Science.gov

Sample records for facilities deactivating project

  1. 200 Area Deactivation Project Facilities Authorization Envelope Document

    SciTech Connect

    DODD, E.N.

    2000-03-28

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

  2. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  3. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    SciTech Connect

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  4. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  5. Mission analysis report - deactivation facilities at Hanford

    SciTech Connect

    Lund, D.P.

    1996-09-27

    This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.

  6. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance.

  7. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-08-01

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) until the facilities are included in the Decontamination and Decommissioning (D&D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes & Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report.

  8. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  9. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  10. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    SciTech Connect

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  11. PUREX/UO{sub 3} facilities deactivation lessons learned history

    SciTech Connect

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  12. PFP deactivation project management plan

    SciTech Connect

    Bogen, D.M.

    1997-07-28

    This document identifies the overall approach for deactivation of the Plutonium Finishing Plant (PFP) Complex, excluding the vaults, and includes a draft set of End Point Criteria for all buildings being deactivated.

  13. PUREX/UO3 Facilities deactivation lessons learned history

    SciTech Connect

    Gerber, M.S.

    1996-09-19

    accompanied by and were an integral part of sweeping ``culture changes,`` the story of the lessons learned during the PUREX Deactivation Project are worth recounting. Foremost among the lessons is recognizing the benefits of ``right to left`` project planning. A deactivation project must start by identifying its end points, then make every task, budget, and organizational decision based on reaching those end points. Along with this key lesson is the knowledge that project planning and scheduling should be tied directly to costing, and the project status should be checked often (more often than needed to meet mandated reporting requirements) to reflect real-time work. People working on a successful project should never be guessing about its schedule or living with a paper schedule that does not represent the actual state of work. Other salient lessons were learned in the PUREX/UO3 Deactivation Project that support these guiding principles. They include recognizing the value of independent review, teamwork, and reengineering concepts; the need and value of cooperation between the DOE, its contractors, regulators, and stakeholders; and the essential nature of early and ongoing communication. Managing a successful project also requires being willing to take a fresh look at safety requirements and to apply them in a streamlined and sensible manner to deactivating facilities; draw on the enormous value of resident knowledge acquired by people over years and sometimes decades of working in old plants; and recognize the value of bringing in outside expertise for certain specialized tasks.This approach makes possible discovering the savings that can come when many creative options are pursued persistently and the wisdom of leaving some decisions to the future. The essential job of a deactivation project is to place a facility in a safe, stable, low-maintenance mode, for an interim period. Specific end points are identified to recognize and document this state. Keeping the limited

  14. 340 Waste handling facility deactivation plan

    SciTech Connect

    Stordeur, R.T., Westinghouse Hanford

    1996-12-27

    This document provides an overview of both the present status of the 340 Complex (within Hanford`s 300 Area), and of tasks associated with the deactivation of segments associated with radioactive, mixed liquid waste receipt, storage, and shipping. The plan also describes activities that will allow portions of the 340 Complex to remain in service.

  15. 1997 project of the year, PUREX deactivation project

    SciTech Connect

    Bailey, R.W.

    1998-02-13

    At the end of 1992, the PUREX and UO{sub 3} plants were deemed no longer necessary for the defense needs of the United States. Although no longer necessary, they were very costly to maintain in their post-operation state. The DOE embarked on a deactivation strategy for these plants to reduce the costs of providing continuous surveillance of the facilities and their hazards. Deactivation of the PUREX and UO{sub 3} plants was estimated to take 5 years and cost $222.5 million and result in an annual surveillance and maintenance cost of $2 million. Deactivation of the PUREX/UO{sub 3} plants officially began on October 1, 1993. The deactivation was 15 months ahead of the original schedule and $75 million under the original cost estimate. The annual cost of surveillance and maintenance of the plants was reduced to less than $1 million.

  16. Chemicals and excess materials disposition during facility deactivation as a means of pollution prevention

    SciTech Connect

    Godfrey, S.D.

    1998-05-28

    This paper presents several innovative and common sense approaches to pollution prevention that have been employed during facility deactivation at the Hanford Site in South Central Washington. It also presents several pollution prevention principles applicable to other projects. Innovative pollution prevention ideas employed at the Hanford site during facility deactivation included: (1) Recycling more than 185,000 gallons of radioactively contaminated nitric acid by sending it to an operating nuclear fuels reprocessing facility in England; (2) Recycling millions of pounds of chemicals and excess materials to other industries for reuse; (3) Evaporating flush water at a low rate and discharging it into the facility exhaust air stream to avoid discharging thousands of gallons of liquid to the soil column; and (4) Decontaminating and disposing of thousands of gallons of radioactively contaminated organic solvent waste to a RCRA licensed, power-producing, commercial incinerator. Common sense pollution prevention ideas that were employed include recycling office furniture, recycling paper from office files, and redeploying tools and miscellaneous process equipment. Additional pollution prevention occurred as the facility liquid and gaseous discharge streams were deactivated. From the facilities deactivation experiences at Hanford and the ensuing efforts to disposition excess chemicals and materials, several key pollution prevention principles should be considered at other projects and facilities, especially during the operational periods of the facility`s mission. These principles include: Institute pollution prevention as a fundamental requirement early in the planning stage of a project or during the operational phase of a facility`s mission; Promote recognition and implementation of pollution prevention initiatives; Instill pollution prevention as a value in all participants in the project or facility work scope; Minimize the amount of chemical products and materials

  17. Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project

    SciTech Connect

    SINCLAIR, J.C.

    1999-05-03

    This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

  18. Audit of the deactivation, decontamination, and disposal of surplus facilities at the Savannah River Site

    SciTech Connect

    1997-10-23

    Westinghouse Savannah River Company (Westinghouse) is responsible for managing the Department of Energy`s (Department) surplus facilities at the Savannah River Site (Site). In Fiscal Year (FY) 1996, the Site had 162 surplus facilities and anticipated that 118 more would become surplus within the next 5 years. The objective of this audit was to determine whether the Savannah River Operations Office (Operations Office) and Westinghouse had economically and promptly deactivated, decontaminated, and disposed of surplus facilities at the Site. Departmental regulations require that surplus facilities be deactivated, decontaminated, and disposed of economically and promptly. However, Westinghouse only disposed of one facility and did not completely deactivate or decontaminate any of the 162 facilities identified as surplus at the Site in FY 1996. This occurred because the Operations Office did not compile a Site-wide list, establish priorities, or provide sufficient funding for the deactivation, decontamination, and disposal of surplus facilities. As a result, the Department incurred unnecessary costs for the surveillance and maintenance of surplus facilities. For example, the Department could have avoided annual costs of about $1.3 million in surveillance and maintenance costs by spending $1.2 million to perform a deactivation project on the P-Reactor process-water storage tanks. The Operations Office could have funded the project out of its unobligated FY 1996 operating funds. However, it returned the unobligated funds to the Department`s Headquarters at the end of the fiscal year. The Operations Office concurred with the finding and recommendations and initiated corrective action.

  19. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  20. Commercial experience with facility deactivation to safe storage

    SciTech Connect

    Sype, T.T.; Fischer, S.R.; Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J.

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  1. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    SciTech Connect

    Adams, N

    2007-07-08

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  2. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The

  3. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  4. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    SciTech Connect

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  5. 340 waste handling complex: Deactivation project management plan

    SciTech Connect

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  6. Final deactivation report on the Radioactive Gas Processing Facility, Building 3033, and the Actinide Fabrication Facility, Building 3033A, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Buildings 3033 and 3033A, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Buildings 3033 and 3033A prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package are discussed. Buildings 3033 and 3033A will require access to facilitate required S and M activities to maintain the building safety envelope. Buildings 3033 and 3033A were stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S and M effort would be required to maintain the building safety envelope. Other than the minimal S and M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S and M. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated.

  7. The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities

    SciTech Connect

    Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M.; Charboneau, S.; Bond, F.

    2006-07-01

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  8. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  9. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones

  10. Fast flux test facility, transition project plan

    SciTech Connect

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  11. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect

    Croson, D.V.; Davis, R.H.; Cooper, W.B.

    2007-07-01

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM

  12. Successful integration of pollution prevention strategies during deactivation and decommissioning of chemistry R{ampersand}D facilities

    SciTech Connect

    Burgin, C.D.; Waterman, M.A.

    1997-08-29

    The Chemistry & Materials Sciences (C&MS) Directorate is in the third year of a four-year space consolidation plan. In 1994, approximately half of the total directorate square footage was comprised of 40-year old wet chemistry research buildings that had exceeded their useful life and were viewed a legacy facilities to the program. This mix of old vs. new laboratory space was not properly aligned nor suited for future needs of C&MS, from both the cultural or economic position, thus change was needed. C&MS instituted an aggressive, strategic, business-driven space consolidation initiative, called SAT (Space Action Team), to optimize space utilization, reduce annual costs, meet strategic program needs, and consolidate activities by functional area. The plan called for a 4-year process beginning in FY95 to realign the directorate`s facility portfolio through relocations, consolidations, transfer of facility ownership, demolition of trailers and new construction with a 20% sq/ft reduction as an end goal. As with all business driven initiatives, existing operating costs, implementation costs, cost avoidance and future operating costs were key metrics to measure against the strategic goal. Where P2 was not an essential element in the strategic planning process, it played a key role in the continuing success of the process. SAT is in year three of the four year plan (approximate $5 million investment), which has made a major contribution to the success of C&MS by achieving the directorate`s goals of improving the utilization of space by 30%, increasing quality of the facilities, and reducing annual operating costs. To date, SAT has achieved an on-going organizational facility charge saving of $2 million /year, minimized Program downtime, transferred 120,000 sq ft to new owners, relocated 86 labs, vacated 9 buildings, deactivate, decommissioned and decontaminated four 40 plus year old R&D facilities, and demolished 9 trailers with no incidents or injuries. Our process cost

  13. Canastota Renewable Energy Facility Project

    SciTech Connect

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  14. Heritage Park Facilities PV Project

    SciTech Connect

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  15. Mississippi Test Facility research projects

    NASA Technical Reports Server (NTRS)

    Whitehurst, C. A.

    1974-01-01

    Research capabilities of Louisiana State University are reported for sustaining a program which complements the Mississippi Test Facility. Projects reported during this period are discussed and include the development of a spectral analyzer, and investigations of plant physiology. Papers published during this period are also listed.

  16. BZ Disposal Facility Development and Design. Task 4, Incineration of Pyrotechnic Munitions in a Deactivation Furnace

    DTIC Science & Technology

    1982-07-01

    AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010 ■ 8 Li 82 10 29 006 f J DISCLAIMER The views, opinions and/or findings contained in this...PERFORMING ORGANIZATION NAME AND ADDRESS Battelle Columbus Laboratories 505 King Avenue Columbus, Ohio 43201 10 . PROGRAM ELEMENT, PROJECT...Distribution unlimited. Cleared for public release. 17. DISTRIBUTION STATEMENT (ol Ihm mbatfel ml»nd In Block 10 , II dlllormt «ram Koport) IS

  17. Chemical facility vulnerability assessment project.

    PubMed

    Jaeger, Calvin D

    2003-11-14

    Sandia National Laboratories, under the direction of the Office of Science and Technology, National Institute of Justice, conducted the chemical facility vulnerability assessment (CFVA) project. The primary objective of this project was to develop, test and validate a vulnerability assessment methodology (VAM) for determining the security of chemical facilities against terrorist or criminal attacks (VAM-CF). The project also included a report to the Department of Justice for Congress that in addition to describing the VAM-CF also addressed general observations related to security practices, threats and risks at chemical facilities and chemical transport. In the development of the VAM-CF Sandia leveraged the experience gained from the use and development of VAs in other areas and the input from the chemical industry and Federal agencies. The VAM-CF is a systematic, risk-based approach where risk is a function of the severity of consequences of an undesired event, the attack potential, and the likelihood of adversary success in causing the undesired event. For the purpose of the VAM-CF analyses Risk is a function of S, L(A), and L(AS), where S is the severity of consequence of an event, L(A) is the attack potential and L(AS) likelihood of adversary success in causing a catastrophic event. The VAM-CF consists of 13 basic steps. It involves an initial screening step, which helps to identify and prioritize facilities for further analysis. This step is similar to the prioritization approach developed by the American Chemistry Council (ACC). Other steps help to determine the components of the risk equation and ultimately the risk. The VAM-CF process involves identifying the hazardous chemicals and processes at a chemical facility. It helps chemical facilities to focus their attention on the most critical areas. The VAM-CF is not a quantitative analysis but, rather, compares relative security risks. If the risks are deemed too high, recommendations are developed for

  18. HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site

    SciTech Connect

    DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

    2005-03-11

    This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered

  19. The National Ignition Facility project

    SciTech Connect

    Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.

    1996-06-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KD0), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, the authors completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. This article presents an overview of the NIF project.

  20. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  1. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  2. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  3. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  4. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    SciTech Connect

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  5. National Biomedical Tracer Facility: Project definition study

    SciTech Connect

    Heaton, R.; Peterson, E.; Smith, P.

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  6. Robot Work Platform for Large Hot Cell Deactivation

    SciTech Connect

    BITTEN, E.J.

    2000-05-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area.

  7. School Facility Projects in Latin America

    ERIC Educational Resources Information Center

    Berk, Jeffrey; de Cassia Alves Vaz, Rita; Honorio, Joao; Baza, Jadille; Origel, Ricardo; Gomez, Fredys

    2004-01-01

    Many Latin American countries are undertaking projects, in line with practices disseminated by PEB, to share school facilities with the local community, to adapt traditional schools for students with disabilities, and to collaborate with private companies to finance educational buildings. The articles below describe current initiatives in five…

  8. National Ignition Facility project acquisition plan

    SciTech Connect

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  9. Final deactivation report on the radioisotope area services, Building 3034, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Bldg. 3034, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a history and profile of Bldg. 3034 before commencement of deactivation activities and a profile of the building after completion of deactivation activities. Turnover, items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, an supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover Package, are discussed. Building 3034 will require access to facilitate required surveillance and maintenance (S&M) activities to maintain the building safety envelope. Building 3034 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. In addition to the minimal S&M activities, the building will be occupied by the maintenance coordinator and the S&M supervisor for the Isotopes Facilities Deactivation Project. The exterior doors are locked when unoccupied to prevent unauthorized access. All materials have been removed from the building. Piping and alarms have been deactivated.

  10. The rare isotope accelerator (RIA) facility project

    SciTech Connect

    Christoph Leemann

    2000-08-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

  11. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Dun, C

    2003-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

  12. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Moses, E

    2001-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during the construction, equipment installation, and commissioning activities. As the NIF Project transitions from a conventional facility construction activity to one of equipment installation, commissioning, initial laser operations, and other more routine-like operations, new safety requirements are needed. The NIF Project Site Safety Program (NPSSP) requires that all activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'', and the augmented set of controls and processes described in this NIF Project Site Safety Program. More specific requirements for construction activities under the Integration Management and Installation (IMI) contract are provided in the ''NIF Infrastructure Health and Safety Plan'', subtier to this program. Specifically this document: Defines the fundamental NIF site safety philosophy, Defines the areas covered by this safety program (see Appendix B), Identifies management roles and responsibilities, Defines core safety management processes, and Identifies NIF site-specific safety requirements.

  13. PUREX Deactivation Health and Safety documentation

    SciTech Connect

    Dodd, E.N. III

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  14. UO3 deactivation end point criteria

    SciTech Connect

    Stefanski, L.D.

    1994-10-01

    The UO{sub 3} Deactivation End Point Criteria are necessary to facilitate the transfer of the UO{sub 3} Facility from the Office of Facility Transition and Management (EM-60) to the office of Environmental Restoration (EM-40). The criteria were derived from a logical process for determining end points for the systems and spaces at the UO{sub 3}, Facility based on the objectives, tasks, and expected future uses pertinent to that system or space. Furthermore, the established criteria meets the intent and supports the draft guidance for acceptance criteria prepared by EM-40, {open_quotes}U.S. Department of Energy office of Environmental Restoration (EM-40) Decontamination and Decommissioning Guidance Document (Draft).{close_quotes} For the UO{sub 3} Facility, the overall objective of deactivation is to achieve a safe, stable and environmentally sound condition, suitable for an extended period, as quickly and economically as possible. Once deactivated, the facility is kept in its stable condition by means of a methodical surveillance and maintenance (S&M) program, pending ultimate decontamination and decommissioning (D&D). Deactivation work involves a range of tasks, such as removal of hazardous material, elimination or shielding of radiation fields, partial decontamination to permit access for inspection, installation of monitors and alarms, etc. it is important that the end point of each of these tasks be established clearly and in advance, for the following reasons: (1) End points must be such that the central element of the deactivation objective - to achieve stability - is unquestionably achieved. (2) Much of the deactivation work involves worker exposure to radiation or dangerous materials. This can be minimized by avoiding unnecessary work. (3) Each task is, in effect, competing for resources with other deactivation tasks and other facilities. By assuring that each task is appropriately bounded, DOE`s overall resources can be used most fully and effectively.

  15. The National Ignition Facility Project: An Update

    SciTech Connect

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.; Hands, J.

    2000-12-07

    The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.

  16. National Ignition Facility Project: An Update

    SciTech Connect

    Hogan, W J; Moses, E; Warner, B; Sorem, M; Soures, J; Hands, J

    2000-12-07

    The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.

  17. National Ignition Facility project acquisition plan revision 1

    SciTech Connect

    Clobes, A.R.

    1996-10-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  18. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  19. Facility stabilization project, fiscal year 1998 -- Multi-year workplan (MYWP) for WBS 1.4

    SciTech Connect

    Floberg, W.C.

    1997-09-30

    The primary Facility Stabilization mission is to provide minimum safe surveillance and maintenance of facilities and deactivate facilities on the Hanford Site, to reduce risks to workers, the public and environment, transition the facilities to a low cost, long term surveillance and maintenance state, and to provide safe and secure storage of special nuclear materials, nuclear materials, and nuclear fuel. Facility Stabilization will protect the health and safety of the public and workers, protect the environment and provide beneficial use of the facilities and other resources. Work will be in accordance with the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), local, national, international and other agreements, and in compliance with all applicable Federal, state, and local laws. The stakeholders will be active participants in the decision processes including establishing priorities, and in developing a consistent set of rules, regulations, and laws. The work will be leveraged with a view of providing positive, lasting economic impact in the region. Effectiveness, efficiency, and discipline in all mission activities will enable Hanford Site to achieve its mission in a continuous and substantive manner. As the mission for Facility Stabilization has shifted from production to support of environmental restoration, each facility is making a transition to support the Site mission. The mission goals include the following: (1) Achieve deactivation of facilities for transfer to EM-40, using Plutonium Uranium Extraction (PUREX) plant deactivation as a model for future facility deactivation; (2) Manage nuclear materials in a safe and secure condition and where appropriate, in accordance with International Atomic Energy Agency (IAEA) safeguards rules; (3) Treat nuclear materials as necessary, and store onsite in long-term interim safe storage awaiting a final disposition decision by US Department of Energy; (4) Implement nuclear materials

  20. Plutonium Reclamation Facility incident response project progress report

    SciTech Connect

    Austin, B.A.

    1997-11-25

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies.

  1. Education & Collection Facility GSHP Demonstration Project

    SciTech Connect

    Joplin, Jeff

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient

  2. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  3. Final Environmental Assessment for the Deactivation/Facility Disposition of Atlas Space Launch Complex (SLC-36) at Cape Canaveral Air Force Station, Florida

    DTIC Science & Technology

    2005-08-01

    require compensation at a rate of 4:1 (four acres restored for every acre destroyed) if there is to be a permanent loss of habitat. If the habitat is...areas. Although not anticipated, removal of scrub jay habitat would require compensation at a rate of 4:1 (four acres restored for every acre...Sagittaria lancifolia), common cattail (Typha latifolia), common duckweed (Lemna minor), Curtis’ Reedgrass, (Calamovilfa 3-5 AUGUST 2005 DEACTIVATION

  4. LBR deactivation information exchange

    SciTech Connect

    Guttenberg, S.

    1998-05-15

    This report contains vugraphs of presentations given at the meeting. The topics covered include the following: FFTF Deactivation Strategy; Sodium Drain and Disposition; Sodium Processing; and Fuel Storage and Disposition.

  5. Project W-049H disposal facility test report

    SciTech Connect

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria.

  6. Deactivation of Building 7602

    SciTech Connect

    Yook, H.R.; Barnett, J.R.; Collins, T.L.

    1995-10-01

    The Department of Energy (DOE) has sponsored research and development programs in Building 7602 at Oak Ridge National Laboratory (ORNL) since 1984. This work focused on development of advanced technology for processing nuclear fuels. Building 7602 was used for engineering-scale tests using depleted and natural uranium to simulate the nuclear fuel. In April 1994 the DOE Office of Nuclear Energy (NE) sent supplemental FY 1994 guidance to ORNL stating that in FY 1995 and beyond, Building 7602 is considered surplus to NE programs and missions and shall be shut down (deactivated) and maintained in a radiologically and industrially safe condition with minimal surveillance and maintenance (S&M). DOE-NE subsequently provided FY 1995 funding to support the deactivation activities. Deactivation of Building 7602 was initiated on October 1, 1994. The principal activity during the first quarter of FY 1995 was removal of process materials (chemicals and uranium) from the systems. The process systems were operated to achieve chemical solution concentrations needed for reuse or disposal of the solutions prior to removal of the materials from the systems. During this phase of deactivation the process materials processed and removed were: (1) Uranyl nitrate solution 30,178 L containing 4490 kg of uranium; (2) Nitric acid (neutralized) 9850 L containing less than 0.013 kg of uranium; (3) Organic solution 3346 L containing 265 kg of uranium; (4) Uranium oxide powder 95 kg; and (5) Miscellaneous chemicals. At the end of December 1994, the process systems and control systems were shut down and deactivated. Disposition of the process materials removed from the process systems in Building 7602 proved to be the most difficult part of the deactivation. An operational stand down and funding reductions at Y-12 prevented planned conversion of the uranyl nitrate solution to depleted uranium oxide powder. This led to disposal of the uranyl nitrate solution as waste.

  7. The Low Temperature Microgravity Physics Facility Project

    NASA Technical Reports Server (NTRS)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; Gannon, J.

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  8. National Biomedical Tracer Facility. Project definition study

    SciTech Connect

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  9. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  10. FACILITY 734, SOUTHEAST SIDE, SHOWING FIREPLACE AND DINING ROOM PROJECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 734, SOUTHEAST SIDE, SHOWING FIREPLACE AND DINING ROOM PROJECTION, OBLIQUE VIEW FACING NORTH-NORTHWEST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  11. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  12. Deactivating the Writing Program.

    ERIC Educational Resources Information Center

    Strickland, James

    A written language learner must be given an environment that enables or fosters writing development. Unfortunately, the typical system of education and the learning strategies that are taught are at times the very things that deactivate, frustrate, and even pervert the writing program. In fact, some of the rules that student writers respond to are…

  13. Project W-441, cold vacuum drying facility design requirements document

    SciTech Connect

    O`Neill, C.T.

    1997-05-08

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

  14. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    SciTech Connect

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-03-05

    The Department of Energy`s (DOE) Office of Science and Technology Decontamination and Decommissioning (D&D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D&D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D&D Focus Area`s approach to verifying the benefits of the improved D&D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD`s awarded by the D&D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP`s selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP`s Plant 1 D&D Project which was an ongoing D&D Project for which a firm fixed price contract had been issued to the D&D Contractor. Thus, interferences with the baseline D&D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D&D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of {open_quotes}winners.{close_quotes} All demonstrated, technologies will be evaluated for incorporation into the FEMP`s baseline D&D strategy.

  15. Ethanol Production from Biomass: Large Scale Facility Design Project

    SciTech Connect

    Berson, R. Eric

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  16. Congressional hearing reviews NSF major research and facilities projects

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  17. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  18. Near-facility environmental monitoring quality assurance project plan

    SciTech Connect

    McKinney, S.M.

    1997-11-24

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

  19. APOLLO SOYUZ TEST PROJECT [ASTP] ASTRONAUTS/COSMONAUTS INSPECT FACILITIES

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Soviet Cosmonaut tour of KSC. United States, Soviet Union, prime crews for Apollo Soyuz Test Project inspect spacecraft checkout facilities in Manned Spacecraft Operations Building ACE Station. From left are Astronauts Donald K. Slayton, Vance D. Brand and Thomas P. Stafford; Cosmonauts Valeri Kubasov and Aleksey Leonov.

  20. Near Facility Environmental Monitoring Quality Assurance Project Plan

    SciTech Connect

    MCKINNEY, S.M.

    2000-05-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

  1. Deactivation of cellulases by phenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment of lignocellulosic materials may result in the release of inhibitors and deactivators of cellulose enzyme hydrolysis. We report the identification of phenols with major inhibition and/or deactivation effect on enzymes used for conversion of cellulose to ethanol. The inhibition effects w...

  2. Magnetohydrodynamic projects at the CDIF (Component Development and Integration Facility)

    SciTech Connect

    Not Available

    1990-01-01

    This quarterly technical progress report presents the tasks accomplished at the Component Development and Integration Facility during the fourth quarter of FY90. Areas of technical progress this quarter included: coal system development; seed system development; test bay modification; channel power dissipation and distribution system development; oxygen system storage upgrade; iron core magnet thermal protection system oxygen checkout; TRW slag rejector/CDIF slag removal project; stack gas/environmental compliance upgrade; coal-fired combustor support; 1A channels fabrication and assembly; support of Mississippi State University diagnostic testing; test operations and results; data enhancement; data analysis and modeling; technical papers; and projected activities. 2 tabs.

  3. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  4. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

  5. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    SciTech Connect

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  6. Status of the Leopard Laser Project in Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Wiewior, Piotr P.; Astanovitskiy, A.; Aubry, G.; Batie, S.; Caron, J.; Chalyy, O.; Cowan, T.; Haefner, C.; Le Galloudec, B.; Le Galloudec, N.; Macaulay, D.; Nalajala, V.; Pettee, G.; Samek, S.; Stepanenko, Y.; Vesco, J.

    2009-06-01

    Nevada Terawatt Facility (NTF) currently operates a high-intensity laser system—Leopard. NTF already operates a powerful z-pinch device, called Zebra, for plasma and High Energy Density physics research. The unique research opportunities arise from the combination of NTF's terawatt Zebra z-pinch with 50-terawatt-class Leopard laser. This combination also provides opportunities to address fundamental physics of inertial fusion and high energy density physics with intense laser beam. We report on the status, design and architecture of the Leopard laser project. A first experiments carried out with Leopard will be also briefly mentioned.

  7. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    SciTech Connect

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with

  8. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  9. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    SciTech Connect

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  10. Safe and Effective Deactivation of Metallic Sodium Filled Scrap and Cold Traps From Sodium-cooled Nuclear Reactor D and D - 12176

    SciTech Connect

    Nester, Dean; Crocker, Ben; Smart, Bill

    2012-07-01

    As part of the Plateau Remediation Project at US Department of Energy's Hanford, Washington site, CH2M Hill Plateau Remediation Company (CHPRC) contracted with IMPACT Services, LLC to receive and deactivate approximately 28 cubic meters of sodium metal contaminated debris from two sodium-cooled research reactors (Enrico Fermi Unit 1 and the Fast Flux Test Facility) which had been stored at Hanford for over 25 years. CHPRC found an off-site team composed of IMPACT Services and Commodore Advanced Sciences, Inc., with the facilities and technological capabilities to safely and effectively perform deactivation of this sodium metal contaminated debris. IMPACT Services provided the licensed fixed facility and the logistical support required to receive, store, and manage the waste materials before treatment, and the characterization, manifesting, and return shipping of the cleaned material after treatment. They also provided a recycle outlet for the liquid sodium hydroxide byproduct resulting from removal of the sodium from reactor parts. Commodore Advanced Sciences, Inc. mobilized their patented AMANDA unit to the IMPACT Services site and operated the unit to perform the sodium removal process. Approximately 816 Kg of metallic sodium were removed and converted to sodium hydroxide, and the project was accomplished in 107 days, from receipt of the first shipment at the IMPACT Services facility to the last outgoing shipment of deactivated scrap metal. There were no safety incidents of any kind during the performance of this project. The AMANDA process has been demonstrated in this project to be both safe and effective for deactivation of sodium and NaK. It has also been used in other venues to treat other highly reactive alkali metals, such as lithium (Li), potassium (K), NaK and Cesium (Cs). (authors)

  11. Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL

    SciTech Connect

    Whitmill, Larry Joseph

    2001-12-01

    The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

  12. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect

    Austad, S. L.

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  13. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect

    Austad, Stephanie Lee

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  14. 76 FR 20707 - Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Bureau of Reclamation Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas... Environmental Impact Statement (FEIS) for the Cle Elum Dam Fish Passage Facilities and Fish Reintroduction... FEIS on the proposed Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project....

  15. Management aspects of Gemini's base facility operations project

    NASA Astrophysics Data System (ADS)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging

  16. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  17. Functional description of the West Valley Demonstration Project Vitrification Facility

    SciTech Connect

    Borisch, R.R.; McMahon, C.L.

    1990-07-01

    The primary objective of the West Valley Demonstration Project (WVDP) is the solidification of approximately 2.1 million liters (560,000 gallons) of high-level radioactive waste (HLW) which resulted from the operation of a nuclear fuel reprocessing plant. Since the original plant was not built to accommodate the processing of waste beyond storage in underground tanks, HLW solidification by vitrification presented numerous engineering challenges. Existing facilities required redesign and conversion to meet their new purpose. Vitrification technology and systems needed to be created and then tested. Equipment modifications, identified from cold test results, were incorporated into the final equipment configuration to be used for radioactive (hot) operations. Cold operations have defined the correct sequence and optimal functioning of the equipment to be used for vitrification and have verified the process by which waste will be solidified into borosilicate glass.

  18. National Ignition Facility Project Site Safety Program Appendix A

    SciTech Connect

    Moses, E

    2001-09-30

    These rules apply to all National Ignition Facility (NIF) workers (workers), which include Lawrence Livermore National Laboratory (LLNL) employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other national laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules and NIF Code of Safe Practices shall be used by management to promote the prevention of incidents through indoctrination, safety and health training, and on-the-job application. As a condition for contract award, all employers shall conduct an orientation for all newly hired and rehired employees before those workers will be permitted to start work in this facility. This orientation shall include a discussion of the following information. The General Rules and NIF Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory worker who shall have it readily available. Copies of the General Rules and NIF Code of Safe Practices can also be included in employee safety pamphlets. The Environmental, Safety, and Health (ES&H) rules at the NIF Project site are based upon compliance with the most stringent of Department of Energy (DOE), LLNL, Federal Occupational Safety and Health Administration (OSHA), California (Cal)/OSHA, and federal and state environmental requirements.

  19. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    SciTech Connect

    Hsu, R.H.; Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  20. Family Mode Deactivation Therapy Results and Implications

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This article highlights the inclusion of Mode Deactivation Therapy as a treatment modality for families in crisis. As an empirically validated treatment, Mode Deactivation Therapy has been effective in treating a wide variety of psychological issues. Mode Deactivation Therapy, (MDT) was developed to treat adolescents with disorders of conduct…

  1. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II.

    SciTech Connect

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-05-28

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF.

  2. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  3. DRAINING HAZARDOUS FLUIDS DURING BUILDING 221-1F DEACTIVATION AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Musall, J.

    2010-05-11

    Several years ago, SRS completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS deactivated multiple facilities (e.g. Building 247-F, Naval Fuels Facility, and Building 211-F, Outside Facilities for F-Canyon) that contained extensive piping systems filled with hazardous material (e.g. nitric acid). Draining of hazardous materials from piping was successfully completed in all facilities without incident. In early 2009, the decommissioning program at SRS was restarted as a result of funding made available by the American Recovery & Reinvestment Act (ARRA). Under ARRA, draining of piping containing hazardous material was initiated in multiple facilities including Building 221-1F (or A-Line). This paper describes and reviews the draining of piping containing hazardous materials at A-Line, with emphasis on an incident involving the draining of nitric acid. The paper is intended to be a resource for engineers, planners, and project managers, who face similar draining challenges.

  4. Tuberculosis infection control in health facilities in Lithuania: lessons learnt from a capacity support project.

    PubMed

    Turusbekova, N; Ljungqvist, I; Davidavičiene, E; Mikaityte, J; van der Werf, M J

    2016-03-21

    Tuberculosis (TB) infection control (IC) is key in controlling TB transmission in health facilities in Lithuania. This article presents a project that aimed at supporting health care facilities in Lithuania in implementing TB-IC. The project consisted of 1) facility TB-IC assessments, 2) development of facility TB-IC plans, 3) TB-IC training and 4) site visits. We assessed the impact of these activities through a self-assessment questionnaire. The project resulted in limited improvements. Most progress was seen in administrative and managerial activities. Possible reasons for the limited improvements are challenges with funding and the lack of supportive legislation and a national TB-IC plan.

  5. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    SciTech Connect

    Adamson, M. G.

    1997-10-01

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted.

  6. Transition projects FY 1995 multi-year program/fiscal year work plan WBS 1.3.1. and 7.1

    SciTech Connect

    Not Available

    1994-09-01

    The primary Transition Projects mission is to deactivate facilities on the Hanford site, in preparation for decontamination and decommissioning, and secondarily to provide safe and secure storage of special nuclear materials, nuclear materials, and nuclear fuel. Transition projects will protect the health and safety of the public and of workers, protect the environment, and provide beneficial use of the facilities and other resources. Goals include the following: Achieve deactivation of facilities for transfer to the Hanford Surplus Facility Program, suing PUREX plant deactivation as a model; Achieve excellence in the conduct of operations and maintenance of nuclear facilities in support of the Hanford Site Mission; manage nuclear materials in a safe and secure condition; treat nuclear materials as necessary and store onsite in long-term interim safe storage awaiting a final disposition decision. Description of the program and projects is included.

  7. Treatment Facility F: Accelerated Removal and Validation Project

    SciTech Connect

    Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R.

    1994-04-01

    The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

  8. Mixed and Low-Level Treatment Facility Project

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  9. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    SciTech Connect

    Shank, D.R.

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  10. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  11. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  12. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  13. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  14. Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  15. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  16. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  17. Spent nuclear fuel project cold vacuum drying facility operations manual

    SciTech Connect

    IRWIN, J.J.

    1999-05-12

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  18. Catalyst deactivation in residue hydrocracking

    SciTech Connect

    Oballa, M.C.; Wong, C.; Krzywicki, A.

    1994-12-31

    The existence of a computer-controlled bench scale hydrocracking units at the authors site has made cheaper the non-stop running of experiments for long periods of time. It was, therefore possible to show, at minimal costs, when three hydrocracking catalysts in service reach their maximum lifetime. Different parameters which are helpful for catalyst life and activity predictions were calculated, e.g., relative catalyst age and the effectiveness factor. Experimental results compared well with model, giving them the minimum and maximum catalyst lifetime, as well as the deactivation profile with regard to sulfur and metals removal. Reaction rate constants for demetallization and desulfurization were also determined. Six commercial catalysts were evaluated at short term runs and the three most active were used for long term runs. Out of three catalysts tested for deactivation at long term runs, it was possible to choose one whose useful life was higher than the others. All runs were carried out in a Robinson-Mahoney continuous flow stirred tank reactor, using 50/50 volumetric mixture of Cold Lake/Lloydminster atmospheric residue and NiMo/Al{sub 2}O{sub 3} catalyst.

  19. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  20. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  1. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect

    Alan A. Chen

    2008-03-27

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in

  2. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  3. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    SciTech Connect

    MITCHELL, R.M.

    2000-10-12

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  4. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    SciTech Connect

    MITCHELL, R.M.

    2000-09-28

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  5. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    SciTech Connect

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-02-27

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.

  6. The Ohio School Facilities Commission. Revamping the State's School Construction Projects.

    ERIC Educational Resources Information Center

    De Patta, Joe

    2001-01-01

    Presents an interview with the Ohio School Facilities Commission's (OSFC) Executive Director who discusses the OSFC's history and its work in managing K-12 school facilities throughout the state. Topics include its efforts to help school districts get bond measures on ballets, funding projects, and its "Partnering Program" for construction…

  7. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  8. Development of Facilities Master Plan and Laboratory Renovation Project

    SciTech Connect

    Fox, Andrea D

    2011-10-03

    Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the School's overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

  9. Project definition study for the National Biomedical Tracer Facility

    SciTech Connect

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  10. Beam dynamics simulations and measurements at the Project X Test Facility

    SciTech Connect

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  11. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  12. Evaluation of nuclear facility decommissioning projects: summary report. Plum Brook Reactor Facility

    SciTech Connect

    Doerge, D.H.; Miller, R.L.

    1984-02-01

    This document summarizes information concerning the decommissioning of the Plum Brook Reactor Facility, which was placed in a Nuclear Regulatory Commission (NRC) approved safe storage configuration. The data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in decommissioning of similar facilities. The information is presented both in computer output form and a manually assembled summarization. Complete cost data were not readily available and decommissioning activities did not in all cases conform with current criteria for the SAFSTOR decommissioning mode, therefore no cost comparisons were made.

  13. Diagnostic Evaluation and Adjustment Facility (Project D. E. A. F.)

    ERIC Educational Resources Information Center

    Hairston, Ernest E.

    1971-01-01

    The project expands the rehabilitation program of Goodwill Industries of Central Ohio with in-depth vocational rehabilitation services to the deaf, particularly the multiply handicapped deaf with poor or no communication skills. (KW)

  14. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2016-07-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  15. NETL - Fuel Reforming Facilities

    SciTech Connect

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  16. Project Management Actions Demolition of a Research Facility Building 431

    SciTech Connect

    Collins, W L

    2005-09-06

    The Demolition of B431 is required to achieve the mission of LLNL and the NNSA FIRP objectives by: (1) Supporting the NNSA Infrastructure Plan goal to ''demolish excess facilities as early as possible''; (2) Banking square footage that allows continued application of advanced science and nuclear technology to the Nation's defense; and (3) Helping maintain and enhance the safety, security, and reliability of the weapons stockpile. A significant effort has been put into the demolition concept in order to ensure that it is well thought out and represents best-value to the government for the money.

  17. Project Closeout Report Francium trapping facility at Triumf

    SciTech Connect

    Orozco, Luis A

    2014-09-30

    This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, the only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.

  18. Central Japan Synchrotron Radiation Research Facility Project-(II)

    NASA Astrophysics Data System (ADS)

    Yamamoto, N.; Takashima, Y.; Katoh, M.; Hosaka, M.; Takami, K.; Morimoto, H.; Hori, Y.; Sasaki, S.; Koda, S.; Ito, T.; Sakurai, I.; Hara, H.; Okamoto, W.; Watanabe, N.; Takeda, Y.

    2010-06-01

    A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV, the beam current of 300 mA, and the natural emittance of about 53 nm-rad. The configuration of the storage ring is based on four triple bend cells, and four of the twelve bending magnets are 5 T superconducting ones. The bending angle and critical energy are 12 degree and 4.8 keV, respectively. For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy. Currently, six beamlines are planned for the first phase starting from 2012.

  19. National Ignition Facility Project Completion and Control System Status

    SciTech Connect

    Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

    2009-10-02

    The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

  20. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    SciTech Connect

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  1. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    SciTech Connect

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  2. Mixed and low-level waste treatment facility project

    SciTech Connect

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  3. Modeling Tool to Quantify Metal Sources in Stormwater Discharges at Naval Facilities (NESDI Project 455)

    DTIC Science & Technology

    2014-06-01

    facility managers may not be able to differentiate artificial turf from actual turf in aerial images, and turfs ’ contaminant source strengths are...NESDI) Program (NESDI) Program Manager Leslie Karr, the Naval Facilities Engineering Command Headquarters (NAVFAC HQ) lead Lindsay Nehm, and the...demonstration/validation project to assess the use of the urban stormwater model Windows Source Loading and Management Model (WinSLAMM) to characterize

  4. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  5. Human factors engineering for the TERF (Tritium Emissions Reduction Facility) project. [Tritium Emissions Reduction Facility

    SciTech Connect

    Hedley, W.H.; Adams, F.S. ); Wells, J.E. )

    1990-12-14

    The Tritium Emissions Reduction Facility (TERF) is being built by EG G Mound Applied Technologies to provide improved control of the tritium emissions from gas streams being processed. Mound handles tritium in connection with production, development, research, disassembly, recovery, and surveillance operations. During these operations, a small fraction of the tritium being processed escapes from its original containment. The objective of this report is to describe the human factors engineering as performed in connection with the design, construction, and testing of the TERF as required in DOE Order 6430.1A, section 1300-12. Human factors engineering has been involved at each step of the process and was considered during the preliminary research on tritium capture before selecting the specific process to be used. Human factors engineering was also considered in determining the requirements for the TERF and when the specific design work was initiated on the facility and the process equipment. Finally, human factors engineering was used to plan the specific acceptance tests that will be made during TERF installation and after its completion. These tests will verify the acceptability of the final system and its components. 16 refs., 8 figs.

  6. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  7. Plasma flux-dependent lipid A deactivation

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Hsu, Cheng-Che; Ahmed, Musahid; Liu, Suet Yi; Fang, Yigang; Seog, Joonil; Oehrlein, Gottlieb S.; Graves, David B.

    2014-06-01

    This paper reports the influence of gas plasma flux on endotoxin lipid A film deactivation. To study the effect of the flux magnitude of reactive species, a modified low-pressure inductively coupled plasma (ICP) with O radical flux ˜1016 cm-2 s-1 was used. After ICP exposures, it was observed that while the Fourier transform infrared absorbance of fatty chains responsible for the toxicity drops by 80% through the film, no obvious film endotoxin deactivation is seen. This is in contrast to that previously observed under low flux exposure conducted in a vacuum beam system: near-surface only loss of fatty chains led to significant film deactivation. Secondary ion mass spectrometry characterization of changes at the film surface did not appear to correlate with the degree of deactivation. Lipid A films need to be nearly completely removed in order to detect significant deactivation under high flux conditions. Additional high reactive species flux experiments were conducted using an atmospheric pressure helium plasma jet and a UV/ozone device. Exposure of lipid A films to reactive species with these devices showed similar deactivation behaviour. The causes for the difference between low and high flux exposures may be due to the nature of near-surface structural modifications as a function of the rate of film removal.

  8. Final deactivation report on the Radioisotope Production Lab-E, Building 3032, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Bldg. 3032, after completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Bldg. 3032 prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3032 will be used as the Health Physics Office for the Isotopes Facilities Deactivation Program area and will require access for these offices and to facilitate required surveillance and maintenance (S&M) activities to maintain the building safety envelope. Bldg. 3032 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated except electricity and steam needed for the office areas.

  9. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    SciTech Connect

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  10. Deuteron injector for Peking University Neutron Imaging Facility project

    SciTech Connect

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Yuan, Z. X.; Zhao, J.; Zhang, M.; Song, Z. Z.; Yu, J. X.; Guo, Z. Y.

    2012-02-15

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D{sup +} ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A {phi}5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D{sup +} beam that passed through the {phi}5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16{pi} mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  11. Deuteron injector for Peking University Neutron Imaging Facility project.

    PubMed

    Ren, H T; Peng, S X; Lu, P N; Zhou, Q F; Yuan, Z X; Zhao, J; Zhang, M; Song, Z Z; Yu, J X; Guo, Z Y; Chen, J E

    2012-02-01

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D(+) ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A φ5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D(+) beam that passed through the φ5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16π mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  12. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Deactivation of Medicare billing privileges. 424... Establishing and Maintaining Medicare Billing Privileges § 424.540 Deactivation of Medicare billing privileges. (a) Reasons for deactivation. CMS may deactivate a provider or supplier's Medicare billing...

  13. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Deactivation of Medicare billing privileges. 424... Establishing and Maintaining Medicare Billing Privileges § 424.540 Deactivation of Medicare billing privileges. (a) Reasons for deactivation. CMS may deactivate a provider or supplier's Medicare billing...

  14. Part 2: Evaluation and outcomes of an evidence-based facility design project.

    PubMed

    Krugman, Mary; Sanders, Carolyn; Kinney, Lisa J

    2015-02-01

    Based on the work of a TCAB facility design team at an academic hospital (part 1), an evaluation project was implemented to measure RN work environment perceptions, work activity sampling, and steps walked on 6 units moving into a new acute care pavilion. Pre and post data reported significant nurse satisfaction post move with the new work environment. Workflow sampling data did not reflect significant changes; the pedometer device used to measure nurse steps proved unreliable. Project evaluation data are reported.

  15. Application of scene projection technologies at the AMRDEC SSDD HWIL facilities

    NASA Astrophysics Data System (ADS)

    Gareri, Jeffrey P.; Ballard, Gary H.; Morris, Joseph W.; Bunfield, Dennis; Saylor, Danny

    2012-06-01

    State-of-the-art hardware-in-the-loop (HWIL) test facilities have been established and in operation at the U.S. Army's Aviation and Missile Research, Development, and Engineering Center (AMRDEC) in McMorrow Laboratories, on Redstone Arsenal Alabama for over 37 years. These facilities have been successfully developed and employed supporting numerous tactical and interceptor missile systems. The AMRDEC HWIL facilities are constantly in a state state of modification and revision supporting evolving test requirements related to increasingly complex sensor suites, guidance implementations, and employment strategies prevalent within both existing and emerging aviation and missile programs. . This paper surveys the role of the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) in the development and operation of HWIL test facilities and the implementation of new, innovative technologies that have been integrated within facility test assets. This technology spans both the Near IR (NIR- 1.064um) and IR (3 - 12um) and RF (2 - 95 GHz) operating ranges. The AMRDEC HWIL facilities represent the highest degree of simulation fidelity, integrating all the major parts of a HWIL simulation including tactical missile and seeker hardware, executive control software, scene generation, and NIR, IR or RF scene projection systems. Successful incorporation of scene generation and projection technologies have become a key thrust of the AMRDEC HWIL development focus, with the intention to adapt and anticipate emerging test element requirements necessitated by future system sensing technologies.

  16. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    SciTech Connect

    BERLIN, G.T.

    2004-06-25

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 2333 Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather to

  17. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    SciTech Connect

    BERLIN, G.T.; ORGILL, T.K.

    2004-07-14

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 233-S Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather

  18. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    SciTech Connect

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  19. Information Retrieval in an Office Filing Facility and Future Work in Project Minstrel.

    ERIC Educational Resources Information Center

    Smeaton, A. F.; van Rijsbergen, C. J.

    1986-01-01

    Review of office filing facility filing and retrieval mechanisms for unstructured and mixed media information focuses on free text methods. Also discussed are the state of the art in handling voice and image data, problems with searching text surrogates to implement free text content retrieval, and work of Project Minstrel. (Author/MBR)

  20. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    SciTech Connect

    Not Available

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  1. Neutron shielding for a new projected proton therapy facility: A Geant4 simulation study.

    PubMed

    Cadini, Francesco; Bolst, David; Guatelli, Susanna; Beltran, Chris; Jackson, Michael; Rosenfeld, Anatoly B

    2016-12-01

    In this work, we used the Monte Carlo-based Geant4 simulation toolkit to calculate the ambient dose equivalents due to the secondary neutron field produced in a new projected proton therapy facility. In particular the facility geometry was modeled in Geant4 based on the CAD design. Proton beams were originated with an energy of 250MeV in the gantry rooms with different angles with respect to the patient; a fixed 250MeV proton beam was also modeled. The ambient dose equivalent was calculated in several locations of interest inside and outside the facility, for different scenarios. The simulation results were compared qualitatively to previous work on an existing facility bearing some similarities with the design under study, showing that the ambient dose equivalent ranges obtained are reasonable. The ambient dose equivalents, calculated by means of the Geant4 simulation, were compared to the Australian regulatory limits and showed that the new facility will not pose health risks for the public or staff, with a maximum equivalent dose rate equal to 7.9mSv/y in the control rooms and maze exit areas and 1.3·10(-1)mSv/y close to the walls, outside the facility, under very conservative assumptions. This work represents the first neutron shielding verification analysis of a new projected proton therapy facility and, as such, it may serve as a new source of comparison and validation for the international community, besides confirming the viability of the project from a radioprotection point of view.

  2. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  3. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  4. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry.

  5. Collisional deactivation of highly vibrationally excited pyrazine

    NASA Astrophysics Data System (ADS)

    Miller, Laurie A.; Barker, John R.

    1996-07-01

    The collisional deactivation of vibrationally excited pyrazine (C4N2H4) in the electronic ground state by 19 collider gases was studied using the time-resolved infrared fluorescence (IRF) technique. The pyrazine was photoexcited with a 308 nm laser and its vibrational deactivation was monitored following rapid radiationless transitions to produce vibrationally excited molecules in the electronic ground state. The IRF data were analyzed by a simple approximate inversion method, as well as with full collisional master equation simulations. The average energies transferred in deactivating collisions (<ΔE>d) exhibit a near-linear dependence on vibrational energy at lower energies and less dependence at higher energies. The deactivation of ground state pyrazine was found to be similar to that of ground state benzene [J. R. Barker and B. M. Toselli, Int. Rev. Phys. Chem. 12, 305 (1990)], but it is strikingly different from the deactivation of triplet state pyrazine [T. J. Bevilacqua and R. B. Weisman, J. Chem. Phys. 98, 6316 (1993)].

  6. 75 FR 5626 - Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA INT-DES...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Bureau of Reclamation Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas... Fish Passage Facilities and Fish Reintroduction Project. The Washington State Department of Ecology is... provides information on the analyses related to the construction of downstream juvenile fish passage...

  7. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  8. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    SciTech Connect

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  9. Highlights of the ISOLDE facility and the HIE-ISOLDE project

    NASA Astrophysics Data System (ADS)

    Borge, M. J. G.

    2016-06-01

    The ISOLDE facility is an ISOL-based radioactive beam facility at CERN. It is dedicated to the production and research of nuclei far from stability. Exotic nuclei of variety of chemical elements are available for the study of nuclear structure, nuclear astrophysics, fundamental symmetries and atomic physics, as well as for applications in condensed-matter and life sciences. Since longer than a decade it has offered the largest variety of post-accelerated radioactive beams in the world. In order to broaden the scientific opportunities beyond the present ISOLDE facility, the on-going HIE-ISOLDE (High Intensity and Energy) project will provide major improvements in energy range, beam intensity and beam quality. The first phase will boost the beam energy of the current REX LINAC to 5.5 MeV/u resulting in larger cross sections for Coulomb excitation compared to the previous maximum energy of 3 MeV/u. Higher energies will also open up many transfer reaction channels. Physics with post-accelerated beams starts in autumn 2015. The second phase of the project is already approved and is expected to be completed in 2018 allowing beam energies up to 10 MeV/u for A/q = 4.5. In this contribution the present status of the ISOLDE facility including some highlights will be discussed. The HIE-ISOLDE project will be described together with a panorama of the physics cases to be addressed.

  10. Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2

    NASA Technical Reports Server (NTRS)

    Perkey, John K.

    1992-01-01

    The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

  11. A successful waste stream analysis on a large construction project in a radiologically controlled facility

    SciTech Connect

    Kennicott, M. |; Durrer, R. |; Richardson, D.; Starke, T.P.

    1997-12-01

    The Los Alamos National Laboratory (the Laboratory) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently under going a major, multi-year demolition and construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D and D) job and are identical to the requirements of any of several upgrades projects anticipated for the laboratory and other Department of Energy (DOE) sites. For these reasons the CMR upgrades Project is seen as an ideal model facility--to test the application and measure the success of waste minimization techniques which could be implemented for any similar projects. The purpose of this paper will be to discuss the successful completion of a waste stream analysis. The analyses performed was to measure the potential impact of waste generation, in terms of volume and costs, for a reconfiguration option being considered to change the approach and execution of the original project.

  12. Indianapolis resource recovery facility; Community efforts and technology required for a successful project

    SciTech Connect

    Stevens, P.L. ); Henderson, J.S. ); Tulli, R. )

    1990-01-01

    There are many community needs. Refuse is an abundant byproduct of our civilization. The disposal of this byproduct has become a major problem for our cities. This paper describes on community's efforts to turn a community problem, refuse disposal, into a community asset. The paper describes the many aspects of effort and technology required to develop the Indianapolis Resource Recovery Facility. This facility required the cooperation of the public and private sectors to blend technology into a successful project. Special efforts were required to match appropriate technology to specific community needs and produce a successful and economically sound project. Five basic activities are presented. The first four activities are essential steps for any community to assure the right project fit to community needs. The areas presented are: defining community needs, technology evaluation (approaches evaluated), feasibility studies (economic studies), project implementation (bids and contracts), and a description of the Indianapolis resource recovery facility. A review of these five areas places a real world perspective on refuse as an alternative fuel and source of resource recovery.

  13. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    SciTech Connect

    Thompson, P.B.; Meek, W.E.

    1993-07-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

  14. Influence of computational fluid dynamics on experimental aerospace facilities: A fifteen year projection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.

  15. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    SciTech Connect

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently

  16. The Approach of Emotional Deactivation of Prejudice

    ERIC Educational Resources Information Center

    Boucher, Jean-Nil

    2011-01-01

    The aim of the approach of emotional deactivation is to help students reduce the prejudice they may feel towards diverse social groups. Be those groups homosexuals, people living with a disability or immigrants, the victims of prejudice are invited to come into classrooms and to confront the preconceptions that students have in their respect.…

  17. Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics

    PubMed Central

    Banghart, Matthew R.; Shah, Ruchir C.; Lavis, Luke D.

    2013-01-01

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis. PMID:23960100

  18. The mixed waste management facility. Project baseline revision 1.2

    SciTech Connect

    Streit, R.D.; Throop, A.L.

    1995-04-01

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  19. 340 Facility Secondary Containment and Leak Detection Project W-302 Functional Design Criteria

    SciTech Connect

    Stordeur, R.T.

    1995-03-01

    This functional design criteria for the upgrade to the 340 radioactive liquid waste storage facility (Project W-302) specifically addresses the secondary containment issues at the current vault facility of the 340 Complex. This vault serves as the terminus for the Radioactive Liquid Waste System (RLWS). Project W-302 is necessary in order to bring this portion of the Complex into full regulatory compliance. The project title, ``340 Facility Secondary Containment and Leak Detection``, illustrates preliminary thoughts of taking corrective action directly upon the existing vault (such as removing the tanks, lining the vault, and replacing tanks). However, based on the conclusion of the engineering study, ``Engineering Study of the 300 Area Process Wastewater Handling System``, WHC-SD-WM-ER-277 (as well as numerous follow-up meetings with cognizant staff), this FDC prescribes a complete replacement of the current tank/vault system. This offers a greater array of tanks, and provides greater operating flexibility and ease of maintenance. This approach also minimizes disruption to RLWS services during ``tie-in``, as compared to the alternative of trying to renovate the old vault. The proposed site is within the current Complex area, and maintains the receipt of RLWS solutions through gravity flow.

  20. The Lead-Based VENUS-F Facility: Status of the FREYA Project

    NASA Astrophysics Data System (ADS)

    Kochetkov, Anatoly; Vittiglio, Guido; Wagemans, Jan; Uyttenhove, Wim; Krása, Antonín; Hernandez, Jérémie

    2016-02-01

    The GUINEVERE project in the 6th European Framework Program (FP6) [1] aimed to check the methods for sub-criticality monitoring. To execute the project, the water-moderated thermal VENUS facility was modified into the lead fast VENUS-F facility in the period 2007-2010. To prove the reliability of the reactivity monitoring methods, first of all a critical reference configuration was assembled and characterized by measurements of criticality, power distribution, and spectral indexes. These experiments were communicated for benchmarking at ISRD-14 [2]. The Monte Carlo MCNP 5-1.60 code with the JEFF 3.1.2 data library is used to perform simulations of the VENUS-F core, in particular to obtain Calculated-to-Experimental ratios (C/E) for fission rates and spectral indices. A sensitivity study is performed focusing on the impact of global and local parameters on C/E. In most cases C/E is close to unity within the uncertainties. Only a few exceptions were found, e.g. for the F28/F25 spectral index [3]. In order to investigate the discrepancies, a new measurement campaign with the same critical configuration was included in the currently ongoing FREYA project in FP7 [4]. The facility status, experimental plans, and the sensitivity study are presented in this paper.

  1. Final report of the HFIR (High Flux Isotope Reactor) irradiation facilities improvement project

    SciTech Connect

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987.

  2. The ISOLDE facility and the HIE-HISOLDE project: Recent highlights

    SciTech Connect

    Borge, M. J. G.

    2014-07-23

    The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of the facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.

  3. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    SciTech Connect

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  4. Purdue University National Biomedical Tracer Facility: Project definition phase. Final report

    SciTech Connect

    Green, M.A.

    1995-02-15

    The proposed National Biomedical Tracer Facility (NBTF) will house a high-current accelerator dedicated to production of short-lived radionuclides for biomedical and scientific research. The NBTF will play a vital role in repairing and maintaining the United States` research infrastructure for generation of essential accelerator-based radioisotopes. If properly designed and managed, the NBTF should also achieve international recognition as a Center-of-Excellence for research on radioisotope production methods and for associated education and training. The current report documents the results of a DOE-funded NBTF Project Definition Phase study carried out to better define the technical feasibility and projected costs of establishing and operating the NBTF. This report provides an overview of recommended Facility Design and Specifications, including Accelerator Design, Building Design, and the associated Construction Cost Estimates and Schedule. It is recommended that the NBTF be established as an integrated, comprehensive facility for meeting the diverse production, research, and educational missions set forth in previous documents. Based on an analysis of the projected production demands that will be placed on the NBTF, it appears that a 70 MeV, 1 mA, negative ion cyclotron will offer a good balance between production capabilities and the costs of accelerator purchase and operation. A preliminary architectural plan is presented for a facility designed specifically to fulfill the functions of the NBTF in a cost-effective manner. This report also presents a detailed analysis of the Required Federal State, and Local Permits that may be needed to establish the NBTF, along with schedules and cost estimates for obtaining these permits. The Handling, Storage, and Disposal of Radioactive Waste will pose some significant challenges in the operation of the NBTF, but at this stage of planning the associated problems do not appear to be prohibitive.

  5. Lead Paint Analyzer. Deactivation and Decommissioning Focus Area. OST Reference #2317

    SciTech Connect

    None, None

    1999-09-01

    The U.S. Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in decontamination and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology (OST) sponsors Large-Scale Demonstration and Deployment Projects (LSDDP). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to DOE’s projects, and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of statements defining specific needs or problems where improved technology could be incorporated into ongoing D&D tasks. One of the stated needs was for a Lead Paint Analyzer that would reduce costs and shorten schedules in DOE’s Decommissioning Project. The Niton 700 Series Multi-element Analyzer is a hand-held, battery-operated unit that uses x-ray fluorescence spectroscopy (XRF) to analyze 25 elements, including the presence of lead in paint. The baseline technologies consist of collecting field samples and sending the samples to a laboratory for analysis. This demonstration investigated the associated costs and the required time to take an analysis with the multi-element analyzer with respect to the baseline technology. The Niton 700 Series Multi-element Analyzer performs in situ real-time analyses to identify and quantify lead, chromium, cadmium, and other metals in lead-based paint. Benefits expected from using the multi-element spectrum analyzer include: Reduced cost; Easier use; Reduced schedules in DOE’s decommissioning projects.

  6. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  7. Impact of the Alaska gas conditioning facilities project on the Prudhoe Bay environment

    SciTech Connect

    Plain, D.R.

    1983-01-01

    The purpose of this study is to 1) assemble project data into a current project description, 2) assemble data currently available on the Prudhoe Bay environment, and 3) to evaluate these data to identify potential project-related environmental impacts so that appropriate mitigation/protection programs can be developed. Project data represent current design and operation specifications. However, these specifications are not final; substantial changes in the project may occur before construction begins. Data on the Prudhoe Bay environment were collected from the literature, government documents, and studies conducted by environmental consultants. Despite the extensive mount of development that has occurred in this area, relatively little environmental data are available. Environmental parameters discussed in this study include meteorology, geology, hydrology/water quality, air quality, noise, terrestrial flora and fauna, aquatic flora and fauna, land use, socioeconomic conditions, recreational potential and aesthetics, and cultural resources. The potential exists for the AGCF project to significantly enhance these impacts. Prevention of enhancement of impacts will require further identification of baseline environmental conditions at Prudhoe Bay and establishment of a monitoring program designed to detect changes in baseline parameters both during construction and operation of the AGCF. Data from these programs are needed to develop impact mitigation programs. The data will also be useful in determining incremental costs associated with future expansions of oil and gas production facilities.

  8. Evaluation of nuclear facility decommissioning projects. Project summary report, Elk River Reactor

    SciTech Connect

    Miller, R.L.; Adams, J.A.

    1982-12-01

    This report summarizes information concerning the decommissioning of the Elk River Reactor. Decommissioning data from available documents were input into a computerized data-handling system in a manner that permits specific information to be readily retrieved. The information is in a form that assists the Nuclear Regulatory Commission in its assessment of decommissioning alternatives and ALARA methods for future decommissionings projects. Samples of computer reports are included in the report. Decommissioning of other reactors, including NRC reference decommissioning studies, will be described in similar reports.

  9. Compressed Air System Renovation Project Improves Production at a Food Processing Facility (Mead-Johnson Nutritionals, Bristol-Myers Squib)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the food processing facility project.

  10. Report: American Recovery and Reinvestment Act Site Visit of the Wastewater Treatment Facility Improvements Project, Perkins, Oklahoma

    EPA Pesticide Factsheets

    Report #11-R-0214, May 2, 2011. We conducted an unannounced visit of the construction site of the Perkins Public Works Authority’s wastewater treatment facility improvements project in Perkins, Oklahoma, on April 19–22, 2010.

  11. Temperature (de)activated patchy colloidal particles.

    PubMed

    de Las Heras, Daniel; da Gama, Margarida M Telo

    2016-06-22

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.

  12. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    SciTech Connect

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs.

  13. 49 CFR 192.727 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to the NPMS homepage at http://www.npms.phmsa.dot.gov or contact the NPMS National Repository at 703...-4566; e-mail InformationResourcesManager@phmsa. dot.gov. The information in the report must contain...

  14. 49 CFR 192.727 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to the NPMS homepage at http://www.npms.phmsa.dot.gov or contact the NPMS National Repository at 703...-4566; e-mail InformationResourcesManager@phmsa. dot.gov. The information in the report must contain...

  15. 49 CFR 192.727 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to the NPMS homepage at http://www.npms.phmsa.dot.gov or contact the NPMS National Repository at 703...-4566; e-mail InformationResourcesManager@phmsa. dot.gov. The information in the report must contain...

  16. 49 CFR 192.727 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to the NPMS homepage at http://www.npms.phmsa.dot.gov or contact the NPMS National Repository at 703...-4566; e-mail InformationResourcesManager@phmsa. dot.gov. The information in the report must contain...

  17. 49 CFR 195.59 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... System (NPMS) in accordance with the NPMS “Standards for Pipeline and Liquefied Natural Gas Operator... in accordance with applicable laws. Refer to the NPMS Standards for details in preparing your data... abandoned in accordance with all applicable laws. (b) [Reserved] [Amdt. 195-69, 65 FR 54444, Sept. 8,...

  18. 49 CFR 192.727 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.727... disconnected from all sources and supplies of gas; purged of gas; in the case of offshore pipelines, filled... the volume of gas is so small that there is no potential hazard. (c) Except for service lines,...

  19. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion.

  20. Deactivation and poisoning of fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Ross, P. N., Jr.

    1985-06-01

    The deactivation and poisoning phenomena reviewed are: the poisoning of anode (fuel electrode) catalyst by carbon monoxide and hydrogen sulfide; the deactivation of the cathode (air electrode) catalyst by sintering; and the deactivation of the cathode by corrosion of the support. The anode catalyst is Pt supported on a conductive, high area carbon black, usually at a loading of 10 w/o. This catalyst is tolerant to some level of carbon monoxide or hydrogen sulfide or both in combination, the level depending on temperature and pressure. Much less is known about hydrogen sulfide poisoning. Typical tolerance levels are 2% CO, and 10 ppM H2S. The cathode catalyst is typically Pt supported on a raphitic carbon black, usually a furnace black heat-treated to 2700 C. The Pt loading is typically 10 w/o, and the dispersion (or percent exposed) as-prepared is typically 30%. The loss of dispersion in use depends on the operational parameters, most especially the cathode potential history, i.e., higher potentials cause more rapid decrease in dispersion. The mechanism of loss of dispersion is not well known. The graphitic carbon support corrodes at a finite rate that is also potential dependent. Support corrosion causes thickening of the electrolyte film between the gas pores and the catalyst particles, which in turn causes increased diffusional resistance and performance loss.

  1. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  2. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  3. Highlights of the ISOLDE facility and the HIE-ISOLDE Project

    NASA Astrophysics Data System (ADS)

    Borge, M. J. G.

    2016-05-01

    The ISOLDE Radioactive Beam Facility is the dedicated CERN installation for the production and acceleration of radioactive nuclei far from stability. Exotic nuclei of most chemical elements are available for the study of nuclear structure, nuclear astrophysics, fundamental symmetries and atomic physics, as well as for applications in condensed-matter and life sciences. Since more than a decade it offers the largest variety of post-accelerated radioactive beams in the world today. In order to broaden the scientific opportunities beyond the reach of the present facility, the on-going HIE-ISOLDE (High Intensity and Energy) project will provide major improvements in energy range, beam intensity and beam quality. Post-accelerated beams will be available already this year boosting the beam energy of the current REX LINAC to 4.3 MeV/u reaching 5.5 MeV/u next spring. In this new energy regime the Coulomb excitation cross sections are strongly increased with respect to the previous energy of bearly 3 MeV/u and many transfer reaction channels will open. The second stage of the energy upgrade will allow energies of the beam up to 10 MeV/u for the worst scenario of A/q = 4.5. The funds are already secured and it is expected to be completed in 2017. In this contribution the present status of the ISOLDE facility will be discussed, some highlights will be briefly described to illustrate the advances of the facility. The HIEISOLDE project will be described together with a panorama of the physics cases to be addressed in the near future with emphasis in the day-one experiment to be done this year.

  4. A new starting point-the renewal project of chinese balloon facility

    NASA Astrophysics Data System (ADS)

    Yidong, Gu

    To meet the increasing requirements of scientific investigation by using balloons, Chinese Balloon Facility is carrying out a project to get the additional equipment with high performance, improve the existing facilities since 1995. Besides, because of the development of civil aviation in recent years, to meet the requirement of the authority of air traffic control, the Chinese balloon launch station at Xiang He must be moved to a new place. It is just an opportune moment to make a future program for Chinese scientific ballooning. The investigations and choices to a new launch site is in progress. We call these an Renewal Project of Chinese balloon Facility. It will be accomplished in 1997. The items of new manufactured and improved equipment involve: A new launch vehicle with launch capacity of 2 tons payload for dynamic launch. A new down-link data telecommunication system with bit rate of 256 Kbps. Improvements of the telemetry & tracking and telecommand facilities. To enlarge the storage of the amount of the lift gas To increase the carrying capacity of the recovery parachute. The candidates of the new launch site are located at Gu Cheng (37 deg47' N, 116 deg08' E) and Zheng Ding (38 deg30'N, 114 deg57'E), Hebei Province of China. One of them will be used for testing flights from Jun.,1997. The comprehensive conditions to air traffic control, the flight duration and recovery operations are expected to be considerably improved. The continuous efforts to improve the balloon film and to develop larger balloons were made for years. It is also described in this paper.

  5. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  6. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    SciTech Connect

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  7. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    SciTech Connect

    Patterson, M.W.; Thompson, R.J.

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  8. Excel Automatic Locking Scaffold. Deactivation and Decommissioning Focus Area. OST Reference #2320

    SciTech Connect

    None, None

    1999-09-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for decontamination and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE’s projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D&D tasks. Although not addressed explicitly, the use of scaffolds is needed in several of the listed needs, including characterization, demolition, and asbestos abatement. In these areas, scaffold towers are used to access areas that are not accessible using mechanical methods such as manlifts or mechanical platforms. In addition, the work requires more mobility than what can be achieved using ladders. Because of the wide use of scaffold on D&D projects, a need exists for a safer to use, faster to set up, and overall cheaper scaffold system. This demonstration investigated the feasibility of using the Excel Automatic Locking Scaffold (innovative technology) to access areas where tube and clamp scaffold (baseline) is currently being used on D&D activities. Benefits expected from using the innovative technology include: Decreased exposure to radiation, chemical, and/or physical hazards during scaffold erection and dismantlement; Increased safety; Easier use; Shorten D&D Schedule; Reduced cost of operation; Excel Scaffold is compatible with tube and clamp scaffold. This report

  9. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    SciTech Connect

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  10. Portuguese waste-to energy project: Work moves ahead on `showcase` facility

    SciTech Connect

    Schroppe, J.T.

    1997-12-31

    With the disposal of growing amounts of municipal solid waste becoming an increasing concern for governmental authorities around the world the waste-to-energy project being built in Portugal, just north of Lisbon, may well serve as a showcase for one approach to the efficient disposal of MSW. The plant is being designed, engineered and built by Grupo Progresso Foster Wheeler, a joint-venture team of Foster Wheeler Power Systems, Inc. and Foster Wheeler Conception Etudes Entretien. One of the largest such plants in the world when completed, the facility will use three waste-combustion systems (with capability for adding a fourth) to burn 2016 metric tonnes of refuse per day. In this article J. Thomas Schroppe, Executive Vice President of Foster Wheeler Power Systems, Inc., provides an overview of the current waste-to-energy market and discusses the Portuguese project in detail.

  11. Planning and managing future space facility projects. [management by objectives and group dynamics

    NASA Technical Reports Server (NTRS)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  12. 77 FR 32621 - Developing Large-Scale Renewable Energy Projects at Federal Facilities Using Private Capital Draft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... of Energy Efficiency and Renewable Energy Developing Large-Scale Renewable Energy Projects at Federal... draft guidebook entitled Federal Renewable Energy Guide: Developing Large-Scale Renewable Energy... Energy Guide: Developing Large-Scale Renewable Energy Projects at Federal Facilities Using...

  13. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Development and Project Control D Appendix D to Subpart E of Part 1980 Agriculture Regulations of the... (CONTINUED) GENERAL Business and Industrial Loan Program Pt. 1980, Subpt. E, App. D Appendix D to Subpart E of Part 1980—Alcohol Production Facilities Planning, Performing, Development and Project Control...

  14. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Development and Project Control D Appendix D to Subpart E of Part 1980 Agriculture Regulations of the... (CONTINUED) GENERAL Business and Industrial Loan Program Pt. 1980, Subpt. E, App. D Appendix D to Subpart E of Part 1980—Alcohol Production Facilities Planning, Performing, Development and Project Control...

  15. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Development and Project Control D Appendix D to Subpart E of Part 1980 Agriculture Regulations of the... (CONTINUED) GENERAL Business and Industrial Loan Program Pt. 1980, Subpt. E, App. D Appendix D to Subpart E of Part 1980—Alcohol Production Facilities Planning, Performing, Development and Project Control...

  16. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Development and Project Control D Appendix D to Subpart E of Part 1980 Agriculture Regulations of the... (CONTINUED) GENERAL Business and Industrial Loan Program Pt. 1980, Subpt. E, App. D Appendix D to Subpart E of Part 1980—Alcohol Production Facilities Planning, Performing, Development and Project Control...

  17. Environmental Restoration Program pollution prevention checklist guide for the facility characterization project phase

    SciTech Connect

    Not Available

    1993-09-01

    A facility characterization (FC) is conducted to determine the nature and extent contamination at a potential hazardous facility waste site. The information gathered during an FC includes (1) data on the volume and chemical nature of the waste, (2) information on the extent of contamination and the migration potential of the contaminants, (3) preliminary information on evaluation of alternative concepts that can or cannot be considered, and (4)supportive technical and cost data. For the purposes of identification, the following operational phases will be used for definition for this phase of the decommissioning and decontamination process (1) facility characterization before clean up, (2) characterization during clean up, (3) characterization of waste materials, and (4) site characterization after clean up. A key consideration in this process is the prevention of any waste to be generated from these characterization activities. The purpose of this checklist guide is to assist users with incorporating pollution prevention/waste minimization (PP/WM) in all FC phase projects of the Environmental Restoration (ER) Program. This guide will help users document PP/WM activities for technology transfer and reporting requirements. Automated computer screens will be created from the checklist data to assist users with implementing and evaluating waste reduction.

  18. Detailed information on the FGD retrofit project in Jaenschwalde and the FGD facility in Schwarze Pumpe

    SciTech Connect

    Friede, H.; Nass, K.H.; Breuer, H.

    1995-06-01

    VEAG, the newly founded company for supraregional power generation and distribution in eastern Germany, is retrofitting certain power plants with flue-gas desulfurization (FGD) facilities. Lignite is used almost exclusively as fuel in these power plants. Following German unification, the pollution control regulations in force in the Federal Republic of Germany also apply to the power plants operated by VEAG. The decision was made in principle to only build FGDs which are based on the proven limestone scrubbing process and produce recyclable gypsum as the end product. Experience accumulated with FGDs in lignite-fired power plants resulted in a new concept, which elaborated in cooperation with the commissioned consultants (including Siemens/KWU). This paper will present using the example of a new power plant project with FGD - the 2 x 800-MW power plant Schwarze Pumpe - and an FGD retrofit - the 3 x 1000-MW power plant Janschwalde - the salient features of these facilities (full-metal scrubbers, slurry-carrying pipework and treated-flue-gas ducts made of FRP, flue-gas heat recovery, fine-grained solids separation to improve gypsum quality, use of FGD wastewater for ash moistening and gypsum recycling), an overview of the design as well as construction progress and scheduling. The two FGD facilities are being supplied by KRC/Noell and operate on a two-circuit principle.

  19. Progress with the 2Q-LEBT facility for the RIA project.

    SciTech Connect

    Vinogradov, N.; Aseev, V. N.; Kern, M. R. L.; Ostroumov, P. N.; Pardo, R. C.; Scott, R.; Physics

    2005-01-01

    The design goal of 400 kW uranium beam in the Rare Isotope Accelerator (RIA) Driver Linac can be achieved employing a concept of simultaneous acceleration of two charge states. It has been undertaken to build a prototype 2Q-injector of the RIA Driver Linac which includes an ECR ion source, a LEBT and one-segment of the prototype RFQ. The project called the 2Q-LEBT Facility is being developed in the Physics Division of ANL. Currently, the 2Q-LEBT Facility consists of BIE-100 ECR ion source. The reassembly and commissioning of the source has been completed. During the commissioning process we redesigned and manufactured a few components of the source to increase the beam production performance. A new diagnostic station has been designed and built for accurate measurements of the output beam emittance. The further development of the 2Q-LEBT Facility comprises installation of the source on 100 kV high-voltage platform, building an achromatic bending and transport system including the multi-harmonic buncher, and a full power 57.5 MHz RFQ segment. This report includes a detailed description of the 2Q-LEBT design and beam dynamics simulations along with emittance measurements for various beams.

  20. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  1. Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    SciTech Connect

    Delahaye, P. Jardin, P.; Maunoury, L.; Angot, J.; Lamy, T.; Thuillier, T.; Celona, L.; Choinski, J.; Gmaj, P.; Koivisto, H.; Kolhinen, V.; Tarvainen, O.; Vondrasek, R.; Wenander, F.

    2016-02-15

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam contamination. In recent years, improvements have been made which significantly reduce the differences between the two techniques, making ECRIS charge breeding more attractive especially for CW machines producing intense beams. Upgraded versions of the Phoenix charge breeder, originally developed by LPSC, will be used at SPES and GANIL/SPIRAL. These two charge breeders have benefited from studies undertaken within EMILIE, which are also briefly summarized here.

  2. Final deactivation report on the radioisotope production Lab-D, Building 3031, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-08-01

    The purpose of this report is to document the condition of Bldg. 3031 after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a profile of Bldg. 3031 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package, are discussed. Building 3031 will require access to facilitate required surveillance and maintenance activities to maintain the building safety envelope. Building 3031 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal surveillance and maintenance effort would be required to maintain the building safety envelope. Other than the minimal surveillance and maintenance activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required surveillance and maintenance. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated.

  3. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation.

  4. HAZWOPER project documents for demolition of the Waste Evaporator Facility, Building 3506, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    This document, in support of the Waste Evaporator Facility (WEF) demolition project and contains the Project Work Plan and the Project Health and Safety Plan for demolition and partial remediation actions by ATG at the Waste Evaporator Facility, Building 3506. Various activities will be conducted during the course of demolition, and this plan provides details on the work steps involved, the identification of hazards, and the health and safety practices necessary to mitigate these hazards. The objective of this document is to develop an approach for implementing demolition activities at the WEF. This approach is based on prior site characterization information and takes into account all of the known hazards at this facility. The Project Work Plan provides instructions and requirements for identified work steps that will be utilized during the performance of demolition, while the Health and Safety Plan addresses the radiological, hazardous material exposure, and industrial safety concerns that will be encountered.

  5. Projects of Nuclotron modernization and Nuclotron-based ion collider facility (NICA) at JINR

    SciTech Connect

    Lednicky, R.

    2008-09-15

    One of the basic facilities at the Joint Institute for Nuclear Research (JINR) in Dubna is the 6 A GeV Nuclotron, which has replaced the old weak focusing 10-GeV proton accelerator Synchrophasotron. The first relativistic nuclear beams with the energy of 4.2 A GeV were obtained at the Synchrophasotron in 1971. Since that time, relativistic nuclear physics has been one of the main directions of the JINR research program. In the coming years, the new JINR flagship program assumes the experimental study of hot and dense strongly interacting QCD matter at the new JINR facility. This goal is proposed to be reached by (i) development of the existing Nuclotron accelerator facility as a basis for generation of intense beams over atomic mass range from protons to uranium and light polarized ions, (ii) design and construction of the Nuclotron-based heavy Ion Collider fAcility (NICA) with the maximum nucleon-nucleon center-of-mass collision energy of {radical}s{sub NN} = 9 GeV and averaged luminosity 10{sup 27} cm{sup -2} s{sup -1}, and (iii) design and construction of the Multipurpose Particle Detector (MPD) at intersecting beams. Realization of the project will lead to unique conditions for research activity of the world community. The NICA energy region is of major interest because the highest nuclear (baryonic) density under laboratory conditions can be reached there. Generation of intense polarized light nuclear beams aimed at investigation of polarization phenomena at the Nuclotron is foreseen.

  6. Antioxidant Deactivation on Graphenic Nanocarbon Surfaces

    SciTech Connect

    Liu, Xinyuan; Sen, Sujat; Liu, Jingyu; Kulaots, Indrek; Geohegan, David B; Kane, Agnes; Puretzky, Alexander A; Rouleau, Christopher M; More, Karren Leslie; Palmore, G. Tayhas R.; Hurt, Robert H.

    2011-01-01

    This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.

  7. Complementary and Integrative Healthcare in a Long-term Care Facility: A Pilot Project

    PubMed Central

    Vihstadt, Corrie; Westrom, Kristine; Baldwin, Lori

    2015-01-01

    Introduction: The world's population is aging quickly, leading to increased challenges of how to care for individuals who can no longer independently care for themselves. With global social and economic pressures leading to declines in family support, increased reliance is being placed on community- and government-based facilities to provide long-term care (LTC) for many of society's older citizens. Complementary and integrative healthcare (CIH) is commonly used by older adults and may offer an opportunity to enhance LTC residents' wellbeing. Little work has been done, however, rigorously examining the safety and effectiveness of CIH for LTC residents. Objective: The goal of this work is to describe a pilot project to develop and evaluate one model of CIH in an LTC facility in the Midwestern United States. Methods: A prospective, mixed-methods pilot project was conducted in two main phases: (1) preparation and (2) implementation and evaluation. The preparation phase entailed assessment, CIH model design and development, and training. A CIH model including acupuncture, chiropractic, and massage therapy, guided by principles of collaborative integration, evidence informed practice, and sustainability, was applied in the implementation and evaluation phase. CIH services were provided for 16 months in the LTC facility. Quantitative data collection included pain, quality of life, and adverse events. Qualitative interviews of LTC residents, their family members, and LTC staff members queried perceptions of CIH services. Results: A total of 46 LTC residents received CIH care, most commonly for musculoskeletal pain (61%). Participants were predominantly female (85%) and over the age of 80 years (67%). The median number of CIH treatments was 13, with a range of 1 to 92. Residents who were able to provide self-report data demonstrated, on average, a 15% decline in pain and a 4% improvement in quality of life. No serious adverse events related to treatment were documented

  8. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  9. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    SciTech Connect

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R.; Carson, S.D.; Peterson, P.K.

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  10. A training project helps the poor. A rural healthcare facility offers job training, gains employees.

    PubMed

    Elliott, L; Keller, L; Smith, G

    1992-10-01

    As poor Americans look for work, healthcare facilities face a shortage of workers. One facility, Saint Francis Medical Center in Grand Island, NE, found a way to help some of the area's financially disadvantaged persons receive technical training and employment as it eased its own personnel shortage. Saint Francis leaders assembled a team of representatives from the hospital's staff, the Greater Nebraska Job Training Program, Lincoln, and Central Community College, Grand Island, to establish the Rural Allied Medical Business Occupations program. The team reviewed several job descriptions to help it decide which jobs to include in the program and surveyed area hospitals to ensure the positions selected were experiencing shortages. The program received a grant as a demonstration project from the U.S. Department of Education. After identifying participants who had the aptitudes and interests for the jobs, the Rural Medical Allied Medical Business Occupations program arranged for participants' training and assistance with items such as tuition, child care, and transportation. Participants received training at Central Community College and at Saint Francis Hospital. Saint Francis Medical Center deemed the program a success. The hospital has hired seven healthcare workers who would not have been available if they had not been trained through this program. Moreover, the program provides yet another way for the hospital to help fulfill a major portion of its mission: to help the poor.

  11. EERC pilot-scale CFBC evaluation facility Project CFB test results

    SciTech Connect

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.

  12. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    SciTech Connect

    Wiese, E. C.

    1998-11-23

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  13. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    SciTech Connect

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D&D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project`s {open_quotes}Waste Minimization/Pollution Prevention Strategic Plan.{close_quotes}

  14. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  15. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    SciTech Connect

    Campbell, Don; Barton, David; Case, Glenn

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary

  16. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  17. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  18. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  19. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  20. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  1. Pacemaker deactivation: withdrawal of support or active ending of life?

    PubMed

    Huddle, Thomas S; Amos Bailey, F

    2012-12-01

    In spite of ethical analyses assimilating the palliative deactivation of pacemakers to commonly accepted withdrawings of life-sustaining therapy, many clinicians remain ethically uncomfortable with pacemaker deactivation at the end of life. Various reasons have been posited for this discomfort. Some cardiologists have suggested that reluctance to deactivate pacemakers may stem from a sense that the pacemaker has become part of the patient's "self." The authors suggest that Daniel Sulmasy is correct to contend that any such identification of the pacemaker is misguided. The authors argue that clinicians uncomfortable with pacemaker deactivation are nevertheless correct to see it as incompatible with the traditional medical ethics of withdrawal of support. Traditional medical ethics is presently taken by many to sanction pacemaker deactivation when such deactivation honors the patient's right to refuse treatment. The authors suggest that the right to refuse treatment applies to treatments involving ongoing physician agency. This right cannot underwrite patient demands that physicians reverse the effects of treatments previously administered, in which ongoing physician agency is no longer implicated. The permanently indwelling pacemaker is best seen as such a treatment. As such, its deactivation in the pacemaker-dependent patient is best seen not as withdrawal of support but as active ending of life. That being the case, clinicians adhering to the usual ethical analysis of withdrawal of support are correct to be uncomfortable with pacemaker deactivation at the end of life.

  2. Catalyst deactivation model for residual oil hydrodesulfurization

    SciTech Connect

    Takatsuka, T.; Higasino, S.; Hirohama, S.

    1995-12-31

    Hydrodesulfurization process plays a dominant role in the modern refineries to upgrade residual oil either by removing heterogeneous atoms or by hydrocracking the bottom to distillates products. The practical model is proposed to predict a catalyst life which is the most concern in the process. The catalyst is deactivated in the early stage of the operation by coke deposition on the catalyst active site. The ultimate catalyst life is determined by pore mouth plugging depending on its metal capacity. The phenomena are mathematically described by losses of catalyst surface area and effective diffusivity of feedstock molecules in catalyst pore. The model parameters were collected through the pilot plant tests with different types of catalysts and feedstocks.

  3. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1990

    SciTech Connect

    Not Available

    1991-02-01

    This report documents the annual evaluation of eighteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects and one nonhazardous waste facility at the Hanford Site. The RCRA projects are monitored under three programs: (1) a background monitoring program; (2) an indicator evaluation program; and (3) a groundwater quality assessment program. The background monitoring program and the indicator evaluation program are described as two phases of the detection level monitoring program. Briefly stated, when a groundwater monitoring system has been installed, a background monitoring program begins. Samples and water levels from upgradient monitoring well(s) must be obtained and analyzed quarterly for one year to obtain background data on the quality of the groundwater. After one year, the indicator evaluation program commences, and groundwater samples and water levels must be taken semiannually. Data obtained through the indicator evaluation program are compared with background data; if a significant change over background has occurred, a groundwater quality assessment plan must be implemented. The Solid Waste Landfill (SWL) is included in this report because of uncertainty in the final regulatory authority for the site and because of the interest of the Washington State Department of Ecology (Ecology) in all aspects of Hanford Site operations. 193 refs., 114 figs., 44 tabs.

  4. Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility

    SciTech Connect

    Peretz, F.J.; Booth, R.S.

    1995-07-01

    The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project`s maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes.

  5. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    SciTech Connect

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  6. Small-scale hydroelectric demonstration project: Reactivation of the Elk Rapids Hydroelectric Facility: Final operation and maintenance report

    SciTech Connect

    Miller, R.G.

    1987-03-01

    Information related to the reactivation of the Elk River Hydroelectric Power facility is reported. This report includes a history of the power plant, pertinent cost data, emergency action plans, inspections and testing, warranty work, operating problems, project data, monthly production data, and monthly operating and maintenance costs. 15 figs., 3 tabs.

  7. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect

    1996-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  8. Highly n -doped silicon: Deactivating defects of donors

    NASA Astrophysics Data System (ADS)

    Mueller, D. Christoph; Fichtner, Wolfgang

    2004-12-01

    We report insight into the deactivation mechanisms of group V donors in heavily doped silicon. Based on our ab initio calculations, we suggest a three step model for the donor deactivation. In highly n -type Si grown at low temperatures, in the absence of excess native point defects, the intrinsic limit to ne seems to rise in part by means of donor deactivating distortions of the silicon lattice in the proximity of two or more donor atoms that share close sites. Also, donor dimers play an important part in the deactivation at high doping concentrations. While the dimers constitute a stable or metastable inactive donor configuration, the lattice distortions lower the donor levels gradually below the impurity band in degenerate silicon. On the other hand, we find that, in general, none of the earlier proposed deactivating donor pair defects is stable at any position of the Fermi level. The lattice distortions may be viewed as a precursor to Frenkel pair generation and donor-vacancy clustering process (step 2) that account for deactivation at elevated temperature and longer annealing times. Ultimately, and most prominently in the case of the large Sb atoms, precipitation of the donor atoms may set in as the last step of the deactivation process chain.

  9. Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

    1991-01-01

    This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

  10. Sampling and analysis plan for the preoperational environmental survey of the spent nuclear fuel project facilities

    SciTech Connect

    MITCHELL, R.M.

    1999-04-01

    This sampling and analysis plan will support the preoperational environmental monitoring for construction, development, and operation of the Spent Nuclear Fuel (SNF) Project facilities, which have been designed for the conditioning and storage of spent nuclear fuels; particularly the fuel elements associated with the operation of N-Reactor. The SNF consists principally of irradiated metallic uranium, and therefore includes plutonium and mixed fission products. The primary effort will consist of removing the SNF from the storage basins in K East and K West Areas, placing in multicanister overpacks, vacuum drying, conditioning, and subsequent dry vault storage in the 200 East Area. The primary purpose and need for this action is to reduce the risks to public health and safety and to the environment. Specifically these include prevention of the release of radioactive materials into the air or to the soil surrounding the K Basins, prevention of the potential migration of radionuclides through the soil column to the nearby Columbia River, reduction of occupational radiation exposure, and elimination of the risks to the public and to workers from the deterioration of SNF in the K Basins.

  11. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    SciTech Connect

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  12. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  13. Status of the FLARE (Facility for Laboratory Reconnection Experiments) Construction Project and Plans as a User Facility

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Chen, Y.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2016-10-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. Most of major components either have been already fabricated or are near their completion, including the two most crucial magnets called flux cores. The hardware assembly and installation begin in this summer, followed by commissioning in 2017. Initial comprehensive set of research diagnostics will be constructed and installed also in 2017. The main diagnostics is an extensive set of magnetic probe arrays, covering multiple scales from local electron scales, to intermediate ion scales, and global MHD scales. The planned procedures and example topics as a user facility will be discussed.

  14. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  15. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

  16. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    SciTech Connect

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  17. Deactivation of Pacemakers and Implantable Cardioverter-Defibrillators

    PubMed Central

    Kramer, Daniel B.; Mitchell, Susan L.; Brock, Dan W.

    2013-01-01

    Cardiac implantable electrical devices (CIEDs), including pacemakers (PMs) and implantable cardioverter-defibrillators (ICDs), are the most effective treatment for life-threatening arrhythmias. Patients or their surrogates may request device deactivation to avoid prolongation of the dying process or in other settings, such as after device-related complications or with changes in their health care goals. Despite published guidelines outlining theoretical and practical aspects of this common clinical scenario, significant uncertainty remains for both patients and health care providers regarding the ethical and legal status of CIED deactivation. This review outlines the ethical and legal principles supporting CIED deactivation at patients’ request, centered upon patient autonomy and authority over their own medical treatment. The empirical literature describing stakeholder views and experiences surrounding CIED deactivation is described, along with lessons for future research and practice guidance surrounding the care of patients with CIEDs. PMID:23217433

  18. Environmental Assessment for Malmstrom Minuteman III Deactivation

    DTIC Science & Technology

    2007-05-01

    Surveillance Cameras and Intrusion Detection System. Surveillance cameras will be positioned to view the outside of the facility and other critical...areas within the MAF A-01 complex. Cameras will be connected to a monitor in the Flight Security Office and to an intrusion detection system. The... intrusion detection system will be installed at the gate and all other points of penetration around the facility and around critical equipment. It

  19. Automated Activation and Deactivation of a System Under Test

    NASA Technical Reports Server (NTRS)

    Poff, Mark A.

    2006-01-01

    The MPLM Automated Activation/Deactivation application (MPLM means Multi-Purpose Logistic Module) was created with a three-fold purpose in mind: 1. To reduce the possibility of human error in issuing commands to, or interpreting telemetry from, the MPLM power, computer, and environmental control systems; 2. To reduce the amount of test time required for the repetitive activation/deactivation processes; and 3. To reduce the number of on-console personnel required for activation/ deactivation. All of these have been demonstrated with the release of the software. While some degree of automated end-item commanding had previously been performed for space-station hardware in the test environment, none approached the functionality and flexibility of this application. For MPLM activation, it provides mouse-click selection of the hardware complement to be activated, activates the desired hardware and verifies proper feedbacks, and alerts the user when telemetry indicates an error condition or manual intervention is required. For MPLM deactivation, the product senses which end items are active and deactivates them in the proper sequence. For historical purposes, an on-line log is maintained of commands issued and telemetry points monitored. The benefits of the MPLM Automated Activation/ Deactivation application were demonstrated with its first use in December 2002, when it flawlessly performed MPLM activation in 8 minutes (versus as much as 2.4 hours for previous manual activations), and performed MPLM deactivation in 3 minutes (versus 66 minutes for previous manual deactivations). The number of test team members required has dropped from eight to four, and in actuality the software can be operated by a sole (knowledgeable) system engineer.

  20. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    EPA Pesticide Factsheets

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  1. Position paper: Live load design criteria for Project W-236A Multi-Function Waste Tank Facility

    SciTech Connect

    Giller, R.A.

    1995-06-09

    The purpose of this paper is to discuss the live loads applied to the underground storage tanks of the Multi Function Waste Tank Facility, and to provide the basis for Project W-236A live load criteria. Project 236A provides encompasses building a Weather Enclosure over the two underground storage tanks at the 200-West area. According to the Material Handling Study, the Groves AT 1100 crane used within the Weather Enclosure will have a gross vehicle weight of 66.5 tons. Therefore, a 100-ton concentrated live load is being used for the planning of the construction of the Weather Enclosure.

  2. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU

  3. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    SciTech Connect

    Bollinger, James S.; Koffman, Larry D.; Austin, William E.

    2008-01-15

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design

  4. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    EPA Science Inventory

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  5. Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  6. Documentation assessment, Project C-018H, 200-E area effluent treatment facility

    SciTech Connect

    Peres, M.W.; Connor, M.D.; Mertelendy, J.I.

    1994-12-21

    Project C-018H is one of the fourteen subprojects to the Hanford Environmental Compliance (HEC) Project. Project C-018H provides treatment and disposal for the 242-A Evaporator and PUREX plant process condensate waste streams. This project used the Integrated Management Team (IMT) approach proposed by RL. The IMT approach included all affected organizations on the project team to coordinate and execute all required project tasks, while striving to integrate and satisfy all technical, operational, functional, and organizational objectives. The HEC Projects were initiated in 1989. Project C-018H began in early 1990, with completion of construction currently targeted for mid-1995. This assessment was performed to evaluate the effectiveness of the management control on design documents and quality assurance records developed and submitted for processing, use, and retention for the Project. The assessment focused primarily on the overall adequacy and quality of the design documentation currently being submitted to the project document control function.

  7. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996

    SciTech Connect

    1996-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

  8. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    SciTech Connect

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia P. Tuttle

    2012-01-31

    Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan

  9. Programmatic challenges and the value of testing on the West Valley Demonstration Project`s vitrification facility design

    SciTech Connect

    Borisch, R.R.

    1990-10-01

    This paper discusses the solidification of approximately 2.1 million liters (560 thousand gallons) of high-level waste (HLW) which has resulted from the operation of a nuclear fuel reprocessing plant. Existing facilities` requirement of redesign and conversion to meet their new purpose are addressed. Vitrification technology and systems creation are presented.

  10. Closure of the Fast Flux Test Facility: current status and future plans

    SciTech Connect

    Lesperance, C. P.; Doebler, S. V.; Burke, T. M.

    2007-07-01

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been de-fueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D and D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D and D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009. (authors)

  11. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect

    LESPERANCE, C.P.

    2007-05-23

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

  12. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    SciTech Connect

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation.

  13. Diagnosis of industrial catalyst deactivation by surface characterization techniques

    SciTech Connect

    Menon, P.G. . Lab. voor Petrochemische Techniek Chalmers Univ. of Technology, Goeteborg . Dept. of Engineering Chemistry)

    1994-06-01

    The exact nature of the catalyst surface and the various ways of catalyst deactivation are subjects of great scientific interest and enormous economic importance. A brief review like the present one has to be very selective, giving only the underlying principles and representative examples. The focus of this review is on industrial catalysts, in particular, on the most commonly used supported metal and mixed-oxide type catalysts. Here again, only typical examples are chosen and cited to illustrate the specific types of problems involved in catalyst deactivation and how these problems wee diagnosed by a judicious application of the experimental techniques available today. Of the types of catalyst deactivation caused by coking, poisoning, and solid-state transformations, the emphasis in this review is on the last type. Changes in the chemical composition of the catalyst surface, restructuring or reconstruction of the surface, phase transformations, gradual enrichment/depletion of a particular catalyst component on/from the catalyst surface, these are the topics of prominence in this review. Even here, emphasis is on normally unexpected or unsuspected types of deactivation and the catalyst metamorphosis produced by the catalytic reaction itself, as distinct from the purely thermal effects at the reaction temperature. This review is aimed to provide some essential background information and possibly to serve as a reference guide for trouble-shooting when a catalyst is deactivated for rather mysterious reasons. 147 refs.

  14. Facility Focus: Sports and Recreation Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2000

    2000-01-01

    Examines projects that demonstrate three different commitments administrators make to their athletic facilities: convenience; excellence; and comfort. Projects discussed involve a fitness center, a football stadium, and a multi-sport indoor practice facility. (GR)

  15. Creation of a neonatology facility in a developing country: experience from a 5-year project in China.

    PubMed

    Peabody, J W; Hesketh, T; Kattwinkel, J

    1992-01-01

    In 1983, Project HOPE was invited by Zhejiang Medical University to collaborate in developing a neonatal intensive care unit (NICU) at the Children's Hospital in Hangzhou, China. The initial approach involved renovating facilities, purchasing equipment and supplies, placing short-term consultants in the unit as teachers, and bringing selected leaders to the United States for brief fellowships. An evaluation at 18 months disclosed poor organization and leadership, inconsistent clinical care, and unsatisfactory utilization and maintenance of facilities and equipment. Therefore the strategy was revised to include long-term physician and nursing consultants, establishment of ties with HOPE Biomedical Engineering projects, and development of formal education programs. The unit was transferred to the Chinese after 4 years and an evaluation 1 year after transfer revealed an actively functioning independent NICU with evolving effective leadership, established purchasing and preventive maintenance programs, and continuing formal education activities. Unsatisfactory progress was found with the development of a transport system, some laboratory capabilities, adherence to admission and discharge policies, and various other administrative issues. Although the goal of establishing an independent NICU was realized, perhaps the most lasting accomplishment was the establishment of a facility and a format for development of a transportable education program aimed at improving neonatal care practices throughout a larger region of China.

  16. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    SciTech Connect

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  17. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  18. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    SciTech Connect

    1996-06-01

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  19. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    SciTech Connect

    Lazaro, M.A.; Vinikour, W.; Allison, T.

    1996-09-01

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  20. 105-K Basin material design basis feed description for spent nuclear fuel project facilities. Volume 2: Sludge

    SciTech Connect

    Pearce, K.L.

    1998-08-30

    Volume 2 provides the design feed compositions for the baseline K East and K West Basin sludge process streams expected to be generated during Spent Nuclear Fuel (SNF) Project activities. Four types of feeds are required to support evaluation of specific facility and process considerations during the development of new facilities and processes. These four design feeds provide nominal and bounding conditions for design evaluations. Volume 2 includes definition of inventories for: (1) KE and KW Basins sludge locations (pit sludges, floor sludge, canister.sludge, and wash sludge components), (2) nominal feed for each of five process feed streams, (3) shielding design feed, (4) safety/regulatory assessment feed, and (5) criticality assessment feed.

  1. A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process

    NASA Technical Reports Server (NTRS)

    Vairo, Daniel M.

    1998-01-01

    The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

  2. Characterization of Deactivated Bio-oil Hydrotreating Catalysts

    SciTech Connect

    Wang, Huamin; Wang, Yong

    2015-10-06

    Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase of the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.

  3. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    SciTech Connect

    Martinez, B.; Montoya, A.; Klein, W.

    1999-02-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date.

  4. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  5. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    SciTech Connect

    HUNACEK, G.S.

    2000-08-01

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

  6. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  7. Systems and methods for deactivating a matrix converter

    SciTech Connect

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  8. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to

  9. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    SciTech Connect

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  10. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    SciTech Connect

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  11. Contingency plan for the Old Hydrofracture Facility tanks sluicing project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-10-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), plans to begin a sluicing (flushing) and pumping project to remove the contents from five inactive, underground storage tanks at the Old Hydrofracture Facility (OHF) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The tank contents will be transferred to the Melton Valley Storage Tanks, which are part of the active waste treatment system at ORNL. The purpose of the project is to minimize the risk of leaking the highly radioactive material to the environment. The five OHF tanks each contain a layer of sludge and a layer of supernatant. Based on a sampling project undertaken in 1995, the sludge in the tanks has been characterized as transuranic and mixed waste and the supernatants have been characterized as mixed waste. The combined radioactivity of the contents of the five tanks is approximately 29,500 Ci. This contingency plan is based on the preliminary design for the project and describes a series of potential accident/release scenarios for the project. It outlines Energy Systems` preliminary plans for prevention, detection, and mitigation. Prevention/detection methods range from using doubly contained pipelines to alarmed sensors and automatic pump cutoff systems. Plans for mitigation range from pumping leaked fluids from the built-in tank drainage systems and cleaning up spilled liquids to personnel evacuation.

  12. Lessons Learned Report for the radioactive mixed waste land disposal facility (Trench 31, Project W-025)

    SciTech Connect

    Irons, L.G.

    1995-06-20

    This report presents the lessons learned from a project that involved modification to the existing burial grounds at the Hanford Reservation. This project has been focused on the development and operation of a Resource Conservation and Recovery Act compliant landfill which will accept low-level radioactive wastes that have been placed in proper containers.

  13. Construction Project for the Conversion of the Amelia Earhart Facility, Germany

    DTIC Science & Technology

    2007-11-02

    Europe to gut the Amelia Earhart building was unnecessary and was based on the U.S. Army Engineer District Europe’ 5 preference for large and open work...funded. We also evaluated the effectiveness of the management controls as they applied to the other objectives. A separate report will discuss other funding issues related to the Amelia Earhart project and other projects.

  14. Short-Term Effects of State Deregulation on the Adequacy and Equity of School Facility Projects.

    ERIC Educational Resources Information Center

    Kowalski, Theodore J.; Decman, John C.

    2002-01-01

    In 1995, the Indiana Legislature deregulated state controls over public-school construction projects by reducing the status of required specifications to guidelines. Also, local taxpayers were given greater authority to prevent proposed projects. This study examines the short-term effects of this policy shift. (Contains 5 tables and 16…

  15. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    SciTech Connect

    Not Available

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

  16. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  17. Odor and chemical emissions from dairy and swine facilities: Part 1 - project overview and collection methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock facilities have received numerous criticisms due to their emissions of odorous air and chemicals. Hence, there is a significant need for odor emission factors and identification of principle odorous chemicals. Odor emission factors are used as inputs to odor setback models, while chemica...

  18. Designs for Success: Massive Building Project Makes LACCD a Leader in Green Facilities

    ERIC Educational Resources Information Center

    LaVista, Daniel

    2010-01-01

    After a 35-year building hiatus, the nine colleges in the Los Angeles Community College District (LACCD) needed a major facelift. Facilities on LACCD campuses were antiquated and had fallen into disrepair. For years, students voiced dismay, saying their campuses resembled high schools rather than colleges. Inadequate infrastructure drove many…

  19. 75 FR 39926 - Deer Creek Station Energy Facility Project (DOE/EIS-0415)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... a new 300-megawatt (MW) natural gas-fired combined-cycle generation facility in Brookings County... line, two water wells, a 1.25-mile water supply line, and 1 mile of local road improvements. Western... integrated with the combined-cycle natural gas generation. During periods of high wind generation,...

  20. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  1. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    SciTech Connect

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs.

  2. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    SciTech Connect

    Moss, R. H.; Delgado, A.; Malone, E L.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before final conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure

  3. Patterns of Default Mode Network Deactivation in Obsessive Compulsive Disorder

    PubMed Central

    Gonçalves, Óscar F.; Soares, José Miguel; Carvalho, Sandra; Leite, Jorge; Ganho-Ávila, Ana; Fernandes-Gonçalves, Ana; Pocinho, Fernando; Carracedo, Angel; Sampaio, Adriana

    2017-01-01

    The objective of the present study was to research the patterns of Default Mode Network (DMN) deactivation in Obsessive Compulsive Disorder (OCD) in the transition between a resting and a non-rest emotional condition. Twenty-seven participants, 15 diagnosed with OCD and 12 healthy controls (HC), underwent a functional neuroimaging paradigm in which DMN brain activation in a resting condition was contrasted with activity during a non-rest condition consisting in the presentation of emotionally pleasant and unpleasant images. Results showed that HC, when compared with OCD, had a significant deactivation in two anterior nodes of the DMN (medial frontal and superior frontal) in the non-rest pleasant stimuli condition. Additional analysis for the whole brain, contrasting the resting condition with all the non-rest conditions grouped together, showed that, compared with OCD, HC had a significantly deactivation of a widespread brain network (superior frontal, insula, middle and superior temporal, putamen, lingual, cuneus, and cerebellum). Concluding, the present study found that OCD patients had difficulties with the deactivation of DMN even when the non-rest condition includes the presentation of emotional provoking stimuli, particularly evident for images with pleasant content. PMID:28287615

  4. Compassionate deactivation of ventricular assist devices in pediatric patients.

    PubMed

    Hollander, Seth A; Axelrod, David M; Bernstein, Daniel; Cohen, Harvey J; Sourkes, Barbara; Reddy, Sushma; Magnus, David; Rosenthal, David N; Kaufman, Beth D

    2016-05-01

    Despite greatly improved survival in pediatric patients with end-stage heart failure through the use of ventricular assist devices (VADs), heart failure ultimately remains a life-threatening disease with a significant symptom burden. With increased demand for donor organs, liberalizing the boundaries of case complexity, and the introduction of destination therapy in children, more children can be expected to die while on mechanical support. Despite this trend, guidelines on the ethical and pragmatic issues of compassionate deactivation of VAD support in children are strikingly absent. As VAD support for pediatric patients increases in frequency, the pediatric heart failure and palliative care communities must work toward establishing guidelines to clarify the complex issues surrounding compassionate deactivation. Patient, family and clinician attitudes must be ascertained and education regarding the psychological, legal and ethical issues should be provided. Furthermore, pediatric-specific planning documents for use before VAD implantation as well as deactivation checklists should be developed to assist with decision-making at critical points during the illness trajectory. Herein we review the relevant literature regarding compassionate deactivation with a specific focus on issues related to children.

  5. A Summary of Published Mode Deactivation Therapy Articles

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2006-01-01

    This article summarizes all of the Mode Deactivation Therapy, (MDT) articles published to date. MDT has shown to be more effective than Cognitive Behavior Therapy, (CBT), Social Skills Training, (SST), and Dialectical Behavior Therapy, (DBT), Apsche, Bass, Jennings, Murphy, Hunter, and Siv, (2005); Apsche & Bass, (2005); Apsche, Bass & Murphy,…

  6. Mode Deactivation Therapy (MDT) Family Therapy: A Theoretical Case Analysis

    ERIC Educational Resources Information Center

    Apsche, J. A.; Ward Bailey, S. R.

    2004-01-01

    This case study presents a theoretical analysis of implementing mode deactivation therapy (MDT) (Apsche & Ward Bailey, 2003) family therapy with a 13 year old Caucasian male. MDT is a form of cognitive behavioral therapy (CBT) that combines the balance of dialectical behavior therapy (DBT) (Linehan, 1993), the importance of perception from…

  7. Project SOCRATES: A Flexible Research Facility to be Used in Studies of Pre-Programed Self-Instruction (PSI) and Self-Programed Individualized Education (SPIE). Final Report.

    ERIC Educational Resources Information Center

    Stolurow, Lawrence M.

    This is the final report of work accomplished on project SOCRATES (System for Organizing Content to Review and Teach Educational Subjects). The project contributed to the development and operation of a computer-based facility for psychological research on variables associated with pre-programed self-instruction (PSI) and self-programed…

  8. The new Arecibo Observatory Remote Optical Facility (AO-ROF) in Culebra Island, Puerto Rico: Current Status and Future Projects

    NASA Astrophysics Data System (ADS)

    Santos, P. T.

    2015-12-01

    The idea of establishing the Arecibo Observatory Remote Optical Facility (AO-ROF) in the island of Culebra is a solution to mitigate the ever cumulative quantity of cloud, fog, and rain that has distressed observations at the Arecibo Observatory (AO) during major optical campaigns and observations. Given Culebra Island's favorable geographical and climatological characteristics as its low elevation and geographic location, it appears to have more steady weather conditions than Arecibo, so therefore it provides more availability for optical observations. Placed on Culebra, optical instruments can observe the same thermospheric volume over AO sampled by the Incoherent Scatter Radar (ISR). This capability will become especially important during the High Frequency (HF) facility is on operation. Small and large scale irregularities created by that HF can be readily observed and tracked from the Culebra site, and simultaneous observations from AO of the same atmospheric volume will permit direct vector measurements of dynamical evolution of the irregularities. This work presents a discussion of the current status of AO-ROF facility, as well the future projects.

  9. Preclosure radiological safety analysis for the exploratory shaft facilities; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ma, C.W.; Miller, D.D.; Jardine, L.J.

    1992-06-01

    This study assesses which structures, systems, and components of the exploratory shaft facility (ESF) are important to safety when the ESF is converted to become part of the operating waste repository. The assessment follows the methodology required by DOE Procedure AP-6.10Q. Failures of the converted ESF during the preclosure period have been evaluated, along with other underground accidents, to determine the potential offsite radiation doses and associated probabilities. The assessment indicates that failures of the ESF will not result in radiation doses greater than 0.5 rem at the nearest unrestricted area boundary. Furthermore, credible accidents in other underground facilities will not result in radiation doses larger than 0.5 rem, even if any structure, system, or component of the converted ESF fails at the same time. Therefore, no structure, system, or component of the converted ESF is important to safety.

  10. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    SciTech Connect

    Groth, B.D.

    1995-01-11

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  11. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    PubMed

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling.

  12. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    SciTech Connect

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-07-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barseback is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities.

  13. Position measurements for the isotope production facility and the switchyard kicker upgrade projects

    SciTech Connect

    Gilpatrick, J. D.; Barr, D. S.; O'Hara, J. F.; Shurter, R. B.; Stettler, M. W.; Martinez, D. G.

    2003-01-01

    The Los Alamos Neutron Science Center (LANSCE) is installing two beam lines to both improve operational tuning and provide new capabilities within the facility. The Isotope Production Facility (IPF) will provide isotopes for medical purposes by using the H' beam spur at 100 MeV and the Switchyard Kicker Upgrade (SYK) will allow the LANSCE 800-MeV H beam to be rapidly switched between various beam lines within the facility. The beam position measurements for both of these beam lines uses a standard micro-stripline beam position monitor (BPM) with both a 50-mm and 75-mm radius. The cable plant is unique in that it unambiguously provides a method of verifying the operation of the complete position measurement. The processing electronics module uses a log ratio technique with error corrections such that it has a dynamic range of -12 dBm to -85 dBm with errors less than 0.15 dB within this range. This paper will describe the primary components of these measurement systems and provide initial data of their operation.

  14. Determination of the Microbial Diversity of Spacecraft Assembly Facilities: First Results of the Project MiDiv

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Horneck, G.; Fritze, D.; Stackebrandt, E.; Kminek, G.

    The first step in the implementation of planetary protection guidelines encompasses a qualitative and quantitative inventory of the bioburden of spacecraft assembly facilities. In such an artificial environment mainly microorganisms are to be expected that are brought in by the humans themselves and that are able to withstand the controlled air circulation, the low relative humidity, the moderately high temperature and the low-nutrient conditions in the clean rooms of the assembly facilities. With informations about the composition of these microbial communities the development and/or optimization of adequate cleaning and sterilization procedures for spacecraft preparation before launch will be possible. The bioburden assessment in spacecraft assembly facilities requires a standardized procedure for sampling the air and surfaces in the facilities as well as of the spacecraft, a transfer of the biological samples under controlled conditions to the analyzing laboratory and a scientifically approved set of methods for analysis. In the ESA project MiDiv we started to investigate the bioburden of spacecrafts using the satellites SMART-1 and ROSETTA as test objects. The analysis of the samples included so far cultivation on different media at different pH and temperatures with and without oxygen with and without pasteurization, establishment of a culture collection of bacteria and partial 16S rRNA gene analysis. The results of these preliminary measurements, the total number of microorganisms, the numbers of colony forming units, differentiated according to the subgroups of aerobes, facultative anaerobes and anaerobes, and the phylogenetic classification, will be assessed with respect to the physiological potential of the identified microorganisms to withstand the different cleaning and sterilizing procedures used up to now for planetary protection measures. In the next step the ability of selected microorganisms to survive has to tested under environmental conditions as

  15. M.U.S.T. 2007 Summer Research Project at NASA's KSC MILA Facility

    NASA Technical Reports Server (NTRS)

    PintoRey, Christian R.

    2007-01-01

    The summer research activity at Kennedy Space Center (KSC) aims to introduce the student to the basic principles in their field of study. While at KSC, a specific research project awaits the student to complete. As an Aeronautical Engineering student, my assigned project is to assist the cognizant engineer, Mr. Troy Hamilton, in the six engineering phases for replacing the Ponce De Leon (PDL)4.3M Antenna Control Unit (ACU). Although the project mainly requires the attention of two engineers and two students, it also involves the participation of many colleagues at various points during the course of the engineering change (EC). Since the PDL 4.3M ACU engineering change makes both hardware and software changes, it calls upon the expertise of a Hardware Engineer as well as a Software Engineer. As students, Mr. Jeremy Bresette and I have worked side by side with the engineers, gaining invaluable experience. We work in two teams, the hardware team and the software team, On certain tasks, we assist the engineers, while on others we assume their roles. By diligently working in this fashion, we are learning how to communicate effectively as professionals, despite the fact that we are studying different engineering fields. This project has been a great fit for my field of study, as it has highly improved my awareness of the many critical tasks involved in carrying out an engineering project.

  16. D4 Project Innovations and Challenges

    SciTech Connect

    Fulton, J.C.

    2007-07-01

    In 2005, the U.S. Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at the Hanford Site, which was awarded to Washington Closure Hanford (WCH). One portion of the WCH company structure is known as the D4 project, where D4 represents the deactivation, decommissioning, decontamination, and demolition of excess facilities. The RCC Contract scope requires that approximately 485 excess facilities undergo the D4 process. During 2005 and 2006, significant acceleration has been achieved in completing the D4 of these facilities. By the end of November 2006, more than 70 facilities had been completed, while only 22 were scheduled for completion. This acceleration has been achieved by implementing innovative work practices and refinement of techniques developed at other DOE such as Rocky Flats, Mound, and Savannah River. In addition, a number of unique equipment deployments have supported the acceleration. While the RCC Project is moving along an accelerated path, there are a number of challenges ahead. The challenges discussed in this paper relate to project impacts that could result from the delayed release of excess facilities in the 300 and 100-K Areas and the potential for mitigation of these impacts. (authors)

  17. Site Studies for the SuperB Collider and Synchrotron Radiation Facility Project

    SciTech Connect

    Tomassini, S.; Biagini, M.E.; Raimondi, P.; Sanelli, C.; Bolzon, B.; Deleglise, G.; Jeremie, A.; Seeman, J.; /SLAC

    2012-04-26

    The SuperB complex project aims at the construction of a very high luminosity (10{sup 36} cm{sup -2}s{sup -1}) asymmetric e{sup +}e{sup -} B-factory and a few X-ray synchrotron beam lines (SR). The project has been recently approved by the Italian Government as part of the National Research Plan. The Tor Vergata University location has been chosen and a Consortium among INFN, University of Rome II Tor Vergata and the Research Ministry is being signed, allowing for the constitution of the 'Cabibbo Laboratory', where the SuperB project will be hosted. This paper presents and describes the status of the preliminary design of the site layout, related issues for the chosen site and the preliminary ground motion (GM) measurement results.

  18. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  19. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    SciTech Connect

    Not Available

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  20. LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility

    SciTech Connect

    Candy, J V

    1999-10-31

    This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

  1. Alternate Project Delivery Methods: New Ways to Build and Renovate School Facilities.

    ERIC Educational Resources Information Center

    Aller, Gary

    2002-01-01

    Describes potential benefits of four alternative project-delivery methods for school construction, renovation, and maintenance: construction manager-at-risk (CMAR), design-build (DB), design-bid-build (DBB), and job-order contracting (JOC). Compares CMAR, DBB, and DB for construction cost, schedule, and quality. (PKP)

  2. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    SciTech Connect

    IRWIN, J.J.

    1999-02-24

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

  3. [Educational Facilities for Pregnant School-Age Girls in Districts 3, 4, 12, 13, and 18. Project No. 1369. Evaluation of ESEA Title I Projects in New York City 1968-69.

    ERIC Educational Resources Information Center

    Appel, Yetta; Berken, Ruth R.

    This project for pregnant school age girls is an ESEA Title I program operating in five facilities in Manhattan, Bronx, and Brooklyn. The primary objective of the project was to assist pregnant school age girls complete their education by being able to attend school. Additional objectives included provision of information and training in personal…

  4. RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report

    SciTech Connect

    Annette L. Schafer

    2012-06-01

    A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

  5. Considerations on Facilities Planning

    ERIC Educational Resources Information Center

    Baule, Steven

    2007-01-01

    Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

  6. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    SciTech Connect

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    2013-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  7. Status and Plans for the FLARE (Facility for Laboratory Reconnection Experiments) Project

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-11-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection ``phase diagram'' [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed. Supported by NSF.

  8. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  9. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    SciTech Connect

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant

  10. Back-Up Generator Facility and Associated Project Environmental Assessment Dyess Air Force Base, Texas

    DTIC Science & Technology

    2007-07-01

    or operate energy security or conservation projects at the base. Waterpump motors would not be replaced and/or upgraded. In addition, existing sub...install three upgraded/replacement water-pump motors in the base?s existing potable water distribution plant. Under this program, Dyess AFB could pay less... motor replacements would enhance efficiency and conservation. Under the no-action alternative, the Air Force would not authorize Siemens to construct

  11. Boosting functionality of synthetic DNA circuits with tailored deactivation

    PubMed Central

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-01-01

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology. PMID:27845324

  12. Boosting functionality of synthetic DNA circuits with tailored deactivation.

    PubMed

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-11-15

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology.

  13. On the puzzling deactivation mechanism of thymine after light irradiation

    SciTech Connect

    Gonzalez, Leticia; Gonzalez-Vazquez, Jesus; Samoylova, Elena; Schultz, Thomas

    2008-12-08

    The possible deactivation mechanisms of thymine after UV light irradiation are reviewed in the light of theoretical calculations. Recent experiments reveal that three transient species with lifetimes in the fs, ps, and ns regime are present in thymine. The possibility of ground or excited state tautomerization is explored and discarded. The role of {pi}{sigma}* states, as well as of the proposed minimum of the {pi}{pi}* excited state surface are assessed. In view of the obtained calculations and results available from the literature, the measured time scales can be tentatively attributed to a model involving different conical intersections between the {pi}{pi}*, n{pi}*, and the electronic ground state, as well as deactivation via the triplet states. Time-resolved photoelectron experiments supported by theoretical calculations are proposed to appraise the validity of this model.

  14. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  15. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  16. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    SciTech Connect

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information.

  17. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  18. Contingency plan for the Old Hydrofracture Facility Tanks Sluicing Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1998-06-01

    This revised contingency plan addresses potential scenarios involving the release of radioactively contaminated waste from the Old Hydrofracture Facility Tanks Contents Removal project to the environment. The tanks are located at the Oak Ridge National Laboratory. The project involves sluicing the contents of the five underground tanks to mix the sludge and supernatant layers, and pumping the mixture to the Melton Valley Storage Tanks (MVST) for future processing. The sluicing system to be used for the project consists of a spray nozzle designated the {open_quotes}Borehole Miner,{close_quotes} with an associated pump; in-tank submersible pumps to transfer tank contents from the sluice tanks to the recycle tank; high-pressure pumps providing slurry circulation and slurry transport to the MVST; piping; a ventilation system; a process water system; an instrumentation and control system centered around a programmable logic controller; a video monitoring system; and auxiliary equipment. The earlier version of this plan, which was developed during the preliminary design phase of the project, identified eight scenarios in which waste from the tanks might be released to the environment as a result of unanticipated equipment failure or an accident (e.g., vehicular accident). One of those scenarios, nuclear criticality, is no longer addressed by this plan because the tank waste will be isotopically diluted before sluicing begins. The other seven scenarios have been combined into three, and a fourth, Borehole Miner Failure, has been added as follows: (1) underground release from the tanks; (2) aboveground release or spill from the sluicing system, a tank riser, or the transfer pipeline; (3) release of unfiltered air through the ventilation system; and (4) Borehole Miner arm retraction failure. Methods for preventing, detecting, and responding to each release scenario are set out in the plan.

  19. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  20. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  1. Resolving Ultrafast Photoinduced Deactivations in Water-solvated Pyrimidine Nucleosides.

    PubMed

    Pepino, Ana J; Segarra-Martí, Javier; Nenov, Artur; Improta, Roberto; Garavelli, Marco

    2017-03-27

    For the first time, ultrafast deactivations of photo-excited water-solvated pyrimidine nucleosides are mapped employing hybrid QM(CASPT2)/MM(AMBER) optimizations that account for explicit solvation, sugar effects and dynamically correlated potential energy surfaces. Low energy S1/S0 ring-puckering and ring-opening conical intersections (CIs) are suggested to drive the ballistic coherent sub-ps (<200fs) decays observed in each pyrimidine, the energetics controlling this processes correlating with the lifetimes observed. A second bright 1π2π* state, promoting excited-state population branching and leading towards a third CI with the ground state, is proposed to be involved in the slower ultrafast decay component observed in Thd/Cyd. The transient spectroscopic signals of the competitive deactivation channels are computed for the first time. A general unified scheme for ultrafast deactivations, spanning the sub-to-few ps time domain, is eventually delivered, with computed data that matches the experiments and elucidates the intrinsic photo-protection mechanism in solvated pyrimidine nucleosides.

  2. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility.

  3. Gamification of Learning Deactivates the Default Mode Network.

    PubMed

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  4. Gamification of Learning Deactivates the Default Mode Network

    PubMed Central

    Howard-Jones, Paul A.; Jay, Tim; Mason, Alice; Jones, Harvey

    2016-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated. PMID:26779054

  5. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  6. Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    SciTech Connect

    Simmons, C. B.; Akey, Austin J.; Sullivan, Joseph T.; Buonassisi, Tonio; Krich, Jacob J.; Recht, Daniel; Aziz, Michael J.

    2013-12-28

    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E{sub A}=1.7 ± 0.1 eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.

  7. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    SciTech Connect

    Not Available

    1987-02-01

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs., 7 tabs.

  8. INJECTION ACCELERATION AND EXTRACTION OF HIGH INTENSITY PROTON BEAM FOR THE NEUTRINO FACILITY PROJECT AT BNL.

    SciTech Connect

    Tsoupas, N; Barton, D; Ganetis, G; Jain, A; Lee, Y; Marneris, I; Meng, W; Raparia, D; Roser, T; Ruggiero, A; Tuozzolo, J; Wanderer, P; Weng, W

    2003-05-12

    The proposed ''neutrino-production'' project [1.2] to be built at the Brookhaven National Laboratory (BNL) requires that the neutrino-production target be bombarded by a high intensity proton beam-pulse of {approx} 90 x 10{sup 12} protons of 28 GeV in energy and at a rate of 2.5 Hz, resulting in a 1 MW power of proton beam deposited on the target for the production of the neutrinos. In this paper we investigate the possibility of producing this high intensity proton beam, using as the main accelerator the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL). The following aspects of the project are reported in this paper: (a) The beam injection into the AGS synchrotron of 1.2 GeV H{sup -} beam produced by a super-conducting LINAC[3]; (b) The effect of the eddy currents induced on the vacuum chamber of the circulating beam during the ''ramping'' of the main magnets of the AGS; (c) The method of the beam extraction from the AGS and the optics of the 28 GeV beam extracted from the AGS.

  9. Preclosure radiological safety evaluation: Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect

    Schelling, F.J.; Smith, J.D.

    1993-07-01

    A radiological safety evaluation is performed to determine the impacts of Exploratory Studies Facility (ESF) design changes on the preclosure public radiological safety for a potential nuclear waste repository at Yucca Mountain, Nevada. Although the ESF design has undergone significant modification, incorporation of the modified design requires only modest changes to the conceptual repository configuration. To the extent feasible, the results of earlier safety evaluations presented in SAND84-2641, SAND88-7061, and SAND89-7024, which were based on the original ESF configuration, are compared with the results for the modified configuration. This comparison provides an estimate of the range of analysis uncertainty. This preliminary analysis indicates that there are no Q-scenarios, which are defined as those scenarios with a net occurrence probability of greater than 10{sup {minus}6}/yr and produce a radiological dose at the 5-km controlled area boundary of greater than 0.5 rem. The analysis yielded estimates for an underground accident of a probability of 3.8 {times} 10{sup {minus}15}/yr and a dose of 1.5 rem. For a surface-initiated accident, a probability of 1.5 {times} 10{sup {minus}12}/yr and a dose of 0.6 rem was estimated.

  10. Variation in infection prevention practices in dialysis facilities: results from the national opportunity to improve infection control in ESRD (End-Stage Renal Disease) project.

    PubMed

    Chenoweth, Carol E; Hines, Stephen C; Hall, Kendall K; Saran, Rajiv; Kalbfleisch, John D; Spencer, Teri; Frank, Kelly M; Carlson, Diane; Deane, Jan; Roys, Erik; Scholz, Natalie; Parrotte, Casey; Messana, Joseph M

    2015-07-01

    OBJECTIVE To observe patient care across hemodialysis facilities enrolled in the National Opportunity to Improve Infection Control in ESRD (end-stage renal disease) (NOTICE) project in order to evaluate adherence to evidence-based practices aimed at prevention of infection. SETTING AND PARTICIPANTS Thirty-four hemodialysis facilities were randomly selected from among 772 facilities in 4 end-stage renal disease participating networks. Facility selection was stratified on dialysis organization affiliation, size, socioeconomic status, and urban/rural status. MEASUREMENTS Trained infection control evaluators used an infection control worksheet to observe 73 distinct infection control practices at the hemodialysis facilities, from October 1, 2011, through January 31, 2012. RESULTS There was considerable variation in infection control practices across enrolled facilities. Overall adherence to recommended practices was 68% (range, 45%-92%) across all facilities. Overall adherence to expected hand hygiene practice was 72% (range, 10%-100%). Compliance to hand hygiene before and after procedures was high; however, during procedures hand hygiene compliance averaged 58%. Use of chlorhexidine as the specific agent for exit site care was 19% overall but varied from 0% to 35% by facility type. The 8 checklists varied in the frequency of perfect performance from 0% for meeting every item on the checklist for disinfection practices to 22% on the arteriovenous access practices at initiation. CONCLUSIONS Our findings suggest that there are many areas for improvement in hand hygiene and other infection prevention practices in end-stage renal disease. These NOTICE project findings will help inform the development of a larger quality improvement initiative at dialysis facilities.

  11. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  12. R/V Mirai, her missions, facilities and special project "BEAGLE 2003"

    NASA Astrophysics Data System (ADS)

    Nagahama, N.; Fujioka, K.; Okumura, S.; Sueyoshi, S.; Tokunaga, W.; Imai, Y.; Okumura, S.; Maeno, K.; Kimura, R.; Takao, K.; Takizawa, T.

    2003-12-01

    The R/V Mirai, with its large ice-strengthened sturdy hull, was launched in 1997. The ship, in particular, with its large size and its anti-rolling device of special design, is capable of undertaking missions to high-latitude and Polar Regions exposed to the extremely harsh weather and sea conditions. The ship is equipped with many state-of-the art oceanographic and marine meteorological instruments and is expected to act as a floating platform for sophisticated interdisciplinary researches, emphasizing on global change. The R/V Mirai has many characteristic features. Several examples are as follows; (1) Possible for longer survey voyages and wide area observation: She has abundance of laboratories and instrumentation for various observation and facilities for data processing and analyzing. (2) Superior navigation under rough weather with ice strengthened hull: Large class vessel in the world as research vessel, equipped with Hybrid type anti-rolling systems. Also its hull structure is ice strengthened for the voyage to the Arctic Ocean area in the summer seasons. (3) Ability to carry large types of observation instruments on board, and deployed and retrieval of equipment in research areas: Transport, deployment and retrieval of ocean observation buoy developed by JAMSTEC is effectively handled. Further, CTD/water sampling systems, 20 m length piston core sampler system etc. are possible to be installed and operated on board. The R/V Mirai has special missions for ocean science, because of her superior characteristic features. Several examples are as follows; (1) Observation at Arctic region for interaction among atmosphere, ocean and sea ice: Sea ice distributed over a high latitude area works as a lid, which controls the energy transportation between the atmosphere and the ocean. A global climate change will be supposed by ice reduction in a result of global warming. We investigate the interaction between sea ice, ocean and atmosphere. (2) Material cycle in ocean

  13. Geology of the ECRB Cross Drift-Exploratory Studies Facility, Yucca Mountain Project, Yucca Mountain, Nevada

    SciTech Connect

    DOE,

    1999-01-01

    The Enhanced Characterization of the Repository Block Cross Drift (Cross Drift) excavated at Yucca Mountain is being studied to determine its suitability as a permanent high-level nuclear waste repository. This report presents a summary of data collected by the U.S. Bureau of Reclamation (USBR) personnel on behalf of the U.S. Geological Survey (USGS) for the Department of Energy in the Cross Drift from Sta. 00+00 to 26+64. This report includes descriptions of lithostratigraphic units, an analysis of data from full-periphery geologic maps (FPGM) and detailed line survey (DLS) data, a detailed description of the Solitario Canyon Fault zone (SCFZ), and an analysis of geotechnical and engineering characteristics. The Cross Drift is excavated entirely within the Topopah Spring Tuff formation of the Paintbrush Group. Units exposed in the crystal-poor member of the Topopah Spring Tuff, include the Topopah Spring crystal-poor upper lithophysal zone (Tptpul) (Sta. 0+00 to 10+15), the Topopah Spring crystal-poor middle nonlithophysal zone (Tptpmn) (Sta. 10+15 to 14+44), the Topopah Spring crystal-poor lower lithophysal zone (Tptpll) (Sta. 14+44 to 23+26), and the Topopah Spring crystal-poor lower nonlithophysal zone (Tptpln) (Sta. 23+26 to 25+85). The lower portion of the Topopah Spring crystal-rich lithophysal transition subzone (Tptrl1) is exposed on the west side of the Solitario Canyon fault from Sta. 26+57.5 to 26+64. Lithologically, the units exposed in the Cross Drift are similar in comparable stratigraphic intervals of the Exploratory Studies Facility (ESF), particularly in terms of welding, secondary crystallization, fracturing, and type, size, color, and abundance of pumice and lithic clasts. The most notable difference is the lack of the intensely fractured zone (IFZ) in the Cross Drift. The as-built cross section and the pre-construction cross section compare favorably. Lithostratigraphic contacts and structures on the pre-construction cross section were

  14. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  15. Cortical deactivation induced by subcortical network dysfunction in limbic seizures

    PubMed Central

    Englot, Dario J.; Modi, Badri; Mishra, Asht M.; DeSalvo, Matthew; Hyder, Fahmeed; Blumenfeld, Hal

    2009-01-01

    Normal human consciousness may be impaired by two possible routes: direct reduced function in widespread cortical regions, or indirect disruption of subcortical activating systems. The route through which temporal lobe limbic seizures impair consciousness is not known. We recently developed an animal model which, like human limbic seizures, exhibits neocortical deactivation including cortical slow waves and reduced cortical cerebral blood flow (CBF). We now find through functional MRI (fMRI) that electrically-stimulated hippocampal seizures in rats cause increased activity in subcortical structures including the septal area and mediodorsal thalamus, along with reduced activity in frontal, cingulate, and retrosplenial cortex. Direct recordings from the hippocampus, septum, and medial thalamus demonstrated fast poly-spike activity associated with increased neuronal firing and CBF, while frontal cortex showed slow oscillations with decreased neuronal firing and CBF. Stimulation of septal area, but not hippocampus or medial thalamus, in the absence of a seizure resulted in cortical deactivation with slow oscillations and behavioral arrest, resembling changes seen during limbic seizures. Transecting the fornix, the major route from hippocampus to subcortical structures, abolished the negative cortical and behavioral effects of seizures. Cortical slow oscillations and behavioral arrest could be reconstituted in fornix-lesioned animals by inducing synchronous activity in the hippocampus and septal area, implying involvement of a downstream region converged upon by both structures. These findings suggest that limbic seizures may cause neocortical deactivation indirectly, through impaired subcortical function. If confirmed, subcortical networks may represent a target for therapies aimed at preserving consciousness in human temporal lobe seizures. PMID:19828814

  16. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  17. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; Leckner, H.; Papitashvili, N.; Roberts, Aaron

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  18. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  19. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  20. Solid-state enzyme deactivation in air and in organic solvents

    SciTech Connect

    Toscano, G.; Pirozzi, D.; Maremonti, M.; Greco, G. Jr. . Dipartimento di Ingegneria Chimica)

    1994-09-05

    Thermal deactivation of solid-state acid phosphatase is analyzed, both in the presence and in the absence of organic solvents. The thermal deactivation profile departs from first order kinetics and shows an unusual, temperature-dependent, asymptotic value of residual activity. The process is described by a phenomenological equation, whose theoretical implications are also discussed. The total amount of buffer salts in the enzyme powder dramatically affects enzyme stability in the range 70 to 105 C. The higher salt/protein ratio increases the rate of thermal deactivation. The deactivation rate is virtually unaffected by the presence of organic solvents, independent of their hydrophilicity.

  1. Giving cell phones to pregnant women and improving services may increase primary health facility utilization: a case–control study of a Nigerian project

    PubMed Central

    2014-01-01

    Background Worldwide, about 287 000 women die each year from mostly preventable complications related to pregnancy and childbirth. A disproportionately high number of these deaths occur in sub-Saharan Africa. The Abiye (‘Safe Motherhood’) project in the Ifedore Local Government Area (LGA) of Ondo-State of Nigeria aimed at improving facility utilization and maternal health through the use of cell phones and generally improved health care services for pregnant women, including Health Rangers, renovated Health Centres, and improved means of transportation. Methods A one-year sample of retrospective data was collected from hospital records and patients’ case files from Ifedore (the project area) and Idanre (control area) and was analyzed to determine healthcare facility utilization rates in each location. Semi-structured questionnaires were used to generate supplemental data. Results The total facility utilization rate of pregnant women was significantly higher in Ifedore than in Idanre. The facility utilization rate of the primary health care centres was significantly higher in Ifedore than in Idanre. The number of recorded cases of the five major causes of maternal death in the two LGAs was not significantly different, possibly because the project was new. Conclusions Giving cell phones to pregnant women and generally improving services could increase their utilization of the primary healthcare system. PMID:24438150

  2. Insights into the deactivation of 5-bromouracil after ultraviolet excitation.

    PubMed

    Peccati, Francesca; Mai, Sebastian; González, Leticia

    2017-04-28

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C-Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the (1)nOπ* and (3)ππ* states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  3. Universal and reusable virus deactivation system for respiratory protection

    PubMed Central

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases. PMID:28051158

  4. Routes for deactivation of different autothermal reforming catalysts

    NASA Astrophysics Data System (ADS)

    Pasel, Joachim; Wohlrab, Sebastian; Kreft, Stefanie; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2016-09-01

    Fuel cell systems with integrated autothermal reforming units require active and robust catalysts for H2 production. In pursuit of this, an experimental screening of catalysts utilized in the autothermal reforming of commercial diesel fuels is performed. The catalysts incorporate a monolithic cordierite substrate, an oxide support (γ-Al2O3, La-Al2O3, CeO2, Gd-CeO2, ZrO2, Y-ZrO2) and Rh as the active phase. Experiments are run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. In most cases, this provokes accelerated catalyst deactivation and permits an informative comparison of the catalysts. Fresh and aged catalysts are characterized by temperature-programmed methods, thermogravimetry and transmission electron microscopy to find correlations with catalytic activity and stability. Using this approach, routes for catalyst deactivation are identified, together with causes of different catalytic activities. Suitable reaction conditions can be derived from our results for the operation of reactors for autothermal reforming at steady-state and under transient reaction conditions, which helps improve the efficiency and the stability of fuel cell systems.

  5. Universal and reusable virus deactivation system for respiratory protection

    NASA Astrophysics Data System (ADS)

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases.

  6. The macrophage in HIV-1 infection: from activation to deactivation?

    PubMed

    Herbein, Georges; Varin, Audrey

    2010-04-09

    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-gamma display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  7. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos; Pavey, Todd; Alexan, Tamer; Bainbridge, Ian

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  8. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  9. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    SciTech Connect

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program.

  10. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  11. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    PubMed Central

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-01-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light. PMID:27762396

  12. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    NASA Astrophysics Data System (ADS)

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-10-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light.

  13. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates.

    PubMed

    Chaiwongwattana, Sermsiri; Sapunar, Marin; Ponzi, Aurora; Decleva, Piero; Došlić, Nađa

    2015-10-29

    Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.

  14. Reversible Deactivation of Enzymes by Redox-Responsive Nanogel Carriers.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Pazdzior, Patrizia; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-01

    Novel redox-responsive polymeric nanogels that allow highly efficient enzyme encapsulation and reversible modulation of enzyme activity are developed. The nanogel synthesis and encapsulation of enzyme are performed simultaneously via in situ crosslinking of pyridyldisulfide-functionalized water-soluble reactive copolymers, which are synthesized via reversible addition-fragmentation chain transfer copolymerization. Obtained nanogels with loaded cellulase demonstrate very good colloidal stability in aqueous solutions. The enzymatic activity of cellulase is greatly reduced when encapsulated in the nanogels and rapidly recovered in 10 × 10(-3) m dithiothreitol solution. Fluorescence resonance energy transfer (FRET)-based experiments indicate that the recovered enzymatic activity is mainly ascribed to the release of the enzyme due to the degradation of the disulfide crosslinking network after addition of dithiothreitol (DTT), instead of the enhanced substrate transport rate. The developed enzyme immobilization method opens new possibilities for reversible activation/deactivation of enzymes and opens up new directions for targeted protein therapy and biotechnology applications.

  15. Epidemics with temporary link deactivation in scale-free networks

    PubMed Central

    Shkarayev, Maxim S.; Tunc, Ilker; Shaw, Leah B.

    2014-01-01

    During an epidemic, people may adapt or alter their social contacts to avoid infection. Various adaptation mechanisms have been studied previously. Recently, a new adaptation mechanism was presented in [1], where susceptible nodes temporarily deactivate their links to infected neighbors and reactivate when their neighbors recover. Considering the same adaptation mechanism on a scale-free network, we find that the topology of the subnetwork consisting of active links is fundamentally different from the original network topology. We predict the scaling exponent of the active degree distribution and derive mean-field equations by using improved moment closure approximations based on the conditional distribution of active degree given the total degree. These mean field equations show better agreement with numerical simulation results than the standard mean field equations based on a homogeneity assumption. PMID:25419231

  16. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    SciTech Connect

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

  17. Systems Check: Community Colleges Turn to Facilities Assessments to Plan Capital Projects and Avoid Expensive Emergency Repairs

    ERIC Educational Resources Information Center

    Joch, Alan

    2014-01-01

    With an emphasis on planning and cutting costs to make better use of resources, facilities managers at community colleges across the nation have undertaken facilities audits usually with the help of outside engineers. Such assessments analyze the history and structural integrity of buildings and core components on campus, including heating…

  18. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    SciTech Connect

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  19. 300 Area D4 Project 3rd Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect

    D. S. Smith

    2006-09-25

    This report documents the deactivation, decontamination, decommissioning, and demolition of five buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  20. 300 Area D4 Project 2nd Quarter FY06 Building Completion Report

    SciTech Connect

    David S. Smith

    2006-06-26

    This report documents the deactivation, decontamination, decommissioning, and demolition of 16 buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  1. 300 Area D4 Project 4th Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect

    D. S. Smith

    2007-01-30

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of nine buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  2. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text

    SciTech Connect

    Not Available

    1988-05-01

    This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

  3. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    SciTech Connect

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  4. Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)

    SciTech Connect

    Santos, Joseph K.; Chostner, Stephen M.

    2008-01-15

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping and equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when

  5. THE PROJECT-X INJECTOR EXPERIMENT: A NOVEL HIGH PERFORMANCE FRONT-END FOR A FUTURE HIGH POWER PROTON FACILITY AT FERMILAB

    SciTech Connect

    Nagaitsev, S.; et al,

    2013-09-25

    A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of Project X. This program, known as the Project X Injector Experiment (PXIE), is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. PXIE is currently under construction at Fermilab and will be completed over the period FY12-17. PXIE will include an H* ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.

  6. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    SciTech Connect

    Carter, R.L. Jr.

    1994-11-07

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS).

  7. Transition of Facilities at Hanford to a Stable and Low Cost State

    SciTech Connect

    BAILEY, R.W.

    2000-02-01

    This paper will discuss the implications of focusing on end states and interim end points in the deactivation planning process and managing the budget and personnel to achieve these end points as a ''project,'' not another phase of operations.

  8. Computational and Experimental Characterization of the Mach 6 Facility Nozzle Flow for the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.

    2017-01-01

    Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.

  9. Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

  10. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    NASA Astrophysics Data System (ADS)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  11. High Purity Germanium Gamma-PHA Assay of Uranium Scrap Cans Used in 321-M Facility

    NASA Astrophysics Data System (ADS)

    Salaymeh, S. R.; Dewberry, R. A.; Casella, V.

    2001-12-01

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control & Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG&G DART system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel gamma-ray spectra to assay for 235U content. The system was used to assay a large number of scrap cans used to store highly enriched uranium (HEU) chips and filings. This report includes a description of two efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

  12. Project of the Nuclotron-based Ion Collider fAcility (NICA) at JINR, Dubna: Perspectives of heavy ion and spin physics

    SciTech Connect

    Lednicky, Richard

    2009-08-04

    One of the main directions of the research program at the Joint Institute for Nuclear Research (JINR) in Dubna is the relativistic nuclear and spin physics. The present basic facility for this research is the 6 A GeV superconducting synchrotron--Nuclotron. In the coming years, the new JINR flagship program assumes the experimental study of hot and dense strongly interacting QCD matter and polarization phenomena at the new JINR facility. This goal is proposed to be reached by (i) development of the existing Nuclotron accelerator facility as a basis for generation of intense beams over atomic mass range from protons to uranium and light polarized ions, (ii) design and construction of the Nuclotron-based Heavy Ion Collider fAcility (NICA) with the maximum nucleon-nucleon center-of-mass energy of {radical}(S{sub NN}) = 9 GeV and averaged luminosity 10{sup 27} cm{sup -2} s{sup -1} for U+U collisions, and (iii) design and construction of the Multipurpose Particle Detector (MPD) and Spin Physics Detector (SPD) at intersecting beams. Realization of the project will lead to unique conditions for research activity of the world community.

  13. Fast Flux Test Facility (FFTF) standby plan

    SciTech Connect

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  14. Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation

    PubMed Central

    Sorg, Robin A.; Lin, Leo; van Doorn, G. Sander; Sorg, Moritz; Olson, Joshua; Nizet, Victor; Veening, Jan-Willem

    2016-01-01

    The structure and composition of bacterial communities can compromise antibiotic efficacy. For example, the secretion of β-lactamase by individual bacteria provides passive resistance for all residents within a polymicrobial environment. Here, we uncover that collective resistance can also develop via intracellular antibiotic deactivation. Real-time luminescence measurements and single-cell analysis demonstrate that the opportunistic human pathogen Streptococcus pneumoniae grows in medium supplemented with chloramphenicol (Cm) when resistant bacteria expressing Cm acetyltransferase (CAT) are present. We show that CAT processes Cm intracellularly but not extracellularly. In a mouse pneumonia model, more susceptible pneumococci survive Cm treatment when coinfected with a CAT-expressing strain. Mathematical modeling predicts that stable coexistence is only possible when antibiotic resistance comes at a fitness cost. Strikingly, CAT-expressing pneumococci in mouse lungs were outcompeted by susceptible cells even during Cm treatment. Our results highlight the importance of the microbial context during infectious disease as a potential complicating factor to antibiotic therapy. PMID:28027306

  15. The effect of feedstock additives on FCC catalyst deactivation

    SciTech Connect

    Hughes, R.; Koon, C.L.; McGhee, B.

    1995-12-31

    Fluid catalytic cracking is a major petroleum refining process and because of this the deactivation of FCC catalysts by coke deposition has been the subject of considerable investigation during the past 50 years. Nevertheless, a lack of understanding of the fundamental understanding of processes leading to coke formation still exists. Basic studies using Zeolites have usually involved excessively high levels of coke deposits compared to normal FCC operation. The present study addresses coke formation at realistic levels of 0.5 to 1.0% w/w using a standard MAT reactor in which concentrations of 1% and 10% of various additives were added to the n-hexadecane feedstock. These additives included, quinoline, phenanthrene, benzofuran, thianaphthene and indene. The coke formed was characterised by mass spectrometry and was significantly aliphatic in nature, the amount formed increasing in the order quinoline, phenanthrene, thianaphthene, benzofuran, indene. Quinoline acts primarily as a poison, whereas the other additives tend to promote coke formation in n-hexadecane cracking.

  16. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  17. RCRA (Resource Conservation and Recovery Act of 1976) ground-water monitoring projects for Hanford facilities: Progress report, October 1--December 31, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-04-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period October 1 to December 31, 1988. There are 16 individual hazardous waste facilities covered by the 13 ground-water monitoring projects. The Grout Treatment Facility is included in this series of quarterly reports for the first time. The 13 projects discussed in this report were designed according to applicable interim-status ground-water monitoring requirements specified in the Resource Conservation and Recovery Act of 1976 (RCRA). During this quarter, field activities primarily consisted of sampling and analyses, and water-level monitoring. The 200 Areas Low-Level Burial Grounds section includes sediment analyses in addition to ground-water monitoring results. Twelve new wells were installed during the previous quarter: two at the 216-A-29 Ditch, six at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells include drillers' logs and other drilling and site characterization data, and are provided in Volume 2 or on microfiche in the back of Volume 1. 26 refs., 28 figs., 74 tabs.

  18. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  19. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    NASA Astrophysics Data System (ADS)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  20. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    SciTech Connect

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  1. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and

  2. American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

    SciTech Connect

    Arends, J.; Sandusky, William F.

    2010-05-31

    This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  3. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    SciTech Connect

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  4. School Capital Manual. An Interim Guide for School Boards, Administrators, Facility Planners and Consultants Who Engage in School Building Projects.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This manual is intended for use by the Alberta, Canada, school boards, administrators, consultants, education staff, and other individuals involved in school building projects. The purpose of the School Capital Plan, funding, and Alberta Education's funding framework are detailed. The school building project components of the School Capital Plan…

  5. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    SciTech Connect

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-06-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps, and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with {sup 60}Co {gamma} rays at 100 degree sign C and zero bias, where the dopant deactivation is significant.(c) 2000 American Institute of Physics.

  6. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  7. Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states.

    PubMed

    Zhu, W J; Vicini, S

    1997-06-01

    Fast applications of GABA (1 mM) to nucleated and outside-out patches excised from granule neurons in cerebellar slices from developing rats evoked currents with a double exponential time course reminiscent of that of IPSCs. A neurosteroid 3alpha, 21dihydroxy-5alpha-pregnan-20-one (THDOC) remarkably increased the slow deactivation time constant and slowed down recovery from desensitization, as estimated by paired-pulse GABA applications. THDOC also reduced the amplitude of GABA currents, whereas it failed to affect the fast deactivation component and its relative contribution to peak amplitude. The effects of THDOC on slow deactivation were greater in rats younger than postnatal day 13 (P13) as compared with rats at P30-P35. THDOC failed to alter deactivation of short responses induced by a less-potent agonist taurine at saturating doses. These responses had deactivation kinetics described by a fast single exponential decay, little desensitization, and quick recovery. However, THDOC slowed deactivation if taurine responses were long enough to allow consistent desensitization, suggesting that desensitized states are required for the neurosteroid to modulate GABA responses. In outside-out patches, just as desensitized states prolonged GABA responses by producing reopening of channels activated by brief GABA pulses, THDOC increased the channel open probability by further increasing the number of late channel openings, resulting in a prolongation of the slow deactivation. Our data suggest that neurosteroid potentiates the inhibitory postsynaptic transmission via the prolongation of the slow deactivation and that the alteration of kinetics of entry and exit from desensitized states underlies the allosteric modification of GABAA receptors by neurosteroids.

  8. Patient perceptions of implantable cardioverter-defibrillator deactivation discussions: A qualitative study

    PubMed Central

    MacIver, Jane; Tibbles, Alana; Billia, Filio; Ross, Heather

    2016-01-01

    Background: There is a class I recommendation for implantable cardioverter-defibrillator deactivation discussions to occur between physicians and heart failure patients. Few studies have reported the patient’s perspective on the timing of implantable cardioverter-defibrillator deactivation discussions. Aim: To determine patient awareness, preferences and timing of implantable cardioverter-defibrillator deactivation discussions. Design: Grounded theory was used to collect and analyze interview data from 25 heart failure patients with an implantable cardioverter-defibrillator. Setting and participants: Patients with an implantable cardioverter-defibrillator, from the Heart Function Clinic at University Health Network (Toronto, Canada). Results: The sample (n = 25) was predominately male (76%) with an average age of 62 years. Patients identified three stages where they felt implantable cardioverter-defibrillator deactivation should be discussed: (1) prior to implantation, (2) with any significant deterioration but while they were of sound mind to engage in and communicate their preferences and (3) at end of life, where patients wished further review of their previously established preferences and decisions about implantable cardioverter-defibrillator deactivation. Most patients (n = 17, 68%) said they would consider deactivation, six (24%) were undecided and two (8%) were adamant they would never turn it off. Conclusion: The patient preferences identified in this study support the need to include information on implantable cardioverter-defibrillator deactivation at implant, with change in clinical status and within broader discussions about end-of-life treatment preferences. Using this process to help patients determine and communicate their implantable cardioverter-defibrillator deactivation preferences may reduce the number of patients experiencing distressing implantable cardioverter-defibrillator shocks at end of life. PMID:27110361

  9. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    SciTech Connect

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  10. Operator awareness of system status during Fast Flux Test Facility transition to standby

    SciTech Connect

    Gibson, J.L.

    1994-04-01

    A facility in transition, due to a change in its mission or its operating status, begins to depart from a previously well-defined normal mode of operation. The equipment becomes reconfigured or deactivated. In an environment of transition, the Fast Flux Test Facility (FFTF) has employed methods to enhance operator awareness of system status. These methods are described in this report.

  11. Regulation of GIRK channel deactivation by Galpha(q) and Galpha(i/o) pathways.

    PubMed

    Mark, M D; Ruppersberg, J P; Herlitze, S

    2000-09-01

    G protein regulated inward rectifying potassium channels (GIRKs) are activated by G protein coupled receptors (GPCRs) via the G protein betagamma subunits. However, little is known about the effects of different GPCRs on the deactivation kinetics of transmitter-mediated GIRK currents. In the present study we investigated the influence of different GPCRs in the presence and absence of RGS proteins on the deactivation kinetics of GIRK channels by coexpressing the recombinant protein subunits in Xenopus oocytes. The stimulation of both G(i/o)- and G(q)-coupled pathways accelerated GIRK deactivation. GIRK currents deactivated faster upon stimulation of G(i/o)- and G(q)-coupled pathways by P(2)Y(2) receptors (P(2)Y(2)Rs) than upon activation of the G(i/o)-coupled pathway alone via muscarinic acetylcholine receptor M2 (M(2) mAChRs). This acceleration was found to be dependent on phospholipase C (PLC) and protein kinase C (PKC) activities and intracellular calcium. With the assumption that RGS2 has a higher affinity for Galpha(q) than Galpha(i/o), we demonstrated that the deactivation kinetics of GIRK channels can be differentially regulated by the relative amount of RGS proteins. These data indicate that transmitter-mediated deactivation of GIRK currents is modulated by crosstalk between G(i/o)- and G(q)-coupled pathways.

  12. Conversion of Biomass-Derived Small Oxygenates over HZSM-5 and its Deactivation Mechanism

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gerber, Mark A.; Flake, Matthew D.; Zhang, He; Wang, Yong

    2014-02-28

    HZSM-5 catalyst deactivation was studied using aqueous feed mixtures containing ethanol, ethanol+ acetic acid, ethanol+ethyl acetate, or ethanol+acetaldehyde in a fixed bed reactor at 360°C and 300psig. Compared to ethanol alone experiment, addition of other oxygenates reduced catalyst life in the order of: ethyl acetatedeactivate the catalyst through a pore-blocking mechanism. Acetic acid deactivates the catalyst through an active site poisoning mechanism or strong adsorption of acetate intermediates on the active sites (hydroxyl groups). Ethanol deactivates the catalyst primarily through its pore-blocking mechanism, but the rate of ethanol deactivation is orders of magnitude slower than that of acetaldehyde. Ethyl acetate hydrolyzes to form acetic acid and ethanol which deactivate the catalyst through its respective mechanisms. In addition, each functional group of oxygenates requires different active sites/catalysts and different operating conditions due to competitive adsorptions on active sites for their conversion to the desired products. Therefore, it is necessary to pre-treat the mixture of oxygenates to produce a feed stream containing the same or similar functional group compounds before converting the feed stream to hydrocarbon compounds over HZSM-5 catalyst.

  13. 300 Area D4 Project Fiscal Year 2009 Building Completion Report

    SciTech Connect

    B. J. Skwarek

    2010-01-27

    This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

  14. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  15. Allowing for MSD prevention during facilities planning for a public service: an a posteriori analysis of 10 library design projects.

    PubMed

    Bellemare, Marie; Trudel, Louis; Ledoux, Elise; Montreuil, Sylvie; Marier, Micheline; Laberge, Marie; Vincent, Patrick

    2006-01-01

    Research was conducted to identify an ergonomics-based intervention model designed to factor in musculoskeletal disorder (MSD) prevention when library projects are being designed. The first stage of the research involved an a posteriori analysis of 10 recent redesign projects. The purpose of the analysis was to document perceptions about the attention given to MSD prevention measures over the course of a project on the part of 2 categories of employees: librarians responsible for such projects and personnel working in the libraries before and after changes. Subjects were interviewed in focus groups. Outcomes of the analysis can guide our ergonomic assessment of current situations and contribute to a better understanding of the way inclusion or improvement of prevention measures can support the workplace design process.

  16. The fast-spectrum transmutation experimental facility FASTEF: Main design achievements (Part 1: Core and primary system) within the FP7-CDT collaborative project of the European Commission

    SciTech Connect

    De Bruyn, D.; Fernandez, R.; Mansani, L.; Woaye-Hune, A.; Sarotto, M.; Bubelis, E.

    2012-07-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK CEN in replacement of its material testing reactor BR2. SCK CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of three years. In this paper, we present the latest configuration of the reactor core and primary system. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1 2. If it remains a small-scale facility, the core power amounts now up to 100 MWth in critical mode. In a companion paper 3, we present the concept of the reactor building and the plant layout. (authors)

  17. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    SciTech Connect

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.; Rautman, C.A.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of both vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.

  18. Small-Scale Hydroelectric Power Demonstration Project: reactivation of the Elk Rapids Hydroelectric Facility. Final technical and construction cost report

    SciTech Connect

    Not Available

    1985-05-01

    The Elk Rapids powerhouse dam is located on the Elk River channel in the Village of Elk Rapids, Michigan. Together with a small spillway structure located approximately 500 ft south of the dam, it constitutes the outlet to Lake Michigan for Elk Lake, Skegemog Lake, Torch Lake, Lake Bellaire, Clam Lake, and several smaller lakes. Power has been generated at the Elk Rapids site since the late nineteenth century, but the history of the present facility goes back to 1916 with the construction of the existing powerhouse dam by the Elk Rapids Iron Works Company. The facility was designed to contain four vertical-shaft generating units; however, only a single 270 hp Leffel type K unit was installed in 1916. In 1929, two additional Leffel units, rated 525 hp, were installed, and in 1930 a third 525 hp Leffel unit was added completely utilizing the capacity of the powerhouse and bringing the combined turbine capacity to 1845 hp.

  19. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    SciTech Connect

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  20. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    SciTech Connect

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  1. Decontamination Project for Cell G of the Metal Recovery Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Mandry, G.J.; Grisham, R.W.

    1994-02-01

    The goal of the decontamination effort in Cell G at the Metal Recovery Facility, Building 3505, located at the Oak Ridge National Laboratory, was two-fold: to determine the effectiveness of the dry decontamination technique employed and to provide data required to assess whether additional decontamination using this method would be beneficial in the eventual decommissioning of the facility. Allied Technology Group (ATG) was contracted to remove a portion of the concrete surface in Cell G by a technique known as scabbling. Some metallic cell components were also scabbled to remove paint and other surface debris. Generally, the scabbling operation was a success. Levels of contamination were greatly reduced. The depth of contaminant penetration into the concrete surfaces of certain areas was much greater than had been anticipated, necessitating the removal of additional concrete and extending ATG`s period of performance. Scabbling and other related techniques will be extremely useful in the decontamination and decommissioning of other nuclear facilities with similar radiological profiles.

  2. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

  3. Slow deactivation channels in UV-photoexcited adenine DNA.

    PubMed

    Chen, Xuebo; Fang, Weihai; Wang, Haobin

    2014-03-07

    The molecular mechanism for removing the excess energy in DNA bases is responsible for the high photostability of DNA and is thus the subject of intense theoretical/computational investigation. To understand why the excited state decay of the stacked bases is significantly longer than that of the monomers, we carried out electronic structure calculations on an adenine monomer and an aqueous (dA)5 oligonucleotide employing the CASPT2//CASSCF and CASPT2//CASSCF/AMBER levels of theory. The newly-found bright excited state pair Sstack1((1)ππ*) and Sstack2((1)ππ*) of d(A)5, originated from base stacking, is of intra-base charge transfer nature and occurs in different stacked bases with charge transfer along opposite directions. Two slow deactivation channels of d(A)5 were proposed as a result of the sizable barriers along the relaxation paths starting from the FC point of the Sstack1((1)ππ*) state. The SN1P((1)nπ*) state of d(A)5 serves as an intermediate state in one relaxation channel, to which a nonadiabatic decay from the Sstack1((1)ππ*) state occurs in an energy degeneracy region. A relatively high barrier in this state is found and attributed to the steric hindrance of the DNA environment due to the large NH2 group twisting, which gives a weak and red-shifted fluorescence. Another direct relaxation channel, induced by the C2-H2 bond twisting motion, is found to go through a conical intersection between the Sstack1((1)ππ*) and the ground state. The barrier found here enables fluorescence from the Sstack1((1)ππ*) state and may explain the bright state emission observed in the fluorescence upconversion measurements. The inter-molecular SCT((1)ππ*) state may be involved in the slow relaxation process of the photoexcited adenine oligomers through efficient internal conversion to the intra-base Sstack1((1)ππ*) state.

  4. The Optimizing Patient Transfers, Impacting Medical Quality, andImproving Symptoms:Transforming Institutional Care approach: preliminary data from the implementation of a Centers for Medicare and Medicaid Services nursing facility demonstration project.

    PubMed

    Unroe, Kathleen T; Nazir, Arif; Holtz, Laura R; Maurer, Helen; Miller, Ellen; Hickman, Susan E; La Mantia, Michael A; Bennett, Merih; Arling, Greg; Sachs, Greg A

    2015-01-01

    The Optimizing Patient Transfers, Impacting Medical Quality, and Improving Symptoms: Transforming Institutional Care (OPTIMISTIC) project aims to reduce avoidable hospitalizations of long-stay residents enrolled in 19 central Indiana nursing facilities. This clinical demonstration project, funded by the Centers for Medicare and Medicaid Services Innovations Center, places a registered nurse in each nursing facility to implement an evidence-based quality improvement program with clinical support from nurse practitioners. A description of the model is presented, and early implementation experiences during the first year of the project are reported. Important elements include better medical care through implementation of Interventions to Reduce Acute Care Transfers tools and chronic care management, enhanced transitional care, and better palliative care with a focus on systematic advance care planning. There were 4,035 long-stay residents in 19 facilities enrolled in OPTIMISTIC between February 2013 and January 2014. Root-cause analyses were performed for all 910 acute transfers of these long stay residents. Of these transfers, the project RN evaluated 29% as avoidable (57% were not avoidable and 15% were missing), and opportunities for quality improvement were identified in 54% of transfers. Lessons learned in early implementation included defining new clinical roles, integrating into nursing facility culture, managing competing facility priorities, communicating with multiple stakeholders, and developing a system for collecting and managing data. The success of the overall initiative will be measured primarily according to reduction in avoidable hospitalizations of long-stay nursing facility residents.

  5. Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity

    PubMed Central

    Murdaugh, Donna L.; Shinkareva, Svetlana V.; Deshpande, Hrishikesh R.; Wang, Jing; Pennick, Mark R.; Kana, Rajesh K.

    2012-01-01

    The default mode network (DMN) is a collection of brain areas found to be consistently deactivated during task performance. Previous neuroimaging studies of resting state have revealed reduced task-related deactivation of this network in autism. We investigated the DMN in 13 high-functioning adults with autism spectrum disorders (ASD) and 14 typically developing control participants during three fMRI studies (two language tasks and a Theory-of-Mind (ToM) task). Each study had separate blocks of fixation/resting baseline. The data from the task blocks and fixation blocks were collated to examine deactivation and functional connectivity. Deficits in the deactivation of the DMN in individuals with ASD were specific only to the ToM task, with no group differences in deactivation during the language tasks or a combined language and self-other discrimination task. During rest blocks following the ToM task, the ASD group showed less deactivation than the control group in a number of DMN regions, including medial prefrontal cortex (MPFC), anterior cingulate cortex, and posterior cingulate gyrus/precuneus. In addition, we found weaker functional connectivity of the MPFC in individuals with ASD compared to controls. Furthermore, we were able to reliably classify participants into ASD or typically developing control groups based on both the whole-brain and seed-based connectivity patterns with accuracy up to 96.3%. These findings indicate that deactivation and connectivity of the DMN were altered in individuals with ASD. In addition, these findings suggest that the deficits in DMN connectivity could be a neural signature that can be used for classifying an individual as belonging to the ASD group. PMID:23185536

  6. Finding of no significant impact for the tritium facility modernization and consolidation project at the Savannah River Site

    SciTech Connect

    1998-01-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1222) for the proposed modernization and consolidation of the existing tritium facilities at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issueing this Finding of No Significant Impact (FONSI).

  7. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 2 Sludge

    SciTech Connect

    PEARCE, K.L.

    2000-04-05

    Volume 2 provides estimated chemical and radionuclide inventories of sludge currently stored within the Hanford Site's 105-K Basin This volume also provides estimated chemical and radionuclide inventories for the sludge streams expected to be generated during Spent Nuclear Fuel (SNF) Project activities.

  8. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  9. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  10. Spread of activation and deactivation in the brain: does age matter?

    PubMed Central

    Gordon, Brian A.; Tse, Chun-Yu; Gratton, Gabriele; Fabiani, Monica

    2014-01-01

    Cross-sectional aging functional MRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however, may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and region of interest analyses. PMID:25360115

  11. Spread of activation and deactivation in the brain: does age matter?

    PubMed

    Gordon, Brian A; Tse, Chun-Yu; Gratton, Gabriele; Fabiani, Monica

    2014-01-01

    Cross-sectional aging functional MRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however, may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and region of interest analyses.

  12. Deactivation of Ni2P/SiO2 catalyst in hydrodechlorination of chlorobenzene

    NASA Astrophysics Data System (ADS)

    Chen, Jixiang; Ci, Donghui; Yang, Qing; Li, Kelun

    2014-11-01

    The deactivation of the Ni2P/SiO2 catalyst in the hydrodechlorination of chlorobenzene was studied. To better illuminate the reasons for the deactivation, the effect of HCl on the structure and activity of Ni2P/SiO2 was investigated. For comparison, the deactivation of the Ni/SiO2 catalyst was also involved. It was found that the Ni2P particles possessed good resistance to HCl poison and to sintering, which is ascribed to the electron-deficiency of Niδ+(0 < δ < 1) site in Ni2P. Acted as the Lewis and Brönsted acid site, the Niδ+ site and the Psbnd OH group on Ni2P/SiO2 catalyzed the formation of the carbonaceous deposit that was difficultly eliminated by hydrogenation. The carbonaceous deposit covered the active sites and might also induce a decrease in the Ni2P crystallinity, subsequently leading to the Ni2P/SiO2 deactivation. Different from Ni2P/SiO2, Ni/SiO2 was mainly deactivated by the chlorine poison and the sintering of nickel crystallites.

  13. Viscous heating effect on deactivation of helminth eggs in ventilated improved pit sludge.

    PubMed

    Belcher, D; Foutch, G L; Smay, J; Archer, C; Buckley, C A

    2015-01-01

    Viscous heating by extrusion of faecal material obtained from ventilated improved pit (VIP) latrines can be used to deactivate soil-transmitted helminth (STH) eggs by increasing the temperature of faecal sludge uniformly. Viscous heating can deactivate STH eggs present in sludge to make the material safer to transport, dispose of, or use in agricultural applications or as an energy source. The mechanical energy required to generate the shear rate can originate from any source. No other heat source or additive is required. Here we determined a baseline for the deactivation of STH eggs using viscous heating. To characterize equipment performance, three parameters were investigated: (1) minimum temperature required for deactivation; (2) local maximum temperatures for various flow rates and moisture contents (MCs); and (3) thermal efficiency. Excess water is undesirable since low viscosities require extended residence time and increased energy input. The minimum temperature to achieve greater than 90% helminth egg deactivation is 70 °C. For the laboratory-scale equipment tested, the maximum allowable mass flow rate for VIP sludge with 77% MC was found to be 3.6 g/s.

  14. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect

    1999-03-01

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  15. National Ignition Facility Project Input for Assessment of Environmental Impacts of NIF for the Sitewide Environmental Impact Statement

    SciTech Connect

    Brereton, S

    2003-10-01

    This report provides the baseline data from which the environmental impacts of bounding NIF operations can be assessed. Included are operations in the NE Laser and Target Area Building (LTAB) and the Optics Assembly Building (OAB), (Buildings 581 and 681), and the Building 582 equipment building. The NIF is an experimental laser fusion facility undergoing construction and commissioning at Lawrence Livermore National Laboratory. The LTAB, the main experimental building of the NIF, is where laser-driven experiments will be conducted. The LTAB consists of two laser bays, two optical switchyards, a target bay, target diagnostics areas, capacitor bays, mechanical equipment areas, control rooms, and operational support areas. The LTAB provides an optically stable and clean environment and provides sufficient shielding against prompt radiation and residual radioactivity to meet the as low as reasonably achievable (ALARA) principle.

  16. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    SciTech Connect

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  17. Decoupling HZSM-5 catalyst activity from deactivation during upgrading of pyrolysis oil vapors.

    PubMed

    Wan, Shaolong; Waters, Christopher; Stevens, Adam; Gumidyala, Abhishek; Jentoft, Rolf; Lobban, Lance; Resasco, Daniel; Mallinson, Richard; Crossley, Steven

    2015-02-01

    The independent evaluation of catalyst activity and stability during the catalytic pyrolysis of biomass is challenging because of the nature of the reaction system and rapid catalyst deactivation that force the use of excess catalyst. In this contribution we use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate catalyst activity and deactivation rates independently both on a constant surface area and constant acid site basis. Results show that there is an optimum catalyst-bed temperature for the production of aromatics, above which the production of light gases increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give comparable initial rates for aromatics production, but far more rapid catalyst deactivation rates than those with higher Si/Al ratios.

  18. Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar

    NASA Astrophysics Data System (ADS)

    Liu, Fanglin; He, Jianzhong; Fu, Wenjun

    2005-06-01

    Honey bees have a highly developed nest homeostasis, for example, maintaining low CO2 levels and stable nest temperatures at 35°C.We investigate the role of nest homeostasis in deactivating phenolic compounds present in the nectar of Aloe littoralis. We show that the phenolic content in nectar was reduced (from 0.65% to 0.49%) after nectar was incubated in a nest of Apis cerana, and that it was reduced still more (from 0.65% to 0.37%) if nectar was mixed with hypopharyngeal gland proteins (HGP) of worker bees before being placed inside a nest. HGP had little effect on samples outside a nest, indicating that nest conditions are necessary for HGP to deactivate phenolics in nectar. Consequently, the highly controlled nest homeostasis of honey bees facilitates direct deactivation of phenolics in nectar, and plays a role in the action of HGP as well.

  19. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  20. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection

    PubMed Central

    Lomber, Stephen G.; Everling, Stefan

    2016-01-01

    Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection. PMID:26792881

  1. Respiration phase-locks to fast stimulus presentations: implications for the interpretation of posterior midline "deactivations".

    PubMed

    Huijbers, Willem; Pennartz, Cyriel M A; Beldzik, Ewa; Domagalik, Aleksandra; Vinck, M; Hofman, Winnie F; Cabeza, Roberto; Daselaar, Sander M

    2014-09-01

    The posterior midline region (PMR)-considered a core of the default mode network-is deactivated during successful performance in different cognitive tasks. The extent of PMR-deactivations is correlated with task-demands and associated with successful performance in various cognitive domains. In the domain of episodic memory, functional MRI (fMRI) studies found that PMR-deactivations reliably predict learning (successful encoding). Yet it is unclear what explains this relation. One intriguing possibility is that PMR-deactivations are partially mediated by respiratory artifacts. There is evidence that the fMRI signal in PMR is particularly prone to respiratory artifacts, because of its large surrounding blood vessels. As respiratory fluctuations have been shown to track changes in attention, it is critical for the general interpretation of fMRI results to clarify the relation between respiratory fluctuations, cognitive performance, and fMRI signal. Here, we investigated this issue by measuring respiration during word encoding, together with a breath-holding condition during fMRI-scanning. Stimulus-locked respiratory analyses showed that respiratory fluctuations predicted successful encoding via a respiratory phase-locking mechanism. At the same time, the fMRI analyses showed that PMR-deactivations associated with learning were reduced during breath-holding and correlated with individual differences in the respiratory phase-locking effect during normal breathing. A left frontal region--used as a control region--did not show these effects. These findings indicate that respiration is a critical factor in explaining the link between PMR-deactivation and successful cognitive performance. Further research is necessary to demonstrate whether our findings are restricted to episodic memory encoding, or also extend to other cognitive domains.

  2. Joanna Briggs Collaboration Aged Care Fellowship Project: implementing a smoking cessation program in a young, frail aged residential care facility.

    PubMed

    Nicholson, Elayne

    2008-03-01

    Background  The subject site (Ian George Court) caters for clients from a socially disadvantaged background. All clients have been homeless or at risk of homelessness and have a history of alcohol and substance abuse often linked to mental health issues. This project was developed to examine if the site provided best practice in the promotion of smoking cessation. Objectives  The first objective of this project was to improve client knowledge to make informed choice about smoking cessation, ensuring that client advice was given in line with best available evidence and assist the client in accessing community programs. The second objective was to fully review the current assessment tool used in relation to gathering baseline data about smoking habits and act on the information provided. Search strategy  The search strategy sought to find published studies and papers. An initial limited search of MEDLINE and CINAHL was undertaken followed by an analysis of the text words contained in the title and abstract. A second extensive search was then undertaken using all identified keywords. Conclusion  A smoking assessment tool was developed and is now in use across all Anglicare sites in South Australia. This provides staff with consistent baseline information and offers evidence-based health care in a package format to aid clients in smoking cessation.

  3. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy.

    PubMed

    Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E

    2011-10-30

    Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties.

  4. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor defueling and disassembly. Summary status report. Volume 3

    SciTech Connect

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information relating to the preparations for defueling the Three Mile Island Unit 2 (TMI-2) reactor and disassembly activities being performed concurrently with decontamination of the facility. Data have been collected from activity reports, reactor containment entry records, and other sources and entered in a computerized data sysem which permits extraction/manipulation of specific data which can be used in planning for recovery from a loss of coolant event similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during the period of April 23, 1979 to April 16, 1985, in the completion of activities related to preparation for reactor defueling. Support activities conducted outside of radiation areas are not included within the scope of this report. Computerized reports included in this document are: A chronological summary listing work performed for the period; and summary reports for each major task undertaken in connection with the specific scope of this report. Presented in chronological order for the referenced time period. Manually-assembled table summaries are included for: Labor and exposures by department; and labor and exposures by major activity.

  5. 45 CFR 63.37 - Leasing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Leasing facilities. 63.37 Section 63.37 Public... facilities. In the case of a project involving the leasing of a facility, the grantee shall demonstrate that... facility during the proposed period of the project....

  6. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    PubMed Central

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel

    2015-01-01

    Summary Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  7. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding

    PubMed Central

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej

    2014-01-01

    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  8. Light ion facility projects in Europe: methodological aspects for the calculation of the treatment cost per protocol.

    PubMed

    Pommier, Pascal; Zucca, Luciano; Näslund, Ingemar; Auberger, Thomas; Combs, Stephanie E; François, Guy; Heeren, Germaine; Rochat, Joël; Perrier, Lionel

    2004-12-01

    In the framework of the European Network for Research in Light Ion Hadron Therapy (ENLIGHT), the health economics group develops a methodology for assessing important investment and operating costs of this innovative treatment against its expected benefits. The main task is to estimate the cost per treated patient. The cost analysis is restricted to the therapeutic phase from the hospital point of view. An original methodology for cost assessment per treatment protocol is developed based on standard costs. Costs related to direct medical activity are based on the production process analysis, whereas indirect and non direct medical costs are allocated to each protocol using relevant cost-drivers. The resulting cost model will take into account the specificities of each therapeutic protocol as well as the particularities of each of the European projects.

  9. Task-specific reversal of visual hemineglect following bilateral reversible deactivation of posterior parietal cortex: a comparison with deactivation of the superior colliculus.

    PubMed

    Lomber, S G; Payne, B R

    2001-01-01

    The purpose of the present study was to compare and contrast behavioral performance on three different tasks of spatial cognition during unilateral and bilateral reversible deactivation of posterior parietal cortex. Specifically, we examined posterior middle suprasylvian (pMS) sulcal cortex in adult cats during temporary and reversible cooling deactivation. In Task 1, the cats oriented to a high-contrast, black visual stimulus moved into the visual field periphery. In Task 2, the cats oriented to a static light-emitting diode (LED). Task 3 examined the cats' ability to determine whether a black-and-white checkered, landmark box was closer to the right or left side of the testing apparatus. Following training on all tasks, cryoloops were implanted bilaterally within the pMS sulcus. Unilateral deactivation of pMS sulcal cortex resulted in virtually no responses to either moved or static stimuli and virtually no responses to landmarks presented in the contralateral hemifield, and a profound contralateral hemifield neglect was induced. Responses to stimuli and landmarks presented in the ipsilateral hemifield were unimpaired. Additive, bilateral cooling of the homotopic region in the contralateral hemisphere, but not an adjacent region, resulted in reversal of the initial hemineglect for the moved stimulus, yet induced a complete failure to orient to peripheral static LED stimuli. Bilateral cooling also reversed the contralateral neglect of the landmark, but then cats could not accurately determine position of the landmark anywhere in the visual field because performance was reduced to chance levels for all landmark loci in both hemifields. In this instance, as the contralateral neglect disappeared during bilateral cooling of pMS cortex, a new spatial discrimination deficit was revealed across the entire visual field. We conclude that pMS cortex contributes in multiple ways to the analyses of space, and that these contributions cannot be safely predicted from analyses

  10. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-07-01

    . Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

  11. Flexural activation and de-activation responses of orthodontic wires in single-tooth, occlusogingival corrections.

    PubMed

    Nikolai, R J

    1989-09-01

    An experimental design was developed to simulate the processes of the activation in flexure of a wire segment to engage an occlusogingivally-malposed tooth and the correction of that malalignment. Independent, controlled parameters, clinically referred, were wire material, mesiodistal bracket width, and inter-bracket distance. Full-cycle, activation/de-activation diagrams were generated for 96 specimens. Each load-deflection diagram was in five segments. Slope discontinuities occurred at the states of disappearance and reappearance of "second-order" clearances at the support sites. Ratios of the slopes of the diagrams above these discontinuities to their counterparts beneath the discontinuities were typically between 2:1 and 4:1. A segment of the diagram was distinct at the initiation of de-activation, and was related to the reversal of frictional forces at the supports. Generalizing, in some cases activation may not eliminate the cited clearances; in others, clearances may be negligibly small in the passive states. Apparently, analyses should ordinarily recognize the segmented formats of the activation and de-activation plots. In comparisons of activation with de-activation plots within the individual diagrams, differences in quantified properties for the cobalt-chromium- and nickel-titanium-alloy wires were sufficient to suggest further study toward an objective of predicting de-activation behavior from outcomes of an activation analysis.

  12. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed

    SciTech Connect

    Suyadal, Y.; Erol, M.; Oguz, H.

    2000-03-01

    In this work, the adsorption of trichloroethylene (TCE) vapor was investigated in a laboratory-scale packed-bed adsorber by using granular activated carbon (GAC) at constant pressure (101.3 kPa). The packed-bed adsorber (PBA) was operated batchwise with the charges of GAC particles in the ranges of 2.5--10.0 g for obtaining TCE breakthrough curves. Experiments were carried out at different temperatures (25.6 {le} T({degree}C) {le} 35.8) and TCE feedstock concentrations (6,350 {le} C (ppm TCE) {le} 7,950) within the range of space velocity (5,000 {le} {var_theta} (h{sup {minus}1}) {le} 17,000). The effects of TCE inlet concentration, operating temperature, and mass of adsorbent (m{sub Ads}) on the TCE breakthrough curves were investigated, respectively. The deactivation model (DM) was tested for these curves by using the analogy between the adsorption of TCE and the deactivation of catalyst particles. Observed adsorption rate constants (k{sub S}) and first-order deactivation rate constants (k{sub d}) were obtained from the model. It was found that the deactivation model describes the experimental breakthrough curves more accurately compared to the adsorption isotherms given in the literature.

  13. Determination of a Jet Fuel Metal Deactivator by High Performance Liquid Chromatography

    DTIC Science & Technology

    1983-06-01

    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY Paul C. Hayes, Jr. Fuels Branch...SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) High Performance Liquid Chromatography absorbance...SYMBOL HPLC High Performance Liquid Chromatography P-4 jet propulsion fuel, wide-boiling range, conforming to MIL-T-5624L MDA metal deactivator,

  14. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST DEACTIVATION. (R826694C633)

    EPA Science Inventory

    Deactivation of 0.5 wt.% Pt/small gamma, Greek-Al2O3 catalysts during trichloroethylene (TCE)–steam reforming was studied with experiments at 700°C, H

  15. Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations

    PubMed Central

    Peng, Gary; Barro-Soria, Rene; Sampson, Kevin J.; Larsson, H. Peter; Kass, Robert S.

    2017-01-01

    KCNQ1 is a voltage-gated potassium channel that is modulated by the beta-subunit KCNE1 to generate IKs, the slow delayed rectifier current, which plays a critical role in repolarizing the cardiac action potential. Two KCNQ1 gain-of-function mutations that cause a genetic form of atrial fibrillation, S140G and V141M, drastically slow IKs deactivation. However, the underlying gating alterations remain unknown. Voltage clamp fluorometry (VCF) allows simultaneous measurement of voltage sensor movement and current through the channel pore. Here, we use VCF and kinetic modeling to determine the effects of mutations on channel voltage-dependent gating. We show that in the absence of KCNE1, S140G, but not V141M, directly slows voltage sensor movement, which indirectly slows current deactivation. In the presence of KCNE1, both S140G and V141M slow pore closing and alter voltage sensor-pore coupling, thereby slowing current deactivation. Our results suggest that KCNE1 can mediate changes in pore movement and voltage sensor-pore coupling to slow IKs deactivation and provide a key step toward developing mechanism-based therapies. PMID:28383569

  16. A Treatment Study of Mode Deactivation Therapy in an Out Patient Community Setting

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This paper is an outpatient replication of Apsche, Bass, Jennings and Siv (2005) work which examined the effectiveness of Mode Deactivation Therapy (MDT) on adolescent conduct disordered males in an inpatient therapeutic setting. This research compared the effectiveness of MDT and Treatment as Usual (TAU) as treatments on adolescents with conduct…

  17. Stronger activation and deactivation in archery experts for differential cognitive strategy in visuospatial working memory processing.

    PubMed

    Seo, Jeehye; Kim, Yang-Tae; Song, Hui-Jin; Lee, Hui Joong; Lee, Jongmin; Jung, Tae-Du; Lee, Gunyoung; Kwon, Eunjin; Kim, Jin Gu; Chang, Yongmin

    2012-04-01

    It is well known that elite athletes have higher performance in perception, planning, and execution in sports activities relative to novices. It remains controversial, however, whether any differences in basic cognitive functions between experts and novices exist. Furthermore, few studies have directly used functional magnetic resonance imaging (fMRI) to investigate neural activation and deactivation differences between experts and novices while performing visuospatial working memory (WM) tasks. Therefore, the purpose of this study was to examine possible differences in neural activation and deactivation associated with working memory components in processing visuospatial information between archery experts and novices. To this end, we employed a judgment of line orientation (JLO) task, which has a strong WM component. With regard to brain activation, archery experts displayed higher activation in cortical areas associated with visuospatial attention and working memory, including the middle frontal cortex, supplemental motor area, and dorsolateral prefrontal cortex than that of the novices during the performance of the JLO task. With regard to brain deactivation, archery experts exhibited stronger task-related deactivation in cortical areas, such as the paracentral cortex/precuneus and the anterior and posterior cingulate cortex related to the default network, than that of the novices. These results suggest that the archery experts have a strategy that demands greater use of neural correlates associated with visuospatial working memory and attention in addition to greater use of DMN in visuospatial working memory task not directly tied to their domain of expertise.

  18. Mode Deactivation Therapy (MDT): A Theoretical Case Analysis on a Suicidal Adolescent

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Siv, Alexander M.

    2005-01-01

    This case study presents a case study of the effectiveness of Mode deactivation therapy (MDT) (Apsche, Bass, Jennings, Murphy, Hunter, and Siv, 2005) with an adolescent male, with reactive conduct disorder, PTSD and 8 lethal suicide attempts. The youngster was hospitalized four times for suicide attempts, three previous placements in residential…

  19. Catalytic Friedel-Crafts Reactions of Highly Electronically Deactivated Benzylic Alcohols.

    PubMed

    Vuković, Vuk D; Richmond, Edward; Wolf, Eléna; Moran, Joseph

    2017-03-06

    Highly electronically deactivated benzylic alcohols, including those with a CF3 group adjacent to the OH-bearing carbon, undergo dehydrative Friedel-Crafts reactions upon exposure to catalytic Brønsted acid in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solvent. Titration and kinetic experiments support the involvement of higher order solvent/acid clusters in catalysis.

  20. Object category classification of fMRI data using support vector machine combined with deactivation voxel selection

    NASA Astrophysics Data System (ADS)

    Yan, Caifeng; Song, Sutao; Li, Yao; Guo, Xiaojuan

    2012-03-01

    Support Vector Machine (SVM) is an accurate pattern recognition method which has been widely used in functional MRI (fMRI) data classification. Voxel selection is a very important part in classification. In general, voxel selection is based on brain regions associated with activation caused by different experiment conditions or stimulations. However, negative blood oxygenation level-dependent responses (deactivation) which have also been found in humans or animals contribute to the classification of different cognitive tasks. Different from traditional studies which focused merely on the activation voxel selection methods, our aim is to investigate the deactivation voxel selection methods in the classification of fMRI data using SVM. In this study, three different voxel selection methods (deactivation, activation, the combination of deactivation and activation) are applied to decide which voxel is included in SVM classifier with linear kernel in classifying 4-category objects on fMRI data. The average accuracies of deactivation classification were 73.36%(house vs. face), 60.34%(house vs. car), 60.94%(house vs. cat), 71.43%(face vs. car), 63.17%(face vs. cat) and 61.61%(car vs. cat). The classification results of deactivation were significantly above the chance level which implies the deactivation is informative. The accuracies of combination of activation and deactivation method were close to that of activation method, and it was even better for some representative subjects. These results suggest deactivation provides useful information in the object category classification on fMRI data and the method of voxel selection based on both activation and deactivation will be a significant method in classification in the future.

  1. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    SciTech Connect

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  2. QF monitoring. [Qualifying Facilities

    SciTech Connect

    Greenwald, S. ); Hoffman, B. )

    1991-10-01

    This article examines the effects on project financing of independent power projects of the California Public Utilities Commission decision to grant authority to California utilities to monitor and enforce compliance with the Federal Energy Regulatory Commission Qualifying Facility standards. The topics of the article include monitoring proposals, monitoring guidelines, the effects of monitoring, minimizing status loss and monitoring requirements.

  3. Excavator energy-saving efficiency based on diesel engine cylinder deactivation technology

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Quan, Long; Yang, Yang

    2012-09-01

    The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.

  4. Empowering Facilities Teams through Technology

    ERIC Educational Resources Information Center

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  5. Modernizing sports facilities

    SciTech Connect

    Dustin, R.

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  6. 300 Area D4 Project 1st Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect

    David S. Smith

    2006-04-20

    This report documents the deactivation, decontamination, decommissioning, and demolition of the MO-052, 3225, 334, 334A, and 334-TF Buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  7. Spent Nuclear Fuel project, project management plan

    SciTech Connect

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  8. Phased Construction Completion Report for Building K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect

    Garland S.

    2008-03-01

    This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

  9. Phased Construction Completion Report for Bldg. K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect

    Bechtel Jacobs

    2008-10-01

    This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

  10. Determination of the microbial diversity of spacecraft assembly, testing and launch facilities: First results of the ESA project MiDiv

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Fritze, D.; Verbarg, S.; Nellen, J.; Horneck, G.; Stackebrandt, E.; Kminek, G.

    2006-01-01

    In the near future, an increasing number of in situ life detection and sample return missions to planets and other solar system bodies will be launched. The demand to control spacecraft-carried microbial contamination becomes obvious. COSPAR (Committee of Space Research) has defined guidelines and bioburden limits for different types of missions and target bodies. The first step in the implementation of these planetary protection guidelines encompasses a qualitative and quantitative inventory of the bioburden of spacecraft assembly facilities. With information about the composition of these microbial communities the development and/or optimization of adequate cleaning, disinfection, and sterilization procedures for spacecraft preparation before launch will be possible. In the ESA project MiDiv, we started to investigate the diversity of cultivable microorganisms found on spacecraft and spacecraft assembly halls using the satellites SMART-1 and ROSETTA as test objects. The analyses to date include cultivation of microorganisms by varying pH, temperature, oxygen, and pasteurization. A culture collection of bacterial isolates and a database of 16S RNA gene sequences have been established. The results of our preliminary work, including the numbers of colony forming units, differentiated as aerobes and facultative anaerobes as well as their phylogenetic classification, give a first overview of the breadth of physiological potential of the identified microorganisms and their capability to withstand various cleaning and sterilizing procedures currently used for the planetary protection.

  11. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-02-01

    This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

  12. The Role of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

    SciTech Connect

    Eaton, Scott J; Nguyen, Ke; Bunting, Bruce G; Toops, Todd J

    2009-01-01

    The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/-Al2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation. To isolate and examine the contribution of each deactivation mechanism, performance evaluations are carried out for each DOC ''as received'' and after removal of surface carbon in a high-temperature oxidizing environment. In such a manner the deactivation contribution of soot contamination is de-convoluted from that of phosphorus poisoning. It will be shown that this is accomplished while preserving phosphorus (and to a lesser degree sulfur, calcium and zinc) chemistries and concentrations within the washcoat. Washcoat contaminant information and materials changes are characterized using electron-probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), BET surface area, oxygen storage capacity (OSC), X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, from which the relative severity of each mechanism can be quantified. Results show that soot contamination from diesel exhaust severely degrades THC and CO oxidation performance by acting as a catalyst surface diffusion barrier. This results in a considerable increase of light-off temperatures. In contrast, phosphorus poisoning, which is considered a significant deactivation mechanism in three-way catalysts, is shown to have minimal effect on DOC oxidation performance for the conditions studied here. Material changes include the formation of both Ce(III-IV) and aluminum phosphates which do not significantly hinder the THC and CO oxidation in lean

  13. IN SITU Device for Real-Time Catalyst Deactivation Measurements

    SciTech Connect

    Fossil Energy Research

    2008-03-31

    SCR catalyst management has become an important operations and maintenance activity for coal-fired utility boilers in the United States. To facilitate this activity, a method to determine Catalyst Activity in situ is being developed. This report describes the methodology and presents the results of a two ozone season demonstration conducted at Alabama Power Company's Gorgas Unit 10 during the 2005 and 2006 ozone seasons. The results showed that the in situ measurements are in good agreement with the laboratory measurements and the technique has some advantages over the traditional laboratory method of determining Catalyst Activity and Reactor Potential. SCR Performance is determined by the overall Reactor Potential (the product of the Catalyst Activity and the available surface area per unit of flue gas). The in situ approach provides a direct measurement of Reactor Potential under actual operating conditions, whereas laboratory measurements of Catalyst Activity need to be coupled with estimates of catalyst pluggage and flue gas flowrate in order to assess Reactor Potential. The project also showed that the in situ activity results can easily be integrated into catalyst management software to aid in making informed catalyst decisions.

  14. River Corridor Project Workplace Air Monitoring Technical Basis

    SciTech Connect

    MANTOOTH, D.S.

    2001-01-17

    This document provides the technical basis by which the workplace air monitoring and sampling program is operated in the River Corridor Project (RCP). Revision 2 addresses and incorporates changes in the air monitoring program drivers and implementing documents which occurred after the previous revision was issued. This revision also includes an additional RCP project to make Revision 2 applicable to the entire RCP. These changes occurred in the following areas: (1) Changes resulting from the conversion of the Hanford Site Radiological Control Manual (HSRCM-1) into the Project Hanford Radiological Control Manual (F-5173). HNF-5173 is now the implementing document for 10CFR835. (2) Changes resulting from the issue of new and revised Hanford Site implementing procedures. (3) Changes resulting from the issue of new and revised, as well as the cancellation of RCP implementing procedures. (4) Addition of the 200 Area Accelerated Deactivation Project (ADP). (5) Modification of some air sampling/monitoring locations to better meet the needs of facility operations. (6) Changes resulting from the RCP reorganization.

  15. Novel method of determination of the internal enzyme distribution within porous solid supports and the deactivation rate constant

    SciTech Connect

    Do, D.D.; Hossain, M.M.

    1986-04-01

    This article presents a method for determining the rate constant for deactivation and the internal distribution of immobilized enzyme. This method makes use of the parallel deactivation process in a diffusion-controlled regime, in which the internal activity profile behaves like a penetration front. This front basically traces through the initial active enzymatic profile, and one can determine the internal profile and the rate constant for deactivation from the experimentally observable bulk concentration versus time. This method is applied to the experimental data of the system of hydrogen peroxide-immobilized catalase on controlled pore glas and Si-Al particles. 26 references.

  16. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  17. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments.

    PubMed

    Kolobova, Ekaterina; Kotolevich, Yulia; Pakrieva, Ekaterina; Mamontov, Grigory; Farías, Mario H; Bogdanchikova, Nina; Cortés Corberán, Vicente; Pestryakov, Alexey

    2016-04-13

    The catalytic properties of modified Au/TiO₂ catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H₂ TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity.

  18. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers.

  19. Reversible and Rapid Transfer-RNA Deactivation as a Mechanism of Translational Repression in Stress

    PubMed Central

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-01-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3′-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs. PMID:24009533

  20. Depletion effect of polycrystalline-silicon gate electrode by phosphorus deactivation

    NASA Astrophysics Data System (ADS)

    Jeon, Woojin; Ahn, Ji-Hoon

    2017-01-01

    A study of the polycrystalline silicon depletion effect generated from the subsequent thermal process is undertaken. Although phosphorus out-diffusion, which causes the polycrystalline silicon depletion effect, is increased with an increase in the thermal process temperature, the polysilicon depletion effect is stronger when inducing rapid thermal annealing in lower temperatures of 600-800 °C than in 900 °C. This indicates that the major reason for the polysilicon depletion effect is not the out-diffusion of phosphorus but the electrical deactivation of phosphorus, which is segregated at the grain boundary. Therefore, by increasing the size of polycrystalline silicon grain, we can efficiently reduce the polysilicon depletion effect and enhance the tolerance to deactivation.

  1. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    PubMed

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-08-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  2. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOEpatents

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  3. Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning

    DTIC Science & Technology

    2011-11-16

    Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning D. Han,† S. Filocamo,‡ R. Kirby,‡ and A. J. Steckl...Soldier Research Development and Engineering Center, Natick, Massachusetts, United States ABSTRACT: The coaxial electrospinning technique was investigated... Electrospinning is a versatile technique for the fabrication of polymer fibers with large length (cm to km): diameter (nm to μm) aspect ratios. The large

  4. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOEpatents

    Hergart, Carl-Anders; Hardy, William L.; Duffy, Kevin P.; Liechty, Michael P.

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  5. Cooperation of charges in photosynthetic O2 evolution. II - Damping of flash yield oscillation, deactivation.

    NASA Technical Reports Server (NTRS)

    Forbush, B.; Kok, B.; Mcgloin, M. P.

    1971-01-01

    A quantitative analysis is made of a linear four-step model for photosynthetic molecular oxygen evolution in which each photochemical trapping center or an associated enzyme cycles through five oxidation states. Based on data obtained with isolated chloroplasts, a number of aspects were considered, including the two perturbations which damp the oscillation of the oxygen flash yield in a flash sequence. The kinetics and the mechanism of deactivation was another aspect investigated.

  6. Probing activation/deactivation of the BRASSINOSTEROID INSENSITIVE1 receptor kinase by immunoprecipitation

    PubMed Central

    Martins, Sara; Vert, Grégory; Jaillais, Yvon

    2017-01-01

    Summary Brassinosteroids are plant sterol-derived hormones that control plant growth and development. The BR receptor complex is encoded by the BRASSINOSTEROID INSENSITIVE1 (BRI1) and members of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE family. BR receptor complex activation and deactivation uses different post-translational modifications and recruitment of partner proteins. In this chapter, we describe optimized immunoprecipitation protocols and variants for biochemical analyses of BRI1 post-translational modification and protein-protein interaction. PMID:28124254

  7. How Can the Deactivation of the Marine Prowler Community Best Serve the Marine Corps?

    DTIC Science & Technology

    2010-03-01

    Electronic Counter Measure Officers ( ECMO ) transitioning to new communities. Before the Prowler community deactivation begins it will undergo some...Prowler squadron consists of 180 Marines. Eight are pilots, twenty are Electronic Counter Measure Officers ( ECMO ), twenty seven are Sta:ffNon-Commissioned...three operational squadrons and an FRS. The FRS activation would be used to facilitate the production of any remaining pilots and ECMOs needed to

  8. Expertise-related deactivation of the right temporoparietal junction during musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2010-01-01

    Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.

  9. Deactivation mechanism and feasible regeneration approaches for the used commercial NH3-SCR catalysts.

    PubMed

    Yu, Yanke; Meng, Xiaoran; Chen, Jinsheng; Yin, Liqian; Qiu, Tianxue; He, Chi

    2016-01-01

    The deactivation and regeneration of selective catalytic reduction catalysts which have been used for about 37,000 h in a coal power plant are studied. The formation of Al2(SO4)3, surface deposition of K, Mg and Ca are primary reasons for the deactivation of the studied Selective catalytic reduction catalysts. Other factors such as activated V valence alteration also contribute to the deactivation. Reactivation of used catalysts via environment-friendly and finance-feasibly approaches, that is, dilute acid or alkali solution washing, would be of great interest. Three regeneration pathways were studied in the present work, and dilute nitric acid or sodium hydroxide solution could remove most of the contaminants over the catalyst surface and partly recover the catalytic performance. Notably, the acid-alkali combination washing, namely, catalysts treated by dilute sodium hydroxide and nitric acid solutions orderly, was much more effective than single washing approach in recovering the activity, and NO conversion increased from 23.6% to 89.5% at 380°C. The higher removal efficiency of contaminants, the lower dissolution of activated V, and promoting the formation of polymeric vanadate should be the main reason for recovery of the activity.

  10. Isomerization of 1-butene on silica-alumina: Kinetic modeling and catalyst deactivation

    SciTech Connect

    Garcia-Ochoa, F.; Santos, A. . Dept. de Ingenieria Quimica)

    1995-02-01

    In the study of 1-butene isomerization on a silica-alumina catalyst 448--523 K, cis-2-butene and trans-2-butene are detected. Based on BSTR experimental data and zero-time prediction kinetic models using the Langmuir-Hinshelwood mechanism are assumed to develop kinetic equations for which a triangular reaction scheme is used. In four different mechanisms, one and two active sites take part in the surface reaction as the controlling step and then the deactivation rate determined considering two types of experimental data from BSTR and by measuring weight changes of a catalyst particle from coke deposition in an electrobalance. A coke precursor is assumed formed by reaction of adsorbed molecules (of any butene isomer) and gas-phase molecules. Activity and coke-content-time data allow one to choose a model whose activation energies of the deactivation kinetic parameter are closer in value. Coke is assumed deposited in a monolayer. The model chosen shows a triangular scheme, kinetic equations of the reaction for fresh catalyst with two active sites in the surface reaction, and the deactivation rate according to a coke formation mechanism in which a precursor is formed by reaction of 3 adsorbed molecules and 1 molecule in the gas phase. It accurately fits both BSTR conversion-time data and electrobalance coke-content data. The coke formation mechanism establishes relationships of activity vs. coke content and catalyst acidity which are supported by experimental results.

  11. Probing the Carboxyester Side Chain in Controlled Deactivation (−)-Δ8-Tetrahydrocannabinols

    PubMed Central

    2015-01-01

    We recently reported on a controlled deactivation/detoxification approach for obtaining cannabinoids with improved druggability. Our design incorporates a metabolically labile ester group at strategic positions within the THC structure. We have now synthesized a series of (−)-Δ8-THC analogues encompassing a carboxyester group within the 3-alkyl chain in an effort to explore this novel cannabinergic chemotype for CB receptor binding affinity, in vitro and in vivo potency and efficacy, as well as controlled deactivation by plasma esterases. We have also probed the chain’s polar characteristics with regard to fast onset and short duration of action. Our lead molecule, namely 2-[(6aR,10aR)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-3-yl]-2-methyl-propanoic acid 3-cyano-propyl ester (AM7438), showed picomolar affinity for CB receptors and is deactivated by plasma esterases while the respective acid metabolite is inactive. In further in vitro and in vivo experiments, the compound was found to be a remarkably potent and efficacious CB1 receptor agonist with relatively fast onset/offset of action. PMID:25470070

  12. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    PubMed Central

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H.

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval. PMID:25954179

  13. Study of the scapular muscle latency and deactivation time in people with and without shoulder impingement.

    PubMed

    Phadke, Vandana; Ludewig, Paula M

    2013-04-01

    Changes in muscle activities are commonly associated with shoulder impingement and theoretically caused by changes in motor program strategies. The purpose of this study was to assess for differences in latencies and deactivation times of scapular muscles between subjects with and without shoulder impingement. Twenty-five healthy subjects and 24 subjects with impingement symptoms were recruited. Glenohumeral kinematic data and myoelectric activities using surface electrodes from upper trapezius (UT), lower trapezius (LT), serratus anterior (SA) and anterior fibers of deltoid were collected as subjects raised and lowered their arm in response to a visual cue. Data were collected during unloaded, loaded and after repetitive arm raising motion conditions. The variables were analyzed using 2 or 3 way mixed model ANOVAs. Subjects with impingement demonstrated significantly earlier contraction of UT while raising in the unloaded condition and an earlier deactivation of SA across all conditions during lowering of the arm. All subjects exhibited an earlier activation and delayed deactivation of LT and SA in conditions with a weight held in hand. The subjects with impingement showed some significant differences to indicate possible differences in motor control strategies. Rehabilitation measures should consider appropriate training measures to improve movement patterns and muscle control.

  14. Thermal deactivation kinetics of Pseudomonas fluorescens lipase entrapped in AOT/isooctane reverse micelles.

    PubMed

    Park, Kyung Min; Kwon, Chang Woo; Choi, Seung Jun; Son, Young-Hwan; Lim, Seokwon; Yoo, Yoonjung; Chang, Pahn-Shick

    2013-10-02

    Thermostability of the lipase (EC 3.1.1.3) was found to be increased by the enzyme-entrapment in 50 mM AOT/isooctane reverse micelles. The half-life (15.75 h) of Pseudomonas fluorescens lipase entrapped in reverse micelles at 70 °C was 9.72- and 11.41-fold longer than those solubilized in a glycerol pool or in 10 mM phosphate buffer (pH 8.0), respectively. The enzyme deactivation model considering a two-step series-type was employed, and deactivation constants for the second step (k₂) at all temperatures were drastically decreased after the lipase was entrapped in reverse micelles. In particular, k₂ (0.0354 h⁻¹) at 70 °C in reverse micelles was 12.33- and 13.14-fold lower than in a glycerol pool or in the phosphate buffer, respectively. The deactivation energies (from k₁, k₂) for the lipase entrapped in the reverse micelles, solubilized in a glycerol pool, or in the aqueous buffer were 7.51, 26.35 kcal/mol, 5.93, 21.08 kcal/mol, and 5.53, 17.57 kcal/mol, respectively.

  15. Recovery of Alkylation Activity in Deactivated USY Catalyst Using Supercritical Fluids: A Comparison of Light Hydrocarbons

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2004-05-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical fluids (SCF). A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical fluids over the catalyst bed. A comparison of reactivation fluids on catalyst activity recovery is reported. Fluids examined included helium, propane, n-butane, isobutane, n-pentane, and isopentane. Phases studied included gas, liquid, and supercritical. As much as 82% of the fresh catalyst activity was recovered when employing supercritical isobutane. The ability of the fluid to facilitate a hydride reaction with the adsorbed deactivating high-molecular weight carbocations was indicated as an important property necessary to attain high levels of catalyst activity recovery. Activity recovery utilizing supercritical fluids that enhance reactivation by both reacting with and desorbing fouling compounds appears to be a promising technique to advance solid catalyst alkylation.

  16. Age association of language task induced deactivation induced in a pediatric population.

    PubMed

    Sun, Binjian; Berl, Madison M; Burns, Thomas G; Gaillard, William D; Hayes, Laura; Adjouadi, Malek; Jones, Richard A

    2013-01-15

    Task-induced deactivation (TID) potentially reflects the interactions between the default mode and task specific networks, which are assumed to be age dependent. The study of the age association of such interactions provides insight about the maturation of neural networks, and lays out the groundwork for evaluating abnormal development of neural networks in neurological disorders. The current study analyzed the deactivations induced by language tasks in 45 right-handed normal controls aging from 6 to 22 years of age. Converging results from GLM, dual regression and ROI analyses showed a gradual reduction in both the spatial extent and the strength of the TID in the DMN cortices as the brain matured from kindergarten to early adulthood in the absence of any significant change in task performance. The results may be ascribed to maturation leading to either improved multi-tasking (i.e. reduced deactivation) or reduced cognitive demands due to greater experience (affects both control and active tasks but leads to reduced overall difference). However, other effects, such as changes in the DMN connectivity that were not included in this study may also have influenced the results. In light of this, researchers should be cautious when investigating the maturation of DMN using TID. With a GLM analysis using the concatenated fMRI data from several paradigms, this study additionally identified an age associated increase of TID in the STG (bilateral), possibly reflecting the role of this area in speech perception and phonological processing.

  17. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  18. Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure.

    PubMed

    Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J

    2015-06-01

    Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF.

  19. Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Dors, Mirosław; Jasiński, Mariusz; Hrycak, Bartosz; Czylkowski, Dariusz

    2013-02-01

    This work was aimed at experimental investigations of deactivation of different types of microorganisms by using atmospheric pressure low-temperature microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. Its main advantages are simple and cheap construction, portability and possibility of penetrating into small cavities. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The quality as well as quantity tests were performed. The influence of the microorganism type, oxygen concentration, absorbed microwave power, microplasma treatment time and MmPS distance from the treated sample on the microorganism deactivation efficiency was investigated. All experiments were performed for Ar microplasma and Ar/O2 microplasma with up to 3% of O2. Absorbed microwave power was up to 50 W. The Ar flow rate was up to 10 L/min. The sample treatment time was up to 10 s. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  20. A Program Management Framework for Facilities Managers

    ERIC Educational Resources Information Center

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…