Sample records for facilities engineering division

  1. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  2. Engineering physics and mathematics division

    NASA Astrophysics Data System (ADS)

    Sincovec, R. F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  3. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  4. 78 FR 775 - Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...,846B; TA-W-81,846C; TA-W-81,846D] Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Hunt Valley, MD; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division...

  5. History of the Fluids Engineering Division

    DOE PAGES

    Cooper, Paul; Martin, C. Samuel; O'Hern, Timothy J.

    2016-08-03

    The 90th Anniversary of the Fluids Engineering Division (FED) of ASME will be celebrated on July 10–14, 2016 in Washington, DC. The venue is ASME's Summer Heat Transfer Conference (SHTC), Fluids Engineering Division Summer Meeting (FEDSM), and International Conference on Nanochannels and Microchannels (ICNMM). The occasion is an opportune time to celebrate and reflect on the origin of FED and its predecessor—the Hydraulic Division (HYD), which existed from 1926–1963. Furthermore, the FED Executive Committee decided that it would be appropriate to publish concurrently a history of the HYD/FED.

  6. History of the Fluids Engineering Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Paul; Martin, C. Samuel; O'Hern, Timothy J.

    The 90th Anniversary of the Fluids Engineering Division (FED) of ASME will be celebrated on July 10–14, 2016 in Washington, DC. The venue is ASME's Summer Heat Transfer Conference (SHTC), Fluids Engineering Division Summer Meeting (FEDSM), and International Conference on Nanochannels and Microchannels (ICNMM). The occasion is an opportune time to celebrate and reflect on the origin of FED and its predecessor—the Hydraulic Division (HYD), which existed from 1926–1963. Furthermore, the FED Executive Committee decided that it would be appropriate to publish concurrently a history of the HYD/FED.

  7. 78 FR 12359 - Goodman Networks, Inc., Core Network Engineering (Deployment Engineering) Division Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...., Core Network Engineering (Deployment Engineering) Division Including Workers in the Core Network Engineering (Deployment Engineering) Division in Alpharetta, GA, Hunt Valley, MD, Naperville, IL, and St... Reconsideration applicable to workers and former workers of Goodman Networks, Inc., Core Network Engineering...

  8. Engineering Research Division publication report, calendar year 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  9. 78 FR 49111 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney Division (PW) turbofan engine model PW4074, PW4074D, PW4077, PW4077D, PW4084D, PW4090, and PW4090...) Applicability This AD applies to all Pratt & Whitney Division (PW) turbofan engine models PW4074, PW4074D...

  10. 77 FR 23637 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... directive (AD) for certain Pratt & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a...-flight engine shutdowns, in certain PW4000-94'' and PW4000-100'' turbofan engines. Pratt & Whitney's...

  11. 77 FR 57007 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... turbofan engines. That AD currently requires initial and repetitive fluorescent penetrant inspections (FPI... applies to the following Pratt & Whitney Division (Pratt & Whitney) turbofan engines: (1) PW4000-94...

  12. Bulletin of the Division of Electrical Engineering, 1987-1988, volume 3, number 2

    NASA Astrophysics Data System (ADS)

    1988-05-01

    A report is provided on the activities of the Division of Electrical Engineering of the National Research Council of Canada. The Division engages in the development of standards and test procedures, and undertakes applied research in support of Canadian industry, government departments, and universities. Technology transfer and collaborative research continue to grow in importance as focuses of Division activities. The Division is comprised of three sections: the Laboratory for Biomedical Engineering, the Laboratory for Electromagnetic and Power Engineering, and the Laboratory for Intelligent Systems. An agreement has been reached to commercially exploit the realtime multiprocessor operating system Harmony. The dielectrics group has made contract research agreements with industry from both Canada and the United States. The possibility of employing a new advanced laser vision camera, which can be mounted on a robot arm in a variety of industrial applications is being explored. Potential short-term spinoffs related to intelligent wheelchairs are being sought as part of the new interlaboratory program which has as its long-term objective the development of a mobile robot for health care applications. A program in applied artificial intelligence has been established. Initiatives in collaboration with outside groups include proposals for major institutes in areas ranging from police and security research to rehabilitation research, programs to enhance Canadian industrial competence working with the Canadian Manufacturers' Association and other government departments, and approaches to the utilization of existing facilities which will make them more valuable without significant financial expenditures.

  13. 77 FR 51459 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4460, PW4462, PW4164, PW4164C, PW4164C/B, PW4168, and PW4168A turbofan engines with certain high... ADs None. (c) Applicability This AD applies to the following Pratt & Whitney Division turbofan engines...

  14. 77 FR 16967 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., PW4164C, PW4164C/B, PW4168, and PW4168A turbofan engines with certain high- pressure turbine (HPT) stage 1...) Applicability This AD applies to the following Pratt & Whitney Division turbofan engines: (1) PW4052, PW4152...

  15. 77 FR 54791 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a 1st stage high-pressure turbine... AD will affect 446 P&W PW4000-94'' and PW4000-100'' turbofan engines installed on airplanes of U.S...

  16. 78 FR 16620 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Division (PW) turbofan engine models PW4074, PW4074D, PW4077, PW4077D, PW4084D, PW4090, and PW4090-3 with a... proposed AD. Discussion We propose to adopt a new AD for all PW turbofan engine models PW4074, PW4074D...

  17. 33 CFR 211.7 - Rights which may be granted by Division and District Engineers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Division and District Engineers. 211.7 Section 211.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION... be granted by Division and District Engineers. (a) Authority of Division and District Engineers...

  18. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  19. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  20. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  1. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  2. Communicating Reengineering at Naval Facilities Engineering Command, Southwest Division

    DTIC Science & Technology

    2002-09-01

    Systems, a California- based division of the Japanese company, implemented a communications messages built around Elvis Presley songs, which helped...people to realize how much change will be required. As many of the people within this organization were familiar with Elvis Presley’s music, the

  3. 77 FR 30926 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... turbofan engines. The existing AD currently requires initial and repetitive fluorescent penetrant... turbofan engines. That AD requires initial and repetitive FPI for cracks in the blade locking and loading...

  4. 77 FR 16921 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This... Compliance We estimate that this AD will affect 44 turbofan engines installed on airplanes of U.S. registry...

  5. Report on the Audit of Architect-Engineer Contracting at U.S. Army Engineer Division, Europe

    DTIC Science & Technology

    1991-02-13

    This is our final report on the Audit of Architect-Engineer Contracting at U.S. Army Engineer Division1 Europe, for your information and use...our ongoing audit of architect-engineer contracting. The Contract Management Directorate made the audit from March 1989 through February 1990. The audit covered

  6. 77 FR 67763 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash... PW4650 turbofan engines, including models with any dash number suffix, with 3rd stage low-pressure...

  7. General service and child immunization-specific readiness assessment of healthcare facilities in two selected divisions in Bangladesh.

    PubMed

    Shawon, Md Shajedur Rahman; Adhikary, Gourab; Ali, Md Wazed; Shamsuzzaman, Md; Ahmed, Shahabuddin; Alam, Nurul; Shackelford, Katya A; Woldeab, Alexander; Lim, Stephen S; Levine, Aubrey; Gakidou, Emmanuela; Uddin, Md Jasim

    2018-01-25

    Service readiness of health facilities is an integral part of providing comprehensive quality healthcare to the community. Comprehensive assessment of general and service-specific (i.e. child immunization) readiness will help to identify the bottlenecks in healthcare service delivery and gaps in equitable service provision. Assessing healthcare facilities readiness also helps in optimal policymaking and resource allocation. A health facility survey was conducted between March 2015 and December 2015 in two purposively selected divisions in Bangladesh; i.e. Rajshahi division (high performing) and Sylhet division (low performing). A total of 123 health facilities were randomly selected from different levels of service, both public and private, with variation in sizes and patient loads from the list of facilities. Data on various aspects of healthcare facility were collected by interviewing key personnel. General service and child immunization specific service readiness were assessed using the Service Availability and Readiness Assessment (SARA) manual developed by World Health Organization (WHO). The analyses were stratified by division and level of healthcare facilities. The general service readiness index for pharmacies, community clinics, primary care facilities and higher care facilities were 40.6%, 60.5%, 59.8% and 69.5%, respectively in Rajshahi division and 44.3%, 57.8%, 57.5% and 73.4%, respectively in Sylhet division. Facilities at all levels had the highest scores for basic equipment (ranged between 51.7% and 93.7%) and the lowest scores for diagnostic capacity (ranged between 0.0% and 53.7%). Though facilities with vaccine storage capacity had very high levels of service readiness for child immunization, facilities without vaccine storage capacity lacked availability of many tracer items. Regarding readiness for newly introduced pneumococcal conjugate vaccine (PCV) and inactivated polio vaccine (IPV), most of the surveyed facilities reported lack of

  8. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  9. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  10. 10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL CROSS SECTION. Giffals & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan; and U.S. Army Engineer Division, New England Corps of Engineers, Boston, Massachusetts. Drawing Number 35-84-04. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA

  11. 78 FR 31592 - T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,371] T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania; Notice of Affirmative Determination...., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania (subject firm). The...

  12. 76 FR 22729 - Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant #1, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ..., Power Train Division, Mack Avenue Engine Plant 1, Including On-Site Leased Workers From Caravan Knight..., applicable to workers of Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant 1, including on... all workers of Chrysler LLC, Mack Avenue Engine Plants 1 & 2, Power Train Division, Detroit, Michigan...

  13. 77 FR 40822 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This..., PW4060C, PW4062, PW4062A, PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan...

  14. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  15. 33 CFR 211.7 - Rights which may be granted by Division and District Engineers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITH CIVIL WORKS PROJECTS Temporary Use by Others of Civil Works Real Estate § 211.7 Rights which may.... Division Engineers, the President of the Mississippi River Commission, and District Engineers of districts... of the Mississippi River Commission in granting leases and District Engineers will administer the...

  16. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  17. 75 FR 453 - FLSMidth, Inc., Cement Division, Product Engineering, Including On-Site Leased Workers of Aerotek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Division, Product Engineering, Including On-Site Leased Workers of Aerotek Contract Engineering, Allied Personnel Services, Eastern Engineering, Hobbie Professional Services, Mccallion Staffing Specialists, Peak Technical Services, Inc., Yoh Engineering, and Clarke Consulting, Inc., Bethlehem, PA; Amended Certification...

  18. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  19. 76 FR 68660 - Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for PW4000 series turbofan engines. This proposed AD would require replacing the..., PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models...

  20. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  1. Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1955-02-21

    The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.

  2. 76 FR 27366 - Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plants #1 And #2, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,023] Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plants 1 And 2, Including On-Site Leased Workers from Caravan... 6, 2011, applicable to workers of Chrysler Group, LLC, Power Train Division, Mack Avenue Engine...

  3. Ground test facility for SEI nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.

    1992-07-01

    Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.

  4. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  5. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard; Ryan, Harry

    2007-01-01

    This viewgraph presentation gives a general overview of the design and analysis division of NASA John C. Stennis Space Center. This division develops and maintains propulsion test systems and facilities for engineering competencies.

  6. 75 FR 30063 - Johns Manville, Engineered Products Division, Spartanburg, SC; Notice of Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,494] Johns Manville, Engineered Products Division, Spartanburg, SC; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated May 2, 2010, a petitioner requested administrative reconsideration of the negative determination regarding...

  7. Micro- and Macroscale Ideas of Current among Upper-Division Electrical Engineering Students

    ERIC Educational Resources Information Center

    Adam, Gina C.; Harlow, Danielle B.; Lord, Susan M.; Kautz, Christian H.

    2017-01-01

    The concept of electric current is fundamental in the study of electrical engineering (EE). Students are often exposed to this concept in their daily lives and early in middle school education. Lower-division university courses are usually limited to the study of passive electronic devices and simple electric circuits. Semiconductor physics is an…

  8. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  9. 7. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  10. 9. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  11. 10. Historic photo of rendering of rocket engine test facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  12. 8. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  13. 6. Historic photo of rocket engine test facility Building 202 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  14. 13. Historic drawing of rocket engine test facility layout, including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  15. 77 FR 58565 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ..., Department of the Navy, Asset Management Division, Naval Facilities Engineering Command, Washington Navy Yard... California Aiken Mine Trailer Mojave Nat'l Preserve Baker CA Landholding Agency: Interior Property Number...

  16. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  17. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  18. Code JEF Facilities Engineering Home Page for the Internet

    NASA Technical Reports Server (NTRS)

    Mahaffey, Valerie A.; Harrison, Marla J. (Technical Monitor)

    1995-01-01

    There are always many activities going on in JEF. We work on and manage the Construction of Facilities (C of F) projects at NASA-Ames. We are constantly designing or analyzing a new facility or project, or a modification to an existing facility. Every day we answer numerous questions about engineering policy, codes and standards, we attend design reviews, we count dollars and we make sure that everything at the Center is designed and built according to good engineering judgment. In addition, we study literature and attend conferences to make sure that we keep current on new legislation and standards.

  19. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  20. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  1. Great Lakes Steel -- PCI facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silomore » at Great Lakes Steel, and is injected into three blast furnaces.« less

  2. Facility design consideration for continuous mix production of class 1.3 propellant

    NASA Technical Reports Server (NTRS)

    Williamson, K. L.; Schirk, P. G.

    1994-01-01

    In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.

  3. 76 FR 41430 - Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... removing certain part number (P/N) high-pressure turbine (HPT) stage 1 and HPT stage 2 airseals and HPT... and its high-pressure turbine (HPT). Pratt and Whitney's updated analysis indicated that the current...) Applicability This AD applies to the following Pratt & Whitney Division (PW) turbofan engines, with high...

  4. Providing security for automated process control systems at hydropower engineering facilities

    NASA Astrophysics Data System (ADS)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  5. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People ; Finance Templates Travel One-Stop Investigators Division Staff Facilities and Centers Staff Jobs People Division, please use the links here. An outline of the Division structure is available at the Organization

  6. Small engine components test facility compressor testing cell at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Brokopp, Richard A.; Gronski, Robert S.

    1992-01-01

    LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.

  7. Vice President Pence Visits SLS Engineering Test Facility

    NASA Image and Video Library

    2017-09-25

    The Vice President toured the SLS engineering facility where the engine section of the rocket’s massive core stage is undergoing a major stress test. The rocket’s four RS-25 engines and the two solid rocket boosters that attach to the SLS engine section will produce more than 8 million pounds of thrust to launch the Orion spacecraft beyond low-Earth orbit. More than 3,000 measurements using sensors installed on the test section will help ensure the core stage for all SLS missions can withstand the extreme forces of flight.

  8. Metals and Ceramics Division progress report for period ending June 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogden, I.

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneousmore » Activities.« less

  9. 75 FR 43565 - Johns Manville; Engineered Products Division, Including On-Site Leased Workers From Volt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,494] Johns Manville; Engineered Products Division, Including On-Site Leased Workers From Volt Workforce Solutions; Spartanburg, SC; Notice of Revised Determination on Reconsideration By application dated May 2, 2010, a petitioner requested administrative reconsideration of the...

  10. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  11. 8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: SECTIONS AND DETAILS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  12. 78 FR 67180 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Navy, Asset Management Division, Naval Facilities Engineering Command, Washington Navy Yard, 1330...: Landholding Agency- US Forest Service Disposal Agency- GSA Comments: 53.6 acres; agricultural/research...- GSA Comments: 54.8 acres; agricultural/research; Sec. 106 Nat'l Historic review required to transfer...

  13. 7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: ELEVATIONS, FLOOR AND FOUNDATION PLANS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  14. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    NASA Technical Reports Server (NTRS)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  15. 6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: MONUMENT LOCATION AND LINE-OF-SIGHT PLAN, 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  18. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    NASA Technical Reports Server (NTRS)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  19. Design Guide for Selection and Specification of Kevlar Rope for Ocean Engineering and Construction.

    DTIC Science & Technology

    1976-07-01

    public rtoieco cnd sol . It i Idim .buttm Is ul"rnimi.. OCEAN ENGINEERING AND CONSTRUCTION PROJECT OFFICE CHESAPEAKE DIVISION NAVAL FACILITIES ENGINEERING...be to have no more than one layer. This is impractical for oceano - graphic purposes. Assuming a need to spooi many layers of rope under tension

  20. Environmental Assessment for Construction and Repair of Fuel Storage and Offloading Facilities at Kirtland Air Force Base

    DTIC Science & Technology

    2005-09-01

    G Ot-T GOO) D. BRENT WILSON, P.E. Base Civil Engineer Kirtland Air Force Base Kirtland AFB Fuel Storage and Ofjloading Facilities Construction...September 2005 A-1 3 77 MSG/CEVQ DEPARTMENT OF THE AIR FORCE 3 77th Civil Engineer Division (AFMC) 2050 Wyoming Blvd SE, Suite 120 Kirtland AFB NM...FINAL FINDING OF NO SIGNIFICANT IMPACT FOR THE FOR CONSTRUCTION AND REP AIR OF FUEL STORAGE AND OFFLOADING FACILITIES AT KIRTLAND AIR FORCE

  1. Flow Quality for Turbine Engine Loads Simulator (TELS) Facility

    DTIC Science & Technology

    1980-06-01

    2.2 GAS INGESTION A mathematical simulation of the turbojet engine and jet deflector was formulated to estimate the severity of the recirculating...3. Swain. R. L. and Mitchell, J. G. "’Smlulatlon of Turbine Engine Operational Loads." Journal of Aircraft Vol. 15, No. 6, June 1978• 4. Ryan, J...3 AEDC-TR-79-83 ~...~ i ,i g - Flow Quality for Turbine Engine Loads Simulator (TELS) Facility R..I. Schulz ARO, Inc. June 1980

  2. 75 FR 16513 - B&C Corporation, JR Engineering Division, Including B&C Distribution Center, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Engineering Division, Including B&C Distribution Center, Including On-Site Leased Workers From B&C Services, Inc., Barberton, OH; Amended Certification Regarding Eligibility To Apply for Worker Adjustment... Department of Labor issued a Certification of Eligibility to Apply for Worker Adjustment Assistance on...

  3. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  4. Test results and facility description for a 40-kilowatt stirling engine

    NASA Technical Reports Server (NTRS)

    Kelm, G. G.; Cairelli, J. E.; Walter, R. J.

    1981-01-01

    A 40 kilowatt Stirling engine, its test support facilities, and the experimental procedures used for these tests are described. Operating experience with the engine is discussed, and some initial test results are presented

  5. 78 FR 27417 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ..., Washington, DC 20593-0001; (202) 475- 5609; NASA: Mr. Frank T. Bellinger, Facilities Engineering Division...: Unutilized Comments: Off-site removal; 1,836 sf.; storage; 60 months vacant; lead-based paint; very poor....; storage; 60 months vacant; very poor conditions; lead-based paint; repairs a must; rodents w/Hanta virus...

  6. Kerosene-Fuel Engine Testing Under Way

    NASA Image and Video Library

    2003-11-17

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  7. Kerosene-Fuel Engine Testing Under Way

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  8. 75 FR 31807 - Federal Property Suitable as Facilities To Assist the Homeless; Republication

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    .... Albert Johnson, Department of the Navy, Asset Management Division, Naval Facilities Engineering Command..., and 75A Reasons: Secured Area Bldgs. 3550, 3551 Naval Base San Diego CA Landholding Agency: Navy... Reasons: Secured Area Maine Bldgs. B496 and 497 Bangor Internatl Airport Bangor ME 04401 Landholding...

  9. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division

  10. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Commitment to Safety at MSD In the Materials Sciences Division, our mission is to do world -class science in a safe environment. We proudly support a strong safety culture in which all staff and

  11. 9. Building 105, Facilities Engineering Building, 1830, interior, Tin Metal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Building 105, Facilities Engineering Building, 1830, interior, Tin Metal area of building, looking S. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  12. Aviation Engine Test Facilities (AETF) fire protection study

    NASA Astrophysics Data System (ADS)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  13. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less

  14. 8. Building 105, Facilities Engineering Building, 1830, interior, drafting area, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Building 105, Facilities Engineering Building, 1830, interior, drafting area, east side of building, center, looking N. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  15. Engineering study for closure of 209E facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H.; Heys, W.H.; Johnson, E.D.

    1997-07-07

    This document is an engineering study for evaluating alternatives to determine the most cost effective closure plan for the 209E Facility, Critical Mass Laboratory. This laboratory is located in the 200 East Area of the Hanford Site and contains a Critical Assembly Room and a Mix room were criticality experiments were once performed.

  16. 10. Building 105, Facilities Engineering Building, 1830, interior, air condition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Building 105, Facilities Engineering Building, 1830, interior, air condition repair shop, S end of building, looking N. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  17. Effect of design over-all compressor pressure ratio division on acceleration characteristics of three hypothetical two-spool turbojet engines

    NASA Technical Reports Server (NTRS)

    Filippi, Richard E; Dugan, James F , Jr

    1956-01-01

    The engines, each with a compressor overall total-pressure ratio of 12 and a design inner-turbine-inlet temperature of 2500 degrees R, were investigated at static sea-level conditions to determine the effect on transient performance of varying the desitn pressure ratio divisions 2-6, 3-4, and 4-3 between the outer and inner compressors. The transient considered was an acceleration from 40 to 100 percent design thrust. When the outer compressor of each engine reached design speed, the inner compressors were overspeeding, the maximum being only 1.7 over design mechanical speed. Acceleration times for the three engines were equal.

  18. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  20. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  1. Underwater Facilities Inspections and Assessments at Philadelphia Naval Shipyard, Philadelphia, Pennsylvania. Volume 1.

    DTIC Science & Technology

    1983-10-01

    NAVAL FACILITIES ENGINEERING COMMAND~ CORPORATION .𔃾CN C 33 pItLAOFLPHI* NAVAL SH4IP-110 PŕiIL -~~NA IA I 1OAQ 4C-14723, C-13041o, C- 13047 4C-1~3046...5ECTION 2 4 8 10 ATI i I 70 30 0 .50SCALE OF FEET GOAHI FCALE CHESAPEAKE DIVISION GRAPIC SALENAVAL FACILITIES ENGINEERING COMMAND C-DLS E.GINEERING...ELEVATION CORE LCC- ATI ~J 45+00 444-50 44+00 493+50 loyo OF V 1 11 FILE’ NV~ 45+0(o / 10 5TA � TIMBER 51NEETIW4& BATTER FILI c 0 - r, - Q Q -Q Q Q -Q- ’~ rP

  2. Engineering Challenges for Closed Ecological System facilities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  3. Overview of the Applied Aerodynamics Division

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division.

  4. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  5. Strengthening programs in science, engineering and mathematics. Third annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1997-09-30

    The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratorymore » equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.« less

  6. 13. Building 105, Facilities Engineering Building, 1830, interior, tin metal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Building 105, Facilities Engineering Building, 1830, interior, tin metal shop area, showing construction of window and part of ceiling, E wall of building. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  7. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  9. A unique high heat flux facility for testing hypersonic engine components

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  10. Physics division annual report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less

  11. BUILDING 67 CENTER, ENGINEERING AND FACILITIES MANAGEMENT TO THE RIGHT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING 67 CENTER, ENGINEERING AND FACILITIES MANAGEMENT TO THE RIGHT. BUILDING 67 IS SURMISED TO HAVE BEEN A RAILROAD STATION DAYS WHEN SITE WAS A RESORT - National Home for Disabled Volunteer Soldiers, Eastern Branch, 1 VA Center, Augusta, Kennebec County, ME

  12. Publications - GMC 267 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a well materials Authors: Unknown Publication Date: 1996 Publisher: Alaska Division of Geological & Alaska North Slope well materials: Alaska Division of Geological & Geophysical Surveys Geologic

  13. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  14. Value Engineering. Technical Manual. School Facilities Development Procedures Manual.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    Value Engineering (VE) is a cost-optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. This technical manual provides guidance in developing the scope and applicability of VE to school projects; in…

  15. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period aremore » also included.« less

  16. Publications - GMC 119 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a (Corona) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of Geological & from OCS Y-0871-1 (Corona) well: Alaska Division of Geological & Geophysical Surveys Geologic

  17. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  18. Cell division and endoreduplication: doubtful engines of vegetative growth.

    PubMed

    John, Peter C L; Qi, Ruhu

    2008-03-01

    Currently, there is little information to indicate whether plant cell division and development is the collective effect of individual cell programming (cell-based) or is determined by organ-wide growth (organismal). Modulation of cell division does not confirm cell autonomous programming of cell expansion; instead, final cell size seems to be determined by the balance between cells formed and subsequent tissue growth. Control of growth in regions of the plant therefore has great importance in determining cell, organ and plant development. Here, we question the view that formation of new cells and their programmed expansion is the driving force of growth. We believe there is evidence that division does not drive, but requires, cell growth and a similar requirement for growth is detected in the modified cycle termed endoreduplication.

  19. Breadboard Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service

  20. Publications - GMC 162 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Unit Zappa #1 well Authors: Unknown Publication Date: 1990 Publisher: Alaska Division of Geological the Alaska Consolidated Oil Iniskin Unit Zappa #1 well: Alaska Division of Geological &

  1. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  2. Historic Properties Report: Stratford Army Engine Plant, Connecticut.

    DTIC Science & Technology

    1984-07-01

    aircraft, Pan American began flights to Argentina, Hawaii, and New Zealand , and by August 1934 the Sikorsky S-42 airplane had set world records for...384;or a lengthy discussion of the Corsair , see William Green, Famous Fighters of the Second World War (Garden City, New York: Doubleday), pp. 79-92...manufacture the Corsair fighter plane. Presently, the Avco Lycoming Division uses the facility to develop and manufacture gas turbine engines. There are

  3. NASA Chief Technologist Douglas Terrier Tours Jacobs' Engineering Development Facility

    NASA Image and Video Library

    2017-08-10

    NASA Chief Technologist Douglas Terrier joins Jacobs General Manager Lon Miller during a tour of the company's Engineering Development Facility in Houston. Jacobs provides advanced technologies used aboard the International Space Station and for deep space exploration. From left: NASA’s Johnson Space Center Chief Technologist Chris Culbert, Chief Technologist Douglas Terrier, Jacobs Clear Lake Group Deputy General Manager Joy Kelly and Jacobs Clear Lake Group General Manager Lon Miller. Date: 08-10-2017 Location: B1 & Jacobs Engineering Subject: NASA Acting Chief Technology Officer Douglas Terrier Tours JSC and Jacobs Photographer: David DeHoyos

  4. Publications - GMC 239 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Conoco Inc. Sequoia #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska Division of from cuttings (1,700-8,190') of the Conoco Inc. Sequoia #1 well: Alaska Division of Geological &

  5. Publications - GMC 132 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a . Kustatan River #1 well Authors: Edison, T.A. Publication Date: 1989 Publisher: Alaska Division of data of cuttings from the Shell Oil Co. Kustatan River #1 well: Alaska Division of Geological &

  6. Publications - GMC 258 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Kuukpik #3 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division of from cuttings (3,220-6,570') of the ARCO Alaska Inc. Kuukpik #3 well: Alaska Division of Geological

  7. Publications - GMC 85 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical (Orion) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  8. Publications - GMC 89 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical (Mars) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  9. 14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, crib area of building, showing electrical and plumbing cribs, wall and ceiling detail, looking S. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  10. Publications - GMC 254 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Cirque #2 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division of from cuttings (2,200-7,660') of the ARCO Alaska Inc. Cirque #2 well: Alaska Division of Geological &

  11. Publications - GMC 139 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a . OCS Y-0113-1 (Ibis #1) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of of cuttings from the Arco Alaska Inc. OCS Y-0113-1 (Ibis #1) well: Alaska Division of Geological &

  12. Publications - GMC 255 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Rock Flour #1 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division reflectance data from cuttings (1,600-7,170') of the ARCO Alaska Inc. Rock Flour #1 well: Alaska Division of

  13. Publications - GMC 238 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Fiord #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska Division of from cuttings (1,250-10,250') of the ARCO Alaska Inc. Fiord #1 well: Alaska Division of Geological &

  14. Publications - GMC 177 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a . Navy Umiat Test Well #11 Authors: Bujak Davies Group Publication Date: 1990 Publisher: Alaska Division , Palynological analysis of core (342.9'-1037') from the U.S. Navy Umiat Test Well #11: Alaska Division of

  15. Joy Osborne, MS, MPA | Division of Cancer Prevention

    Cancer.gov

    Joy Osborne is the ARC Director for the Division of Cancer Prevention and the Division of Cancer Control and Population Sciences. The ARC (Administrative Resource Center) provides services to DCP in the areas of budget, contracts, grants, human resources, travel, space and facilities, and other administrative areas. Joy came to NCI in 1992 as a Presidential Management Intern

  16. Wright R–2600–8 Engine in the Engine Propeller Research Building

    NASA Image and Video Library

    1943-03-21

    A Wright Aeronautical R–2600 Cyclone piston engine installed in the Engine Propeller Research Building, or Prop House, at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The R–2600 was among the most powerful engines that emerged during World War II. The engine, which was developed for commercial applications in 1939, was used to power the North American B–25 bomber and several other midsize military aircraft. The higher altitudes required by the military caused problems with the engine's cooling and fuel systems. The military requested that the Aircraft Engine Research Laboratory analyze the performance of the R–2600, improve its cooling system, and reduce engine knock. The NACA researchers subjected the engine to numerous tests in its Prop House. The R–2600 was the subject of the laboratory's first technical report, which was written by members of the Fuels and Lubricants Division. The Prop House contained soundproof test cells in which piston engines and propellers were mounted and operated at high powers. Electrically driven fans drew air through ducts to create a stream of cooling air over the engines. Researchers tested the performance of fuels, turbochargers, water-injection and cooling systems here during World War II. The facility was also investigated a captured German V–I buzz bomb during the war.

  17. Publications - GMC 81 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Company Long Island #1 well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of for the Sohio Alaska Petroleum Company Long Island #1 well: Alaska Division of Geological &

  18. Publications - GMC 77 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a California Leffingwell #1 well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of for the Union Oil Company of California Leffingwell #1 well: Alaska Division of Geological &

  19. Publications - GMC 90 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a -1 (Hammerhead) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological for the Union Oil Company OCS-Y-0849-1 (Hammerhead) well: Alaska Division of Geological &

  20. Energy Engineering Analysis Program, energy survey of Army Industrial Facilities, Western Area Demilitarization Facility Hawthorne Ermy Ammunition Plant Hawthorne, Nevada. Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-17

    This report summarizes all work for the Energy Survey of Army Industrial Facilities, Energy Engineering Analysis Program (EEAP) at the Western Area Demilitarization Facility (WADF) of the Hawthorne Army Ammunition Plant (HWAAP), Hawthorne, Nevada, authorized under Contract No. DACA03-92-C-0155 with the U.S. Army Corps of Engineers, Sacramento District, California. The purpose of this energy survey is to develop a set of projects and actions that will reduce energy consumption and operating costs of selected facilities at the WADF. A preliminary inspection of facilities at WADF by Keller Gannon that identified potential retrofit opportunities was submitted as the EEAP Study andmore » Criteria Review in December 1993. This document formed the basis of the Detailed Scope of Work for this study. Facilities included in the survey and study, together with operational status, are listed in Table 1 - 1. The complete scope of work appears in Appendix.« less

  1. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT OF THE U.S. ARMY CORPS OF ENGINEERS CIVIL WORKS FACILITIES

    EPA Science Inventory

    The Pollution Prevention Opportunity Assessments (PPOA) summarized here were conducted at the following representative Army Corps of Engineers (USAGE) Civil Works facilities: Pittsburgh Engineering Warehouse and Repair Station (PEWARS) and Emsworth Locks and Dams in Pittsburgh, P...

  2. Publications - GMC 79 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Island #A-3) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Western BF-57 #1 (Seal Island #A-3) well: Alaska Division of Geological & Geophysical Surveys Geologic

  3. Publications - GMC 76 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a -1 (Antares #1) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological for the Exxon corporation OCS-Y-0280-1 (Antares #1) well: Alaska Division of Geological &

  4. Publications - GMC 80 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a California Tungak Creek #1 well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of for the Union Oil Company of California Tungak Creek #1 well: Alaska Division of Geological &

  5. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  6. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  7. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  8. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  9. Publications - GMC 97 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Inlet Unit A-2 well Authors: Core Laboratories Publication Date: 1988 Publisher: Alaska Division of of the Phillips Petroleum Company North Cook Inlet Unit A-2 well: Alaska Division of Geological &

  10. Publications - AR 2010-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2010-C Publication Details Title: Engineering Geology FY11 project descriptions Authors , Engineering Geology FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical

  11. Energy Engineering Analysis Program, energy survey of Army Industrial Facilities, Western Area Demilitarization Facility, Hawthorne Army Ammunition Plant, Hawthorne, Nevada; Volume 1 - energy report. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-17

    This report summarizes all work for the Energy Survey of Army Industrial Facilities, Energy Engineering Analysis Program (EEAP) at the Western Area Demilitarization Facility (WADF) of the Hawthorne Army Ammunition Plant (HWAAP), Hawthorne, Nevada, authorized under Contract No. DACA05-92-C-0155 with the U.S. Army Corps of Engineers, Sacramento District, California. The purpose of this energy survey is to develop a set of projects and actions that will reduce energy consumption and operating costs of selected facilities at the WADF. A preliminary inspection of facilities at WADF by Keller Gannon that identified potential retrofit opportunities was submitted as the EEAP Study andmore » Criteria Review in December 1993. This document formed the basis of the Detailed Scope of Work for this study. Facilities included in the survey and study, together with operational status.« less

  12. Publications - SR 47 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , T.K., Clough, A.H., Hansen, E.W., and Nelson, M.G. Publication Date: 1993 Publisher: Alaska Division ., Clough, A.H., Hansen, E.W., and Nelson, M.G., 1993, Alaska's mineral industry 1992: Alaska Division of

  13. Publications - AR 2011-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2011-C Publication Details Title: Engineering Geology FY12 project descriptions Authors Combellick, R.A., 2012, Engineering Geology FY12 project descriptions, in DGGS Staff, Alaska Division of

  14. Value Engineering. "A Working Tool for Cost Control in the Design of Educational Facilities."

    ERIC Educational Resources Information Center

    Lawrence, Jerry

    Value Engineering (VE) is a cost optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. By using VE, the optimum value for every life cycle dollar spent on a facility is obtained by identifying not…

  15. Rocket Engines Displayed for 1966 Inspection at Lewis Research Center

    NASA Image and Video Library

    1966-10-21

    An array of rocket engines displayed in the Propulsion Systems Laboratory for the 1966 Inspection held at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis engineers had been working on chemical, nuclear, and solid rocket engines throughout the 1960s. The engines on display are from left to right: two scale models of the Aerojet M-1, a Rocketdyne J-2, a Pratt and Whitney RL-10, and a Rocketdyne throttleable engine. Also on display are several ejector plates and nozzles. The Chemical Rocket Division resolved issues such as combustion instability and screech, and improved operation of cooling systems and turbopumps. The 1.5-million pound thrust M-1 engine was the largest hydrogen-fueled rocket engine ever created. It was a joint project between NASA Lewis and Aerojet-General. Although much larger in size, the M-1 used technology developed for the RL-10 and J-2. The M-1 program was cancelled in late 1965 due to budget cuts and the lack of a post-Apollo mission. The October 1966 Inspection was the culmination of almost a year of events held to mark the centers’ 25th anniversary. The three‐day Inspection, Lewis’ first since 1957, drew 2000 business, industry, and government executives and included an employee open house. The visitors witnessed presentations at the major facilities and viewed the Gemini VII spacecraft, a Centaur rocket, and other displays in the hangar. In addition, Lewis’ newest facility, the Zero Gravity Facility, was shown off for the first time.

  16. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of Materials Safety Bulletins Archive September 2016 - Hazardous Waste [PDF] July 2016 - When Should You Report - Include Safety Training in On-The-Job Training [PDF] July 2009 - Eye Injury from Corrosive Organic Solvent

  17. [The aging process and work: a case study in the maintenance engineering division of a public hospital in the city of São Paulo, Brazil].

    PubMed

    Sato, Andrea Toshye; Barros, Juliana de Oliveira; Jardim, Tatiana de Andrade; Ratier, Ana Paula Pelegrini; Lancman, Selma

    2017-11-06

    This study aimed to identify and analyze the relations between aging and work. This was a case study in the maintenance engineering division of a high-complexity hospital in the city of São Paulo, Brazil. In September and October 2015, 16 semi-structured interviews were held with the division heads and other workers with a minimum age of 50 years. The data were analyzed with thematic content analysis. Although the workers experienced difficulties resulting from the aging process, these did not prevent them from performing their work activities, since they developed strategies through their knowhow to compensate for their functional losses and/or declines. Still, they felt limited and demotivated due to the poor working conditions, outsourcing of the division, and the prevailing workload organization. Thus, in this division, the working conditions and organization had more impact than the aging process on the individuals' daily work routine.

  18. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the Heavily Instrumented ALF503R-5 Engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory will be discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This model engine, serial number LF01, was used during the inaugural icing test in the PSL facility. The reduction of thrust (rollback) events experienced by this engine in flight were replicated in the facility. Limited instrumentation was used to detect icing. Metal temperature on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect characterize ice accretion, and visualize the ice accretion in the region of interest.

  19. American Chemical Society division of fuel chemistry Henry H. Storch award.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chemistry

    American Chemical Society Division of Fuel Chemistry Henry H. Storch Award ... The purpose of the Henry H. Storch Award is to recognize distinguished contributions worldwide to fundamental or engineering research on the chemistry and utilization of all hydrocarbon fuels, with the exception of petroleum. ... The award was established in 1964 by the American Chemical Society Division of Fuel Chemistry and administered by the Division until 1985.

  20. NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine

    NASA Image and Video Library

    1962-04-21

    Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.

  1. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Personnel Safety Personnel MSD EH&S Manager Martin Neitzel 66-242 ext. 6169 MLNeitzel Schwartz 66-250E ext. 4957 nischwartz@lbl.gov Lab Safety Advisory Committee Rep Robert Kaindl 2-354 ext

  2. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of complete EHS0470, General Employee Radiation Safety (on-line course). Escort is required for visitors who Safety (on-line course) ii. EHS0348 Chemical Hygiene and Safety (on-line course) iii. EHS0470 General

  3. 15. Photocopy of engineering drawing F790 in files of Utilities ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of engineering drawing F-790 in files of Utilities Engineering files in Cleveland of the Allis-Chambers steam engine. This side elevation of the engine in the Division Avenue plant is the last remaining drawing of them in existence. The engine was dismantled. Date of drawing is 1914. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  4. EPA Facility Registry Service (FRS): CAMDBS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Clean Air Markets Division Business System (CAMDBS). Administered by the EPA Clean Air Markets Division, within the Office of Air and Radiation, CAMDBS supports the implementation of market-based air pollution control programs, including the Acid Rain Program and regional programs designed to reduce the transport of ozone. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to CAMDBS facilities once the CAMDBS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  5. Divisions of geologic time (Bookmark)

    USGS Publications Warehouse

    ,

    2012-05-03

    DescriptionThis bookmark, designed for use with U.S. Geological Survey activities at the second USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  6. Psychological Sciences Division: 1985 Programs.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Psychological Sciences Div.

    This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…

  7. 75 FR 8920 - Grant of Authority for Subzone Status; Danisco USA, Inc., Sweeteners Division (Xylitol, Xylose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Status; Danisco USA, Inc., Sweeteners Division (Xylitol, Xylose, Galactose and Mannose); Thomson, IL...., Sweeteners Division, located in Thomson, Illinois, (FTZ Docket 4-2009, filed 2/4/2009); Whereas, notice... xylitol, xylose, galactose and mannose at the facility of Danisco USA, Inc., Sweeteners Division, located...

  8. Scientific and Engineering Research Facilities at Colleges and Universities, 1998. Topical Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

    On a biennial basis since 1986, the National Science Foundation (NSF) has collected data on issues related to Science and Engineering (S&E) research facilities at U.S. colleges, universities, and biomedical institutions. This report presents the major findings from the 1998 survey and provides a summary of the changes that took place between…

  9. Final Report on the Audit of Architect-Engineer Contracting at the Officer in Charge of Construction, Naval Facilities Engineering Command Contracts, Mediterranean, Madrid, Spain

    DTIC Science & Technology

    1990-11-30

    This is our final report on the audit of Architect-Engineer Contracting for the Officer in Charge of Construction, Naval Facilities Engineering...Command Contracts, Mediterranean, for your information and use. This is the fourth in a series of reports issued as part of the audit of architect-engineer...A-E) contracting. The Contract Management Directorate made the audit from August 1989 through July 1990. When we expanded the audit scope to include

  10. The ORNL Chemical Technology Division, 1950-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment thatmore » had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.« less

  11. Water Resources Division training catalog

    USGS Publications Warehouse

    Hotchkiss, W.R.; Foxhoven, L.A.

    1984-01-01

    The National Training Center provides technical and management sessions nesessary for the conductance of the U.S. Geological Survey 's training programs. This catalog describes the facilities and staff at the Lakewood Training Center and describes Water Resources Division training courses available through the center. In addition, the catalog describes the procedures for gaining admission, formulas for calculating fees, and discussion of course evaluations. (USGS)

  12. US Naval Facilities Engineering Service Center Environmental Program on Climate Change

    DTIC Science & Technology

    2008-09-01

    of environmental issues related to climate change . There is a growing recognition that the Navy will need to perform its national security mission in... climate change -related technology work at the Naval Facilities Engineering Service Center (NAVFAC ESC) in Port Hueneme, California. NAVFAC ESC...categorized technologies that can be applied to climate change as mitigation, adaptation, and intervention. An essential element of the Navy’s response to

  13. Supercharger Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    A researcher in the Supercharger Research Division at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory measures the blade thickness on a supercharger. Superchargers were developed at General Electric used to supply additional air to reciprocating engines. The extra air resulted in increased the engine’s performance, particularly at higher altitudes. The Aircraft Engine Research Laboratory had an entire division dedicated to superchargers during World War II. General Electric developed the supercharger in response to a 1917 request from the NACA to develop a device to enhance high-altitude flying. The supercharger pushed larger volumes of air into the engine manifold. The extra oxygen allowed the engine to operate at its optimal sea-level rating even when at high altitudes. Thus, the aircraft could maintain its climb rate, maneuverability and speed as it rose higher into the sky. NACA work on the supercharger ceased after World War II due to the arrival of the turbojet engine. The Supercharger Research Division was disbanded in October 1945 and reconstituted as the Compressor and Turbine Division.

  14. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  15. High-temperature test facility at the NASA Lewis engine components research laboratory

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1990-01-01

    The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

  16. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  17. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  18. Structural Engineering: Overview

    NASA Technical Reports Server (NTRS)

    Castro, Edgar

    2011-01-01

    This slide presentation presents the work of the Structural Engineering Division of the Engineering Directorate. The work includes: providing technical expertise and leadership for the development, evaluation, and operation of structural, mechanical, and thermal spaceflight systems.

  19. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/ characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  20. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  1. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  2. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an abovegroundmore » structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)« less

  3. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  4. Plasma Engines,

    DTIC Science & Technology

    1982-09-08

    low thrust, long duration power device, the plasma engine 6 has certain distinct advantages. For a chemical fuel rocket engine , a thrust of M.’)1...PLASMA ENGINES.CU) UNCLASSZICD FTO-ZIftS)T-0636-98 NL * UUUUU UUMile ~ FTD-ID(RS)T-0636-82 FOREIGN TECHNOLOGY DIVISION q 14 PLASMA ENGINES bv Sung...8 September 1982 MICROFICHE NR: FTD-82-C-001198 PLASMA ENGINES By: Sung Yuyang English pages: 7 Source: Hangkong Zhishi, March 1982, pp. 12-13 Country

  5. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  6. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  7. Publications - AR 2012 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Report Authors: DGGS Staff Publication Date: Jan 2013 Publisher: Alaska Division of Geological &

  8. Publications - AR 2013 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Report Authors: DGGS Staff Publication Date: Jan 2014 Publisher: Alaska Division of Geological &

  9. (US low-level radioactive waste management facility design, construction, and operation): Foreign trip report, July 22--30, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Bolinsky, J.

    1989-08-02

    The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Oak Ridge National Laboratory (ORNL), participated in a technology exchange program on French and US low-level radioactive waste (LLW) management facility design, construction, and operation. Meetings were held at the Agence National pour la Gestion des Dechets Radioactif (ANDRA) offices in Paris to review the designs for the new French LLW disposal facility, the Cente de Stockage de l'Aube (CSA), and the new ORNL LLW disposal project, the Interim Waste Management Facility (IWMF), and the results of the French LLW disposal facility cover experiment atmore » St. Sauveur. Visits were made to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM), the LLW conditioning facilities at the La Hague Reprocessing Facility, and the St. Saueveur Disposal Cap Experiment to discuss design, construction, and operating experience. A visit was also made to the CSA site to view the progress made in construction of the new facility.« less

  10. Environmental Toxicology and Chemistry at EPA's Western Ecology Division

    EPA Science Inventory

    The facility for the US Environmental Protection Agency’s Western Ecology Division (WED) has been involved in environmental toxicology and chemistry research since its inception in 1961 when it was the Pacific Northwest Water Laboratory. Currently, WED is one of four ecolog...

  11. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY TH; GEHNER PD; STEGEN GARY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in additionmore » to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.« less

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  13. Luis de Florez and the Special Devices Division

    NASA Astrophysics Data System (ADS)

    Dawson, Paul Louis

    This Dissertation presents the life of Luis de Florez and the World War II history of the Special Devices Division (SDD) of the U.S. Navy's Bureau of Aeronautics. Luis de Florez was a well known consulting engineer, aviation fuel expert, private pilot and reserve Naval officer. While on active duty in 1940, he received the assignment to improve the Navy's flight training methods. To accomplish this objective, he promoted the concept of synthetic training, the use of simulators and other non-operational equipment, to provide training for Navy flight personnel such as pilots, gunners, navigators, flight engineers, radio operators and others as well as for ground based people like mechanics. He founded the Special Devices Division to design the tools and equipment needed for this type of training. The success of synthetic training and the devices developed by the SDD received recognition by the awarding of the Collier Trophy to de Florez in December 1944. This trophy is awarded annually for the most significant aeronautical achievement of the previous year (1943). De Florez received the award for the strategic accomplishment of training thousands of American airmen in 1943. The work of the Division also had other important technical, social, financial and operational impacts on the prosecution of WW II by the Allies. The work of the Division also had impacts on American society as a whole that persist to the present day. These impacts are discussed in detail. The Dissertation presents details of the devices and their use in aviation training as well as a history of the Division during the war. After the war, de Florez led an advisory board for the CIA. These activities and some of both the positive and negative results of the work of this board are discussed. This discussion includes de Florez' involvement in the CIA's drug experiments and the unfortunate Frank Olsen affair.

  14. The Maryland Division of Correction hospice program.

    PubMed

    Boyle, Barbara A

    2002-10-01

    The Maryland Division of Correction houses 24,000 inmates in 27 geographically disparate facilities. The inmate population increasingly includes a frail, elderly component, as well as many inmates with chronic or progressive diseases. The Division houses about 900 human immunodeficiency virus (HIV)-positive detainees, almost one quarter with an acquired immune deficiency syndrome (AIDS) diagnosis. A Ryan White Special Project of National Significance (SPNS) grant and the interest of a community hospice helped transform prison hospice from idea to reality. One site is operational and a second site is due to open in the future. Both facilities serve only male inmates, who comprise more than 95% of Maryland's incarcerated. "Medical parole" is still the preferred course for terminally ill inmates; a number have been sent to various local community inpatient hospices or released to the care of their families. There will always be some who cannot be medically paroled, for whom hospice is appropriate. Maryland's prison hospice program requires a prognosis of 6 months or less to live, a do-not-resuscitate (DNR) order and patient consent. At times, the latter two of these have been problematic. Maintaining the best balance between security requirements and hospice services to dying inmates takes continual communication, coordination and cooperation. Significant complications in some areas remain: visitation to dying inmates by family and fellow prisoners; meeting special dietary requirements; what role, if any, will be played by inmate volunteers. Hospice in Maryland's Division of Correction is a work in progress.

  15. Traditional engineering in the biological century: the biotraditional engineer.

    PubMed

    Friedman, M H

    2001-12-01

    The increasing importance of life science in all engineering is prompting departments in the traditional engineering disciplines to offer life science as part of their curricula. Students who take advantage of this opportunity--"biotraditional engineers"--will be well positioned for careers in their discipline and in related areas of bioengineering. The founder engineering societies, such as the Bioengineering Division of ASME, are responding to this trend by broadening their scope and working increasingly across interdisciplinary borders.

  16. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A new Block 2A engine awaits processing in the low bay of the Space Shuttle Main Engine Processing Facility (SSMEPF). Officially opened on July 6, the new facility replaces the Shuttle Main Engine Shop. The SSMEPF is an addition to the existing Orbiter Processing Facility Bay 3. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998.

  17. R and E: Communications and Intelligent Systems Division (LC)

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn C.; Miranda, Felix A.

    2015-01-01

    This presentation is intended for the Ohio Federal Research Network's Centers of Excellence. The presentation provides an overview of the Communications and Intelligent Systems Division including current research and engineering work as well as future technology needs.

  18. Publications - GMC 106 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a microfossils from cuttings of Hemi Springs State #1 well Authors: Unknown Publication Date: 1989 Publisher Springs State #1 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  19. Publications - GMC 104 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a microfossils from cuttings of Kavearak Point 32-25 well Authors: Unknown Publication Date: 1988 Publisher Point 32-25 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  20. Publications - GMC 261 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ') of the ARCO Alaska Inc. Jones Island #1 well Authors: Unknown Publication Date: 1996 Publisher well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data Report 261

  1. Publications - GMC 105 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a microfossils from cuttings of Gwydyr Bay State #2 well Authors: Unknown Publication Date: 1989 Publisher Bay State #2 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  2. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Spacelab Data Processing Facility (SDPF) processes, monitors, and accounts for the payload data from Spacelab and other Shuttle missions and forwards relevant data to various user facilities worldwide. The SLDPF is divided into the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). The SIPS division demultiplexes, synchronizes, time tags, quality checks, accounts for the data, and formats the data onto tapes. The SOPS division further edits, blocks, formats, and records the data on tape for shipment to users. User experiments must conform to the Spacelab's onboard High Rate Multiplexer (HRM) format for maximum process ability. Audio, analog, instrumentation, high density, experiment data, input/output data, quality control and accounting, and experimental channel tapes along with a variety of spacelab ancillary tapes are provided to the user by SLDPF.

  3. 7. Photocopy of photograph (original in possession of the Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of photograph (original in possession of the Division of Mechanical and Civil Engineering, Smithsonian Institute) PARKER TRUSS BRIDGE IN MAINE - Elm Street Bridge, Spanning Ottauquechee River, Woodstock, Windsor County, VT

  4. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  5. Walk-through survey report, Dravo Corporation, Engineering Works Ddivision, Neville Island, Pittsburgh, Pennsylvania, January 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, C.; Lazar, C.

    1980-06-01

    A walk-through survey was conducted on January 30, 1979, at the Engineering Works Division Shipyard of the Dravo Corporation in Pittsburgh, Pennsylvania, to determine whether this site would be suitable for inclusion in the in-depth survey of the shipbuilding-industry segment of the investigation of health hazards to painters. The shipyard is engaged in the design and construction of barges and towboats for river transport of bulk cargoes. Out of a workforce of 1,200 production personnel, there are 10 spray painters, 13 brush painters, 3 sign painters, and 10 painters' assistants. The painters have a low turnover rate and the companymore » has personnel records dating back to World War I. A safety and industrial-hygiene program operates at the facility and requires respiratory usage and various engineering controls for many painting operations. The authors conclude that the facility needs a better industrial-hygiene program than is now in effect. They recommend that the facility be included for consideration in the final study.« less

  6. 8. Photocopy of photograph (Original in possesssion of the Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph (Original in possesssion of the Division of Mechanical and Cicil Engineering, Smithsonian Institute) PARKER TRUSS BRIDGE IN NORTHFIELD, VT - Elm Street Bridge, Spanning Ottauquechee River, Woodstock, Windsor County, VT

  7. Staff - Simone Montayne | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Preservation Workshop Professional Experience Metadata - Simone compiles all of the division's metadata files Professional Activities Website and database administrator for the Association of American State Geologists

  8. Publications - GMC 216 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a report of the U.S. Navy Fish Creek # 1 well Authors: Core Laboratories Publication Date: 1993 Publisher Fish Creek # 1 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  9. Acoustics Division recent accomplishments and research plans

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Morgan, H. G.

    1986-01-01

    The research program currently being implemented by the Acoustics Division of NASA Langley Research Center is described. The scope, focus, and thrusts of the research are discussed and illustrated for each technical area by examples of recent technical accomplishments. Included is a list of publications for the last two calendar years. The organization, staff, and facilities are also briefly described.

  10. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE...MATTER (PM) EMISSIONS Edwin Corporan Fuels and Energy Branch Turbine Engine Division Matthew DeWitt and Chris Klingshirn University of...Energy Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// CHARLES W. STEVENS Lead Engineer

  11. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  12. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projectsmore » the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.« less

  13. Metals and Ceramics Division progress report for period ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less

  14. 77 FR 42424 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Airworthiness Directives; Pratt & Whitney Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... & Whitney Division PW4074 and PW4077 turbofan engines. That AD currently requires removing the 15th stage..., August 4, 2011). (c) Applicability This AD applies to Pratt & Whitney Division PW4074 and PW4077 turbofan...

  15. SLS Engine Section Test Article Loaded on Barge Pegasus at NASA's Michoud Assembly Facility

    NASA Image and Video Library

    2017-04-27

    A NASA move team loaded the engine section structural qualification test article for the Space Launch System into the barge Pegasus docked in the harbor at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from Building 103, Michoud’s 43-acre rocket factory, to the barge where it was loaded for a river trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The barge Pegasus will travel 1,240 miles by river to Marshall and endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  16. Publications - GMC 257 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Colville River #1 well Authors: Unknown Publication Date: 1995 Publisher: Alaska reflectance data from cuttings (1,470-7,300') of the ARCO Alaska Inc. Colville River #1 well: Alaska Division

  17. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  18. Does PDC Belong in Facilities Management?

    ERIC Educational Resources Information Center

    Dessoff, Alan

    2012-01-01

    Whether planning, design, and construction (PDC) of buildings should be part of facilities management, with its traditional operations and maintenance functions, or separated from it, has been a divisive question on many campuses for a long time. Now, although it is not happening everywhere, facilities managers at a number of institutions, public…

  19. Publications - GMC 17 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a vitrinite reflectance) from Exxon Pt. Thompson #3 well Authors: AMOCO Publication Date: 1983 Publisher #3 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  20. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  1. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  2. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  3. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  4. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  5. Hazardous Waste Cleanup: GM Assembly Division in Linden, New Jersey

    EPA Pesticide Factsheets

    The General Motors Assembly Division (GM) site is 35 acres and is located at 1016 West Edgar Road in an area zoned for residential, commercial and manufacturing/industrial uses in Linden, New Jersey. The facility has operated since 1935 as a manufacturing

  6. Development and Testing of an Experimental Mobile Instructional Facility for Applied Courses in Engineering Technology.

    ERIC Educational Resources Information Center

    Kleine, Louis W.

    The experimental pilot project was conducted to determine whether students who take the laboratory phase of an engineering technology applied electricity course in a mobile laboratory at branch schools demonstrate proficiency comparable to students who take the applied electricity course in permanent facilities at the parent institution. The…

  7. Publications - GMC 424 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , grain density, and petrologic analyses of core from the E. Simpson Test Well #2 well Authors: Nordaq Test Well #2 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  8. Publications - GMC 272 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ') from the ARCO Alaska Inc. Till #1 well Authors: Unknown Publication Date: 1996 Publisher: Alaska reflectance maceral data of cuttings (3,100-6,975') from the ARCO Alaska Inc. Till #1 well: Alaska Division of

  9. Publications - GMC 151 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Gulf Oil Corp. Point Mcintyre #1 well Authors: Unknown Publication Date: 1990 Publisher: Alaska reflectance data of cuttings (3,540-11,850) from the Gulf Oil Corp. Point Mcintyre #1 well: Alaska Division of

  10. Publications - GMC 118 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Company OCS Y-0849-2 (Hammerhead #2) well Authors: Unknown Publication Date: 1989 Publisher: Alaska reflectance data of cuttings from the Union Oil Company OCS Y-0849-2 (Hammerhead #2) well: Alaska Division of

  11. Health, Safety, and Environment Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from thesemore » applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.« less

  12. Summaries of FY 1993 Engineering Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    This report documents the BES Engineering Research Program for fiscal year 1993; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) on the next page delineates the six Divisions within the OERmore » Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1993. The summaries received have been edited if necessary.« less

  13. 76 FR 2710 - Pitney Bowes, Inc., Mailing Solutions Management Division Including On-Site Leased Workers of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ...., Mailing Solutions Management Division Including On-Site Leased Workers of Guidant Group, and Teleworkers... Bowes, Inc., Mailing Solutions Management Division, Engineering Quality Assurance, Shelton, Connecticut... identity of the subject worker group. The worker group consists of workers of Pitney Bowes, Inc., the...

  14. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  15. Life sciences space station planning document: A reference payload for the exobiology research facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

  16. Structural dynamics verification facility study

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.

    1981-01-01

    The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.

  17. 16. VIEW OF ROBERT VOGEL, CURATOR, DIVISION OF MECHANICAL & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF ROBERT VOGEL, CURATOR, DIVISION OF MECHANICAL & CIVIL ENGINEER, NATIONAL MUSEUM OF AMERICAN HISTORY, SMITHSONIAN INSTITUTION, SITTING IN ELEVATOR CAR. MR. VOGEL IS RESPONSIBLE FOR THE RELOCATION OF THE ELEVATOR TO THE SMITHSONIAN INSTITUTION - 72 Marlborough Street, Residential Hydraulic Elevator, Boston, Suffolk County, MA

  18. Compressor Research Facility F100 High Pressure Compressor Inlet Total Pressure and Swirl Profile Simulation.

    DTIC Science & Technology

    1984-10-01

    SECTION I INTRODUCTION 1. GENERAL -.The F100 gas turbine engine currently powers the Air Force F-15 and F-16 aircraft . The compression section of this... Aircraft in designing these vanes and screens to provide the measured engine profiles. lata acquisition system was defined and transported to Pratt and...WILLIAM W. COEHVRWALKER H. MITCHELL Compressor Test Group Chief, Technology Branch Technology Branch Turbine Engine Division Turbine Engine Division

  19. Publications - GMC 96 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Corp.) North cook Inlet Unit A-12 (A-15) well Authors: Core Laboratories Publication Date: 1988 Unit A-12 (A-15) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials

  20. Publications - GMC 48 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 48 Publication Details Title: Palynology of the Susie Unit #1 well, North Slope, Alaska , Palynology of the Susie Unit #1 well, North Slope, Alaska: Alaska Division of Geological & Geophysical

  1. Publications - GMC 78 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 78 Publication Details Title: Vitrinite reflectance data for OCS-Y-0344-1 (Mukluk #1) well ) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data Report 78

  2. Publications - GMC 44 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 44 Publication Details Title: Carbon isotope analysis of carbonates from Ahtna #1 well, Copper of carbonates from Ahtna #1 well, Copper River Valley, Alaska: Alaska Division of Geological &

  3. Publications - GMC 115 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a for Iniskin Unit Zappa #1 well and for Iniskin Unit Beal #1 well Authors: Brown and Ruth Laboratories data and analysis for Iniskin Unit Zappa #1 well and for Iniskin Unit Beal #1 well: Alaska Division of

  4. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1986-03-01

    Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to

  5. Physics division annual report 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments ismore » the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium

  6. Staff - Patricia E. Gallagher | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Fairbanks and is currently working toward becoming a certified GIS professional. Position: GIS Analyst professional. Professional Experience 2013-present - Cartographer/GIS Analyst, State of Alaska, Division of

  7. Publications - GMC 94 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Oil Company Clam Gulch 1-X well Authors: Makada, R. Publication Date: 1988 Publisher: Alaska Division , Vitrinite reflectance data of ditch cuttings from the Marathon Oil Company Clam Gulch 1-X well: Alaska

  8. 12. THE DIVISION OF STOCKHAM'S WORKFORCE FELL MOSTLY ALONG RACIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. THE DIVISION OF STOCKHAM'S WORKFORCE FELL MOSTLY ALONG RACIAL BOUNDARIES. THESE WHITE COLLAR WORKERS TYPIFIED THE MAKEUP OF ENGINEERING, ACCOUNTING, SALES, AND SUPERVISORY STAFFS OF THE FIRM CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  9. Design and Testing of Scaled Ejector-Diffusers for Jet Engine Test Facility Applications.

    DTIC Science & Technology

    1983-09-01

    the test cell such that the exhaust will be vented into an augmenting tube which acts as an ejector -diffuser assembly. 11 The kinetic energy of the...OF STANDARDS-1963-A ..’I -Dy , - 77 *4********* Z 7.77- NAVAL POSTGRADUATE SCHOOL Monterey, California W I THESIS DESIGN AND TESTING OF SCALED EJECTOR ...PERIOD COVERED Design and Testing of Scaled Ejector - "flglfeerls Thesis~ Diffusers for Jet Engine Test Facility Spebr18 S. PERFORMING ORG. REPORT

  10. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  11. Energy Savings and Sustainability Opportunities at US Army Corps of Engineers Facilities: A Guide to Identify, Prioritize, and Estimate Projects at Complexes That Have Not Conducted a Facility-Level Energy and Water Evaluation

    DTIC Science & Technology

    2012-06-16

    Engineers to help identify and develop energy and water conservation projects in the facilities for which they are responsible. DISCLAIMER: The...and water throughout their facility. To identify energy and water conservation measures (ECMs), an energy manager would generally start by performing...an Energy and Water Conservation Assessment, essentially a facility-level evaluation of the en- ergy and water consuming equipment and systems that

  12. Overview of NASA Glenn Research Center's Communications and Intelligent Systems Division

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    The Communications and Intelligent Systems Division provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.

  13. Pedestrian and bicycle facilities in California : a technical reference and technology transfer synthesis for Caltrans planners and engineers.

    DOT National Transportation Integrated Search

    2005-07-01

    The primary purpose of Pedestrian and Bicycle Facilities in CaliforniaA : Technical Reference and Technology Transfer Synthesis for Caltrans Planners : and Engineers (Technical Reference) is to provide Caltrans staff : with a synthesis of in...

  14. Earth Sciences Division annual report 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriatemore » chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.« less

  15. Publications - SR 48 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , R.C., Clough, A.H., Henning, M.W., and Hansen, E.W. Publication Date: 1994 Publisher: Alaska Division ., Swainbank, R.C., Clough, A.H., Henning, M.W., and Hansen, E.W., 1994, Alaska's mineral industry 1993: Alaska

  16. Publications - SR 49 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , T.K., Clough, A.H., Henning, M.W., and Hansen, E.W. Publication Date: 1995 Publisher: Alaska Division ., Bundtzen, T.K., Clough, A.H., Henning, M.W., and Hansen, E.W., 1995, Alaska's mineral industry 1994: Alaska

  17. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  18. Knowledge Management tools integration within DLR's concurrent engineering facility

    NASA Astrophysics Data System (ADS)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  19. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  20. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  1. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  2. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  3. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  4. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  5. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  6. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  7. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  8. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  9. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  10. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  11. High-Explosives Applications Facility (HEAF)

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  12. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Waste Disposal Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansley, Shannon Leigh

    2002-02-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering andmore » Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.« less

  13. Effects of Polyhydroxybutyrate Production on Cell Division

    NASA Technical Reports Server (NTRS)

    Miller, Kathleen; Rahman, Asif; Hadi, Masood Z.

    2015-01-01

    Synthetic biological engineering can be utilized to aide the advancement of improved long-term space flight. The potential to use synthetic biology as a platform to biomanufacture desired equipment on demand using the three dimensional (3D) printer on the International Space Station (ISS) gives long-term NASA missions the flexibility to produce materials as needed on site. Polyhydroxybutyrates (PHBs) are biodegradable, have properties similar to plastics, and can be produced in Escherichia coli using genetic engineering. Using PHBs during space flight could assist mission success by providing a valuable source of biomaterials that can have many potential applications, particularly through 3D printing. It is well documented that during PHB production E. coli cells can become significantly elongated. The elongation of cells reduces the ability of the cells to divide and thus to produce PHB. I aim to better understand cell division during PHB production, through the design, building, and testing of synthetic biological circuits, and identify how to potentially increase yields of PHB with FtsZ overexpression, the gene responsible for cell division. Ultimately, an increase in the yield will allow more products to be created using the 3D printer on the ISS and beyond, thus aiding astronauts in their missions.

  14. EPA Facility Registry Service (FRS): Facility Interests Dataset

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  15. Physics division annual report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, K., ed.

    2001-10-04

    This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as themore » highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure

  16. The Southwestern Division: 50 Years of Service

    DTIC Science & Technology

    1987-01-01

    signature of Secreta- ry of War Robert Patterson who, one employee recalled, "had a great deal more to do than to sign a receipt for a CCC camp in the...Pantex at Amarillo, Texas; Red River and Lone Star near Texarkana , Texas; and Longhorn, near Marshall, Texas. The Denison District built some of the...available, the Division Engineer, Brigadier General William Whipple, esti- mated, floodwaters would have reached downtown Dallas. Federal reservoirs on

  17. NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine

    NASA Image and Video Library

    1958-12-21

    An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.

  18. 49 CFR 177.841 - Division 6.1 and Division 2.3 materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 6.1 and Division 2.3 materials. 177.841... PUBLIC HIGHWAY Loading and Unloading § 177.841 Division 6.1 and Division 2.3 materials. (See also § 177...) or Division 6.1 (poisonous) materials. The transportation of a Division 2.3 (poisonous gas) or...

  19. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  20. Integrated approach to modeling long-term durability of concrete engineered barriers in LLRW disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Roy, D.M.; Mann, B.

    1995-12-31

    This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less

  1. Health hazard evaluation report heta 92-0160-2360, City of Lancaster, Division of Fire, Lancaster, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echt, A.; Blade, L.; Sheehy, J.

    1993-10-01

    In response to a request from the Division of Fire and the International Association of Firefighters Local 291, an evaluation was undertaken of exposure to diesel exhaust emissions in the engine houses of the City of Lancaster Division of Fire (SIC-9224) Lancaster, Ohio. At the time of the study, 77 uniformed employees and two secretaries worked in three engine houses. In Engine House 1, personal breathing zone (PBZ) samples ranged from 51.7 to 71.2 micrograms per cubic meter (microg/cu m) on the first night of sampling. PBZ samples in Engine House 2 ranged from 25.7 to 78.8 microg/cu m overmore » two nights of sampling. Results for Engine House 3 ranged from 24.0 to 60.5 microg/cu m. With the exception of one measurement of 4.6 parts per million (ppm) of carbon-monoxide (CO) measured in the smoking room of Engine House 2, only trace CO was detected. Benzene solubles measured in Engine House 2 ranged from less than the limit of detection to 313 microg/cu m. The authors conclude that exhaust emissions containing diesel particulate may present a potential risk to firefighters. The authors recommend the use of engineering controls and work practices to reduce diesel exhaust emission exposures.« less

  2. Architectural & engineering handbook

    DOT National Transportation Integrated Search

    2003-05-21

    The Architectural and Engineering (A&E) Handbook provides an overview of the contracting process for A&E consultant services. Produced by the Division of Procurement and Contracts, this handbook provides guidance and a structured process for the plan...

  3. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  4. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1984-12-01

    AFLRL No. 178 By oi Harry E. Dietzmann ,< Engines, Emissions.and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prppared...the possibility of replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric ...concern; however, these concerns may be amplified when the vehicle is operating under a malfunction mode. Malfunctions include simulating a plugged

  5. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  6. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  7. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  8. Langley Mach 4 scramjet test facility

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Torrence, M. G.; Anderson, G. Y.; Northam, G. B.; Mackley, E. A.

    1985-01-01

    An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research.

  9. 78 FR 59293 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Engineering Corporation parts manufacturer approval replacement cylinder assemblies installed. The replacement cylinder assemblies are marketed by Engine Components International Division. DATES: The comment period for...

  10. Fan Noise Test Facility

    NASA Image and Video Library

    1969-01-21

    The Fan Noise Test Facility built at the Lewis Research Center to obtain far-field noise data for the National Aeronautics and Space Administration (NASA) and General Electric Quiet Engine Program. The engine incorporated existing noise reduction methods into an engine of similar power to those that propelled the Boeing 707 or McDonnell-Douglas DC-8 airliner. The new the low-bypass ratio turbofan engines of the 1960s were inherently quieter than their turbojet counterparts, researchers had a better grasp of the noise generation problem, and new acoustic technologies had emerged. Lewis contracted General Electric in 1969 to build and aerodynamically test three experimental engines with 72-inch diameter fans. The engines were then brought to Lewis and tested with an acoustically treated nacelle. This Fan Noise Test Facility was built off of the 10- by 10-Foot Supersonic Wind Tunnel’s Main Compressor and Drive Building. Lewis researchers were able to isolate the fan’s noise during these initial tests by removing the core of the engine. The Lewis test rig drove engines to takeoff tip speeds of 1160 feet per second. The facility was later used to test a series of full-scale model fans and fan noise suppressors to be used with the quiet engine. NASA researchers predicted low-speed single-stage fans without inlet guide vanes and with large spacing between rotors and stators would be quieter. General Electric modified a TF39 turbofan engine by removing the the outer protion of the fan and spacing the blade rows of the inner portion. The tests revealed that the untreated version of the engine generated less noise than was anticipated, and the acoustically treated nacelle substantially reduced engine noise.

  11. Physics division. Progress report for period ending September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Divisionmore » have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.« less

  12. Structures Division 1994 Annual Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.

  13. Scoping the parameter space for demo and the engineering test facility (ETF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Wayne R.

    1999-01-19

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell' s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to definemore » R&D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R&D programs must seek to meet.« less

  14. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  15. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  16. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  17. Facilities Policies and Procedures Manual. South Carolina Commission on Higher Education. Division of Finance, Facilities, and Statistical Services.

    ERIC Educational Resources Information Center

    South Carolina Commission on Higher Education, Columbia.

    This manual outlines the policies and procedures related to the submission and review of facilities projects at South Carolina's public colleges and universities. It provides an overview of the South Carolina Commission on Higher Education's role and responsibilities and its general policy regarding permanent improvements to facilities. The report…

  18. 16. The Baltimore & Ohio R.R System, Division BaltimoreEast, Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. The Baltimore & Ohio R.R System, Division Baltimore-East, Bridge No 13-A, Branch Philadelphia. Baltimore: Office of Engineer of Bridges, 1945. Copy of drawing located at the Baltimore County Department of Public Works, Towson, Maryland. - Allender Road Bridge, Spanning CSX Transportation railroad tracks at Allender Road, White Marsh, Baltimore County, MD

  19. Series hybrid vehicles and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.; Vanblarigan, P.

    1995-05-01

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO(x) emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier-2 emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  20. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  1. 33 CFR 209.140 - Operations of the Corps of Engineers under the Federal Power Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... attention of the Commission. No public hearing will be held unless specifically authorized by the Commission... projects in this class is left to the discretion of the Division Engineer but annual reports will be... conditions in the interest of navigation has come to the attention of the Division Engineer. (f) Delegation...

  2. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  3. Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility

    NASA Astrophysics Data System (ADS)

    Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos

    2016-12-01

    Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a

  4. 33 CFR 143.120 - Floating OCS facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS facilities... (Marine Engineering) and J (Electrical Engineering) of 46 CFR chapter I and 46 CFR part 108 (Design and Equipment). Where unusual design or equipment needs make compliance impracticable, alternative proposals...

  5. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

  6. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  7. Health, Safety, and Environment Division annual report 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting the responsibilities involves many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in the HSE Division often stem from these appliedmore » needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The result of these programs is to help develop better practices in occupational health and safety, radiation protection, and environmental sciences.« less

  8. 76 FR 67765 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding Louisiana Energy Services, National..., Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety... Commission. Brian W. Smith, Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards...

  9. 75 FR 44817 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...

  10. FEDERAL FACILITIES IN EPA REGION 6

    EPA Science Inventory

    Locations of federal facilities in EPA Region 6. Facilities from the Corps of Engineers, Veterans Administration, Army, Navy, Air National Guard, etc. are included. This is not a complete set of facilities. The facilities included are only those with value added locations used in...

  11. High-speed wavelength-division multiplexing quantum key distribution system.

    PubMed

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio

    2012-01-15

    A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.

  12. Engineering Change Management Method Framework in Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    Stekolschik, Alexander

    2016-11-01

    Engineering changes make an impact on different process chains in and outside the company, and lead to most error costs and time shifts. In fact, 30 to 50 per cent of development costs result from technical changes. Controlling engineering change processes can help us to avoid errors and risks, and contribute to cost optimization and a shorter time to market. This paper presents a method framework for controlling engineering changes at mechanical engineering companies. The developed classification of engineering changes and accordingly process requirements build the basis for the method framework. The developed method framework comprises two main areas: special data objects managed in different engineering IT tools and process framework. Objects from both areas are building blocks that can be selected to the overall business process based on the engineering process type and change classification. The process framework contains steps for the creation of change objects (both for overall change and for parts), change implementation, and release. Companies can select singleprocess building blocks from the framework, depending on the product development process and change impact. The developed change framework has been implemented at a division (10,000 employees) of a big German mechanical engineering company.

  13. Implementation of a Wisconsin Division of Public Health Surgical Site Infection Prevention Champion Initiative.

    PubMed

    Borlaug, Gwen; Edmiston, Charles E

    2018-05-01

    Approximately 900 surgical site infections (SSIs) were reported to the Wisconsin Division of Public Health annually from 2013 to 2015, representing the most prevalent reported health care-associated infection in the state. Personnel at the Wisconsin Division of Public Health launched an SSI prevention initiative in May 2015 using a surgical care champion to provide surgical team peer-to-peer guidance through voluntary, nonregulatory, fee-exempt onsite visits that included presentations regarding the evidence-based surgical care bundle, tours of the OR and central processing areas, and one-on-one discussions with surgeons. The surgical care champion visited 10 facilities from August to December 2015, and at those facilities, SSIs decreased from 83 in 2015 to 47 in 2016 and the overall SSI standardized infection ratio decreased by 45% from 1.61 to 0.88 (P = .002), suggesting a statewide SSI prevention champion model can help lead to improved patient outcomes. © AORN, Inc, 2018.

  14. Occupational Sequences: Auto Engines 1. AT 121.

    ERIC Educational Resources Information Center

    Korb, A. W.; And Others

    In an attempt to individualize an automotive course, the Vocational-Technical Division of Northern Montana College has developed Occupational Sequences for an engine rebuilding course. Occupational Sequences, a learning or teaching aid, is an analysis of numbered operations involved in engine rebuilding. Job sheets, included in the book, provide a…

  15. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  16. Division of Biological and Medical Research annual report, 1979. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1979-01-01

    Separate abstracts were prepared for 14 of the 20 sections included in this progress report. The other 6 sections include: introductory statements by the division director; descriptions of the animal, computer, electron microscope, and radiation support facilities; a listing of the educational activities, divisional seminars, and oral presentations by staff members; and divisional staff publications. An author index to the report is included. (ERB)

  17. Publications - RDF 2008-2 v. 1.0.1 | Alaska Division of Geological &

    Science.gov Websites

    Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  18. An optimization model for energy generation and distribution in a dynamic facility

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  19. Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies.

    PubMed

    Cole, E C; Cook, C E

    1998-08-01

    Assessment of strategies for engineering controls for the prevention of airborne infectious disease transmission to patients and to health care and related workers requires consideration of the factors relevant to aerosol characterization. These factors include aerosol generation, particle size and concentrations, organism viability, infectivity and virulence, airflow and climate, and environmental sampling and analysis. The major focus on attention to engineering controls comes from recent increases in tuberculosis, particularly the multidrug-resistant varieties in the general hospital population, the severely immunocompromised, and those in at-risk and confined environments such as prisons, long-term care facilities, and shelters for the homeless. Many workers are in close contact with persons who have active, undiagnosed, or insufficiently treated tuberculosis. Additionally, patients and health care workers may be exposed to a variety of pathogenic human viruses, opportunistic fungi, and bacteria. This report therefore focuses on the nature of infectious aerosol transmission in an attempt to determine which factors can be systematically addressed to result in proven, applied engineering approaches to the control of infectious aerosols in hospital and health care facility environments. The infectious aerosols of consideration are those that are generated as particles of respirable size by both human and environmental sources and that have the capability of remaining viable and airborne for extended periods in the indoor environment. This definition precludes skin and mucous membrane exposures occurring from splashes (rather than true aerosols) of blood or body fluids containing infectious disease agents. There are no epidemiologic or laboratory studies documenting the transmission of bloodborne virus by way of aerosols.

  20. Hazardous Waste Cleanup: HQ 10th MTN Division & Fort Drum in Fort Drum, New York

    EPA Pesticide Factsheets

    HQ 10th MTN Division & Fort Drum facility is located at Jones Street and Off North Memorial Drive, in Fort Drum, in the northern portion of New York State approximately 10 miles northeast of Watertown. Fort Drum is the largest Army installation in the nort

  1. Technology Transfer Summary Report (FY92), Naval Surface Warfare Center Dahlgren Division

    DTIC Science & Technology

    1994-04-20

    communications; no formal records are kept of these. Community Technical Outreach NSWCDD participates in the "Science and Engineering Apprentice" and the " Bay ...ADMINISTRATOR’S OFFICE NAVAL UNDERSEA WARFARE CENTER PO BOX 545 DIVISION NEWPORT SEQUIM WA 98382 NEWPORI’ RI 02841-5047 ATTN GIFT AND EXCHANGE DIV 4 ATTN CODE 00

  2. Elementary Students' Engagement in Failure-Prone Engineering Design Tasks

    ERIC Educational Resources Information Center

    Andrews, Chelsea Joy

    2017-01-01

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in…

  3. Associations between Moderate-to-Vigorous Physical Activity and Neighbourhood Recreational Facilities: The Features of the Facilities Matter

    PubMed Central

    Lee, Ka Yiu; Lee, Paul H.; Macfarlane, Duncan

    2014-01-01

    Objectives: To examine the associations between objectively-assessed moderate-to-vigorous physical activity (MVPA) and perceived/objective measures of neighbourhood recreational facilities categorized into indoor or outdoor, public, residential or commercial facilities. The associations between facility perceptions and objectively-assessed numbers of recreational facilities were also examined. Method: A questionnaire was used on 480 adults to measure local facility perceptions, with 154 participants wearing ActiGraph accelerometers for ≥4 days. The objectively-assessed number of neighbourhood recreational facilities were examined using direct observations and Geographical Information System data. Results: Both positive and negative associations were found between MVPA and perceived/objective measures of recreational facilities. Some associations depended on whether the recreational facilities were indoor or outdoor, public or residential facilities. The objectively-assessed number of most public recreational facilities was associated with the corresponding facility perceptions, but the size of effect was generally lower than for residential recreational facilities. Conclusions: The objectively-assessed number of residential outdoor table tennis courts and public indoor swimming pools, the objectively-assessed presence of tennis courts and swimming pools, and the perceived presence of bike lanes and swimming pools were positive determinants of MVPA. It is suggested to categorize the recreational facilities into smaller divisions in order to identify unique associations with MVPA. PMID:25485980

  4. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the workstand as technicians process it. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  5. ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlmeister, J E; Haberer, W V; Casey, D F

    1960-12-15

    The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less

  6. The Impact of Athletic Facilities on the Recruitment of Potential Student-Athletes

    ERIC Educational Resources Information Center

    Schneider, Ray; Messenger, Steve

    2012-01-01

    Purpose: This study examined the impact that athletic facilities and other college choice factors have on the recruitment of student-athletes to play Division I college hockey compared to the influence of other college choice factors. Although athletic facilities and their seeming importance in the recruitment of top level student-athletes are…

  7. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.F. Beesley

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative designmore » process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.« less

  8. 75 FR 16843 - Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased Workers of M-Ploy... Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc., Division, including leased workers of M-Ploy... applicable to TA-W-70,457 is hereby issued as follows: ``All workers of Core Manufacturing, Multi-Plastics...

  9. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-2 Adoption of division 1 of section VIII of the ASME Boiler and...

  10. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-2 Adoption of division 1 of section VIII of the ASME Boiler and...

  11. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-2 Adoption of division 1 of section VIII of the ASME Boiler and...

  12. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-2 Adoption of division 1 of section VIII of the ASME Boiler and...

  13. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-2 Adoption of division 1 of section VIII of the ASME Boiler and...

  14. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the transport cradle before being moved to the workstand. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  15. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice..., Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear...

  16. This photographic copy of an engineering drawing shows floor plans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photographic copy of an engineering drawing shows floor plans, sections and elevations of Building E-86, with details typical of the steel frame and "Transite" building construction at JPL Edwards Facility. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office: "Casting & Curing, Building E-86, Floor Plan, Elevations & Section," drawing no. E86/6, 25 February 1977. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  17. Computer-Aided Facilities Management Systems (CAFM).

    ERIC Educational Resources Information Center

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  18. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  19. Starting characteristics and combustion performance of magnesium slurry in 6.5-inch-diameter ram-jet engine mounted in connected-pipe facility

    NASA Technical Reports Server (NTRS)

    Gibbs, James B

    1954-01-01

    The starting characteristics and combustion performance of slurry type fuels, consisting of 50 percent magnesium powder in a hydrocarbon carrier, have been investigated in a flight-type, 6.5-inch-diameter ram-jet engine in a connected-pipe facility. Quick, dependable starting of the engine was obtained by the use of a disk which blocked part of the combustor area downstream of the flame holder. Acceptable performance was achieved with a short fuel-air mixing length by the development of a fuel-distribution control sleeve.

  20. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  1. High-pressure water facility

    NASA Image and Video Library

    2006-02-15

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  2. Annual Data Summary for 1986 CERC (Coastal Engineering Research Center) Field Research Facility. Volume 1. Main Text and Appendix A

    DTIC Science & Technology

    1988-08-01

    Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631 DTI ~;~c~v ~ jAUG 291988 : H Ke August 1988 Final Report...PART I: INTRODUCTION ................................................ 3 Background ........................................................ 3...Information Service, 5285 Port Royal Road, Springfield, VA. 22161. 2 ANNUAL DATA SUMMARY FOR 1986 CERC FIELD RESEARCH FACILITY PART I: INTRODUCTION

  3. Cell Division Synchronization

    DTIC Science & Technology

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  4. Testing of a Liquid Oxygen/Liquid Methane Reaction Control Thruster in a New Altitude Rocket Engine Test Facility

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.

    2012-01-01

    A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.

  5. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...

  6. Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos R.; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-engine-component test facility for surveying supersonic plumes from jet-engine exhaust. A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-enginecomponent test facility for surveying supersonic plumes from jet-engine exhaust

  7. Evaluation of a simplified gross thrust calculation method for a J85-21 afterburning turbojet engine in an altitude facility

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, J. L.

    1982-01-01

    A simplified gross thrust calculation method was evaluated on its ability to predict the gross thrust of a modified J85-21 engine. The method used tailpipe pressure data and ambient pressure data to predict the gross thrust. The method's algorithm is based on a one-dimensional analysis of the flow in the afterburner and nozzle. The test results showed that the method was notably accurate over the engine operating envelope using the altitude facility measured thrust for comparison. A summary of these results, the simplified gross thrust method and requirements, and the test techniques used are discussed in this paper.

  8. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  9. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  10. Building Management Policy and Procedures for Emergency Preparedness and Facility Coordination for the Ernest Orlando Lawrence Berkeley National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EHS Staff

    2003-04-01

    To ensure efficient and effective management of LBNL facilities, LBNL shall assign line managers to perform appropriate work functions. LBNL divisions that are delegated responsibility for the management of buildings shall designate division personnel to serve as --''Building Managers.''

  11. Deconstructing Calculation Methods, Part 4: Division

    ERIC Educational Resources Information Center

    Thompson, Ian

    2008-01-01

    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division.…

  12. The Hydrologic Instrumentation Facility of the U.S. Geological Survey

    USGS Publications Warehouse

    Wagner, C.R.; Jeffers, Sharon

    1984-01-01

    The U.S. Geological Survey Water Resources Division has improved support to the agencies field offices by the consolidation of all instrumentation support services in a single facility. This facility known as the Hydrologic Instrumentation Facility (HIF) is located at the National Space Technology Laboratory, Mississippi, about 50 miles east of New Orleans, Louisiana. The HIF is responsible for design and development, testing, evaluation, procurement, warehousing, distribution and repair of a variety of specialized hydrologic instrumentation. The centralization has resulted in more efficient and effective support of the Survey 's hydrologic programs. (USGS)

  13. 32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...

  14. 32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...

  15. 32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...

  16. 32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...

  17. 32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...

  18. 7 CFR 1942.20 - Community Facility Guides.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (7) Guide 7—Preliminary Engineering Report Water Facility. (8) Guide 8—Preliminary Engineering Report Sewerage Systems. (9) Guide 9—Preliminary Engineering Report Solid Waste Disposal Systems. (10) Guide 10—Preliminary Engineering Report Storm Waste-Water Disposal. (11) Guide 11—Daily Inspection Report. (12) Guide...

  19. Bell P–63A King Cobra at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    The Army Air Forces lent the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory a Bell P–63A King Cobra in October 1943 to complement the lab's extensive efforts to improve the Allison V–1710 engine. The V–1710-powered P–63A was a single-seat fighter that could reach speeds of 410 miles per hour and an altitude of 43,000 feet. The fighter, first produced in 1942, was an improvement on Bell’s P–39, but persistent performance problems at high altitudes prevented its acceptance by the Air Corps. Instead many of the P–63s were transferred to the Soviet Union. Almost every test facility at the NACA’s engine lab was used to study the Allison V–1710 engine and its supercharger during World War II. Researchers were able to improve the efficiency, capacity and pressure ratio of the supercharger. They found that improved cooling significantly reduced engine knock in the fuel. Once the researchers were satisfied with their improvements, the new supercharger and cooling components were installed on the P–63A. The Flight Research Division first established the aircraft’s normal flight performance parameters such as speed at various altitudes, rate of climb, and peak altitude. Ensuing flights established the performance parameters of the new configuration in order to determine the improved performance. The program increased V–1710’s horsepower from 1650 to 2250.

  20. 75 FR 45678 - Notice of Availability of Interim Staff Guidance Document for Fuel Cycle Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Document for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability..., Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S... Commission (NRC) prepares and issues Interim Staff Guidance (ISG) documents for fuel cycle facilities. These...

  1. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical,more » and technical literacy and competency. This report discusses fiscal year 1993 activities.« less

  2. Cell Division Induces and Switches Coherent Angular Motion within Bounded Cellular Collectives.

    PubMed

    Siedlik, Michael J; Manivannan, Sriram; Kevrekidis, Ioannis G; Nelson, Celeste M

    2017-06-06

    Collective cell migration underlies many biological processes, including embryonic development, wound healing, and cancer progression. In the embryo, cells have been observed to move collectively in vortices using a mode of collective migration known as coherent angular motion (CAM). To determine how CAM arises within a population and changes over time, here, we study the motion of mammary epithelial cells within engineered monolayers, in which the cells move collectively about a central axis in the tissue. Using quantitative image analysis, we find that CAM is significantly reduced when mitosis is suppressed. Particle-based simulations recreate the observed trends, suggesting that cell divisions drive the robust emergence of CAM and facilitate switches in the direction of collective rotation. Our simulations predict that the location of a dividing cell, rather than the orientation of the division axis, facilitates the onset of this motion. These predictions agree with experimental observations, thereby providing, to our knowledge, new insight into how cell divisions influence CAM within a tissue. Overall, these findings highlight the dynamic nature of CAM and suggest that regulating cell division is crucial for tuning emergent collective migratory behaviors, such as vortical motions observed in vivo. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Automated Sneak Circuit Analysis Technique

    DTIC Science & Technology

    1990-06-01

    the OrCAD/SDT module Port facility. 2. The terminals of all in- circuit voltage sources (e , batteries) must be labeled using the OrCAD/SDT module port...ELECTE 1 MAY 2 01994 _- AUTOMATED SNEAK CIRCUIT ANALYSIS TECHNIQUEIt~ w I wtA who RADC 94-14062 Systems Reliability & Engineering Division Rome...Air Develpment Center Best Avai~lable copy AUTOMATED SNEAK CIRCUIT ANALYSIS TECHNIQUE RADC June 1990 Systems Reliability & Engineering Division Rome Air

  4. Unified Facilities Criteria (UFC) Design: Fire Protection Engineering for Facilities

    DTIC Science & Technology

    2003-08-20

    following provisions: • Ceiling sprinkler design area must be increased by 10 percent. ESFR sprinklers must increase the required number to be...Control System ESFR Early Suppression Fast-Response Sprinklers ETL Engineering Technical Letters FAAA Fire Administration Authorization Act FM

  5. The Application of Ground-Penetrating Radar to Transportation Engineering: Recent Advances and New Perspectives (GI Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Benedetto, Andrea; Pajewski, Lara; Alani, Amir M.

    2017-04-01

    aims at presenting the recent advances and the new perspectives in the application of GPR to transportation engineering. This study reports on new experimental-based and theoretical models for the assessment of the physical (i.e., clay and water content in subgrade soils, railway ballast fouling) and the mechanical (i.e., the Young's modulus of elasticity) properties that are critical in maintaining the structural stability and the bearing capacity of the major transport infrastructures, such as highways, railways and airfields. With regard to the physical parameters, the electromagnetic behaviour related to the clay content in the load-bearing layers of flexible pavements as well as in subgrade soils has been analysed and modelled in both dry and wet conditions. Furthermore, it is discussed a new simulation-based methodology for the detection of the fouling content in railway ballast. Concerning the mechanical parameters, experimental based methods are presented for the assessment of the strength and deformation properties of the soils and the top-bounded layers of flexible pavements. Furthermore, unique case studies in terms of the methodology proposed, the survey planning and the site procedures in rather complex operations, are discussed in the case of bridges and tunnels inspections. Acknowledgements The Authors are grateful to the GI Division President Dr. Francesco Soldovieri and the relevant Award Committee in the context of the "GI Division Outstanding Early Career Scientists Award" of the European Geosciences Union. We also acknowledge the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" for providing networking and discussion opportunities throughout its activity and operation as well as facilitating prospect for publishing research outputs.

  6. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2008-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  7. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2007-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  8. Altitude Testing of Large Liquid Propellant Engines

    NASA Technical Reports Server (NTRS)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  9. Linear aerospike engine. [for reusable single-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Kirby, F. M.; Martinez, A.

    1977-01-01

    A description is presented of a dual-fuel modular split-combustor linear aerospike engine concept. The considered engine represents an approach to an integrated engine for a reusable single-stage-to-orbit (SSTO) vehicle. The engine burns two fuels (hydrogen and a hydrocarbon) with oxygen in separate combustors. Combustion gases expand on a linear aerospike nozzle. An engine preliminary design is discussed. Attention is given to the evaluation process for selecting the optimum number of modules or divisions of the engine, aspects of cooling and power cycle balance, and details of engine operation.

  10. Identifying student difficulties with entropy, heat engines, and the Carnot cycle

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.; Christensen, Warren M.; Mountcastle, Donald B.; Thompson, John R.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the second law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices.

  11. The first of a series of high efficiency, high bmep, turbocharged two-stroke cycle diesel engines; the general motors EMD 645FB engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.

    1983-01-01

    The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.

  12. 7. This photographic copy of an engineering drawing displays the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  13. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.

  14. Reducing Operating Costs by Optimizing Space in Facilities

    DTIC Science & Technology

    2012-03-01

    Base level 5 engineering units will provide facility floor plans, furniture layouts, and staffing documentation as necessary. One obstacle...due to the quantity and diverse locations. Base level engineering units provided facility floor plans, furniture layouts, and staffing documentation... furniture purchases and placement 5. Follow a quality systematic process in all decisions The per person costs can be better understood with a real

  15. 75 FR 64303 - Vermont Marble Power, Division of Omya Inc.; Central Vermont Public Service Corporation; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ...-029; 2445-023; 2558-029] Vermont Marble Power, Division of Omya Inc.; Central Vermont Public Service... Soliciting Comments and Motions To Intervene October 12, 2010. On August 31, 2010, Vermont Marble Power... relicensing. Applicant Contacts: For transferor: Todd Allard, Operations Engineer Omya, Inc., Vermont Marble...

  16. The Marine Engineers in Today’s MAGTF: Historical Perspective, Consequences and Alternatives

    DTIC Science & Technology

    2013-04-15

    Inhibited Flexibility for Resource Leveling ...........................................................................17 Mission and Capability...21 Inhibited Flexibility for Resource Leveling ...ground combat element ( GCE ); an engineer support battalion (ESB) supports the logistics combat element (LCE); and engineer operations divisions

  17. Analysis of the Effects of Phase Noise and Frequency Offset in Orthogonal Frequency Division Multiplexing (OFDM) Systems

    DTIC Science & Technology

    2004-03-01

    Data Communication , http://www.iec.org/, last accessed December 2003. 13. Klaus Witrisal, “Orthogonal Frequency Division Multiplexing (OFDM) for...http://ieeexplore.ieee.org, last accessed 26 February 2003. 12. The International Engineering Consortium, Web Forum Tutorials, OFDM for Mobile

  18. Data Validation in the AEDC Engine Test Facility

    DTIC Science & Technology

    2010-02-01

    25 3.4.1 Pretest ...25 3.4.2 Test Period .............................................................................................. 26 3.4.3 Posttest ...use of the data is to assess the degree to which the engine meets its design intent or its specification requirements. When engine development or

  19. Poly(glycerol sebacate) - A Novel Biodegradable Elastomer for Tissue Engineering

    DTIC Science & Technology

    2002-04-01

    Langer’ ’Department of Chemical Engineering and 2Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A...for Tissue Engineering DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Materials...Materials Research Society NI 1.1 Poly(glycerol sebacate) - A Novel Biodegradable Elastomer for Tissue Engineering Yadong Wang,’ Barbara J. Sheppard,2 Robert

  20. Final Environmental Assessment for the Proposed Naval Ordnance Test Unit Engineering Services Facility at Cape Canaveral Air Force Station

    DTIC Science & Technology

    2006-08-01

    and on the west by the Banana River, which is an estuarine system. Figure 1-1 shows CCAFS and the surrounding area. CCAFS encompasses approximately...barrier island on which it is located characterizes the visual environment in the vicinity of CCAFS. The Indian and Banana rivers separate the...large expanses of inland waters in the Indian, Banana , and St. John’s rivers and large ENVIRONMENTAL ASSESSMENT-ENGINEERING SERVICES FACILITY AT

  1. 4. This photographic copy of an engineering drawing shows the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. This photographic copy of an engineering drawing shows the plan and details for Test Stand "G" and the placement of the vibrator. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: "Vibration Test Facility-Bldg E-72, Floor & Roof Plans, Sections, Details & Door Schedule," drawing no. E72/2-5, 21 May 1964. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  2. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  3. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, May 1938 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 1, project location and index - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  4. Automated Heat-Flux-Calibration Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.

  5. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less

  6. Evaluation of a simplified gross thrust calculation technique using two prototype F100 turbofan engines in an altitude facility

    NASA Technical Reports Server (NTRS)

    Kurtenbach, F. J.

    1979-01-01

    The technique which relies on afterburner duct pressure measurements and empirical corrections to an ideal one dimensional flow analysis to determine thrust is presented. A comparison of the calculated and facility measured thrust values is reported. The simplified model with the engine manufacturer's gas generator model are compared. The evaluation was conducted over a range of Mach numbers from 0.80 to 2.00 and at altitudes from 4020 meters to 15,240 meters. The effects of variations in inlet total temperature from standard day conditions were explored. Engine conditions were varied from those normally scheduled for flight. The technique was found to be accurate to a twice standard deviation of 2.89 percent, with accuracy a strong function of afterburner duct pressure difference.

  7. Implementation of a Three-Semester Concurrent Engineering Design Sequence for Lower-Division Engineering Students

    ERIC Educational Resources Information Center

    Bertozzi, N.; Hebert, C.; Rought, J.; Staniunas, C.

    2007-01-01

    Over the past decade the software products available for solid modeling, dynamic, stress, thermal, and flow analysis, and computer-aiding manufacturing (CAM) have become more powerful, affordable, and easier to use. At the same time it has become increasingly important for students to gain concurrent engineering design and systems integration…

  8. CSBF Engineering Overview

    NASA Astrophysics Data System (ADS)

    Orr, Dwayne

    CSBF Engineering Overview Dwayne Orr (Presenting Author) Columbia Scientific Balloon Facility, Palestine, Texas (USA) Dwayne.Orr@csbf.nasa.gov The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas provides operational and engineering support for the launch of NASA Scientific Balloons. Over the years with the support of the NASA Balloon Program Office, CSBF has developed unique flight systems with the focus of providing a highly reliable, cost effective medium for giving Scientist’s access to a near space environment. This paper will provide an overview of the CSBF flight systems with an emphasis on recent developments and plans for the future.

  9. 13. Photograph of line drawing in possession of the Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of line drawing in possession of the Engineering Division of the Directorate of Engineering and Housing, Watervliet Arsenal, New York. BRICK BAY FOR OFFICERS QUARTERS, BRICK SET, EAST SIDE, PLAN AND ELEVATION, OCTOBER 18, 1886. - Watervliet Arsenal, Building No. 4, Mordecai Drive, West of Mettler Road, Watervliet, Albany County, NY

  10. International Space Station -- Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  11. Commercialising genetically engineered animal biomedical products.

    PubMed

    Sullivan, Eddie J; Pommer, Jerry; Robl, James M

    2008-01-01

    Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.

  12. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, andmore » summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation.« less

  13. Biorepositories | Division of Cancer Prevention

    Cancer.gov

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related

  14. Application for certification, 1991 model year light-duty vehicles - Sports Car America, Puma Division Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. The report deals with light-duty vehicles from Sports Car America, PUMA Division Incorporated. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, andmore » proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  15. 32. Photograph of line drawing in possession of the Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Photograph of line drawing in possession of the Engineering Division of the Directorate of Engineering and Housing, Watervliet Arsenal, New York. SECTIONAL ELEVATIONS OF CENTRAL SECTION AND NORTH WING, UNDATED. SIGNED BY A. VICTORIN. (LEFT HALF OF DRAWING) - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY

  16. 33. Photograph of line drawing in possession of the Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photograph of line drawing in possession of the Engineering Division of the Directorate of Engineering and Housing, Watervliet Arsenal, New York. SECTIONAL ELEVATIONS OF CENTRAL SECTION AND NORTH WING, UNDATED. SIGNED BY A. VICTORIN. (RIGHT HALF OF DRAWING) - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY

  17. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, June 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, lining details at Hinckston Run - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  18. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 28, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, general view upstream from Franklin Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  19. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, April 8, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, general view downstream at Stone Arch Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  20. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, December 8, 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, view upstream from Bethlehem steel footbridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  1. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, March 27, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, view of stadium upstream from point bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  2. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, July 23, 1943 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, view downstream from RB STA. 144+00 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  3. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, May 1938 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 1, lining details and typical sections of invert - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  4. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 28, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, general view downstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  5. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, August 22, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, general view upstream at STA. 40+00 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  6. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 19, 1943 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, general view upstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  7. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, December 4, 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, general view downstream from Fourth Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  8. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, June 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, control weir at STA. 7+00-Little Conemaugh - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  9. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, April 3, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, general view downstream at Fourth Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  10. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, August 22, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, view upstream from point stadium - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  11. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, May 21, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, view downstream from Walnut Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  12. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, September 7, 1938 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 1, general view at Dornick Point - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  13. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, May 28, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, view upstream from Franklin Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  14. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, June 27, 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 2, general view downstream from Coopersdale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  15. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, May 21, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, view upstream from prospect viaduct - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  16. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, May 28, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, view downstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  17. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 19, 1943 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, view of Solomon Run Outlet, looking north - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  18. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, June 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, general plan and earthwork distribution - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  19. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, March 27, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, general view upstream from Johns Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  20. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, April 3, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, general view upstream at Fourth Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  1. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, July 18, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, general view upstream at Walnut Street - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  2. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, September 27, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 2, general view of work area, looking downstream - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  3. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, April 26, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 1, general view upstream at Dornick Point - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  4. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, February 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 2, general plan and earthwork distribution - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  5. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, June 27, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, general view downstream from Point Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  6. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 18, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 2, general view from Coopersdale Bridge ramp - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  7. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 19, 1943 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, general view downstream from Horner Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  8. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, May 1938 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 1, general plan and earthwork distribution - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  9. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, May 28, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, view upstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  10. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, June 10, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, view of weir at point, looking southeast - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  11. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army,February 17, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, general plan and earthwork distribution - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  12. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 28, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, general view upstream STA. 40+75 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  13. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, July, 11, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, general view upstream from incline bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  14. Cleaner, More Efficient Diesel Engines

    ScienceCinema

    Musculus, Mark

    2018-01-16

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  15. QA RESOURCE MATERIALS TO ASSIST IN DEVELOPING AND WRITING RESEARCH PLANS AT A USEPA OFFICE OF RESEARCH AND DEVELOPMENT DIVISION

    EPA Science Inventory

    In the process of adapting the Agency's Data Quality Objectives Workshop for presentation at an ORD Research Facility, ownership and consensus approval of the presentation by the Division's research staff was sought. Three groups of researchers, at various levels of responsibilit...

  16. Feasibility of Conducting J-2X Engine Testing at the Glenn Research Center Plum Brook Station B-2 Facility

    NASA Technical Reports Server (NTRS)

    Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.

    2008-01-01

    A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.

  17. 20 CFR 638.303 - Site selection and facilities management.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Site selection and facilities management. 638... Facilities Management § 638.303 Site selection and facilities management. (a) The Job Corps Director shall... center, facilities engineering and real estate management will be conducted by the Job Corps Director or...

  18. Physics Division annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in researchmore » at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  19. R&D Jobs for BS Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    Outlines opportunities for beginning engineers seeking employment in research and development (R&D). R&D spending growth, underlying factors, job categories, and divisions within an industrial firm are discussed. Above average grades and additional mathematics courses are primary requirements for an R&D position, which may later lead to…

  20. 49 CFR 175.630 - Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious substances) materials. 175.630 Section 175.630 Transportation Other... Classification of Material § 175.630 Special requirements for Division 6.1 (poisonous) material and Division 6.2...

  1. Division Quilts: A Measurement Model

    ERIC Educational Resources Information Center

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  2. Water immersion facility general description, spacecraft design division, crew station branch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Water Immersion Facility provides an accurate, safe, neutral buoyancy simulation of zero gravity conditions for development of equipment and procedures, and the training of crews. A detailed description is given of some of the following systems: (1) water tank and support equipment; (2) communications systems; (3) environmental control and liquid cooled garment system (EcS/LCG); (4) closed circuit television system; and (5) medical support system.

  3. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and

  4. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  5. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2011-07-01 2011-07-01 false Development of public port or industrial...

  6. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2010-07-01 2010-07-01 true Development of public port or industrial...

  7. QCSEE UTW engine powered-lift acoustic performance. [Quiet Clean Short-haul Experimental Engine Under The Wing

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Samanich, N. E.; Bloomer, H. E.

    1980-01-01

    Powered-lift acoustic tests of a quiet clean short-haul experimental engine (QCSEE) under-the-wing (UTW) engine are described. Engine and wing configurations are outlined, along with instrumentation and test facilities. The results of these tests are reported. In addition, the UTW engine powered-lift performance is compared with that of the previously tested QCSEE over-the-wing (OTW) engine.

  8. 38. Photograph of line drawing in possession of the Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photograph of line drawing in possession of the Engineering Division of the Directorate of Engineering and Housing, Watervliet Arsenal, New York. ROOF CONSTRUCTION OF EAST AISLE: CROSS GIRDERS, TOP BRACES AND CONNECTIONS WITH CRANEWAYS, UNDATED. SIGNED BY A. VICTORIN. (LEFT HALF OF DRAWING) - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY

  9. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  10. CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-03-01

    Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)

  11. Comparison of Concussion Rates Between NCAA Division I and Division III Men's and Women's Ice Hockey Players.

    PubMed

    Rosene, John M; Raksnis, Bryan; Silva, Brie; Woefel, Tyler; Visich, Paul S; Dompier, Thomas P; Kerr, Zachary Y

    2017-09-01

    Examinations related to divisional differences in the incidence of sports-related concussions (SRC) in collegiate ice hockey are limited. To compare the epidemiologic patterns of concussion in National Collegiate Athletic Association (NCAA) ice hockey by sex and division. Descriptive epidemiology study. A convenience sample of men's and women's ice hockey teams in Divisions I and III provided SRC data via the NCAA Injury Surveillance Program during the 2009-2010 to 2014-2015 academic years. Concussion counts, rates, and distributions were examined by factors including injury activity and position. Injury rate ratios (IRRs) and injury proportion ratios (IPRs) with 95% confidence intervals (CIs) were used to compare concussion rates and distributions, respectively. Overall, 415 concussions were reported for men's and women's ice hockey combined. The highest concussion rate was found in Division I men (0.83 per 1000 athlete-exposures [AEs]), followed by Division III women (0.78/1000 AEs), Division I women (0.65/1000 AEs), and Division III men (0.64/1000 AEs). However, the only significant IRR was that the concussion rate was higher in Division I men than Division III men (IRR = 1.29; 95% CI, 1.02-1.65). The proportion of concussions from checking was higher in men than women (28.5% vs 9.4%; IPR = 3.02; 95% CI, 1.63-5.59); however, this proportion was higher in Division I women than Division III women (18.4% vs 1.8%; IPR = 10.47; 95% CI, 1.37-79.75). The proportion of concussions sustained by goalkeepers was higher in women than men (14.2% vs 2.9%; IPR = 4.86; 95% CI, 2.19-10.77), with findings consistent within each division. Concussion rates did not vary by sex but differed by division among men. Checking-related concussions were less common in women than men overall but more common in Division I women than Division III women. Findings highlight the need to better understand the reasons underlying divisional differences within men's and women's ice hockey and the

  12. Mathematical Building-Blocks in Engineering Mechanics

    ERIC Educational Resources Information Center

    Boyajian, David M.

    2007-01-01

    A gamut of mathematical subjects and concepts are taught within a handful of courses formally required of the typical engineering student who so often questions the relevancy of being bound to certain lower-division prerequisites. Basic classes at the undergraduate level, in this context, include: Integral and Differential Calculus, Differential…

  13. Energy Division annual progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report covers work done during FY 1983 by the staff of the Energy Division and its subcontractors and by colleagues in other Oak Ridge National Laboratory divisions working on Energy Division projects. The work can be divided into four areas: (1) analysis and assessment, (2) models and data systems, (3) research to improve the efficiency of energy use and to improve electric power transmission and distribution, and (4) research utilization. Support came principally from the US Department of Energy (DOE), the US Nuclear Regulatory Commission, and the US Department of Defense, but also from a number of other agenciesmore » and organizations. Analysis and assessment included work on (a) environmental issues, including those deriving from the preparation of environmental impact statements; (b) energy and resource analysis; and (c) emergency preparedness. The models and data systems area involved research on evaluating and developing energy, environment, and engineering simulation models and on devising large data management systems, evaluating user data requirements, and compiling data bases. Research on improving the efficiency of energy use was focused primarily on the buildings and electricity sectors. A major effort on heat pump technology, which includes both heat-activated and electrically driven systems, continues. An important aspect of all the work was research utilization. Since the Energy Division is doing applied research, results are, by definition, intended to solve problems or answer questions of DOE and other sponsors. However, there are other users, and research utilization activities include technology transfer, commercialization efforts, outreach to state and regional organizations, and, of course, information dissemination.« less

  14. Turbine Engine Mathematical Model Validation

    DTIC Science & Technology

    1976-12-01

    AEDC-TR-76-90 ~Ec i ? Z985 TURBINE ENGINE MATHEMATICAL MODEL VALIDATION ENGINE TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...i f n e c e s e a ~ ~ d i den t i f y by b l ock number) YJI01-GE-100 engine turbine engines mathematical models computations mathematical...report presents and discusses the results of an investigation to develop a rationale and technique for the validation of turbine engine steady-state

  15. Results of the radiological survey of the Carpenter Steel Facility, Reading, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, W.D.; Carrier, R.F.

    1990-07-01

    In 1944, experimental uranium-forming work was conducted by Carpenter Technology Corporation at the Carpenter Steel Facility in Reading, Pennsylvania, under contract to the Manhattan Engineer District (MED). The fabrication method, aimed at producing sounder uranium metal and improving the yields of rods from billets, was reportedly soon discarded as unsatisfactory. As part of the Department of Energy's (DOE) efforts to verify the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development, the site was included in the Formerly Utilized Sites Remedial Action Program (FUSRAP). At the request of DOE, the Measurement Applications and Developmentmore » Group of the Health and Safety Research Division of Oak Ridge National Laboratory performed a radiological assessment survey in July and August 1988. The purpose of the survey was to determine if past operations had deposited radioactive residues in the facility, and whether those residuals were in significant quantities when compared to DOE guidelines. The survey included gamma scanning; direct measurements of alpha activity levels and beta-gamma dose rates; sampling for transferable alpha and beta-gamma residuals on selected surfaces; and sampling of soil, debris and currently used processing materials for radionuclide analysis. All survey results were within DOE FUSRAP guidelines derived to determine the eligibility of a site for remedial action. These guidelines are derived to ensure that unrestricted use of the property will not result in any measurable radiological hazard to the site occupants or the general public. 4 refs., 5 figs., 5 tabs.« less

  16. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, September 1, 1943 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, view of construction downstream at STA. 152+50 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  17. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, May 23, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, view of channel excavation downstream at Fourth Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  18. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, June 10, 1941 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, view of construction downstream at First Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  19. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army,February 17, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, plan and profile, STA. 15+00 to STA. 24+00 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  20. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, June 3, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, view of Solomon Run, looking north, RB STA. 135+25 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  1. Photographic copy of original drawing, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of original drawing, by Corps of Engineers, U.S. Army, February 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 2, cross sections, STA. 96+52.0 to STA. 101+53.5 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  2. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, April 24, 1942 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 5, view of channel excavation upstream at Franklin Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  3. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, September 27, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, general view downstream toward ten acre railroad bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  4. Clean Air Markets - Facility Attributes and Contacts Query Wizard

    EPA Pesticide Factsheets

    The Facility Attributes and Contacts Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Facility Attributes and Contact module gives the user access to current and historical facility, owner, and representative data using custom queries, via the Facility Attributes Query Wizard, or Quick Reports. In addition, data regarding EPA, State, and local agency staff are also available. The Query Wizard can be used to search for data about a facility or facilities by identifying characteristics such as associated programs, owners, representatives, locations, and unit characteristics, facility inventories, and classifications.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  5. The National Submicron Facility.

    ERIC Educational Resources Information Center

    Wolf, Edward D.

    1979-01-01

    Describes the activities of the National Submicron Facility which was established at Cornell University in Ithaca, New York to serve as an information resource for the nation's research community in microstructure science and engineering. (HM)

  6. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  7. 32 CFR 766.8 - Procedure for review, approval, execution and distribution of aviation facility licenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CIVIL AIRCRAFT § 766.8 Procedure for review, approval, execution and distribution of aviation facility... license and Certificate of Insurance to the Commander, Naval Facilities Engineering Command or his... Facilities Engineering Command or his designated representative. (1) Upon receipt, the Commander, Naval...

  8. Chemical Laser Facility Study. Volume III. Cost Analysis.

    DTIC Science & Technology

    Chemical Laser Test Facility. The design criteria for the architectural and engineering design of the facility are presented in Volume I and the design requirements for the Laser Test System are presented in Volume II.

  9. Structures and Dynamics Division: Research and technology plans for FY 1983 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1983-01-01

    The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.

  10. An Example of Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Rowe, Sidney; Whitten, David; Cloyd, Richard; Coppens, Chris; Rodriguez, Pedro

    1998-01-01

    The Collaborative Engineering Design and Analysis Room (CEDAR) facility allows on-the- spot design review capability for any project during all phases of development. The required disciplines assemble in this facility to work on any problems (analysis, manufacturing, inspection, etc.) associated with a particular design. A small highly focused team of specialists can meet in this room to better expedite the process of developing a solution to an engineering task within the framework of the constraints that are unique to each discipline. This facility provides the engineering tools and translators to develop a concept within the confines of the room or with remote team members that could access the team's data from other locations. The CEDAR area is envisioned as excellent for failure investigation meetings to be conducted where the computer capabilities can be utilized in conjunction with the Smart Board display to develop failure trees, brainstorm failure modes, and evaluate possible solutions.

  11. Polarized Cell Division of Chlamydia trachomatis

    PubMed Central

    Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.

    2016-01-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  12. Photograph of line drawing in possession of Engineering Plans and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of line drawing in possession of Engineering Plans and Services Division, Rock Island Arsenal. MAP OF ROCK ISLAND ARSENAL, 1919, REVISED 1938 - Rock Island Arsenal, Rock Island, Rock Island County, IL

  13. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2011-12-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  14. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2012-01-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  15. Safe design of healthcare facilities

    PubMed Central

    Reiling, J

    2006-01-01

    The physical environment has a significant impact on health and safety; however, hospitals have not been designed with the explicit goal of enhancing patient safety through facility design. In April 2002, St Joseph's Community Hospital of West Bend, a member of SynergyHealth, brought together leaders in healthcare and systems engineering to develop a set of safety‐driven facility design recommendations and principles that would guide the design of a new hospital facility focused on patient safety. By introducing safety‐driven innovations into the facility design process, environmental designers and healthcare leaders will be able to make significant contributions to patient safety. PMID:17142606

  16. Division of Environmental Health

    Science.gov Websites

    Environmental Conservation Alaska Department of Environmental Conservation Division of Environmental Health Pesticides Applicator Certification & Training Product Registration Pesticide-Use Permits Factsheets & You are here: DEC / Division of Environmental Health All DEC offices will be closed to the public on

  17. Volpe engineers use biometrics to help ease border crush

    DOT National Transportation Integrated Search

    1997-01-01

    Using technology previously reserved for military and other high security applications, engineers from the Safety and Security Systems Division of the Volpe Center have developed a number of automated biometric systems to speed the processing of freq...

  18. E-4 Test Facility Design Status

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  19. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, December 8, 1939 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 3, View of Balustrade Wall from footbridge, looking upstream from lb STA. 173+00 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  20. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 19, 1943 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 6, view of WPA masonry wall and dike upstream from Central Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  1. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, November 23, 1938 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 1, section of wall in progress, looking downstream from lb STA. 43+00 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  2. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, June 7, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 2, view of left bank in construction, looking downstream from RB STA. 63+75 - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  3. Photographic copy of historic photograph, by Corps of Engineers, U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of historic photograph, by Corps of Engineers, U.S. Army, September 4, 1940 (original in possession of Corps of Engineers, U.S. Army, Pittsburgh District, Engineering Division files) Unit 4, view of water line construction upstream at Walnut Street Bridgeupstream from point stadium - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  4. JSC Metal Finishing Waste Minimization Methods

    NASA Technical Reports Server (NTRS)

    Sullivan, Erica

    2003-01-01

    THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.

  5. 76 FR 13666 - Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...., Mailing Solutions Management, Global Engineering Group, Including On-Site Leased Workers From Guidant... workers and former workers of Pitney Bowes, Inc., Mailing Solutions Management Division, Engineering... reviewed the certification to clarify the subject worker group's identity. Additional information revealed...

  6. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  7. Sexual division of labor: energetic and evolutionary scenarios.

    PubMed

    Panter-Brick, Catherine

    2002-01-01

    This article examines comparative energetic data on hunter-gatherers in the context of evolutionary scenarios of the sexual division of labor, with respect to both specific task allocation and overall levels of daily physical activity. The division of labor between men and women, well marked in contemporary foraging societies, was once posited as the "true watershed" for the evolution of the genus Homo. Some research on brain-wiring even links sex differences in cognitive and spatial abilities to sex-specific foraging activities. Most recent evolutionary arguments posit that men focus on hunting and women on gathering activities to realize potentially conflicting mating and parenting goals. A range of cooperative strategies (male/female and female/female) for child provisioning is also under investigation. Attention to energetic and reproductive trade-offs has usefully challenged the proposition that women are excluded from big-game hunting due to constraints of foraging ecology and reproduction. Simplistic assumptions about gender roles are thus increasingly questioned in anthropology, as well as in archaeology. Current models in behavioral ecology explore ways in which foraging practices vary with ecological circumstances, aiming to derive testable hypotheses from fine-grained data on the behavior of contemporary hunter-gatherers. Data on overall physical activity levels (PAL) can also serve to evaluate relative male/female workloads in modern groups, reconstruct hominid energy requirements and activity profiles, and examine changes with subsistence intensification. Male/female PAL ratios show that a task-specific division of labor does not readily extrapolate to 24-hour energy expenditure and that male/female differences in workloads were not necessarily reduced with the transition to agriculture. With respect to gender roles and PAL, a shift away from facile stereotypes of human behavior is evident. The challenge is to incorporate a range of behavioral

  8. ARC Researchers at ASME 2015 Internal Combustion Engine Division Fall

    Science.gov Websites

    -sense. Therefore, the focus of this paper is on the various methods of computing CA50 for analysing and classifying cycle-to-cycle variability. The assumptions made to establish fast and possibly on-line methods SI engine. Then the various fast methods for computing CA50 feed the two statistical methods

  9. Division of Forestry Information

    Science.gov Websites

    Natural Resources / Division of Forestry Division of Forestry Information Fire Information Links Menu Fire Home Fire Overview Burn Permits Current Fire Information Become an Alaskan Firewise Community Fire Department of Natural Resources - Public Information Center DNR Media Releases Public Information Center

  10. Dual-Spool Turbine Facility Design Overview

    NASA Technical Reports Server (NTRS)

    Giel, Paul; Pachlhofer, Pete

    2003-01-01

    The next generation of aircraft engines, both commercial and military, will attempt to capitalize on the benefits of close-coupled, vaneless, counter-rotating turbine systems. Experience has shown that significant risks and challenges are present with close-coupled systems in terms of efficiency and durability. The UEET program needs to demonstrate aerodynamic loading and efficiency goals for close-coupled, reduced-stage HP/LP turbine systems as a Level 1 Milestone for FY05. No research facility exists in the U.S. to provide risk reduction for successful development of close-coupled, high and low pressure turbine systems for the next generations of engines. To meet these objectives, the design, construction, and integrated systems testing of a Dual-Spool Turbine Facility (DSTF) facility has been initiated at the NASA Glenn Research Center. The facility will be a warm (-IOOO'F), continuous flow facility for overall aerodynamic performance and detailed flow field measurement acquisition. The facility will have state-of-the-art instrumentation to capture flow physics details. Accurate and reliable speed control will be achieved by utilizing the existing Variable Frequency Drive System. Utilization of this and other existing GRC centralized utilities will reduce the overall construction costs. The design allows for future installation of a turbine inlet combustor profile simulator. This presentation details the objectives of the facility and the concepts used in specifying its capabilities. Some preliminary design results will be presented along with a discussion of plans and schedules.

  11. 12. Historic plot plan and drawings index for rocket engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic plot plan and drawings index for rocket engine test facility, June 28, 1956. NASA GRC drawing number CE-101810. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  12. 5. Historic photo of scale model of rocket engine test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic photo of scale model of rocket engine test facility, June 18, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45264. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  13. Measurement of Turbine Engine Transient Airflow in Ground Test Facilities

    DTIC Science & Technology

    1980-08-01

    REPORT NUMBER 12 GOVT ACCESSION NO. A E D C - T R - 8 0 - 2 1 L 6. T I T L E (aqd Subl l l |e ) MEASUREMENT OF TURBINE ENGINE TRANSIENT AIRFLOW IN...21 ILLUSTRATIONS Figure !. Direct-Connect Turbine Engine Test Cell Installation...26 3. Turbine Engine Transient Airflow Simulator (TETAS) . . . . . . . . . . . . . . . . . . . . . . . . . 27 4

  14. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    NASA Kennedy Space Center's Engineering Director Pat Simpkins, at left, talks with Michael E. Johnson, a project engineer; and Emilio Cruz, deputy division chief in the Laboratories, Development and Testing Division, inside the Prototype Development Laboratory. A banner signing event was held to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  15. Preliminary test results from the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, Mark H.; Macelroy, R. D.; Blackwell, C. C.; Borchers, B. A.; Drews, M. E.; Longabaugh, J. R.; Yendler, B. S.; Zografos, A. I.

    1994-01-01

    As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown in the microgravity environment of the Space Station. Tight environmental control will be maintained while data on gas exchange rates and biomass accumulation rates are collected. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been designed, constructed and is in the process of subsystem and system testing at NASA Ames Research Center. The EDU is a ground test-bed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper reviews the functional requirements for the EDU, and focuses on the performance evaluation and test results of the various subsystems. Preliminary integrated performance results and control system operation are addressed, and plans for future science and technology testing are discussed.

  16. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  17. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  18. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  19. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  20. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...