Sample records for facilities microprocessor-controlled optical

  1. Microprocessor-controlled optical stimulating device to improve the gait of patients with Parkinson's disease.

    PubMed

    Ferrarin, M; Brambilla, M; Garavello, L; Di Candia, A; Pedotti, A; Rabuffetti, M

    2004-05-01

    Different types of visual cue for subjects with Parkinson's disease (PD) produced an improvement in gait and helped some of them prevent or overcome freezing episodes. The paper describes a portable gait-enabling device (optical stimulating glasses (OSGs) that provides, in the peripheral field of view, different types of continuous optic flow (backward or forward) and intermittent stimuli synchronised with external events. The OSGs are a programmable, stand-alone, augmented reality system that can be interfaced with a PC for program set-up. It consists of a pair of non-corrective glasses, equipped with two matrixes of 70 micro light emitting diodes, one on each side, controlled by a microprocessor. Two foot-switches are used to synchronise optical stimulation with specific gait events. A pilot study was carried out on three PD patients and three controls, with different types of optic flow during walking along a fixed path. The continuous optic flow in the forward direction produced an increase in gait velocity in the PD patients (up to + 11% in average), whereas the controls had small variations. The stimulation synchronised with the swing phase, associated with an attentional strategy, produced a remarkable increase in stride length for all subjects. After prolonged testing, the device has shown good applicability and technical functionality, it is easily wearable and transportable, and it does not interfere with gait.

  2. Autoregulatory mechanisms controlling the Microprocessor.

    PubMed

    Triboulet, Robinson; Gregory, Richard I

    2010-01-01

    The Microprocessor, comprising the ribonuclease Drosha and its essential cofactor, the double-stranded RNA-binding protein, DGCR8, is essential for the first step of the miRNA biogenesis pathway. It specifically cleaves double-stranded RNA within stem-loop structures of primary miRNA transcripts (pri-miRNAs) to generate precursor (pre-miRNA) intermediates. Pre-miRNAs are subsequently processed by Dicer to their mature 22 nt form. Thus, Microprocessor is essential for miRNA maturation, and pri-miRNA cleavage by this complex defines one end of the mature miRNA. Moreover, it is emerging that dysregulation of the Microprocessor is associated with various human diseases. It is therefore important to understand the mechanisms by which the expression of the subunits of the Microprocessor is regulated. Recent findings have uncovered a post-transcriptional mechanism that maintains the integrity of the Microprocessor. These studies revealed that the Microprocessor is involved in the processing of the messenger RNA (mRNA) that encodes DGCR8. This regulatory feedback loop, along with the reported role played by DGCR8 in the stabilization of Drosha protein, is part ofa newly identified regulatory mechanism controlling Microprocessor activity.

  3. Autoregulatory mechanisms controlling the microprocessor.

    PubMed

    Triboulet, Robinson; Gregory, Richard I

    2011-01-01

    The Microprocessor, comprising the ribonuclease Drosha and its essential cofactor, the double-stranded RNA-binding protein, DGCR8, is essential for the first step of the miRNA biogenesis pathway. It specifically cleaves double-stranded RNA within stem-loop structures of primary miRNA transcripts (pri-miRNAs) to generate precursor (pre-miRNA) intermediates. Pre-miRNAs are subsequently processed by Dicer to their mature ∼22 nt form. Thus, Microprocessor is essential for miRNA maturation, and pri-miRNA cleavage by this complex defines one end of the mature miRNA. Moreover, it is emerging that dysregulation of the Microprocessor is associated with various human diseases. It is therefore important to understand the mechanisms by which the expression of the subunits of the Microprocessor is regulated. Recent findings have uncovered a post-transcriptional mechanism that maintains the integrity of the Microprocessor. These studies revealed that the Microprocessor is involved in the processing of the messenger RNA (mRNA) that encodes DGCR8. This regulatory feedback loop, along with the reported role played by DGCR8 in the stabilization of Drosha protein, is part of a newly identified regulatory mechanism controlling Microprocessor activity.

  4. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  5. Microprocessor-Controlled Laser Balancing System

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1985-01-01

    Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.

  6. Automated mixed traffic transit vehicle microprocessor controller

    NASA Technical Reports Server (NTRS)

    Marks, R. A.; Cassell, P.; Johnston, A. R.

    1981-01-01

    An improved Automated Mixed Traffic Vehicle (AMTV) speed control system employing a microprocessor and transistor chopper motor current controller is described and its performance is presented in terms of velocity versus time curves. The on board computer hardware and software systems are described as is the software development system. All of the programming used in this controller was implemented using FORTRAN. This microprocessor controller made possible a number of safety features and improved the comfort associated with starting and shopping. In addition, most of the vehicle's performance characteristics can be altered by simple program parameter changes. A failure analysis of the microprocessor controller was generated and the results are included. Flow diagrams for the speed control algorithms and complete FORTRAN code listings are also included.

  7. Microprocessor control of a wind turbine generator

    NASA Technical Reports Server (NTRS)

    Gnecco, A. J.; Whitehead, G. T.

    1978-01-01

    A microprocessor based system was used to control the unattended operation of a wind turbine generator. The turbine and its microcomputer system are fully described with special emphasis on the wide variety of tasks performed by the microprocessor for the safe and efficient operation of the turbine. The flexibility, cost and reliability of the microprocessor were major factors in its selection.

  8. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  9. Human supervision and microprocessor control of an optical tracking system

    NASA Technical Reports Server (NTRS)

    Bigley, W. J.; Vandenberg, J. D.

    1981-01-01

    Gunners using small calibre anti-aircraft systems have not been able to track high-speed air targets effectively. Substantial improvement in the accuracy of surface fire against attacking aircraft has been realized through the design of a director-type weapon control system. This system concept frees the gunner to exercise a supervisory/monitoring role while the computer takes over continuous target tracking. This change capitalizes on a key consideration of human factors engineering while increasing system accuracy. The advanced system design, which uses distributed microprocessor control, is discussed at the block diagram level and is contrasted with the previous implementation.

  10. Microprocessor-controlled laser tracker for atmospheric sensing

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Webster, C. R.; Menzies, R. T.

    1985-01-01

    An optical tracking system comprising a visible HeNe laser, an imaging detector, and a microprocessor-controlled mirror, has been designed to track a moving retroreflector located up to 500 m away from an atmospheric instrument and simultaneously direct spectrally tunable infrared laser radiation to the retroreflector for double-ended, long-path absorption measurements of atmospheric species. The tracker has been tested during the recent flight of a balloon-borne tunable diode laser absorption spectrometer which monitors the concentrations of stratospheric species within a volume defined by a 0.14-m-diameter retroreflector lowered 500 m below the instrument gondola.

  11. MICROPROCESSOR CONTROL OF ROTOGRAVURE AIRFLOWS

    EPA Science Inventory

    The report discusses the technical and economic viability of using micro-processor-based control technology to collect volatile organic compound (VOC) emissions from a paper coating operation. The microprocessor-based control system monitors and controls both the airflow rate and...

  12. Microprocessor Controlled Isometric Contractions of Cat Gastrocnemius Muscle.

    DTIC Science & Technology

    1981-12-01

    A-A15 504 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFS OH 5CHOO--ETC F/6 6/2 MICROPROCESSOR CONTROLLED ISOMETRIC CONTRACTIONS OF CAT GASTROC-ETC(U) D...CONTROLLED ISOMETRIC CONTRACTIONS OF CAT GASTROCNEMIUS MUSCLE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of...1981 Appzoved for public release; distribution unlimited. AFIT/GE/EE/81D-4O \\ MICROPROCESSOR CONTROLLED ISOMETRIC COMUtCTIONS OF CAT GASTfOCNEMIUS i

  13. Microprocessor-based control systems application in nuclear power plant critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.R.; Nowak, J.B.

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less

  14. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  15. Microprocessor controlled transdermal drug delivery.

    PubMed

    Subramony, J Anand; Sharma, Ashutosh; Phipps, J B

    2006-07-06

    Transdermal drug delivery via iontophoresis is reviewed with special focus on the delivery of lidocaine for local anesthesia and fentanyl for patient controlled acute therapy such as postoperative pain. The role of the microprocessor controller in achieving dosimetry, alternating/reverse polarity, pre-programmed, and sensor-based delivery is highlighted. Unique features such as the use of tactile signaling, telemetry control, and pulsatile waveforms in iontophoretic drug delivery are described briefly.

  16. Microprocessor control of photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    The present low power CMOS microprocessor controller for photovoltaic power systems possesses three programs, which are respectively intended for (1) conventional battery-charging systems with state-of-charge estimation and sequential shedding of subarrays and loads, (2) maximum power-controlled battery-charging systems, and (3) variable speed dc motor drives. Attention is presently given to the development of this terrestrial equipment for spacecraft use.

  17. Concept report: Microprocessor control of electrical power system

    NASA Technical Reports Server (NTRS)

    Perry, E.

    1977-01-01

    An electrical power system which uses a microprocessor for systems control and monitoring is described. The microprocessor controlled system permits real time modification of system parameters for optimizing a system configuration, especially in the event of an anomaly. By reducing the components count, the assembling and testing of the unit is simplified, and reliability is increased. A resuable modular power conversion system capable of satisfying a large percentage of space applications requirements is examined along with the programmable power processor. The PC global controller which handles systems control and external communication is analyzed, and a software description is given. A systems application summary is also included.

  18. DSS 13 microprocessor antenna controller

    NASA Technical Reports Server (NTRS)

    Gosline, R. M.

    1988-01-01

    A microprocessor-based antenna monitor and control system with multiple CPUs are described. The system was developed as part of the unattended station project for DSS 13 and was enhanced for use by the SETI project. The operational features, hardware, and software designs are described, and a discussion is provided of the major problems encountered.

  19. A microprocessor-based one dimensional optical data processor for spatial frequency analysis

    NASA Technical Reports Server (NTRS)

    Collier, R. L.; Ballard, G. S.

    1982-01-01

    A high degree of accuracy was obtained in measuring the spatial frequency spectrum of known samples using an optical data processor based on a microprocessor, which reliably collected intensity versus angle data. Stray light control, system alignment, and angle measurement problems were addressed and solved. The capabilities of the instrument were extended by the addition of appropriate optics to allow the use of different wavelengths of laser radiation and by increasing the travel limits of the rotating arm to + or - 160 degrees. The acquisition, storage, and plotting of data by the computer permits the researcher a free hand in data manipulation such as subtracting background scattering from a diffraction pattern. Tests conducted to verify the operation of the processor using a 25 mm diameter pinhole, a 39.37 line pairs per mm series of multiple slits, and a microscope slide coated with 1.091 mm diameter polystyrene latex spheres are described.

  20. Hardware math for the 6502 microprocessor

    NASA Technical Reports Server (NTRS)

    Kissel, R.; Currie, J.

    1985-01-01

    A floating-point arithmetic unit is described which is being used in the Ground Facility of Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds.

  1. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  2. Microprocessors in Schools?

    ERIC Educational Resources Information Center

    Cuthbert, L. G.

    1981-01-01

    Examines reasons for including microprocessors in school curricula. Indicates that practical work with microprocessors is not easy and discusses problems associated with using and constructing these control and processing devices of microcomputers. (SK)

  3. DSS 13 Microprocessor Antenna Controller

    NASA Technical Reports Server (NTRS)

    Gosline, R. M.

    1984-01-01

    A microprocessor based antenna controller system developed as part of the unattended station project for DSS 13 is described. Both the hardware and software top level designs are presented and the major problems encounted are discussed. Developments useful to related projects include a JPL standard 15 line interface using a single board computer, a general purpose parser, a fast floating point to ASCII conversion technique, and experience gained in using off board floating point processors with the 8080 CPU.

  4. Microprocessor controlled advanced battery management systems

    NASA Technical Reports Server (NTRS)

    Payne, W. T.

    1978-01-01

    The advanced battery management system described uses the capabilities of an on-board microprocessor to: (1) monitor the state of the battery on a cell by cell basis; (2) compute the state of charge of each cell; (3) protect each cell from reversal; (4) prevent overcharge on each individual cell; and (5) control dual rate reconditioning to zero volts per cell.

  5. Microprocessor based implementation of attitude and shape control of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1984-01-01

    The feasibility of off the shelf eight bit and 16 bit microprocessors to implement linear state variable feedback control laws and assessing the real time response to spacecraft dynamics is studied. The complexity of the dynamic model is described along with the appropriate software. An experimental setup of a beam, microprocessor system for implementing the control laws and the needed generalized software to implement any state variable feedback control system is included.

  6. Variable frequency microprocessor clock generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, C.N.

    A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between themore » clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.« less

  7. Simplified microprocessor design for VLSI control applications

    NASA Technical Reports Server (NTRS)

    Cameron, K.

    1991-01-01

    A design technique for microprocessors combining the simplicity of reduced instruction set computers (RISC's) with the richer instruction sets of complex instruction set computers (CISC's) is presented. They utilize the pipelined instruction decode and datapaths common to RISC's. Instruction invariant data processing sequences which transparently support complex addressing modes permit the formulation of simple control circuitry. Compact implementations are possible since neither complicated controllers nor large register sets are required.

  8. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.

    PubMed

    Kaufman, Kenton R; Levine, James A; Brey, Robert H; McCrady, Shelly K; Padgett, Denny J; Joyner, Michael J

    2008-07-01

    To quantify the energy efficiency of locomotion and free-living physical activity energy expenditure of transfemoral amputees using a mechanical and microprocessor-controlled prosthetic knee. Repeated-measures design to evaluate comparative functional outcomes. Exercise physiology laboratory and community free-living environment. Subjects (N=15; 12 men, 3 women; age, 42+/-9 y; range, 26-57 y) with transfemoral amputation. Research participants were long-term users of a mechanical prosthesis (20+/-10 y as an amputee; range, 3-36 y). They were fitted with a microprocessor-controlled knee prosthesis and allowed to acclimate (mean time, 18+/-8 wk) before being retested. Objective measurements of energy efficiency and total daily energy expenditure were obtained. The Prosthetic Evaluation Questionnaire was used to gather subjective feedback from the participants. Subjects demonstrated significantly increased physical activity-related energy expenditure levels in the participant's free-living environment (P=.04) after wearing the microprocessor-controlled prosthetic knee joint. There was no significant difference in the energy efficiency of walking (P=.34). When using the microprocessor-controlled knee, the subjects expressed increased satisfaction in their daily lives (P=.02). People ambulating with a microprocessor-controlled knee significantly increased their physical activity during daily life, outside the laboratory setting, and expressed an increased quality of life.

  9. Variable-thermoinsulation garments with a microprocessor temperature controller.

    PubMed

    Kurczewska, Agnieszka; Leánikowski, Jacek

    2008-01-01

    This paper presents the concept of active variable thermoinsulation clothing for users working in low temperatures. Those garments contain heating inserts regulated by a microprocessor temperature controller. This paper also presents the results of tests carried out on the newly designed garments.

  10. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.

    PubMed

    Kaufman, K R; Levine, J A; Brey, R H; Iverson, B K; McCrady, S K; Padgett, D J; Joyner, M J

    2007-10-01

    Microprocessor-controlled knee joints appeared on the market a decade ago. These joints are more sophisticated and more expensive than mechanical ones. The literature is contradictory regarding changes in gait and balance when using these sophisticated devices. This study employed a crossover design to assess the comparative performance of a passive mechanical knee prosthesis compared to a microprocessor-controlled knee joint in 15 subjects with an above-knee amputation. Objective measurements of gait and balance were obtained. Subjects demonstrated significantly improved gait characteristics after receiving the microprocessor-controlled prosthetic knee joint (p<0.01). Improvements in gait were a transition from a hyperextended knee to a flexed knee during loading response which resulted in a change from an internal knee flexor moment to a knee extensor moment. The participants' balance also improved (p<0.01). All conditions of the Sensory Organization Test (SOT) demonstrated improvements in equilibrium score. The composite score also increased. Transfemoral amputees using a microprocessor-controlled knee have significant improvements in gait and balance.

  11. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  12. Energy Expenditure and Activity of Transfemoral Amputees Using Mechanical and Microprocessor-Controlled Prosthetic Knees

    PubMed Central

    Kaufman, Kenton R.; Levine, James A.; Brey, Robert H.; McCrady, Shelly K.; Padgett, Denny J.; Joyner, Michael J.

    2009-01-01

    Objective To quantify the energy efficiency of locomotion and free-living physical activity energy expenditure of transfemoral amputees using a mechanical and microprocessor-controlled prosthetic knee. Design Repeated-measures design to evaluate comparative functional outcomes. Setting Exercise physiology laboratory and community free-living environment. Participants Subjects (N=15; 12 men, 3 women; age, 42±9y; range, 26 –57y) with transfemoral amputation. Intervention Research participants were long-term users of a mechanical prosthesis (20±10y as an amputee; range, 3–36y). They were fitted with a microprocessor-controlled knee prosthesis and allowed to acclimate (mean time, 18±8wk) before being retested. Main Outcome Measures Objective measurements of energy efficiency and total daily energy expenditure were obtained. The Prosthetic Evaluation Questionnaire was used to gather subjective feedback from the participants. Results Subjects demonstrated significantly increased physical activity–related energy expenditure levels in the participant’s free-living environment (P=.04) after wearing the microprocessor-controlled prosthetic knee joint. There was no significant difference in the energy efficiency of walking (P=.34). When using the microprocessor-controlled knee, the subjects expressed increased satisfaction in their daily lives (P=.02). Conclusions People ambulating with a microprocessor-controlled knee significantly increased their physical activity during daily life, outside the laboratory setting, and expressed an increased quality of life. PMID:18586142

  13. The microprocessor-based synthesizer controller

    NASA Technical Reports Server (NTRS)

    Wick, M. R.

    1980-01-01

    Implementation and performance of the microprocessor-based controllers and Dana Digiphase Synthesizer (DCO) installed in the Deep Space Network exciter in the 64-meter and 34-meter subnets to support uplink tuning required for the Voyager-Saturn Encounter is discussed. Test data in tests conducted during the production of the controllers verified the design objective for phase control accuracy of 10 to the - 12 power cycles in eight hours during ramping. Tests conducted require a phase error between a theoretical calculated value and the actual phase of no greater than + or - 1 cycle. Tests included (1) a ramp over a period of eight hours using a ramp rate which covers the synthesizer tuning range (40-51 MHz) and (2) a ramp sequence using the maximum rate (+ or kHz/s) over the tuning range.

  14. Designs and performance of three new microprocessor-controlled knee joints.

    PubMed

    Thiele, Julius; Schöllig, Christina; Bellmann, Malte; Kraft, Marc

    2018-02-09

    A crossover design study with a small group of subjects was used to evaluate the performance of three microprocessor-controlled exoprosthetic knee joints (MPKs): C-Leg 4, Plié 3 and Rheo Knee 3. Given that the mechanical designs and control algorithms of the joints determine the user outcome, the influence of these inherent differences on the functional characteristics was investigated in this study. The knee joints were evaluated during level-ground walking at different velocities in a motion analysis laboratory. Additionally, technical analyses using patents, technical documentations and X-ray computed tomography (CT) for each knee joint were performed. The technical analyses showed that only C-Leg 4 and Rheo Knee 3 allow microprocessor-controlled adaptation of the joint resistances for different gait velocities. Furthermore, Plié 3 is not able to provide stance extension damping. The biomechanical results showed that only if a knee joint adapts flexion and extension resistances by the microprocessor all known advantages of MPKs can become apparent. But not all users may benefit from the examined functions: e.g. a good accommodation to fast walking speeds or comfortable stance phase flexion. Hence, a detailed comparison of user demands and performance of the designated knee joint is mandatory to ensure a maximum in user outcome.

  15. Designs and performance of microprocessor-controlled knee joints.

    PubMed

    Thiele, Julius; Westebbe, Bettina; Bellmann, Malte; Kraft, Marc

    2014-02-01

    In this comparative study, three transfemoral amputee subjects were fitted with four different microprocessor-controlled exoprosthetic knee joints (MPK): C-Leg, Orion, Plié2.0, and Rel-K. In a motion analysis laboratory, objective gait measures were acquired during level walking at different velocities. Subsequent technical analyses, which involved X-ray computed tomography, identified the functional mechanisms of each device and enabled corroboration of the performance in the gait laboratory by the engineering design of the MPK. Gait measures showed that the mean increase of the maximum knee flexion angle at different walking velocities was closest in value to the unaffected contralateral knee (6.2°/m/s) with C-Leg (3.5°/m/s; Rel-K 17.0°/m/s, Orion 18.3°/m/s, and Plié2.0 28.1°/m/s). Technical analyses corroborated that only with Plié2.0 the flexion resistances were not regulated by microprocessor control at different walking velocities. The muscular effort for the initiation of the swing phase, measured by the minimum hip moment, was found to be lowest with C-Leg (-82.1±14.1 Nm; Rel-K -83.59±17.8 Nm, Orion -88.0±16.3 Nm, and Plié2.0 -91.6±16.5 Nm). Reaching the extension stop at the end of swing phase was reliably executed with both Plié2.0 and C-Leg. Abrupt terminal stance phase extension observed with Plié2.0 and Rel-K could be attributed to the absence of microprocessor control of extension resistance.

  16. A central microprocessor controlled electrical storage heating system

    NASA Astrophysics Data System (ADS)

    Horstmann, H.

    1980-12-01

    The use of a microprocessor to control the reloading of electrical storage heaters not only during the night, but whenever the electrical grid is cycled down, was tested. The test setup, used to control a total of about 10 MW installed storage heating in 96 dwellings, is described. It is demonstrated that additional consumers can be connected to the system without demand for more power stations.

  17. Redundant Asynchronous Microprocessor System

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Johnston, J. O.; Dunn, W. R.

    1985-01-01

    Fault-tolerant computer structure called RAMPS (for redundant asynchronous microprocessor system) has simplicity of static redundancy but offers intermittent-fault handling ability of complex, dynamically redundant systems. New structure useful wherever several microprocessors are employed for control - in aircraft, industrial processes, robotics, and automatic machining, for example.

  18. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.

    PubMed

    Kaufman, Kenton R; Frittoli, Serena; Frigo, Carlo A

    2012-06-01

    Amputees walk with an asymmetrical gait, which may lead to future musculoskeletal degenerative changes. The purpose of this study was to compare the gait asymmetry of active transfemoral amputees while using a passive mechanical knee joint or a microprocessor-controlled knee joint. Objective 3D gait measurements were obtained in 15 subjects (12 men and 3 women; age 42, range 26-57). Research participants were longtime users of a mechanical prosthesis (mean 20 years, range 3-36 years). Joint symmetry was calculated using a novel method that includes the entire waveform throughout the gait cycle. There was no significant difference in hip, knee and ankle kinematics symmetry when using the different knee prostheses. In contrast, the results demonstrated a significant improvement in lower extremity joint kinetics symmetry when using the microprocessor-controlled knee. Use of the microprocessor-controlled knee joint resulted in improved gait symmetry. These improvements may lead to a reduction in the degenerative musculoskeletal changes often experienced by amputees. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. 3-D movies using microprocessor-controlled optoelectronic spectacles

    NASA Astrophysics Data System (ADS)

    Jacobs, Ken; Karpf, Ron

    2012-02-01

    Despite rapid advances in technology, 3-D movies are impractical for general movie viewing. A new approach that opens all content for casual 3-D viewing is needed. 3Deeps--advanced microprocessor controlled optoelectronic spectacles--provides such a new approach to 3-D. 3Deeps works on a different principle than other methods for 3-D. 3-D movies typically use the asymmetry of dual images to produce stereopsis, necessitating costly dual-image content, complex formatting and transmission standards, and viewing via a corresponding selection device. In contrast, all 3Deeps requires to view movies in realistic depth is an illumination asymmetry--a controlled difference in optical density between the lenses. When a 2-D movie has been projected for viewing, 3Deeps converts every scene containing lateral motion into realistic 3-D. Put on 3Deeps spectacles for 3-D viewing, or remove them for viewing in 2-D. 3Deeps works for all analogue and digital 2-D content, by any mode of transmission, and for projection screens, digital or analogue monitors. An example using aerial photography is presented. A movie consisting of successive monoscopic aerial photographs appears in realistic 3-D when viewed through 3Deeps spectacles.

  20. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  1. The Microprocessor controls the activity of mammalian retrotransposons.

    PubMed

    Heras, Sara R; Macias, Sara; Plass, Mireya; Fernandez, Noemí; Cano, David; Eyras, Eduardo; Garcia-Perez, José L; Cáceres, Javier F

    2013-10-01

    More than half of the human genome is made of transposable elements whose ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons and a defender of human genome integrity.

  2. Developing prescribing guidelines for microprocessor-controlled prosthetic knees in the South East England.

    PubMed

    Sedki, Imad; Fisher, Keren

    2015-06-01

    Microprocessor-controlled prosthetic knees have gained increasing popularity over the last decade. Research supports their provision to address specific problems or to achieve certain rehabilitation goals. However, there are yet no agreed protocols or prescribing criteria to assist clinicians in the identification and appropriate selection of suitable users. The aim is to reach professionals' agreement on specific prescribing guidelines for microprocessor-controlled prosthetic knees. The study involved multidisciplinary teams from the Inter Regional Prosthetic Audit Group, representing nine Prosthetic Rehabilitation Centres in the South East England region. We used the Delphi technique with a total of three rounds to reach professionals' agreement. The prescribing guidelines were agreed and will be reviewed and updated depending on new research evidence and technical advances. This project is highly useful for professionals in a clinic setting to aid in appropriate patient selection and to justify the cost of prescribing microprocessor-controlled prosthetic knees. © The International Society for Prosthetics and Orthotics 2014.

  3. Microprocessor-based interface for oceanography

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  4. The Microprocessor controls the activity of mammalian retrotransposons

    PubMed Central

    Heras, Sara R.; Macias, Sara; Plass, Mireya; Fernandez, Noemí; Cano, David; Eyras, Eduardo; Garcia-Perez, José L.; Cáceres, Javier F.

    2013-01-01

    More than half of the human genome is made of Transposable Elements. Their ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human LINE-1 (Long INterspersed Element 1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons acting as a defender of human genome integrity. PMID:23995758

  5. Development and testing of the Rho Sigma Incorporated microprocessor control subsystem

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1979-01-01

    Product development and performance tests of three programmable microprocessor controllers for use with solar heating and cooling systems are presented. The products were developed to be marketable for public use.

  6. Microprocessor-controlled iontophoretic drug delivery of 5-fluorouracil: pharmacodynamic and pharmacokinetic study.

    PubMed

    Chandrashekar, N S; Shobha Rani, R H

    2007-01-01

    The purpose of this study was to fabricate monolithic 5-fluorouracil (5-FU) transdermal patch with microprocessor- controlled iontophoretic delivery, to evaluate the pharmacodynamic effects on Dalton's lymphoma ascites (DLA) induced in Balb/c mice, and to study pharmacokinetics in rabbits. The transdermal patches were prepared by solvent casting method; a reprogrammable microprocessor was developed and connected to the patches. DLA cells were injected to the hind limb of Balb/c mice (10 animals/group). In the first group of mice 5-FU was administered i.v. (12 mg/kg). In the second group of mice, transdermal patches (20 mg/patch/animal) were installed and kept for 10 consecutive days, while the third (control) group was kept without any treatment. The tumor diameter was measured every 5th day for 30 days, and the animal survival time and death pattern were studied. The electric current density protocol of 0.5 mA/cm(2) for 30 min was used in the pharmacokinetic study in rabbits. There was a significant reduction in tumor volume in the animals treated with monolithic matrix 5-FU transdermal patch compared to untreated controls and i.v. therapy. Tumor volume of the control animals was 5.8 cm(3) on the 30th day, while in 5-FU with transdermal patch delivery animals it was only 0.23 cm(3) (p <0.05). DLA cells tumor-bearing mice treated with 5-FU with transdermal patch had significantly increased lifespan (ILS). Control animals survived only 21+/-1 days after the tumor inoculation, while i.v. 5-FU and 5-FU patches animals survived 24+/-2.7 days and 39.5+/-1.87 days with ILS of 25.58% and 88.09%, respectively (p <0.01). There was significant sustained release of 5-FU through microprocessor-controlled patches and half-life was significantly higher (p <0.05) compared to the i.v. route. Cytotoxic concentration of 5-FU can be achieved through the transdermal drug delivery and effective therapeutic drug concentration can be maintained up to 24 h, with less toxicity. A new

  7. Microprocessor Control Design for a Low-Head Crossflow Turbine.

    DTIC Science & Technology

    1985-03-01

    Controllers For a Typical 10 KW Hydroturbine ............ 1-5 I-1 Ely’s Crossflow Turbine . ........ 11-2 11-2 Basic Turbine * * 0 * 0 11-5 11-3 Turbine...the systems. For example, a 25 kilowatt hydroturbine built and installed by Bell Hydroelectric would cost approximately $20,000 in 1978 (6:49). The...O Manual Controller S2 E- Microprocessor Controller 1 2 3 4 5 6 7 8 YEARS Fig. 1-2 Comparative Costs of Controllers For a Typical 10 KW Hydroturbine

  8. Post-transcriptional control of DGCR8 expression by the Microprocessor.

    PubMed

    Triboulet, Robinson; Chang, Hao-Ming; Lapierre, Robert J; Gregory, Richard I

    2009-06-01

    The Microprocessor, comprising the RNase III Drosha and the double-stranded RNA binding protein DGCR8, is essential for microRNA (miRNA) biogenesis. In the miRNA processing pathway certain hairpin structures within primary miRNA (pri-miRNA) transcripts are specifically cleaved by the Microprocessor to release approximately 60-70-nucleotide precursor miRNA (pre-miRNA) intermediates. Although both Drosha and DGCR8 are required for Microprocessor activity, the mechanisms regulating the expression of these proteins are unknown. Here we report that the Microprocessor negatively regulates DGCR8 expression. Using in vitro reconstitution and in vivo studies, we demonstrate that a hairpin, localized in the 5' untranslated region (5'UTR) of DGCR8 mRNA, is cleaved by the Microprocessor. Accordingly, knockdown of Drosha leads to an increase in DGCR8 mRNA and protein levels in cells. Furthermore, we found that the DGCR8 5'UTR confers Microprocessor-dependent repression of a luciferase reporter gene in vivo. Our results uncover a novel feedback loop that regulates DGCR8 levels.

  9. A programmable controller based on CAN field bus embedded microprocessor and FPGA

    NASA Astrophysics Data System (ADS)

    Cai, Qizhong; Guo, Yifeng; Chen, Wenhei; Wang, Mingtao

    2008-10-01

    One kind of new programmable controller(PLC) is introduced in this paper. The advanced embedded microprocessor and Field-Programmable Gate Array (FPGA) device are applied in the PLC system. The PLC system structure was presented in this paper. It includes 32 bits Advanced RISC Machines (ARM) embedded microprocessor as control core, FPGA as control arithmetic coprocessor and CAN bus as data communication criteria protocol connected the host controller and its various extension modules. It is detailed given that the circuits and working principle, IiO interface circuit between ARM and FPGA and interface circuit between ARM and FPGA coprocessor. Furthermore the interface circuit diagrams between various modules are written. In addition, it is introduced that ladder chart program how to control the transfer info of control arithmetic part in FPGA coprocessor. The PLC, through nearly two months of operation to meet the design of the basic requirements.

  10. Pain and efficacy rating of a microprocessor-controlled metered injection system for local anaesthesia in minor hand surgery.

    PubMed

    Nimigan, André S; Gan, Bing Siang

    2011-01-01

    Purpose. Little attention has been given to syringe design and local anaesthetic administration methods. A microprocessor-controlled anaesthetic delivery device has become available that may minimize discomfort during injection. The purpose of this study was to document the pain experience associated with the use of this system and to compare it with use of a conventional syringe. Methods. A prospective, randomized clinical trial was designed. 40 patients undergoing carpal tunnel release were block randomized according to sex into a two groups: a traditional syringe group and a microprocessor-controlled device group. The primary outcome measure was surgical pain and local anaesthetic administration pain. Secondary outcomes included volume of anaesthetic used and injection time. Results. Analysis showed that equivalent anaesthesia was achieved in the microprocessor-controlled group despite using a significantly lower volume of local anaesthetic (P = .0002). This same group, however, has significantly longer injection times (P < .0001). Pain during the injection process or during surgery was not different between the two groups. Conclusions. This RCT comparing traditional and microprocessor controlled methods of administering local anaesthetic showed similar levels of discomfort in both groups. While the microprocessor-controlled group used less volume, the total time for the administration was significantly greater.

  11. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  12. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  13. Design description of a microprocessor based Engine Monitoring and Control unit (EMAC) for small turboshaft

    NASA Technical Reports Server (NTRS)

    Baez, A. N.

    1985-01-01

    Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.

  14. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  15. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.

    PubMed

    Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  16. Microprocessor control system for 200-kilowatt Mod-OA wind turbines

    NASA Technical Reports Server (NTRS)

    Nyland, T. W.; Birchenough, A. G.

    1982-01-01

    The microprocessor system and program used to control the operation of the 200-kW Mod-OA wind turbines is described. The system is programmed to begin startup and shutdown sequences automatically and to control yaw motion. Rotor speed and power output are controlled with integral and proportional control of the blade pitch angle. Included in the report are a description of the hardware and a discussion of the software programming technique. A listing of the PL/M software program is given.

  17. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.

    PubMed

    Theeven, Patrick; Hemmen, Bea; Rings, Frans; Meys, Guido; Brink, Peter; Smeets, Rob; Seelen, Henk

    2011-10-01

    To assess the effects of using a microprocessor-controlled prosthetic knee joint on the functional performance of activities of daily living in persons with an above-knee leg amputation. To assess the effects of using a microprocessor-controlled prosthetic knee joint on the functional performance of activities of daily living in persons with an above-knee leg amputation. Randomised cross-over trial. Forty-one persons with unilateral above-knee or knee disarticulation limb loss, classified as Medicare Functional Classification Level-2 (MFCL-2). Participants were measured in 3 conditions, i.e. using a mechanically controlled knee joint and two types of microprocessor-controlled prosthetic knee joints. Functional performance level was assessed using a test in which participants performed 17 simulated activities of daily living (Assessment of Daily Activity Performance in Transfemoral amputees test). Performance time was measured and self-perceived level of difficulty was scored on a visual analogue scale for each activity. High levels of within-group variability in functional performance obscured detection of any effects of using a microprocessor-controlled prosthetic knee joint. Data analysis after stratification of the participants into 3 subgroups, i.e. participants with a "low", "intermediate" and "high" functional mobility level, showed that the two higher functional subgroups performed significantly faster using microprocessor-controlled prosthetic knee joints. MFCL-2 amputees constitute a heterogeneous patient group with large variation in functional performance levels. A substantial part of this group seems to benefit from using a microprocessor-controlled prosthetic knee joint when performing activities of daily living.

  18. Microprocessor controlled movement of liquid gastric content using sequential neural electrical stimulation

    PubMed Central

    Mintchev, M; Sanmiguel, C; Otto, S; Bowes, K

    1998-01-01

    Background—Gastric electrical stimulation has been attempted for several years with little success. 
Aims—To determine whether movement of liquid gastric content could be achieved using microprocessor controlled sequential electrical stimulation. 
Methods—Eight anaesthetised dogs underwent laparotomy and implantation of four sets of bipolar stainless steel wire electrodes. Each set consisted of two to six electrodes (10×0.25 mm, 3 cm apart) implanted circumferentially. The stomach was filled with water and the process of gastric emptying was monitored. Artificial contractions were produced using microprocessor controlled phase locked bipolar four second trains of 50 Hz, 14 V (peak to peak) rectangular voltage. In four of the dogs four force transducers were implanted close to each circumferential electrode set. In one gastroparetic patient the effect of direct electrical stimulation was determined at laparotomy. 
Results—Using the above stimulating parameters circumferential gastric contractions were produced which were artificially propagated distally by phase locking the stimulating voltage. Averaged stimulated gastric emptying times were significantly shorter than spontaneus emptying times (t1/2 6.7 (3.0) versus 25.3 (12.9) minutes, p<0.01). Gastric electrical stimulation of the gastroparetic patient at operation produced circumferential contractions. 
Conclusions—Microprocessor controlled electrical stimulation produced artificial peristalsis and notably accelerated the movement of liquid gastric content. 

 Keywords: gastric electrical stimulation; gastric motility PMID:9824339

  19. Microprocessor controlled portable TLD system

    NASA Technical Reports Server (NTRS)

    Apathy, I.; Deme, S.; Feher, I.

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.

  20. Dynamic characterization and microprocessor control of the NASA/UVA proof mass actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1984-01-01

    The self-contained electromagnetic-reaction-type force-actuator system developed by NASA/UVA for the verification of spacecraft-structure vibration-control laws is characterized and demonstrated. The device is controlled by a dedicated microprocessor and has dynamic characteristics determined by Fourier analysis. Test data on a cantilevered beam are shown.

  1. Microprocessor controlled movement of solid colonic content using sequential neural electrical stimulation

    PubMed Central

    Amaris, M A; Rashev, P Z; Mintchev, M P; Bowes, K L

    2002-01-01

    Background and aims: Invoked peristaltic contractions and movement of solid content have not been attempted in normal canine colon. The purpose of this study was to determine if movement of solid content through the colon could be produced by microprocessor controlled sequential stimulation. Methods: The study was performed on six anaesthetised dogs. At laparotomy, a 15 cm segment of descending colon was selected, the proximal end closed with a purse string suture, and the distal end opened into a collecting container. Four sets of subserosal stimulating electrodes were implanted at 3 cm intervals. The segment of bowel was filled with a mixture of dog food and 50 plastic pellets before each of 2–5 random sessions of non-stimulated or stimulated emptying. Propagated contractions were generated using microprocessor controlled bipolar trains of 50 Hz rectangular voltage having 20 V (peak to peak) amplitude, 18 second stimulus duration, and a nine second phase lag between stimulation trains in sequential electrode sets. Results: Electrical stimulation using the above mentioned parameters resulted in powerful phasic contractions that closed the lumen. By phase locking the stimulation voltage between adjacent sets of electrodes, propagated contractions could be produced in an aboral or orad direction. The number of evacuated pellets during the stimulation sessions was significantly higher than during the non-stimulated sessions (p<0.01). Conclusions: Microprocessor controlled electrical stimulation accelerated movement of colonic content suggesting the possibility of future implantable colonic stimulators. PMID:11889065

  2. A Microprocessor Project for Non-Electrical Engineering Students.

    ERIC Educational Resources Information Center

    Swingler, D. N.

    1981-01-01

    Offers rationale for and a description of a microprocessor-based control system project for mechanical engineering students. Includes reasons for selecting a Texas Instruments TM990/189 microprocessor system. (SK)

  3. A microprocessor-based system for continuous monitoring of radiation levels around the CERN PS and PSB accelerators

    NASA Astrophysics Data System (ADS)

    Agoritsas, V.; Beck, F.; Benincasa, G. P.; Bovigny, J. P.

    1986-06-01

    This paper describes a new beam loss monitor system which has been installed in the PS and PSB machines, replacing an earlier system. The new system is controlled by a microprocessor which can operate independently of the accelerator control system, though setting up and central display are usually done remotely, using the standard control system facilities.

  4. The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    NASA Technical Reports Server (NTRS)

    Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.

    1988-01-01

    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.

  5. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.

    PubMed

    Hafner, Brian J; Willingham, Laura L; Buell, Noelle C; Allyn, Katheryn J; Smith, Douglas G

    2007-02-01

    To evaluate differences in function, performance, and preference between mechanical and microprocessor prosthetic knee control technologies. A-B-A-B reversal design. Home, community, and laboratory environments. Twenty-one unilateral, transfemoral amputees. Mechanical control prosthetic knee versus microprocessor control prosthetic knee (Otto Bock C-Leg). Stair rating, hill rating and time, obstacle course time, divided attention task accuracy and time, Amputee Mobility Predictor score, step activity, Prosthesis Evaluation Questionnaire score, Medical Outcomes Study 36-Item Short-Form Health Survey score, self-reported frequency of stumbles and falls, and self-reported concentration required for ambulation. Stair descent score, hill descent time, and hill sound-side step length showed significant (P<.01) improvement with the C-Leg. Users reported a significant (P<.05) decrease in frequency of stumbles and falls, frustration with falling, and difficulty in multitasking while using the microprocessor knee. Subject satisfaction with the C-Leg was significantly (P<.001) greater than the mechanical control prosthesis. The study population showed improved performance when negotiating stairs and hills, reduced frequency of stumbling and falling, and a preference for the microprocessor control C-Leg as compared with the mechanical control prosthetic knee.

  6. OS friendly microprocessor architecture: Hardware level computer security

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; La Fratta, Patrick

    2016-05-01

    We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.

  7. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis.

    PubMed

    Pröbsting, Eva; Kannenberg, Andreas; Zacharias, Britta

    2017-02-01

    There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation ( p = .001), paretic limb health ( p = .04), sounds ( p = .02), and well-being ( p = .01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis devices. The C-Brace offers new functions including controlled

  8. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints.

    PubMed

    Bellmann, Malte; Schmalz, Thomas; Blumentritt, Siegmar

    2010-04-01

    To investigate and identify functional differences of 4 microprocessor-controlled prosthetic knee joints (C-Leg, Hybrid Knee [also called Energy Knee], Rheo Knee, Adaptive 2). Tested situations were walking on level ground, on stairs and ramps; additionally, the fall prevention potentials for each design were examined. The measuring technology used included an optoelectronic camera system combined with 2 forceplates as well as a mobile spiroergometric system. The study was conducted in a gait laboratory. Subjects with unilateral transfemoral amputations (N=9; mobility grade, 3-4; age, 22-49y) were tested. Participants were fitted and tested with 4 different microprocessor-controlled knee joints. Static prosthetic alignment, time distance parameters, kinematic and kinetic data and metabolic energy consumption. Compared with the Hybrid Knee and the Adaptive 2, the C-Leg offers clear advantages in the provision of adequate swing phase flexion resistances and terminal extension damping during level walking at various speeds, especially at higher walking speeds. The Rheo Knee provides sufficient terminal extension; however, swing phase flexion resistances seem to be too low. The values for metabolic energy consumption show only slight differences during level walking. The joint resistances generated for descending stairs and ramps relieve the contralateral side to varying degrees. When walking on stairs, safety-relevant technical differences between the investigated joint types can be observed. Designs with adequate internal resistances offer stability advantages when the foot is positioned on the step. Stumble recovery tests reveal that the different knee joint designs vary in their effectiveness in preventing the patient from falling. The patient benefits provided by the investigated electronic prosthetic knee joints differ considerably. The C-Leg appears to offer the amputee greater functional and safety-related advantages than the other tested knee joints. Reduced

  9. Microprocessor control and networking for the amps breadboard

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen A.

    1987-01-01

    Future space missions will require more sophisticated power systems, implying higher costs and more extensive crew and ground support involvement. To decrease this human involvement, as well as to protect and most efficiently utilize this important resource, NASA has undertaken major efforts to promote progress in the design and development of autonomously managed power systems. Two areas being actively pursued are autonomous power system (APS) breadboards and knowledge-based expert system (KBES) applications. The former are viewed as a requirement for the timely development of the latter. Not only will they serve as final testbeds for the various KBES applications, but will play a major role in the knowledge engineering phase of their development. The current power system breadboard designs are of a distributed microprocessor nature. The distributed nature, plus the need to connect various external computer capabilities (i.e., conventional host computers and symbolic processors), places major emphasis on effective networking. The communications and networking technologies for the first power system breadboard/test facility are described.

  10. Self-Checking Pairs Of Microprocessors

    NASA Technical Reports Server (NTRS)

    Smith, Brian S.

    1995-01-01

    Method of imparting fault tolerance to computer system provides for immediate detection of faults at microprocessor level. Shadow microprocessor provides nominal duplicate outputs to verify functioning of main microprocessor. When output signal on any pin of one microprocessor differs from that on corresponding pin of other microprocessor, comparator puts out alarm signal.

  11. The LAM space active optics facility

    NASA Astrophysics Data System (ADS)

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  12. Cumulative Timers for Microprocessors

    NASA Technical Reports Server (NTRS)

    Battle, John O.

    2007-01-01

    It has been proposed to equip future microprocessors with electronic cumulative timers, for essentially the same reasons for which land vehicles are equipped with odometers (total-distance-traveled meters) and aircraft are equipped with Hobbs meters (total-engine-operating time meters). Heretofore, there has been no way to determine the amount of use to which a microprocessor (or a product containing a microprocessor) has been subjected. The proposed timers would count all microprocessor clock cycles and could only be read by means of microprocessor instructions but, like odometers and Hobbs meters, could never be reset to zero without physically damaging the chip.

  13. Mold heating and cooling microprocessor conversion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D.P.

    Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessormore » board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.« less

  14. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  15. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  16. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.

    PubMed

    Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Meng, Qiaoling; Chen, Wenming

    2018-04-20

    The microprocessor-controlled prosthetic knees have been introduced to transfemoral amputees due to advances in biomedical engineering. A body of scientific literature has shown that the microprocessor-controlled prosthetic knees improve the gait and functional abilities of persons with transfemoral amputation. The aim of this study was to propose a new microprocessor-controlled prosthetic knee (MPK) and compare it with non-microprocessor-controlled prosthetic knees (NMPKs) under different walking speeds. The microprocessor-controlled prosthetic knee (i-KNEE) with hydraulic damper was developed. The comfortable self-selected walking speeds of 12 subjects with i-KNEE and NMPK were obtained. The maximum swing flexion knee angle and gait symmetry were compared in i-KNEE and NMPK condition. The comfortable self-selected walking speeds of some subjects were higher with i-KNEE while some were not. There was no significant difference in comfortable self-selected walking speed between the i-KNEE and the NMPK condition (P= 0.138). The peak prosthetic knee flexion during swing in the i-KNEE condition was between sixty and seventy degree under any walking speed. In the NMPK condition, the maximum swing flexion knee angle changed significantly. And it increased with walking speed. There is no significant difference in knee kinematic symmetry when the subjects wear the i-KNEE or NMPK. The results of this study indicated that the new microprocessor-controlled prosthetic knee was suitable for transfemoral amputees. The maximum swing flexion knee angle under different walking speeds showed different properties in the NMPK and i-KNEE condition. The i-KNEE was more adaptive to speed changes. There was little difference of comfortable self-selected walking speed between i-KNEE and NMPK condition.

  17. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis

    PubMed Central

    Pröbsting, Eva; Kannenberg, Andreas; Zacharias, Britta

    2016-01-01

    Background: There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. Objectives: The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Study design: Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Methods: Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. Results: The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation (p = .001), paretic limb health (p = .04), sounds (p = .02), and well-being (p = .01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. Conclusion: The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis

  18. Development of a microprocessor controller for stand-alone photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  19. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation.

    PubMed

    Fuenzalida Squella, Sara Agueda; Kannenberg, Andreas; Brandão Benetti, Ângelo

    2018-04-01

    Despite the evidence for improved safety and function of microprocessor stance and swing-controlled prosthetic knees, non-microprocessor-controlled prosthetic knees are still standard of care for persons with transfemoral amputations in most countries. Limited feature microprocessor-control enhancement of such knees could stand to significantly improve patient outcomes. To evaluate gait speed, balance, and fall reduction benefits of the new 3E80 default stance hydraulic knee compared to standard non-microprocessor-controlled prosthetic knees. Comparative within-subject clinical study. A total of 13 young, high-functioning community ambulators with a transfemoral amputation underwent assessment of performance-based (e.g. 2-min walk test, timed ramp/stair tests) and self-reported (e.g. falls, Activities-Specific Balance Confidence scale, Prosthesis Evaluation Questionnaire question #1, Satisfaction with the Prosthesis) outcome measures for their non-microprocessor-controlled prosthetic knees and again after 8 weeks of accommodation to the 3E80 microprocessor-enhanced knee. Self-reported falls significantly declined 77% ( p = .04), Activities-Specific Balance Confidence scores improved 12 points ( p = .005), 2-min walk test walking distance increased 20 m on level ( p = .01) and uneven ( p = .045) terrain, and patient satisfaction significantly improved ( p < .01) when using the 3E80 knee. Slope and stair ambulation performance did not differ between knee conditions. The 3E80 knee reduced self-reported fall incidents and improved balance confidence. Walking performance on both level and uneven terrains also improved compared to non-microprocessor-controlled prosthetic knees. Subjects' satisfaction was significantly higher than with their previous non-microprocessor-controlled prosthetic knees. The 3E80 may be considered a prosthetic option for improving gait performance, balance confidence, and safety in highly active amputees. Clinical

  20. A microprocessor application to a strapdown laser gyro navigator

    NASA Technical Reports Server (NTRS)

    Giardina, C.; Luxford, E.

    1980-01-01

    The replacement of analog circuit control loops for laser gyros (path length control, cross axis temperature compensation loops, dither servo and current regulators) with digital filters residing in microcomputers is addressed. In addition to the control loops, a discussion is given on applying the microprocessor hardware to compensation for coning and skulling motion where simple algorithms are processed at high speeds to compensate component output data (digital pulses) for linear and angular vibration motions. Highlights are given on the methodology and system approaches used in replacing differential equations describing the analog system in terms of the mechanized difference equations of the microprocessor. Standard one for one frequency domain techniques are employed in replacing analog transfer functions by their transform counterparts. Direct digital design techniques are also discussed along with their associated benefits. Time and memory loading analyses are also summarized, as well as signal and microprocessor architecture. Trade offs in algorithm, mechanization, time/memory loading, accuracy, and microprocessor architecture are also given.

  1. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.

    PubMed

    Creylman, Veerle; Knippels, Ingrid; Janssen, Paul; Biesbrouck, Evelyne; Lechler, Knut; Peeraer, Louis

    2016-12-19

    In transfemoral (TF) amputees, the forward propulsion of the prosthetic leg in swing has to be mainly carried out by hip muscles. With hip strength being the strongest predictor to ambulation ability, an active powered knee joint could have a positive influence, lowering hip loading and contributing to ambulation mobility. To assess this, gait of four TF amputees was measured for level walking, first while using a passive microprocessor-controlled prosthetic knee (P-MPK), subsequently while using an active powered microprocessor-controlled prosthetic knee (A-MPK). Furthermore, to assess long-term effects of the use of an A-MPK, a 4-weeks follow-up case study was performed. The kinetics and kinematics of the gait of four TF amputees were assessed while walking with subsequently the P-MPK and the A-MPK. For one amputee, a follow-up study was performed: he used the A-MPK for 4 weeks, his gait was measured weekly. The range of motion of the knee was higher on both the prosthetic and the sound leg in the A-MPK compared to the P-MPK. Maximum hip torque (HT) during early stance increased for the prosthetic leg and decreased for the sound leg with the A-MPK compared to the P-MPK. During late stance, the maximum HT decreased for the prosthetic leg. The difference between prosthetic and sound leg for HT disappeared when using the A-MPK. Also, an increase in stance phase duration was observed. The follow-up study showed an increase in confidence with the A-MPK over time. Results suggested that, partially due to an induced knee flexion during stance, HT can be diminished when walking with the A-MPK compared to the P-MPK. The single case follow-up study showed positive trends indicating that an adaptation time is beneficial for the A-MPK.

  2. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  4. Adaptive Optics Facility: control strategy and first on-sky results of the acquisition sequence

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.; Kolb, J.; Oberti, S.; Paufique, J.; La Penna, P.; Hackenberg, W.; Kuntschner, H.; Argomedo, J.; Kiekebusch, M.; Donaldson, R.; Suarez, M.; Arsenault, R.

    2016-07-01

    The Adaptive Optics Facility is an ESO project aiming at converting Yepun, one of the four 8m telescopes in Paranal, into an adaptive telescope. This is done by replacing the current conventional secondary mirror of Yepun by a Deformable Secondary Mirror (DSM) and attaching four Laser Guide Star (LGS) Units to its centerpiece. In the meantime, two Adaptive Optics (AO) modules have been developed incorporating each four LGS WaveFront Sensors (WFS) and one tip-tilt sensor used to control the DSM at 1 kHz frame rate. The four LGS Units and one AO module (GRAAL) have already been assembled on Yepun. Besides the technological challenge itself, one critical area of AOF is the AO control strategy and its link with the telescope control, including Active Optics used to shape M1. Another challenge is the request to minimize the overhead due to AOF during the acquisition phase of the observation. This paper presents the control strategy of the AOF. The current control of the telescope is first recalled, and then the way the AO control makes the link with the Active Optics is detailed. Lab results are used to illustrate the expected performance. Finally, the overall AOF acquisition sequence is presented as well as first results obtained on sky with GRAAL.

  5. The quality of life analysis of knee prosthesis with complete microprocessor control in trans-femoral amputees.

    PubMed

    Saglam, Yavuz; Gulenc, Baris; Birisik, Fevzi; Ersen, Ali; Yilmaz Yalcinkaya, Ebru; Yazicioglu, Onder

    2017-12-01

    The aim of this study was to analyze the patient demographics, etiology of limb loss as well as reporting SF-36 scores for microprocessor prosthesis users in Turkish population. We reviewed 72 patients (61 male and 11 female; mean age: 37.7 ± 10.7) with uni-lateral, above knee amputation and a history of regular and microprocessor prosthesis use. All patients were called back for a last follow-up and they were asked to fill a self-administered general health status questionnaire (SF-36). According to the SF-36 results; physical component score (PCS) score was 46 ± 7.3 and mental components summary (MCS) score was 46.5 ± 9.1. These scores have statistical similarity with Turkish healthy controls, except SF (social functioning) sub-dimension. PCS score for women microprocessor users were significantly lower than men (43.3 vs. 48.7, p = 0.03), but MCS scores were similar in between genders (46 vs. 48.2, p = 0.13). Conventional prostheses usage time was positively correlated with physical function (PF) scores (r = 0.322, p = 0.010). Microprocessor prosthesis usage time was negatively correlated with role limitations due to emotional problem (RE) scores (r = -0,313, p = 0.009). The quality of life surveys were showed that the loss of an extremity have higher physical and psychological impact on women's physical scores. Overall, SF-36 results were similar in microprocessor using amputee's and Turkish normal controls. Level IV, therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  6. Microprocessor prosthetic knees.

    PubMed

    Berry, Dale

    2006-02-01

    This article traces the development of microprocessor prosthetic knees from early research in the 1970s to the present. Read about how microprocessor knees work, functional options, patient selection, and the future of this prosthetic.

  7. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  8. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.

    PubMed

    Abdulhasan, Zahraa M; Scally, Andy J; Buckley, John G

    2018-05-30

    Walking down ramps is a demanding task for transfemoral-amputees and terminating gait on ramps is even more challenging because of the requirement to maintain a stable limb so that it can do the necessary negative mechanical work on the centre-of-mass in order to arrest (dissipate) forward/downward velocity. We determined how the use of a microprocessor-controlled limb system (simultaneous control over hydraulic resistances at ankle and knee) affected the negative mechanical work done by each limb when transfemoral-amputees terminated gait during ramp descent. Eight transfemoral-amputees completed planned gait terminations (stopping on prosthesis) on a 5-degree ramp from slow and customary walking speeds, with the limb's microprocessor active or inactive. When active the limb operated in its 'ramp-descent' mode and when inactive the knee and ankle devices functioned at constant default levels. Negative limb work, determined as the integral of the negative mechanical (external) limb power during the braking phase, was compared across speeds and microprocessor conditions. Negative work done by each limb increased with speed (p < 0.001), and on the prosthetic limb it was greater when the microprocessor was active compared to inactive (p = 0.004). There was no change in work done across microprocessor conditions on the intact limb (p = 0.35). Greater involvement of the prosthetic limb when the limb system was active indicates its ramp-descent mode effectively altered the hydraulic resistances at the ankle and knee. Findings highlight participants became more assured using their prosthetic limb to arrest centre-of-mass velocity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Information distribution in distributed microprocessor based flight control systems

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Lee, P. S.

    1977-01-01

    This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.

  10. An assembler for the MOS Technology 6502 microprocessor as implemented in jolt (TM) and KIM-1 (TM)

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1976-01-01

    Design of low-cost, microcomputer-based navigation receivers, and the assembler are described. The development of computer software for microprocessors is materially aided by the assembler program using mnemonic variable names. The flexibility of the environment provided by the IBM's Virtual Machine Facility and the Conversational Monitor System, make possible the convenient assembler access. The implementation of the assembler for the microprocessor chip serves a part of the present need and forms a model for support of other microprocessors.

  11. Software and languages for microprocessors

    NASA Astrophysics Data System (ADS)

    Williams, David O.

    1986-08-01

    This paper forms the basis for lectures given at the 6th Summer School on Computing Techniques in Physics, organised by the Computational Physics group of the European Physics Society, and held at the Hotel Ski, Nové Město na Moravě, Czechoslovakia, on 17-26 September 1985. Various types of microprocessor applications are discussed and the main emphasis of the paper is devoted to 'embedded' systems, where the software development is not carried out on the target microprocessor. Some information is provided on the general characteristics of microprocessor hardware. Various types of microprocessor operating system are compared and contrasted. The selection of appropriate languages and software environments for use with microprocessors is discussed. Mechanisms for interworking between different languages, including reasonable error handling, are treated. The CERN developed cross-software suite for the Motorola 68000 family is described. Some remarks are made concerning program tools applicable to microprocessors. PILS, a Portable Interactive Language System, which can be interpreted or compiled for a range of microprocessors, is described in some detail, and the implementation techniques are discussed.

  12. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

    2003-01-01

    In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary

  13. G-cueing microcontroller (a microprocessor application in simulators)

    NASA Technical Reports Server (NTRS)

    Horattas, C. G.

    1980-01-01

    A g cueing microcontroller is described which consists of a tandem pair of microprocessors, dedicated to the task of simulating pilot sensed cues caused by gravity effects. This task includes execution of a g cueing model which drives actuators that alter the configuration of the pilot's seat. The g cueing microcontroller receives acceleration commands from the aerodynamics model in the main computer and creates the stimuli that produce physical acceleration effects of the aircraft seat on the pilots anatomy. One of the two microprocessors is a fixed instruction processor that performs all control and interface functions. The other, a specially designed bipolar bit slice microprocessor, is a microprogrammable processor dedicated to all arithmetic operations. The two processors communicate with each other by a shared memory. The g cueing microcontroller contains its own dedicated I/O conversion modules for interface with the seat actuators and controls, and a DMA controller for interfacing with the simulation computer. Any application which can be microcoded within the available memory, the available real time and the available I/O channels, could be implemented in the same controller.

  14. A microprocessor-based control system for the Vienna PDS microdensitometer

    NASA Technical Reports Server (NTRS)

    Jenkner, H.; Stoll, M.; Hron, J.

    1984-01-01

    The Motorola Exorset 30 system, based on a Motorola 6809 microprocessor which serves as control processor for the microdensitometer is presented. User communication and instrument control are implemented in this syatem; data transmission to a host computer is provided via standard interfaces. The Vienna PDS system (VIPS) software was developed in BASIC and M6809 assembler. It provides efficient user interaction via function keys and argument input in a menu oriented environment. All parameters can be stored on, and retrieved from, minifloppy disks, making it possible to set up large scanning tasks. Extensive user information includes continuously updated status and coordinate displays, as well as a real time graphic display during scanning.

  15. Initial experience with a microprocessor controlled current based defibrillator.

    PubMed Central

    Dalzell, G W; Cunningham, S R; Anderson, J; Adgey, A A

    1989-01-01

    Intramyocardial current flow is a critical factor in successful ventricular defibrillation. The main determinants of intramyocardial current flow during transthoracic countershock are the selected energy and the transthoracic impedance of the patient. To optimise the success of the first shock and to titrate energy dosage according to each patient's transthoracic impedance, a microprocessor controlled current based defibrillator was developed. It was compared with a conventional energy based protocol of 200 J (delivered energy), 200 J, then 360 J if required in 42 consecutive episodes of ventricular fibrillation in 33 men and seven women. The mean (SD) predicted transthoracic impedance was 69.9 (14.0) omega. First shock success with the standard protocol was 80.9%, and first or second shock success was 95.2%. The microprocessor controlled current based defibrillator automatically measured transthoracic impedance and calculated the energy required to develop a selected current in each patient. A current protocol of 30 A, 30 A, then 40 A, if required, was used in 29 men and 12 women with 41 episodes of ventricular fibrillation. Transthoracic impedance (mean 65.1 (15.9) omega) was similar to that in the energy protocol group and success rates for first shock (82.9%) and first or second shocks (97.5%) were also similar. The mean delivered energy per shock with the current based defibrillator for first or second shock success was significantly less (144.8 J) with the energy protocol (200 J). The mean peak current of successful shocks was also significantly reduced (29.0 v 31.9 A). A current based defibrillator titrates energy according to transthoracic impedance; it has a success rate comparable to conventional defibrillators but it delivers significantly less energy and current per shock. Images Fig 1 PMID:2757862

  16. Microprocessor tester for the treat upgrade reactor trip system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less

  17. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.

    PubMed

    Eberly, Valerie J; Mulroy, Sara J; Gronley, JoAnne K; Perry, Jacquelin; Yule, William J; Burnfield, Judith M

    2014-12-01

    For individuals with transfemoral amputation, walking with a prosthesis presents challenges to stability and increases the demand on the hip of the prosthetic limb. Increasing age or comorbidities magnify these challenges. Computerized prosthetic knee joints improve stability and efficiency of gait, but are seldom prescribed for less physically capable walkers who may benefit from them. To compare level walking function while wearing a microprocessor-controlled knee (C-Leg Compact) prosthesis to a traditionally prescribed non-microprocessor-controlled knee prosthesis for Medicare Functional Classification Level K-2 walkers. Crossover. Stride characteristics, kinematics, kinetics, and electromyographic activity were recorded in 10 participants while walking with non-microprocessor-controlled knee and Compact prostheses. Walking with the Compact produced significant increase in velocity, cadence, stride length, single-limb support, and heel-rise timing compared to walking with the non-microprocessor-controlled knee prosthesis. Hip and thigh extension during late stance improved bilaterally. Ankle dorsiflexion, knee extension, and hip flexion moments of the prosthetic limb were significantly improved. Improvements in walking function and stability on the prosthetic limb were demonstrated by the K-2 level walkers when using the C-Leg Compact prosthesis. Understanding the impact of new prosthetic designs on gait mechanics is essential to improve prescription guidelines for deconditioned or older persons with transfemoral amputation. Prosthetic designs that improve stability for safety and walking function have the potential to improve community participation and quality of life. © The International Society for Prosthetics and Orthotics 2013.

  18. Microprocessor-controlled wide-range streak camera

    NASA Astrophysics Data System (ADS)

    Lewis, Amy E.; Hollabaugh, Craig

    2006-08-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera's user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.

  19. NSC 800, 8-bit CMOS microprocessor

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1984-01-01

    The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.

  20. Microprocessors and the Curriculum.

    ERIC Educational Resources Information Center

    Pasahow, Edward J.

    1981-01-01

    Presents three approaches to teaching the use of a microprocessor: (1) a "generic" device on paper; (2) a "conglomeration" device, surveying a number of real products; and (3) the "how" course which covers a small number of actual but related microprocessors. (CT)

  1. Microprocessor Seminar, phase 2

    NASA Technical Reports Server (NTRS)

    Scott, W. R.

    1977-01-01

    Workshop sessions and papers were devoted to various aspects of microprocessor and large scale integrated circuit technology. Presentations were made on advanced LSI developments for high reliability military and NASA applications. Microprocessor testing techniques were discussed, and test data were presented. High reliability procurement specifications were also discussed.

  2. Cellular functions of the microprocessor.

    PubMed

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  3. Small Microprocessor for ASIC or FPGA Implementation

    NASA Technical Reports Server (NTRS)

    Kleyner, Igor; Katz, Richard; Blair-Smith, Hugh

    2011-01-01

    A small microprocessor, suitable for use in applications in which high reliability is required, was designed to be implemented in either an application-specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). The design is based on commercial microprocessor architecture, making it possible to use available software development tools and thereby to implement the microprocessor at relatively low cost. The design features enhancements, including trapping during execution of illegal instructions. The internal structure of the design yields relatively high performance, with a significant decrease, relative to other microprocessors that perform the same functions, in the number of microcycles needed to execute macroinstructions. The problem meant to be solved in designing this microprocessor was to provide a modest level of computational capability in a general-purpose processor while adding as little as possible to the power demand, size, and weight of a system into which the microprocessor would be incorporated. As designed, this microprocessor consumes very little power and occupies only a small portion of a typical modern ASIC or FPGA. The microprocessor operates at a rate of about 4 million instructions per second with clock frequency of 20 MHz.

  4. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  5. Mark IVA microprocessor support

    NASA Technical Reports Server (NTRS)

    Burford, A. L.

    1982-01-01

    The requirements and plans for the maintenance support of microprocessor-based controllers in the Deep Space Network Mark IVA System are discussed. Additional new interfaces and 16-bit processors have introduced problems not present in the Mark III System. The need for continuous training of maintenance personnel to maintain a level of expertise consistent with the sophistication of the required tools is also emphasized.

  6. Microprocessor-controlled, wide-range streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy E. Lewis, Craig Hollabaugh

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storagemore » using flash-based storage media. The camera’s user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.« less

  7. Microfluidic Pneumatic Logic Circuits and Digital Pneumatic Microprocessors for Integrated Microfluidic Systems

    PubMed Central

    Rhee, Minsoung

    2010-01-01

    We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730

  8. Perceived self-efficacy and specific self-reported outcomes in persons with lower-limb amputation using a non-microprocessor-controlled versus a microprocessor-controlled prosthetic knee.

    PubMed

    Möller, Saffran; Hagberg, Kerstin; Samulesson, Kersti; Ramstrand, Nerrolyn

    2018-04-01

    To measure self-efficacy in a group of individuals who have undergone a lower-limb amputation and investigate the relationship between self-efficacy and prosthetic-specific outcomes including prosthetic use, mobility, amputation-related problems and global health. A second purpose was to examine if differences exist in outcomes based upon the type of prosthetic knee unit being used. Cross-sectional study using the General Self-Efficacy (GSE) Scale and the Questionnaire for Persons with a Transfemoral Amputation (Q-TFA). Forty-two individuals participated in the study. Twenty-three used a non-microprocessor-controlled prosthetic knee joint (non-MPK) and 19 used a microprocessor-controlled prosthetic knee joint (MPK). The study sample had quite high GSE scores (32/40). GSE scores were significantly correlated to the Q-TFA prosthetic use, mobility and problem scores. High GSE scores were related to higher levels of prosthetic use, mobility, global scores and negatively related to problem score. No significant difference was observed between individuals using a non-MPK versus MPK joints. Individuals with high self-efficacy used their prosthesis to a higher degree and high self-efficacy was related to higher level of mobility, global scores and fewer problems related to the amputation in individuals who have undergone a lower-limb amputation and were using a non-MPK or MPK knee. Implications for rehabilitation Perceived self-efficacy has has been shown to be related to quality of life, prosthetic mobility and capability as well as social activities in daily life. Prosthetic rehabilitation is primary focusing on physical improvement rather than psychological interventions. More attention should be directed towards the relationship between self-efficacy and prosthetic related outcomes during prosthetic rehabilitation after a lower-limb amputation.

  9. Generic interpreters and microprocessor verification

    NASA Technical Reports Server (NTRS)

    Windley, Phillip J.

    1990-01-01

    The following topics are covered in viewgraph form: (1) generic interpreters; (2) Viper microprocessors; (3) microprocessor verification; (4) determining correctness; (5) hierarchical decomposition; (6) interpreter theory; (7) AVM-1; (8) phase-level specification; and future work.

  10. Implementation of the DAST ARW II control laws using an 8086 microprocessor and an 8087 floating-point coprocessor. [drones for aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Kelly, G. L.; Berthold, G.; Abbott, L.

    1982-01-01

    A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.

  11. Microprocessor utilization in search and rescue missions

    NASA Technical Reports Server (NTRS)

    Schwartz, M.

    1977-01-01

    The feasibility of performing the same task in real time using microprocessor technology was determined. The least square algorithm was implemented on an Intel 8080 microprocessor. Results indicated that a microprocessor could easily match the IBM implementation in accuracy and be performed inside the time limitations set.

  12. Report of the facility definition team spacelab UV-Optical Telescope Facility

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Scientific requirements for the Spacelab Ultraviolet-Optical Telescope (SUOT) facility are presented. Specific programs involving high angular resolution imagery over wide fields, far ultraviolet spectroscopy, precisely calibrated spectrophotometry and spectropolarimetry over a wide wavelength range, and planetary studies, including high resolution synoptic imagery, are recommended. Specifications for the mounting configuration, instruments for the mounting configuration, instrument mounting system, optical parameters, and the pointing and stabilization system are presented. Concepts for the focal plane instruments are defined. The functional requirements of the direct imaging camera, far ultraviolet spectrograph, and the precisely calibrated spectrophotometer are detailed, and the planetary camera concept is outlined. Operational concepts described in detail are: the makeup and functions of shuttle payload crew, extravehicular activity requirements, telescope control and data management, payload operations control room, orbital constraints, and orbital interfaces (stabilization, maneuvering requirements and attitude control, contamination, utilities, and payload weight considerations).

  13. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  14. Implementation of the Sun Position Calculation in the PDC-1 Control Microprocessor

    NASA Technical Reports Server (NTRS)

    Stallkamp, J. A.

    1984-01-01

    The several computational approaches to providing the local azimuth and elevation angles of the Sun as a function of local time and then the utilization of the most appropriate method in the PDC-1 microprocessor are presented. The full algorithm, the FORTRAN form, is felt to be very useful in any kind or size of computer. It was used in the PDC-1 unit to generate efficient code for the microprocessor with its floating point arithmetic chip. The balance of the presentation consists of a brief discussion of the tracking requirements for PPDC-1, the planetary motion equations from the first to the final version, and the local azimuth-elevation geometry.

  15. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    PubMed

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  16. Modular, Microprocessor-Controlled Flash Lighting System

    NASA Technical Reports Server (NTRS)

    Kiefer, Dwayne; Gray, Elizabeth; Skupinski, Robert; Stachowicz, Arthur; Birchenough, William

    2006-01-01

    A microprocessor-controlled lighting system generates brief, precisely timed, high-intensity flashes of light for scientific imaging at frame rates up to about 1 kHz. The system includes an array of light-emitting diodes (LEDs) that are driven in synchronism with an externally generated timing signal (for example, a timing signal generated by a video camera). The light output can be varied in peak intensity, pulse duration, pulse delay, and pulse rate, all depending on the timing signal and associated externally generated control signals. The array of LEDs comprises as many as 16 LED panels that can be attached together. Each LED panel is a module consisting of a rectangular subarray of 10 by 20 LEDs of advanced design on a printed-circuit board in a mounting frame with a power/control connector. The LED panels are controlled by an LED control module that contains an AC-to-DC power supply, a control board, and 8 LED-panel driver boards. In prior LED panels, the LEDs are packaged at less than maximum areal densities in bulky metal housings that reduce effective active areas. In contrast, in the present LED panels, the LEDs are packed at maximum areal density so as to afford 100-percent active area and so that when panels are joined side by side to form the array, there are no visible seams between them and the proportion of active area is still 100 percent. Each panel produces an illuminance of .5 x 10( exp 4) lux at a distance of 5.8 in. (approx.1.6 cm). The LEDs are driven according to a pulse-width-modulation control scheme that makes it safe to drive the LEDs beyond their rated steady-state currents in order to generate additional light during short periods. The drive current and the pulse-width modulation for each LED panel can be controlled independently of those of the other 15 panels. The maximum allowable duration of each pulse of drive current is a function of the amount of overdrive, the total time to be spent in overdrive operation, and the limitations

  17. Report on the formal specification and partial verification of the VIPER microprocessor

    NASA Technical Reports Server (NTRS)

    Brock, Bishop; Hunt, Warren A., Jr.

    1991-01-01

    The formal specification and partial verification of the VIPER microprocessor is reviewed. The VIPER microprocessor was designed by RSRE, Malvern, England, for safety critical computing applications (e.g., aircraft, reactor control, medical instruments, armaments). The VIPER was carefully specified and partially verified in an attempt to provide a microprocessor with completely predictable operating characteristics. The specification of VIPER is divided into several levels of abstraction, from a gate-level description up to an instruction execution model. Although the consistency between certain levels was demonstrated with mechanically-assisted mathematical proof, the formal verification of VIPER was never completed.

  18. Multitasking operating systems for microprocessors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, T.

    1981-01-01

    Microprocessors, because of their low cost, low power consumption, and small size, have caused an explosion in the number of innovative computer applications. Although there is a great deal of variation in microprocessor applications software, there is relatively little variation in the operating-system-level software from one application to the next. Nonetheless, operating system software, especially when multitasking is involved, can be very time consuming and expensive to develop. The major microprocessor manufacturers have acknowledged the need for operating systems in microprocessor applications and are now supplying real-time multitasking operating system software that is adaptable to a wide variety of usermore » systems. Use of this existing operating system software will decrease the number of redundant operating system development efforts, thus freeing programmers to work on more creative and productive problems. This paper discusses the basic terminology and concepts involved with multitasking operating systems. It is intended to provide a general understanding of the subject, so that the reader will be prepared to evaluate specific operating system software according to his or her needs. 2 references.« less

  19. Feasibility study of a microprocessor based oculometer system

    NASA Technical Reports Server (NTRS)

    Varanasi, M. R.

    1981-01-01

    The elimination of redundancy in data to maximize processing speed and minimize storage requirements were objectives in a feasibility study of a microprocessor based oculometer system that would be portable in size and flexible in use. The appropriate architectural design of the signal processor, improved optics, and the reduction of size, weight, and power to the system were investigated. A flow chart is presented showing the strategy of the design. The simulation for developing microroutines for the high speed algorithmic processor subsystem is discussed as well as the Karhunen-Loeve transform technique for data compression.

  20. A Microprocessor-Controlled Data Acquisition System for the Federal Scientific Model UA-500-1 Ubiquitous Spectrum Analyzer

    DTIC Science & Technology

    1976-09-01

    Model AN/ UGC -59A teletype and paper-tape punch console. This unit is connected with the Intellec 8 computer and punching operations are controlled by...order to use this program, the microprocessor would have to be one of the many types on the market that make use of the INTEL 8008-1 CPD chip. The use

  1. Microprocessor design for GaAs technology

    NASA Astrophysics Data System (ADS)

    Milutinovic, Veljko M.

    Recent advances in the design of GaAs microprocessor chips are examined in chapters contributed by leading experts; the work is intended as reading material for a graduate engineering course or as a practical R&D reference. Topics addressed include the methodology used for the architecture, organization, and design of GaAs processors; GaAs device physics and circuit design; design concepts for microprocessor-based GaAs systems; a 32-bit GaAs microprocessor; a 32-bit processor implemented in GaAs JFET; and a direct coupled-FET-logic E/D-MESFET experimental RISC machine. Drawings, micrographs, and extensive circuit diagrams are provided.

  2. Distributed asynchronous microprocessor architectures in fault tolerant integrated flight systems

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.

    1983-01-01

    The paper discusses the implementation of fault tolerant digital flight control and navigation systems for rotorcraft application. It is shown that in implementing fault tolerance at the systems level using advanced LSI/VLSI technology, aircraft physical layout and flight systems requirements tend to define a system architecture of distributed, asynchronous microprocessors in which fault tolerance can be achieved locally through hardware redundancy and/or globally through application of analytical redundancy. The effects of asynchronism on the execution of dynamic flight software is discussed. It is shown that if the asynchronous microprocessors have knowledge of time, these errors can be significantly reduced through appropiate modifications of the flight software. Finally, the papear extends previous work to show that through the combined use of time referencing and stable flight algorithms, individual microprocessors can be configured to autonomously tolerate intermittent faults.

  3. Microprocessor Airborne Data Acquisition & Replay (MADAR) System,

    DTIC Science & Technology

    1984-03-01

    Time Record 7. TAPE USAGE 28 7.1 Geseral2 7.2 Tape Time Remanfng lbdocator 28 7.3 Tape Record Capacity 30 . 8. MODULE CONSTRUCTION 30 8.1 Gemeral...general purpose quick-fit type, calibrated for use with a range of different aircraft. The concept was modified such that the microprocessor module was not...dedicated to boom usage but a versatile instrument for other applications. The microprocessor module (Fig. 1) became known as the Microprocessor

  4. System and method for leveraging human physiological traits to control microprocessor frequency

    DOEpatents

    Shye, Alex; Pan, Yan; Scholbrock, Benjamin; Miller, J. Scott; Memik, Gokhan; Dinda, Peter A; Dick, Robert P

    2014-03-25

    A system and method for leveraging physiological traits to control microprocessor frequency are disclosed. In some embodiments, the system and method may optimize, for example, a particular processor-based architecture based on, for example, end user satisfaction. In some embodiments, the system and method may determine, for example, whether their users are satisfied to provide higher efficiency, improved reliability, reduced power consumption, increased security, and a better user experience. The system and method may use, for example, biometric input devices to provide information about a user's physiological traits to a computer system. Biometric input devices may include, for example, one or more of the following: an eye tracker, a galvanic skin response sensor, and/or a force sensor.

  5. Model based design introduction: modeling game controllers to microprocessor architectures

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  6. Briefing: Microprocessors.

    ERIC Educational Resources Information Center

    Standing, Roy A.

    1982-01-01

    Reviews the basic concepts and technology behind the functions computers perform, describes the miniaturization of computer components, discusses the development of the microprocessor and the microcomputer, and makes projections concerning the future of the microcomputer market. Information is provided on the features, costs, and manufacturers of…

  7. Functional Anatomy of the Human Microprocessor.

    PubMed

    Nguyen, Tuan Anh; Jo, Myung Hyun; Choi, Yeon-Gil; Park, Joha; Kwon, S Chul; Hohng, Sungchul; Kim, V Narry; Woo, Jae-Sung

    2015-06-04

    MicroRNA (miRNA) maturation is initiated by Microprocessor composed of RNase III DROSHA and its cofactor DGCR8, whose fidelity is critical for generation of functional miRNAs. To understand how Microprocessor recognizes pri-miRNAs, we here reconstitute human Microprocessor with purified recombinant proteins. We find that Microprocessor is an ∼364 kDa heterotrimeric complex of one DROSHA and two DGCR8 molecules. Together with a 23-amino acid peptide from DGCR8, DROSHA constitutes a minimal functional core. DROSHA serves as a "ruler" by measuring 11 bp from the basal ssRNA-dsRNA junction. DGCR8 interacts with the stem and apical elements through its dsRNA-binding domains and RNA-binding heme domain, respectively, allowing efficient and accurate processing. DROSHA and DGCR8, respectively, recognize the basal UG and apical UGU motifs, which ensure proper orientation of the complex. These findings clarify controversies over the action mechanism of DROSHA and allow us to build a general model for pri-miRNA processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possiblemore » to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.« less

  9. Microprocessors in U.S. Electrical Engineering Departments, 1974-1975.

    ERIC Educational Resources Information Center

    Sloan, M. E.

    Drawn from a survey of engineering departments known to be teaching microprocessor courses, this paper shows that the adoption of microprocessors by Electrical Engineering Departments has been rapid compared with their adoption of minicomputers. The types of courses that are being taught can be categorized as: surveys of microprocessors, intensive…

  10. Microprocessor controlled compliance monitor for eye drop medication.

    PubMed

    Hermann, M M; Diestelhorst, M

    2006-07-01

    The effectiveness of a self administered eye drop medication can only be assessed if the compliance is known. The authors studied the specificity and sensitivity of a new microprocessor controlled monitoring device. The monitoring system was conducted by an 8 bit microcontroller for data acquisition and storage with sensors measuring applied pressure to the bottle, temperature, and vertical position. 10 devices were mounted under commercial 10 ml eye drops. Test subjects had to note down each application manually. A total of 15 applications each within 3 days was intended. Manual reports confirmed 15 applications for each of the 10 bottles. The monitoring devices detected a total of 149 events; one was missed; comprising a sensitivity of 99%. Two devices registered three applications, which did not appear in the manual protocols, indicating a specificity of about 98%. Refrigerated bottles were correctly identified. The battery lifetime exceeded 60 days. The new monitoring device demonstrated a high reliability of the collected compliance data. The important, yet often unknown, influence of compliance in patient care and clinical trials shall be illuminated by the new device. This may lead to a better adapted patient care. Studies will profit from a higher credibility and results will be less influenced by non-compliance.

  11. Microprocessors in the Curriculum and the Classroom.

    ERIC Educational Resources Information Center

    Summers, M. K.

    1978-01-01

    This article, directed at teachers concerned with computer science courses at sixth-form level with no prior knowledge of microprocessors, provides a basic introduction, and describes possible applications of a microprocessor development system as a teaching aid in computer sciences courses in UK secondary school. (Author/RAO)

  12. A microprocessor tester for the treat upgrade reactor trip system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenkszus, F.R.; Bucher, R.G.

    1985-02-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less

  13. A microprocessor-based cardiotachometer

    NASA Technical Reports Server (NTRS)

    Donaldson, J. A.; Crosier, W. G.

    1979-01-01

    The development of a highly accurate and reliable cardiotachometer for measuring the heart rate of test subjects is discussed. It measures heart rate over the range of 30 to 250 beats/minute and gives instantaneous (beat to beat) updates on the system output so that occasional noise artifacts or ectopic beats could be more easily identified except that occasional missed beats caused by switching ECG leads should not cause a change in the output. The cardiotachometer uses an improved analog filter and R-wave detector and an Intel 8080A microprocessor to handle all of the logic and arithmetic necessary. By using the microprocessor, future hardware modifications could easily be made if functional changes were needed.

  14. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  15. The Single Event Effect Characteristics of the 486-DX4 Microprocessor

    NASA Technical Reports Server (NTRS)

    Kouba, Coy; Choi, Gwan

    1996-01-01

    This research describes the development of an experimental radiation testing environment to investigate the single event effect (SEE) susceptibility of the 486-DX4 microprocessor. SEE effects are caused by radiation particles that disrupt the logic state of an operating semiconductor, and include single event upsets (SEU) and single event latchup (SEL). The relevance of this work can be applied directly to digital devices that are used in spaceflight computer systems. The 486-DX4 is a powerful commercial microprocessor that is currently under consideration for use in several spaceflight systems. As part of its selection process, it must be rigorously tested to determine its overall reliability in the space environment, including its radiation susceptibility. The goal of this research is to experimentally test and characterize the single event effects of the 486-DX4 microprocessor using a cyclotron facility as the fault-injection source. The test philosophy is to focus on the "operational susceptibility," by executing real software and monitoring for errors while the device is under irradiation. This research encompasses both experimental and analytical techniques, and yields a characterization of the 486-DX4's behavior for different operating modes. Additionally, the test methodology can accommodate a wide range of digital devices, such as microprocessors, microcontrollers, ASICS, and memory modules, for future testing. The goals were achieved by testing with three heavy-ion species to provide different linear energy transfer rates, and a total of six microprocessor parts were tested from two different vendors. A consistent set of error modes were identified that indicate the manner in which the errors were detected in the processor. The upset cross-section curves were calculated for each error mode, and the SEU threshold and saturation levels were identified for each processor. Results show a distinct difference in the upset rate for different configurations of

  16. Microprocessor-based cardiopulmonary monitoring system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The system uses a dedicated microprocessor for transducer control and data acquisition and analysis. No data will be stored in this system, but the data will be transmitted to the onboard data system. The data system will require approximately 12 inches of rack space and will consume only 100 watts of power. An experiment specific control panel, through a series of lighted buttons, will guide the operator through the test series providing a smaller margin of error. The experimental validity of the system was verified, and the reproducibility of data and reliability of the system checked. In addition, ease of training, ease of operator interaction, and crew acceptance were evaluated in actual flight conditions.

  17. Microprocessor controlled compliance monitor for eye drop medication

    PubMed Central

    Hermann, M M; Diestelhorst, M

    2006-01-01

    Background/aims The effectiveness of a self administered eye drop medication can only be assessed if the compliance is known. The authors studied the specificity and sensitivity of a new microprocessor controlled monitoring device. Methods The monitoring system was conducted by an 8 bit microcontroller for data acquisition and storage with sensors measuring applied pressure to the bottle, temperature, and vertical position. 10 devices were mounted under commercial 10 ml eye drops. Test subjects had to note down each application manually. A total of 15 applications each within 3 days was intended. Results Manual reports confirmed 15 applications for each of the 10 bottles. The monitoring devices detected a total of 149 events; one was missed; comprising a sensitivity of 99%. Two devices registered three applications, which did not appear in the manual protocols, indicating a specificity of about 98%. Refrigerated bottles were correctly identified. The battery lifetime exceeded 60 days. Conclusion The new monitoring device demonstrated a high reliability of the collected compliance data. The important, yet often unknown, influence of compliance in patient care and clinical trials shall be illuminated by the new device. This may lead to a better adapted patient care. Studies will profit from a higher credibility and results will be less influenced by non‐compliance. PMID:16540488

  18. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.

    PubMed

    Hasenoehrl, Timothy; Schmalz, Thomas; Windhager, Reinhard; Domayer, Stephan; Dana, Sara; Ambrozy, Clemens; Palma, Stefano; Crevenna, Richard

    2018-02-01

    Aim of this pilot study was to assess safety and functioning of a microprocessor-controlled knee prosthesis (MPK) after a short familiarization time and no structured physical therapy. Five elderly, low-active transfemoral amputees who were fitted with a standard non-microprocessor controlled knee prosthesis (NMPK) performed a baseline measurement consisting of a 3 D gait analysis, functional tests and questionnaires. The first follow-up consisted of the same test procedure and was performed with the MPK after 4 to 6 weeks of familiarization. After being refitted to their standard NMPK again, the subjects undertook the second follow-up which consisted of solely questionnaires 4 weeks later. Questionnaires and functional tests showed an increase in the perception of safety. Moreover, gait analysis revealed more physiologic knee and hip extension/flexion patterns when using the MPK. Our results showed that although the Genium with Cenior-Leg ruleset-MPK (GCL-MPK) might help to improve several safety-related outcomes as well as gait biomechanics the functional potential of the GCL-MPK may have been limited without specific training and a sufficient acclimation period. Implications for Rehabilitation Elderly transfemoral amputees are often limited in their activity by safety issues as well as insufficient functioning regarding the non microprocessor-controlled knee prostheses (NMPK), thing that could be eliminated with the use of suitable microprocessor-controlled prostheses (MPK). The safety and functioning of a prototype MPK (GCL-MPK) specifically designed for the needs of older and low-active transfemoral amputees was assessed in this pilot study. The GCL-MPK showed indicators of increased safety and more natural walking patterns in older and low-active transfemoral amputees in comparison to the standard NMPK already after a short acclimatisation time and no structured physical therapy. Regarding functional performance it seems as if providing older and low

  19. SEU induced errors observed in microprocessor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asenek, V.; Underwood, C.; Oldfield, M.

    In this paper, the authors present software tools for predicting the rate and nature of observable SEU induced errors in microprocessor systems. These tools are built around a commercial microprocessor simulator and are used to analyze real satellite application systems. Results obtained from simulating the nature of SEU induced errors are shown to correlate with ground-based radiation test data.

  20. Could a neuroscientist understand a microprocessor?

    DOE PAGES

    Jonas, Eric; Kording, Konrad Paul; Diedrichsen, Jorn

    2017-01-12

    There is a popular belief in neuroscience that we are primarily data limited, and that producing large, multimodal, and complex datasets will, with the help of advanced data analysis algorithms, lead to fundamental insights into the way the brain processes information. These datasets do not yet exist, and if they did we would have no way of evaluating whether or not the algorithmically-generated insights were sufficient or even correct. To address this, here we take a classical microprocessor as a model organism, and use our ability to perform arbitrary experiments on it to see if popular data analysis methods frommore » neuroscience can elucidate the way it processes information. Microprocessors are among those artificial information processing systems that are both complex and that we understand at all levels, from the overall logical flow, via logical gates, to the dynamics of transistors. We show that the approaches reveal interesting structure in the data but do not meaningfully describe the hierarchy of information processing in the microprocessor. This suggests current analytic approaches in neuroscience may fall short of producing meaningful understanding of neural systems, regardless of the amount of data. Furthermore, we argue for scientists using complex non-linear dynamical systems with known ground truth, such as the microprocessor as a validation platform for time-series and structure discovery methods.« less

  1. Could a neuroscientist understand a microprocessor?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonas, Eric; Kording, Konrad Paul; Diedrichsen, Jorn

    There is a popular belief in neuroscience that we are primarily data limited, and that producing large, multimodal, and complex datasets will, with the help of advanced data analysis algorithms, lead to fundamental insights into the way the brain processes information. These datasets do not yet exist, and if they did we would have no way of evaluating whether or not the algorithmically-generated insights were sufficient or even correct. To address this, here we take a classical microprocessor as a model organism, and use our ability to perform arbitrary experiments on it to see if popular data analysis methods frommore » neuroscience can elucidate the way it processes information. Microprocessors are among those artificial information processing systems that are both complex and that we understand at all levels, from the overall logical flow, via logical gates, to the dynamics of transistors. We show that the approaches reveal interesting structure in the data but do not meaningfully describe the hierarchy of information processing in the microprocessor. This suggests current analytic approaches in neuroscience may fall short of producing meaningful understanding of neural systems, regardless of the amount of data. Furthermore, we argue for scientists using complex non-linear dynamical systems with known ground truth, such as the microprocessor as a validation platform for time-series and structure discovery methods.« less

  2. Could a Neuroscientist Understand a Microprocessor?

    PubMed Central

    Kording, Konrad Paul

    2017-01-01

    There is a popular belief in neuroscience that we are primarily data limited, and that producing large, multimodal, and complex datasets will, with the help of advanced data analysis algorithms, lead to fundamental insights into the way the brain processes information. These datasets do not yet exist, and if they did we would have no way of evaluating whether or not the algorithmically-generated insights were sufficient or even correct. To address this, here we take a classical microprocessor as a model organism, and use our ability to perform arbitrary experiments on it to see if popular data analysis methods from neuroscience can elucidate the way it processes information. Microprocessors are among those artificial information processing systems that are both complex and that we understand at all levels, from the overall logical flow, via logical gates, to the dynamics of transistors. We show that the approaches reveal interesting structure in the data but do not meaningfully describe the hierarchy of information processing in the microprocessor. This suggests current analytic approaches in neuroscience may fall short of producing meaningful understanding of neural systems, regardless of the amount of data. Additionally, we argue for scientists using complex non-linear dynamical systems with known ground truth, such as the microprocessor as a validation platform for time-series and structure discovery methods. PMID:28081141

  3. Could a Neuroscientist Understand a Microprocessor?

    PubMed

    Jonas, Eric; Kording, Konrad Paul

    2017-01-01

    There is a popular belief in neuroscience that we are primarily data limited, and that producing large, multimodal, and complex datasets will, with the help of advanced data analysis algorithms, lead to fundamental insights into the way the brain processes information. These datasets do not yet exist, and if they did we would have no way of evaluating whether or not the algorithmically-generated insights were sufficient or even correct. To address this, here we take a classical microprocessor as a model organism, and use our ability to perform arbitrary experiments on it to see if popular data analysis methods from neuroscience can elucidate the way it processes information. Microprocessors are among those artificial information processing systems that are both complex and that we understand at all levels, from the overall logical flow, via logical gates, to the dynamics of transistors. We show that the approaches reveal interesting structure in the data but do not meaningfully describe the hierarchy of information processing in the microprocessor. This suggests current analytic approaches in neuroscience may fall short of producing meaningful understanding of neural systems, regardless of the amount of data. Additionally, we argue for scientists using complex non-linear dynamical systems with known ground truth, such as the microprocessor as a validation platform for time-series and structure discovery methods.

  4. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.

    PubMed

    Mâaref, Khaled; Martinet, Noël; Grumillier, Constance; Ghannouchi, Slaheddine; André, Jean Marie; Paysant, Jean

    2010-06-01

    To analyze the spatiotemporal parameters in the terminal swing phase of the prosthetic limb in unilateral transfemoral amputees (TFAs) compared with a group of asymptomatic subjects, and to identify a latency period (LP) in the TFA between the full extension of the prosthetic knee and the initial ground contact of the ipsilateral foot. To study the correlation between the LP and the duration of the swing phase. To evaluate the influence of the type of knee, the time since amputation, and the amputation level on the latency period. Three-dimensional gait analysis with an optoelectronic device. Gait analysis laboratory of a re-education and functional rehabilitation service. TFA (n=29) and able-bodied (n=15) subjects. Not applicable. Spatiotemporal and kinematics gait parameters. The swing phase and the LP of the prosthetic limb, associated with a consequently longer single-limb stance phase in the intact limb, were significantly longer than those measured in the intact limbs of these subjects, as well as those measured on both lower limbs of the able-bodied subjects (P<.05). There is a positive correlation (P<.05; r(2)=.58 between the LP and the swing phase on the TFA's prosthetic side. The LP measured in the prosthetic limb of TFA with a swing-phase control prosthetic knee is significantly greater than in those using the microprocessor-controlled prosthetic knee (P<.05). Of negligible duration in able-bodied subjects and in the intact limb of TFA, the LP is significantly greater in the prosthetic limb. It can explain the lengthened swing phase on the prosthetic side of those subjects. The use of a microprocessor-controlled prosthetic knee allows the LP to be reduced. This LP appears to be necessary to insure the stability of the prosthetic knee. We suggest calling this time "confidence time." Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. The Effect of a Microprocessor Prosthetic Foot on Function and Quality of Life in Transtibial Amputees Who Are Limited Community Ambulators

    DTIC Science & Technology

    2017-09-01

    parallel, randomized, controlled clinical trial designed to determine if a microprocessor controlled prosthetic foot (MPF), with greater range of...clinical trial designed to determine if a microprocessor controlled prosthetic foot (MPF), with greater range of motion and active power, will...Department of the Army position, policy or decision unless so designated by other documentation. CONTRACTING ORGANIZATION: University of Tennessee

  6. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.

    PubMed

    Struchkov, Vasily; Buckley, John G

    2016-02-01

    Walking down slopes and/or over uneven terrain is problematic for unilateral trans-tibial amputees. Accordingly, 'ankle' devices have been added to some dynamic-response feet. This study determined whether use of a microprocessor controlled passive-articulating hydraulic ankle-foot device improved the gait biomechanics of ramp descent in comparison to conventional ankle-foot mechanisms. Nine active unilateral trans-tibial amputees repeatedly walked down a 5° ramp, using a hydraulic ankle-foot with microprocessor active or inactive or using a comparable foot with rubber ball-joint (elastic) 'ankle' device. When inactive the hydraulic unit's resistances were those deemed to be optimum for level-ground walking, and when active, the plantar- and dorsi-flexion resistances switched to a ramp-descent mode. Residual limb kinematics, joints moments/powers and prosthetic foot power absorption/return were compared across ankle types using ANOVA. Foot-flat was attained fastest with the elastic foot and second fastest with the active hydraulic foot (P<0.001). Prosthetic shank single-support mean rotation velocity (p =0.006), and the flexion (P<0.001) and negative work done at the residual knee (P=0.08) were reduced, and negative work done by the ankle-foot increased (P<0.001) when using the active hydraulic compared to the other two ankle types. The greater negative 'ankle' work done when using the active hydraulic compared to other two ankle types, explains why there was a corresponding reduction in flexion and negative work at the residual knee. These findings suggest that use of a microprocessor controlled hydraulic foot will reduce the biomechanical compensations used to walk down slopes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Microprocessor utilization in search and rescue missions

    NASA Technical Reports Server (NTRS)

    Schwartz, M.; Bashkow, T.

    1978-01-01

    The position of an emergency transmitter may be determined by measuring the Doppler shift of the distress signal as received by an orbiting satellite. This requires the computation of an initial estimate and refinement of this estimate through an iterative, nonlinear, least squares estimation. A version of the algorithm was implemented and tested by locating a transmitter on the premises and obtaining observations from a satellite. The computer used was an IBM 360/95. The position was determined within the desired 10 km radius accuracy. The feasibility of performing the same task in real time using microprocessor technology, was determined. The least squares algorithm was implemented on an Intel 8080 microprocessor. The results indicate that a microprocessor can easily match the IBM implementation in accuracy and be performed inside the time limitations set.

  8. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor

    PubMed Central

    Macias, Sara; Plass, Mireya; Stajuda, Agata; Michlewski, Gracjan; Eyras, Eduardo; Cáceres, Javier F.

    2012-01-01

    The Drosha-DGCR8 complex (Microprocessor) is required for microRNA (miRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as the endonuclease. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) was used to identify RNA targets of DGCR8 in human cells. Unexpectedly, miRNAs were not the most abundant targets. DGCR8-bound RNAs also comprised several hundred mRNAs as well as snoRNAs and long non-coding RNAs. We found that the Microprocessor controls the abundance of several mRNAs as well as of MALAT-1. By contrast, DGCR8-mediated cleavage of snoRNAs is independent of Drosha, suggesting the involvement of DGCR8 in cellular complexes with other endonucleases. Interestingly, binding of DGCR8 to cassette exons, acts as a novel mechanism to regulate the relative abundance of alternatively spliced isoforms. Collectively, these data provide new insights in the complex role of DGCR8 in controlling the fate of several classes of RNAs. PMID:22796965

  9. Microprocessors: An Understandable Guide for the Classroom Teacher.

    ERIC Educational Resources Information Center

    Okinaka, Russell T.

    A microprocessor constitutes the heart and soul of a personal computer. Indeed, the quality of a personal computer is determined largely by the type of microprocessor that is included within its circuitry. Since the microcomputer revolution began in the late 1970s, these special chips have gone through a series of improvements and modifications.…

  10. Formal verification of an avionics microprocessor

    NASA Technical Reports Server (NTRS)

    Srivas, Mandayam, K.; Miller, Steven P.

    1995-01-01

    Formal specification combined with mechanical verification is a promising approach for achieving the extremely high levels of assurance required of safety-critical digital systems. However, many questions remain regarding their use in practice: Can these techniques scale up to industrial systems, where are they likely to be useful, and how should industry go about incorporating them into practice? This report discusses a project undertaken to answer some of these questions, the formal verification of the AAMPS microprocessor. This project consisted of formally specifying in the PVS language a rockwell proprietary microprocessor at both the instruction-set and register-transfer levels and using the PVS theorem prover to show that the microcode correctly implemented the instruction-level specification for a representative subset of instructions. Notable aspects of this project include the use of a formal specification language by practicing hardware and software engineers, the integration of traditional inspections with formal specifications, and the use of a mechanical theorem prover to verify a portion of a commercial, pipelined microprocessor that was not explicitly designed for formal verification.

  11. A biogenesis step upstream of Microprocessor controls miR-17~92 expression

    PubMed Central

    Du, Peng; Wang, Longfei; Sliz, Piotr; Gregory, Richard I.

    2015-01-01

    SUMMARY The precise control of miR-17~92 microRNA (miRNA) is essential for normal development and overexpression of certain miRNAs from this cluster is oncogenic. Here we find the relative expression of the six miRNAs processed from the primary (pri-miR-17~92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17~92 is processed to a biogenesis intermediate, termed ‘progenitor-miRNA’ (pro-miRNA). Pro-miRNA is an efficient substrate for Microprocessor and is required to selectively license production of pre-miR-17, -18a, -19a, 20a, and -19b from this cluster. Two complementary cis-regulatory repression domains within pri-miR-17~92 are required for the blockade of miRNA processing through the formation of an autoinhibitory RNA conformation. The endonuclease CPSF3 (CPSF73), and the Spliceosome-associated ISY1 are responsible for pro-miRNA biogenesis and expression of all miRNAs within the cluster except miR-92. Thus, developmentally regulated pro-miRNA processing is key step controlling miRNA expression and explains the posttranscriptional control of miR-17~92 expression in development. PMID:26255770

  12. Optical attenuation mechanism upgrades, MOBLAS, and TLRS systems

    NASA Technical Reports Server (NTRS)

    Eichinger, Richard; Johnson, Toni; Malitson, Paul; Oldham, Thomas; Stewart, Loyal

    1993-01-01

    This poster presentation describes the Optical Attenuation Mechanism (OAM) Upgrades to the MOBLAS and TLRS Crustal Dynamics Satellite Laser Ranging (CDSLR) systems. The upgrades were for the purposes of preparing these systems to laser range to the TOPEX/POSEIDON spacecraft when it will be launched in the summer of 1992. The OAM permits the laser receiver to operate over the expected large signal dynamic range from TOPEX/POSEIDON and it reduces the number of pre- and post-calibrations for each satellite during multi-satellite tracking operations. It further simplifies the calibration bias corrections that had been made due to the pass-to-pass variation of the photomultiplier supply voltage and the transmit filter glass thickness. The upgrade incorporated improvements to the optical alignment capability of each CDSLR system through the addition of a CCD camera into the MOBLAS receive telescope and an alignment telescope onto the TLRS optical table. The OAM is stepper motor and microprocessor based; and the system can be controlled either manually by a control switch panel or computer controlled via an EIA RS-232C serial interface. The OAM has a neutral density (ND) range of 0.0 to 4.0 and the positioning is absolute referenced in steps of 0.1 ND. Both the fixed transmit filter and the daylight filter are solenoid actuated with digital inputs and outputs to and from the OAM microprocessor. During automated operation, the operator has the option to overide the remote control and control the OAM system via a local control switch panel.

  13. Technology transfer of military space microprocessor developments

    NASA Astrophysics Data System (ADS)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  14. Controller Chips Preserve Microprocessor Function

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Above the Atlantic Ocean, off the coast of Brazil, there is a dip in the Earth s surrounding magnetic field called the South Atlantic Anomaly. Here, space radiation can reach into Earth s upper atmosphere to interfere with the functioning of satellites, aircraft, and even the International Space Station. "The South Atlantic Anomaly is a hot spot of radiation that the space station goes through at a certain point in orbit," Miria Finckenor, a physicist at Marshall Space Flight Center, describes, "If there s going to be a problem with the electronics, 90 percent of that time, it is going to be in that spot." Space radiation can cause physical damage to microchips and can actually change the software commands in computers. When high-energy particles penetrate a satellite or other spacecraft, the electrical components can absorb the energy and temporarily switch off. If the energy is high enough, it can cause the device to enter a hung state, which can only be addressed by restarting the system. When space radiation affects the operational status of microprocessors, the occurrence is called single event functional interrupt (SEFI). SEFI happens not only to the computers onboard spacecraft in Earth orbit, but to the computers on spacecraft throughout the solar system. "One of the Mars rovers had this problem in the radiation environment and was rebooting itself several times a day. On one occasion, it rebooted 40 times in one day," Finckenor says. "It s hard to obtain any data when you have to constantly reboot and start over."

  15. OS Friendly Microprocessor Architecture

    DTIC Science & Technology

    2017-04-01

    fact or fiction. Austin ( TX ): The Virtualization Practice; [accessed 2012 July 26]. http://www.virtualization practice.com/type-0-hypervisor-fact......needed. Do not return it to the originator. ARL-SR-0370 ● APR 2017 US Army Research Laboratory OS Friendly Microprocessor

  16. Information Technologies for the 1980's: Lasers and Microprocessors.

    ERIC Educational Resources Information Center

    Mathews, William D.

    This discussion of the development and application of lasers and microprocessors to information processing stresses laser communication in relation to capacity, reliability, and cost and the advantages of this technology to real-time information access and information storage. The increased capabilities of microprocessors are reviewed, and a…

  17. Data transmission system with distributed microprocessors

    DOEpatents

    Nambu, Shigeo

    1985-01-01

    A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

  18. The National Ignition Facility: The world's largest optical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2007-10-15

    The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less

  19. Proceedings: DISE Workshop on Microprocessors and Education (Fort Collins, Colorado, August 16-18, 1976).

    ERIC Educational Resources Information Center

    Pittsburgh Univ., PA. Dept. of Electrical Engineering.

    Papers presented during four sessions of a workshop, which addressed the role of microprocessors in education, are included in this publication. The issues covered involved seven areas: (1) views of the microelectronics industry; (2) microprocessor architecture; (3) microprocessor chip design; (4) microprocessor software; (5) the impact of…

  20. The new design of final optics assembly on SG-III prototype facility

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin

    2014-09-01

    To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.

  1. Practical application to composite materials of a portable digital ultrasound device controlled by a microprocessor

    NASA Astrophysics Data System (ADS)

    Castel, J. G.; Husarek, V.

    1987-06-01

    The usefulness of a portable microprocessor-controlled ultrasound device for the periodic assessment of aircraft parts made of composite materials is shown. The performance of the device is demonstrated with the examples of a metallic honeycomb with a carbon-fiber skin, a phenolic honeycomb with a carbon skin, and a phenolic honeycomb with a Kevlar skin. Also considered are assessments of homogeneous carbon-fiber parts, including the study of artificial defects consisting of 1-2 mm diameter holes, and the assessment of the behavior of a carbon-titanium interface with separated zones. Advantages of the device include ease of adjustment, automated evaluation of the depth of defects, and the nearly-absolute reproducibility of adjustments.

  2. A case study for the real-time experimental evaluation of the VIPER microprocessor

    NASA Astrophysics Data System (ADS)

    Carreno, Victor A.; Angellatta, Rob K.

    1991-09-01

    An experiment to evaluate the applicability of the Verifiable Integrated Processor for Enhanced Reliability (VIPER) microprocessor to real time control is described. The VIPER microprocessor was invented by the Royal Signals and Radar Establishment (RSRE), U.K., and is an example of the use of formal mathematical methods for developing electronic digital systems with a high degree of assurance on the system design and implementation correctness. The experiment consisted of selecting a control law, writing the control law algorithm for the VIPER processor, and providing real time, dynamic inputs into the processor and monitoring the outputs. The control law selected and coded for the VIPER processor was the yaw damper function of an automatic landing program for a 737 aircraft. The mechanisms for interfacing the VIPER Single Board Computer to the VAX host are described. Results include run time experiences, performance evaluation, and comparison of VIPER and FORTRAN yaw damper algorithm output for accuracy estimation.

  3. A case study for the real-time experimental evaluation of the VIPER microprocessor

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Angellatta, Rob K.

    1991-01-01

    An experiment to evaluate the applicability of the Verifiable Integrated Processor for Enhanced Reliability (VIPER) microprocessor to real time control is described. The VIPER microprocessor was invented by the Royal Signals and Radar Establishment (RSRE), U.K., and is an example of the use of formal mathematical methods for developing electronic digital systems with a high degree of assurance on the system design and implementation correctness. The experiment consisted of selecting a control law, writing the control law algorithm for the VIPER processor, and providing real time, dynamic inputs into the processor and monitoring the outputs. The control law selected and coded for the VIPER processor was the yaw damper function of an automatic landing program for a 737 aircraft. The mechanisms for interfacing the VIPER Single Board Computer to the VAX host are described. Results include run time experiences, performance evaluation, and comparison of VIPER and FORTRAN yaw damper algorithm output for accuracy estimation.

  4. Gallium-arsenide process evaluation based on a RISC microprocessor example

    NASA Astrophysics Data System (ADS)

    Brown, Richard B.; Upton, Michael; Chandna, Ajay; Huff, Thomas R.; Mudge, Trevor N.; Oettel, Richard E.

    1993-10-01

    This work evaluates the features of a gallium-arsenide E/D MESFET process in which a 32-b RISC microprocessor was implemented. The design methodology and architecture of this prototype CPU are described. The performance sensitivity of the microprocessor and other large circuit blocks to different process parameters is analyzed, and recommendations for future process features, circuit approaches, and layout styles are made. These recommendations are reflected in the design of a second microprocessor using a more advanced process that achieves much higher density and performance.

  5. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.

    PubMed

    Bellmann, Malte; Schmalz, Thomas; Ludwigs, Eva; Blumentritt, Siegmar

    2012-03-01

    To investigate the immediate biomechanical effects after transition to a new microprocessor-controlled prosthetic knee joint. Intervention cross-over study with repeated measures. Only prosthetic knee joints were changed. Motion analysis laboratory. Men (N=11; mean age ± SD, 36.7±10.2y; Medicare functional classification level, 3-4) with unilateral transfemoral amputation. Two microprocessor-controlled prosthetic knee joints: C-Leg and a new prosthetic knee joint, Genium. Static prosthetic alignment, time-distance parameters, kinematic and kinetic parameters, and center of pressure. After a half-day training and an additional half-day accommodation, improved biomechanical outcomes were demonstrated by the Genium: lower ground reaction forces at weight acceptance during level walking at various velocities, increased swing phase flexion angles during walking on a ramp, and level walking with small steps. Maximum knee flexion angle during swing phase at various velocities was nearly equal for Genium. Step-over-step stair ascent with the Genium knee was more physiologic as demonstrated by a more equal load distribution between the prosthetic and contralateral sides and a more natural gait pattern. When descending stairs and ramps, knee flexion moments with the Genium tended to increase. During quiet stance on a decline, subjects using Genium accepted higher loading of the prosthetic side knee joint, thus reducing same side hip joint loading as well as postural sway. In comparision to the C-Leg, the Genium demonstrated immediate biomechanical advantages during various daily ambulatory activities, which may lead to an increase in range and diversity of activity of people with above-knee amputations. Results showed that use of the Genium facilitated more natural gait biomechanics and load distribution throughout the affected and sound musculoskeletal structure. This was observed during quiet stance on a decline, walking on level ground, and walking up and down ramps and

  6. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape.

    PubMed

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem-loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed.

  7. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape

    PubMed Central

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem–loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed. PMID:29922322

  8. Integrally regulated solar array demonstration using an Intel 8080 microprocessor

    NASA Technical Reports Server (NTRS)

    Petrik, E. J.

    1977-01-01

    A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.

  9. Microprocessors in Systems Engineering at the U.S. Naval Academy.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.; Lowe, W. M., Ed.

    1982-01-01

    Describes the introduction of microprocessors into the Weapons and Systems Engineering Department at the U.S. Naval Academy, including planning decisions, implementation, procedures, uses of microprocessors in the department, and impact on the Systems Engineering major and curriculum. (SK)

  10. Outcomes associated with the use of microprocessor-controlled prosthetic knees among individuals with unilateral transfemoral limb loss: a systematic review.

    PubMed

    Sawers, Andrew B; Hafner, Brian J

    2013-01-01

    Microprocessor-controlled prosthetic knees (MPKs) have been developed as an alternative to non-microprocessor-controlled knees (NMPKs) to address challenges facing individuals with lower-limb loss. A body of scientific literature comparing MPKs and NMPKs exists but has yet to be critically appraised. Therefore, we conducted a systematic review to examine outcomes associated with the use of these interventions among individuals with transfemoral limb loss. A search of biomedical databases identified 241 publications, of which 27 met the inclusion and exclusion criteria and were reviewed for methodological quality and content. We developed 28 empirical evidence statements (EESs) in 9 outcome categories (metabolic energy expenditure, activity, cognitive demand, gait mechanics, environmental obstacle negotiation, safety, preference and satisfaction, economics, and health and quality of life) based on findings in the literature. The level of evidence supporting these EESs varied due to quantity, quality, and consistency of the results. EESs supported by a moderate level of evidence that noted significant differences between MPKs and NMPKs were derived in five of the nine outcome categories. The results from this review suggest that evidence exists to inform clinical practice and that additional research is needed to confirm existing evidence and better understand outcomes associated with the use of NMPKs and MPKs.

  11. Video semaphore decoding for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  12. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint.

    PubMed

    Bellmann, Malte; Schmalz, Thomas; Ludwigs, Eva; Blumentritt, Siegmar

    2012-12-01

    Climbing stairs can pose a major challenge for above-knee amputees as a result of compromised motor performance and limitations to prosthetic design. A new, innovative microprocessor-controlled prosthetic knee joint, the Genium, incorporates a function that allows an above-knee amputee to climb stairs step over step. To execute this function, a number of different sensors and complex switching algorithms were integrated into the prosthetic knee joint. The function is intuitive for the user. A biomechanical study was conducted to assess objective gait measurements and calculate joint kinematics and kinetics as subjects ascended stairs. Results demonstrated that climbing stairs step over step is more biomechanically efficient for an amputee using the Genium prosthetic knee than the previously possible conventional method where the extended prosthesis is trailed as the amputee executes one or two steps at a time. There is a natural amount of stress on the residual musculoskeletal system, and it has been shown that the healthy contralateral side supports the movements of the amputated side. The mechanical power that the healthy contralateral knee joint needs to generate during the extension phase is also reduced. Similarly, there is near normal loading of the hip joint on the amputated side.

  13. Microprocessors: the engines of the digital age

    PubMed Central

    2017-01-01

    The microprocessor—a computer central processing unit integrated onto a single microchip—has come to dominate computing across all of its scales from the tiniest consumer appliance to the largest supercomputer. This dominance has taken decades to achieve, but an irresistible logic made the ultimate outcome inevitable. The objectives of this Perspective paper are to offer a brief history of the development of the microprocessor and to answer questions such as: where did the microprocessor come from, where is it now, and where might it go in the future? PMID:28413353

  14. Microprocessor Recruitment to Elongating RNA Polymerase II Is Required for Differential Expression of MicroRNAs.

    PubMed

    Church, Victoria A; Pressman, Sigal; Isaji, Mamiko; Truscott, Mary; Cizmecioglu, Nihal Terzi; Buratowski, Stephen; Frolov, Maxim V; Carthew, Richard W

    2017-09-26

    The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb). When association is blocked by loss of Cdk9 activity, a global change in pri-miRNA processing is detected. Processing of pri-miRNAs with a UGU sequence motif in their apical junction domain increases, while processing of pri-miRNAs lacking this motif decreases. Therefore, phosphorylation of RNA polymerase II recruits Microprocessor for co-transcriptional processing of non-UGU pri-miRNAs that would otherwise be poorly processed. In contrast, UGU-positive pri-miRNAs are robustly processed by Microprocessor independent of RNA polymerase association. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. The design of a microprocessor-based data logger

    USGS Publications Warehouse

    Leap, K.J.; Dedini, L.A.

    1982-01-01

    The design of a microprocessor-based data logger, which collects and digitizes analog voltage signals from a continuous-measuring instrumentation system and transmits serial data to a magnetic tape recorder, is discussed. The data logger was assembled from commercially-available components and can be user-programmed for greater flexibility. A description of the data logger hardware and software designs, general operating instructions, the microprocessor program listing, and electrical schematic diagrams are presented.

  16. A test matrix sequencer for research test facility automation

    NASA Technical Reports Server (NTRS)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  17. A microprocessor based anti-aliasing filter for a PCM system

    NASA Technical Reports Server (NTRS)

    Morrow, D. C.; Sandlin, D. R.

    1984-01-01

    Described is the design and evaluation of a microprocessor based digital filter. The filter was made to investigate the feasibility of a digital replacement for the analog pre-sampling filters used in telemetry systems at the NASA Ames-Dryden Flight Research Facility (DFRF). The digital filter will utilize an Intel 2920 Analog Signal Processor (ASP) chip. Testing includes measurements of: (1) the filter frequency response and, (2) the filter signal resolution. The evaluation of the digital filter was made on the basis of circuit size, projected environmental stability and filter resolution. The 2920 based digital filter was found to meet or exceed the pre-sampling filter specifications for limited signal resolution applications.

  18. An Interdisciplinary Microprocessor Project.

    ERIC Educational Resources Information Center

    Wilcox, Alan D.; And Others

    1985-01-01

    Describes an unusual project in which third-year computer science students designed and built a four-bit multiplier circuit and then combines it with software to complete a full 16-bit multiplication. The multiplier was built using TTL components, interfaced with a Z-80 microprocessor system, and programed in assembly language. (JN)

  19. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  20. Microprocessor Based Real-Time Monitoring of Multiple ECG Signals

    PubMed Central

    Nasipuri, M.; Basu, D.K.; Dattagupta, R.; Kundu, M.; Banerjee, S.

    1987-01-01

    A microprocessor based system capable of realtime monitoring of multiple ECG signals has been described. The system consists of a number of microprocessors connected in a hierarchical fashion and capable of working concurrently on ECG data collected from different channels. The system can monitor different arrhythmic abnormalities for at least 36 patients even for a heart rate of 500 beats/min.

  1. Microprocessor Simulation: A Training Technique.

    ERIC Educational Resources Information Center

    Oscarson, David J.

    1982-01-01

    Describes the design and application of a microprocessor simulation using BASIC for formal training of technicians and managers and as a management tool. Illustrates the utility of the modular approach for the instruction and practice of decision-making techniques. (SK)

  2. Microprocessor-based cardiotachometer

    NASA Technical Reports Server (NTRS)

    Crosier, W. G.; Donaldson, J. A.

    1981-01-01

    Instrument operates reliably even with stress-test electrocardiogram (ECG) signals subject to noise, baseline wandering, and amplitude change. It records heart rate from preamplified, single-lead ECG input signal and produces digital and analog heart-rate outputs which are fed elsewhere. Analog hardware processes ECG input signal, producing 10-ms pulse for each heartbeat. Microprocessor analyzes resulting pulse train, identifying irregular heartbeats and maintaining stable output during lead switching. Easily modified computer program provides analysis.

  3. End-effector microprocessor

    NASA Technical Reports Server (NTRS)

    Doggett, William R.

    1992-01-01

    The topics are presented in viewgraph form and include: automated structures assembly facility current control hierarchy; automated structures assembly facility purposed control hierarchy; end-effector software state transition diagram; block diagram for ideal install composite; and conclusions.

  4. TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation.

    PubMed

    Di Carlo, Valerio; Grossi, Elena; Laneve, Pietro; Morlando, Mariangela; Dini Modigliani, Stefano; Ballarino, Monica; Bozzoni, Irene; Caffarelli, Elisa

    2013-12-01

    TDP-43 (TAR DNA-binding protein 43) is an RNA-binding protein implicated in RNA metabolism at several levels. Even if ubiquitously expressed, it is considered as a neuronal activity-responsive factor and a major signature for neurological pathologies, making the comprehension of its activity in the nervous system a very challenging issue. TDP-43 has also been described as an accessory component of the Drosha-DGCR8 (DiGeorge syndrome critical region gene 8) microprocessor complex, which is crucially involved in basal and tissue-specific RNA processing events. In the present study, we exploited in vitro neuronal differentiation systems to investigate the TDP-43 demand for the microprocessor function, focusing on both its canonical microRNA biosynthetic activity and its alternative role as a post-transcriptional regulator of gene expression. Our findings reveal a novel role for TDP-43 as an essential factor that controls the stability of Drosha protein during neuronal differentiation, thus globally affecting the production of microRNAs. We also demonstrate that TDP-43 is required for the Drosha-mediated regulation of Neurogenin 2, a master gene orchestrating neurogenesis, whereas post-transcriptional control of Dgcr8, another Drosha target, resulted to be TDP-43-independent. These results implicate a previously uncovered contribution of TDP-43 in regulating the abundance and the substrate specificity of the microprocessor complex and provide new insights into TDP-43 as a key player in neuronal differentiation.

  5. Small Private Key PKS on an Embedded Microprocessor

    PubMed Central

    Seo, Hwajeong; Kim, Jihyun; Choi, Jongseok; Park, Taehwan; Liu, Zhe; Kim, Howon

    2014-01-01

    Multivariate quadratic ( ) cryptography requires the use of long public and private keys to ensure a sufficient security level, but this is not favorable to embedded systems, which have limited system resources. Recently, various approaches to cryptography using reduced public keys have been studied. As a result of this, at CHES2011 (Cryptographic Hardware and Embedded Systems, 2011), a small public key scheme, was proposed, and its feasible implementation on an embedded microprocessor was reported at CHES2012. However, the implementation of a small private key scheme was not reported. For efficient implementation, random number generators can contribute to reduce the key size, but the cost of using a random number generator is much more complex than computing on modern microprocessors. Therefore, no feasible results have been reported on embedded microprocessors. In this paper, we propose a feasible implementation on embedded microprocessors for a small private key scheme using a pseudo-random number generator and hash function based on a block-cipher exploiting a hardware Advanced Encryption Standard (AES) accelerator. To speed up the performance, we apply various implementation methods, including parallel computation, on-the-fly computation, optimized logarithm representation, vinegar monomials and assembly programming. The proposed method reduces the private key size by about 99.9% and boosts signature generation and verification by 5.78% and 12.19% than previous results in CHES2012. PMID:24651722

  6. Small private key MQPKS on an embedded microprocessor.

    PubMed

    Seo, Hwajeong; Kim, Jihyun; Choi, Jongseok; Park, Taehwan; Liu, Zhe; Kim, Howon

    2014-03-19

    Multivariate quadratic (MQ) cryptography requires the use of long public and private keys to ensure a sufficient security level, but this is not favorable to embedded systems, which have limited system resources. Recently, various approaches to MQ cryptography using reduced public keys have been studied. As a result of this, at CHES2011 (Cryptographic Hardware and Embedded Systems, 2011), a small public key MQ scheme, was proposed, and its feasible implementation on an embedded microprocessor was reported at CHES2012. However, the implementation of a small private key MQ scheme was not reported. For efficient implementation, random number generators can contribute to reduce the key size, but the cost of using a random number generator is much more complex than computing MQ on modern microprocessors. Therefore, no feasible results have been reported on embedded microprocessors. In this paper, we propose a feasible implementation on embedded microprocessors for a small private key MQ scheme using a pseudo-random number generator and hash function based on a block-cipher exploiting a hardware Advanced Encryption Standard (AES) accelerator. To speed up the performance, we apply various implementation methods, including parallel computation, on-the-fly computation, optimized logarithm representation, vinegar monomials and assembly programming. The proposed method reduces the private key size by about 99.9% and boosts signature generation and verification by 5.78% and 12.19% than previous results in CHES2012.

  7. Comparison between microprocessor-controlled ankle/foot and conventional prosthetic feet during stair negotiation in people with unilateral transtibial amputation.

    PubMed

    Agrawal, Vibhor; Gailey, Robert S; Gaunaurd, Ignacio A; O'Toole, Christopher; Finnieston, Adam A

    2013-01-01

    Contrary to stance-phase dorsiflexion of conventional prosthetic feet, the microprocessor-controlled Proprio foot permits swing-phase dorsiflexion on stairs. The purpose of this study was to compare Symmetry in External Work (SEW) between a microprocessor-controlled foot and conventional prosthetic feet in two groups with unilateral transtibial amputation (Medicare Functional Classification Levels K-Level-2 and K-Level-3) during stair ascent and descent. Ten subjects were evaluated while wearing three conventional prosthetic feet- solid ankle cushion heel (SACH), stationary attachment flexible endoskeleton (SAFE), and Talux-and the Proprio foot using a study socket and were given a 10- to 14-day accommodation period with each foot. Ground reaction forces were collected using F-scan sensors during stair ascent and descent. The SEW between the intact and amputated limbs was calculated for each foot. During stair ascent, the Proprio foot resulted in a higher interlimb symmetry than conventional prosthetic feet, with significant differences between the Pro prio and SACH/SAFE feet. The swing-phase dorsiflexion appeared to promote greater interlimb symmetry because it facilitated forward motion of the body, resulting in a heel-to-toe center of pressure trajectory. During stair descent, all feet had low symmetry without significant differences between feet. The movement strategy used when descending stairs, which is to roll over the edge of a step, had a greater influence on symmetry than the dorsiflexion features of prosthetic feet.

  8. A microarchitecture for resource-limited superscalar microprocessors

    NASA Astrophysics Data System (ADS)

    Basso, Todd David

    1999-11-01

    Microelectronic components in space and satellite systems must be resistant to total dose radiation, single-even upset, and latchup in order to accomplish their missions. The demand for inexpensive, high-volume, radiation hardened (rad-hard) integrated circuits (ICs) is expected to increase dramatically as the communication market continues to expand. Motorola's Complementary Gallium Arsenide (CGaAsTM) technology offers superior radiation tolerance compared to traditional CMOS processes, while being more economical than dedicated rad-hard CMOS processes. The goals of this dissertation are to optimize a superscalar microarchitecture suitable for CGaAsTM microprocessors, develop circuit techniques for such applications, and evaluate the potential of CGaAsTM for the development of digital VLSI circuits. Motorola's 0.5 mum CGaAsTM process is summarized and circuit techniques applicable to digital CGaAsTM are developed. Direct coupled FET, complementary, and domino logic circuits are compared based on speed, power, area, and noise margins. These circuit techniques are employed in the design of a 600 MHz PowerPCTM arithmetic logic unit. The dissertation emphasizes CGaASTM-specific design considerations, specifically, low integration level. A baseline superscalar microarchitecture is defined and SPEC95 integer benchmark simulations are used to evaluate the applicability of advanced architectural features to microprocessors having low integration levels. The performance simulations center around the optimization of a simple superscalar core, small-scale branch prediction, instruction prefetching, and an off-chip primary data cache. The simulation results are used to develop a superscalar microarchitecture capable of outperforming a comparable sequential pipeline, while using only 500,000 transistors. The architecture, running at 200 MHz, is capable of achieving an estimated 153 MIPS, translating to a 27% performance increase over a comparable traditional pipelined

  9. Transient Heat Conduction Simulation around Microprocessor Die

    NASA Astrophysics Data System (ADS)

    Nishi, Koji

    This paper explains about fundamental formula of calculating power consumption of CMOS (Complementary Metal-Oxide-Semiconductor) devices and its voltage and temperature dependency, then introduces equation for estimating power consumption of the microprocessor for notebook PC (Personal Computer). The equation is applied to heat conduction simulation with simplified thermal model and evaluates in sub-millisecond time step calculation. In addition, the microprocessor has two major heat conduction paths; one is from the top of the silicon die via thermal solution and the other is from package substrate and pins via PGA (Pin Grid Array) socket. Even though the dominant factor of heat conduction is the former path, the latter path - from package substrate and pins - plays an important role in transient heat conduction behavior. Therefore, this paper tries to focus the path from package substrate and pins, and to investigate more accurate method of estimating heat conduction paths of the microprocessor. Also, cooling performance expression of heatsink fan is one of key points to assure result with practical accuracy, while finer expression requires more computation resources which results in longer computation time. Then, this paper discusses the expression to minimize computation workload with a practical accuracy of the result.

  10. The Minerva Multi-Microprocessor.

    DTIC Science & Technology

    A multiprocessor system is described which is an experiment in low cost, extensible, multiprocessor architectures. Global issues such as inclusion of a central bus, design of the bus arbiter, and methods of interrupt handling are considered. The system initially includes two processor types, based on microprocessors, and these are discussed. Methods for reducing processor demand for the central bus are described.

  11. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  12. Microprocessor controlled anodic stripping voltameter for trace metals analysis in tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, R.G.; Park, F.W.; Kirsten, F.A.

    1981-04-01

    The construction and use of a portable, microprocessor controlled anodic stripping voltameter for on-site simultaneous metal analysis of copper, lead and cadmium in tap water is discussed. The instrumental system is comprised of a programmable controller which permits keying in analytical parameters such as sparge time and plating time; a rotating cell for efficient oxygen removal and amalgam formation; and, a magnetic tape which can be used for data storage. Analysis time can be as short as 10 to 15 minutes. The stripping analysis is based on a pre-measurement step during which the metals from a water sample are concentratedmore » into a thin mercury film by deposition from an acetate solution of pH 4.5. The concentrated metals are then electrochemically dissolved from the film by application of a linearly increasing anodic potential. Typical peak-shaped curves are obtained. The heights of these curves are related to the concentration of metals in the water by calibration data. Results of tap water analysis showed 3 +- 1 ..mu..g/L lead, 22 +- 0.3 ..mu..g/L copper, and less than 0.2 ..mu..g/L cadmium for a Berkeley, California tap water, and 1 to 1000 ..mu..g/L Cu, 1 to 2 ..mu..g/L Pb for ten samples of Seattle, Washington tap water. Recommendations are given for a next generation instrument system.« less

  13. Evaluation of the performance of microprocessor-based colorimeter

    PubMed Central

    Randhawa, S. S.; Gupta, R. C.; Bhandari, A. K.; Malhotra, P. S.

    1992-01-01

    Colorimetric estimations have an important role in quantitative studies. An inexpensive and portable microprocessor-based colorimeter developed by the authors is described in this paper. The colorimeter uses a light emitting diode as the light source; a pinphotodiode as the detector and an 8085A microprocessor. Blood urea, glucose, total protein, albumin and bilirubin from patient blood samples were analysed with the instrument and results obtained were compared with assays of the same blood using a Spectronic 21. A good correlation was found between the results from the two instruments. PMID:18924952

  14. Evaluation of the performance of microprocessor-based colorimeter.

    PubMed

    Randhawa, S S; Gupta, R C; Bhandari, A K; Malhotra, P S

    1992-01-01

    Colorimetric estimations have an important role in quantitative studies. An inexpensive and portable microprocessor-based colorimeter developed by the authors is described in this paper. The colorimeter uses a light emitting diode as the light source; a pinphotodiode as the detector and an 8085A microprocessor. Blood urea, glucose, total protein, albumin and bilirubin from patient blood samples were analysed with the instrument and results obtained were compared with assays of the same blood using a Spectronic 21. A good correlation was found between the results from the two instruments.

  15. A real time, FEM based optimal control algorithm and its implementation using parallel processing hardware (transistors) in a microprocessor environment

    NASA Technical Reports Server (NTRS)

    Patten, William Neff

    1989-01-01

    There is an evident need to discover a means of establishing reliable, implementable controls for systems that are plagued by nonlinear and, or uncertain, model dynamics. The development of a generic controller design tool for tough-to-control systems is reported. The method utilizes a moving grid, time infinite element based solution of the necessary conditions that describe an optimal controller for a system. The technique produces a discrete feedback controller. Real time laboratory experiments are now being conducted to demonstrate the viability of the method. The algorithm that results is being implemented in a microprocessor environment. Critical computational tasks are accomplished using a low cost, on-board, multiprocessor (INMOS T800 Transputers) and parallel processing. Progress to date validates the methodology presented. Applications of the technique to the control of highly flexible robotic appendages are suggested.

  16. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review.

    PubMed

    Theeven, Patrick J R; Hemmen, Bea; Brink, Peter R G; Smeets, Rob J E M; Seelen, Henk A M

    2013-11-27

    The effectiveness of microprocessor-controlled prosthetic knee joints (MPKs) has been assessed using a variety of outcome measures in a variety of health and health-related domains. However, if the patient is to receive a prosthetic knee joint that enables him to function optimally in daily life, it is vital that the clinician has adequate information about the effects of that particular component on all aspects of persons' functioning. Especially information concerning activities and participation is of high importance, as this component of functioning closely describes the person's ability to function with the prosthesis in daily life. The present study aimed to review the outcome measures that have been utilized to assess the effects of microprocessor-controlled prosthetic knee joints (MPK), in comparison with mechanically controlled prosthetic knee joints, and aimed to classify these measures according to the components and categories of functioning defined by the International Classification of Functioning, Disability and Health (ICF). Subsequently, the gaps in the scientific evidence regarding the effectiveness of MPKs were determined. A systematic literature search in 6 databases (i.e. PubMed, CINAHL, Cochrane Library, Embase, Medline and PsychInfo) identified scientific studies that compared the effects of using MPKs with mechanically controlled prosthetic knee joints on persons' functioning. The outcome measures that have been utilized in those studies were extracted and categorized according to the ICF framework. Also, a descriptive analysis regarding all studies has been performed. A total of 37 studies and 72 outcome measures have been identified. The majority (67%) of the outcome measures that described the effects of using an MPK on persons' actual performance with the prosthesis covered the ICF body functions component. Only 31% of the measures on persons' actual performance investigated how an MPK may affect performance in daily life. Research also

  17. A MICROPROCESSOR ASCII CHARACTER BUFFERING SYSTEM

    EPA Science Inventory

    A microprocessor buffering system (MBS) was developed at the Environmental Monitoring and Support Laboratory -Cincinnati (EMSL-CI) to provide an efficient transfer for serial ASCII information between intelligent instrument systema and a Data General NOVA laboratory automation co...

  18. 76 FR 39895 - In the Matter of Certain Microprocessors, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-781] In the Matter of Certain Microprocessors... importation of certain microprocessors, components thereof, and products containing same by reason of... microprocessors, components thereof, and products containing same that infringe one or more of claims 11-16, 41...

  19. Microprocessor in controlled transdermal drug delivery of anti-cancer drugs.

    PubMed

    Chandrashekar, N S; Shobha Rani, R H

    2009-12-01

    Microprocessor controlled transdermal delivery of anticancer drugs 5-Fluorouracil (5-FU) and 6-Mercaptopurine (6-MP) was developed and in vitro evaluation was done. Drugs were loaded based on the pharmacokinetics parameters. In vitro diffusion studies were carried at different current density (0.0, 0.1, 0.22, 0.50 mA/cm2). The patches were evaluated for the drug content, thickness, weight, folding endurance, flatness, thumb tack test and adhesive properties all were well with in the specification of transdermal patches with elegant and transparent in appearance. In vitro permeation studies through human cadaver skin showed, passive delivery (0.0 mA/cm2) of 6-MP was low. As the current density was progressively increased, the flux also increased. the flux also increased with 0.1 mA/cm2 for 15-20 min, but it was less than desired flux, 0.2 mA/cm2 for 30 min showed better flux than 0.1 mA/cm2 current, but lag time was more than 4 h, 0.5 mA/cm2 current for more than 1 h, flux was >159 microg/cm2 h which was desired flux for 6-MP. 5-FU flux reached the minimum effective concentration (MEC) of 54 microg/cm2 h with 0.5 mA/cm2 current for 30-45 min, drug concentration were within the therapeutic window in post-current phase. We concluded from Ohm's Law that as the resistance decreases, current increases. Skin resistance decrease with increase in time and current, increase in the drug permeation. Interestingly, for all investigated current densities, as soon as the current was switched off, 5-FU and 6-MP flux decreased fairly, but the controlled drug delivery can be achieved by switching the current for required period of time.

  20. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  1. Large optics for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baisden, P.

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advancedmore » optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.« less

  2. A Microprocessor-Based Real-Time Simulator of a Turbofan Engine

    DTIC Science & Technology

    1988-01-01

    NASA AVSCOM Technical Memorandum 100889 Technical Report 88-C-011 Lfl A Microprocessor-Based Real-Time Simulator of a Turbofan Engine CD I Jonathan S...Accession For NTIS GRA&I A MICROPROCESSOR-BASED REAL-TIME SIMULATOR DTIC TABUnannounced OF A TURBOFAN ENGINE Justifiaation, Jonathan S. Litt Propulsion...the F100 engine without augmentation (without afterburning). HYTESS is a simplified simulation written in FORTRAN of a generalized turbofan engine . To

  3. Full temperature single event upset characterization of two microprocessor technologies

    NASA Technical Reports Server (NTRS)

    Nichols, Donald K.; Coss, James R.; Smith, L. S.; Rax, Bernard; Huebner, Mark

    1988-01-01

    Data for the 9450 I3L bipolar microprocessor and the 80C86 CMOS/epi (vintage 1985) microprocessor are presented, showing single-event soft errors for the full MIL-SPEC temperature range of -55 to 125 C. These data show for the first time that the soft-error cross sections continue to decrease with decreasing temperature at subzero temperatures. The temperature dependence of the two parts, however, is very different.

  4. Contamination control research activities for space optics in JAXA RANDD

    NASA Astrophysics Data System (ADS)

    Kimoto, Y.

    2017-11-01

    Contamination control research activities for space optics projects in JAXA R&D are described. More accurate contamination control techniques are requested because of intensified recent science mission requirements. One approach to control the contamination effects is analysis by software. JAXA has been developing a contamination analytical tool "J-SPICE" (Japanese Spacecraft Induced Contamination analysis software) as well as experiment facilities to improve the J-SPICE. A reflection model in J-SPICE has been experimentally verified and outgassing model data has been acquired by a facility. JAXA has developed a facility which could determine the influence of the contamination at a specific wavelength by combining a vacuum chamber with an I-R spectrometer and performed an experiment to inspect the effect of baking. Space material exposure experiment results reveal the actual thickness of the contamination layer in ISS orbit.

  5. Innovative architectures for dense multi-microprocessor computers

    NASA Technical Reports Server (NTRS)

    Larson, Robert E.

    1989-01-01

    The purpose is to summarize a Phase 1 SBIR project performed for the NASA/Langley Computational Structural Mechanics Group. The project was performed from February to August 1987. The main objectives of the project were to: (1) expand upon previous research into the application of chordal ring architectures to the general problem of designing multi-microcomputer architectures, (2) attempt to identify a family of chordal rings such that each chordal ring can be simply expanded to produce the next member of the family, (3) perform a preliminary, high-level design of an expandable multi-microprocessor computer based upon chordal rings, (4) analyze the potential use of chordal ring based multi-microprocessors for sparse matrix problems and other applications arising in computational structural mechanics.

  6. A PC-based simulation of the National Transonic Facitity's safety microprocessor

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.; Kilgore, W. A.; Balakrishna, S.

    1993-01-01

    A brief study was undertaken to demonstrate the feasibility of using a state-of-the-art off-the-shelf high speed personal computer for simulating a microprocessor presently used for wind tunnel safety purposes at Langley Research Center's National Transonic Facility (NTF). Currently, there is no active display of tunnel alarm/alert safety information provided to the tunnel operators, but rather such information is periodically recorded on a process monitoring computer printout. This does not provide on-line situational information nor permit rapid identification of safety operational violations which are able to halt tunnel operations. It was therefore decided to simulate the existing algorithms and briefly evaluate a real-time display which could provide both position and trouble shooting information.

  7. Focus scanning with feedback control for fiber-optic nonlinear endomicroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Ang; Liang, Wenxuan; Li, Xingde

    2017-02-01

    Fiber-optic nonlinear endomicroscopy represents a strong promise to enable translation of nonlinear microscopy technologies to in vivo applications, particularly imaging of internal organs. Two-dimensional imaging beam scanning has been accomplished by using fiber-optic scanners or MEMS scanners. Yet nonlinear endomicroscopy still cannot perform rapid and reliable depth or focus scanning while maintaining a small form factor. Shape memory alloy (SMA) wire had shown promise in extending 2D endoscopic imaging to the third dimension. By Joule heating, the SMA wire would contract and move the endomicroscope optics to change beam focus. However, this method suffered from hysteresis, and was susceptible to change in ambient temperature, making it difficult to achieve accurate and reliable depth scanning. Here we present a feedback-controlled SMA actuator which addressed these challenges. The core of the feedback loop was a Hall effect sensor. By measuring the magnetic flux density from a tiny magnet attached to the SMA wire, contraction distance of the SMA wire could be tracked in real time. The distance was then fed to the PID algorithm running in a microprocessor, which computed the error between the command position and the current position of the actuator. The current running through the SMA wire was adjusted accordingly. Our feedback-controlled SMA actuator had a tube-like shape with outer diameter of 5.5 mm and length of 25 mm, and was designed to house the endomicroscope inside. Initial test showed that it allowed more than 300 microns of travel distance, with an average positioning error of less than 2 microns. 3D imaging experiments with the endomicroscope is underway, and its imaging performance will be assessed and discussed.

  8. Single event effect testing of the Intel 80386 family and the 80486 microprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, A.; LaBel, K.; Gates, M.

    The authors present single event effect test results for the Intel 80386 microprocessor, the 80387 coprocessor, the 82380 peripheral device, and on the 80486 microprocessor. Both single event upset and latchup conditions were monitored.

  9. Educational Implications of Microelectronics and Microprocessors.

    ERIC Educational Resources Information Center

    Harris, N. D. C., Ed.

    This conference report explores microelectronic technology, its effect on educational methods and objectives, and its implications for educator responsibilities. Two main areas were considered: the significance of the likely impact of the large scale introduction of microprocessors and microelectronics on commercial and industrial processes, the…

  10. Use of electronic microprocessor-based instrumentation by the U.S. geological survey for hydrologic data collection

    USGS Publications Warehouse

    Shope, William G.; ,

    1991-01-01

    The U.S. Geological Survey is acquiring a new generation of field computers and communications software to support hydrologic data-collection at field locations. The new computer hardware and software mark the beginning of the Survey's transition from the use of electromechanical devices and paper tapes to electronic microprocessor-based instrumentation. Software is being developed for these microprocessors to facilitate the collection, conversion, and entry of data into the Survey's National Water Information System. The new automated data-collection process features several microprocessor-controlled sensors connected to a serial digital multidrop line operated by an electronic data recorder. Data are acquired from the sensors in response to instructions programmed into the data recorder by the user through small portable lap-top or hand-held computers. The portable computers, called personal field computers, also are used to extract data from the electronic recorders for transport by courier to the office computers. The Survey's alternative to manual or courier retrieval is the use of microprocessor-based remote telemetry stations. Plans have been developed to enhance the Survey's use of the Geostationary Operational Environmental Satellite telemetry by replacing the present network of direct-readout ground stations with less expensive units. Plans also provide for computer software that will support other forms of telemetry such as telephone or land-based radio.

  11. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII.

    PubMed

    Wagschal, Alexandre; Rousset, Emilie; Basavarajaiah, Poornima; Contreras, Xavier; Harwig, Alex; Laurent-Chabalier, Sabine; Nakamura, Mirai; Chen, Xin; Zhang, Ke; Meziane, Oussama; Boyer, Frédéric; Parrinello, Hugues; Berkhout, Ben; Terzian, Christophe; Benkirane, Monsef; Kiernan, Rosemary

    2012-09-14

    Transcription elongation is increasingly recognized as an important mechanism of gene regulation. Here, we show that microprocessor controls gene expression in an RNAi-independent manner. Microprocessor orchestrates the recruitment of termination factors Setx and Xrn2, and the 3'-5' exoribonuclease, Rrp6, to initiate RNAPII pausing and premature termination at the HIV-1 promoter through cleavage of the stem-loop RNA, TAR. Rrp6 further processes the cleavage product, which generates a small RNA that is required to mediate potent transcriptional repression and chromatin remodeling at the HIV-1 promoter. Using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq), we identified cellular gene targets whose transcription is modulated by microprocessor. Our study reveals RNAPII pausing and premature termination mediated by the co-operative activity of ribonucleases, Drosha/Dgcr8, Xrn2, and Rrp6, as a regulatory mechanism of RNAPII-dependent transcription elongation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Interface For Fault-Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1989-01-01

    Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.

  13. 24-channel dual microcontroller-based voltage controller for ion optics remote control

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.

    2018-05-01

    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  14. Microprocessor Technology for Managers.

    DTIC Science & Technology

    1976-05-01

    HOURS IS THE APPLICATION OF MICROPROCESSORS TO VIDEO GAMES SUCH AS PING PONG, HANDBALL 1 SPACE WAR GAMES , AND COWBOYS AND INDIANS. MANY MANUFACTURERS OF...MICR OPROCESSOR COMPANIES AEG—T ELEFUNKEN~ 6 FRANKFURT 70, AEG-HOCHHAUS 1 GERMANY . ADAPTIVE SYSTEMS1 P.O . BOX 1481, POMPANO BEACH , FL 33061. -(305...KAWASAKI — CHI , JAPAN . WESTERN DIGITAL , 19242 RED HILL AVE. 1 NEWPORT BEACH I CA 92663. {714) 557-3550. ZILOG, 170 STATE ST., LOS ALTOS 1 CA 94022. {415

  15. Hardware Fault Simulator for Microprocessors

    NASA Technical Reports Server (NTRS)

    Hess, L. M.; Timoc, C. C.

    1983-01-01

    Breadboarded circuit is faster and more thorough than software simulator. Elementary fault simulator for AND gate uses three gates and shaft register to simulate stuck-at-one or stuck-at-zero conditions at inputs and output. Experimental results showed hardware fault simulator for microprocessor gave faster results than software simulator, by two orders of magnitude, with one test being applied every 4 microseconds.

  16. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: systematic review.

    PubMed

    Kannenberg, Andreas; Zacharias, Britta; Pröbsting, Eva

    2014-01-01

    The benefits of microprocessor-controlled prosthetic knees (MPKs) have been well established in community ambulators (Medicare Functional Classification Level [MFCL]-3) with a transfemoral amputation (TFA). A systematic review of the literature was performed to analyze whether limited community ambulators (MFCL-2) may also benefit from using an MPK in safety, performance-based function and mobility, and perceived function and satisfaction. We searched 10 scientific databases for clinical trials with MPKs and identified six publications with 57 subjects with TFA and MFCL-2 mobility grade. Using the criteria of a Cochrane Review on prosthetic components, we rated methodological quality moderate in four publications and low in two publications. MPK use may significantly reduce uncontrolled falls by up to 80% as well as significantly improve indicators of fall risk. Performance-based outcome measures suggest that persons with MFCL-2 mobility grade may be able to walk about 14% to 25% faster on level ground, be around 20% quicker on uneven surfaces, and descend a slope almost 30% faster when using an MPK. The results of this systematic review suggest that trial fittings may be used to determine whether or not individuals with TFA and MFCL-2 mobility grade benefit from MPK use. Criteria for patient selection and assessment of trial fitting success or failure are proposed.

  17. A microprocessor-based table lookup approach for magnetic bearing linearization

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Miller, J. B.

    1981-01-01

    An approach for producing a linear transfer characteristic between force command and force output of a magnetic bearing actuator without flux biasing is presented. The approach is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing power driver. An experimental test setup used to demonstrate the feasibility of the approach is described, and test results are presented. The test setup contains bearing elements similar to those used in a laboratory model annular momentum control device.

  18. High-speed microprocessor characterization. Final report/project accomplishments summary, CRADA Number KCP-94-1004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.W.

    The objective of the project was to characterize and document the critical operating parameters of an 0.8-micron, 350-MHz, 32-bit microprocessor prototype. The roles of FM and T and the participant company were: FM and T -- evaluation performance of the prototype 32-bit microprocessor using the IDS5000 and Tektronix S3260 Integrated Circuit Test System; Corda -- design and build the prototype microprocessor. This project was terminated with nearly all of the planned activities unaddressed.

  19. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review

    PubMed Central

    2013-01-01

    Background The effectiveness of microprocessor-controlled prosthetic knee joints (MPKs) has been assessed using a variety of outcome measures in a variety of health and health-related domains. However, if the patient is to receive a prosthetic knee joint that enables him to function optimally in daily life, it is vital that the clinician has adequate information about the effects of that particular component on all aspects of persons’ functioning. Especially information concerning activities and participation is of high importance, as this component of functioning closely describes the person’s ability to function with the prosthesis in daily life. The present study aimed to review the outcome measures that have been utilized to assess the effects of microprocessor-controlled prosthetic knee joints (MPK), in comparison with mechanically controlled prosthetic knee joints, and aimed to classify these measures according to the components and categories of functioning defined by the International Classification of Functioning, Disability and Health (ICF). Subsequently, the gaps in the scientific evidence regarding the effectiveness of MPKs were determined. Methods A systematic literature search in 6 databases (i.e. PubMed, CINAHL, Cochrane Library, Embase, Medline and PsychInfo) identified scientific studies that compared the effects of using MPKs with mechanically controlled prosthetic knee joints on persons’ functioning. The outcome measures that have been utilized in those studies were extracted and categorized according to the ICF framework. Also, a descriptive analysis regarding all studies has been performed. Results A total of 37 studies and 72 outcome measures have been identified. The majority (67%) of the outcome measures that described the effects of using an MPK on persons’ actual performance with the prosthesis covered the ICF body functions component. Only 31% of the measures on persons’ actual performance investigated how an MPK may affect

  20. The Stand-Alone Microprocessor System: A Valuable Tool in College Admissions and Recruitment.

    ERIC Educational Resources Information Center

    Garrett, Larry Neal

    1983-01-01

    The stand-alone microprocessor is seen as one innovative tool that can be used both in the organizational management of decline and in meeting specific organizational needs such as those of the admissions director and staff. The term "microprocessor" is defined. (MLW)

  1. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  2. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  3. Remote Optical Control of an Optical Flip-Flop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maywar, D.N.; Solomon, K.P.; Agrawal, G.P.

    2007-11-01

    We experimentally demonstrate control of a holding-beam–enabled optical flip-flop by means of optical signals that act in a remote fashion. These optical-control signals vary the holding-beam power by means of cross-gain modulation within a remotely located semiconductor optical amplifier (SOA). The power-modulated holding beam then travels through a resonant-type SOA, where flip-flop action occurs as the holding-beam power falls above and below the switching thresholds of the bistable hysteresis. Control is demonstrated using submilliwatt pulses whose wavelengths are not restricted to the vicinity of the holding beam. Benefits of remote control include the potential for controlling multiple flip-flops with amore » single pair of optical signals and for realizing all-optical control of any holding-beam–enabled flip-flop.« less

  4. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  5. Microprocessor mediates transcriptional termination in long noncoding microRNA genes

    PubMed Central

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J.; Jopling, Catherine L.

    2015-01-01

    MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway, but instead use Microprocessor cleavage to terminate transcription. This Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells. PMID:25730776

  6. Optical design and Initial Results from The National Institute of Standards and Technology’s AMMT/TEMPS Facility

    PubMed Central

    Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard

    2017-01-01

    The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666

  7. Safety of Vital Control and Communication Systems in Guided Ground Transportation : Analysis of Railroad Signaling System Microprocessor Interlocking

    DOT National Transportation Integrated Search

    1993-05-01

    This study has been conducted with the goal of gaining an insight into the issues of maintaining vital signal systems implemented with microprocessor chips and of making field changes to the application of such systems. To relate these abstract topic...

  8. Optical laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre

    NASA Astrophysics Data System (ADS)

    Lakkala, Kaisa; Suokanerva, Hanne; Matti Karhu, Juha; Aarva, Antti; Poikonen, Antti; Karppinen, Tomi; Ahponen, Markku; Hannula, Henna-Reetta; Kontu, Anna; Kyrö, Esko

    2016-07-01

    This paper describes the laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre (FMI-ARC, http://fmiarc.fmi.fi). They comprise an optical laboratory, a facility for biological studies, and an office. A dark room has been built, in which an optical table and a fixed lamp test system are set up, and the electronics allow high-precision adjustment of the current. The Brewer spectroradiometer, NILU-UV multifilter radiometer, and Analytical Spectral Devices (ASD) spectroradiometer of the FMI-ARC are regularly calibrated or checked for stability in the laboratory. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.

  9. A Fault-tolerant RISC Microprocessor for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Timoc, Constantin; Benz, Harry

    1990-01-01

    Viewgraphs on a fault-tolerant RISC microprocessor for spacecraft applications are presented. Topics covered include: reduced instruction set computer; fault tolerant registers; fault tolerant ALU; and double rail CMOS logic.

  10. Design and Development of a Multiprogramming Operating System for Sixteen Bit Microprocessors.

    DTIC Science & Technology

    1981-12-01

    with the technical details of how services are programmed or produced, except perhaps when they fail to meet user requirements. Users are interested in...locations and loading decks. As the expense *and speed of computers increased, executive programs were created to allow several users to sequence...single user operating system as a companion to the 8080 microprocessor. CP/M (Control Program for Microcomputers) was a single user operating system that

  11. Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor.

    PubMed

    Waldow, S M; Russell, G E; Wallner, P E

    1992-01-01

    Near-infrared radiation from a Nd:YAG laser at 1,064 nm was used interstitially or superficially to induce hyperthermia in RIF-1 tumors in C3H male mice. A single 600-microns quartz fiber with a 0.5-cm cylindrical diffusor or a weakly diverging microlens at its distal end was used to deliver laser energy to tumors in the hind leg (mean volume = 100 mm3). Two thermocouples were inserted into each tumor. One thermocouple controlled a microprocessor-driven hyperthermia program (maximum output of 3.5 Watts) to maintain the desired temperature. Tumors were exposed to various temperature-time combinations (42-45 degrees C/30 min). Our initial results indicated that excellent temperature control to within 0.2 degrees C of the desired temperature at the feedback thermocouple was achievable during both superficial and interstitial heat treatments. Temperatures at the second thermocouple, however, were found to be lower by as much as 2.3 degrees C (using the cylindrical diffusor) or higher by up to 4.6 degrees C (using the microlens) when compared to the feedback thermocouple temperature. Several correlations were seen between total dose, tumor growth delay, percent skin necrosis, and temperature at the second thermocouple after several superficial and interstitial treatments. Statistically significant improvements in tumor growth delay (at 42 and 45 degrees C) and increased percent skin necrosis at all temperatures were observed after superficial versus interstitial treatment.

  12. Application of Microprocessor-Based Equipment in Nuclear Power Plants - Technical Basis for a Qualification Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, K.

    This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current,more » analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and

  13. Microprocessor-Based Neural-Pulse-Wave Analyzer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.; Bracchi, F.

    1983-01-01

    Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2

  14. Multilocation Video Conference By Optical Fiber

    NASA Astrophysics Data System (ADS)

    Gray, Donald J.

    1982-10-01

    An experimental system that permits interconnection of many offices in a single video conference is described. Video images transmitted to conference participants are selected by the conference chairman and switched by a microprocessor-controlled video switch. Speakers can, at their choice, transmit their own images or images of graphics they wish to display. Users are connected to the Switching Center by optical fiber subscriber loops that carry analog video, digitized telephone, data and signaling. The same system also provides user-selectable distribution of video program and video library material. Experience in the operation of the conference system is discussed.

  15. Study of limitations and attributes of microprocessor testing techniques

    NASA Technical Reports Server (NTRS)

    Mccaskill, R.; Sohl, W. E.

    1977-01-01

    All microprocessor units have a similar architecture from which a basic test philosophy can be adopted and used to develop an approach to test each module separately in order to verify the functionality of each module within the device using the input/output pins of the device and its instruction set; test for destructive interaction between functional modules; and verify all timing, status information, and interrupt operations of the device. Block and test flow diagrams are given for the 8080, 8008, 2901, 6800, and 1802 microprocessors. Manufacturers are listed and problems encountered in testing the modules are discussed. Test equipment and methods are described.

  16. 78 FR 3449 - Certain Microprocessors, Components Thereof, and Products Containing Same; Request for Statements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-781] Certain Microprocessors, Components Thereof, and Products Containing Same; Request for Statements on the Public Interest AGENCY: U.S... a limited exclusion order as to subject Intel microprocessors, but that implementation be delayed...

  17. Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip

    NASA Technical Reports Server (NTRS)

    Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)

    1994-01-01

    A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.

  18. Microprocessor Design Using Hardware Description Language

    ERIC Educational Resources Information Center

    Mita, Rosario; Palumbo, Gaetano

    2008-01-01

    The following paper has been conceived to deal with the contents of some lectures aimed at enhancing courses on digital electronic, microelectronic or VLSI systems. Those lectures show how to use a hardware description language (HDL), such as the VHDL, to specify, design and verify a custom microprocessor. The general goal of this work is to teach…

  19. Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor

    DTIC Science & Technology

    2015-03-10

    for Public Release; Distribution Unlimited Final Report: Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Superconductor technology, RSFQ, RQL, processor design, arithmetic units, high-performance...Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor Report Title The major objective of the project was to design and demonstrate operation

  20. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task.

    PubMed

    Ernst, Michael; Altenburg, Björn; Bellmann, Malte; Schmalz, Thomas

    2017-11-16

    Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such

  1. 15 CFR 744.17 - Restrictions on certain exports and reexports of general purpose microprocessors for “military...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reexports of general purpose microprocessors for âmilitary end-usesâ and to âmilitary end-users.â 744.17... microprocessors for “military end-uses” and to “military end-users.” (a) General prohibition. In addition to the... reexport commodities described in ECCN 3A991.a.1 on the CCL (“microprocessor microcircuits”, “microcomputer...

  2. 15 CFR 744.17 - Restrictions on certain exports and reexports of general purpose microprocessors for “military...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reexports of general purpose microprocessors for âmilitary end-usesâ and to âmilitary end-users.â 744.17... microprocessors for “military end-uses” and to “military end-users.” (a) General prohibition. In addition to the... reexport commodities described in ECCN 3A991.a.1 on the CCL (“microprocessor microcircuits”, “microcomputer...

  3. 15 CFR 744.17 - Restrictions on certain exports and reexports of general purpose microprocessors for ‘military...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reexports of general purpose microprocessors for âmilitary end usesâ and to âmilitary end usersâ. 744.17... microprocessors for ‘military end uses’ and to ‘military end users’. (a) General prohibition. In addition to the... reexport commodities described in ECCN 3A991.a.1 on the CCL (“microprocessor microcircuits”, “microcomputer...

  4. 15 CFR 744.17 - Restrictions on certain exports and reexports of general purpose microprocessors for “military...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reexports of general purpose microprocessors for âmilitary end-usesâ and to âmilitary end-users.â 744.17... microprocessors for “military end-uses” and to “military end-users.” (a) General prohibition. In addition to the... reexport commodities described in ECCN 3A991.a.1 on the CCL (“microprocessor microcircuits”, “microcomputer...

  5. 15 CFR 744.17 - Restrictions on certain exports and reexports of general purpose microprocessors for “military...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reexports of general purpose microprocessors for âmilitary end-usesâ and to âmilitary end-users.â 744.17... microprocessors for “military end-uses” and to “military end-users.” (a) General prohibition. In addition to the... reexport commodities described in ECCN 3A991.a.1 on the CCL (“microprocessor microcircuits”, “microcomputer...

  6. 75 FR 18572 - Facility Control Numbers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Facility Control Numbers AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of planned use of Facility Control Numbers. SUMMARY: The IRS has developed and is publishing in this issue of the Federal Register, Facility Control Numbers to...

  7. Optical velocimetry at the Los Alamos Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Tupa, Dale; Tainter, Amy; Neukirch, Levi; Hollander, Brian; Buttler, William; Holtkamp, David; The Los Alamos Proton Radiography Team Team

    2016-05-01

    The Los Alamos Proton Radiography Facility (pRad) employs a high-energy proton beam to image the properties and behavior of materials driven by high explosives. We will discuss features of pRad and describe some recent experiments, highlighting optical diagnostics for surface velocity measurements.

  8. Orbit determination software development for microprocessor based systems: Evaluation and recommendations

    NASA Technical Reports Server (NTRS)

    Shenitz, C. M.; Mcgarry, F. E.; Tasaki, K. K.

    1980-01-01

    A guide is presented for National Aeronautics and Space Administration management personnel who stand to benefit from the lessons learned in developing microprocessor-based flight dynamics software systems. The essential functional characteristics of microprocessors are presented. The relevant areas of system support software are examined, as are the distinguishing characteristics of flight dynamics software. Design examples are provided to illustrate the major points presented, and actual development experience obtained in this area is provided as evidence to support the conclusions reached.

  9. Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    PubMed Central

    Ackerman, Paul J.; Qi, Zhiyuan; Lin, Yiheng; Twombly, Christopher W.; Laviada, Mauricio J.; Lansac, Yves; Smalyukh, Ivan I.

    2012-01-01

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators. PMID:22679553

  10. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have notmore » responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.« less

  11. Simulated fault injection - A methodology to evaluate fault tolerant microprocessor architectures

    NASA Technical Reports Server (NTRS)

    Choi, Gwan S.; Iyer, Ravishankar K.; Carreno, Victor A.

    1990-01-01

    A simulation-based fault-injection method for validating fault-tolerant microprocessor architectures is described. The approach uses mixed-mode simulation (electrical/logic analysis), and injects transient errors in run-time to assess the resulting fault impact. As an example, a fault-tolerant architecture which models the digital aspects of a dual-channel real-time jet-engine controller is used. The level of effectiveness of the dual configuration with respect to single and multiple transients is measured. The results indicate 100 percent coverage of single transients. Approximately 12 percent of the multiple transients affect both channels; none result in controller failure since two additional levels of redundancy exist.

  12. An active interference projector for the electro-optical test facility

    NASA Astrophysics Data System (ADS)

    Crowe, D. G.; Nowak, T. M.

    1980-09-01

    A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.

  13. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  14. Advanced microprocessor based power protection system using artificial neural network techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Kalam, A.; Zayegh, A.

    This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.

  15. External Verification of SCADA System Embedded Controller Firmware

    DTIC Science & Technology

    2012-03-01

    microprocessor and read-only memory (ROM) or flash memory for storing firmware and control logic [5],[8]. A PLC typically has three software levels as shown in...implementing different firmware. Because PLCs are in effect a microprocessor device, an analysis of the current research on embedded devices is important...Electronics Engineers (IEEE) published a 15 best practices guide for firmware control on microprocessors [44]. IEEE suggests that microprocessors

  16. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    NASA Astrophysics Data System (ADS)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  17. Laser-Directed Hierarchical Assembly of Liquid Crystal Defects and Control of Optical Phase Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; Qi, Z. Y.; Lin, Y. H.

    2012-06-07

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable 'optical drawing' of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies ofmore » defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators.« less

  18. Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Barry, R. C.

    1980-01-01

    Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.

  19. A Micro-Processor Based System as a Teaching Tool.

    ERIC Educational Resources Information Center

    Spero, Samuel W.

    1979-01-01

    Two instructional strategies incorporating a microprocessor-based computer system are described. These are the use of the system to drive a television monitor, and the system's use in generating problem sets. (MP)

  20. OMEGA: A NEW COLD X-RAY SIMULATION FACILITY FOR THE EVALUATION OF OPTICAL COATINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, J H; Newlander, C D; Fournier, K B

    We report on recent progress for the development of a new cold X-ray optical test capability using the Omega Facility located at the Laboratory for Laser Energetics (LLE) at the University of Rochester. These tests were done on the 30 kJ OMEGA laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, Rochester, NY. We conducted a six-shot series called OMEGA II on 14 July 2006 in one eight-hour day (supported by the Defense Threat Reduction Agency). The initial testing was performed using simple protected gold optical coatings on fused silica substrates. PUFFTFT analyses were completed andmore » the specimen's thermal lateral stress and transverse stress conditions were calculated and interpreted. No major anomalies were detected. Comparison of the pre- and posttest reflective measurements coupled with the TFCALC analyses proved invaluable in guiding the analyses and interpreting the observed damage. The Omega facility is a high quality facility for performing evaluation of optical coatings and coupons and provides experience for the development of future National Ignition Facility (NIF) testing.« less

  1. Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.

    PubMed

    Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok

    2014-03-28

    Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  3. Single-Event Upset and Scaling Trends in New Generation of the Commercial SOI PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.

    2006-01-01

    Single-event upset effects from heavy ions are measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes. The results are compared with previous results for SOI microprocessors with feature sizes of 130 and 180 nm. The cross section of the 90 nm SOI processors is smaller than results for 130 and 180 nm counterparts, but the threshold is about the same. The scaling of the cross section with reduction of feature size and core voltage for SOI microprocessors is discussed.

  4. Frequency Dependence of Single-event Upset in Advanced Commerical PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Frokh; Farmanesh, Farhad F.; Swift, Gary M.; Johnston, Allen H.

    2004-01-01

    This paper examines single-event upsets in advanced commercial SOI microprocessors in a dynamic mode, studying SEU sensitivity of General Purpose Registers (GPRs) with clock frequency. Results are presented for SOI processors with feature sizes of 0.18 microns and two different core voltages. Single-event upset from heavy ions is measured for advanced commercial microprocessors in a dynamic mode with clock frequency up to 1GHz. Frequency and core voltage dependence of single-event upsets in registers is discussed.

  5. Formal proof of the AVM-1 microprocessor using the concept of generic interpreters

    NASA Technical Reports Server (NTRS)

    Windley, P.; Levitt, K.; Cohen, G. C.

    1991-01-01

    A microprocessor designated AVM-1 was designed to demonstrate the use of generic interpreters in verifying hierarchically decomposed microprocessor specifications. This report is intended to document the high-order language (HOL) code verifying AVM-1. The organization of the proof is discussed and some technical details concerning the execution of the proof scripts in HOL are presented. The proof scripts used to verify AVM-1 are also presented.

  6. Global identification of target recognition and cleavage by the Microprocessor in human ES cells

    PubMed Central

    Seong, Youngmo; Lim, Do-Hwan; Kim, Augustine; Seo, Jae Hong; Lee, Young Sik; Song, Hoseok; Kwon, Young-Soo

    2014-01-01

    The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein–RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3′ overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells. PMID:25326327

  7. Global identification of target recognition and cleavage by the Microprocessor in human ES cells.

    PubMed

    Seong, Youngmo; Lim, Do-Hwan; Kim, Augustine; Seo, Jae Hong; Lee, Young Sik; Song, Hoseok; Kwon, Young-Soo

    2014-11-10

    The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein-RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3' overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Real-time fetal ECG system design using embedded microprocessors

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Muddu, Harikrishna; Schinhaerl, Sebastian; Kumm, Martin; Zipf, Peter

    2016-05-01

    The emphasis of this project lies in the development and evaluation of new robust and high fidelity fetal electrocardiogram (FECG) systems to determine the fetal heart rate (FHR). Recently several powerful algorithms have been suggested to improve the FECG fidelity. Until now it is unknown if these algorithms allow a real-time processing, can be used in mobile systems (low power), and which algorithm produces the best error rate for a given system configuration. In this work we have developed high performance, low power microprocessor-based biomedical systems that allow a fair comparison of proposed, state-of-the-art FECG algorithms. We will evaluate different soft-core microprocessors and compare these solutions to other commercial off-the-shelf (COTS) hardcore solutions in terms of price, size, power, and speed.

  9. Optical mass memory system (AMM-13). AMM/DBMS interface control document

    NASA Technical Reports Server (NTRS)

    Bailey, G. A.

    1980-01-01

    The baseline for external interfaces of a 10 to the 13th power bit, optical archival mass memory system (AMM-13) is established. The types of interfaces addressed include data transfer; AMM-13, Data Base Management System, NASA End-to-End Data System computer interconnect; data/control input and output interfaces; test input data source; file management; and facilities interface.

  10. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs.

    PubMed

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L

    2015-04-01

    MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

  11. The biological microprocessor, or how to build a computer with biological parts

    PubMed Central

    Moe-Behrens, Gerd HG

    2013-01-01

    Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / output device, an arithmetic logic unit, a control unit, memory, and wires (busses) to interconnect these components. A biocomputer can be used to monitor and control a biological system. PMID:24688733

  12. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  13. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Astrophysics Data System (ADS)

    Bohnhoff-Hlavacek, Gail

    1992-09-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  14. Neutron beam irradiation study of workload dependence of SER in a microprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalak, Sarah E; Graves, Todd L; Hong, Ted

    It is known that workloads are an important factor in soft error rates (SER), but it is proving difficult to find differentiating workloads for microprocessors. We have performed neutron beam irradiation studies of a commercial microprocessor under a wide variety of workload conditions from idle, performing no operations, to very busy workloads resembling real HPC, graphics, and business applications. There is evidence that the mean times to first indication of failure, MTFIF defined in Section II, may be different for some of the applications.

  15. A microprocessor based on a two-dimensional semiconductor

    NASA Astrophysics Data System (ADS)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-04-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  16. A microprocessor based on a two-dimensional semiconductor.

    PubMed

    Wachter, Stefan; Polyushkin, Dmitry K; Bethge, Ole; Mueller, Thomas

    2017-04-11

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor-molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  17. A microprocessor based on a two-dimensional semiconductor

    PubMed Central

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-01-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III–V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor—molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material. PMID:28398336

  18. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    PubMed

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  19. COED Transactions, Vol. IX, No. 6, June 1977. An Introductory Course in Microprocessors and Microcomputers.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    This paper describes an introductory course in microprocessors and microcomputers implemented at Grossmont College. The current state-of-the-art in the microprocessor field is discussed, with special emphasis on the 8-bit MOS single-chip processors which are the most commonly used devices. Objectives and guidelines for the course are presented,…

  20. A lightweight security scheme for wireless body area networks: design, energy evaluation and proposed microprocessor design.

    PubMed

    Selimis, Georgios; Huang, Li; Massé, Fabien; Tsekoura, Ioanna; Ashouei, Maryam; Catthoor, Francky; Huisken, Jos; Stuyt, Jan; Dolmans, Guido; Penders, Julien; De Groot, Harmke

    2011-10-01

    In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.

  1. Single-event upset in advanced commercial power PC microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, F.; Farmanesh, F.; Swift, G. M.; Johnston, A. H.

    2003-01-01

    Single-event upset from heavy ions in measured for advanced commercial microprocessors, comparing upset sensitivity in registers and d-cache for several generations of devices. Multiple-bit upsets and asymmetry in registers upset cross sections are also discussed.

  2. Microprocessor-Based Valved Controller

    NASA Technical Reports Server (NTRS)

    Norman, Arnold M., Jr.

    1987-01-01

    New controller simpler, more precise, and lighter than predecessors. Mass-flow controller compensates for changing supply pressure and temperature such as occurs when gas-supply tank becomes depleted. By periodically updating calculation of mass-flow rate, controller determines correct new position for valve and keeps mass-flow rate nearly constant.

  3. Servo control of an optical trap.

    PubMed

    Wulff, Kurt D; Cole, Daniel G; Clark, Robert L

    2007-08-01

    A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.

  4. All-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors

    NASA Astrophysics Data System (ADS)

    Dunning, Jim; Garcia, Gerald; Lundberg, Jim; Nuckolls, Ed

    1995-04-01

    A frequency-synthesizing, all-digital phase-locked loop (ADPLL) is fully integrated with a 0.5 micron CMOS microprocessor. The ADPLL has a 50-cycle phase lock, has a gain mechanism independent of process, voltage, and temperature, and is immune to input jitter. A digitally-controlled oscillator (DCO) forms the core of the ADPLL and operates from 50 to 550 MHz, running at 4x the reference clock frequency. The DCO has 16 b of binarily weighted control and achieves LSB resolution under 500 fs.

  5. Development of a fault-tolerant microprocessor based computer system for space flight

    NASA Technical Reports Server (NTRS)

    Montgomery, V. T.

    1981-01-01

    A methodology for the design of a tightly coupled, highly reliable microprocessor based computer system is described. The concept of triple modular redundancy with sparing is used. The notion of synchronizing by using a single crystal oscillator is examined. The use of decoders to replace voters is also used. The decoders not only isolate the failed module but also allow error identification to be accomplished. Each module is to have its own RAM memory. The necessary circuitry to select a correct memory and the corresponding DMA controller was designed.

  6. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  7. Integrated optical transceiver with electronically controlled optical beamsteering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chipmore » also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.« less

  8. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  9. Site survey for optimum location of Optical Communication Experimental Facility

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Site survey was made to determine the optimum location for an Optical Communication Experimental Facility /OCEF/ and to recommend several sites, graded according to preference. A site was desired which could perform two-way laser communication with a spacecraft and laser tracking with a minimum of interruption by weather effects.

  10. Design of a Distributed Microprocessor Sensor System

    DTIC Science & Technology

    1990-04-01

    implemented through these methods, multiversion software and recovery the use of multiple identical software tasks running on blocks, are intended to... Multiversion software for real-time systems tolerant microprocessor that uses three processing is discussed by Shepherd32, Hitt33, Avizienis’, and...tasks and the there are no data available to determine the cost third is used for noncritical tasks. If a discrepancy effectiveness of multiversion

  11. Improved Cryogenic Optical Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff

    2005-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.

  12. Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response.

    PubMed

    Witteveldt, Jeroen; Ivens, Alasdair; Macias, Sara

    2018-06-12

    Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW CONTROL

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow (WWF). Cost/benefit relationships were compared to construction of new conventional control and treatment facilities. Desktop...

  14. At-wavelength metrology facility for soft X-ray reflection optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, A., E-mail: andrey.sokolov@helmholtz-berlin.de; Bischoff, P.; Eggenstein, F.

    2016-05-15

    A new Optics Beamline coupled to a versatile UHV reflectometer is successfully operating at BESSY-II. It is used to carry out at-wavelength characterization and calibration of in-house produced gratings and novel nano-optical devices as well as mirrors and multilayer systems in the UV and XUV spectral region. This paper presents most recent commissioning data of the beamline and shows their correlation with initial beamline design calculations. Special attention is paid to beamline key parameters which determine the quality of the measurements such as high-order suppression and stray light behavior. The facility is open to user operation.

  15. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8.

    PubMed

    Shenoy, Archana; Blelloch, Robert

    2009-09-11

    The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript. To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES) cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8. We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.

  16. Implementation of ISO 10110 optics drawing standards for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wang, David Y.; English, R. Edward, Jr.; Aikens, David M.

    1999-11-01

    The National Ignition Facility (NIF) project elected to implement ISO 10110 standard for the specifications of NIF optics drawings in 1996. More than 7,000 NIF large optics and 20,000 NIF small optics will be manufactured based on ISO 10110 indications. ISO 10110 standard meets many of the needs of the NIF optics specifications. It allows the optical engineer to quantify and clearly communicate the desired optical specifications. While no single drawing standard specifies all the requirements of high energy laser system, a combination of ISO 10110 standard with detailed notes make it possible to apply international drawing standards to the NIF laser system. This paper will briefly describe LLNL's interpretation and implementation of the ISO 10110 drawing standard, present some examples of NIF optics drawings, and discuss pros and cons of the indications from the perspective of this application. Emphasis will be given to the surface imperfection specifications, known as 5/, for the NIF optics.

  17. Pain associated with local anesthetic injection in eyelid procedures: Comparison of microprocessor-controlled versus traditional syringe techniques.

    PubMed

    Lee, Edward W; Tucker, Nancy A

    2007-01-01

    To evaluate the pain associated with local infiltration of the eyelid, using a microprocessor-controlled delivery system (CompuMed, using the Wand), as compared with traditional manual syringe infiltration technique. A randomized clinical trial of 30 patients undergoing minor eyelid surgical procedures was performed. Fifteen patients were injected by use of the CompuMed system and 15 patients were injected by the traditional manual syringe technique. The severity of pain was recorded from each patient by using a visual analog scale (0 to 10). The duration of pain experienced by the patient was also recorded. The mean pain level reported was 1.5 in the Wand group and 3.2 in the syringe group (p < 0.01). The mean duration of pain experienced was 1.5 seconds in the Wand group and 34 seconds in the syringe group (p < 0.01). The Wand was effective at significantly reducing the pain associated with local anesthetic infiltration in minor eyelid surgical procedures. Patients appear to feel pain from the initial needle stick but not during the actual injection.

  18. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  19. Nonanalytic function generation routines for 16-bit microprocessors

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.; Shaufl, M.

    1980-01-01

    Interpolation techniques for three types (univariate, bivariate, and map) of nonanalytic functions are described. These interpolation techniques are then implemented in scaled fraction arithmetic on a representative 16 bit microprocessor. A FORTRAN program is described that facilitates the scaling, documentation, and organization of data for use by these routines. Listings of all these programs are included in an appendix.

  20. Single-Event Upset and Scaling Trends in New Generation of the Commercial SOI PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.

    2006-01-01

    SEU from heavy-ions is measured for SOI PowerPC microprocessors. Results for 0.13 micron PowerPC with 1.1V core voltages increases over 1.3V versions. This suggests that improvement in SEU for scaled devices may be reversed. In recent years there has been interest in the possible use of unhardened commercial microprocessors in space because of their superior performance compared to hardened processors. However, unhardened devices are susceptible to upset from radiation space. More information is needed on how they respond to radiation before they can be used in space. Only a limited number of advanced microprocessors have been subjected to radiation tests, which are designed with lower clock frequencies and higher internal core voltage voltages than recent devices [1-6]. However the trend for commercial Silicon-on-insulator (SOI) microprocessors is to reduce feature size and internal core voltage and increase the clock frequency. Commercial microprocessors with the PowerPC architecture are now available that use partially depleted SOI processes with feature size of 90 nm and internal core voltage as low as 1.0 V and clock frequency in the GHz range. Previously, we reported SEU measurements for SOI commercial PowerPCs with feature size of 0.18 and 0.13 m [7, 8]. The results showed an order of magnitude reduction in saturated cross section compared to CMOS bulk counterparts. This paper examines SEUs in advanced commercial SOI microprocessors, focusing on SEU sensitivity of D-Cache and hangs with feature size and internal core voltage. Results are presented for the Motorola SOI processor with feature sizes of 0.13 microns and internal core voltages of 1.3 and 1.1 V. These results are compared with results for the Motorola SOI processors with feature size of 0.18 microns and internal core voltage of 1.6 and 1.3 V.

  1. Microprocessor realizations of range rate filters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance of five digital range rate filters is evaluated. A range rate filter receives an input of range data from a radar unit and produces an output of smoothed range data and its estimated derivative range rate. The filters are compared through simulation on an IBM 370. Two of the filter designs are implemented on a 6800 microprocessor-based system. Comparisons are made on the bases of noise variance reduction ratios and convergence times of the filters in response to simulated range signals.

  2. All-optical switch using optically controlled two mode interference coupler.

    PubMed

    Sahu, Partha Pratim

    2012-05-10

    In this paper, we have introduced optically controlled two-mode interference (OTMI) coupler having silicon core and GaAsInP cladding as an all-optical switch. By taking advantage of refractive index modulation by launching optical pulse into cladding region of TMI waveguide, we have shown optically controlled switching operation. We have studied optical pulse-controlled coupling characteristics of the proposed device by using a simple mathematical model on the basis of sinusoidal modes. The device length is less than that of previous work. It is also seen that the cross talk of the OTMI switch is not significantly increased with fabrication tolerances (±δw) in comparison with previous work.

  3. Data and results of a laboratory investigation of microprocessor upset caused by simulated lightning-induced analog transients

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.

    1984-01-01

    A methodology was developed a assess the upset susceptibility/reliability of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general purpose microprocessor were studied. The upset tests involved the random input of analog transients which model lightning induced signals onto interface lines of an 8080 based microcomputer from which upset error data was recorded. The program code on the microprocessor during tests is designed to exercise all of the machine cycles and memory addressing techniques implemented in the 8080 central processing unit. A statistical analysis is presented in which possible correlations are established between the probability of upset occurrence and transient signal inputs during specific processing states and operations. A stochastic upset susceptibility model for the 8080 microprocessor is presented. The susceptibility of this microprocessor to upset, once analog transients have entered the system, is determined analytically by calculating the state probabilities of the stochastic model.

  4. Single-event upset in highly scaled commercial silicon-on-insulator PowerPc microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Farmanesh, Farhad H.

    2004-01-01

    Single event upset effects from heavy ions are measured for Motorola and IBM silicon-on-insulator (SOI) microprocessors with different feature sizes, and core voltages. The results are compared with results for similar devices with build substrates. The cross sections of the SOI processors are lower than their bulk counterparts, but the threshold is about the same, even though the charge collections depth is more than an order of magnitude smaller in the SOI devices. The scaling of the cross section with reduction of feature size and core voltage dependence for SOI microprocessors discussed.

  5. Mobility and satisfaction with a microprocessor-controlled knee in moderately active amputees: A multi-centric randomized crossover trial.

    PubMed

    Lansade, Céline; Vicaut, Eric; Paysant, Jean; Ménager, Doménico; Cristina, Marie-Christine; Braatz, Frank; Domayer, Stephan; Pérennou, Dominic; Chiesa, Gérard

    2018-05-14

    Microprocessor-controlled knees are generally prescribed and reimbursed for active amputees. Recent studies suggested that this technology could be useful for amputees with moderate activity level. We compared the efficiency of a microprocessor-controlled knee (MPK, Kenevo, Otto Bock) and non-MPKs (NMPKs) in these indications. A multi-centric randomized crossover trial was conducted in 16 hospitals from 3 European countries. Participants were randomized to an MPK-NMPK sequence, testing the MPK for 3 months and the NMPK for 1 month, or to an NMPK-MPK sequence, testing the NMPK for 1 month and the MPK for 3 months. Dynamic balance, the main criteria, was assessed with the Timed-Up and Go test (TUG), functional mobility with the Locomotor Capability Index (LCI-5), quality of life with the Medical Outcomes Study Short Form 36 v2 (SF-36v2) and satisfaction with the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0. The occurrence of falls was monitored during the last month of trial. Analysis was by intent-to-treat and per-protocol (PP). We recruited 35 individuals with transfemoral amputation or knee disarticulation (27 males; mean age 65.6years [SD 10.1]). On PP analysis, dynamic balance and functional mobility were improved with the MPK, as shown by a reduced median TUG time (from 21.4s [Q1-Q3 19.3-26.6] to 17.9s [15.4-22.7], P=0.001) and higher mean global LCI-5 (from 40.4 [SD 7.6] to 42.8 [6.2], P=0.02). Median global satisfaction score increased (from 3.9 [Q1-Q3 3.8-4.4] to 4.7 [4.1-4.9], P=0.001) and quality of life was improved for the mental component summary of the SF-36v2 (median score from 53.3 [Q1-Q3 47.8-60.7] to 60.2 [51.6-62.6], P=0.03) and physical component summary but not significantly (mean score from 44.1 [SD 6.3] to 46.3 [7.0], P=0.08). Monitoring of adverse events including falls revealed no differences between both assessed devices. This study enhances the level of evidence to argue equal opportunity for all individuals with

  6. Bristol Ridge: A 28-nm $$\\times$$ 86 Performance-Enhanced Microprocessor Through System Power Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, Sriram; Grenat, Aaron; Naffziger, Samuel

    Power management techniques can be effective at extracting more performance and energy efficiency out of mature systems on chip (SoCs). For instance, the peak performance of microprocessors is often limited by worst case technology (Vmax), infrastructure (thermal/electrical), and microprocessor usage assumptions. Performance/watt of microprocessors also typically suffers from guard bands associated with the test and binning processes as well as worst case aging/lifetime degradation. Similarly, on multicore processors, shared voltage rails tend to limit the peak performance achievable in low thread count workloads. In this paper, we describe five power management techniques that maximize the per-part performance under the before-mentionedmore » constraints. Using these techniques, we demonstrate a net performance increase of up to 15% depending on the application and TDP of the SoC, implemented on 'Bristol Ridge,' a 28-nm CMOS, dual-core x 86 accelerated processing unit.« less

  7. The Use of a Microprocessor-Controlled, Video Output Atomic Absorption Spectrometer as an Educational Tool in a Two-Year Technical Curriculum.

    ERIC Educational Resources Information Center

    Kerfoot, Henry B.

    Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…

  8. An experimental distributed microprocessor implementation with a shared memory communications and control medium

    NASA Technical Reports Server (NTRS)

    Mejzak, R. S.

    1980-01-01

    The distributed processing concept is defined in terms of control primitives, variables, and structures and their use in performing a decomposed discrete Fourier transform (DET) application function. The design assumes interprocessor communications to be anonymous. In this scheme, all processors can access an entire common database by employing control primitives. Access to selected areas within the common database is random, enforced by a hardware lock, and determined by task and subtask pointers. This enables the number of processors to be varied in the configuration without any modifications to the control structure. Decompositional elements of the DFT application function in terms of tasks and subtasks are also described. The experimental hardware configuration consists of IMSAI 8080 chassis which are independent, 8 bit microcomputer units. These chassis are linked together to form a multiple processing system by means of a shared memory facility. This facility consists of hardware which provides a bus structure to enable up to six microcomputers to be interconnected. It provides polling and arbitration logic so that only one processor has access to shared memory at any one time.

  9. A motor-driven ventricular assist device controlled with an optical encoder system.

    PubMed

    Nakamura, T; Hayashi, K; Yamane, H

    1993-01-01

    An electric motor-driven ventricular assist device has been developed for long-term use inside the body. The system is composed of a pusher-plate-type blood pump and an actuator consisting of an electrical motor and a ball screw. Cyclic change of the direction of motor rotation makes a back-and-forth axial movement of the ball screw shaft. The shaft, which is detached from the pump diaphragm, pushes the diaphragm via a pusher plate to eject blood during systole; blood is sucked by the diaphragm resilience during diastole. Using the output signals from a newly designed, incremental-type, miniature optical rotary encoder mounted inside the actuator, the input voltage of the motor is optimally controlled referring to the phase difference between the current position of the moving rotor and the electrical reference signal of the rotation generated by a microprocessor-based controller. In vitro performance tests indicated that the system fulfills required specifications. The maximum efficiency was 11%, which was about twice as high as that obtained with the previous open-loop prototype system. In the air, the surface temperature of the actuator elevated to 20 degrees C above the room temperature. An acute in vivo test showed its feasibility as a left ventricular assist device. Analysis of the energy loss in each component of the system indicated that redesign and precise assembly of the mechanical parts could increase the system efficiency.

  10. Advanced Electricity. Microprocessors and Robotics. Curriculum Development. Bulletin 1803.

    ERIC Educational Resources Information Center

    Southeastern Louisiana Univ., Hammond.

    This model instructional unit was developed to aid industrial arts/technology education teachers in Louisiana to teach a course on microprocessors and robotics in grades 11 and 12. It provides guidance on model performance objectives, current technology content, sources, and supplemental materials. Following a course description, rationale, and…

  11. Failure analysis on false call probe pins of microprocessor test equipment

    NASA Astrophysics Data System (ADS)

    Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    A study has been conducted to investigate failure analysis on probe pins of test modules for microprocessor. The `health condition' of the probe pin is determined by the resistance value. A test module of 5V power supplied from Arduino UNO with "Four-wire Ohm measurement" method is implemented in this study to measure the resistance of the probe pins of a microprocessor. The probe pins from a scrapped computer motherboard is used as the test sample in this study. The functionality of the test module was validated with the pre-measurement experiment via VEE Pro software. Lastly, the experimental work have demonstrated that the implemented test module have the capability to identify the probe pin's `health condition' based on the measured resistance value.

  12. Microcontrollers and optical sensors for education in optics and photonics

    NASA Astrophysics Data System (ADS)

    Dressler, Paul; Wielage, Heinz; Haiss, Ulrich; Vauderwange, Oliver; Wozniak, P.; Curticapean, Dan

    2014-09-01

    The digital revolution is going full steam ahead, with a constantly growing number of new devices providing a steady increase in complexity and power. Most of the success is based on one important invention: the microprocessor/microcontroller. In this paper the authors present how to integrate microcontrollers and optical sensors in the curricula of media engineering by combining subjects of media technology, optics, information technology and media design. Hereby the aim is not to teach these topics separate from each other, but to bring them together in interdisciplinary lectures, projects and applications. Microcontrollers can be applied in various ways to teach content from the fields of optics and photonics. They can be used to control LEDs, displays, light detectors and infrared sensors, which makes it possible to build measuring instruments like e.g. a lux meter, a light barrier or an optical distance meter. The learning goals are to stimulate the student's interest in the multiplicity of subjects related to this course and to support a deeper understanding of the close connections between them. The teaching method that the authors describe in their paper turned out to be very successful, as the participants are motivated to bring in their own ideas for projects, they spend more time than requested and as many students return to the courses as tutors. It is an example for effectual knowledge transfer and exchange of ideas among students.

  13. Microprocessor depends on hemin to recognize the apical loop of primary microRNA

    PubMed Central

    Park, Joha; Dang, Thi Lieu; Choi, Yeon-Gil; Kim, V Narry

    2018-01-01

    Abstract Microprocessor, which consists of a ribonuclease III DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) maturation by cleaving primary miRNA transcripts (pri-miRNAs). We recently demonstrated that the DGCR8 dimer recognizes the apical elements of pri-miRNAs, including the UGU motif, to accurately locate and orient Microprocessor on pri-miRNAs. However, the mechanism underlying the selective RNA binding remains unknown. In this study, we find that hemin, a ferric ion-containing porphyrin, enhances the specific interaction between the apical UGU motif and the DGCR8 dimer, allowing Microprocessor to achieve high efficiency and fidelity of pri-miRNA processing in vitro. Furthermore, by generating a DGCR8 mutant cell line and carrying out rescue experiments, we discover that hemin preferentially stimulates the expression of miRNAs possessing the UGU motif, thereby conferring differential regulation of miRNA maturation. Our findings reveal the molecular action mechanism of hemin in pri-miRNA processing and establish a novel function of hemin in inducing specific RNA-protein interaction. PMID:29750274

  14. Microprocessor depends on hemin to recognize the apical loop of primary microRNA.

    PubMed

    Nguyen, Tuan Anh; Park, Joha; Dang, Thi Lieu; Choi, Yeon-Gil; Kim, V Narry

    2018-06-20

    Microprocessor, which consists of a ribonuclease III DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) maturation by cleaving primary miRNA transcripts (pri-miRNAs). We recently demonstrated that the DGCR8 dimer recognizes the apical elements of pri-miRNAs, including the UGU motif, to accurately locate and orient Microprocessor on pri-miRNAs. However, the mechanism underlying the selective RNA binding remains unknown. In this study, we find that hemin, a ferric ion-containing porphyrin, enhances the specific interaction between the apical UGU motif and the DGCR8 dimer, allowing Microprocessor to achieve high efficiency and fidelity of pri-miRNA processing in vitro. Furthermore, by generating a DGCR8 mutant cell line and carrying out rescue experiments, we discover that hemin preferentially stimulates the expression of miRNAs possessing the UGU motif, thereby conferring differential regulation of miRNA maturation. Our findings reveal the molecular action mechanism of hemin in pri-miRNA processing and establish a novel function of hemin in inducing specific RNA-protein interaction.

  15. Interfacing Optical Document Scanners: Principles and Practical Considerations.

    ERIC Educational Resources Information Center

    Krus, David J.; Kodimer, Dennis

    1987-01-01

    Handlers for interfacing the ScanTron and 2700 Optical Mark Readers with the IBM AT/XT/PC and Tandy 2000/1000/3000 iAPX 88/186/286 based computers were described. Differences between programing an RS232C serial port using BIOS interrupts and directly addressing the Motorola 8550 ART microprocessor were discussed. (Author/LMO)

  16. Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary

    1995-01-01

    Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.

  17. Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Kimmel, Mark; Rambo, Patrick; Broyles, Robin; Geissel, Matthias; Schwarz, Jens; Bellum, John; Atherton, Briggs

    2009-10-01

    To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandia's in-house meter-class coating capability.

  18. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  19. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  20. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  1. Optical system for the Protein Crystallisation Diagnostics Facility (PCDF) on board the ISS

    NASA Astrophysics Data System (ADS)

    Joannes, Luc; Dupont, Olivier; Dewandel, Jean-Luc; Ligot, Renaud; Algrain, Hervé

    2004-06-01

    The Protein Crystallisation Diagnostic Facility (PCDF) is a multi-user facility to study the protein crystallisation under the conditions of micro-gravity onboard the International Space Station (ISS) Columbus facility. Large size protein crystals will growth under reduced gravity in thermally controlled reactors. A combination of diagnostic tools like video system, microscope, interferometer, and light scattering device shall help to understand the growth phenomena. Common methods of protein crystallisation shall be performed in PCDF: Dialysis where the protein solution and the salt solution are separated by a semi-permeable membrane. Extended Length Dialysis Batch where the saturation to get crystals is achieved by changing the concentration of the protein in the sample liquid. The overall ESA project is leaded by EADS Space Transportation, Friedrichshafen, Germany. Lambda-X is responsible for the Optical System (OS), with Verhaert Design and Development as sub-contractor for the mechanical design. The OS includes different compact parts: Original illumination systems based on LEDs of difference colours; Quantitative Mach-Zehnder interferometers to measure the concentration distribution around crystals; Imaging assemblies to visualize the protein volume with different field of views. The paper concentrates on the description of each part, and in particular on the imaging assembly which allow switching from one field of view to another by passive elements only.

  2. MSFC Optical Metrology: A National Resource

    NASA Technical Reports Server (NTRS)

    Burdine, Robert

    1998-01-01

    A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.

  3. Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey.

    PubMed

    Seymour, Ron; Engbretson, Brenda; Kott, Karen; Ordway, Nathaniel; Brooks, Gary; Crannell, Jessica; Hickernell, Elise; Wheeler, Katie

    2007-03-01

    This study investigated energy expenditure and obstacle course negotiation between the C-leg and various non-microprocessor control (NMC) prosthetic knees and compared a quality of life survey (SF-36v2) of use of the C-leg to national norms. Thirteen subjects with unilateral limb loss (12 with trans-femoral and one with a knee disarticulation amputation) participated in the study. The mean age was 46 years, range 30-75. Energy expenditure using both the NMC and C-leg prostheses was measured at self-selected typical and fast walking paces on a motorized treadmill. Subjects were also asked to walk through a standardized walking obstacle course carrying a 4.5 kg (10 lb) basket and with hands free. Finally, the SF-36v2 was completed for subjects while using the C-leg. Statistically significant differences were found in oxygen consumption between prostheses at both typical and fast paces with the C-leg showing decreased values. Use of the C-leg resulted in a statistically significant decrease in the number of steps and time to complete the obstacle course. Scores on a quality of life index for subjects using the C-leg were above the mean for norms for limitation in the use of an arm or leg, equal to the mean for the general United States population for the physical component score and were above this mean for the mental component score. Based on oxygen consumption and obstacle course findings, the C-leg when compared to the NMC prostheses may provide increased functional mobility and ease of performance in the home and community environment. Questionnaire results suggest a minimal quality of life impairment when using a C-leg for this cohort of individuals with amputation.

  4. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the

  5. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  6. Alternative Controller for a Fiber-Optic Switch

    NASA Technical Reports Server (NTRS)

    Peters, Robert

    2007-01-01

    A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.

  7. Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers

    NASA Astrophysics Data System (ADS)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.

    1989-01-01

    analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.

  8. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.

    PubMed

    Bellemer, Clément; Bortolin-Cavaillé, Marie-Line; Schmidt, Ute; Jensen, Stig Mølgaard Rask; Kjems, Jørgen; Bertrand, Edouard; Cavaillé, Jérôme

    2012-06-01

    Nuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intranuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted chromosome 19 microRNA cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm. We report that a large fraction of Microprocessor concentrates onto unspliced C19MC pri-miRNA deposited in close proximity to their genes. Our live-cell imaging studies provide direct visual evidence that DGCR8 and Drosha are targeted post-transcriptionally to C19MC pri-miRNAs as a preformed complex but dissociate separately. These dynamics support the view that, upon pri-miRNA loading and most probably concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA.

  9. Fiber optics for propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1985-01-01

    In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.

  10. Loran-C digital word generator for use with a KIM-1 microprocessor system

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.

    1977-01-01

    The problem of translating the time of occurrence of received Loran-C pulses into a time, referenced to a particular period of occurrence is addressed and applied to the design of a digital word generator for a Loran-C sensor processor package. The digital information from this word generator is processed in a KIM-1 microprocessor system which is based on the MOS 6502 CPU. This final system will consist of a complete time difference sensor processor for determining position information using Loran-C charts. The system consists of the KIM-1 microprocessor module, a 4K RAM memory board, a user interface, and the Loran-C word generator.

  11. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  12. MicroShell Minimalist Shell for Xilinx Microprocessors

    NASA Technical Reports Server (NTRS)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  13. RS-600 programmable controller: Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Three identical microprocessor control subsystems were developed which can be used in heating, heating and cooling, and/or hot water systems for single family, multifamily, or commercial applications. The controller incorporates a low cost, highly reliable (all solid state) microprocessor which can be easily reprogrammed.

  14. Stability of nano-fluids and their use for thermal management of a microprocessor: an experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Shoukat, Ahmad Adnan; Shaban, Muhammad; Israr, Asif; Shah, Owaisur Rahman; Khan, Muhammad Zubair; Anwar, Muhammad

    2018-03-01

    We investigate the heat transfer effect of different types of Nano-fluids on the pin fin heat sinks used in computer's microprocessor. Nano-particles of Aluminum oxide have been used with volumetric concentrations of 0.002% and Silver oxide with volumetric concentrations of 0.001% in the base fluid of deionized water. We have also used Aluminum oxide with ethylene glycol at volumetric concentrations of 0.002%. We report the cooling rates of Nano-fluids for pin-fin heat to cool the microprocessor and compare these with the cooling rate of pure water. We use a microprocessor heat generator in this investigation. The base temperature is obtained using surface heater of power 130 W. The main purpose of this work is to minimize the base temperature, and increase the heat transfer rate of the water block and radiator. The temperature of the heat sink is maintained at 110 °C which is nearly equal to the observed computer microprocessor temperature. We also provide the base temperature at different Reynolds's number using the above mention Nano-fluids with different volumetric concentrations.

  15. Optical technology for flight control systems

    NASA Technical Reports Server (NTRS)

    Mayanagi, M.

    1986-01-01

    Optical applications to the flight control system including optical data bus, sensors, and transducers are analyzed. Examples of optical data bus include airborne light optical fiber technology (ALOFT), F-5E, YA-7D, MIL-STD-1553 fiber optic data bus and NAL-optic data bus. This NAL-optic data bus is applied to STOL, and its characteristics are stressed. Principles and advantages of optical pulse-digital transducers are discussed.

  16. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  17. Achieving High Performance on the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1998-01-01

    The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.

  18. An Ill-Structured PBL-Based Microprocessor Course without Formal Laboratory

    ERIC Educational Resources Information Center

    Kim, Jungkuk

    2012-01-01

    This paper introduces a problem-based learning (PBL) microprocessor application course designed according to the following strategies: 1) hands-on training without having a formal laboratory, and 2) intense student-centered cooperative learning through an ill-structured problem. PBL was adopted as the core educational technique of the course to…

  19. Optical measurement of propeller blade deflections in a spin facility

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Meyn, Erwin H.; Mehmed, Oral; Kurkov, Anatole P.

    1990-01-01

    A nonintrusive optical system for measuring propeller blade deflections has been used in the NASA Lewis dynamic spin facility. Deflection of points at the leading and trailing edges of a blade section can be obtained with a narrow light beam from a low power helium-neon laser. A system used to measure these deflections at three spanwise locations is described. Modifications required to operate the lasers in a near-vacuum environment are also discussed.

  20. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  1. A Low Noise, Microprocessor-Controlled, Internally Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Stewart, M. F.; Blakeslee, R. J.; Podgorny, s. J.; Christian, H. J.; Mach, D. M.; Bailey, J. C.; Daskar, D.

    2006-01-01

    This paper reports on a new generation of aircraft-based rotating-vane style electric field mills designed and built at NASA's Marshall Spaceflight Center. The mills have individual microprocessors that digitize the electric field signal at the mill and respond to commands from the data system computer. The mills are very sensitive (1 V/m per bit), have a wide dynamic range (115 dB), and are very low noise (+/-1 LSB). Mounted on an aircraft, these mills can measure fields from +/-1 V/m to +/-500 kV/m. Once-per-second commanding from the data collection computer to each mill allows for precise timing and synchronization. The mills can also be commanded to execute a self-calibration in flight, which is done periodically to monitor the status and health of each mill.

  2. Multi-functional optical signal processing using optical spectrum control circuit

    NASA Astrophysics Data System (ADS)

    Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2015-02-01

    Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.

  3. COED Transactions, Vol. XI, No. 12, December 1979. Some Alternate Applications of Microprocessor Trainers in Support of Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    Ways are described for the use of a microprocessor trainer in undergraduate laboratories. Listed are microcomputer applications that have been used as demonstrations and which provide signals for other experiments which are not related to microprocessors. Information and figures are provided for methods to do the following: direct generation of…

  4. Use of a Microprocessor to Implement an ADCCP Protocol (Federal Std-1003) Operating in the Unbalanced Normal Mode.

    DTIC Science & Technology

    1980-05-01

    andcoptrpormigfrteublne nra ls fpoeue nacrac with Federal Standard 1003 fTelecommunications: Synchronous Bit Oriented Data Link Control Procedures...and the higher level user. The solution to the producer/consumer problem involves the use of PASS and SICHAL primitives and event variables or... semaphores . The event variables have been defined for the LS-microprocessor interface as part of I-1 the internal registers that are included in the F6856

  5. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  6. Reproducible and efficient murine CNS gene delivery using a microprocessor-controlled injector.

    PubMed

    Brooks, A I; Halterman, M W; Chadwick, C A; Davidson, B L; Haak-Frendscho, M; Radel, C; Porter, C; Federoff, H J

    1998-04-30

    To develop a reproducible gene transfer method for the murine CNS we evaluated delivery of various gene vehicles using mechanical or manual stereotaxic intracranial inoculation. A microprocessor controlled microsyringe pump (The World Precision Instruments/UltraMicroPump) programmable for volume, rate and syringe size and designed to dispense nanoliter and picoliter volumes was compared to a standard manual deliver method. Gene transfer efficiency of two viral vectors, two synthetic cationic lipid molecules, and naked DNA were evaluated in mice injected unilaterally in two brain regions. Animals received 1 microl over 10 min. of either HSVlac (1 x 10(5) b.f.u), AdLac (1 x 10(5) p.f.u), Tfx-10 or Tfx-20 (2.6 microg DNA in 2.0 microl Tfx; 1:1 charge ratio of DNA to liposome), or naked DNA (HSVlac plasmid, 10 microg/microl). After 4 days, animals from each group were perfused and tissue prepared for X-gal histochemical detection of beta-galactosidase expression. Blue cells were observed in the HSV, Adenovirus, and Tfx-20 groups only at the injection site in animals injected using the UMP. Animals injected manually exhibited fewer blue cells and positive cells were not restricted to the injection site. To quantify expression, tissue punches harvested from the injection sites as well as other brain regions were analyzed using a chemiluminescent reporter assay to detect beta-galactosidase (Galacto-Light). These data indicated increased activity in all animals injected with a lacZ containing vector via the UMP as compared to manual delivery: A 41% increase in the expression levels of beta-gal in HSVlac infected animals (p = 0.0029); a 29% increase in Adlac infected animals (p = 0.01); a 56% increase in Tfx-10 transduced animals (p = 0.04); a 24% increase in Tfx-20 transduced animals (p = 0.01); and a 69% increase in naked DNA gene transfer (p = 0.05). Total beta-galactosidase activity was greatest in HSVlac infected mice followed by Adlac > Tfx-20 > Tfx-10 = naked DNA.

  7. Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function.

    PubMed

    Hu, Haixiang; Zhang, Xin; Ford, Virginia; Luo, Xiao; Qi, Erhui; Zeng, Xuefeng; Zhang, Xuejun

    2016-11-14

    Edge effect is regarded as one of the most difficult technical issues in a computer controlled optical surfacing (CCOS) process. Traditional opticians have to even up the consequences of the two following cases. Operating CCOS in a large overhang condition affects the accuracy of material removal, while in a small overhang condition, it achieves a more accurate performance, but leaves a narrow rolled-up edge, which takes time and effort to remove. In order to control the edge residuals in the latter case, we present a new concept of the 'heterocercal' tool influence function (TIF). Generated from compound motion equipment, this type of TIF can 'transfer' the material removal from the inner place to the edge, meanwhile maintaining the high accuracy and efficiency of CCOS. We call it the 'heterocercal' TIF, because of the inspiration from the heterocercal tails of sharks, whose upper lobe provides most of the explosive power. The heterocercal TIF was theoretically analyzed, and physically realized in CCOS facilities. Experimental and simulation results showed good agreement. It enables significant control of the edge effect and convergence of entire surface errors in large tool-to-mirror size-ratio conditions. This improvement will largely help manufacturing efficiency in some extremely large optical system projects, like the tertiary mirror of the Thirty Meter Telescope.

  8. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  9. Ultrafast optics. Ultrafast optical control by few photons in engineered fiber.

    PubMed

    Nissim, R; Pejkic, A; Myslivets, E; Kuo, B P; Alic, N; Radic, S

    2014-07-25

    Fast control of a strong optical beam by a few photons is an outstanding challenge that limits the performance of quantum sensors and optical processing devices. We report that a fast and efficient optical gate can be realized in an optical fiber that has been engineered with molecular-scale accuracy. Highly efficient, distributed phase-matched photon-photon interaction was achieved in the fiber with locally controlled, nanometer-scale core variations. A three-photon input was used to manipulate a Watt-scale beam at a speed exceeding 500 gigahertz. In addition to very fast beam control, the results provide a path to developing a new class of sensitive receivers capable of operating at very high rates. Copyright © 2014, American Association for the Advancement of Science.

  10. GPS/MEMS IMU/Microprocessor Board for Navigation

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  11. Fiber Optic Control System Integration program: for optical flight control system development

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Seal, Daniel W.

    1994-10-01

    Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.

  12. Transient fault behavior in a microprocessor: A case study

    NASA Technical Reports Server (NTRS)

    Duba, Patrick

    1989-01-01

    An experimental analysis is described which studies the susceptibility of a microprocessor based jet engine controller to upsets caused by current and voltage transients. A design automation environment which allows the run time injection of transients and the tracing from their impact device to the pin level is described. The resulting error data are categorized by the charge levels of the injected transients by location and by their potential to cause logic upsets, latched errors, and pin errors. The results show a 3 picoCouloumb threshold, below which the transients have little impact. An Arithmetic and Logic Unit transient is most likely to result in logic upsets and pin errors (i.e., impact the external environment). The transients in the countdown unit are potentially serious since they can result in latched errors, thus causing latent faults. Suggestions to protect the processor against these errors, by incorporating internal error detection and transient suppression techniques, are also made.

  13. Analysis of inadvertent microprocessor lag time on eddy covariance results

    Treesearch

    Karl Zeller; Gary Zimmerman; Ted Hehn; Evgeny Donev; Diane Denny; Jeff Welker

    2001-01-01

    Researchers using the eddy covariance approach to measuring trace gas fluxes are often hoping to measure carbon dioxide and energy fluxes for ecosystem intercomparisons. This paper demonstrates a systematic microprocessor- caused lag of 20.1 to 20.2 s in a commercial sonic anemometer-analog-to-digital datapacker system operated at 10 Hz. The result of the inadvertent...

  14. Control methodologies for large space structures

    NASA Technical Reports Server (NTRS)

    Mcree, G. J.; Altonji, E.

    1984-01-01

    The objectives of this research were to develop techniques of controlling a dc-motor driven flywheel which would apply torque to the structure to which it was mounted. The motor control system was to be implemented using a microprocessor based controller. The purpose of the torque applied by this system was to dampen oscillations of the structure to which it was mounted. Before the work was terminated due to the unavailability of equipment, a system was developed and partially tested which would provide tight control of the flywheel velocity when it received a velocity command in the form of a voltage. The procedure followed in this development was to first model the motor and flywheel system on an analog computer. Prior to the time the microprocessor development system was available, an analog control loop was replaced by the microprocessor and the system was partially tested.

  15. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, D; Churby, A; Krieger, E

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtualmore » model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.« less

  16. Clinical evaluation of the Jay Sensitivity Sensor Probe: a new microprocessor-controlled instrument to evaluate dentin hypersensitivity.

    PubMed

    Sowinski, Joseph A; Kakar, Ashish; Kakar, Kanupriya

    2013-05-01

    To compare the Jay Sensitivity Sensor Probe (Jay Probe), a new microprocessor-based, pre-calibrated instrument, with well accepted methods used to evaluate sensitivity, i.e. tactile response to the Yeaple Probe, air blast (Schiff scale), and patient responses by Visual Analog Score (VAS). Jay Probe assessments were accomplished using several approaches. With a cohort of 12 subjects, two clinical examiners compared the repeatability of the Jay and Yeaple Probes. A second evaluation of both probes was conducted during two independent parallel design clinical studies each enrolling 100 adults with dentin hypersensitivity (DH). In each study, subjects were evaluated for DH responses after twice daily oral hygiene with a negative control fluoride dentifrice or a positive control dentifrice formulated with ingredients proven to reduce sensitivity, i.e. potassium nitrate or 8.0% arginine with calcium carbonate. Tactile evaluations by the Jay and Yeaple Probes were conducted at baseline and recall visits over the 8-week duration of each study. Also evaluated at each visit were responses to air blast and to patient reported DH assessment by VAS. Low inter-examiner variability with no significant differences between replicate measurements (P > 0.05) was observed with the Jay Probe. Consistent with results from previous studies, subjects assigned dentifrices formulated with potassium nitrate or 8% arginine/calcium carbonate demonstrated improvements in Yeaple, air blast and VAS responses in comparison to those assigned the fluoride dentifrice (P < 0.05). Jay Probe responses correlated significantly with all other sensitivity measures (P < 0.05). Differences between these treatments were observed at all post-treatment evaluations using these methods.

  17. Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane

    PubMed Central

    Tan, Qiulin; Pei, Xiangdong; Zhu, Simin; Sun, Dong; Liu, Jun; Xue, Chenyang; Liang, Ting; Zhang, Wendong; Xiong, Jijun

    2013-01-01

    In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal), the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements. PMID:23539025

  18. 7 CFR 1726.176 - Communications and control facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Communications and control facilities. 1726.176... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.176 Communications and control facilities. This section covers the purchase of microwave and power...

  19. Quasi-elastic light scattering: Signal storage, correlation, and spectrum analysis under control of an 8-bit microprocessor

    NASA Astrophysics Data System (ADS)

    Glatter, Otto; Fuchs, Heribert; Jorde, Christian; Eigner, Wolf-Dieter

    1987-03-01

    The microprocessor of an 8-bit PC system is used as a central control unit for the acquisition and evaluation of data from quasi-elastic light scattering experiments. Data are sampled with a width of 8 bits under control of the CPU. This limits the minimum sample time to 20 μs. Shorter sample times would need a direct memory access channel. The 8-bit CPU can address a 64-kbyte RAM without additional paging. Up to 49 000 sample points can be measured without interruption. After storage, a correlation function or a power spectrum can be calculated from such a primary data set. Furthermore access is provided to the primary data for stability control, statistical tests, and for comparison of different evaluation methods for the same experiment. A detailed analysis of the signal (histogram) and of the effect of overflows is possible and shows that the number of pulses but not the number of overflows determines the error in the result. The correlation function can be computed with reasonable accuracy from data with a mean pulse rate greater than one, the power spectrum needs a three times higher pulse rate for convergence. The statistical accuracy of the results from 49 000 sample points is of the order of a few percent. Additional averages are necessary to improve their quality. The hardware extensions for the PC system are inexpensive. The main disadvantage of the present system is the high minimum sampling time of 20 μs and the fact that the correlogram or the power spectrum cannot be computed on-line as it can be done with hardware correlators or spectrum analyzers. These shortcomings and the storage size restrictions can be removed with a faster 16/32-bit CPU.

  20. Fiber-optic beam control systems using microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby

  1. The MOS silicon gate technology and the first microprocessors

    NASA Astrophysics Data System (ADS)

    Faggin, F.

    2015-12-01

    Today we are so used to the enormous capabilities of microelectronics that it is hard to imagine what it might have been like in the early Sixties and Seventies when much of the technology we use today was being developed. This paper will first present a brief history of microelectronics and computers, taking us to the threshold of the inventions of the MOS silicon gate technology and the microprocessor. These two creations provided the basic technology that would allow only a few years later to merge microelectronics and computers into the first commercial monolithic computer. By the late Seventies, the first monolithic computer weighting less than one gram, occupying a volume of less than one cubic centimeter, dissipating less than one Watt, and selling for less than ten dollars, could perform more information processing than the UNIVAC I, the first commercial electronic computer introduced in 1951, made with 5200 vacuum tubes, dissipating 125kW, weighting 13 metric tons, occupying a room larger than 35m2, and selling for more than one million dollars per unit. The first-person story of the SGT and the early microprocessors will be told by the Italian-born physicist who led both projects.

  2. A GaAs vector processor based on parallel RISC microprocessors

    NASA Astrophysics Data System (ADS)

    Misko, Tim A.; Rasset, Terry L.

    A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.

  3. Satisfying STEM Education Using the Arduino Microprocessor in C Programming

    NASA Astrophysics Data System (ADS)

    Hoffer, Brandyn M.

    There exists a need to promote better Science Technology Engineering and Math (STEM) education at the high school level. To satisfy this need a series of hands-on laboratory assignments were created to be accompanied by 2 educational trainers that contain various electronic components. This project provides an interdisciplinary, hands-on approach to teaching C programming that meets several standards defined by the Tennessee Board of Education. Together the trainers and lab assignments also introduce key concepts in math and science while allowing students hands-on experience with various electronic components. This will allow students to mimic real world applications of using the C programming language while exposing them to technology not currently introduced in many high school classrooms. The developed project is targeted at high school students performing at or above the junior level and uses the Arduino Mega open-source Microprocessor and software as the primary control unit.

  4. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  5. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  6. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  7. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  8. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  9. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  10. Special purpose parallel computer architecture for real-time control and simulation in robotic applications

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1993-01-01

    This is a real-time robotic controller and simulator which is a MIMD-SIMD parallel architecture for interfacing with an external host computer and providing a high degree of parallelism in computations for robotic control and simulation. It includes a host processor for receiving instructions from the external host computer and for transmitting answers to the external host computer. There are a plurality of SIMD microprocessors, each SIMD processor being a SIMD parallel processor capable of exploiting fine grain parallelism and further being able to operate asynchronously to form a MIMD architecture. Each SIMD processor comprises a SIMD architecture capable of performing two matrix-vector operations in parallel while fully exploiting parallelism in each operation. There is a system bus connecting the host processor to the plurality of SIMD microprocessors and a common clock providing a continuous sequence of clock pulses. There is also a ring structure interconnecting the plurality of SIMD microprocessors and connected to the clock for providing the clock pulses to the SIMD microprocessors and for providing a path for the flow of data and instructions between the SIMD microprocessors. The host processor includes logic for controlling the RRCS by interpreting instructions sent by the external host computer, decomposing the instructions into a series of computations to be performed by the SIMD microprocessors, using the system bus to distribute associated data among the SIMD microprocessors, and initiating activity of the SIMD microprocessors to perform the computations on the data by procedure call.

  11. A novel role for GSK3β as a modulator of Drosha microprocessor activity and MicroRNA biogenesis.

    PubMed

    Fletcher, Claire E; Godfrey, Jack D; Shibakawa, Akifumi; Bushell, Martin; Bevan, Charlotte L

    2016-10-23

    Regulation of microRNA (miR) biogenesis is complex and stringently controlled. Here, we identify the kinase GSK3β as an important modulator of miR biogenesis at Microprocessor level. Repression of GSK3β activity reduces Drosha activity toward pri-miRs, leading to accumulation of unprocessed pri-miRs and reduction of pre-miRs and mature miRs without altering levels or cellular localisation of miR biogenesis proteins. Conversely, GSK3β activation increases Drosha activity and mature miR accumulation. GSK3β achieves this through promoting Drosha:cofactor and Drosha:pri-miR interactions: it binds to DGCR8 and p72 in the Microprocessor, an effect dependent upon presence of RNA. Indeed, GSK3β itself can immunoprecipitate pri-miRs, suggesting possible RNA-binding capacity. Kinase assays identify the mechanism for GSK3β-enhanced Drosha activity, which requires GSK3β nuclear localisation, as phosphorylation of Drosha at S 300 and/or S 302 ; confirmed by enhanced Drosha activity and association with cofactors, and increased abundance of mature miRs in the presence of phospho-mimic Drosha. Functional implications of GSK3β-enhanced miR biogenesis are illustrated by increased levels of GSK3β-upregulated miR targets following GSK3β inhibition. These data, the first to link GSK3β with the miR cascade in humans, highlight a novel pro-biogenesis role for GSK3β in increasing miR biogenesis as a component of the Microprocessor complex with wide-ranging functional consequences. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. A Systematic Methodology for Verifying Superscalar Microprocessors

    NASA Technical Reports Server (NTRS)

    Srivas, Mandayam; Hosabettu, Ravi; Gopalakrishnan, Ganesh

    1999-01-01

    We present a systematic approach to decompose and incrementally build the proof of correctness of pipelined microprocessors. The central idea is to construct the abstraction function by using completion functions, one per unfinished instruction, each of which specifies the effect (on the observables) of completing the instruction. In addition to avoiding the term size and case explosion problem that limits the pure flushing approach, our method helps localize errors, and also handles stages with interactive loops. The technique is illustrated on pipelined and superscalar pipelined implementations of a subset of the DLX architecture. It has also been applied to a processor with out-of-order execution.

  13. Facile Synthesis and Optical Properties of Small Selenium Nanocrystals and Nanorods

    NASA Astrophysics Data System (ADS)

    Jiang, Fengrui; Cai, Weiquan; Tan, Guolong

    2017-06-01

    Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

  14. A statistical method for determining the dimensions, tolerances and specification of optics for the Laser Megajoule facility (LMJ)

    NASA Astrophysics Data System (ADS)

    Denis, Vincent

    2008-09-01

    This paper presents a statistical method for determining the dimensions, tolerance and specifications of components for the Laser MegaJoule (LMJ). Numerous constraints inherent to a large facility require specific tolerances: the huge number of optical components; the interdependence of these components between the beams of same bundle; angular multiplexing for the amplifier section; distinct operating modes between the alignment and firing phases; the definition and use of alignment software in the place of classic optimization. This method provides greater flexibility to determine the positioning and manufacturing specifications of the optical components. Given the enormous power of the Laser MegaJoule (over 18 kJ in the infrared and 9 kJ in the ultraviolet), one of the major risks is damage the optical mounts and pollution of the installation by mechanical ablation. This method enables estimation of the beam occultation probabilities and quantification of the risks for the facility. All the simulations were run using the ZEMAX-EE optical design software.

  15. FAME, a microprocessor based front-end analysis and modeling environment

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. D.; Kutin, E. B.

    1980-01-01

    Higher order software (HOS) is a methodology for the specification and verification of large scale, complex, real time systems. The HOS methodology was implemented as FAME (front end analysis and modeling environment), a microprocessor based system for interactively developing, analyzing, and displaying system models in a low cost user-friendly environment. The nature of the model is such that when completed it can be the basis for projection to a variety of forms such as structured design diagrams, Petri-nets, data flow diagrams, and PSL/PSA source code. The user's interface with the analyzer is easily recognized by any current user of a structured modeling approach; therefore extensive training is unnecessary. Furthermore, when all the system capabilities are used one can check on proper usage of data types, functions, and control structures thereby adding a new dimension to the design process that will lead to better and more easily verified software designs.

  16. Wavefront control of large optical systems

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Breckinridge, J. B.

    1990-01-01

    Several levels of wavefront control are necessary for the optimum performance of very large telescopes, especially segmented ones like the Large Deployable Reflector. In general, the major contributors to wavefront error are the segments of the large primary mirror. Wavefront control at the largest optical surface may not be the optimum choice because of the mass and inaccessibility of the elements of this surface that require upgrading. The concept of two-stage optics was developed to permit a poor wavefront from the large optics to be upgraded by means of a wavefront corrector at a small exit pupil of the system.

  17. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  18. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  19. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  20. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  1. Radiation Test Results for Common CubeSat Microcontrollers and Microprocessors

    NASA Technical Reports Server (NTRS)

    Guertin, Steven M.; Amrbar, Mehran; Vartanian, Sergeh

    2015-01-01

    SEL, SEU, and TID results are presented for microcontrollers and microprocessors of interest for small satellite systems such as the TI MSP430F1611, MSP430F1612 and MSP430FR5739, Microchip PIC24F256GA110 and dsPIC33FJ256GP710, Atmel AT91SAM9G20, and Intel Atom E620T, and the Qualcomm Snapdragon APQ8064.

  2. TREAT Reactor Control and Protection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS).more » The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab.« less

  3. Evolution of a standard microprocessor-based space computer

    NASA Technical Reports Server (NTRS)

    Fernandez, M.

    1980-01-01

    An existing in inventory computer hardware/software package (B-1 RFS/ECM) was repackaged and applied to multiple missile/space programs. Concurrent with the application efforts, low risk modifications were made to the computer from program to program to take advantage of newer, advanced technology and to meet increasingly more demanding requirements (computational and memory capabilities, longer life, and fault tolerant autonomy). It is concluded that microprocessors hold promise in a number of critical areas for future space computer applications. However, the benefits of the DoD VHSIC Program are required and the old proliferation problem must be revised.

  4. Team processes in airway facilities operations control centers.

    DOT National Transportation Integrated Search

    2000-07-01

    In October 2000, the Airway Facilities organization plans to transition the National Airspace System (NAS) monitoring responsibilities to three regional Operations Control Centers (OCCs). Teams in these facilities will be different from those that cu...

  5. All-optical 4-bit binary to binary coded decimal converter with the help of semiconductor optical amplifier-assisted Sagnac switch

    NASA Astrophysics Data System (ADS)

    Bhattachryya, Arunava; Kumar Gayen, Dilip; Chattopadhyay, Tanay

    2013-04-01

    All-optical 4-bit binary to binary coded decimal (BCD) converter has been proposed and described, with the help of semiconductor optical amplifier (SOA)-assisted Sagnac interferometric switches in this manuscript. The paper describes all-optical conversion scheme using a set of all-optical switches. BCD is common in computer systems that display numeric values, especially in those consisting solely of digital logic with no microprocessor. In many personal computers, the basic input/output system (BIOS) keep the date and time in BCD format. The operations of the circuit are studied theoretically and analyzed through numerical simulations. The model accounts for the SOA small signal gain, line-width enhancement factor and carrier lifetime, the switching pulse energy and width, and the Sagnac loop asymmetry. By undertaking a detailed numerical simulation the influence of these key parameters on the metrics that determine the quality of switching is thoroughly investigated.

  6. Plum Brook Reactor Facility Control Room during Facility Startup

    NASA Image and Video Library

    1961-02-21

    Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.

  7. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.

    PubMed

    Schmalz, Thomas; Pröbsting, Eva; Auberger, Roland; Siewert, Gordon

    2016-04-01

    The microprocessor-controlled leg orthosis C-Brace enables patients with paretic or paralysed lower limb muscles to use dampened knee flexion under weight-bearing and speed-adapted control of the swing phase. The objective of the present study was to investigate the new technical functions of the C-Brace orthosis, based on biomechanical parameters. The study enrolled six patients. The C-Brace orthosis is compared with conventional leg orthoses (four stance control orthoses, two locked knee-ankle-foot orthoses) using biomechanical parameters of level walking, descending ramps and descending stairs. Ground reaction forces, joint moments and kinematic parameters were measured for level walking as well as ascending and descending ramps and stairs. With the C-Brace, a nearly natural stance phase knee flexion was measured during level walking (mean value 11° ± 5.6°). The maximum swing phase knee flexion angle of the C-Brace approached the normal value of 65° more closely than the stance control orthoses (66° ± 8.5° vs 74° ± 6.4°). No significant differences in the joint moments were found between the C-Brace and stance control orthosis conditions. In contrast to the conventional orthoses, all patients were able to ambulate ramps and stairs using a step-over-step technique with C-Brace (flexion angle 64.6° ± 8.2° and 70.5° ± 12.4°). The results show that the functions of the C-Brace for situation-dependent knee flexion under weight bearing have been used by patients with a high level of confidence. The functional benefits of the C-Brace in comparison with the conventional orthotic mechanisms could be demonstrated most clearly for descending ramps and stairs. The C-Brace orthosis is able to combine improved orthotic function with sustained orthotic safety. © The International Society for Prosthetics and Orthotics 2014.

  8. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  9. Optical characterization of contaminant film. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian K.; Yaung, James Y.; Kosic, Tom; Bowen, Howard

    1992-01-01

    The so called 'nicotine stain' documented at many locations on the Long Duration Exposure Facility is still unexplained as to the exact origin and mechanism of deposition, although enough is known to have some understanding of the conditions coincident for the formation of the deposits. Direct and scattered atomic oxygen flux, and solar ultraviolet radiation interacting with materials outgassing products have all been implicated in the formation of the dark brown contamination deposits. The nicotine stain represents a potential of performance degradation for spacecraft designed for long term operation in low Earth orbit and therefore, a need exists to characterize this form of spacecraft self contamination and quantify the impact on thermal/optical systems. Optical property measurements in the spectral range of 2 to 10 microns were performed on specimens of the contaminated film. Reflectance measurements of the contaminant film as deposited on the surface and as free standing films are presented along with transmission spectra for the bulk material. Thickness measurements along with micrographic examination of the cross section of the deposit reveal the layered structure of the deposit which further implicates solar illumination as a factor in the deposition mechanism.

  10. Optically-based Sensor System for Critical Nuclear Facilities Post-Event Seismic Structural Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, David; Petrone, Floriana; Buckle, Ian

    The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regionsmore » with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.« less

  11. Astrophysical Research Consortium Telescope Imaging Camera (ARCTIC) facility optical imager for the Apache Point Observatory 3.5m telescope

    NASA Astrophysics Data System (ADS)

    Huehnerhoff, Joseph; Ketzeback, William; Bradley, Alaina; Dembicky, Jack; Doughty, Caitlin; Hawley, Suzanne; Johnson, Courtney; Klaene, Mark; Leon, Ed; McMillan, Russet; Owen, Russell; Sayres, Conor; Sheen, Tyler; Shugart, Alysha

    2016-08-01

    The Astrophysical Research Consortium Telescope Imaging Camera, ARCTIC, is a new optical imaging camera now in use at the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory (APO). As a facility instrument, the design criteria broadly encompassed many current and future science opportunities, and the components were built for quick repair or replacement, to minimize down-time. Examples include a quick change shutter, filter drive components accessible from the exterior and redundant amplifiers on the detector. The detector is a Semiconductor Technology Associates (STA) device with several key properties (e.g. high quantum efficiency, low read-noise, quick readout, minimal fringing, operational bandpass 350-950nm). Focal reducing optics (f/10.3 to f/8.0) were built to control aberrations over a 7.8'x7.8' field, with a plate scale of 0.11" per 0.15 micron pixel. The instrument body and dewar were designed to be simple and robust with only two components to the structure forward of the dewar, which in turn has minimal feedthroughs and permeation areas and holds a vacuum <10-8 Torr. A custom shutter was also designed, using pneumatics as the driving force. This device provides exceptional performance and reduces heat near the optical path. Measured performance is repeatable at the 2ms level and offers field uniformity to the same level of precision. The ARCTIC facility imager will provide excellent science capability with robust operation and minimal maintenance for the next decade or more at APO.

  12. Three-parameter optical studies in Scottish coastal waters

    NASA Astrophysics Data System (ADS)

    McKee, David; Cunningham, Alex; Jones, Ken

    1997-02-01

    A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.

  13. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  14. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps.

    PubMed

    Lura, Derek J; Wernke, Matthew M; Carey, Stephanie L; Kahle, Jason T; Miro, Rebecca M; Highsmith, M Jason

    2015-02-01

    Microprocessor knees have improved the gait and functional abilities of persons with transfemoral amputation. The Genium prosthetic knee offers an advanced sensor and control system designed to decrease impairment by: allowing greater stance phase flexion, easing transitions between gait phases, and compensating for changes in terrain. The aim of this study was to determine differences between the knee flexion angle of persons using the Genium knee, the C-Leg knee, and non-amputee controls; and to evaluate the impact the prostheses on gait and level of impairment of the user. This study used a randomized experimental crossover of persons with transfemoral amputation using the Genium and C-Leg microprocessor knees (n=25), with an observational sample of non-amputee controls (n=5). Gait analysis by 3D motion tracking of subjects ambulating at different speeds on level ground and on 5° and 10° ramps was completed. Use of the Genium resulted in a significant increase in peak knee flexion for swing (5°, p<0.01, d=0.34) and stance (2°, p<0.01, d=0.19) phases relative to C-Leg use. There was a high degree of variability between subjects, and significant differences still remain between the Genium group and the control group's knee flexion angles for most speeds and slopes. The Genium knee generally increases flexion in swing and stance, potentially decreasing the level of impairment for persons with transfemoral amputation. This study demonstrates functional differences between the C-Leg and Genium knees to help prosthetists determine if the Genium will provide functional benefits to individual patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. KENNEDY SPACE CENTER, FLA. - In KSC's Vertical Processing Facility, Louise Kleba of the Vehicle Integration Test Team (VITT) and engineer Devin Tailor of Goddard Space Flight Center examine the Pistol Grip Tool (PGT), which was designed for use by astronauts during spacewalks. The PGT is a self-contained, micro-processor controlled, battery-powered tool. It also can be used as a nonpowered ratchet wrench. The experiences of the astronauts on the first Hubble Space Telescope (HST) servicing mission led to recommendations for this smaller, more efficient tool for precision work during spacewalks. The PGT will be used on the second HST servicing mission, STS-82. Liftoff aboard Discovery is scheduled Feb. 11.

    NASA Image and Video Library

    1997-01-22

    KENNEDY SPACE CENTER, FLA. - In KSC's Vertical Processing Facility, Louise Kleba of the Vehicle Integration Test Team (VITT) and engineer Devin Tailor of Goddard Space Flight Center examine the Pistol Grip Tool (PGT), which was designed for use by astronauts during spacewalks. The PGT is a self-contained, micro-processor controlled, battery-powered tool. It also can be used as a nonpowered ratchet wrench. The experiences of the astronauts on the first Hubble Space Telescope (HST) servicing mission led to recommendations for this smaller, more efficient tool for precision work during spacewalks. The PGT will be used on the second HST servicing mission, STS-82. Liftoff aboard Discovery is scheduled Feb. 11.

  16. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  17. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE PAGES

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; ...

    2015-04-30

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  18. Optical-to-Tactile Translator

    NASA Technical Reports Server (NTRS)

    Langevin, Maurice L. (Inventor); Moynihan, Philip I. (Inventor)

    2000-01-01

    An optical-to-tactile translator provides an aid for the visually impaired by translating a near-field scene to a tactile signal corresponding to said near-field scene. An optical sensor using a plurality of active pixel sensors (APS) converts the optical image within the near-field scene to a digital signal. The digital signal is then processed by a microprocessor and a simple shape signal is generated based on the digital signal. The shape signal is then communicated to a tactile transmitter where the shape signal is converted into a tactile signal using a series of contacts. The shape signal may be an outline of the significant shapes determined in the near-field scene, or the shape signal may comprise a simple symbolic representation of common items encountered repeatedly. The user is thus made aware of the unseen near-field scene, including potential obstacles and dangers, through a series of tactile contacts. In a preferred embodiment, a range determining device such as those commonly found on auto-focusing cameras is included to limit the distance that the optical sensor interprets the near-field scene.

  19. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    PubMed

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  20. Design of a safe facility for the metalorganic chemical vapor deposition of high-purity GaAs and AlGaAs

    NASA Astrophysics Data System (ADS)

    Messham, R. L.; Tucker, W. K.

    1986-09-01

    A metalorganic chemical vapor deposition (MOCVD) facility designed to safely handle highly toxic and pyrophoric growth materials is described. The system concept is based on remote operation, passive flow restriction, and forced air dilution to maintain safe gas concentrations under normal running and catastrophic system failure conditions. MOCVD is a key materials technology for advanced high-frequency optical and microwave devices. At this time, the use of highly toxic arsine as an arsenic source is dictated by critical device purity, reproducibility, and doping control requirements. The handling and use of this gas is a primary feature in the design of any safe facility for MOCVD growth of high-quality GaAs/AlGaAs. After a critical review of presently available effluent treatment techniques, it was concluded that a combination of flow restriction and dilution presented the most reliable treatment. Measured flow rates through orifices from 0.002 to 0.005 inch in diameter were compared to calculated values. A 0.002 inch orifice located in the cylinder valve or CGA fitting, combined with a cylinder of pure liquid arsine (205 psi), limits the maximum gas flow to ≪1 lpm. Such a flow can then be vented through a dedicated exhaust system where an additional forced injection of diluting air reduces the gas concentration to acceptable levels. In the final Westinghouse R&D Center design, the use of low-pressure pure arsine, flow restriction, and stack air injection has reduced the maximum stack exist gas concentration to below 25% of the IDLH level for arsine under total and catastrophic MOCVD facility equipment failure conditions. The elimination of potential problems with purging behind such orifices using carefully designed purging procedures and a microprocessor-controlled purging system are described. The IDLH level is defined by the OSHA and NIOSH standards completion program and represents the maximum level from which one could escape within 30 min without any

  1. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is

  2. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.

    PubMed

    Burnfield, Judith M; Eberly, Valerie J; Gronely, Joanne K; Perry, Jacquelin; Yule, William Jared; Mulroy, Sara J

    2012-03-01

    Microprocessor controlled prosthetic knees (MPK) offer opportunities for improved walking stability and function, but some devices' swing phase features may exceed needs of users with invariable cadence. One MPK offers computerized control of only stance (C-Leg Compact). To assess Medicare Functional Classification Level K2 walkers' ramp negotiation performance, function and balance while using a non-MPK (NMPK) compared to the C-Leg Compact. Crossover. Gait while ascending and descending a ramp (stride characteristics, kinematics, electromyography) and function were assessed in participant's existing NMPK and again in the C-Leg Compact following accommodation. Ramp ascent and descent were markedly faster in the C-Leg Compact compared to the NMPK (p ≤ 0.006), owing to increases in stride length (p ≤ 0.020) and cadence (p ≤ 0.020). Residual limb peak knee flexion and ankle dorsiflexion were significantly greater (12.9° and 4.9° more, respectively) during single limb support while using the C-Leg Compact to descend ramps. Electromyography (mean, peak) did not differ significantly between prosthesis. Function improved in the C-Leg Compact as evidenced by a significantly faster Timed Up and Go and higher functional questionnaire scores. Transfemoral K2 walkers exhibited significantly improved function and balance while using the stance-phase only MPK compared to their traditional NMPK.

  3. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  4. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  5. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  6. Microprocessor implementation of an FFT for ionospheric VLF observations

    NASA Technical Reports Server (NTRS)

    Elvidge, J.; Kintner, P.; Holzworth, R.

    1984-01-01

    A fast Fourier transform algorithm is implemented on a CMOS microprocessor for application to very low-frequency electric fields (less than 10 kHz) sensed on high-altitude scientific balloons. Two FFT's are calculated simultaneously by associating them with conjugate symmetric and conjugate antisymmetric results. One goal of the system was to detect spectral signatures associated with fast time variations present in natural signals such as whistlers and chorus. Although a full evaluation of the system was not possible for operational reasons, a measure of the system's success has been defined and evaluated.

  7. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.

    PubMed

    Liu, Yichao; Sun, Fei; He, Sailing

    2018-01-11

    In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.

  8. Real-time optical signal processors employing optical feedback: amplitude and phase control.

    PubMed

    Gallagher, N C

    1976-04-01

    The development of real-time coherent optical signal processors has increased the appeal of optical computing techniques in signal processing applications. A major limitation of these real-time systems is the. fact that the optical processing material is generally of a phase-only type. The result is that the spatial filters synthesized with these systems must be either phase-only filters or amplitude-only filters. The main concern of this paper is the application of optical feedback techniques to obtain simultaneous and independent amplitude and phase control of the light passing through the system. It is shown that optical feedback techniques may be employed with phase-only spatial filters to obtain this amplitude and phase control. The feedback system with phase-only filters is compared with other feedback systems that employ combinations of phase-only and amplitude-only filters; it is found that the phase-only system is substantially more flexible than the other two systems investigated.

  9. Coed Transactions, Vol. XI, No. 1, January 1979. Microprocessor Course Development Equipment Selection.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.; Leventhal, Lance A.

    Many devices and systems related to microprocessors are available on the marketplace. The author suggests that criteria for selecting and designing workstations and development systems are necessary. Seventeen important factors of designing workstations and six desirable features of a development system are presented. The kinds of places in which…

  10. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  11. A microprocessor-based automation test system for the experiment of the multi-stage compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Lin, Chongping

    1991-08-01

    An automation test system that is controlled by the microprocessor and used in the multistage compressor experiment is described. Based on the analysis of the compressor experiment performances, a complete hardware system structure is set up. It is composed of a IBM PC/XT computer, a large scale sampled data system, the moving machine with three directions, the scanners, the digital instrumentation and some output devices. A program structure of real-time software system is described. The testing results show that this test system can take the measure of many parameter magnitudes in the blade row places and on a boundary layer in different states. The automatic extent and the accuracy of experiment is increased and the experimental cost is reduced.

  12. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  13. Modulation of Defects in Semiconductors by Facile and Controllable Reduction: The Case of p-type CuCrO2 Nanoparticles.

    PubMed

    Jiang, Tengfei; Li, Xueyan; Bujoli-Doeuff, Martine; Gautron, Eric; Cario, Laurent; Jobic, Stéphane; Gautier, Romain

    2016-08-01

    Optical and electrical characteristics of solid materials are well-known to be intimately related to the presence of intrinsic or extrinsic defects. Hence, the control of defects in semiconductors is of great importance to achieve specific properties, for example, transparency and conductivity. Herein, a facile and controllable reduction method for modulating the defects is proposed and used for the case of p-type delafossite CuCrO2 nanoparticles. The optical absorption in the infrared region of the CuCrO2 material can then be fine-tuned via the continuous reduction of nonstoichiometric Cu(II), naturally stabilized in small amounts. This reduction modifies the concentration of positive charge carriers in the material, and thus the conductive and reflective properties, as well as the flat band potential. Indeed, this controllable reduction methodology provides a novel strategy to modulate the (opto-) electronic characteristics of semiconductors.

  14. Role of optical computers in aeronautical control applications

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.

  15. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  16. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food-packaging materials, or for employee sanitary facilities. (b) Plumbing. Plumbing shall be of... understandable signs directing employees handling unproteced food, unprotected food-packaging materials, of food... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sanitary facilities and controls. 110.37 Section...

  17. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN FOOD Buildings and Facilities § 110.37 Sanitary facilities and controls. Each plant shall be... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste from the plant. (3) Avoid constituting a source of contamination to food, water supplies, equipment, or...

  18. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN FOOD Buildings and Facilities § 110.37 Sanitary facilities and controls. Each plant shall be... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste from the plant. (3) Avoid constituting a source of contamination to food, water supplies, equipment, or...

  19. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN FOOD Buildings and Facilities § 110.37 Sanitary facilities and controls. Each plant shall be... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste from the plant. (3) Avoid constituting a source of contamination to food, water supplies, equipment, or...

  20. A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Wey, Chowen C.; Bianco, Jean

    1995-01-01

    A facility that allows interrogation of combusting flows by advanced diagnostic methods and instrumentation has been developed at the NASA Lewis Research Center. An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67% optical access to the 7.6 cm x 7.6 cm cross section flow chamber. Advanced gas analysis instrumentation is available through a gas chromatography/mass spectrometer system (GC/MS), which has on-line capability for heavy hydrocarbon measurement with resolution to the parts per billion level. The instrumentation allows one to study combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. Planar Laser Induced Fluorescence (PLIF) can measure unstable combustion species, which cannot be obtained with traditional gas sampling. This type of data is especially useful to combustion modellers. The optical access allows measurements to have high spatial and temporal resolution. GC/MS data and PLIF images of OH- are presented from experiments using a lean direct injection (LDI) combustor burning Jet-A fuel at inlet temperatures ranging from 810 K to 866 K, combustor pressures up to 1380 kPa, and equivalence ratios from 0.41 to 0.59.

  1. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  2. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  3. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  4. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  5. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  6. Programmable calculator as a data system controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.W.; Strasburg, A.C.

    Digital data techniques are in common use for analysis of analog information obtained in various tests, and systems have been developed which use a minicomputer as the central controller and data processor. Now, microprocessors allow new design approaches at considerably less cost. This report outlines an approach to system design based on the use of a programmable calculator as the data system controller. A block diagram of the calculator-controlled data system is shown. It was found that the programmable calculator provides a viable alternative to minicomputers or microprocessors for the development laboratory requiring digital data processing. 3 figures. (RWR)

  7. First results concerning the safety, walking, and satisfaction with an innovative, microprocessor-controlled four-axes prosthetic foot.

    PubMed

    Hahn, Andreas; Sreckovic, Ivana; Reiter, Sebastian; Mileusnic, Milana

    2018-06-01

    The microprocessor-controlled foot Meridium is a prosthetic component with adjustable stance-phase characteristics. To investigate subjects' and prosthetists' perception of safety, walking, and satisfaction during first routine fittings. Multicenter, prospective, observational cohort study. Data regarding demographics, fitting process, safety, daily life activities, and satisfaction were obtained through questionnaires. The follow-up period was 7 months. In all, 89% of 70 users were satisfactorily fitted within the first two visits. Compared to previous feet, users reported improvements in walking on level ground (54% of subjects), uneven ground (82%), ascending (97%), and descending ramps (91%). More than 45% of the users perceived an improvement in safety and stability while standing and walking. No difference was observed in concentration, exertion, and pain. Overall user satisfaction with Meridium was 50% and the foot was preferred by 40% of users. Amputation level, age and mobility grade did not influence subjects' preference. Prosthetists recommended Meridium for 59% of subjects. A correlation analysis revealed that transfemoral amputees fitted with Genium and/or having a long residual limb strongly preferred Meridium ( p < 0.05). Meridium was appreciated by amputees with a preference for natural walking and requirement to safely and comfortably negotiate uneven terrain and slopes. Clinical relevance Amputees preferring Meridium perceive benefits with safe, comfortable, and natural walking. While the perception of benefits regarding the negotiation of uneven terrain and slopes is very high, the correlation to product preference is moderate. Individual assessment and trial fitting might be essential to identify patients who benefit greatly.

  8. Microcprocessing Computer Technician, Digital and Microprocessor Technician Program. Post-Graduate 5th Year.

    ERIC Educational Resources Information Center

    Carangelo, Pasquale R.; Janeczek, Anthony J.

    Materials are provided for a two-semester digital and microprocessor technician postgraduate program. Prerequisites stated for the program include a background in DC and AC theory, solid state devices, basic circuit fundamentals, and basic math. A chronology of major topics and a listing of course objectives appear first. Theory outlines for each…

  9. Development of the transtibial prosthesis controlled pneumatically and electrically by microcomputer system.

    PubMed

    Shimada, Youichi; Terayama, Yukio

    2006-01-01

    This report represents the development of the prototype transtibial prosthesis to assist a smooth and comfortable walking for an unilateral amputee. This prosthesis is composed of two air cylinders, solenoid valves, portable and small air tank for compressed air storage, a multiple sensor system and a microprocessor. Two air cylinders are located around the rods to act as antagonistic and agonistic muscles. The system causes flexion and extension of the foot plate jointed at the ankle with compressed air, injected -or discharged via a solenoid or electromagnetic valves. The valves or solenoids are controlled with a microprocessor (Microchip Technology Inc., PIC16F876), the microprocessor generates control signals to the interface circuits for valve opening and closing consistent with the foot position during the walking phase. The control patterns generated in the microprocessor are modified with feedback from the touch sensor, ankle joint angle sensor and the two dimensional acceleration sensor. The primary walking pattern for an individual amputee should be developed through the gait analysis with video.

  10. Overview of the Preliminary Design of the Optical Communication Demonstration and High-Rate Link Facility

    NASA Technical Reports Server (NTRS)

    Sandusky, John V.; Jeganathan, M.; Ortiz, G.; Biswas, A.; Lee, S.; Parker, G.; Liu, B.; Johnson, D.; DePew, J.; Lesh, J. R.

    2000-01-01

    Tlis paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-Rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory-model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.

  11. Distributed Sensor Systems and Electromechanical Analog Facility

    DTIC Science & Technology

    1980-01-01

    interfaces (parallel I/O, modems , etc.) real time operating systems (perhaps a short survey of what is available in the industry today), data...consists of a LSI-11 microprocessor, 56K bytes of memory, and serial and parallel I/O boards. 2.1.7 Disk controller The standard disk controller...with MTS via the modems connected to the LSI-lls. This pseudodevice cannot be reassigned. OSWIT I/O AND INTERRUPT STRUCTURE 137 OSWIT

  12. Control of optical systems

    NASA Technical Reports Server (NTRS)

    Founds, D.

    1988-01-01

    Some of the current and planned activities at the Air Force Systems Command in structures and controls for optical-type systems are summarized. Many of the activities are contracted to industry; one task is an in-house program which includes a hardware test program. The objective of the in-house program, referred to as the Aluminum Beam Expander Structure (ABES), is to address issues involved in on-orbit system identification. The structure, which appears similar to the LDR backup structure, is about 35 feet tall. The activity to date has been limited to acquisition of about 250 hours of test data. About 30 hours of data per excitation force is gathered in order to obtain sufficient data for a good statistical estimate of the structural parameters. The development of an Integrated Structural Modeling (ISM) computer program is being done by Boeing Aerospace Company. The objective of the contracted effort is to develop a combined optics, structures, thermal, controls, and multibody dynamics simulation code.

  13. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  14. State recovery and lockstep execution restart in a system with multiprocessor pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switchmore » or a bus. Each selectively paired processor core is includes a transactional execution facility, whereing the system is configured to enable processor rollback to a previous state and reinitialize lockstep execution in order to recover from an incorrect execution when an incorrect execution has been detected by the selective pairing facility.« less

  15. A Low-Power Instruction Issue Queue for Microprocessors

    NASA Astrophysics Data System (ADS)

    Watanabe, Shingo; Chiyonobu, Akihiro; Sato, Toshinori

    Instruction issue queue is a key component which extracts instruction level parallelism (ILP) in modern out-of-order microprocessors. In order to exploit ILP for improving processor performance, instruction queue size should be increased. However, it is difficult to increase the size, since instruction queue is implemented by a content addressable memory (CAM) whose power and delay are much large. This paper introduces a low power and scalable instruction queue that replaces the CAM with a RAM. In this queue, instructions are explicitly woken up. Evaluation results show that the proposed instruction queue decreases processor performance by only 1.9% on average. Furthermore, the total energy consumption is reduced by 54% on average.

  16. Programmable control means for providing safe and controlled medication infusion

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1988-01-01

    An implantable programmable infusion pump (IPIP) is disclosed and generally includes: a fluid reservoir filled with selected medication; a pump for causing a precise volumetric dosage of medication to be withdrawn from the reservoir and delivered to the appropriate site within the body; and, a control means for actuating the pump in a safe and programmable manner. The control means includes a microprocessor, a permanent memory containing a series of fixed software instructions, and a memory for storing prescription schedules, dosage limits and other data. The microprocessor actuates the pump in accordance with programmable prescription parameters and dosage limits stored in the memory. A communication link allows the control means to be remotely programmed. The control means incorporates a running integral dosage limit and other safety features which prevent an inadvertent or intentional medication overdose. The control means also monitors the pump and fluid handling system and provides an alert if any improper or potentially unsafe operation is detected.

  17. (NTF) National Transonic Facility Test 213-SFW Flow Control II,

    NASA Image and Video Library

    2012-11-19

    (NTF) National Transonic Facility Test 213-SFW Flow Control II, Fast-MAC Model: The fundamental Aerodynamics Subsonic Transonic-Modular Active Control (Fast-MAC) Model was tested for the 2nd time in the NTF. The objectives were to document the effects of Reynolds numbers on circulation control aerodynamics and to develop and open data set for CFD code validation. Image taken in building 1236, National Transonic Facility

  18. Complete all-optical processing polarization-based binary logic gates and optical processors.

    PubMed

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple

  19. Optics derotator servo control system for SONG Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Ren, Changzhi; Ye, Yu

    2012-09-01

    The Stellar Oscillations Network Group (SONG) is an initiative which aims at designing and building a groundbased network of 1m telescopes dedicated to the study of phenomena occurring in the time domain. Chinese standard node of SONG is an Alt-Az Telescope of F/37 with 1m diameter. Optics derotator control system of SONG telescope adopts the development model of "Industrial Computer + UMAC Motion Controller + Servo Motor".1 Industrial computer is the core processing part of the motion control, motion control card(UMAC) is in charge of the details on the motion control, Servo amplifier accepts the control commands from UMAC, and drives the servo motor. The position feedback information comes from the encoder, to form a closed loop control system. This paper describes in detail hardware design and software design for the optics derotator servo control system. In terms of hardware design, the principle, structure, and control algorithm of servo system based on optics derotator are analyzed and explored. In terms of software design, the paper proposes the architecture of the system software based on Object-Oriented Programming.

  20. Noise reduction in optically controlled quantum memory

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  1. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  2. Infrared sensor-based temperature control for domestic induction cooktops.

    PubMed

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-03-14

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented.

  3. Automatic weld torch guidance control system

    NASA Technical Reports Server (NTRS)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  4. Prototype microprocessor controller. [for STDN antennas

    NASA Technical Reports Server (NTRS)

    Zarur, J.; Kraeuter, R.

    1980-01-01

    A microcomputer controller for STDN antennas was developed. The microcomputer technology reduces the system's physical size by the implementation in firmware of functions. The reduction in the number of components increases system reliability and similar benefit is derived when a graphic video display is substituted for several control and indicator panels. A substantial reduction in the number of cables, connectors, and mechanical switches is achieved. The microcomputer based system is programmed to perform calibration and diagnostics, to update the satellite orbital vector, and to communicate with other network systems. The design is applicable to antennas and lasers.

  5. Enhanced optical design by distortion control

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Gauvin, Jonny; Doucet, Michel; Wang, Min

    2005-09-01

    The control of optical distortion is useful for the design of a variety of optical system. The most popular is the F-theta lens used in laser scanning system to produce a constant scan velocity across the image plane. Many authors have designed during the last 20 years distortion control corrector. Today, many challenging digital imaging system can use distortion the enhanced their imaging capability. A well know example is a reversed telephoto type, if the barrel distortion is increased instead of being corrected; the result is a so-called Fish-eye lens. However, if we control the barrel distortion instead of only increasing it, the resulting system can have enhanced imaging capability. This paper will present some lens design and real system examples that clearly demonstrate how the distortion control can improve the system performances such as resolution. We present innovative optical system which increases the resolution in the field of view of interest to meet the needs of specific applications. One critical issue when we designed using distortion is the optimization management. Like most challenging lens design, the automatic optimization is less reliable. Proper management keeps the lens design within the correct range, which is critical for optimal performance (size, cost, manufacturability). Many lens design presented tailor a custom merit function and approach.

  6. Strong Field Optical and Quantum Control

    NASA Astrophysics Data System (ADS)

    Schumacher, Douglass William

    1995-01-01

    This work presents the results of an effort to use unique forms of optical radiation to better probe and control matter. Results are presented of a study of intense field photo-ionization of krypton and xenon in a two-color field. The use of a two-color field provides a valuable probe, the relative optical phase, into the dynamics of the ionization process. It is found that phase dependent tunneling character is preserved even though the photoelectron spectra indicate that the experiments performed were well into the multi-photon regime of ionization. Evidence for core scattering of the departing electrons is seen in the changes to the phase dependent spectra as the polarization of the exciting light is varied from linear to slightly elliptical. To further control the optical field, a pulse shaper was constructed using liquid crystal modulators that allowed either spectral phase or spectral amplitude shaping of a short pulse. The results were characterized using cross-correlations. The shaped light was then subsequently amplified in a chirped pulse amplifier. This light was characterized using Frequency Resolved Optical Gating, a newly developed technique for the complete determination of the optical field in a short pulse. The shaped pulses were then used to tailor atomic radial wavepackets in cesium. The evolution of the wavepackets was monitored by measuring atomic auto-interferograms for the case of amplitude shaping, which was used to control the atomic states excited. Cross -interferograms were used for phase shaping, which was used to select the initial phase of the atomic states. The cross-interferograms required the simultaneous amplification of a shaped and an unshaped pulse in our amplifier.

  7. Test report for single event effects of the 80386DX microprocessor

    NASA Technical Reports Server (NTRS)

    Watson, R. Kevin; Schwartz, Harvey R.; Nichols, Donald K.

    1993-01-01

    The Jet Propulsion Laboratory Section 514 Single Event Effects (SEE) Testing and Analysis Group has performed a series of SEE tests of certain strategic registers of Intel's 80386DX CHMOS 4 microprocessor. Following a summary of the test techniques and hardware used to gather the data, we present the SEE heavy ion and proton test results. We also describe the registers tested, along with a system impact analysis should these registers experience a single event upset.

  8. Coherent control of optical polarization effects in metamaterials

    PubMed Central

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  9. Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings.

    PubMed

    Hahn, Andreas; Lang, Michael; Stuckart, Claudia

    2016-11-01

    The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component.This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied.Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive.Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.

  10. Independent polarisation control of multiple optical traps

    PubMed Central

    Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan

    2009-01-01

    We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226

  11. All-optical controlled switching of solitons

    NASA Astrophysics Data System (ADS)

    Man, Wai Sing

    1999-11-01

    In this dissertation, we have numerically investigated various method of switching solitons using two different nonlinear optical switching devices, namely the twin core nonlinear directional coupler (TCNLDC) and the nonlinear optical loop mirror (NOLM). In the case of TCNLDC, four different schemes were explored where the polarization of the controlling pulse is either parallel or orthogonal to that of the signal soliton, or the controlling pulse may be launched into either of the input ports or it may have a wavelength different from that of the signal. It has been shown that high switching efficiency and distortionless propagation of the signal pulse through the coupler can only be achieved for the case in which the control pulse is launched into the adjacent port of the directional coupler and that its dispersion has equal magnitude but opposite sign as that of the signal. The effect of varying pulse width, walk-off and timing jitter were also investigated for this particular scheme for signal pulse width of 1 ps wide. In the case of NOLM, a control pulse having central wavelength located at the normal dispersion region is used to switch the soliton. The control pulse width and the NOLM's loop length were varied to obtain the switched soliton with minimum distortion and high switching efficiency. In this analysis, Raman effect is included because the control pulse transfers part of its energy to the co-propagating signal pulse in the optical loop. A compact soliton laser has also been developed for this project and its performance was analyzed experimentally and numerically. In our analysis of this soliton laser, we found that the wavelength of the mode-locked pulse can be tuned by varying the polarization elements in the laser and this is entirely due to the birefringence in the laser cavity. In summary, our works have shown that optical solitons can be switched effectively by TCNLDC and NOLM in the high bit-rate and low switching energy regime. (Abstract

  12. Optical Control of a Nuclear Spin in Diamond

    NASA Astrophysics Data System (ADS)

    Levonian, David; Goldman, Michael; Degreve, Kristiaan; Choi, Soonwon; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail

    2017-04-01

    The nitrogen-vacancy (NV) center in diamond has emerged as a promising candidate for quantum information and quantum communication applications. The NV center's potential as a quantum register is due to the long coherence time of its spin-triplet electronic ground state, the optical addressability of its electronic transitions, and the presence of nearby ancillary nuclear spins. The NV center's electronic spin and nearby nuclear spins are most commonly manipulated using applied microwave and RF fields, but this approach would be difficult to scale up for use with an array of NV-based quantum registers. In this context, all-optical manipulation would be more scalable, technically simpler, and potentially faster. Although all-optical control of the electronic spin has been demonstrated, it is an outstanding problem for the nuclear spins. Here, we use an optical Raman scheme to implement nuclear spin-specific control of the electronic spin and coherent control of the 14N nuclear spin.

  13. A rocket-borne data-manipulation experiment using a microprocessor

    NASA Technical Reports Server (NTRS)

    Davis, L. L.; Smith, L. G.; Voss, H. D.

    1979-01-01

    The development of a data-manipulation experiment using a Z-80 microprocessor is described. The instrumentation is included in the payloads of two Nike Apache sounding rockets used in an investigation of energetic particle fluxes. The data from an array of solid-state detectors and an electrostatic analyzer is processed to give the energy spectrum as a function of pitch angle. The experiment performed well in its first flight test: Nike Apache 14.543 was launched from Wallops Island at 2315 EST on 19 June 1978. The system was designed to be easily adaptable to other data-manipulation requirements and some suggestions for further development are included.

  14. Using benchmarks for radiation testing of microprocessors and FPGAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather; Robinson, William H.; Rech, Paolo

    Performance benchmarks have been used over the years to compare different systems. These benchmarks can be useful for researchers trying to determine how changes to the technology, architecture, or compiler affect the system's performance. No such standard exists for systems deployed into high radiation environments, making it difficult to assess whether changes in the fabrication process, circuitry, architecture, or software affect reliability or radiation sensitivity. In this paper, we propose a benchmark suite for high-reliability systems that is designed for field-programmable gate arrays and microprocessors. As a result, we describe the development process and report neutron test data for themore » hardware and software benchmarks.« less

  15. Using benchmarks for radiation testing of microprocessors and FPGAs

    DOE PAGES

    Quinn, Heather; Robinson, William H.; Rech, Paolo; ...

    2015-12-17

    Performance benchmarks have been used over the years to compare different systems. These benchmarks can be useful for researchers trying to determine how changes to the technology, architecture, or compiler affect the system's performance. No such standard exists for systems deployed into high radiation environments, making it difficult to assess whether changes in the fabrication process, circuitry, architecture, or software affect reliability or radiation sensitivity. In this paper, we propose a benchmark suite for high-reliability systems that is designed for field-programmable gate arrays and microprocessors. As a result, we describe the development process and report neutron test data for themore » hardware and software benchmarks.« less

  16. Active control of electromagnetic radiation through an enhanced thermo-optic effect

    PubMed Central

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  17. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  18. Controlling light by light with an optical event horizon.

    PubMed

    Demircan, A; Amiranashvili, Sh; Steinmeyer, G

    2011-04-22

    A novel concept for an all-optical transistor is proposed and verified numerically. This concept relies on cross-phase modulation between a signal and a control pulse. Other than previous approaches, the interaction length is extended by temporally locking control and the signal pulse in an optical event horizon, enabling continuous modification of the central wavelength, energy, and duration of a signal pulse by an up to sevenfold weaker control pulse. Moreover, if the signal pulse is a soliton it may maintain its solitonic properties during the switching process. The proposed all-optical switching concept fulfills all criteria for a useful optical transistor in [Nat. Photon. 4, 3 (2010)], in particular, fan-out and cascadability, which have previously proven as the most difficult to meet.

  19. A Multi-Media CAI Terminal Based upon a Microprocessor with Applications for the Handicapped.

    ERIC Educational Resources Information Center

    Brebner, Ann; Hallworth, H. J.

    The design of the CAI interface described is based on the microprocessor in order to meet three basic requirements for providing appropriate instruction to the developmentally handicapped: (1) portability, so that CAI can be taken into the customary learning environment; (2) reliability; and (3) flexibility, to permit use of new input and output…

  20. Fiber optic controls for aircraft engines - Issues and implications

    NASA Technical Reports Server (NTRS)

    Dasgupta, Samhita; Poppel, Gary L.; Anderson, William P.

    1991-01-01

    Some of the issues involved with the application of fiber-optic controls for aircraft engines in the harsh operating environment are addressed, with emphasis on fiber-optic temperature, pressure, position, and speed sensors. Criteria are established to evaluate the optical modulation technique, the sensor/control unit interconnection, and the electrooptic architecture. Single mode and polarization dependent sensor types, sensors which depend on the reflection and/or transmission of light through the engine environment, and intensity-based analog sensors are eliminated as a possible candidate for engine implementation. Fiber-optic harnesses tested for their optical integrity, temperature stability, and mechanical strength, exhibit a capacity to meet mechanical strength requirements and still gain a significant reduction in cable weight.

  1. The 4MOST facility control software

    NASA Astrophysics Data System (ADS)

    Pramskiy, Alexander; Mandel, Holger; Rothmaier, Florian; Stilz, Ingo; Winkler, Roland; Hahn, Thomas

    2016-07-01

    The 4-m Multi-Object Spectrographic Telescope (4MOST) is one high-resolution (R 18000) and two lowresolution (R fi 5000) spectrographs covering the wavelength range between 390 and 950 nm. The spectrographs will be installed on ESO VISTA telescope and will be fed by approximately 2400 fibres. The instrument is capable to simultaneously obtain spectra of about 2400 objects distributed over an hexagonal field-of-view of four square degrees. This paper aims at giving an overview of the control software design, which is based on the standard ESO VLT software architecture and customised to fit the needs of the 4MOST instrument. In particular, the facility control software is intended to arrange the precise positioning of the fibres, to schedule and observe many surveys in parallel, and to combine the output from the three spectrographs. Moreover, 4MOST's software will include user-friendly graphical user interfaces that enable users to interact with the facility control system and to monitor all data-taking and calibration tasks of the instrument. A secondary guiding system will be implemented to correct for any fibre exure and thus to improve 4MOST's guiding performance. The large amount of fibres requires the custom design of data exchange to avoid performance issues. The observation sequences are designed to use spectrographs in parallel with synchronous points for data exchange between subsystems. In order to control hardware devices, Programmable Logic Controller (PLC) components will be used, the new standard for future instruments at ESO.

  2. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, David M.; Downing, Robert G.

    1997-01-01

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.

  3. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, D.M.; Downing, R.G.

    1997-02-18

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.

  4. Providing security for automated process control systems at hydropower engineering facilities

    NASA Astrophysics Data System (ADS)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  5. Preliminary experience with a hospital blood pressure follow up clinic with nurse practitioner assessment and microprocessor based data retrieval.

    PubMed Central

    Rubin, P C; Curzio, J L; Kelman, A; Elliott, H L; Reid, J L

    1984-01-01

    Experience over two years with 376 hypertensive patients managed at a clinic where the primary observations are made by a trained nurse, clinical information is held on a microprocessor, and treatment follows a standard stepped care approach has been assessed. Blood pressure control after both one and two years was appreciably improved, with over 70% of patients having diastolic pressure below 90 mm Hg compared with 22% of patients when they first attended the new clinic. The non-attendance rate was half that of the conventional hospital outpatient clinic. A computer based record system with a nurse run hypertension clinic is acceptable to patients and offers the possibility of more effective long term control of blood pressure in large numbers of patients. PMID:6432180

  6. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B.

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate 6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  7. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.

    PubMed

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (X D ) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of X D states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the X D emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe 2 on a gold substrate, we demonstrate ~6 × 10 5 -fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 10 3 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  8. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  9. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  10. Fine pointing control for free-space optical communication

    NASA Technical Reports Server (NTRS)

    Portillo, A. A.; Ortiz, G. G.; Racho, C.

    2000-01-01

    Free-Space Optical Communications requires precise, stable laser pointing to maintain operating conditions. This paper also describes the software and hardware implementation of Fine Pointing Control based on the Optical Communications Demonstrator architecture.

  11. Microprocessors: Laboratory Simulation of Industrial Control Applications.

    ERIC Educational Resources Information Center

    Gedeon, David V.

    1981-01-01

    Describes a course to make technical managers more aware of computer technology and how data loggers, programmable controllers, and larger computer systems interact in a hierarchical configuration of manufacturing process control. (SK)

  12. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  13. HEMP (high-altitude electromagnetic pulse) test and analysis of selected recloser-control units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.K.; Sands, S.H.; Tesche, F.M.

    A simulated HEMP test was performed on power line recloser-control units in the ARES facility during the month of October 1988. Two types of recloser-control units were tested: an electronic control unit presently in wide use in electric power distribution systems and a new microprocessor based unit presently being introduced to electric utilities. It was found that the ARES fields did not cause reproducible disruptive failure of the equipment. Minor upsets, which were considered to be non-disruptive to the recloser operation, were observed. The test results were compared to the results of an analysis from a previous study and itmore » is concluded that the probability of disruptive failure of field operating recloser-control units subjected to a nominal unclassified HEMP environment is small. 3 refs., 30 figs., 1 tab.« less

  14. The microprocessor component, DGCR8, is essential for early B-cell development in mice.

    PubMed

    Brandl, Andreas; Daum, Patrick; Brenner, Sven; Schulz, Sebastian R; Yap, Desmond Yat-Hin; Bösl, Michael R; Wittmann, Jürgen; Schuh, Wolfgang; Jäck, Hans-Martin

    2016-12-01

    microRNAs (miRNAs) are important posttranscriptional regulators during hematopoietic lineage commitment and lymphocyte development. Mature miRNAs are processed from primary miRNA transcripts in two steps by the microprocessor complex, consisting of Drosha and its partner DiGeorge Critical Region 8 (DGCR8), and the RNAse III enzyme, Dicer. Conditional ablations of Drosha and Dicer have established the importance of both RNAses in B- and T-cell development. Here, we show that a cre-mediated B-cell specific deletion of DGCR8 in mice results in a nearly complete maturation block at the transition from the pro-B to the pre-B cell stage, and a failure to upregulate Ig μ heavy chain expression in pro-B cells. Furthermore, we found that the death of freshly isolated DGCR8-deficient pro-B cells could be partially prevented by enforced Bcl2 expression. We conclude from these findings that the microprocessor component DGCR8 is essential for survival and differentiation of early B-cell progenitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Use of a Microprocessor to Implement an ADCCP Protocol (Federal Standard 1003).

    DTIC Science & Technology

    1980-07-01

    results of other studies, to evaluate the operational and economic impact of incorporating various options in Federal Standard 1003. The effort...the LSI interface and the microprocessor; the LSI chip deposits bytes in its buffer as the producer, and the MPU reads this data as the consumer...on the interface between the MPU and the LSI protocol chip. This requires two main processes to be running at the same time--transmit and receive. The

  16. A rocket-borne microprocessor-based experiment for investigation of energetic particles in the D and E regions

    NASA Technical Reports Server (NTRS)

    Braswell, F. M.

    1981-01-01

    An energetic experiment using the Z80 family of microcomputer components is described. Data collected from the experiment allowed fast and efficient postprocessing, yielding both energy-spectrum and pitch-angle distribution of energetic particles in the D and E regions. Advanced microprocessor system architecture and software concepts were used in the design to cope with the large amount of data being processed. This required the Z80 system to operate at over 80% of its total capacity. The microprocessor system was included in the payloads of three rockets launched during the Energy Budget Campaign at ESRANGE, Kiruna, Sweden in November 1980. Based on preliminary examination of the data, the performance of the experiment was satisfactory and good data were obtained on the energy spectrum and pitch-angle distribution of the particles.

  17. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer.

    PubMed

    Sand, Michael; Skrygan, Marina; Georgas, Dimitrios; Arenz, Christoph; Gambichler, Thilo; Sand, Daniel; Altmeyer, Peter; Bechara, Falk G

    2012-11-01

    The microprocessor complex mediates intranuclear biogenesis of precursor microRNAs from the primary microRNA transcript. Extranuclear, mature microRNAs are incorporated into the RNA-induced silencing complex (RISC) before interaction with complementary target mRNA leads to transcriptional repression or cleavage. In this study, we investigated the expression profiles of the microprocessor complex subunit DiGeorge syndrome critical region gene 8 (DGCR8) and the RISC components argonaute-1 (AGO1), argonaute-2 (AGO2), as well as double-stranded RNA-binding proteins PACT, TARBP1, and TARBP2 in epithelial skin cancer and its premalignant stage. Patients with premalignant actinic keratoses (AK, n = 6), basal cell carcinomas (BCC, n = 15), and squamous cell carcinomas (SCC, n = 7) were included in the study. Punch biopsies were harvested from the center of the tumors (lesional), from healthy skin sites (intraindividual controls), and from healthy skin sites in a healthy control group (n = 16; interindividual control). The DGCR8, AGO1, AGO2, PACT, TARBP1, and TARBP2 mRNA expression levels were detected by quantitative real-time reverse transcriptase polymerase chain reaction. The DGCR8, AGO1, AGO2, PACT, and TARBP1 expression levels were significantly higher in the AK, BCC, and SCC groups than the healthy controls (P < 0.05). There was no significant difference in the TARBP2 expression levels between groups (P > 0.05). This study indicates that major components of the miRNA pathway, such as the microprocessor complex and RISC, are dysregulated in epithelial skin cancer. Copyright © 2011 Wiley Periodicals, Inc.

  18. Control System Upgrade for a Mass Property Measurement Facility

    NASA Technical Reports Server (NTRS)

    Chambers, William; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The Mass Property Measurement Facility (MPMF) at the Goddard Space Flight Center has undergone modifications to ensure the safety of Flight Payloads and the measurement facility. The MPMF has been technically updated to improve reliability and increase the accuracy of the measurements. Modifications include the replacement of outdated electronics with a computer based software control system, the addition of a secondary gas supply in case of a catastrophic failure to the gas supply and a motor controlled emergency stopping feature instead of a hard stop.

  19. The Fermilab Accelerator control system

    NASA Astrophysics Data System (ADS)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  20. Automatic multi-banking of memory for microprocessors

    NASA Technical Reports Server (NTRS)

    Wiker, G. A. (Inventor)

    1984-01-01

    A microprocessor system is provided with added memories to expand its address spaces beyond its address word length capacity by using indirect addressing instructions of a type having a detectable operations code and dedicating designated address spaces of memory to each of the added memories, one space to a memory. By decoding each operations code of instructions read from main memory into a decoder to identify indirect addressing instructions of the specified type, and then decoding the address that follows in a decoder to determine which added memory is associated therewith, the associated added memory is selectively enabled through a unit while the main memory is disabled to permit the instruction to be executed on the location to which the effective address of the indirect address instruction points, either before the indirect address is read from main memory or afterwards, depending on how the system is arranged by a switch.

  1. Infrared Sensor-Based Temperature Control for Domestic Induction Cooktops

    PubMed Central

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-01-01

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125

  2. Optical mapping system with real-time control capability.

    PubMed

    Iravanian, Shahriar; Christini, David J

    2007-10-01

    Real-time, closed-loop intervention is an emerging experiment-control method that promises to provide invaluable new insight into cardiac electrophysiology. One example is the investigation of closed-loop feedback control of cardiac activity (e.g., alternans) as a possible method of preventing arrhythmia onset. To date, such methods have been investigated only in vitro using microelectrode systems, which are hindered by poor spatial resolution and are not well suited for atrial or ventricular tissue preparations. We have developed a system that uses optical mapping techniques and an electrical stimulator as the sensory and effector arms, respectively, of a closed-loop, real-time control system. The system consists of a 2,048 x 1 pixel line-scan charge-coupled device camera that records optical signals from the tissue. Custom-image processing and control software, which is implemented on top of a hard real-time operation system (RTAI Linux), process the data and make control decisions with a deterministic delay of <1 ms. The system is tested in two ways: 1) it is used to control, in real time, simulated optical signals of electrical alternans; and 2) it uses precisely timed, feedback-controlled initiation of antitachycardia pacing to terminate reentrant arrhythmias in an arterially perfused swine right ventricle stained with voltage-sensitive fluorescent dye 4{beta-[2-(di-n-butylamino)-6-napathy]vinyl}pyridinium (di-4-ANEPPS). Thus real-time control of cardiac activity using optical mapping techniques is feasible. Such a system is attractive because it offers greater measurement resolution than the electrode-based systems with which real-time control has been used previously.

  3. Report on phase 1 of the Microprocessor Seminar. [and associated large scale integration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Proceedings of a seminar on microprocessors and associated large scale integrated (LSI) circuits are presented. The potential for commonality of device requirements, candidate processes and mechanisms for qualifying candidate LSI technologies for high reliability applications, and specifications for testing and testability were among the topics discussed. Various programs and tentative plans of the participating organizations in the development of high reliability LSI circuits are given.

  4. FEDS - An experiment with a microprocessor-based orbit determination system using TDRS data

    NASA Technical Reports Server (NTRS)

    Shank, D.; Pajerski, R.

    1986-01-01

    An experiment in microprocessor-based onboard orbit determination has been conducted at NASA's Goddard Space Flight Center. The experiment collected forward-link observation data in real time from a prototype transponder and performed orbit estimation on a typical low-earth scientific satellite. This paper discusses the hardware and organizational configurations of the experiment, the structure of the onboard software, the mathematical models, and the experiment results.

  5. A microprocessor based high speed packet switch for satellite communications

    NASA Technical Reports Server (NTRS)

    Arozullah, M.; Crist, S. C.

    1980-01-01

    The architectures of a single processor, a three processor, and a multiple processor system are described. The hardware circuits, and software routines required for implementing the three and multiple processor designs are presented. A bit-slice microprocessor was designed and microprogrammed. Maximum throughput was calculated for all three designs. Queue theoretic models for these three designs were developed and utilized to obtain analytical expressions for the average waiting times, overall average response times and average queue sizes. From these expressions, graphs were obtained showing the effect on the system performance of a number of design parameters.

  6. On the Floating Point Performance of the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1997-01-01

    The i860 microprocessor is a pipelined processor that can deliver two double precision floating point results every clock. It is being used in the Touchstone project to develop a teraflop computer by the year 2000. With such high computational capabilities it was expected that memory bandwidth would limit performance on many kernels. Measured performance of three kernels showed performance is less than what memory bandwidth limitations would predict. This paper develops a model that explains the discrepancy in terms of memory latencies and points to some problems involved in moving data from memory to the arithmetic pipelines.

  7. 7 CFR 4288.25 - Succession and control of facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...

  8. 7 CFR 4288.25 - Succession and control of facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...

  9. 7 CFR 4288.25 - Succession and control of facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...

  10. Tunable Optical True-Time Delay Devices Would Exploit EIT

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  11. On-sky validation of an optimal LQG control with vibration mitigation: from the CANARY Multi-Object Adaptive Optics demonstrator to the Gemini Multi-Conjugated Adaptive Optics facility.

    NASA Astrophysics Data System (ADS)

    Sivo, Gaetano; Kulcsár, Caroline; Conan, Jean-Marc; Raynaud, Henri-François; Gendron, Éric; Basden, Alastair; Gratadour, Damien; Morris, Tim; Petit, Cyril; Meimon, Serge; Rousset, Gérard; Garrel, Vincent; Neichel, Benoit; van Dam, Marcos; Marin, Eduardo; Carrasco, Rodrigo; Schirmer, Mischa; Rambold, William; Moreno, Cristian; Montes, Vanessa; Hardie, Kayla; Trujillo, Chad

    2015-01-01

    Adaptive optics provides real time correction of wavefront perturbations on ground-based telescopes and allow to reach the diffraction limit performances. Optimizing control and performance is a key issue for ever more demanding instruments on ever larger telescopes affected not only by atmospheric turbulence, but also by vibrations, windshake and tracking errors. Linear Quadratic Gaussian control achieves optimal correction when provided with a temporal model of the disturbance. We present in this paper the first on-sky results of a Kalman filter based LQG control with vibration mitigation on the CANARY instrument at the Nasmyth platform of the 4.2-m William Herschel Telescope (La Palma, Spain). The results demonstrate a clear improvement of performance for full LQG compared with standard integrator control, and assess the additional improvement brought by vibration filtering with a tip-tilt model identified from on-sky data (by 10 points of Strehl ratio), thus validating the strategy retained on the instrument SPHERE (eXtreme-AO system for extra-solar planets detection and characterization) at the VLT. The MOAO on-sky pathfinder CANARY features two AO configurations that have both been tested: single- conjugated AO and multi-object AO with NGS and NGS+ Rayleigh LGS, together with vibration mitigation on tip and tilt modes. We finally present the ongoing development done to commission such a control law on a regular Sodium laser Multi-Conjuagated Adaptive Optics (MCAO) system GeMS at the 8-m Gemini South Telescope. This implementation does not require new hardware and is already available in the real-time computer.

  12. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  13. Microprocessor Control For Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    Weaver, Charles S.

    1990-01-01

    Automatic control system maintains temperature of water-cooled garment within comfort zone while wearer's level of physical activity varies. Uncomfortable overshoots and undershoots of temperature eliminated. Designed for use in space suit, adaptable to other protective garments and to enclosed environments operating according to similar principles.

  14. Carrier-envelope phase-controlled quantum interference in optical poling.

    PubMed

    Adachi, Shunsuke; Kobayashi, Takayoshi

    2005-04-22

    We demonstrate the efficiency of the optical poling process that depends on the CE phase-controlled quantum interference. For the experiment we employed our noncollinear optical parametric amplifier system for the self-stabilization of the CE phase, with the f-to-2f spectral interferometry system to control the CE phase.

  15. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  16. Instrument Systems Analysis and Verification Facility (ISAVF) users guide

    NASA Technical Reports Server (NTRS)

    Davis, J. F.; Thomason, J. O.; Wolfgang, J. L.

    1985-01-01

    The ISAVF facility is primarily an interconnected system of computers, special purpose real time hardware, and associated generalized software systems, which will permit the Instrument System Analysts, Design Engineers and Instrument Scientists, to perform trade off studies, specification development, instrument modeling, and verification of the instrument, hardware performance. It is not the intent of the ISAVF to duplicate or replace existing special purpose facilities such as the Code 710 Optical Laboratories or the Code 750 Test and Evaluation facilities. The ISAVF will provide data acquisition and control services for these facilities, as needed, using remote computer stations attached to the main ISAVF computers via dedicated communication lines.

  17. Irradiation campaign in the EOLE critical facility of fiber optic Bragg gratings dedicated to the online temperature measurement in zero power research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellier, Frederic; Cheymol, Guy; Destouches, Christophe

    2015-07-01

    The control of temperature during operation of zero power research reactors participates to the overall control of experimentation conditions and reveals itself of a major importance more especially when measuring small multiplication factor variations. Within the framework of the refurbishment of the MASURCA facility, the development of a new temperature measurement system based on the optical fiber Bragg grating (FBG) technology is under consideration. In a first step, a series of FBGs is irradiated in the EOLE critical facility with the aim to select the most appropriate. Online temperature measurements are performed during a set of irradiations that should allowmore » reaching a fast neutron fluence of some 10{sup 14} n.cm{sup -2}. The results obtained, more especially the Bragg wavelength shifts during the irradiation campaign, are discussed in this paper and compared to data from standard PT100 temperature sensors to highlight possible radiation effects on sensor performances. Work to be conducted during the second step of the project, aiming to a feasibility demonstration using a MASURCA assembly, is also presented. (authors)« less

  18. Pinned, optically aligned diagnostic dock for use on the Z facility.

    PubMed

    Gomez, M R; Rochau, G A; Bailey, J E; Dunham, G S; Kernaghan, M D; Gard, P; Robertson, G K; Owen, A C; Argo, J W; Nielsen, D S; Lake, P W

    2012-10-01

    The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented.

  19. BIOPACK: the ground controlled late access biological research facility.

    PubMed

    van Loon, Jack J W A

    2004-03-01

    Future Space Shuttle flights shall be characterized by activities necessary to further build the International Space Station, ISS. During these missions limited resources are available to conduct biological experiments in space. The Shuttles' Middeck is a very suitable place to conduct science during the ISS assembly missions or dedicated science missions. The BIOPACK, which flew its first mission during the STS-107, provides a versatile Middeck Locker based research tool for gravitational biology studies. The core facility occupies the space of only two Middeck Lockers. Experiment temperatures are controlled for bacteria, plant, invertebrate and mammalian cultures. Gravity levels and profiles can be set ranging from 0 to 2.0 x g on three independent centrifuges. This provides the experimenter with a 1.0 x g on-board reference and intermediate hypogravity and hypergravity data points to investigate e.g. threshold levels in biological responses. Temperature sensitive items can be stored in the facilities' -10 degrees C and +4 degrees C stowage areas. During STS-107 the facility also included a small glovebox (GBX) and passive temperature controlled units (PTCU). The GBX provides the experimenter with two extra levels of containment for safe sample handling. This biological research facility is a late access (L-10 hrs) laboratory, which, when reaching orbit, could automatically be starting up reducing important experiment lag-time and valuable crew time. The system is completely telecommanded when needed. During flight system parameters like temperatures, centrifuge speeds, experiment commanding or sensor readouts can be monitored and changed when needed. Although ISS provides a wide range of research facilities there is still need for an STS-based late access facility such as the BIOPACK providing experimenters with a very versatile research cabinet for biological experiments under microgravity and in-flight control conditions.

  20. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...