics Data System (ADS)

    Fu, S. Y.; Wang, Z. R.; Shi, H. L.; Ma, L. H.

    2018-06-01

    To ensure the reliable service of geostationary earth orbiting (GEO) communication satellites during the period of in-orbit, the hardware design life of each system usually has some redundancies in contrast to the limited fuel used to keep the satellite position and attitude. After the brief analysis of the life of the satellite subsystems, the feasibility of turning the decommissioned GEO communication satellites into slightly inclined geosynchronous orbiting (SIGSO) satellites is proved. In addition, the role and the actual usage of SIGSO satellites in Chinese Area Positioning System (CAPS) are analysed and discussed, including the effect on the improvement of Position Dilution of Precision (PDOP) of the navigation constellation and the application to satellite communication system, thus the potential value of satellite material and devices is exploited.

  18. 30 CFR 585.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related...

  19. 30 CFR 585.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related...

  20. 30 CFR 285.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using...

  1. 30 CFR 585.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related...

  2. Randomized trial of an uncertainty self-management telephone intervention for patients awaiting liver transplant.

    PubMed

    Bailey, Donald E; Hendrix, Cristina C; Steinhauser, Karen E; Stechuchak, Karen M; Porter, Laura S; Hudson, Julie; Olsen, Maren K; Muir, Andrew; Lowman, Sarah; DiMartini, Andrea; Salonen, Laurel Williams; Tulsky, James A

    2017-03-01

    We tested an uncertainty self-management telephone intervention (SMI) with patients awaiting liver transplant and their caregivers. Participants were recruited from four transplant centers and completed questionnaires at baseline, 10, and 12 weeks from baseline (generally two and four weeks after intervention delivery, respectively). Dyads were randomized to either SMI (n=56) or liver disease education (LDE; n=59), both of which involved six weekly telephone sessions. SMI participants were taught coping skills and uncertainty management strategies while LDE participants learned about liver function and how to stay healthy. Outcomes included illness uncertainty, uncertainty management, depression, anxiety, self-efficacy, and quality of life. General linear models were used to test for group differences. No differences were found between the SMI and LDE groups for study outcomes. This trial offers insight regarding design for future interventions that may allow greater flexibility in length of delivery beyond our study's 12-week timeframe. Our study was designed for the time constraints of today's clinical practice setting. This trial is a beginning point to address the unmet needs of these patients and their caregivers as they wait for transplants that could save their lives. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Ambulatory extracorporeal membrane oxygenation with subclavian venoarterial cannulation to increase mobility and recovery in a patient awaiting cardiac transplantation

    PubMed Central

    Jacob, Samuel; MacHannaford, Juan C.; Chamogeorgakis, Themistokles; Gonzalez-Stawinski, Gonzalo V.; Felius, Joost; Rafael, Aldo E.; Malyala, Rajasekhar S.

    2017-01-01

    Venoarterial extracorporeal membrane oxygenation (ECMO) can provide temporary cardiopulmonary support for patients in hemodynamic extremis or refractory heart failure until more durable therapies—such as cardiac transplantation or a left ventricular assist device—can be safely implemented. Conventional ECMO cannulation strategies commonly employ the femoral artery and vein, constraining the patients to the supine position for the duration of ECMO support. We have recently adopted a modified cannulation approach to promote patient mobility, rehabilitation, and faster recovery and to mitigate complications associated with femoral arterial cannulation, such as limb ischemia and compartment syndrome. This technique involves cannulation of the subclavian artery and vein. The current case report details our recent experience with this approach in a critically ill patient awaiting cardiac transplantation. PMID:28405091

  4. Red blood cell and leukocyte alloimmunization in patients awaiting kidney transplantation

    PubMed Central

    da Silva, Silvia Fernandes Ribeiro; Ferreira, Gláucia Maria; da Silva, Sonia Leite; Alves, Tânia Maria de Oliveira; Ribeiro, Ilana Farias; Ribeiro, Thyciana Rodrigues; Cavalcante, Maria do Carmo Serpa

    2013-01-01

    Objective To determine the rates of red blood cell and leukocyte alloimmunization in patients with chronic kidney disease awaiting kidney transplantation. Methods In this cross-sectional and prospective study, the serum of 393 chronic kidney disease patients on a transplant waiting list in Ceará, Northeastern Brazil were tested for red cell and leukocyte antibodies. In addition, demographic, clinical and laboratory data were collected. Results The average age in the sample of 393 patients was 34.1 ± 14 years. Slightly more than half (208; 52.9%) were male. The average numbers of transfusions and gestations were 3.1 ± 3.3 and 1.6 ± 6, respectively. One third (33.6%) were alloimmunized: 78% with leukocyte antibodies, 9.1% with red cell antibodies and 12.9% with both. Red cell antibodies were detected in 29 cases (7.4%), 17 of whom were women, who had received more transfusions than the males (p-value < 0.0001). The most frequently detected red cell antibodies belonged to the Rh (24.1%) and Kell (13.8%) blood group systems. Leukocyte antibodies were detected in 30.5% of cases, 83 of whom were women, who had received more transfusions than the males (p-value < 0.0001) and were more reactive to panel reactive antibodies (p-value < 0.0001). The mean alloreactivity to panel reactive antibodies was 47.7 ± 31.2%. Conclusion Chronic kidney disease patients on the transplant waiting list in Ceará, Brazil, display high rates of red cell (7.4%) and leukocyte (30.5%) alloimmunization. In this sample, alloimmunization was significantly associated with the number of transfusions and gender. PMID:23904808

  5. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  6. Commercial Decommissioning at DOE's Rocky Flats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freiboth, C.; Sandlin, N.; Schubert, A.

    2002-02-25

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rockymore » Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.« less

  7. 30 CFR 285.911 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false [Reserved] 285.911 Section 285.911 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Decommissioning Facility Removal § 285.911 [Reserved] Decommissioning Report ...

  8. Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers

    NASA Astrophysics Data System (ADS)

    Roy, N.; Molson, J.; Lemieux, J.-M.; Van Stempvoort, D.; Nowamooz, A.

    2016-07-01

    Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2-20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10-5 to 1 × 10-3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.

  9. Decommissioning of eight surplus production reactors at the Hanford Site, Richland, Washington. Addendum (Final Environmental Impact Statement)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which containsmore » additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.« less

  10. Effects of preoperative physiotherapy in hip osteoarthritis patients awaiting total hip replacement

    PubMed Central

    Czyżewska, Anna; Walesiak, Katarzyna; Krawczak, Karolina; Cabaj, Dominika; Górecki, Andrzej

    2014-01-01

    Introduction The World Health Organization (WHO) claimed osteoarthritis as a civilization-related disease. The effectiveness of preoperative physiotherapy among patients suffering hip osteoarthritis (OA) at the end of their conservative treatment is rarely described in the literature. The aim of this study was to assess the quality of life and musculoskeletal health status of patients who received preoperative physiotherapy before total hip replacement (THR) surgery within a year prior to admission for a scheduled THR and those who did not. Material and methods Forty-five patients, admitted to the Department of Orthopaedics and Traumatology of Locomotor System for elective total hip replacement surgery, were recruited for this study. The assessment consisted of a detailed interview using various questionnaires: the Harris Hip Score (HHS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the 36-Item Short Form Health Survey (SF-36), and the Hip disability and Osteoarthritis Outcome Score (HOOS), as well as physical examination. Patients were assigned to groups based on their attendance of preoperative physiotherapy within a year prior to surgery. Results Among patients who received preoperative physiotherapy a significant improvement was found for pain, daily functioning, vitality, psychological health, social life, and (active and passive) internal rotation (p < 0.05). Conclusions Patients are not routinely referred to physiotherapy within a year before total hip replacement surgery. This study confirmed that pre-operative physiotherapy may have a positive influence on selected musculoskeletal system status indicators and quality of life in hip osteoarthritis patients awaiting surgery. PMID:25395951

  11. 30 CFR 250.1006 - How must I decommission and take out of service a DOI pipeline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a DOI pipeline? 250.1006 Section 250.1006 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... out of service a DOI pipeline? (a) The requirements for decommissioning pipelines are listed in § 250.1750 through § 250.1754. (b) The table in this section lists the requirements if you take a DOI...

  12. CCA retention and its effects on the bonding performance of decommissioned treated wood: a preliminary study

    Treesearch

    Cheng Piao; Todd F. Shupe; Mark Gibson; Chung Y. Hse

    2009-01-01

    Chromated copper arsenate (CCA) continues to be widely used as a wood preservative for industrial uses in the U.S. Disposal of treated wood is a potential long-term environmental liability. Current practices for disposing of decommissioned preservative-treated wood include landfilling and incineration, which are increasingly impractical due to environmental...

  13. Concordance and interchangeability of biometric measurements of ocular axial length in patients awaiting cataract surgery.

    PubMed

    Martín-Serrano, María José; Roman-Ortiz, Carmen; Villa-Sáez, M Luz; Labrador-Castellanos, M Purificación; Blanco-Carrasco, Rosario; Lozano-Ballesteros, Felicidad; Pedraza-Martín, Carmen; José-Herrero, M Teresa San; López-Ropero, Ana M; Tenías Burillo, José María

    2014-01-01

    To estimate in patients awaiting cataract surgery the concordance and interchangeability of axial eye length measurements performed with the aid of various biometric methods (optical or ultrasonic) by different operators (nurses) at different times during the period prior to surgery. We selected 182 consecutive eyes from 91 patients.Ocular axial length was measured with the aid of 2 methods (IOLMaster® and Ocuscan®) by 9 randomly allocated technicians at 2 different times during the waiting period. The concordance between measurements was evaluated by means of the intraclass correlation coefficient (ICC); the interchangeability of the results was assessed with Bland Altman plots and Passing and Bablok regression. The measurements were consistent between biometric methods (ICC 0.975, 95% confidence interval [CI] 0.968 to 0.980) and measurement dates (ICC 0.996, 95% CI 0.995 to 0.997). Interobserver agreement was more heterogeneous (ICC range 0.844 to 0.998). No systematic errors were observed among the various biometric methods and measurement dates. Because measurement of axial length in phakic patients may be technician-dependent, the technician's experience should be noted in the protocols of ophthalmology services.

  14. Is it feasible to conduct a randomised controlled trial of pretransplant exercise (prehabilitation) for patients with multiple myeloma awaiting autologous haematopoietic stem cell transplantation? Protocol for the PREeMPT study.

    PubMed

    Keen, Carol; Skilbeck, Julie; Ross, Helen; Smith, Lauren; Collins, Karen; Dixey, Joanne; Walters, Stephen; Greenfield, Diana M; Snowden, John A; Mawson, Susan

    2018-03-09

    While myeloma is an incurable malignancy, developments in disease management have led to increased life expectancy in recent years. Treatment typically involves stem-cell transplantation. Increased survival rates equate to more patients living with the burden of both the disease and its treatment for increasing number of years, rendering myeloma a long-term condition.Evidence exists to demonstrate the benefits of exercise for patients recovering from stem-cell transplantation, and prehabilitation-exercise before treatment-has been shown to be effective in other disease areas. To date there has been no research into prehabilitation in patients with myeloma awaiting transplantation treatment.Our objective is to determine whether it is feasible to conduct a randomised controlled trial into pretransplant exercise for patients with multiple myeloma who are awaiting autologous stem-cell transplantation. This mixed methods study identifies patients with diagnosis of multiple myeloma who have been assigned to the autologous transplantation list and invites them to participate in six weekly sessions of individualised, supervised exercise while awaiting transplantation.Quantitative data to determine feasibility targets include rates of recruitment, adherence and adverse events, and outcome measures including 6 min walking distance test and quality of life.Qualitative interviews are undertaken with a purposive sample of patients to capture their experiences of the study and the intervention. Ethics committee approval has been obtained. Dissemination will be through open-access publications and presentations and will seek to reach multiprofessional bases as well as patients and carer groups, addressing the widespread interest in this area of research. NCT03135925; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Data Validation Package, June 2016 Groundwater Sampling at the Hallam, Nebraska, Decommissioned Reactor Site, August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surovchak, Scott; Miller, Michele

    The 2008 Long-Term Surveillance Plan [LTSP] for the Decommissioned Hallam Nuclear Power Facility, Hallam, Nebraska (http://www.lm.doe.gov/Hallam/Documents.aspx) requires groundwater monitoring once every 2 years. Seventeen monitoring wells at the Hallam site were sampled during this event as specified in the plan. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Water levels were measured at all sampled wells and at two additional wells (6A and 6B) prior to the start of sampling. Additionally, water levels of each sampled well were measured at the beginning of sampling. See Attachment 2, Trip Report, for additional details. Sampling and analysismore » were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Gross alpha and gross beta are the only parameters that were detected at statistically significant concentrations. Time/concentration graphs of the gross alpha and gross beta data are included in Attachment 3, Data Presentation. The gross alpha and gross beta activity concentrations observed are consistent with values previously observed and are attributed to naturally occurring radionuclides (e.g., uranium and uranium decay chain products) in the groundwater.« less

  16. 30 CFR 250.1006 - How must I decommission and take out of service a DOI pipeline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a DOI pipeline? 250.1006 Section 250.1006 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT... and Pipeline Rights-of-Way § 250.1006 How must I decommission and take out of service a DOI pipeline...) The table in this section lists the requirements if you take a DOI pipeline out of service: If you...

  17. Special Analysis: Disposal of ETF Activated Carbon Vessels in Slit Trenches at the E-Area Low-Level Waste Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collard, L.B.

    2003-08-25

    This Special Analysis (SA) addresses two contaminants of concern, H-3 and I-129, in three Effluent Treatment Facility (ETF) Activated Carbon Vessels awaiting disposal as solid waste. The Unreviewed Disposal Question (UDQ) evaluation listed two options for disposal of this waste, disposal as Components-in-Grout (CIG) or disposal in Slit Trenches with sealed openings to restrict release of H-3 form the vessels. Consumption of the CIG inventory limit and consumption of CIG facility volume are shown for the ETF vessels to allow easy comparison with the consumption of Slit Trench inventory limit and consumption of the Slit Trench facility volume . Themore » inventory projections are based on doubling the inventory of the three ETF vessels in the E-Area to account for the unknown inventory of three ETF vessels in the ETF. When the grout ultimately is assumed to degrade hydraulically, the water movement is not impeded as much as the release is accelerated by the presence of the grout. Under these conditions for the CIG trenches relative to the Slit Trenches, the well concentrations are higher, the inventory limit is lower and for a given inventory the inventory limit consumption is higher.« less

  18. Determination of gross alpha and gross beta in soil around repository facility at Bukit Kledang, Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Adziz, Mohd Izwan Abdul; Siong, Khoo Kok

    2018-04-01

    Recently, the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak, Malaysia, has been upgraded to repository facility upon the completion of decontamination and decommissioning (D&D) process. Thorium waste and contaminated material that may contain some minor amounts of thorium hydroxide were disposed in this facility. This study is conducted to determine the concentrations of gross alpha and gross beta radioactivities in soil samples collected around the repository facility. A total of 12 soil samples were collected consisting 10 samples from around the facility and 2 samples from selected residential area near the facility. In addition, the respective dose rates were measured 5 cm and 1 m above the ground by using survey meter with Geiger Muller (GM) detector and Sodium Iodide (NaI) detector. Soil samples were collected using hand auger and then were taken back to the laboratory for further analysis. Samples were cleaned, dried, pulverized and sieved prior to analysis. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Canberra Series 5 XLB - Automatic Low Background Alpha and Beta Counting System. The obtained results show that, the gross alpha and gross beta activity concentration ranged from 1.55 to 5.34 Bq/g with a mean value of 3.47 ± 0.09 Bq/g and 1.64 to 5.78 Bq/g with a mean value of 3.49 ± 0.09 Bq/g, respectively. These results can be used as an additional data to represent terrestrial radioactivity baseline data for Malaysia environment. This estimation will also serve as baseline for detection of any future related activities of contamination especially around the repository facility area.

  19. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  20. 10 CFR 70.38 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... increase potential health and safety impacts to workers or to the public, such as in any of the following... provided by Commission Order. (c) Each specific license continues in effect, beyond the expiration date if... licensee shall maintain in effect all decommissioning financial assurances established by the licensee...

  1. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  2. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  3. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  4. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  5. 10 CFR 72.54 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conduct of decommissioning operations and presents no undue risk from radiation to the public health and... final radiation survey; and (5) An updated detailed cost estimate for the chosen alternative for... accordance with the regulations in this chapter, and will not be inimical to the common defense and security...

  6. 10 CFR 30.36 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 30.36 Section 30.36 Energy NUCLEAR REGULATORY... section if the Commission determines that the alternative schedule is necessary to the effective conduct...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that ismore » essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.« less

  8. 77 FR 23275 - Notice of Availability of the Draft enXco Desert Harvest Solar Farm Project Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...-way (ROW) authorization to construct, operate, maintain, and decommission a solar photovoltaic (PV... grant to construct, operate, and decommission a solar PV facility on public lands in compliance with... CACA49491] Notice of Availability of the Draft enXco Desert Harvest Solar Farm Project Environmental Impact...

  9. 75 FR 36505 - Notice of Public Webinar To Discuss the Applicability of 10 CFR 73.55 Requirements to Part 50...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... (March 27, 2009; 74 FR 13925) and the other stakeholders. The purpose of this Webinar is to discuss the applicability of those security requirements to licensees with facilities in decommissioning or decommissioned... Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; e-mail...

  10. 46 CFR 160.151-43 - Conditions at servicing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... liferaft, can be easily cleaned, and is kept clean and free from oil, grease, and abrasive material; (6) Is... areas or rooms for storage of liferafts awaiting servicing, repair, or delivery; for repair and painting...

  11. 46 CFR 160.151-43 - Conditions at servicing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liferaft, can be easily cleaned, and is kept clean and free from oil, grease, and abrasive material; (6) Is... areas or rooms for storage of liferafts awaiting servicing, repair, or delivery; for repair and painting...

  12. 46 CFR 160.151-43 - Conditions at servicing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liferaft, can be easily cleaned, and is kept clean and free from oil, grease, and abrasive material; (6) Is... areas or rooms for storage of liferafts awaiting servicing, repair, or delivery; for repair and painting...

  13. 46 CFR 160.151-43 - Conditions at servicing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liferaft, can be easily cleaned, and is kept clean and free from oil, grease, and abrasive material; (6) Is... areas or rooms for storage of liferafts awaiting servicing, repair, or delivery; for repair and painting...

  14. 76 FR 29240 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...-283-7681. EIS No. 20110150, Final EIS, DOE, ID, ADOPTION--Areva Eagle Rock Enrichment Facility... Uranium Enrichment Facility, Construction, Operation, and Decommission, License Issuance, Piketon, OH...

  15. 78 FR 17224 - Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... operation of solid waste facilities; permitting and monitoring of wells, septic systems, and decommissioning of home oil tanks; maintenance and monitoring of water resources and associated facilities...

  16. Pediatric surgeons and anesthesiologists expand the dialogue on the neurotoxicity question, rationale for early and delayed surgeries, and practice changes while awaiting definitive evidence.

    PubMed

    Byrne, Mary W; Casale, Pasquale; Garzon, Maria; Hyman, Joshua E; Lin, Albert Y; Lynch, Lisa R; Schleien, Charles L; Stylianos, Steven

    2014-10-01

    The Pediatric Anesthesia NeuroDevelopment Assessment team at Columbia University Medical Center Department of Anesthesiology convened its fourth biennial Symposium to address unresolved issues concerning potential neurotoxic effects of anesthetic agents and sedatives on young children and to assess study findings to date. Dialogue initiated at the third Symposium was continued between anesthesiologists, researchers, and a panel of expert pediatric surgeons representing general surgery and dermatology, orthopedic, and urology specialties. The panel explored the need to balance benefits of early surgery using improved technologies against potential anesthetic risks, practice changes while awaiting definitive answers, and importance of continued interprofessional dialogue.

  17. Evolution of association between renal and liver functions while awaiting heart transplant: An application using a bivariate multiphase nonlinear mixed effects model.

    PubMed

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Barnard, John

    2018-07-01

    In many longitudinal follow-up studies, we observe more than one longitudinal outcome. Impaired renal and liver functions are indicators of poor clinical outcomes for patients who are on mechanical circulatory support and awaiting heart transplant. Hence, monitoring organ functions while waiting for heart transplant is an integral part of patient management. Longitudinal measurements of bilirubin can be used as a marker for liver function and glomerular filtration rate for renal function. We derive an approximation to evolution of association between these two organ functions using a bivariate nonlinear mixed effects model for continuous longitudinal measurements, where the two submodels are linked by a common distribution of time-dependent latent variables and a common distribution of measurement errors.

  18. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the majormore » Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.« less

  19. Calder Hall Cooling Tower Demolition: Landmark Milestone for Decommissioning at Sellafield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, E.J.

    2008-07-01

    September 2007 saw a very visible change to the Sellafield site following the culmination of a major decommissioning project; the demolition of the four Calder Hall cooling towers. A key part of the UK's nuclear industrial heritage, Calder Hall, the world's first commercial nuclear power station, was opened by Her Majesty Queen Elizabeth II in October 1953 and continued to generate electricity until its closure in 2003. Following the decision to decommission the Calder Hall site, explosive demolition was identified as the safest and most cost effective route for the removal of the towers. The technique, involving the placement ofmore » explosive in 60% of the circumference of both shell and legs, is a tried and tested method which had already been used successfully in more than 200 cooling towers in the UK in the last 30 years. The location and composition of the four 88 metre high towers also created additional challenges. Situated only 40 metres away from the UK's only nuclear Fuel Handling Plant, as well as other sensitive structures on the Sellafield site, the project had to address the impact of a number of key areas, including dust, ground vibration and air over pressure, to ensure that the demolition could be carried out safely and without significant impact on other operational areas on the site. At the same time, the towers had to be prepared for demolition in a way that minimised the amounts of radioactive or hazardous waste materials arising. This paper follows the four year journey from the initial decision to demolish the towers right through to the demolition itself as well as the clean up of the site post demolition. It will also consider the massive programme of work necessary not only to carry out the physical work safely but also to gain regulatory confidence and stakeholder support to carry out the project successfully. In summary: The demolition of the four Calder Hall cooling towers was a highly visible symbol of the changes that are

  20. 77 FR 14360 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Global Laser Enrichment LLC Facility, Issuance of License to Construct, Operate, and Decommission a Laser-Based Uranium Enrichment Facility, Wilmington, NC, Review Period Ends: 04/09/2012, Contact: Jennifer A...

  1. Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, D.; Mizen, K.

    The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been usedmore » to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The

  2. Decontamination and decommissioning of the BORAX-V leach pond. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.

    1985-01-01

    This report describes the decontamination and decommissioning (D and D) of the BORAX-V leach pond located at the Idaho National Engineering Laboratory (INEL). The leach pond became radioactively contaminated from the periodic discharge of low-level liquid waste during operation of the Boiling Water Reactor Experiments (BORAX) from 1954 to 1964. This report describes work performed to accomplish the D and D objectives of stabilizing the leach pond and preventing the spread of contamination. D and D of the BORAX-V leach pond consisted to backfilling the pond with clean soil, grading and seeding the area, and erecting a permanent marker tomore » identify very low-level subsurface contamination.« less

  3. A Strategy for Skills to meet the demands of Nuclear Decommissioning and Clean-up in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownridge, M.; Ensor, B.

    The NDA remit as set out within the Energy Act includes - 'to ensure the availability of skills required to deliver the overall decommissioning and nuclear clean-up mission'. The NDA approach to meeting their statutory obligation is by: - finding the best ways of re-training, re-skilling or re-deploying people in a way that encourages a more flexible workforce; - identifying and communicating the skills and workforce requirements to deliver the mission; and - developing the infrastructure and capability initiatives in line with long term needs, for example, a National Skills Academy for Nuclear, Nuclear Institute, National Graduate Scheme, and -more » developing locally specific provision. Firstly, NDA has set the requirement for nuclear sites to write down within the Life Time Plans (LTP), at a high level, their Site Skills Strategies; furthermore, a National Skills Working Group has been established to develop tactical cross sector solutions to support the NDA's Skills Strategy. In support of the short, medium and long term needs to meet demands of the NDA sites and the nuclear decommissioning sector, as well as being aware of the broader nuclear sector, investments have been made in infrastructure and skills programmes such as: - A National Skills Academy for Nuclear - including UK wide representation of the whole nuclear sector; - A Nuclear Institute in partnership with the University of Manchester focussing on world class research and skills in Radiation Sciences and Decommissioning Engineering; - Post Graduate sponsorship for decommissioning related projects; - A National Graduate Scheme partnership with nuclear related employers; - Vocational qualifications and Apprenticeship Schemes - Engaging 14-19 year old students to encourage the take up of Science related subjects; and - A sector wide 'Skills Passport'. In conclusion: The skills challenge has many dimensions but requires addressing due to the clear link to improved business performance and the

  4. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revyakin, V.; Borisov, L.M.

    1996-05-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the helpmore » of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.« less

  5. THE INTEGRATION OF A PROPOSED ZONE CLOSURE APPROACH FOR THE PLUTONIUM FINISHING PLANT (PFP) DECOMMISSIONING & THE PFP ZONE HANFORD SITE WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    2005-02-23

    The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. Thismore » paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.« less

  6. Hg soil pollution around a decommissioned and unrestored Chlor-alkali plant: Jodar, Jaén province, SE Spain. Incidence in other environmental compartments.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Lorenzo, Saturnino; Higueras, Pablo

    2014-05-01

    level for aquatic life. Atmospheric mercury levels registered on the study area were much lower than most restrictive levels for chronic exposure. The area of influence of the facility (in terms of mercury content in air) was restricted to distances between 100 and 200 meters, depending on meteorological conditions. Main conclusions of this research work are the following: i) The Jódar decommissioned chlor-alkali plant is still a mercury source 20 years after its cease of activities without any reclamation measures; ii) The activity of the plant has produced an important dissemination of mercury in the surrounding environment; and iii) The corresponding pollution levels, in particular in soils, may suppose a risk to the main crops of the area (olive trees).

  7. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted inmore » the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.« less

  8. 75 FR 34219 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ....8 $6.3 $7.5 Spent Fuel Storage/Reactor Decommissioning..... -- -- 2.7 0.2 0.2 Test and Research... 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual Fees FY2009 Annual FY 2010... Decommissioning Test and Research Reactors (Non-power 87,600 81,700 Reactors) High Enriched Uranium Fuel Facility...

  9. Racial and Ethnic Differences in Mortality in Children Awaiting Heart Transplant in the United States

    PubMed Central

    Singh, Tajinder P; Gauvreau, Kimberlee; Thiagarajan, Ravi; Blume, Elizabeth D; Piercey, Gary; Almond, Christopher

    2014-01-01

    Racial differences in outcomes are well known in children after heart transplant (HT) but not in children awaiting HT. We assessed racial and ethnic differences in wait-list mortality in children < 18 years old listed for primary HT in the United States during 1999–2006 using multivariable Cox models. Of 3299 listed children, 58% were listed as white, 20% as black, 16% as Hispanic, 3% as Asian and 3% were defined as “Other”. Mortality on the wait-list was 14%, 19%, 21%, 17% and 27% for white, black, Hispanic, Asian and Other children, respectively. Black (hazard ratio [HR] 1.6, 95% confidence interval [CI] 1.3, 1.9), Hispanic (HR 1.5, CI 1.2, 1.9), Asian (HR, 2.0, CI 1.3, 3.3) and Other children (HR 2.3, CI 1.5, 3.4) were all at higher risk of wait-list death compared to white children after controlling for age, listing status, cardiac diagnosis, hemodyamic support, renal function, and blood group, After adjusting additionally for medical insurance and area household income, the risk remained higher for all minorities. We conclude that minority children listed for HT have significantly higher wait-list mortality compared to white children. Socioeconomic variables appear to explain a small fraction of this increased risk. PMID:19845580

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, L.T.; Hickey, M.

    This paper summarizes the progress to date by CH2M HILL and the UKAEA in development of a parametric modelling capability for estimating the costs of large nuclear decommissioning projects in the United Kingdom (UK) and Europe. The ability to successfully apply parametric cost estimating techniques will be a key factor to commercial success in the UK and European multi-billion dollar waste management, decommissioning and environmental restoration markets. The most useful parametric models will be those that incorporate individual components representing major elements of work: reactor decommissioning, fuel cycle facility decommissioning, waste management facility decommissioning and environmental restoration. Models must bemore » sufficiently robust to estimate indirect costs and overheads, permit pricing analysis and adjustment, and accommodate the intricacies of international monetary exchange, currency fluctuations and contingency. The development of a parametric cost estimating capability is also a key component in building a forward estimating strategy. The forward estimating strategy will enable the preparation of accurate and cost-effective out-year estimates, even when work scope is poorly defined or as yet indeterminate. Preparation of cost estimates for work outside the organizations current sites, for which detailed measurement is not possible and historical cost data does not exist, will also be facilitated. (authors)« less

  11. Long-lived radionuclides in residues from operation and decommissioning of nuclear power plants

    NASA Astrophysics Data System (ADS)

    López-Gutiérrez, J. M.; Gómez-Guzmán, J. M.; Chamizo, E.; Peruchena, J. I.; García-León, M.

    2013-01-01

    Radioactive residues, in order to be classified as Low-Level Waste (LLW), need to fulfil certain conditions; the limitation of the maximum activity from long-lived radionuclides is one of these requirements. In order to verify compliance to this limitation, the abundance of these radionuclides in the residue must be determined. However, performing this determination through radiometric methods constitutes a laborious task. In this work, 129I concentrations, 239+240Pu activities, and 240Pu/239Pu ratios are determined in low-level radioactive residues, including resins and dry sludge, from nuclear power plants in Spain. The use of Accelerator Mass Spectrometry (AMS) enables high sensitivities to be achieved, and hence these magnitudes can be re determined with good precision. Results present a high dispersion between the 129I and 239+240Pu activities found in various aliquots of the same sample, which suggests the existence of a mixture of resins with a variety of histories in the same container. As a conclusion, it is shown that activities and isotopic ratios can provide information on the processes that occur in power plants throughout the history of the residues. Furthermore, wipes from the monitoring of surface contamination of the José Cabrera decommissioning process have been analyzed for 129I determination. The wide range of measured activities indicates an effective dispersal of 129I throughout the various locations within a nuclear power plant. Not only could these measurements be employed in the contamination monitoring of the decommissioning process, but also in the modelling of the presence of other iodine isotopes.

  12. Effects of road decommissioning on carbon stocks, losses, and emissions in north coastal California

    USGS Publications Warehouse

    Madej, Mary Ann; Seney, Joseph; van Mantgem, Philip

    2013-01-01

    During the last 3 decades, many road removal projects have been implemented on public and private lands in the United States to reduce erosion and other impacts from abandoned or unmaintained forest roads. Although effective in decreasing sediment production from roads, such activities have a carbon (C) cost as well as representing a carbon savings for an ecosystem. We assessed the carbon budget implications of 30 years of road decommissioning in Redwood National Park in north coastal California. Road restoration techniques, which evolved during the program, were associated with various carbon costs and savings. Treatment of 425 km of logging roads from 1979 to 2009 saved 72,000 megagrams (Mg) C through on-site soil erosion prevention, revegetation, and soil development on formerly compacted roads. Carbon sequestration will increase in time as forests and soils develop more fully on the restored sites. The carbon cost for this road decommissioning work, based on heavy equipment and vehicle fuel emissions, short-term soil loss, and clearing of vegetation, was 23,000 Mg C, resulting in a net carbon savings of 49,000 Mg C to date. Nevertheless, the degree to which soil loss is a carbon sink or source in steep mountainous watersheds needs to be further examined. The ratio of carbon costs to savings will differ by ecosystem and road removal methodology, but the procedure outlined here to assess carbon budgets on restoration sites should be transferable to other systems.

  13. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States.

    PubMed

    Wong, Robert J; Aguilar, Maria; Cheung, Ramsey; Perumpail, Ryan B; Harrison, Stephen A; Younossi, Zobair M; Ahmed, Aijaz

    2015-03-01

    Nonalcoholic steatohepatitis (NASH) has been predicted to become the leading indication for liver transplantation (LT) in the United States. However, few studies have evaluated changes in the etiology of liver diseases among patients awaiting LT, and none have focused on the effects of NASH on liver transplant waitlists in the United States. We collected data from the United Network for Organ Sharing and Organ Procurement and Transplantation Network registry from 2004 through 2013, on liver transplant waitlist registrants with hepatitis C virus (HCV) infection, NASH, alcoholic liver disease (ALD), or a combination of HCV infection and ALD. We compared differences in survival within 90 days of registration (90-day survival) and probability of LT among patients with different diseases using Kaplan-Meier and multivariate logistic regression models. Between 2004 and 2013, new waitlist registrants with NASH increased by 170% (from 804 to 2174), with ALD increased by 45% (from 1400 to 2024), and with HCV increased by 14% (from 2887 to 3291); registrants with HCV and ALD decreased by 9% (from 880 to 803). In 2013, NASH became the second-leading disease among liver transplant waitlist registrants, after HCV. Patients with ALD had a significantly higher mean Model for End-Stage Liver Disease score at time of waitlist registration than other registrants. However, after multivariate adjustment, patients with ALD were less likely to die within 90 days when compared with patients with NASH (odds ratio [OR] = 0.77; 95% confidence interval [CI]: 0.67-0.89; P < .001); patients with HCV infection or HCV and ALD had similar odds for 90-day survival compared with NASH patients. Compared with patients with NASH, patients with HCV (OR = 1.45; 95% CI: 1.35-1.55; P < .001), ALD (OR = 1.15; 95% CI: 1.06-1.24; P < .001), or HCV and ALD (OR = 1.29; 95% CI: 1.18-1.42; P < .001) had higher odds for 90-day survival. Based on data from US adult LT databases, since 2004 the number of

  14. Pre-operative interventions (non-surgical and non-pharmacological) for patients with hip or knee osteoarthritis awaiting joint replacement surgery--a systematic review and meta-analysis.

    PubMed

    Wallis, Jason A; Taylor, Nicholas F

    2011-12-01

    To determine if pre-operative interventions for hip and knee osteoarthritis provide benefit before and after joint replacement. Systematic review with meta-analysis of randomised controlled trials (RCTs) of pre-operative interventions for people with hip or knee osteoarthritis awaiting joint replacement surgery. Standardised mean differences (SMD) were calculated for pain, musculoskeletal impairment, activity limitation, quality of life, and health service utilisation (length of stay and discharge destination). The GRADE approach was used to determine the quality of the evidence. Twenty-three RCTs involving 1461 participants awaiting hip or knee replacement surgery were identified. Meta-analysis provided moderate quality evidence that pre-operative exercise interventions for knee osteoarthritis reduced pain prior to knee replacement surgery (SMD (95% CI)=0.43 [0.13, 0.73]). None of the other meta-analyses investigating pre-operative interventions for knee osteoarthritis demonstrated any effect. Meta-analyses provided low to moderate quality evidence that exercise interventions for hip osteoarthritis reduced pain (SMD (95% CI)=0.52 [0.04, 1.01]) and improved activity (SMD (95% CI)=0.47 [0.11, 0.83]) prior to hip replacement surgery. Meta-analyses provided low quality evidence that exercise with education programs improved activity after hip replacement with reduced time to reach functional milestones during hospital stay (e.g., SMD (95% CI)=0.50 [0.10, 0.90] for first day walking). Low to moderate evidence from mostly small RCTs demonstrated that pre-operative interventions, particularly exercise, reduce pain for patients with hip and knee osteoarthritis prior to joint replacement, and exercise with education programs may improve activity after hip replacement. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactormore » with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not

  16. 75 FR 9451 - Notice of Receipt and Availability of Environmental Report Supplement 2 for the Proposed GE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Availability of Environmental Report Supplement 2 for the Proposed GE-Hitachi Global Laser Enrichment Laser- Based Uranium Enrichment Facility On January 13, 2009, GE-Hitachi Global Laser Enrichment, LLC (GLE) was..., operation, and decommissioning of a laser-based uranium enrichment facility. The proposed facility would be...

  17. Considerations in evaluating potential socioeconomic impacts of offshore platform decommissioning in California.

    PubMed

    Kruse, Sarah A; Bernstein, Brock; Scholz, Astrid J

    2015-10-01

    The 27 oil and gas platforms offshore southern California will eventually reach the end of their useful lifetimes (estimated between 2015 and 2030) and will be decommissioned. Current state and federal laws and regulations allow for alternative uses in lieu of the complete removal required in existing leases. Any decommissioning pathway will create a complex mix of costs, benefits, opportunities, and constraints for multiple user groups. To assist the California Natural Resources Agency in understanding these issues, we evaluated the potential socioeconomic impacts of the 2 most likely options: complete removal and partial removal of the structure to 85 feet below the waterline with the remaining structure left in place as an artificial reef-generally defined as a manmade structure with some properties that mimic a natural reef. We estimated impacts on commercial fishing, commercial shipping, recreational fishing, nonconsumptive boating, and nonconsumptive SCUBA diving. Available data supported quantitative estimates for some impacts, semiquantitative estimates for others, and only qualitative approximations of the direction of impact for still others. Even qualitative estimates of the direction of impacts and of user groups' likely preferred options have been useful to the public and decision makers and provided valuable input to the project's integrative decision model. Uncertainty surrounds even qualitative estimates of the likely direction of impact where interactions between multiple impacts could occur or where user groups include subsets that would experience the same option differently. In addition, we were unable to quantify effects on ecosystem value and on the larger regional ecosystem, because of data gaps on the population sizes and dynamics of key species and the uncertainty surrounding the contribution of platforms to available hard substrate and related natural populations offshore southern California. © 2015 SETAC.

  18. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, testmore » and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.« less

  19. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort wasmore » designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D

  20. The Importance of Building and Enhancing Worldwide Industry Cooperation in the Areas of Radiological Protection, Waste Management and Decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Pierre, S.

    2006-07-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates)more » is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry ' s involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM

  1. A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States

    Treesearch

    R. B. Foltz

    2012-01-01

    This study tested the erosion mitigation effectiveness of agricultural straw and two wood-based mulches for four years on decommissioned forest roads. Plots were installed on the loosely consolidated, bare soil to measure sediment production, mulch cover, and plant regrowth. The experimental design was a repeated measures, randomized block on two soil types common in...

  2. Long Awaited Fundamental Measurement of the Martian Upper Atmosphere from the Langmuir Probe and Waves Instrument on the MAVEN Mission.

    NASA Astrophysics Data System (ADS)

    Andersson, Laila; Andrews, David; Ergun, Bob; Delory, Greg; Morooka, Michiko; Fowler, Chris; McEnulty, Tess; Weber, Tristan; Eriksson, Anders; Malaspina, David; Crary, Frank; Mitchell, David; McFadden, Jim; Halekas, Jasper; Larson, Davin; Connerney, Jack; Espley, Jared; Eparvies, Frank

    2015-04-01

    Electron temperature and density are critical quantities in understanding an upper atmosphere. Approximately 40 years ago, the Viking landers reached the Martian surface, measuring the first (and only) two temperature profiles during it's descent. With the MAVEN mission arriving at Mars details of the Martian ionosphere can agin be studied by a complete plasma package. This paper investigates the first few months of data from the MAVEN mission when the orbit is below 500 km and around the northern hemisphere's terminator. The fo-cus of this presentation is on the different measure-ments that the Langmuir probe and Waves (LPW) in-strument is making on the MAVEN mission. Some of the LPW highlights that will be presented: (a) the long awaited new the electron temperature profiles; (b) the structures observed on the nightside ionosphere; (c) wave-particle insteractions observed below 500 km; and (d) the observed dusty environment at Mars. This presentation is supported by measurements from the other Particle and Fileds (PF) measurements on MAVEN.

  3. B Plant Complex preclosure work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ADLER, J.G.

    1999-02-02

    This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)more » (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.« less

  4. Dark adaptation in vitamin A-deficient adults awaiting liver transplantation: improvement with intramuscular vitamin A treatment.

    PubMed

    Abbott-Johnson, Winsome J; Kerlin, Paul; Abiad, Ghassan; Clague, Alan E; Cuneo, Ross C

    2011-04-01

    Although vitamin A deficiency is common in chronic liver disease, limited data exist on impairment of dark adaptation and response to therapy. The aims were (1) to assess dark adaptation in patients, (2) to assess the relationship between dark adaptation and vitamin A status, zinc and Child-Pugh score, (3) to compare perceived and measured dark adaptation and (4) to assess the dark adaptation response to intramuscular vitamin A. This was a prospective study of 20 patients (alcoholic liver disease 10, other parenchymal diseases six, cholestatic diseases four) awaiting liver transplantation. Selection was based on low serum retinol. There were 15 age-matched controls. Dark adaptation was measured with a SST-1 dark adaptometer and perception by questionnaire. Eight patients received 50, 000 IU of retinyl palmitate, and dark adaptation was repeated at 1 month. Forty per cent of patients had impaired dark adaptation. Patients with alcoholic liver disease were more impaired than those with other parenchymal diseases (p=0.015). No relationship was found between dark adaptation and the biochemical indicators or Child-Pugh score. Seventy-five per cent of patients with impairment did not perceive a problem. After intervention, light of half the previous intensity could be seen (p=0.05). Dark-adaptation impairment was common, was worse in alcoholic liver disease, was largely not appreciated by the patients and improved with vitamin A treatment.

  5. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expectedmore » array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).« less

  6. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the workstand as technicians process it. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  7. Radiological Risk Assessments for Occupational Exposure at Fuel Fabrication Facility in AlTuwaitha Site Baghdad – Iraq by using RESRAD Computer Code

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ziadoon H.; Ibrahim, S. A.; Mohammed, M. K.; Shaban, A. H.

    2018-05-01

    The purpose of this study is to evaluate the radiological risks for workers for one year of their activities at Fuel Fabrication Facility (FFF) so as to make the necessary protection to prevent or minimize risks resulted from these activities this site now is under the Iraqi decommissioning program (40). Soil samples surface and subsurface were collected from different positions of this facility and analyzed by gamma rays spectroscopy technique High Purity Germanium detector (HPGe) was used. It was found out admixture of radioactive isotopes (232Th 40K 238U 235U137Cs) according to the laboratory results the highest values were (975758) for 238U (21203) for 235U (218) for 232Th (4046) for 40K and (129) for 137Cs in (Bqkg1) unit. The annual total radiation dose and risks were estimated by using RESRAD (onsite) 70 computer code. The highest total radiation dose was (5617μSv/year) in area that represented by soil sample (S7) and the radiological risks morbidity and mortality (118E02 8661E03) respectively in the same area

  8. Nuclear Waste Management under Approaching Disaster: A Comparison of Decommissioning Strategies for the German Repository Asse II.

    PubMed

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans-Peter

    2017-07-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has resulted in the identification of three possible so-called decommissioning options: complete backfilling, relocation of the waste to deeper levels in the mine, and retrieval. The selection of a decommissioning strategy must compare expected investment costs with expected social damage costs (economic, environmental, and health damage costs) caused by flooding and subsequent groundwater contamination. We apply a cost minimization approach that accounts for the uncertainty regarding the stability of the rock formation and the risk of an uncontrollable brine intrusion. Since economic and health impacts stretch out into the far future, we examine the impact of different discounting methods and rates. Due to parameter uncertainty, we conduct a sensitivity analysis concerning key assumptions. We find that retrieval, the currently preferred option by policymakers, has the lowest expected social damage costs for low discount rates. However, this advantage is overcompensated by higher expected investment costs. Considering all costs, backfilling is the best option for all discounting scenarios considered. © 2016 Society for Risk Analysis.

  9. 76 FR 65753 - Environmental Assessment and Finding of No Significant Impact Related to Exemption of Material...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... facility located near Grand View, Idaho. This facility is regulated by the Idaho Department of..., the NRC held a public meeting in the community of Grand View, Idaho, to inform the public and to... disposal facility near Grand View, Idaho. The LLW will be generated as part of decommissioning activities...

  10. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the transport cradle before being moved to the workstand. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  11. Assigning Cytomegalovirus (CMV) Status in Children Awaiting Organ Transplant: Viral Shedding, CMV-Specific T-cells and CD27-CD28-CD4+ T-cells.

    PubMed

    Burton, Catherine E; Sester, Martina; Robinson, Joan L; Eurich, Dean T; Preiksaitis, Jutta K; Urschel, Simon

    2018-05-24

    Passive antibodies, maternal or transfusion-acquired, make serologic determination of pre-transplant cytomegalovirus (CMV) status unreliable. We evaluated 3 assays un-affected by passive antibodies, in assignment of CMV infection status in children awaiting solid organ transplant and in controls: i) CMV Nucleic Acid Amplification Testing (NAAT), quantification of ii) CMV-specific CD4+T-cells, and iii) CD27-CD28-CD4+T-cells. Our results highlight that CMV NAAT, from urine and oropharynx, is useful in confirming positive CMV status. Detection of CMV-specific CD4+T-cells was sensitive and specific in children >18 months but was less sensitive in children <12 months. CD27-CD28- CD4+T-cells are not likely useful in CMV risk-stratification in children.

  12. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitzsche, Olaf; Thierfeldt, Stefan; Hummel, Lothar

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detectormore » was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)« less

  13. Assessment, evaluation, and testing of technologies for environmental restoration, decontamination, and decommissioning and high level waste management. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzochukwu, G.A.

    1997-12-31

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formattedmore » and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less

  14. Of Ashes and Atoms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This feature length DVD documentary, reviews the history of the Plum Brook Nuclear Reactor from the initial settlers of the area, through its use as a munitions facility during the second World War to the development of the nuclear facility and its use as one of the first nuclear test reactors built in the United States, and the only one built by NASA. It concludes with the beginning of the decommissioning of the facility. There is a brief review of the reactor design, and its workings. Through discussions with the NASA engineers and operators of the facility, the film reviews the work done to advance the knowledge of the effects of radiation, the properties of radiated materials, and the work to advance the state of the art in nuclear propulsion. The film shows footage of public tours, and shows actual footage of the facility in operation, and after its shutdown in 1973. The DVD was narrated by Kate Mulgrew, who leads the viewer through the history of the facility to its eventual ongoing decommissioning, and return to the state of pastoral uses.

  15. 30 CFR 285.911 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 285.911 Section 285.911 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Facility Removal § 285.911...

  16. 30 CFR 285.640 - What is a General Activities Plan (GAP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information... conceptual decommissioning plans for all planned facilities, including testing of technology devices and... easements for the assessment and development of your limited lease or grant. (b) You must receive MMS...

  17. Influence of Pulmonary Hypertension on Patients With Idiopathic Pulmonary Fibrosis Awaiting Lung Transplantation.

    PubMed

    Hayes, Don; Black, Sylvester M; Tobias, Joseph D; Kirkby, Stephen; Mansour, Heidi M; Whitson, Bryan A

    2016-01-01

    The influence of varying levels of pulmonary hypertension (PH) on survival in idiopathic pulmonary fibrosis is not well defined. The United Network for Organ Sharing database was queried from 2005 to 2013 to identify first-time lung transplant candidates listed for lung transplantation who were tracked from waitlist entry date until death or censoring to determine the influence of PH on patients with advanced lung disease. Using data for right heart catheterization measurements, mild PH was defined as mean pulmonary artery pressure of 25 mm Hg or more, and severe as 35 mm Hg or more. Of 6,657 idiopathic pulmonary fibrosis patients, 6,651 were used for univariate analysis, 6,126 for Kaplan-Meier survival function, 6,013 for multivariate Cox models, and 5,186 (mild PH) and 2,014 (severe PH) for propensity score matching, respectively. Univariate Cox proportional hazards analysis found significant differences in survival for mild PH (hazard ratio [HR] 1.689, 95% confidence interval [CI]: 1.434 to 1.988, p < 0.001) and severe PH (HR 2.068, 95% CI: 1.715 to 2.493, p < 0.001). Further assessment by multivariate Cox models identified significant risk for death for mild PH (HR 1.433, 95% CI: 1.203 to 1.706, p < 0.001) and severe PH (HR 1.597, 95% CI: 1.308 to 1.949, p < 0.001). Propensity score matching confirmed the risk for death for mild PH (HR 1.530, 95% CI: 1.189 to 1.969, p = 0.001) and severe PH (HR 2.103, 95% CI: 1.436 to 3.078, p < 0.001). The manifestation of PH, even with mild severity, is associated with significantly increased risk for death among patients with idiopathic pulmonary fibrosis awaiting lung transplantation, so referral should be considered early in the disease course. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Association of Fatigue with Perceived Stress in Chinese Women with Early Stage Breast Cancer Awaiting Adjuvant Radiotherapy.

    PubMed

    Ho, Rainbow T H; Kwan, Tracy T C; Cheung, Irene K M; Chan, Caitlin K P; Lo, Phyllis H Y; Yip, Paul S F; Luk, Mai-Yee; Chan, Cecilia L W

    2015-08-01

    Cancer-related fatigue (CRF) is common in women with breast cancer, but little is known of its relationship with perceived stress. We conducted a cross-sectional study to explore the associations of CRF with perceived stress, anxiety, depression, pain and sleep quality in 133 Chinese women (aged 25-68 years) with early stage breast cancer. The majority of women had completed surgery and chemotherapy and were awaiting radiotherapy. Self-administered questionnaires consisting of the Brief Fatigue Inventory, Perceived Stress Scale-10, Hospital Anxiety and Depression Scale, Brief Pain Inventory, and Pittsburgh Sleep Quality Index were used to collect data. Forty-five per cent of the women were severely fatigued. Compared with local healthy women and US breast cancer patients, the group's mean perceived stress score was significantly higher (both p < 0.01). Higher perceived stress (β = 0.18, p = 0.032), higher anxiety (β = 0.30, p < 0.001) and higher pain severity (β = 0.38, p < 0.001) were associated with increased severity of CRF. The association of CRF with perceived stress was partially mediated by anxiety, suggesting a possible pathway from cancer and cancer treatment to CRF via stress appraisals and emotional distress. The findings indicate the importance of monitoring the psychological status of patients during treatment. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Building 9401-2 Plating Shop Surveillance and Maintenance Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1999-05-01

    This document provides a plan for implementing surveillance and maintenance (S and M) activities to ensure that Building 9401-2 Plating Shop is maintained in a cost effective and environmentally secure configuration until subsequent closure during the final disposition phase of decommissioning. U.S. Department of Energy (DOE) G430.1A-2, Surveillance and Maintenance During Facility Disposition (1997), was used as guidance in the development of this plan. The S and M Plan incorporates DOE O 430.1A, Life Cycle Asset Management (LCAM) (1998a) direction to provide for conducting surveillance and maintenance activities required to maintain the facility and remaining hazardous and radioactive materials, wastes,more » and contamination in a stable and known condition pending facility disposition. Recommendations in the S and M plan have been made that may not be requirement-based but would reduce the cost and frequency of surveillance and maintenance activities. During the course of S and M activities, the facility's condition may change so as to present an immediate or developing hazard or unsatisfactory condition. Corrective action should be coordinated with the appropriate support organizations using the requirements and guidance stated in procedure Y10-202, Rev. 1, Integrated Safety Management Program, (Lockheed Martin Energy Systems, Inc. (LMES), 1998a) implemented at the Oak Ridge Y-12 Plant and the methodology of the Nuclear Operations Conduct of Operations Manual (LMES, 1999) for the Depleted Uranium Operations (DUO) organization. The key S and M objectives applicable to the Plating Shop are to: Ensure adequate containment of remaining residual material in exhaust stacks and outside process piping, stored chemicals awaiting offsite shipment, and items located in the Radioactive Material Area (RMA); Provide access control into the facility and physical safety to S and M personnel; Maintain the facility in a manner that will protect the public, the environment, and

  20. 77 FR 28618 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... project, a solar photovoltaic (PV) power plant facility, on approximately 115 acres of BLM-administered... Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility on BLM...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft Environmental...

  1. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment,more » Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217

  2. 100 Area D4 Project Building Completion Report - July 2007 to December 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. T. Stankovich

    2009-04-15

    This report documents the decontamination, decommissioning, and demolition of the 105-NB, 163-N, 183-N, 183-NA, 183-NB, 183-NC, 184-N, 184-NA, 184-NB, 184-NC, 184-ND, 184-NE, 184-NF, 1312-N, 1330-N, 1705-N, 1705-NA, 1706-N, 1712-N, 1714-N, 1714-NA, 1714-NB, 1802-N, MO-050, MO-055, MO-358, MO-390, MO-900, MO-911, and MO-950 facilities in the 100 Area of the Hanford Site. The D4 activities for these facilities include utility disconnection, planning, characterization, engineering, removal of hazardous and radiological contaminated materials, equipment removal, decommissioning, deactivation, decontamination, demolition of the structure, and removal of the remaining slabs.

  3. Effects of a tele-prehabilitation program or an in-person prehabilitation program in surgical candidates awaiting total hip or knee arthroplasty: Protocol of a pilot single blind randomized controlled trial.

    PubMed

    Doiron-Cadrin, Patrick; Kairy, Dahlia; Vendittoli, Pascal-André; Lowry, Véronique; Poitras, Stéphane; Desmeules, François

    2016-12-15

    The accessibility for total joint arthroplasty often comes up against long wait lists, and may lead to deleterious effects for the awaiting patients. This pilot single blind randomized controlled trial aims to evaluate the impact of a telerehabilitation prehabilitation program before a hip or knee arthroplasty compared to in-person prehabilitation or to usual wait for surgery. Thirty-six patients on a wait list for a total hip or knee arthroplasty will be recruited and randomly assigned to one of three groups. The in-person prehabilitation group (n = 12) will receive a 12-week rehabilitation program (2 sessions/week) including education, exercises of the lower limb and cardiovascular training. Patients in the tele-prehabilitation group (n = 12) will receive the same intervention using a telecommunication software. The control group (n = 12) will be provided with the hospital's usual documentation before surgery. The Lower Extremity Functional Scale (LEFS) will be the primary outcome measure taken at baseline and at 12 weeks. Secondary measures will include self-reported function and quality of life as well as performance tests. A mixed-model, 2-way repeated-measure ANOVA will be used to analyse the effects of the rehabilitation programs. This pilot study is the first to evaluate the feasibility and the impact of a telerehabilitation prehabilitation program for patients awaiting a total joint arthroplasty. The results of this pilot-RCT will set the foundations for further research in the fields of rehabilitation and tele-medicine for patients suffering from lower limb osteoarthritis. ClinicalTrials.gov: NCT02636751.

  4. 76 FR 53693 - Notice of Intent To Prepare a Joint Environmental Impact Statement and Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... Project (MSEP), a 750-megawatt (MW) photovoltaic (PV) solar electricity generation project. By this notice..., operate, maintain, and decommission an up to 750-MW PV solar facility and necessary ancillary facilities... Impact Report for the Proposed McCoy Solar Energy Project and Possible Land Use Plan Amendment, Riverside...

  5. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologiesmore » identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.« less

  6. ER-2 #809 awaits pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-28

    ER-2 #809 awaiting pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). The ER-2, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, "Arena Arctica" housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. "The collaborative campaign will provide an immense new body of information about the Arctic stratosphere," said program scientist Dr. Michael Kurylo, NASA Headquarters. "Our understanding of the Earth's ozone will be greatly enhanced by this research."

  7. Web-based training course for evaluating radiological dose assessment in NRC's license termination process.

    PubMed

    Lepoire, D; Richmond, P; Cheng, J-J; Kamboj, S; Arnish, J; Chen, S Y; Barr, C; McKenney, C

    2008-08-01

    As part of the requirement for terminating the licenses of nuclear power plants or other nuclear facilities, license termination plans or decommissioning plans are submitted by the licensee to the U.S. Nuclear Regulatory Commission (NRC) for review and approval. Decommissioning plans generally refer to the decommissioning of nonreactor facilities, while license termination plans specifically refer to the decommissioning of nuclear reactor facilities. To provide a uniform and consistent review of dose modeling aspects of these plans and to address NRC-wide knowledge management issues, the NRC, in 2006, commissioned Argonne National Laboratory to develop a Web-based training course on reviewing radiological dose assessments for license termination. The course, which had first been developed in 2005 to target specific aspects of the review processes for license termination plans and decommissioning plans, evolved from a live classroom course into a Web-based training course in 2006. The objective of the Web-based training course is to train NRC staff members (who have various relevant job functions and are located at headquarters, regional offices, and site locations) to conduct an effective review of dose modeling in accordance with the latest NRC guidance, including NUREG-1757, Volumes 1 and 2. The exact size of the staff population who will receive the training has not yet been accurately determined but will depend on various factors such as the decommissioning activities at the NRC. This Web-based training course is designed to give NRC staff members modern, flexible access to training. To this end, the course is divided into 16 modules: 9 core modules that deal with basic topics, and 7 advanced modules that deal with complex issues or job-specific topics. The core and advanced modules are tailored to various NRC staff members with different job functions. The Web-based system uses the commercially available software Articulate, which incorporates audio, video

  8. 32 CFR 775.6 - Planning considerations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., installation, and operation of utility (e.g., water, sewer, electrical) and communication systems (e.g., data... systems, and/or facilities; (37) Decisions to close facilities, decommission equipment, and/or temporarily... environment. The agency decision in the case of an EIS is reflected in a ROD. (b) Where a proposed major...

  9. 32 CFR 775.6 - Planning considerations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., installation, and operation of utility (e.g., water, sewer, electrical) and communication systems (e.g., data... systems, and/or facilities; (37) Decisions to close facilities, decommission equipment, and/or temporarily... environment. The agency decision in the case of an EIS is reflected in a ROD. (b) Where a proposed major...

  10. Psychophysiological responses to sedative music in patients awaiting cardiac catheterization examination: a randomized controlled trial.

    PubMed

    Chang, Hui-Kuan; Peng, Tai-Chu; Wang, Ji-Hung; Lai, Hui-Ling

    2011-01-01

    Cardiovascular diseases are the number 1 cause of death globally. Cardiac catheterization is a key step in the diagnosis and management of cardiovascular diseases. Decreasing the stress of cardiac catheterization is a key factor in improving patients' well-being. The aim of the study was to explore the effect of music on psychophysiological indices in patients awaiting cardiac catheterization examination. Using a 2-group repeated-measures design, 54 subjects aged 47 to 70 years and scheduled for cardiac catheterization examination were recruited. The subjects were randomly assigned to either the music group (27 subjects) or the usual-care group (27 subjects). Subjects in the music group listened to 30 minutes of music, whereas the usual-care group rested quietly, as in routine care. The heart rate (HR), HR variability, and skin temperature (ST) were measured at 7 time points and were recorded by the MP150 recording system (BIOPAC Systems, Inc, Goleta, California). Heart rate variability was analyzed by power spectral analysis: low frequency, high frequency, and ratio of low frequency to high frequency. The state of anxiety was measured at baseline and at time 7. At the end of the study, the subjects' music preference was evaluated using a visual analog scale. Listening to music resulted in a significantly reduced state of anxiety (P = .003). Both the music and quiet rest groups noted the beneficial effects of decreased HR and increased ST (all P < .001). The treatment effects of both interventions on HR variability were inconclusive. Moreover, we also found that the higher the scores of the music preference, the lower the subjects' perceived anxiety level (P = .05). Our findings provide the necessary scientific support for the use of sedative music and quiet rest as safe and effective interventions against anxiety, as manifested in the subjects' anxiety state, HR, and ST.

  11. Regulation and policy: International trends and issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, W S

    As offshore oil and gas resources become exhausted, the associated production platforms and facilities will be decommissioned. The world-wide oil and gas industry is strictly regulated by global, regional and national guidelines which have been developed by governments to find the most responsible framework to perform the decommissioning. In the summer of 1995, the Brent Spar incident brought uncertainty to decommissioning world-wide. In June of 1995, a moratorium prohibiting sea disposal within the North East Atlantic was imposed by the Oslo Commission, and an unsuccessful attempt was made in December of 1995 to impose a world-wide moratorium on sea disposalmore » at the London Convention.« less

  12. 75 FR 34792 - Westinghouse Electric Company, LLC; License Amendment Request, Opportunity To Provide Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... transfer decommissioning waste to U.S. Ecology Idaho, Inc., a Resource Conservation and Recovery Act (RCRA) Subtitle C disposal facility located near Grand View, Idaho. The U.S. Ecology Idaho facility is regulated... CFR 30.11 and 70.17, WEC's application also requests that U.S. Ecology be granted exemptions from the...

  13. RAMI modeling of plant systems for proposed tritium production and extraction facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    2000-04-05

    The control of life-cycle cost is a primary concern during the development, construction, operation, and decommissioning of DOE systems and facilities. An effective tool that can be used to control these costs, beginning with the design stage, is called a reliability, availability, maintainability, and inspectability analysis or, simply, RAMI for short. In 1997, RAMI technology was introduced to the Savannah River Site with applications at the conceptual design stage beginning with the Accelerator Production of Tritium (APT) Project and later extended to the Commercial Light Water Reactor (CLWR) Tritium Extraction Facility (TEF) Project. More recently it has been applied tomore » the as-build Water Treatment Facilities designed for ground water environmental restoration. This new technology and database was applied to the assessment of balance-of-plant systems for the APT Conceptual Design Report. Initial results from the Heat Removal System Assessment revealed that the system conceptual design would cause the APT to fall short of its annual production goal. Using RAM technology to immediately assess this situation, it was demonstrated that the product loss could be gained back by upgrading the system's chiller unit capacity at a cost of less than $1.3 million. The reclaimed production is worth approximately $100 million. The RAM technology has now been extended to assess the conceptual design for the CLWR-TEF Project. More specifically, this technology and database is being used to translate high level availability goals into lower level system design requirements that will ensure the TEF meets its production goal. Results, from the limited number of system assessments performed to date, have already been used to modify the conceptual design for a remote handling system, improving its availability to the point that a redundant system, with its associated costs of installation and operation may no longer be required. RAMI results were also used to justify the

  14. Progress on Cleaning Up the Only Commercial Nuclear Fuel Reprocessing Facility to Operate in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T. J.; MacVean, S. A.; Szlis, K. A.

    2002-02-26

    This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less

  15. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on

  16. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site.more » The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA

  17. STS-35 MS Hoffman watches water egress exercises at JSC's WETF Bldg 29 pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman, wearing launch and entry suit (LES), comments on launch emergency egress procedures from the poolside of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Hoffman awaits his turn to participate in the training activities.

  18. 30 CFR 285.657 - What must I do upon completion of approved activities under my GAP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL... your decommissioning application as provided in §§ 285.905 and 285.906. Cable and Pipeline Deviations ...

  19. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in

  20. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  1. KENNEDY SPACE CENTER, FLA. - Storage boxes filled with Columbia debris (left) await transfer to storage in the Vehicle Assembly Building. Empty boxes at right wait to be filled with more of the approximately 83,000 pieces shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - Storage boxes filled with Columbia debris (left) await transfer to storage in the Vehicle Assembly Building. Empty boxes at right wait to be filled with more of the approximately 83,000 pieces shipped to KSC during search and recovery efforts in East Texas.

  2. 76 FR 28029 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... 210- 424-8346. EIS No. 20110143, Final EIS, BLM, CA, Palen Solar Power Plant Project, Construction, Operation and Decommission a Solar Thermal Facility on Public Lands, Approval for Right-of-Way Grant...

  3. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  4. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  5. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  6. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  7. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P. T.; Webb, J. R.; Knox, N. P.

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3)more » Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.« less

  9. Federal environmental standards of potential importance to operations and activities at US Department of Energy sites. Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, K.M.; Bilyard, G.R.; Davidson, S.A.

    1993-06-01

    The US Department of Energy (DOE) is now engaged in a program of environmental restoration nationwide across its 45 sites. It is also bringing its facilities into compliance with environmental regulations, decontaminating and decommissioning unwanted facilities, and constructing new waste management facilities. One of the most difficult questions that DOE must face in successfully remediating its inactive waste sites, decontaminating and decommissioning its inactive facilities, and operating its waste management facilities is: ``What criteria and standards should be met?`` Acceptable standards or procedures for determining standards will assist DOE in its conduct of ongoing waste management and pending cleanup activitiesmore » by helping to ensure that those activities are conducted in compliance with applicable laws and regulations and are accepted by the regulatory community and the public. This document reports on the second of three baseline activities that are being conducted as prerequisites to either the development of quantitative standards that could be used by DOE, or consistent procedures for developing such standards. The first and third baseline activities are also briefly discussed in conjunction with the second of the three activities.« less

  10. N Reactor Deactivation Program Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less

  11. A Multidisciplinary Paradigm and Approach to Protecting Human Health and the Environment, Society, and Stakeholders at Nuclear Facilities - 12244

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna; Environmental and Occupational Health Sciences Institute, Piscataway, NJ; Gochfeld, Michael

    2012-07-01

    As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider themore » protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a

  12. STS-122 Preflight Egress Training

    NASA Image and Video Library

    2007-05-01

    JSC2007-E-21208 (1 May 2007) --- Attired in a training version of his shuttle launch and entry suit, astronaut Stanley G. Love, STS-122 mission specialist, awaits the start of an emergency egress training session in the Space Vehicle Mockup Facility at Johnson Space Center.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedialmore » Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.« less

  14. Security of patient data when decommissioning ultrasound systems.

    PubMed

    Moggridge, James

    2017-02-01

    Although ultrasound systems generally archive to Picture Archiving and Communication Systems (PACS), their archiving workflow typically involves storage to an internal hard disk before data are transferred onwards. Deleting records from the local system will delete entries in the database and from the file allocation table or equivalent but, as with a PC, files can be recovered. Great care is taken with disposal of media from a healthcare organisation to prevent data breaches, but ultrasound systems are routinely returned to lease companies, sold on or donated to third parties without such controls. In this project, five methods of hard disk erasure were tested on nine ultrasound systems being decommissioned: the system's own delete function; full reinstallation of system software; the manufacturer's own disk wiping service; open source disk wiping software for full and just blank space erasure. Attempts were then made to recover data using open source recovery tools. All methods deleted patient data as viewable from the ultrasound system and from browsing the disk from a PC. However, patient identifiable data (PID) could be recovered following the system's own deletion and the reinstallation methods. No PID could be recovered after using the manufacturer's wiping service or the open source wiping software. The typical method of reinstalling an ultrasound system's software may not prevent PID from being recovered. When transferring ownership, care should be taken that an ultrasound system's hard disk has been wiped to a sufficient level, particularly if the scanner is to be returned with approved parts and in a fully working state.

  15. Configuration management at an environmental restoration DOE facility (Fernald)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckett, C.; Pasko, W.; Kupinski, T.

    This report contains information about a meeting held to discuss the decontamination and decommissioning of the Fernald site in Ohio. This site contains two major types of waste. First is the legacy waste. This waste consists of the wastes which were left over from production which is stored in various drums and containers across the site. Second is the waste generated from the remedial activities.

  16. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  17. Geotechnical studies associated with decommissioning the strategic petroleum reserve facility at Weeks Island, Louisiana: A case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, S.J.; Ehgartner, B.L.; Neal, J.T.

    1997-05-01

    The first sinkhole at the Weeks Island Strategic Petroleum Reserve (SPR) site was initially observed in May 1992. Concurrent with the increasing dissolution of salt over the mined oil storage area below, it has gradually enlarged and deepened. Beginning in 1994 and continuing to the present, the injection of saturated brine directly into the sinkhole throat some 76 m beneath the ground surface essentially arrested further dissolution, providing time to make adequate preparation for the safe and orderly transfer of crude oil to other storage facilities. This mitigation measure marked the first time that such a control procedure has beenmore » used in salt mining; previously all control has been achieved by either in-mine or from-surface grouting. A second and much smaller sinkhole was noticed in early 1995 on an opposite edge of the SPR mine, but with a very similar geological and mine mechanics setting. Both sinkholes occur where the edges of upper 152 m and lower 213 m mined storage levels are nearly vertically aligned. Such coincidence maximizes the tensional stress development, leading to fracturing in the salt. This cracking takes 20 or more years to develop. The cracks then become flow paths for brine incursion, which after time progress into the mined openings. Undersaturated ground water gradually enlarges the cracks in salt through dissolution, leading to eventual collapse of the overlying sand to form sinkholes. Other geologic conditions may also be secondary factors in controlling both mining extent and sinkhole location.« less

  18. Environmental decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  19. Lessons Learned in the Decommissioning of the Stardust Spacecraft

    NASA Technical Reports Server (NTRS)

    Larson, Timothy W.

    2012-01-01

    The Stardust spacecraft completed its prime mission in 2006, returning samples from the coma of comet Wild 2 to earth in the sample return capsule. Still healthy, and in a heliocentric orbit, the Stardust spacecraft was repurposed for a new mission - Stardust NExT. This new mission would take the veteran spacecraft to a 2011 encounter with comet Tempel 1, providing a new look at the comet visited in 2005 by the Deep Impact mission. This extended mission for Stardust would push it to the limits of its fuel reserves, prompting several studies aimed at determining the actual remaining fuel on board. The results were used to plan mission events within the constraints of this dwindling resource. The team tracked fuel consumption and adjusted the mission plans to stay within the fuel budget. This effort intensified toward the end of the mission, when a final assessment showed even less remaining fuel than previously predicted, triggering a delay in the start of comet imaging during the approach phase. The flyby of comet Tempel 1 produced spectacular up close views of this comet, imaging previously seen areas as well as new territory, and providing clear views of the location of the 2005 impact. The spacecraft was decommissioned about a month after the flyby, revealing that the fuel tank was now empty after having flown successfully for 12 years, returned comet dust samples to earth, and flown by an asteroid and two comets.

  20. 75 FR 76275 - Anchorage Regulations; Long Island Sound

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... are located in Connecticut and New York State waters. This action is necessary to aid in facilitating the safe and secure anchoring and transiting of vessels, particularly deep draft vessels, transiting..., particularly deep draft vessels, through Long Island Sound or while awaiting entry to a port or facility in New...