Sample records for facilities thermal treatment

  1. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov Websites

    Management Facilities Vehicle Thermal Management Facilities Image of a building with two semi truck evaluation facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and apparatus. Combined fluid loops bench research apparatus in the Vehicle Thermal Management Laboratory. Photo

  2. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  3. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's integrated thermal distribution system consists of a thermal water loop connected to a research boiler and . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows

  4. Survey of solar thermal test facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masterson, K.

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less

  5. Concentrating Solar Power Projects - National Solar Thermal Power Facility

    Science.gov Websites

    | Concentrating Solar Power | NREL National Solar Thermal Power Facility Status Date: February 13, 2014 Project Overview Project Name: National Solar Thermal Power Facility Country: India Location Capacity (Net): 1.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: None

  6. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  7. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  8. Mathematical Models of IABG Thermal-Vacuum Facilities

    NASA Astrophysics Data System (ADS)

    Doring, Daniel; Ulfers, Hendrik

    2014-06-01

    IABG in Ottobrunn, Germany, operates thermal-vacuum facilities of different sizes and complexities as a service for space-testing of satellites and components. One aspect of these tests is the qualification of the thermal control system that keeps all onboard components within their save operating temperature band. As not all possible operation / mission states can be simulated within a sensible test time, usually a subset of important and extreme states is tested at TV facilities to validate the thermal model of the satellite, which is then used to model all other possible mission states. With advances in the precision of customer thermal models, simple assumptions of the test environment (e.g. everything black & cold, one solar constant of light from this side) are no longer sufficient, as real space simulation chambers do deviate from this ideal. For example the mechanical adapters which support the spacecraft are usually not actively cooled. To enable IABG to provide a model that is sufficiently detailed and realistic for current system tests, Munich engineering company CASE developed ESATAN models for the two larger chambers. CASE has many years of experience in thermal analysis for space-flight systems and ESATAN. The two models represent the rather simple (and therefore very homogeneous) 3m-TVA and the extremely complex space simulation test facility and its solar simulator. The cooperation of IABG and CASE built up extensive knowledge of the facilities thermal behaviour. This is the key to optimally support customers with their test campaigns in the future. The ESARAD part of the models contains all relevant information with regard to geometry (CAD data), surface properties (optical measurements) and solar irradiation for the sun simulator. The temperature of the actively cooled thermal shrouds is measured and mapped to the thermal mesh to create the temperature field in the ESATAN part as boundary conditions. Both models comprise switches to easily

  9. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less

  10. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  11. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1998-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  12. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; includingmore » (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D 2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  13. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  14. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  15. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant tomore » the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.« less

  16. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  17. Thermal Simulation Facilities Handbook.

    DTIC Science & Technology

    1983-02-01

    tower provide incident radiation angles of 900 or less. Since each heliostat Is Individually controlled, the size of a test Item depends on application...designed such that it can be used for many other applications. (See also Section 3.) The solar furnace uses both a flat mirror ( heliostat ) that track...type solar thermal facility. It consists of four main components: (1) heliostat , (2) attenua- tor, (3) concentrator, and (4) test and control chamber

  18. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  19. Survey of EPA facilities for solar thermal energy applications

    NASA Technical Reports Server (NTRS)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  20. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  1. Long duration exposure facility post-flight thermal analysis: Orbital/thermal environment data package

    NASA Technical Reports Server (NTRS)

    Berrios, William M.

    1990-01-01

    A post flight mission thermal environment for the Long Duration Exposure Facility was created as part of the thermal analysis data reduction effort. The data included herein is the thermal parameter data used in the calculation of boundary temperatures. This boundary temperature data is to be released in the near future for use by the LDEF principal investigators in the final analysis of their particular experiment temperatures. Also included is the flight temperature data as recorded by the LDEF Thermal Measurements System (THERM) for the first 90 days of flight.

  2. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  3. A radiant heating test facility for space shuttle orbiter thermal protection system certification

    NASA Technical Reports Server (NTRS)

    Sherborne, W. D.; Milhoan, J. D.

    1980-01-01

    A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.

  4. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  5. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  6. Meeting today's requirements for large thermal vacuum test facilities

    NASA Technical Reports Server (NTRS)

    Corinth, R. L.; Rouse, J. A.

    1986-01-01

    The Lockheed Thermal Vacuum Facility at Sunnyvale, California, completed in late 1986, one of the largest multi-program facilities constructed to date is described. The horizontal 12.2 m diameter by 24.4 m long chamber has removable heads at each end and houses a thermal shroud providing a test volume 10.4 m diameter by 24.4 m long. The chamber and thermal shroud are configured to permit the insertion of a 6.1 m wide by 24.4 m long vibration isolated optical bench. The pumpimg system incorporates an internal cryopumping array, turbomolecular pumps and cryopumps to handle multi-program needs and ranges of gas loads. The high vacuum system is capable of achieving clean, dry and empty pressures below 1.3 times 10 to the minus 6 power Pa (10 to the minus 8 power torr.)

  7. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Micale, Caterina; Morettini, Emanuela

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh watermore » eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.« less

  8. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  9. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  10. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Sperduti, A.; Pietropaolo, A.; Pillon, M.; Pola, A.; Gómez-Ros, J. M.

    2017-01-01

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a 241Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm-2 s-1 to 1000 cm-2 s-1 can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  11. Site specific risk assessment of an energy-from-waste/thermal treatment facility in Durham Region, Ontario, Canada. Part B: Ecological risk assessment.

    PubMed

    Ollson, Christopher A; Whitfield Aslund, Melissa L; Knopper, Loren D; Dan, Tereza

    2014-01-01

    The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste (EFW) thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. In this paper we present the results of a comprehensive ecological risk assessment (ERA) for this planned facility, based on baseline sampling and site specific modeling to predict facility-related emissions, which was subsequently accepted by regulatory authorities. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and the maximum design capacity (400,000 tonnes per year). In general, calculated ecological hazard quotients (EHQs) and screening ratios (SRs) for receptors did not exceed the benchmark value (1.0). The only exceedances noted were generally due to existing baseline media concentrations, which did not differ from those expected for similar unimpacted sites in Ontario. This suggests that these exceedances reflect conservative assumptions applied in the risk assessment rather than actual potential risk. However, under predicted upset conditions at 400,000 tonnes per year (i.e., facility start-up, shutdown, and loss of air pollution control), a potential unacceptable risk was estimated for freshwater receptors with respect to benzo(g,h,i)perylene (SR=1.1), which could not be attributed to baseline conditions. Although this slight exceedance reflects a conservative worst-case scenario (upset conditions coinciding with worst-case meteorological conditions), further investigation of potential ecological risk should be performed if this facility is expanded to the maximum operating capacity in the future. © 2013.

  12. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to bemore » considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.« less

  13. INTESPACE's new thermal-vacuum test facility: SIMMER

    NASA Technical Reports Server (NTRS)

    Duprat, Raymond; Mouton, Andre

    1992-01-01

    The development of an European satellite market over the last 10 years, the industrialization of space applications, and the new requirements from satellite prime contractors have led INTESPACE to increase the test center's environmental testing capacities through the addition of a new thermal-vacuum test facility of impressive dimensions referred to as the SIMMER. The SIMMER is a simulator specifically created for the purpose of conducting acceptance tests of satellites and of large structures of the double launching ARIANE IV or half ARIANE V classes. The chamber is 8.3 meters long with a diameter of 10 meters. The conceptual design of a chamber in the horizontal plane and at floor level is in a view to simplify test preparation and to permit final electrical checks of the spacecraft in its actual test configuration prior to the closing of the chamber. The characteristics of the SIMMER complies with the requirements being currently defined in terms of thermal-vacuum tests: (1) thermal regulation (temperatures cycling between 100 K and 360 K); (2) clean vacuum (10(exp -6) mbar); (3) 600 measurement channels; and (4) 100 000 cleanliness class. The SIMMER is located in INTESPACE's space vehicle test complex in which a large variety of environmental test facilities are made available for having a whole test program completed under one and a same roof.

  14. Systematic Review of Multidisciplinary Chronic Pain Treatment Facilities

    PubMed Central

    Fashler, Samantha R.; Cooper, Lynn K.; Oosenbrug, Eric D.; Burns, Lindsay C.; Razavi, Shima; Goldberg, Lauren; Katz, Joel

    2016-01-01

    This study reviewed the published literature evaluating multidisciplinary chronic pain treatment facilities to provide an overview of their availability, caseload, wait times, and facility characteristics. A systematic literature review was conducted using PRISMA guidelines following a search of MEDLINE, PsycINFO, and CINAHL databases. Inclusion criteria stipulated that studies be original research, survey more than one pain treatment facility directly, and describe a range of available treatments. Fourteen articles satisfied inclusion criteria. Results showed little consistency in the research design used to describe pain treatment facilities. Availability of pain treatment facilities was scarce and the reported caseloads and wait times were generally high. A wide range of medical, physical, and psychological pain treatments were available. Most studies reported findings on the percentage of practitioners in different health care professions employed. Future studies should consider using more comprehensive search strategies to survey facilities, improving clarity on what is considered to be a pain treatment facility, and reporting on a consistent set of variables to provide a clear summary of the status of pain treatment facilities. This review highlights important information for policymakers on the scope, demand, and accessibility of pain treatment facilities. PMID:27445618

  15. Site specific risk assessment of an energy-from-waste thermal treatment facility in Durham Region, Ontario, Canada. Part A: Human health risk assessment.

    PubMed

    Ollson, Christopher A; Knopper, Loren D; Whitfield Aslund, Melissa L; Jayasinghe, Ruwan

    2014-01-01

    The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. This paper presents the results of a comprehensive human health risk assessment for this facility. This assessment was based on extensive sampling of baseline environmental conditions (e.g., collection and analysis of air, soil, water, and biota samples) as well as detailed site specific modeling to predict facility-related emissions of 87 identified contaminants of potential concern. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and for the maximum design capacity (400,000 tonnes per year). For the 140,000 tonnes per year scenario, this assessment indicated that facility-related emissions are unlikely to cause adverse health risks to local residents, farmers, or other receptors (e.g., recreational users). For the 400,000 tonnes per year scenarios, slightly elevated risks were noted with respect to inhalation (hydrogen chloride) and infant consumption of breast milk (dioxins and furans), but only during predicted 'upset conditions' (i.e. facility start-up, shutdown, and loss of air pollution control) that represent unusual and/or transient occurrences. However, current provincial regulations require that additional environmental screening would be mandatory prior to expansion of the facility beyond the initial approved capacity (140,000 tonnes per year). Therefore, the potential risks due to upset conditions for the 400,000 tonnes per year scenario should be more closely investigated if future expansion is pursued. © 2013.

  16. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  17. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soli Khericha; Edwin Harvego; John Svoboda

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstratemore » Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.« less

  18. An overview of current activities at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Cameron, C. P.; Klimas, P. C.

    This paper is a description of the United States Department of Energy's National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and testing of volumetric and PV central receiver concepts.

  19. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit applicationmore » guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than

  20. Thermal hydrolysis for sewage treatment: A critical review.

    PubMed

    Barber, W P F

    2016-11-01

    A review concerning the development and applicability of sewage sludge thermal hydrolysis especially prior to anaerobic digestion is presented. Thermal hydrolysis has proven to be a successful approach to making sewage sludge more amenable to anaerobic digestion. Currently there are 75 facilities either in operation or planning, spanning several continents with the first installation in 1995. The reported benefits of thermal hydrolysis relate to: increased digestion loading rate due to altered rheological properties, improved biodegradation of (especially activated) sludge and enhanced dewaterability. In spite of its relative maturity, there has been no attempt to perform a critical review of the pertinent literature relating to the technology. Closer look at the literature reveals complications with comparing both experimental- and full-scale results due to differences in experimental set-up and capability, and also site-specific conditions at full-scale. Furthermore, it appears that understanding of thermodynamic and rheological properties of sludge is key to optimizing the process, however these parameters are largely overlooked by the literature. This paper aims to bridge these complexities in order to elucidate the benefits of thermal hydrolysis for sewage treatment, and makes recommendations for further development and research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Conceptual Thermal Treatment Technologies Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  2. Solar Thermal Propulsion Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  3. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SWENSON JA; CROWE RD; APTHORPE R

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin.more » KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume

  4. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  5. Facile Dry Surface Cleaning of Graphene by UV Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  6. Thermal Radiation Source Test Facility, Kirtland Air Force Base, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, W.F.

    This report describes the Thermal Radiation Source (TRS) Test Facility at Kirtland AF Base, New Mexico. It lists the instrumentation and equipment available for use by DOD and other government agencies studying the effects produced by nuclear weapons.

  7. Long duration exposure facility post-flight thermal analysis, part 1

    NASA Technical Reports Server (NTRS)

    Berrios, William M.; Sampair, Thomas R.

    1992-01-01

    Results of the post-flight thermal analysis of the Long Duration Exposure Facility (LDEF) mission are presented. The LDEF mission thermal analysis was verified by comparing the thermal model results to flight data from the LDEF Thermal Measurements System (THERM). Post-flight calculated temperature uncertainties have been reduced to under +/- 18 F from the pre-flight uncertainties of +/- 40 F. The THERM consisted of eight temperature sensors, a shared tape recorder, a standard LDEF flight battery, and an electronics control box. The temperatures were measured at selected locations on the LDEF structure interior during the first 390 days of flight and recorded for post-flight analysis. After the LDEF retrieval from Space on 12 Jan. 1990, the tape recorder was recovered from the spacecraft and the data reduced for comparison to the LDEF predicted temperatures. The LDEF mission temperatures were calculated prior to the LDEF deployment on 7 Apr. 1980, and updated after the LDEF retrieval with the following actual flight parameter data: including thermal fluxes, spacecraft attitudes, thermal coatings degradation, and contamination effects. All updated data used for the calculation of post-flight temperatures is also presented in this document.

  8. Substance Abuse Treatment in Adult and Juvenile Correctional Facilities: Findings from the Uniform Facility Data Set 1997 Survey of Correctional Facilities.

    ERIC Educational Resources Information Center

    Marsden, Mary Ellen, Ed.; Straw, Richard S., Ed.

    This report presents methodology and findings from the Uniform Facility Data Set (UFDS) 1997 Survey of Correctional Facilities, which surveyed about 7,600 adult and juvenile correctional facilities to identify those that provide on-site substance abuse treatment to their inmates or residents. The survey assesses substance abuse treatment provided…

  9. Thermal Protection System Aerothermal Screening Tests in HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Szalai, Christine E.; Beck, Robin A. S.; Gasch, Matthew J.; Alumni, Antonella I.; Chavez-Garcia, Jose F.; Splinter, Scott C.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.

  10. The Langley thermal protection system test facility: A description including design operating boundaries

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    A description of the Langley thermal protection system test facility is presented. This facility was designed to provide realistic environments and times for testing thermal protection systems proposed for use on high speed vehicles such as the space shuttle. Products from the combustion of methane-air-oxygen mixtures, having a maximum total enthalpy of 10.3 MJ/kg, are used as a test medium. Test panels with maximum dimensions of 61 cm x 91.4 cm are mounted in the side wall of the test region. Static pressures in the test region can range from .005 to .1 atm and calculated equilibrium temperatures of test panels range from 700 K to 1700 K. Test times can be as long as 1800 sec. Some experimental data obtained while using combustion products of methane-air mixtures are compared with theory, and calibration of the facility is being continued to verify calculated values of parameters which are within the design operating boundaries.

  11. Multidimensional Tests of Thermal Protection Materials in the Arcjet Test Facility

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Mathew R.; Squire, Thomas H.

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. This paper investigates the effects of sidewall heating coupled with anisotropic thermal properties of thermal protection materials in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to verify the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  12. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    PubMed

    Theodosiou, Alex; Jones, Abbie N; Marsden, Barry J

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  13. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    PubMed Central

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  14. Pain treatment facilities: do we need quantity or quality?

    PubMed

    de Meij, Nelleke; Köke, Albère; van der Weijden, Trudy; van Kleef, Maarten; Patijn, Jacob

    2014-10-01

    Chronic pain patients referred to a pain treatment facility have no guarantee that they will receive a proper diagnostic procedure or treatment. To obtain information about organizational aspects of pain treatment facilities and the content of their daily pain practice, we performed a questionnaire survey. The aim of the study was to evaluate the amount of pain treatment facilities, the content of organized specialized pain care and adherence to the criteria of the internationally accepted guidelines for pain treatment services. The University Pain Centre Maastricht in the Department of Anaesthesiology and Pain Management at Maastricht University Medical Centre developed a questionnaire survey based on the Recommendations for Pain Treatment Services of the International Association for the Study of Pain (IASP). The questionnaire was sent to the medical boards of all hospitals in the Netherlands (n=94). The response rate was 86% (n=81). Of all hospitals, 88.9% (n=72) reported the provision of organized specialized pain care, which was provided by a pain management team in 86.1% (n=62) and by an individual specialist in 13.9% (n=10). Insight was obtained from pain treatment facilities in five different domains: the organizational structure of pain management, composition of the pain team, pain team practice, patient characteristics, and research and education facilities. Although 88.9% of all hospitals stated that organized specialized pain care was provided, only a few hospitals could adhere to the criteria for pain treatment services of the IASP. The outcome of the questionnaire survey may help to define quality improvement standards for pain treatment facilities. © 2014 John Wiley & Sons, Ltd.

  15. Test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1991-01-01

    The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  16. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  17. Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Matt R.; Squire, Thomas Howard

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. The anisotropic effects are enhanced in the presence of sidewall heating. This paper investigates the effects of anisotropic thermal properties of thermal protection materials coupled with sidewall heating in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to validate the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  18. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  19. Addressing social aspects associated with wastewater treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders andmore » barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.« less

  20. Operation and Maintenance of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Drury, Douglas D.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment: (1) operators, training, and certification; (2) solutions to operating problems; (3) collection systems; (4) operations manuals; (5) wastewater treatment facility case histories; (5) land application; and (6) treatment of industrial wastes. A list of 36 references is also presented. (HM)

  1. The test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1990-01-01

    The Cosmic Background Explorer Observatory (COBE) underwent a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  2. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  4. 42 CFR 483.354 - General requirements for psychiatric residential treatment facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... treatment facilities. 483.354 Section 483.354 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... LONG TERM CARE FACILITIES Condition of Participation for the Use of Restraint or Seclusion in Psychiatric Residential Treatment Facilities Providing Inpatient Psychiatric Services for Individuals Under...

  5. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.; Hallett, K.; DeWolfe, J.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less

  6. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  7. A new thermal vacuum facility at the Martin Marietta Waterton plant

    NASA Technical Reports Server (NTRS)

    Watson, Robert N.; Bonn, John W.

    1992-01-01

    A new thermal-vacuum facility has been recently completed at the Martin Marietta Waterton plant near Denver, Colorado. The facility was designed, fabricated, installed, and tested as a turn-key project by Pitt-Des Moines Inc. and CVI Inc. The chamber has a 5.49 M by 6.10 M (18 ft by 20 ft) flat floor and a half-cylindrical roof with a diameter of 5.49 M (18 ft). Both ends of the chamber have full cross section doors, with one equipped with translating motors for horizontal motion. The chamber is provided with four 0.91 M (36 inches) cryopumps to obtain an ultimate pressure of 9 x 10(exp -8) Torr (Clean-Dry-Empty). The thermal shroud is designed to operate at a maximum of -179 C (-290 F) with an internal heat input of 316 MJ/Hr (300,000 BTU/Hr) using liquid nitrogen. The shroud is also designed to operate at any temperature between -156 C (-250 F) and 121 C (+250 F) using gaseous nitrogen, and heat or cool at a rate of 1.1 C (2 F) per minute.

  8. University of Minnesota Aquifer Thermal Energy Storage Field Test Facility

    NASA Astrophysics Data System (ADS)

    Walton, M.; Hoyer, M. C.

    1982-12-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) Field Test Facility became operational. Experiments demonstrated that the Franconia-Ironton-Galesville aquifer will accept injection of 300 gpm (18.9 1 sec (-1)) at reasonable pressures with a heat buildup in the injection well of about 44 psi (31.6 m) over 8 days. Heating of the ground water caused precipitation of carbonate in the piping and injection well, but with proper water conditioning, the system will work satisfactorily at elevated temperatures.

  9. Sliding Mode Thermal Control System for Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  10. Comparing the Costs of Military Treatment Facilities with Private Sector Care

    DTIC Science & Technology

    2016-02-01

    Log: H 15-000527 Comparing the Costs of Military Treatment Facilities with Private Sector Care Philip M. Lurie INSTITUTE FOR DEFENSE ANALYSES 4850 Mark...other national challenges. Comparing the Costs of Military Treatment Facilities with Private Sector Care Philip M. Lurie I N S T I T U T E F O R D...members. The latter benefit, known as TRICARE, serves 9.5 million beneficiaries worldwide, and consists of care in Military Treatment Facilities (MTFs

  11. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered processmore » equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.« less

  12. Automation and Upgrade of Thermal System for Large 38-Year-Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew T.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38 years was one of the driving design factors for the size of the equipment. The installation was completed on time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  13. Automation and Upgrade of Thermal System for Large 38-Year Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38-years was one of the driving design factors for the size of the equipment. The installation was completed on-time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  14. Proton facility economics: the importance of "simple" treatments.

    PubMed

    Johnstone, Peter A S; Kerstiens, John; Richard, Helsper

    2012-08-01

    Given the cost and debt incurred to build a modern proton facility, impetus exists to minimize treatment of patients with complex setups because of their slower throughput. The aim of this study was to determine how many "simple" cases are necessary given different patient loads simply to recoup construction costs and debt service, without beginning to cover salaries, utilities, beam costs, and so on. Simple cases are ones that can be performed quickly because of an easy setup for the patient or because the patient is to receive treatment to just one or two fields. A "standard" construction cost and debt for 1, 3, and 4 gantry facilities were calculated from public documents of facilities built in the United States, with 100% of the construction funded through standard 15-year financing at 5% interest. Clinical best case (that each room was completely scheduled with patients over a 14-hour workday) was assumed, and a statistical analysis was modeled with debt, case mix, and payer mix moving independently. Treatment times and reimbursement data from the investigators' facility for varying complexities of patients were extrapolated for varying numbers treated daily. Revenue assumptions of $X per treatment were assumed both for pediatric cases (a mix of Medicaid and private payer) and state Medicare simple case rates. Private payer reimbursement averages $1.75X per treatment. The number of simple patients required daily to cover construction and debt service costs was then derived. A single gantry treating only complex or pediatric patients would need to apply 85% of its treatment slots simply to service debt. However, that same room could cover its debt treating 4 hours of simple patients, thus opening more slots for complex and pediatric patients. A 3-gantry facility treating only complex and pediatric cases would not have enough treatment slots to recoup construction and debt service costs at all. For a 4-gantry center, focusing on complex and pediatric cases alone

  15. NPDES Permit for Riverview Estates Wastewater Treatment Facility in North Dakota

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number ND-0031143, the Riverview Estates Wastewater Treatment Facility is authorized to discharge from its wastewater treatment facility in designated locations as described in the permit.

  16. Photo-thermal nanosystems for diseased cell treatment

    NASA Astrophysics Data System (ADS)

    Raeesi, Vahid

    The prevalence of cancer and infectious disease demands for development of more effective treatment technologies. Current standard chemo- and radiotherapy for cancer offer only relative therapeutic efficacy at the cost of significant side-effects. On the other hand, resistance of microbes to current antibiotics has raised serious concern in public health sectors such as hospitals. Thermal therapy is an alternative technique that employs high temperatures to treat diseased cells via direct and indirect heat effects. Owing to its nature, this technique can offer enhanced therapeutic efficacy in local diseased regions via either mono- or combinatorial platforms and very minimal side-effects. However, existing bulk heating systems are limited in providing selective and controlled temperature rise in the desired region at tissue/cellular scales. This compromises the therapeutic efficacy of the treatment and increases the risk of off-target heating in healthy tissues. In this thesis, we propose the use of heat-generating nanoparticles to precisely target heat into small regions and study how they can be applied in cancer and bacteria treatment. Our model nanoparticle system generates heat by light stimulation. Different nanosystems based on this particle are developed and their thermal effects on therapeutic distribution are explored at tumor tissue and cellular scales. In addition, the thermal effect of these nanoparticles is utilized to overcome microbial resistance. By mechanistic understanding of nanoparticle thermal effects at different length scales, this research helps to rationalize proper design and development of heat- generating nanomedicine for cancer and microbial treatments.

  17. First Dutch Consensus of Pain Quality Indicators for Pain Treatment Facilities.

    PubMed

    de Meij, Nelleke; van Grotel, Marloes; Patijn, Jacob; van der Weijden, Trudy; van Kleef, Maarten

    2016-01-01

    There is a general consensus about the need to define and improve the quality of pain treatment facilities. Although guidelines and recommendations to improve the quality of pain practice management have been launched, provision of appropriate pain treatment is inconsistent and the quality of facilities varies widely. The aim of the study was to develop an expert-agreed list of quality indicators applicable to pain treatment facilities. The list was also intended to be used as the basis for a set of criteria for registered status of pain treatment facilities. The University Pain Center Maastricht at the Department of Anesthesiology and Pain Management of the Maastricht University Medical Center conducted a 3-round Delphi study in collaboration with the Board of the Pain Section of the Dutch Society of Anesthesiologists (NVA). Twenty-five quality indicators were selected as relevant to 2 types of pain treatment facilities, pain clinics and pain centers. The final expert-agreed list consisted of 22 quality indicators covering 7 quality domains: supervision, availability of care, staffing level and patient load, quality policy, multidisciplinarity, regionalization, and research and education. This set of quality indicators may facilitate organizational evaluation and improve insight into service quality from the perspectives of patients, pain specialists, and other healthcare professionals. Recommendations for improvements to the current set of quality indicators are made. In 2014 the process of registering pain treatment facilities in the Netherlands started; facilities can register as a pain clinic or pain center. © 2015 World Institute of Pain.

  18. Thermal dosimetry for bladder hyperthermia treatment. An overview.

    PubMed

    Schooneveldt, Gerben; Bakker, Akke; Balidemaj, Edmond; Chopra, Rajiv; Crezee, Johannes; Geijsen, Elisabeth D; Hartmann, Josefin; Hulshof, Maarten C C M; Kok, H Petra; Paulides, Margarethus M; Sousa-Escandon, Alejandro; Stauffer, Paul R; Maccarini, Paolo F

    2016-06-01

    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.

  19. 77 FR 42621 - Irradiation Treatment; Location of Facilities in the Southern United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    .... APHIS-2009-0100] RIN 0579-AD35 Irradiation Treatment; Location of Facilities in the Southern United... amending the phytosanitary treatment regulations to provide generic criteria for new irradiation treatment facilities in the Southern States of the United States. This action will allow irradiation facilities to be...

  20. Processing of baby food using pressure-assisted thermal sterilization (PATS) and comparison with thermal treatment

    NASA Astrophysics Data System (ADS)

    Wang, Yubin; Ismail, Marliya; Farid, Mohammed

    2017-10-01

    Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.

  1. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  2. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  3. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    PubMed

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  4. The index of tobacco treatment quality: development of a tool to assess evidence-based treatment in a national sample of drug treatment facilities.

    PubMed

    Cupertino, A Paula; Hunt, Jamie J; Gajewski, Byron J; Jiang, Yu; Marquis, Janet; Friedmann, Peter D; Engelman, Kimberly K; Richter, Kimber P

    2013-03-15

    Quitting smoking improves health and drug use outcomes among people in treatment for substance abuse. The twofold purpose of this study is to describe tobacco treatment provision across a representative sample of U.S. facilities and to use these data to develop the brief Index of Tobacco Treatment Quality (ITTQ). We constructed survey items based on current tobacco treatment guidelines, existing surveys, expert input, and qualitative research. We administered the survey to a stratified sample of 405 facility administrators selected from all 3,800 U.S. adult outpatient facilities listed in the SAMHSA Inventory of Substance Abuse Treatment Services. We constructed the ITTQ with a subset of 7 items that have the strongest clinical evidence for smoking cessation. Most facilities (87.7%) reported that a majority of their clients were asked if they smoke cigarettes. Nearly half of facilities (48.6%) reported that a majority of their smoking clients were advised to quit. Fewer (23.3%) reported that a majority of their smoking clients received tobacco treatment counseling and even fewer facilities (18.3%) reported a majority of their smoking clients were advised to use quit smoking medications. The median facility ITTQ score was 2.57 (on a scale of 1-5) and the ITTQ displayed good internal consistency (Cronbach's alpha = .844). Moreover, the ITTQ had substantial test-retest reliability (.856), and ordinal confirmatory factor analysis found that our one-factor model for ITTQ fit the data very well with a CFI of 0.997 and an RMSEA of 0.042. The ITTQ is a brief and reliable tool for measuring tobacco treatment quality in substance abuse treatment facilities. Given the clear-cut room for improvement in tobacco treatment, the ITTQ could be an important tool for quality improvement by identifying service levels, facilitating goal setting, and measuring change.

  5. The index of tobacco treatment quality: development of a tool to assess evidence-based treatment in a national sample of drug treatment facilities

    PubMed Central

    2013-01-01

    Background Quitting smoking improves health and drug use outcomes among people in treatment for substance abuse. The twofold purpose of this study is to describe tobacco treatment provision across a representative sample of U.S. facilities and to use these data to develop the brief Index of Tobacco Treatment Quality (ITTQ). Methods We constructed survey items based on current tobacco treatment guidelines, existing surveys, expert input, and qualitative research. We administered the survey to a stratified sample of 405 facility administrators selected from all 3,800 U.S. adult outpatient facilities listed in the SAMHSA Inventory of Substance Abuse Treatment Services. We constructed the ITTQ with a subset of 7 items that have the strongest clinical evidence for smoking cessation. Results Most facilities (87.7%) reported that a majority of their clients were asked if they smoke cigarettes. Nearly half of facilities (48.6%) reported that a majority of their smoking clients were advised to quit. Fewer (23.3%) reported that a majority of their smoking clients received tobacco treatment counseling and even fewer facilities (18.3%) reported a majority of their smoking clients were advised to use quit smoking medications. The median facility ITTQ score was 2.57 (on a scale of 1–5) and the ITTQ displayed good internal consistency (Cronbach’s alpha = .844). Moreover, the ITTQ had substantial test-retest reliability (.856), and ordinal confirmatory factor analysis found that our one-factor model for ITTQ fit the data very well with a CFI of 0.997 and an RMSEA of 0.042. Conclusions The ITTQ is a brief and reliable tool for measuring tobacco treatment quality in substance abuse treatment facilities. Given the clear-cut room for improvement in tobacco treatment, the ITTQ could be an important tool for quality improvement by identifying service levels, facilitating goal setting, and measuring change. PMID:23497366

  6. Enhancing composite durability : using thermal treatments

    Treesearch

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  7. Perceptions of Organizational Functioning in Substance Abuse Treatment Facilities in South Africa

    ERIC Educational Resources Information Center

    Bowles, Steven; Louw, Johann; Myers, Bronwyn

    2011-01-01

    Directors' and treatment staff's perceptions of organizational functioning within substance abuse treatment facilities in four provinces in South Africa were examined via the Texas Christian University's Organizational Readiness for Change instrument. Forty-four treatment facilities (out of 89) participated in the study. Results indicated that…

  8. Problem Severity Profiles of Substance Abusing Women in Therapeutic Treatment Facilities

    ERIC Educational Resources Information Center

    Isralowitz, Richard; Reznik, Alexander

    2009-01-01

    This article aims to examine specific substance use profiles among former Soviet Union (FSU) immigrant and native-born women in Israeli therapeutic treatment facilities. Individuals were sampled at drug treatment facilities and assessed using the Addiction Severity Index. ASI scores suggest differences between the two groups. Among the findings…

  9. Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties.

    PubMed

    Wang, Haifei; Han, Jing; Lu, Wensheng; Zhang, Jianping; Li, Jinru; Jiang, Long

    2015-02-15

    Although template etching method is one of the most common ways of preparation of hollow gold nanostructures, this approach still requires further improvements to avoid the collapse of gold shells after the cores were removed. In this work, an improved template etching method, with which hollow gold nanostructure is fabricated by etching Polystyrene (PS) cores from PS@Au core-shell nanospheres with solvent thermal treatment in N,N-Dimethylformamide (DMF), is demonstrated. When PS cores were removed by a thermal treatment process, gold nanoshells reconstruct and the collapse of the nanoshells is avoided. Gold nanocages and hollow gold nanospheres are easily obtained from the various structures of PS@Au core-shell nanospheres. These hollow nanostructures represent special near infrared (NIR) optical property and photothermal property. Compared with hollow gold nanospheres, the gold nanocages show higher temperature increase at the same particle concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Provision of Mental Health Services in South African Substance Abuse Treatment Facilities

    ERIC Educational Resources Information Center

    Myers, Bronwyn; Fakier, Nuraan

    2009-01-01

    To date, South African research has not examined mental health service provision in substance abuse treatment facilities, even though these services improve client retention and treatment outcomes. To describe the extent to which substance abuse treatment facilities in Gauteng and KwaZulu-Natal provinces provide clients with mental health services…

  11. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  12. Thermal Testing of Ablators in the NASA Johnson Space Center Radiant Heat Test Facility

    NASA Technical Reports Server (NTRS)

    Del Papa, Steven; Milhoan, Jim; Remark, Brian; Suess, Leonard

    2016-01-01

    A spacecraft's thermal protection system (TPS) is required to survive the harsh environment experienced during reentry. Accurate thermal modeling of the TPS is required to since uncertainties in the thermal response result in higher design margins and an increase in mass. The Radiant Heat Test Facility (RHTF) located at the NASA Johnson Space Center (JSC) replicates the reentry temperatures and pressures on system level full scale TPS test models for the validation of thermal math models. Reusable TPS, i.e. tile or reinforced carbon-carbon (RCC), have been the primary materials tested in the past. However, current capsule designs for MPCV and commercial programs have required the use of an ablator TPS. The RHTF has successfully completed a pathfinder program on avcoat ablator material to demonstrate the feasibility of ablator testing. The test results and corresponding ablation analysis results are presented in this paper.

  13. Observations of Jupiter thermal emission made by the Infrared Telescope Facility and the Galileo NIMS instrument

    NASA Image and Video Library

    1998-03-26

    These observations of Jupiter equator in thermal heat emission were made by NASA Infrared Telescope Facility top panel within hours of the Near-Infrared Mapping Spectrometer NIMS instrument image middle inset and the spectra bottom.

  14. In-situ Thermal Treatment of Trichloroethene at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Cole, Jason; McElroy, William J.; Glasgow, Jason; Heron, Gorm; Galligan, Jim; Parker, Ken; Davis, E. F.

    2008-01-01

    This viewgraph presentation describes the in-situ thermal treatment of trichloroethene at Marshall space Flight Center. The contents include: 1) Background 1 and 2; 2) Source Area-13; 3) In-situ Thermal Treatment; 4) SA-13 Lithology; 5) SA-13 In-Situ Thermal TS; 6) SA-13 ISTD System Components; 7) ISTD Overview; 8) Heaters; 9) SA-13 ISTD Wellfield Layout; 10) SA-13 Well Field; 11) ISTD Process and Instrumentation; 12) Treatment Zone Temperature; 13) SA-13 System Removals; 14) SA-13 DNAPL (typical photos); 15) Treatment Results 1-5; and 16) SA-13 TCE Removal Summary.

  15. 76 FR 60390 - Irradiation Treatment; Location of Facilities in the Southern United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... [Docket No. APHIS-2009-0100] RIN 0579-AD35 Irradiation Treatment; Location of Facilities in the Southern... irradiation treatment facilities in the Southern States of the United States. This action would allow irradiation facilities to be located anywhere in these States, subject to approval, rather than only in the...

  16. Availability of Youth Services in U.S. Mental Health Treatment Facilities

    PubMed Central

    Cummings, Janet R.; Case, Brady G.; Ji, Xu; Marcus, Steven C.

    2015-01-01

    Despite concern about access to mental health (MH) services for youth, little is known about the specialty treatment infrastructure serving this population. We used national data to examine which types of MH treatment facilities (hospital- and community-based) were most likely to offer youth services and which types of communities were most likely to have this infrastructure. Larger (p<0.001) and privately owned (p<0.001) facilities were more likely to offer youth services. Rural counties, counties in which a majority of residents were nonwhite, and/or counties with a higher percentage of uninsured residents were less likely to have a community-based MH treatment facility that served youth (p<0.001). PMID:26467795

  17. Availability of Youth Services in U.S. Mental Health Treatment Facilities.

    PubMed

    Cummings, Janet R; Case, Brady G; Ji, Xu; Marcus, Steven C

    2016-09-01

    Despite concern about access to mental health (MH) services for youth, little is known about the specialty treatment infrastructure serving this population. We used national data to examine which types of MH treatment facilities (hospital- and community-based) were most likely to offer youth services and which types of communities were most likely to have this infrastructure. Larger (p < 0.001) and privately owned (p < 0.001) facilities were more likely to offer youth services. Rural counties, counties in which a majority of residents were nonwhite, and/or counties with a higher percentage of uninsured residents were less likely to have a community-based MH treatment facility that served youth (p < 0.001).

  18. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show thatmore » fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.« less

  19. Financial Assurance Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The Resource Conservation and Recovery Act (RCRA) requires all treatment, storage and disposal facilities (TSDFs) to demonstrate that they will have the financial resources to properly close the facility

  20. 76 FR 57642 - TRICARE: Unfortunate Sequelae From Noncovered Services in a Military Treatment Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... TRICARE: Unfortunate Sequelae From Noncovered Services in a Military Treatment Facility AGENCY: Office of... treatment of complications (unfortunate sequelae) resulting from a noncovered incident of treatment provided in a Military Treatment Facility (MTF), when the initial noncovered service has been authorized by...

  1. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  2. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    NASA Technical Reports Server (NTRS)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  3. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less

  4. RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...

  5. By-products of the Thermal Treatment of Hazardous Waste: Formation and Health Effects

    PubMed Central

    Walsh, Maud; Cormier, Stephania; Varner, Kurt; Dellinger, Barry

    2011-01-01

    Destruction of toxic chemicals by thermal treatment can be a highly effective method for remediation of sites contaminated with hazardous substances. Of the 977 Superfund source control treatment projects in the United States from 1982 to 2005, 16% used incineration or other thermal treatments (the proportion is similar for 126 projects in the period 2002–2005).1 However, as with other technologies, if thermal treatments are not matched correctly with the site or are improperly operated, harmful by-products can form, requiring further treatment. PMID:22684359

  6. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    DOE PAGES

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  7. Effects of low Earth orbit environment on the Long Duration Exposure Facility thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sampair, Thomas R.; Berrios, William M.

    1992-01-01

    One of the benefits of the Long Duration Exposure Facility (LDEF) was the opportunity to study the before and after effects of low earth orbit space environment on the spacecraft thermal control coatings. Since the LDEF's thermal control was totally passive by design, the selection of the external surface absorptivity to emissivity ratio (alpha/epsilon) and the ability for the coating to retain the alpha/epsilon over time was an important consideration in the thermal design of the LDEF. The primary surface coating chosen for the LDEF structure was clear chromic anodized aluminum with an average design alpha/epsilon of 0.32/0.16. External surface absorptivity (alpha) and emissivity (epsilon) were measured on all intercostals, longerons, tray mounting flanges, thermal control panels, and a limited number of experiment surface coatings after the experiment trays were removed from the LDEF structure. All surface alpha/epsilon measurements were made using portable hand held infrared and solar spectrum reflectometers. The absorptivity measurements were taken with a Devices and Services SSR-ER version 5.0 solar spectra reflectometer which has a stated uncertainty of +/- 0.01, and all normal emissivity measurements were made using the Gier Dunkle DB-100 infrared reflectometer also with a stated uncertainty of +/- 0.01. Both instruments were calibrated in the laboratory by LaRC instrumentation personnel before being used in the field at KSC. A combined total of 733 measurements were taken on the anodized aluminum hardware which included the structure (intercostals, longerons, and center ring), earth and space end thermal control panels, and experiment tray mounting flanges. The facility thermal control coatings measured in this survey cover 33 percent of the total exposed LDEF surface area. To correlate low earth orbit environmental effects on the anodized coatings, measurements were taken in both exposed and unexposed surfaces and compared to quality assurance (QA

  8. Thermal treatment of medical waste in a rotary kiln.

    PubMed

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of thermal treatment on Zn nanodisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acuña-Avila, Pedro E., E-mail: pacunaa004@alumno.uaemex.mx; López, Roberto; Vigueras-Santiago, Enrique

    2015-06-15

    Metallic Zn nanodisks with hexagonal morphology were obtained onto glass substrate under vacuum thermal evaporation. A thermal characterization of Zn nanodiks showed a lower oxidation temperature than source powder Zn. Different thermal treatment on Zn nanodisks played an important role on the morphology, crystal size and surface vibrational modes of ZnO. The growth of ZnO nanoneedles started at the edge of metallic zinc hexagonal structures according with SEM images, the higher temperature the longer needles were grown. XRD diffractogram confirmed the wurtzite structure of ZnO with metallic nuclei. A wide band between 530 and 580 cm{sup −1} of Raman scatteringmore » corresponded at surface vibrational modes not observed at higher temperature.« less

  10. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    EPA Science Inventory

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  11. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  12. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  13. Thermal treatment of solid residues from WtE units: a review.

    PubMed

    Lindberg, Daniel; Molin, Camilla; Hupa, Mikko

    2015-03-01

    Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  15. Recycling supercapacitors based on shredding and mild thermal treatment.

    PubMed

    Jiang, Guozhan; Pickering, Stephen J

    2016-02-01

    Supercapacitors are widely used in electric and hybrid vehicles, wind farm and low-power equipment due to their high specific power density and huge number of charge-discharge cycles. Waste supercapacitors should be recycled according to EU directive 2002/96/EC on waste electric and electronic equipment. This paper describes a recycling approach for end-of-life supercapacitors based on shredding and mild thermal treatment. At first, supercapacitors are shredded using a Retsch cutting mill. The shredded mixture is then undergone thermal treatment at 200°C to recycle the organic solvent contained in the activated carbon electrodes. After the thermal treatment, the mixture is roughly separated using a fluidized bed method to remove the aluminium foil particles and paper particles from the activated carbon particles, which is subsequently put into water for a wet shredding into fine particles that can be re-used. The recycled activated carbon has a BET surface area of up to 1200m(2)/g and the recycled acetonitrile has a high purity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner; Sam Bhattacharyya; Mike Houts

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less

  17. 24 CFR 960.205 - Drug use by applicants: Obtaining information from drug treatment facility.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... This section addresses a PHA's authority to request and obtain information from drug abuse treatment... household member. (2) Drug abuse treatment facility. An entity: (i) That holds itself out as providing, and... consent forms signed by such household member that: (i) Requests any drug abuse treatment facility to...

  18. 24 CFR 960.205 - Drug use by applicants: Obtaining information from drug treatment facility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... This section addresses a PHA's authority to request and obtain information from drug abuse treatment... household member. (2) Drug abuse treatment facility. An entity: (i) That holds itself out as providing, and... consent forms signed by such household member that: (i) Requests any drug abuse treatment facility to...

  19. 24 CFR 960.205 - Drug use by applicants: Obtaining information from drug treatment facility.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... This section addresses a PHA's authority to request and obtain information from drug abuse treatment... household member. (2) Drug abuse treatment facility. An entity: (i) That holds itself out as providing, and... consent forms signed by such household member that: (i) Requests any drug abuse treatment facility to...

  20. 24 CFR 960.205 - Drug use by applicants: Obtaining information from drug treatment facility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... This section addresses a PHA's authority to request and obtain information from drug abuse treatment... household member. (2) Drug abuse treatment facility. An entity: (i) That holds itself out as providing, and... consent forms signed by such household member that: (i) Requests any drug abuse treatment facility to...

  1. 24 CFR 960.205 - Drug use by applicants: Obtaining information from drug treatment facility.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... This section addresses a PHA's authority to request and obtain information from drug abuse treatment... household member. (2) Drug abuse treatment facility. An entity: (i) That holds itself out as providing, and... consent forms signed by such household member that: (i) Requests any drug abuse treatment facility to...

  2. DEMONSTRATION BULLETIN: LOW TEMPERATURE THERMAL TREATMENT (LT3®) SYSTEM

    EPA Science Inventory

    The Roy F. Weston, Inc. (Weston) low temperature thermal treatment (LT3®) system thermally desorbs organic compounds from contaminated soil without heating the soil to combustion temperatures. The transportable system is comprised of equipment assembled on thre...

  3. Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary

    1995-01-01

    Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.

  4. Influence of thermal hydrolysis-anaerobic digestion treatment of wastewater solids on concentrations of triclosan, triclocarban, and their transformation products in biosolids.

    PubMed

    Armstrong, Dana L; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2017-03-01

    The growing concern worldwide regarding the presence of emerging contaminants in biosolids calls for a better understanding of how different treatment technologies at water resource recovery facilities (WRRFs) can influence concentrations prior to biosolids land application. This study focuses on the influence of solids treatment via the Cambi Thermal Hydrolysis Process™ in conjunction with anaerobic digestion (TH-AD) on concentrations of triclosan (TCS), triclocarban (TCC), and their transformation products in biosolids and sludges. Concentrations of the target analytes in biosolids from the TH-AD process (Class A), sludges from the individual TH-AD treatment steps, and limed biosolids (Class B) from the same WRRF were compared. TCC concentrations were significantly lower in Class A biosolids than those in the Class B product - a removal that occurred during thermal hydrolysis. Concentrations of TCS, methyl triclosan, and 2,4-dichlorophenol, conversely, increased during anaerobic digestion, leading to significantly higher concentrations of these compounds in Class A biosolids when compared to Class B biosolids. Implementation of the TH-AD process had mixed effect on contaminant concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Thermal-based treatment options for localized prostate cancer.

    PubMed

    Koch, Michael O; Gardner, Thomas A

    2005-09-01

    It seems clear that thermal-based therapies of prostate cancer have the potential to completely eradicate the prostate gland. Technical modifications continue to improve our ability to use these modalities more effectively, which can be seen in the ever decreasing morbidity from damage to adjacent structures. These treatments offer potential major advantages over surgery and radiation-based treatment modalities.

  6. NPDES Permit: Shiprock Wastewater Treatment Facility, Shiprock, New Mexico

    EPA Pesticide Factsheets

    NPDES Permit, Fact Sheet, and Response to Comments explaining EPA's issue of NPDES Permit No. NN0020621 to the Navajo Tribal Utility Authority Shiprock Wastewater Treatment Facility, Shiprock, San Juan County, New Mexico.

  7. Very high-vacuum heat treatment facility

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1987-01-01

    A vacuum heat treatment facility, with hot zone dimensions of 12 x 19 x 19 cm, has been designed and constructed at a cost substantially below that of a commercial unit. The design incorporates efficient water cooling and a resistive heating element. A vacuum pressure of 1.5 x 10 to the -8th torr at room temperature has been obtained after baking. The temperature limit is approximately 1900 C. This limit results from the choice of niobium as the hot zone material.

  8. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA.

    PubMed

    Karthikeyan, K G; Meyer, Michael T

    2006-05-15

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H(2)O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%)>sulfamethoxazole (70%)>erythromycin-H(2)O (45%)>ciprofloxacin (40%)>sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study.

  9. [Impact of Thermal Treatment on Biogas Production by Anaerobic Digestion of High-solid-content Swine Manure].

    PubMed

    Hu, Yu-ying; Wu, Jing; Wang, Shi-feng; Cao, Zhi-ping; Wang, Kai-jun; Zuo, Jian-e

    2015-08-01

    Livestock manure is a kind of waste with high organic content and sanitation risk. In order to investigate the impact of thermal treatment on the anaerobic digestion of high-solid-content swine manure, 70 degrees C thermal treatment was conducted to treat raw manure (solid content 27.6%) without any dilution. The results indicated that thermal treatment could reduce the organic matters and improve the performance of anaerobic digestion. When the thermal treatment time was 1d, 2d, 3d, 4d, the VS removal rates were 15.1%, 15.5%, 17.8% and 20.0%, respectively. The methane production rates (CH4/VSadd) were 284.4, 296.3, 309.2 and 264.4 mL x g(-1), which was enhanced by 49.7%, 55.9%, 62.7% and 39.2%, respectively. The highest methane production rate occurred when the thermal treatment time was 3d. The thermal treatment had an efficient impact on promoting the performance of methane production rate with a suitable energy consumption. On the other hand, thermal treatment could act as pasteurization. This showed that thermal treatment would be of great practical importance.

  10. 18 CFR 292.205 - Criteria for qualifying cogeneration facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... standard. For any topping-cycle cogeneration facility, the useful thermal energy output of the facility... thermal energy output, during the 12-month period beginning with the date the facility first produces... total energy input of natural gas and oil to the facility; or (B) If the useful thermal energy output is...

  11. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    DOEpatents

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  12. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  13. NPDES Permit for Charlo Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022551, the Consolidated Charlo-Lake County Water & Sewer District is authorized to discharge from its wastewater treatment facility located in Lake County, Montana to an unnamed swale that runs to Dublin Gulch.

  14. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended

  15. Perspective of Micro Process Engineering for Thermal Food Treatment

    PubMed Central

    Mathys, Alexander

    2018-01-01

    Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature–time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured. PMID:29686990

  16. Ultrasound interstitial thermal therapy (USITT) for the treatment of uterine myomas

    NASA Astrophysics Data System (ADS)

    Nau, William H., Jr.; Diederich, Chris J.; Simko, Jeff; Juang, Titania; Jacoby, Alison; Burdette, E. C.

    2007-02-01

    Uterine myomas (fibroids) are the most common pelvic tumors occurring in women, and are the leading cause of hysterectomy. Symptoms can be severe, and traditional treatments involve either surgical removal of the uterus (hysterectomy), or the fibroids (myomectomy). Interstitial ultrasound technologies have demonstrated potential for hyperthermia and high temperature thermal therapy in the treatment of benign and malignant tumors. These ultrasound devices offer favorable energy penetration allowing large volumes of tissue to be treated in short periods of time, as well as axial and angular control of heating to conform thermal treatment to a targeted tissue, while protecting surrounding tissues from thermal damage. The goal of this project is to evaluate interstitial ultrasound for controlled thermal coagulation of fibroids. Multi-element applicators were fabricated using tubular transducers, some of which were sectored to produce 180° directional heating patterns, and integrated with water cooling. Human uterine fibroids were obtained after routine myomectomies, and instrumented with thermocouples spaced at 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 cm from the applicator. Power levels ranging from 8-15 W per element were applied for up to 15 minute heating periods. Results demonstrated that therapeutic temperatures >50° C and cytotoxic thermal doses (t 43) extended beyond 2 cm radially from the applicator (>4 cm diameter). It is anticipated that this system will make a significant contribution toward the treatment of uterine fibroids.

  17. A Vibration Isolation System for Use in a Large Thermal Vacuum Test Facility

    NASA Technical Reports Server (NTRS)

    Hershfeld, Donald; VanCampen, Julie

    2002-01-01

    A thermal vacuum payload platform that is isolated from background vibration is required to support the development of future instruments for Hubble Space Telescope (HST) and the Next Generation Space Telescope (NGST) at the Goddard Space Flight Center (GSFC). Because of the size and weight of the thermal/vacuum facility in which the instruments are tested, it is not practical to isolate the entire facility externally. Therefore, a vibration isolation system has been designed and fabricated to be installed inside the chamber. The isolation system provides a payload interface of 3.05 m (10 feet) in diameter and is capable of supporting a maximum payload weight of 4536 kg (10,000 Lbs). A counterweight system has been included to insure stability of payloads having high centers of gravity. The vibration isolation system poses a potential problem in that leakage into the chamber could compromise the ability to maintain vacuum. Strict specifications were imposed on the isolation system design to minimize leakage. Vibration measurements, obtained inside the chamber, prior to installing the vibration isolation system, indicated levels in all axes of approximately 1 milli-g at about 20 Hz. The vibration isolation system was designed to provide a minimum attenuation of 40 dB to these levels. This paper describes the design and testing of this unique vibration isolation system. Problems with leakage and corrective methods are presented. Isolation performance results are also presented.

  18. Association Between Treatment at High-Volume Facilities and Improved Overall Survival in Soft Tissue Sarcomas.

    PubMed

    Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E

    2018-03-15

    Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to

  19. A Movable Combined Water Treatment Facility for Rainwater Harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liao, L.

    2003-12-01

    Alarming water shortage and increased water scarcity world wide has led to increased interests in alternative water sources. Rainwater harvesting is one of them which is getting more and more attention. There is a huge potential for generalization and extension of rainwater harvesting system as an alternative water supply. This is especially important for arid and semi-arid regions where the water shortage blocks further social, economical development. Earlier laboratory experiments and field study showed that harvested rainwater requires treatments of different degrees in order to meet the WHO drinking water standards. The main focus of this study is to ascertain the quality of stored rainwater for drinking purposes with emphasis on water disinfection and pollutants removal. A movable, low-cost, fully functional small scale treatment facility is proposed and tested under simulated field condition. A number of actual and potential hazardous pollutants were identified in the collected water samples together with laboratory test. The corresponding water purification procedure and fresh-keeping methods are discussed. The final proposal of this movable facility needs to be further examined to achieve optimal combined treatment efficiency.

  20. Rates of trauma-informed counseling at substance abuse treatment facilities: reports from over 10,000 programs.

    PubMed

    Capezza, Nicole M; Najavits, Lisa M

    2012-04-01

    Trauma-informed treatment increasingly is recognized as an important component of service delivery. This study examined differences in treatment-related characteristics of facilities that offer moderate or high levels of trauma-informed counseling versus those that offer no or low levels of such counseling. Responses from 13,223 substance abuse treatment facilities surveyed in 2009 by the National Survey of Substance Abuse Treatment Services (NSSATS) were used. A majority (66.6%) of facilities reported using trauma counseling sometimes or always or often. Facilities that provided moderate or high levels of trauma counseling were more likely to provide additional treatment services, such as disease testing and specialized group therapy, as well as child care, employment counseling, and other ancillary services. A majority of facilities reported provision of trauma counseling. Additional training and resources may be needed for programs that reported low rates of trauma counseling.

  1. Residential Behavioral Treatment Facilities. 1996 Minnesota Student Survey.

    ERIC Educational Resources Information Center

    Fulkerson, Jayne A.; Harrison, Patricia A.; Beebe, Timothy J.

    This report uses text, graphs, and tables to present findings of a 1996 survey of 575 adolescents voluntarily participating in residential behavioral treatment facilities in Minnesota. Compared with public school students, these adolescents were: 62 percent male, more likely to be of color, especially American Indian, and twice as likely as other…

  2. Electroconvulsive treatment--more than electricity?: An Odyssey of facilities.

    PubMed

    Berg, John E

    2009-12-01

    To investigate whether the practice of electroconvulsive treatment (ECT) today is done in a comparable way in different hospitals on several continents. During visits to the ECT facilities of 14 hospitals on 3 continents, comparisons were made, and responsible health professionals were interviewed using a semistructured guide. It is emphasized that the present article is not the result of a well-structured research, but of reflections after observing a lack of homogeneity among facilities. A total of more than 18,000 modified ECT sessions were given per year in the 14 hospitals. The opinion of the public and regulatory bodies on ECT strongly influences the possibility of giving ECT to patients. Indications for ECT are wider than the cases of depression in most facilities visited. A psychiatrist gives ECT in all but 1 facility. Anesthesia is given by an anesthesiologist in all but 1 facility. A mouthpiece was not used in 2 (or 3) facilities, although the rationale was the same as in facilities using mouthpieces. No facility gave unmodified ECT. Holding on to the patient during seizures was judged unnecessary in 12 of 14 facilities. In severe mental illness, the practice of using ECT seems to have its merit also in cases with debilitating illnesses other than unipolar and bipolar depression. Giving ECT may be done by qualified or specially certified nurses, but the giving of anesthesia should be the realm of the anesthesiologist. Mouthpieces are judged by some facilities to be a superfluous device. The holding of patients during seizure can be omitted. Some of the facilities visited give ECT to a huge number of patients each year. They differ in the practice of ECT and could be the focus of comparative research. Despite the differences observed, and procedures that could be altered, giving ECT in a modified way effectively relieves suffering in the patients.

  3. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    USGS Publications Warehouse

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  4. The 10 MWe solar thermal central receiver pilot plant solar facilities design integration, RADL item 1-10

    NASA Astrophysics Data System (ADS)

    1980-07-01

    Accomplishments are reported in the areas of: program management, system integration, the beam characterization system, receiver unit, thermal storage subsystems, master control system, plant support subsystem and engineering services. A solar facilities design integration program action items update is included. Work plan changes and cost underruns are discussed briefly. (LEW)

  5. High-temperature thermal treatment of the uterus

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Xiao, Jia Hua; Chung, Juh Yun

    2003-06-01

    More than 200,000 hysterectomies are performed annually in the US due to abnormal uterine bleeding from excessive menstrual flow. A minimally invasive procedure has been developed using thermal treatment combined with pressure to the endometrial lining of the uterus. Results from a 3-D finite element model will be shown, as well as experimental data. Good correlation was seen between simulations and experiments. The study found similar results then temperatures were increased and times for treatment were shortened.More than 200,000 hysterectomies are performed annually in the US due to abnormal uterine bleeding from excessive menstrual flow. A minimally invasive procedure has been developed using a balloon-based thermal treatment combined with pressure to the endometrial lining of the uterus. A 3D finite element model was set up to simulate the balloon ablation device in the human uterus as used in over 150,000 patients to date. Several additional simulations were made at higher temperatures to seek alternative combinations with higher temperature and shorter time intervals for the same depth of penetration, or deeper penetration at longer times and elevated temperatures. A temperature range of 87 to 150°C was explored. The Bioheat Equation was used in the simulations to predict temperature distributions in tissue. The Damage Integral was also used to characterize the location at depth of irreversible damage in the uterus. Treatment safety issues were also analyzed as the simulations showed the depth of penetration into the myometrium, towards the serosa.

  6. Optimization of a thermal hydrolysis process for sludge pre-treatment.

    PubMed

    Sapkaite, I; Barrado, E; Fdz-Polanco, F; Pérez-Elvira, S I

    2017-05-01

    At industrial scale, thermal hydrolysis is the most used process to enhance biodegradability of the sludge produced in wastewater treatment plants. Through statistically guided Box-Behnken experimental design, the present study analyses the effect of TH as pre-treatment applied to activated sludge. The selected process variables were temperature (130-180 °C), time (5-50 min) and decompression mode (slow or steam-explosion effect), and the parameters evaluated were sludge solubilisation and methane production by anaerobic digestion. A quadratic polynomial model was generated to compare the process performance for the 15 different combinations of operation conditions by modifying the process variables evaluated. The statistical analysis performed exhibited that methane production and solubility were significantly affected by pre-treatment time and temperature. During high intensity pre-treatment (high temperature and long times), the solubility increased sharply while the methane production exhibited the opposite behaviour, indicating the formation of some soluble but non-biodegradable materials. Therefore, solubilisation is not a reliable parameter to quantify the efficiency of a thermal hydrolysis pre-treatment, since it is not directly related to methane production. Based on the operational parameters optimization, the estimated optimal thermal hydrolysis conditions to enhance of sewage sludge digestion were: 140-170 °C heating temperature, 5-35min residence time, and one sudden decompression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Facilities | Geothermal Technologies | NREL

    Science.gov Websites

    research, development, analysis, and deployment. A photo of the Thermal Test Facility at NREL. Thermal Test development of building and thermal energy systems. For more information, read the fact sheet

  8. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  9. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  10. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  11. Thermal treatment, grain boundary composition and intergranular attack resistance of Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.J.; Stratton, R.P.

    1992-12-31

    Commercial Alloy 690 PWR steam generator tubes and experimentally produced alloys with varying amounts of carbon, aluminium and titanium have been examined. After simulated mill annealing and thermal treatment, the microstructure and corrosion behaviour in corrosion tests have been investigated. Stress corrosion resistance of selected alloy 690 tubes and experimental alloys has been examined with environments based on pure water, sodium hydroxide and sodium hydroxide + sodium sulphate solutions. Effects of aluminium content and the thermal treatments on the susceptibility to intergranular attack have been examined, although they appear not to be very significant to the amounts of IGA. Samplesmore » used in thermal treatments have been further examined with a dedicated scanning transmission electron microscope to show compositional changes at grain boundaries.« less

  12. New NREL Research Facility Slashes Energy Use by 66 Percent

    Science.gov Websites

    Thermal Test Facility, which serves as a showcase of energy-saving features and the home of NREL's cutting technologies now being developed at the Thermal Test Facility will help us reach this goal." The facility energy-efficient building design, NREL's Thermal Test Facility houses sophisticated equipment for

  13. Differences between U.S. substance abuse treatment facilities that do and do not offer domestic violence services.

    PubMed

    Cohn, Amy; Najavits, Lisa M

    2014-04-01

    Victimization by and perpetration of domestic violence are associated with co-occurring mental and substance use disorders. This study used data from the National Survey of Substance Abuse Treatment Services to examine differences in organizational factors, treatment approaches offered, and client-level factors among 13,342 substance abuse treatment facilities by whether or not they offered domestic violence services. Only 36% of the facilities offered domestic violence services. Those that offered such services were more likely than those that did not to treat clients with co-occurring disorders. Principal-components analysis reduced eight treatment approaches to two factors: psychosocial services and traditional substance abuse services. Regression models indicated that the frequency with which psychosocial services were offered depended on the percentage of clients with co-occurring disorders who were being treated in the facility and whether or not that facility offered domestic violence services. Specifically, facilities that did not offer domestic violence services and that had a high percentage of clients with co-occurring disorders were more likely to offer psychosocial services than facilities that offered domestic violence services. A larger proportion of facilities offering domestic violence services offered traditional substance abuse treatment services, compared with facilities not offering domestic violence services, but this relationship was not contingent on the percentage of clients with co-occurring disorders at each facility. Improved efforts should be made to tailor treatments to accommodate the links between domestic violence, mental disorders, and substance abuse.

  14. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    NASA Astrophysics Data System (ADS)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  15. DFL, Canada's Space AIT Facilities - Current and Planned Capabilities

    NASA Astrophysics Data System (ADS)

    Singhal, R.; Mishra, S.; Choueiry, E.; Dumoulin, J.; Ahmed, S.

    2004-08-01

    The David Florida Laboratory (DFL) of the Canadian Space Agency is the Canadian national ISO 9001:2000 registered facility for the assembly, integration, and (environmental) testing of space hardware. This paper briefly describes the three main qualification facilities: Structural Qualification Facilities (SQF); Radio Frequency Qualification Facilities (RFQF); and Thermal Qualification Facilities (TQF). The paper also describes the planned/new upgrades/improvements to the DFL's existing capabilities. These include: cylindrical near-field antenna measurement system, current capabilities in multi-frequency multi-band passive intermodulation (PIM) measurement; combined thermal/vibration test facility, improvement in efficiency and performance of the photogrammetry capability, acquisition of an additional mass properties measurement system for small and micro-satellites; combined control and data acquisition system for all existing thermal vacuum facilities, plus a new automatic thermal control system and hypobaric chamber.

  16. Cooling Rate Study of Nickel-Rich Material During Thermal Treatment and Quench

    NASA Technical Reports Server (NTRS)

    Thomas, Fransua; Murguia, Silvia Briseno (Editor)

    2016-01-01

    To investigate quench cracking that results from water quenching after heat treatment of binary and Ni-rich material, cooling rates of specimens were measured during quenching and hardness post-thermal treatment. For specific applications binary Ni-Ti is customarily thermally treated and quenched to attain desired mechanical properties and hardness. However, one problem emerging from this method is thermal cracking, either during the heat treatment process or during the specimen's application. This can result in material and equipment failure as well as financial losses. The objective of the study is to investigate the internal cooling rate of 60-NiTi during quenching and determine possible factors causing thermal cracking. Cubic (1 in.3) samples of both material were heat treated in air at 1000 deg C for 2 hrs and quenched in room temperature water using two methods: (1) dropped in the water and (2) agitated in the water. Hardness of the two fore-mentioned methods was measured post heat treatment. Results indicate that the quenching method had an effect on cooling rate during quenching but hardness was observed to be essentially the same through the thickness of the samples.

  17. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  18. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  19. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  20. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  1. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  2. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less

  3. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less

  4. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltes, Jaroslav; Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague,; Viererbl, Ladislav

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which hasmore » a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated

  5. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOEpatents

    Kramer, Daniel P.

    1985-01-01

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  6. 26 CFR 1.274-7 - Treatment of certain expenditures with respect to entertainment-type facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Treatment of certain expenditures with respect to entertainment-type facilities. 1.274-7 Section 1.274-7 Internal Revenue INTERNAL REVENUE SERVICE... Treatment of certain expenditures with respect to entertainment-type facilities. If deductions are...

  7. 9 CFR 166.5 - Licensed garbage-treatment facility standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Licensed garbage-treatment facility standards. 166.5 Section 166.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... where insects and rodents may breed is prohibited. (b) Equipment used for handling untreated garbage...

  8. Effect of average flow and capacity utilization on effluent water quality from US municipal wastewater treatment facilities.

    PubMed

    Weirich, Scott R; Silverstein, Joann; Rajagopalan, Balaji

    2011-08-01

    There is increasing interest in decentralization of wastewater collection and treatment systems. However, there have been no systematic studies of the performance of small treatment facilities compared with larger plants. A statistical analysis of 4 years of discharge monthly report (DMR) data from 210 operating wastewater treatment facilities was conducted to determine the effect of average flow rate and capacity utilization on effluent biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia, and fecal coliforms relative to permitted values. Relationships were quantified using generalized linear models (GLMs). Small facilities (40 m³/d) had violation rates greater than 10 times that of the largest facilities (400,000 m³/d) for BOD, TSS, and ammonia. For facilities with average flows less than 40,000 m³/d, increasing capacity utilization was correlated with increased effluent levels of BOD and TSS. Larger facilities tended to operate at flows closer to their design capacity while maintaining treatment suggesting greater efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment.

    PubMed

    Chen, Chun-Chi; Lee, Wen-Jhy; Shih, Shun-I; Mou, Jin-Luh

    2009-11-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  10. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.C.; Lee, W.J.; Shih, S.I.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energymore » release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.« less

  11. An Effective Web Presence for Substance Abuse Treatment Facilities.

    PubMed

    Link, Thomas W; Hefner, Jennifer L; Ford, Eric W; Huerta, Timothy R

    2016-01-01

    Website development for health care has only been prevalent in the last two and a half decades. The first websites were electronic versions of brochures providing hardly any interaction with the consumer or potential consumer. The percentage of consumers that use the internet during the decision-making process for health care providers continues to rise. As a result, the websites of health care providers are becoming more of a representation of the facility and creating an organizational image rather than a brochure-like informational page. The purpose of this study was to analyze substance abuse treatment center's websites in the State of California with the goal of informing the management of substance abuse centers regarding an effective and inexpensive means to closing the marketing gaps in the industry. This brief research report presents the results of employing an automated web-crawler to assess website quality along five dimensions: accessibility, content, marketing, technology, and usability score. The sample mean scores for all dimensions were between 4 and 6 on a 10-point scale. On average larger facilities had higher quality websites. The low mean scores on these dimensions indicate that that substance abuse centers have significant room for improvement of their website's. Efficiently spending marketing funds to increase the effectiveness of a treatment center's website can be a low cost way for even small facilities to increase market competitiveness.

  12. 26 CFR 1.274-7 - Treatment of certain expenditures with respect to entertainment-type facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Treatment of certain expenditures with respect to entertainment-type facilities. 1.274-7 Section 1.274-7 Internal Revenue INTERNAL REVENUE SERVICE... § 1.274-7 Treatment of certain expenditures with respect to entertainment-type facilities. If...

  13. 26 CFR 1.274-7 - Treatment of certain expenditures with respect to entertainment-type facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Treatment of certain expenditures with respect to entertainment-type facilities. 1.274-7 Section 1.274-7 Internal Revenue INTERNAL REVENUE SERVICE... § 1.274-7 Treatment of certain expenditures with respect to entertainment-type facilities. If...

  14. 26 CFR 1.274-7 - Treatment of certain expenditures with respect to entertainment-type facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Treatment of certain expenditures with respect to entertainment-type facilities. 1.274-7 Section 1.274-7 Internal Revenue INTERNAL REVENUE SERVICE... § 1.274-7 Treatment of certain expenditures with respect to entertainment-type facilities. If...

  15. 26 CFR 1.274-7 - Treatment of certain expenditures with respect to entertainment-type facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Treatment of certain expenditures with respect to entertainment-type facilities. 1.274-7 Section 1.274-7 Internal Revenue INTERNAL REVENUE SERVICE... § 1.274-7 Treatment of certain expenditures with respect to entertainment-type facilities. If...

  16. Battery-cell thermal test facility

    NASA Technical Reports Server (NTRS)

    Sanders, J. A.

    1976-01-01

    Vacuum-enclosed system is used to analyze instantaneous thermal and electrical characteristics of batteries. Data can be used to determine efficiency and provide for more effective utilization of available power.

  17. CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility

    NASA Technical Reports Server (NTRS)

    Ferlemann, Paul G.

    2014-01-01

    This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.

  18. Thermal treatment and mechanical properties of aluminum-2021

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1970-01-01

    Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.

  19. NPDES Permit for Fort Carson Wastewater Treatment Facility in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit no. CO-0021181 the United States Department of the Army, Fort Carson, in authorized to discharge from its sanitary wastewater treatment facility in El Paso County, Colorado, to Clover Ditch, a tributary of Fountain Creek.

  20. Heavy metals dispersion during thermal treatment of plastic bags and its recovery.

    PubMed

    Alam, Ohidul; Wang, Sijia; Lu, Wentao

    2018-04-15

    One of the main worries for thermal treatment of plastic bag (PB) is the air pollution resulting from heavy metal (HM) evaporation and emission. The quest of the study was to investigate their fate during thermal treatment varying with temperature and atmosphere to explore the appropriate treatment technology. Four commonly consumed polymer bags such as PE, HDPE, LDPE and PVC were selected for the analysis. The elemental compositions, heating values and total metal contents of the samples were measured by an elemental analyzer, a sulphur/halogen analyzer, a bomb calorimeter and an ICP-OES, respectively. Thermal treatments of the samples were conducted in a tube furnace at 350, 550, 650, 750, and 850 °C with 1 L/min air or N 2 gas flow, respectively. 5% HNO 3 /10% H 2 O 2 solution was used for absorbing metals from gas phase, and then HM distributions both in flue gas and bottom ash were determined. Results revealed that the lower heating values of HDPE, LDPE, PVC and PE bags were 33.32, 34.28, 24.82 and 36.7 MJ/kg, respectively indicating energy recovery potential. Thermal treatment showed the maximum mass reduction (>90%) of PB at 850 °C. The higher percentage of metals was distributed in ash at initial temperature that promoted to gas with rise of temperature. The used absorption solution exhibited tremendous quantity of metals recovery. However, there was no significant difference between using air and N 2 gas flow during treatment of PB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Chromium behavior during thermal treatment of MSW fly ash.

    PubMed

    Kirk, Donald W; Chan, Chris C Y; Marsh, Hilary

    2002-02-14

    Energy-from-waste incineration has been promoted as an environmentally responsible method for handling non-recyclable waste from households. Despite the benefits of energy production, elimination of organic residues and reduction of volume of waste to be landfilled, there is concern about fly ash disposal. Fly ash from an incinerator contains toxic species such as Pb, Zn, Cd and Cr which may leach into soil and ground water if landfilled. Thermal treatment of the fly ash from municipal solid waste has been tested and proposed as a treatment option for removal of metal species such as Pb, Cd and Zn, via thermal re-volatilization. However, Cr is an element that remains in the residue of the heat treated fly ash and appears to become more soluble. This Cr solubilization is of concern if it exceeds the regulatory limit for hazardous waste. Hence, this unexpected behavior of Cr was investigated. The initial work involved microscopic characterization of Cr in untreated and thermally-treated MSW fly ash. This was followed by determining leaching characteristics using standard protocol leaching tests and characterization leaching methods (sequential extraction). Finally, a mechanism explaining the increased solubilization was proposed and tested by reactions of synthetic chemicals.

  2. NPDES Permit for Yellowtail Dam Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022993, the U.S. Bureau of Reclamation is authorized to discharge from its wastewater treatment facility located at the Yellowtail Dam Field Office in Big Horn County, Montana, to the Yellowtail Afterbay Reservoir/Bighorn River.

  3. Effects of particle size and hydro-thermal treatment of feed on performance and stomach health in fattening pigs.

    PubMed

    Liermann, Wendy; Berk, Andreas; Böschen, Verena; Dänicke, Sven

    2015-01-01

    Effects of grinding and hydro-thermal treatment of feed on growth performance, slaughter traits, nutrient digestibility, stomach content and stomach health were examined by using 96 crossbred fattening pigs. Pigs were fed a grain-soybean meal-based diet processed by various technical treatments. Feeding groups differed in particle size after grinding (finely vs. coarsely ground feed) and hydro-thermal treatment (without hydro-thermal treatment, pelleting, expanding, expanding and pelleting). Fine grinding and hydro-thermal treatment showed significant improvements on the digestibility of crude nutrients and content of metabolisable energy. Hydro-thermal treatment influenced average daily gain (ADG) and average daily feed intake (DFI) significantly. Finely ground pelleted feed without expanding enhanced performances by increasing ADG and decreasing feed-to-gain ratio (FGR) of fattening pigs. Coarsely ground feed without hydro-thermal treatment resulted in the highest ADG and DFI, however also in the highest FGR. Expanded feed decreased DFI and ADG. Slaughter traits were not affected by treatments. Coarsely ground feed without hydro-thermal treatment had protective effects on the health of gastric pars nonglandularis, however, pelleting increased gastric lesions. Hydro-thermal treatment, especially expanding, resulted in clumping of stomach content which possibly induced satiety by slower ingesta passage rate and thus decreased feed intake. Pigs fed pelleted feed showed less pronounced development of clumps in stomach content compared with expanded feed.

  4. Malaria prevalence and treatment of febrile patients at health facilities and medicine retailers in Cameroon.

    PubMed

    Mangham, Lindsay J; Cundill, Bonnie; Achonduh, Olivia A; Ambebila, Joel N; Lele, Albertine K; Metoh, Theresia N; Ndive, Sarah N; Ndong, Ignatius C; Nguela, Rachel L; Nji, Akindeh M; Orang-Ojong, Barnabas; Wiseman, Virginia; Pamen-Ngako, Joelle; Mbacham, Wilfred F

    2012-03-01

    To investigate the quality of malaria case management in Cameroon 5 years after the adoption of artemisinin-based combination therapy (ACT). Treatment patterns were examined in different types of facility, and the factors associated with being prescribed or receiving an ACT were investigated. A cross-sectional cluster survey was conducted among individuals of all ages who left public and private health facilities and medicine retailers in Cameroon and who reported seeking treatment for a fever. Prevalence of malaria was determined by rapid diagnostic tests (RDTs) in consenting patients attending the facilities and medicine retailers. Among the patients, 73% were prescribed or received an antimalarial, and 51% were prescribed or received an ACT. Treatment provided to patients significantly differed by type of facility: 65% of patients at public facilities, 55% of patients at private facilities and 45% of patients at medicine retailers were prescribed or received an ACT (P = 0.023). The odds of a febrile patient being prescribed or receiving an ACT were significantly higher for patients who asked for an ACT (OR = 24.1, P < 0.001), were examined by the health worker (OR = 1.88, P = 0.021), had not previously sought an antimalarial for the illness (OR = 2.29, P = 0.001) and sought treatment at a public (OR = 3.55) or private facility (OR = 1.99, P = 0.003). Malaria was confirmed in 29% of patients and 70% of patients with a negative result were prescribed or received an antimalarial. Malaria case management could be improved. Symptomatic diagnosis is inefficient because two-thirds of febrile patients do not have malaria. Government plans to extend malaria testing should promote rational use of ACT; though, the introduction of rapid diagnostic testing needs to be accompanied by updated clinical guidelines that provide clear guidance for the treatment of patients with negative test results. © 2011 Blackwell Publishing Ltd.

  5. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    ERIC Educational Resources Information Center

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  6. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments.

    PubMed

    De Rossi, Andrea; Rigon, Magali Rejane; Zaparoli, Munise; Braido, Rafael Dalmas; Colla, Luciane Maria; Dotto, Guilherme Luiz; Piccin, Jeferson Steffanello

    2018-05-28

    The potential of chemically and thermally treated Saccharomyces cerevisiae as biosorbents for chromium (VI) was investigated in this work. The presence of this toxic metal in industrial effluents is harmful to the environment, so, it is important to develop environmental friendly methods for Cr(VI) removal from these effluents. Biosorption using microorganisms such as S. cerevisiae is a viable treatment option because this biomass is easily available as a residue of fermentation industries. In this study, the affecting variables on Cr(VI) biosorption were studied by constructing biosorption isotherms, using lyophilized yeast subjected to chemical and thermal treatments. S. cerevisiae was able to remove 99.66% of Cr(VI) from effluents by biosorption. The significant variables affecting biosorption were pH, initial Cr(VI) concentration, and contact time. The biosorption isotherms were represented by the Freundlich model for the untreated biomass, BET model for the chemically treated biomass, and Langmuir model for the heat-treated biomass. Thermal treatment increased the biosorption affinity of the biomass for chromium, while the chemical treatment facilitated the formation of a multilayer.

  7. NPDES Permit for Yellowtail Visitor Center Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    NPDES permit MT-0029106 for United States Bureau of Reclamation discharge from its Yellowtail Visitor Center wastewater treatment facility into the Bighorn Lake/Bighorn River in Big Horn County, Montana.

  8. Thermal injury models for optical treatment of biological tissues: a comparative study.

    PubMed

    Fanjul-Velez, Felix; Ortega-Quijano, Noe; Salas-Garcia, Irene; Arce-Diego, Jose L

    2010-01-01

    The interaction of optical radiation with biological tissues causes an increase in the temperature that, depending on its magnitude, can provoke a thermal injury process in the tissue. The establishment of laser irradiation pathological limits constitutes an essential task, as long as it enables to fix and delimit a range of parameters that ensure a safe treatment in laser therapies. These limits can be appropriately described by kinetic models of the damage processes. In this work, we present and compare several models for the study of thermal injury in biological tissues under optical illumination, particularly the Arrhenius thermal damage model and the thermal dosimetry model based on CEM (Cumulative Equivalent Minutes) 43°C. The basic concepts that link the temperature and exposition time with the tissue injury or cellular death are presented, and it will be shown that they enable to establish predictive models for the thermal damage in laser therapies. The results obtained by both models will be compared and discussed, highlighting the main advantages of each one and proposing the most adequate one for optical treatment of biological tissues.

  9. Analysis of factors of treatment completion in dots health facilities in metro Manila, Philippines: a case-control study.

    PubMed

    Lagrada, Leizel P; Uehara, Naruo; Kawahara, Kazuo

    2008-12-01

    STUDY BACKGROUND AND OBJECTIVES: The Philippines is one of the 22 countries with high TB burden. DOTS was adopted not only by purely public providers (PP) but also by public-private mix (PPM) facilities. This study aims to identify the patient and facility factors that promote completion of TB treatment in DOTS facilities in an urban setting. The study also explores the difference between the PP and PPM DOTS facilities in terms of case management and treatment outcomes. [Methods] A case control study was done by interviewing 394 patients sampled from TB cohort report between 2003 and 2005 of 14 DOTS facilities in Metro Manila. Statistical analyses used include chi-square test and logistic regression analysis. Being female and aged 30-44 (OR = 7.04; 95% CI 1.12-44.35), unemployed (OR = 2.73; 95% CI 1.18-6.33), being above per capita poverty threshold (OR = 2.03; 95% CI 1.03-3.99), having experienced at least one of the signs and symptoms of TB (OR = 4.64; 95% CI 1.29-16.67), taking the medication at health facility (OR = 3.87; 95% CI 1.48-10.16) and patient's understanding of DOT (OR = 2.67; 95% CI 1.37-5.23) predict TB treatment completion. Public-private mix type of DOTS facility was also significantly associated with completing treatment (chi 2 (1) = 54.76, p = 0.000). Patient factors like middle-aged female compared to female aged more than 60, being above per capita poverty threshold, unemployment and having experienced at least one signs and symptoms of TB and facility factors like providing treatment at the facility and explaining the DOT to patient increase the likelihood of completing treatment. Thus, encouraging patients to take their medication at the facility and helping the patients understand the importance of DOT can increase TB treatment completion. The seemingly better DOTS implementation and treatment outcomes by the PPM must be evaluated further through cost effectiveness and efficiency studies.

  10. Hazardous air pollutant (HAP) emission characterization of sewage treatment facilities in Korea.

    PubMed

    Kang, Kyoung-Hee; Dong, Jong-In

    2010-04-01

    Until recently, nearly all sewage treatment-related regulations and researches have focused on the removal of the conventional and toxic pollutants from liquid effluents. The discharge of toxic compounds to the atmosphere has been implicitly regarded as a way of removal or destruction. During sewage treatment, the fate mechanism of volatilization/stripping, sorption and biotransformation primarily determines the fate of volatile HAPs. The objectives of this study are to investigate the emission characteristics of HAPs, which are generated from the liquid surface of sewage treatment facilities, by using an emission isolation flux chamber. HAP emissions increased at the inlet of the aerobic chamber during summer due to the relatively high atmospheric temperature. The percent ratio of flux for toluene reached its peak in winter, accounting for 33.6-34.2% of the total, but decreased to 25.1-28.6% in summer. In autumn, trichloroethene (TCE) was the highest, recording 17.6-18.1%, with chloroform and toluene showing similar levels. It seems that the ratio of chlorinated hydrocarbons increases in both summer and autumn because the chamber temperature during that time is higher than winter. This study is the initial study to investigate the emission characteristics of volatile HAPs emitted from domestic sewage treatment facilities to the air in Korea. Therefore, the isolation flux chamber will be used as an emission estimations tool to measure HAPs from sewage treatment facilities and may be applied to develop the emission factor and national source inventory of HAPs.

  11. Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment.

    PubMed

    Dughiero, F; Corazza, S

    2005-01-01

    Hyperthermia plays an important role in oncological therapies, most often being used in combination with radiotherapy, chemotherapy and immunotherapy. The success of this therapy is strongly dependent on the precision and control of thermal deposition. Hyperthermia based on induction heating, with thermally self-regulating thermoseeds inserted into the tumorous mass, is used for interstitial treatment. The technique was the subject of the numerical study presented in the paper. The analysis was carried out using coupled electromagnetic heating and thermo-fluid dynamic FEM simulations. During thermal deposition by induction heating of inserted seeds, the simulations estimated the thermal field inside and outside the tumour, as well as the sensitivity of the thermal field to variations regarding seed temperature, configuration and proximity to vessels. The method, for which accurate anatomical patient's information is essential, is suitable for providing useful qualitative and quantitative information about thermal transients and power density distribution for hyperthermic treatment. Several grid steps were analysed and compared. A 1 cm seed grid was resulted in good homogeneity and effectiveness of the thermal deposition. The cold spot effect caused by large vessels was demonstrated and quantified. Simulations of the heating of a tumorous mass in the liver showed that an indcutor generator operating at 200 kHz frequency and 500 A current, producing a pulsating magnetic field of H = 60 A cm(-1), was adequate for the treatment. The seeds that perform best among those tested (Nicu (28% Cu), PdNi (27.2% Ni), PdCo (6.15% Co) and ferrite core) were the PdNi (1 mm radius, 10 mm length), as they have a low Curie temperature (52 degrees C), which is the closest to the desired treatment temperature and thus reduces the risk of hot spots.

  12. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    NASA Astrophysics Data System (ADS)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  13. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  14. Improvement of Sol-Gel Derived PbZrxTi1-xO3 Film Properties Using Thermal Press Treatment

    NASA Astrophysics Data System (ADS)

    Kaneda, Toshihiko; Kim, Joo-Nam; Tokumitsu, Eisuke; Shimoda, Tatsuya

    2010-09-01

    A thermal press treatment was introduced in the sol-gel process of PbZrxTi1-xO3 (PZT) thin films for the first time and the crystalline and electrical characteristics of the PZT films were investigated. The thermal press treatment was applied to the amorphous PZT gel film before crystallization annealing. It is found that the crystalline orientation and grain size of the PZT film fabricated with the thermal press treatment are different from those of the film fabricated by the conventional sol-gel process without the thermal press treatment, even though the crystallization conditions are exactly the same. It is demonstrated that the electrical properties, especially leakage current density and breakdown field, are significantly improved for the PZT film fabricated with the thermal press treatment. Furthermore, we also demonstrate that the fatigue property is improved by introducing the thermal press treatment.

  15. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  16. NPDES Permit for Lame Deer Lagoon Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Final permit authorizes the Northern Cheyenne Utilities Commission to discharge from its Lame Deer Lagoon wastewater treatment facility located in Rosebud County, Montana to Lame Deer Creek, a tributary to Rosebud Creek.

  17. NPDES Permit for City of Polson Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT-0020559, the City of Polson is authorized to discharge from its wastewater treatment facility located in Lake County, Montana to the Flathead River.

  18. Characteristics of U.S. Substance Abuse Treatment Facilities Offering HIV Services: Results From a National Survey.

    PubMed

    Cohn, Amy; Stanton, Cassandra; Elmasry, Hoda; Ehlke, Sarah; Niaura, Ray

    2016-06-01

    Substance use disorders are common among persons with HIV/AIDS. This study examined the prevalence and correlates of the provision of four HIV services in a national sample of substance abuse treatment facilities. Data were from the 2011 National Survey of Substance Abuse Treatment Services. Prevalence estimates indicated that 28% of facilities offered HIV testing, 26% early intervention, 58% HIV/AIDS education, and 8% special programs for HIV/AIDS. Facilities offering inpatient substance abuse care were more than six times as likely to offer HIV testing but not more likely to offer any other type of HIV service. Facilities offering methadone treatment were 2.5 times more likely to offer HIV services. Given the high rates of substance use among persons with HIV, the prevalence of facilities offering HIV services was low in most domains, with different barriers identified in multivariable models. Integrating comprehensive HIV prevention, testing, and support services into programs that address substance abuse is needed.

  19. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Bayer, Ilker S.; Jursich, Gregory M.; Das, Arindam; Megaridis, Constantine M.

    2012-08-01

    Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications.Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions

  20. Self-immobilization and/or thermal treatment for preparing silica-poly(methyloctylsiloxane) stationary phases.

    PubMed

    Bottoli, Carla B G; Vigna, Camila R M; Fischer, Gerd; Albert, Klaus; Collins, Kenneth E; Collins, Carol H

    2004-03-19

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by the deposition of PMOS, into the pores of HPLC silica. Portions of PMOS-loaded silica were allowed to remain at ambient temperature, without further treatment for 2, 9, 20, 31, 51, 105 and 184 days after preparation to undergo self-immobilization (irreversible adsorption of a layer of polymer on silica at ambient temperature in the absence of initiators). Other portions were subjected to a thermal treatment (100 degrees C for 4h) after 1, 2, 5, 7, 9, 15, 20, 25, 70, 111 and 184 days. Self-immobilized and thermally treated samples were characterized by % C, 29Si cross-polarization magic angle spinning (CP/MAS) NMR spectroscopy and reversed-phase column performance. The results show that thermal immobilization accelerates the distribution and rearrangement of the polymer on the silica surface. However, from the time that a monolayer has been formed by self-immobilization (approximately 100 days for PMOS on Kromasil silica), the thermal treatment does not alter this configuration and, thus, does not change the resulting chromatographic parameters.

  1. NPDES Permit for Woodcock Home Addition Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0030554, the Salish and Kootenai Housing Authority is authorized to discharge from its Woodcock Home Addition Wastewater Treatment Facility in Lake County, Montana, to a swale draining to Middle Crow Creek.

  2. The consistency between treatments provided to nursing facility residents and orders on the physician orders for life-sustaining treatment form.

    PubMed

    Hickman, Susan E; Nelson, Christine A; Moss, Alvin H; Tolle, Susan W; Perrin, Nancy A; Hammes, Bernard J

    2011-11-01

    To evaluate the consistency between treatments provided and Physician Orders for Life-Sustaining Treatment (POLST) orders. Retrospective chart abstraction. Stratified, random sample of 90 nursing facilities in Oregon, Wisconsin, and West Virginia. Eight hundred seventy living and deceased nursing facility residents aged 65 and older with a minimum 60-day stay. Chart data about POLST form orders and related treatments over a 60-day period were abstracted. Decision rules were created to determine whether the rationale for each treatment was consistent with POLST orders. Most residents (85.2%) had the same POLST form in place during the review period. A majority of treatments provided to residents with orders for comfort measures only (74.3%) and limited antibiotics (83.3%) were consistent with POLST orders because they were primarily comfort focused rather than life-prolonging, but antibiotics were provided to 32.1% of residents with orders for no antibiotics. Overall consistency rates between treatments and POLST orders were high for resuscitation (98%), medical interventions (91.1%), and antibiotics (92.9%) and modest for feeding tubes (63.6%). In all, POLST orders were consistent with treatments provided 94.0% of the time. With the exception of feeding tubes and antibiotic use in residents with orders for no antibiotics, the use of medical treatments was nearly always consistent with POLST orders to provide or withhold life-sustaining interventions. The POLST program is a useful tool for ensuring that the treatment preferences of nursing facility residents are honored. © 2011, Copyright the Authors Journal compilation © 2011, The American Geriatrics Society.

  3. Insight into Bone-Derived Biological Apatite: Ultrastructure and Effect of Thermal Treatment

    PubMed Central

    Liu, Quan; Pan, Haobo; Chen, Zhuofan; Matinlinna, Jukka Pekka

    2015-01-01

    Objectives. This study aims at examining the ultrastructure of bone-derived biological apatite (BAp) from a series of small vertebrates and the effect of thermal treatment on its physiochemical properties. Materials and Methods. Femurs/fin rays and vertebral bodies of 5 kinds of small vertebrates were firstly analyzed with X-ray microtomography. Subsequently, BAp was obtained with thermal treatment and low power plasma ashing, respectively. The properties of BAp, including morphology, functional groups, and crystal characteristics were then analyzed. Results. The bones of grouper and hairtail were mainly composed of condensed bone. Spongy bone showed different distribution in the bones from frog, rat, and pigeon. No significant difference was found in bone mineral density of condensed bone and trabecular thickness of spongy bone. Only platelet-like crystals were observed for BAp obtained by plasma ashing, while rod-like and irregular crystals were both harvested from the bones treated by sintering. A much higher degree of crystallinity and larger crystal size but a lower content of carbonate were detected in the latter. Conclusion. Platelet-like BAp is the common inorganic component of vertebrate bones. BAp distributing in condensed and spongy bone may exhibit differing thermal reactivity. Thermal treatment may alter BAp's in vivo structure and composition. PMID:25695088

  4. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment

    NASA Astrophysics Data System (ADS)

    Liu, Baicang; Wang, Shuai; Zhao, Pingju; Liang, Heng; Zhang, Wen; Crittenden, John

    2018-03-01

    Nanofiltration (NF) membranes have many excellent applications (e.g., removing multivalent ions and pretreating water before reverse osmosis, RO), but their relatively high cost limits their application. Especially in recent years, researchers have paid substantial attention to reducing the cost of NF membranes. In this paper, high-performance NF membranes were fabricated using interfacial polymerization (IP) methods. The polymer concentration, IP solution concentration, and thermal treatment conditions were varied. The synthesized membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), a contact angle goniometer, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and performance tests. The results show that water flux was significantly improved using a hot-water thermal treatment method. Our fabricated thermal-treated NF membrane had an approximately 15% higher water permeability with a value of 13.6 L/(m2 h bar) than that of the commercially available GE HL membrane with a value of 11.8 L/(m2 h bar). Our membranes had the same MgSO4 rejection as that of the GE HL membrane. We found that the thermal treatment causes the NF membrane surface to be smoother and have a high crosslinking degree.

  5. Combined disc pelletisation and thermal treatment of MSWI fly ash.

    PubMed

    Huber, Florian; Herzel, Hannes; Adam, Christian; Mallow, Ole; Blasenbauer, Dominik; Fellner, Johann

    2018-03-01

    An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450 °C to 1050 °C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450 °C, thermally treated MSWI fly ash pellets can be classified as non-hazardous waste. However, temperatures of at least 650 °C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850 °C, 950 °C or even 1050 °C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in

  6. Do drug treatment facilities increase clients' exposure to potential neighborhood-level triggers for relapse? A small-area assessment of a large, public treatment system.

    PubMed

    Jacobson, Jerry O

    2006-03-01

    Research on drug treatment facility locations has focused narrowly on the issue of geographic proximity to clients. We argue that neighborhood conditions should also enter into the facility location decision and illustrate a formal assessment of neighborhood conditions at facilities in a large, metropolitan area, taking into account conditions clients already face at home. We discuss choice and construction of small-area measures relevant to the drug treatment context, including drug activity, disadvantage, and violence as well as statistical comparisons of clients' home and treatment locations with respect to these measures. Analysis of 22,707 clients discharged from 494 community-based outpatient and residential treatment facilities that received public funds during 1998-2000 in Los Angeles County revealed no significant mean differences between home and treatment neighborhoods. However, up to 20% of clients are exposed to markedly higher levels of disadvantage, violence, or drug activity where they attend treatment than where they live, suggesting that it is not uncommon for treatment locations to increase clients' exposure to potential environmental triggers for relapse. Whereas on average both home and treatment locations exhibit higher levels of these measures than the household locations of the general population, substantial variability in public treatment clients' home neighborhoods calls into question the notion that they hail exclusively from poor, high drug activity areas. Shortcomings of measures available for neighborhood assessment of treatment locations and implications of the findings for other areas of treatment research are also discussed.

  7. Using the HELIOS facility for assessment of bundle-jacket thermal coupling in a CICC

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Rousset, B.; Cloez, H.; Decool, P.; Duchateau, J. L.; Hoa, C.; Luchier, N.; Nicollet, S.; Topin, F.

    2016-12-01

    In a Cable In Conduit Conductor (CICC) cooled by forced circulation of supercritical helium, the heat exchange in the bundle region can play a significant role for conductor safe operation, while remaining a quite uncertain parameter. Heat exchange between bundle and jacket depends on the relative contributions of convective heat transfer due to the helium flow inside the bundle and of thermal resistance due to the wrappings between the cable and the conduit. In order to qualify this thermal coupling at realistic operating conditions, a dedicated experiment on a 1.2 m sample of ITER Toroidal Field (TF) dummy conductor was designed and performed in the HELIOS test facility at CEA Grenoble. Several methods were envisaged, and the choice was made to assess bundle-jacket heat transfer coefficient by measuring the temperature of a solid copper cylinder inserted over the conductor jacket and submitted to heat deposition on its outer surface. The mock-up was manufactured and tested in spring 2015. Bundle-jacket heat transfer coefficient was found in the range 300-500 W m-2 K-1. Results analysis suggests that the order of magnitude of convective heat transfer coefficient inside bundle is closer to Colburn-Reynolds analogy than to Dittus-Boelter correlation, and that bundle-jacket thermal coupling is mainly limited by thermal resistance due to wrappings. A model based on an equivalent layer of stagnant helium between wraps and jacket was proposed and showed a good consistency with the experiment, with relevant values for the helium layer thickness.

  8. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  9. Volatility and leachability of heavy metals and radionuclides in thermally treated HEPA filter media generated from nuclear facilities.

    PubMed

    Yoon, In-Ho; Choi, Wang-Kyu; Lee, Suk-Chol; Min, Byung-Youn; Yang, Hee-Chul; Lee, Kune-Woo

    2012-06-15

    The purpose of the present study was to apply thermal treatments to reduce the volume of HEPA filter media and to investigate the volatility and leachability of heavy metals and radionuclides during thermal treatment. HEPA filter media were transformed to glassy bulk material by thermal treatment at 900°C for 2h. The most abundant heavy metal in the HEPA filter media was Zn, followed by Sr, Pb and Cr, and the main radionuclide was Cs-137. The volatility tests showed that the heavy metals and radionuclides in radioactive HEPA filter media were not volatilized during the thermal treatment. PCT tests indicated that the leachability of heavy metals and radionuclides was relatively low compared to those of other glasses. XRD results showed that Zn and Cs reacted with HEPA filter media and were transformed into crystalline willemite (ZnO·SiO(2)) and pollucite (Cs(2)OAl(2)O(3)4SiO(2)), which are not volatile or leachable. The proposed technique for the volume reduction and transformation of radioactive HEPA filter media into glassy bulk material is a simple and energy efficient procedure without additives that can be performed at relatively low temperature compared with conventional vitrification process. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Navajo Tribal Utility Authority Shiprock Wastewater Treatment Facility; Draft NPDES Permit

    EPA Pesticide Factsheets

    EPA is proposing to issue a NPDES permit (No. NN0020621) to Navajo Tribal Utility Authority (NTUA) for the Shiprock wastewater treatment facility in San Juan County, New Mexico, within the northeastern portion of the Navajo Nation.

  11. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onal, G.; Renda, D.; Mustafaev, I.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfurmore » removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.« less

  12. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  13. Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Horton, Patrick; Eaton, David

    2017-07-01

    Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.

  14. Social work services in Army medical treatment facilities: are they reorganizing?

    PubMed

    Hamlin, E R; Pehrson, K L; Gemmill, R

    1996-01-01

    The end of the Cold War and the fall of Communism in Europe resulted in profound changes in U.S. defense policy. Those changes led to dramatic reductions in personnel and programs within the Army. The Army Medical Department (AMEDD) is also being reduced in size and reorganized. At the same time, the AMEDD is facing escalating health care costs associated with demand and access to medical care. Social work services in Army medical treatment facilities are being directly affected by these system changes. Therefore, the question is raised whether changes in the organization and delivery of social work services are being initiated or anticipated. To what extent are social work chiefs of service involved in these decisions at the medical treatment facility level, and what are the positive and negative effects of reorganization on social work staff and the clients they serve?

  15. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kevin W.; Vandergaast, Gerald

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated intomore » the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)« less

  16. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fouriermore » Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.« less

  17. Infection control challenges in deployed US military treatment facilities.

    PubMed

    Hospenthal, Duane R; Crouch, Helen K

    2009-04-01

    Personnel sustaining combat-related injuries in current overseas conflicts continue to have their care complicated by infections caused by multidrug-resistant organisms, including Acinetobacter, Klebsiella, and Pseudomonas. Although presumed to be due to multiple factors both within and outside of the combat theater, concern has been raised about the difficulties in establishing and maintaining standard infection control (IC) practices in deployed medical treatment facilities and in the evacuation of the injured back to the United States. Level III facilities (hospitals capable of holding patients >72 hours) in Iraq and Afghanistan and the evacuation system from Iraq to the continental US were reviewed by an expert IC-infectious disease team. All reviewed facilities had established IC programs, but these were staffed by personnel with limited IC experience, often without perceived adequate time dedicated to perform their duties, and without uniform levels of command emphasis or support. Proper hand hygiene between patients was not always ideal. Isolation and cohorting of patients to decrease multidrug-resistant organism colonization and infection varied among facilities. Review of standard operating procedures found variability among institutions and in quality of these documents. Application of US national and theater-specific guidelines and of antimicrobial control measures also varied among facilities. Effective IC practices are often difficult to maintain in modern US hospitals. In the deployed setting, with ever-changing personnel in a less than optimal practice environment, IC is even more challenging. Standardization of practice with emphasis on the basics of IC practice (e.g., hand hygiene and isolation procedures) needs to be emplaced and maintained in the deployed setting.

  18. Thermal spray manual for machinery components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, R.; Ginther, C.; Herbstritt, M.

    1995-12-31

    The Thermal Spray Manual For Machinery Components is a National Shipbuilding Research (SP-7) Project. This Manual is being developed by Puget Sound Naval Shipyard with the help of other government thermal spray facilities and SP-7 panel members. The purpose of the manual is to provide marine repair facilities with a ``how to do`` document that will be ``user friendly`` and known to be technically sound through production experience. The manual`s intent is to give marine repair facilities the ability to maximize the thermal spray process as a repair method for machinery components and to give these facilities guidelines on howmore » to become qualified to receive certification that they meet the requirements of Military Standard 1687A.« less

  19. Utilization Management in Department of Defense Military Treatment Facilities

    DTIC Science & Technology

    1992-07-01

    Health Affairs) Mendez (1992) clearly states that his plan is for the military health services system’s quality assessment and criteria to become more...also worthy of note that second surgical opinions are not part of Assistant Secretary of Defense (Health Affairs) Mendez ’ (1992) memonrandur on...Affairs) Mendez ’ (1992) quality management policy already states that military medical treatment facilities will begin to implement utilization

  20. Stabilization of lead in incineration fly ash by moderate thermal treatment with sodium hydroxide addition

    PubMed Central

    Yang, Yuanyi; He, Yong; Sun, Xiaolong; Ge, Li-Ya; Zhang, Kewei; Yang, Weizhong

    2017-01-01

    Municipal solid waste (MSW) incineration fly ash (IFA) can be potentially reused as a substitute for some raw materials, but treatment for detoxification is indispensable owing to high contents of heavy metals in fly ash. In the present work, due to excessive leaching concentration of lead (Pb), a moderate thermal treatment with sodium hydroxide (NaOH) addition was employed to stabilize Pb in IFA. The moderate thermal treatment was performed under relatively low temperature ranging from 300 to 500°C and at retention time from 1 to 3 h with NaOH addition in a range of 1 to 9%. Leaching results showed that leaching concentrations of Pb in IFA leachates decreased below the standard for hazardous waste identification (5 mg/L) in China under all treatment scenarios. With the increase of temperature, retention time and the amount of NaOH, the concentration of Pb were further suppressed in IFA leachates. Especially, at 500°C for 3 h with 9% NaOH addition, the concentration of Pb dropped to 0.18 mg/L, which was below the standard for sanitary landfill (0.25 mg/L) in China. In thermal process, needle-like crystallites melted to form granules and clumps with compacter structure and less pores. After the thermal treatment, water-soluble and exchangeable fractions of Pb significantly decreased. Therefore, the thermal treatment coupled with NaOH could be applied to realize the environmentally sound management of MSW IFA. PMID:28586368

  1. Stabilization of lead in incineration fly ash by moderate thermal treatment with sodium hydroxide addition.

    PubMed

    Gong, Bing; Deng, Yi; Yang, Yuanyi; He, Yong; Sun, Xiaolong; Ge, Li-Ya; Zhang, Kewei; Yang, Weizhong

    2017-01-01

    Municipal solid waste (MSW) incineration fly ash (IFA) can be potentially reused as a substitute for some raw materials, but treatment for detoxification is indispensable owing to high contents of heavy metals in fly ash. In the present work, due to excessive leaching concentration of lead (Pb), a moderate thermal treatment with sodium hydroxide (NaOH) addition was employed to stabilize Pb in IFA. The moderate thermal treatment was performed under relatively low temperature ranging from 300 to 500°C and at retention time from 1 to 3 h with NaOH addition in a range of 1 to 9%. Leaching results showed that leaching concentrations of Pb in IFA leachates decreased below the standard for hazardous waste identification (5 mg/L) in China under all treatment scenarios. With the increase of temperature, retention time and the amount of NaOH, the concentration of Pb were further suppressed in IFA leachates. Especially, at 500°C for 3 h with 9% NaOH addition, the concentration of Pb dropped to 0.18 mg/L, which was below the standard for sanitary landfill (0.25 mg/L) in China. In thermal process, needle-like crystallites melted to form granules and clumps with compacter structure and less pores. After the thermal treatment, water-soluble and exchangeable fractions of Pb significantly decreased. Therefore, the thermal treatment coupled with NaOH could be applied to realize the environmentally sound management of MSW IFA.

  2. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and thatmore » facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.« less

  3. 18 CFR 292.205 - Criteria for qualifying cogeneration facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... useful thermal energy output of the facility must be no less than 5 percent of the total energy output... the facility plus one-half the useful thermal energy output, during the 12-month period beginning with... (B) If the useful thermal energy output is less than 15 percent of the total energy output of the...

  4. 18 CFR 292.205 - Criteria for qualifying cogeneration facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... useful thermal energy output of the facility must be no less than 5 percent of the total energy output... the facility plus one-half the useful thermal energy output, during the 12-month period beginning with... (B) If the useful thermal energy output is less than 15 percent of the total energy output of the...

  5. 18 CFR 292.205 - Criteria for qualifying cogeneration facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... useful thermal energy output of the facility must be no less than 5 percent of the total energy output... the facility plus one-half the useful thermal energy output, during the 12-month period beginning with... (B) If the useful thermal energy output is less than 15 percent of the total energy output of the...

  6. 18 CFR 292.205 - Criteria for qualifying cogeneration facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... useful thermal energy output of the facility must be no less than 5 percent of the total energy output... the facility plus one-half the useful thermal energy output, during the 12-month period beginning with... (B) If the useful thermal energy output is less than 15 percent of the total energy output of the...

  7. Non-thermal plasma for exhaust gases treatment

    NASA Astrophysics Data System (ADS)

    Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda

    2015-09-01

    This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.

  8. Multidisciplinary pain facility treatment outcome for pain-associated fatigue.

    PubMed

    Fishbain, David A; Lewis, John; Cole, Brandly; Cutler, Brian; Smets, Eve; Rosomoff, Hubert; Rosomoff, Rennee Steele

    2005-01-01

    Fatigue is frequently found in chronic pain patients (CPPs) and may be etiologically related to the presence of pain. Fishbain et al. have recently demonstrated that chronic low back pain (LBP) and chronic neck pain patients are more fatigued than controls. The purpose of this study was to determine whether chronic LBP- and chronic neck pain-associated fatigue responded to multidisciplinary multimodal treatment not specifically targeted to the treatment of fatigue. A total of 85 chronic LBP and 33 chronic neck pain patients completed the Multidimensional Fatigue Inventory (MFI), Neuropathic Pain Scale (NPS), and Beck Depression Inventory on admission. In addition, an information tool was completed on each CPP by the senior author. This tool listed demographic information, primary and secondary pain diagnoses, Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) psychiatric diagnoses assigned, pain location, pain precipitating event, type of injury, years in pain, number of surgeries, type of surgery, type of pain pattern, opioids consumed per day in morphine equivalents, worker compensation status, and whether, according to the clinical examination, the CPP had a neuropathic pain component. At completion of the multidisciplinary multimodal treatment, each CPP again completed the MFI. Student's t-test was utilized to test for statistical changes on the MFI five scales from pre- to post-treatment. Pearson and point-biserial correlations were utilized to determine which variables significantly correlated with MFI change scores. Variables found significant at less than or equal to 0.01 were utilized in a stepwise aggression analysis to find variables predictive of change in MFI scores. Multidisciplinary pain facility. Chronic LBP and chronic neck pain patients. Multidisciplinary multimodal treatment significantly improved CPP fatigue as measured by the MFI. The available variables utilized to predict fatigue best explained only a small percentage

  9. Gaps in the implementation of antenatal syphilis detection and treatment in health facilities across sub-Saharan Africa.

    PubMed

    Kanyangarara, Mufaro; Walker, Neff; Boerma, Ties

    2018-01-01

    Syphilis in pregnancy is an under-recognized public health problem, especially in sub-Saharan Africa which accounts for over 60% of the global burden of syphilis. If left untreated, more than half of maternal syphilis cases will result in adverse pregnancy outcomes including stillbirth and fetal loss, neonatal death, prematurity or low birth weight, and neonatal infections. Achieving universal coverage of antenatal syphilis screening and treatment has been the focus of the global campaign for the elimination of mother-to-child transmission of syphilis. However, little is known about the availability of antenatal syphilis screening and treatment across sub-Saharan Africa. The objective of this study was to estimate the 'likelihood of appropriate care' for antenatal syphilis screening and treatment by analyzing health facility surveys and household surveys conducted from 2010 to 2015 in 12 sub-Saharan African countries. In this secondary data analysis, we linked indicators of health facility readiness to provide antenatal syphilis detection and treatment from Service Provision Assessments (SPAs) and Service Availability and Readiness Assessments (SARAs) to indicators of ANC use from the Demographic and Health Surveys (DHS) to compute estimates of the 'likelihood of appropriate care'. Based on data from 5,593 health facilities that reported offering antenatal care (ANC) services, the availability of syphilis detection and treatment in ANC facilities ranged from 2% to 83%. The availability of syphilis detection and treatment was substantially lower in ANC facilities in West Africa compared to the other sub-regions. Levels of ANC attendance were high (median 94.9%), but only 27% of ANC attendees initiated care at less than 4 months gestation. We estimated that about one in twelve pregnant women received ANC early (<4 months) at a facility ready to provide syphilis detection and treatment (median 8%, range 7-32%). The largest implementation bottleneck identified was low

  10. Facility-level, state, and financial factors associated with changes in the provision of smoking cessation services in US substance abuse treatment facilities: Results from the National Survey of Substance Abuse Treatment Services 2006 to 2012.

    PubMed

    Cohn, Amy; Elmasry, Hoda; Niaura, Ray

    2017-06-01

    Cigarette smoking is common among patients in substance abuse treatment. Tobacco control programs have advocated for integrated tobacco dependence treatment into behavioral healthcare, including within substance abuse treatment facilities (SATFs) to reduce the public health burden of tobacco use. This study used data from seven waves (2006 to 2012) of the National Survey of Substance Abuse Treatment Services (n=94,145) to examine state and annual changes in the provision of smoking cessation services within US SATFs and whether changes over time could be explained by facility-level (private vs public ownership, receipt of earmarks, facility admissions, acceptance of government insurance) and state-level factors (cigarette tax per pack, smoke free policies, and percent of CDC recommended tobacco prevention spending). Results showed that the prevalence of SATFs offering smoking cessation services increased over time, from 13% to 65%. The amount of tax per cigarette pack, accepting government insurance, government (vs private) ownership, facility admissions, and CDC recommended tobacco prevention spending (per state) were the strongest correlates of the provision of smoking cessation programs in SATFs. Facilities that received earmarks were less likely to provide cessation services. Adult smoking prevalence and state-level smoke free policies were not significant correlates of the provision of smoking cessation services over time. Policies aimed at increasing the distribution of tax revenues to cessation services in SATFs may offset tobacco-related burden among those with substance abuse problems. Copyright © 2017. Published by Elsevier Inc.

  11. Battery and Thermal Energy Storage | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Battery and Thermal Energy Storage Battery and Thermal Energy Storage Not long ago, the performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy . NREL is also creating better materials for batteries and thermal storage devices to improve their

  12. NPDES Permit for Keller Transport, Inc. Groundwater Remediation Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT0030805, Keller Transport, Inc. is authorized to discharge from its groundwater remediation treatment facility in Lake County, Montana, to Flathead Lake.

  13. Potable Water Treatment Facility General Permit (PWTF GP) for Massachusetts & New Hampshire

    EPA Pesticide Factsheets

    Documents, links & contacts for the Notice of Availability of the draft NPDES General Permit for Discharges from Potable Water Treatment Facilities in Massachusetts (MAG640000) and New Hampshire (NHG640000).

  14. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thermal modelling using discrete vasculature for thermal therapy: a review

    PubMed Central

    Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.

    2013-01-01

    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700

  16. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOHNSTON GA

    2008-01-15

    ). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of

  17. Travel Distance to Cancer Treatment Facilities in the Deep South.

    PubMed

    Wills, Mary J; Whitman, Marilyn V; English, Thomas M

    Despite ongoing efforts to improve rural healthcare, the health problems facing rural communities persist. The lack of healthcare providers and infrastructure in rural areas has been linked to a number of negative consequences. Among the elderly rural population, the lack of proximal access presents greater barriers because many elderly people are further limited in their ability to travel and pay for services. In the Deep South specifically, rural residents experience limited access to care and overall poor health outcomes. With cancer in particular, the Deep South has been dubbed the "cancer belt," faring far worse in prevalence and mortality rates than other areas of the country. The present study examines the average travel distance for rural elderly patients residing in the Deep South who are receiving treatment for prostate, breast, or colorectal cancer. We analyzed Medicare claims data of beneficiaries residing in the five Deep South states who had received a primary diagnosis of prostate, breast, or colorectal cancer, with a service date ranging from January 1, 2011, through December 31, 2014. The findings reveal that rural Medicare beneficiaries in the Deep South travel significantly greater distances than do their urban counterparts. In addition, travel distances to prostate cancer treatment facilities are significantly greater than those to breast or colorectal cancer treatment facilities. With cancer incidence predicted to increase, the need to reduce travel distances to treatment is vital in efforts to curb the mortality rate in the Deep South.

  18. Continuous quality improvement in substance abuse treatment facilities: How much does it cost?

    PubMed

    Hunt, Priscillia; Hunter, Sarah B; Levan, Deborah

    2017-06-01

    Continuous quality improvement (CQI) has grown in the U.S. since the 1970s, yet little is known about the costs to implement CQI in substance abuse treatment facilities. This paper is part of a larger group randomized control trial in a large urban county evaluating the impact of Plan-Study-Do-Act (PDSA)-CQI designed for community service organizations (Hunter, Ober, Paddock, Hunt, & Levan, 2014). Operated by one umbrella organization, each of the eight facilities of the study, four residential and four outpatient substance abuse treatment facilities, selected their own CQI Actions, including administrative- and clinical care-related Actions. Using an activity-based costing approach, we collected labor and supplies and equipment costs directly attributable to CQI Actions over a 12-month trial period. Our study finds implementation of CQI and meeting costs of this trial per facility were approximately $2000 to $10,500 per year ($4500 on average), or $10 to $60 per admitted client. We provide a description of the sources of variation in these costs, including differing intensity of the CQI Actions selected, which should help decision makers plan use of PDSA-CQI. Copyright © 2017. Published by Elsevier Inc.

  19. Treatment compliance and challenges among tuberculosis patients across selected health facilities in Osun State Nigeria.

    PubMed

    Ajao, K O; Ogundun, O A; Afolabi, O T; Ojo, T O; Atiba, B P; Oguntunase, D O

    2014-12-01

    Tuberculosis (TB) is a major public health problem in the world and Africa has approximately one quarter of the world's cases. One of the greatest challenges facing most TB programmes is the non-compliance to TB treatment among TB patients. This study aimed at determining the challenges of management of tuberculosis (TB) across selected Osun State health facilities. The study employed a descriptive cross-sectional design. A semi-structured questionnaire was used to collect data from 102 TB patients in the health facilities. The instrument measured socio-demographic variables, patient related factors, socio-economic variables, health care system related factors to TB disease and treatment. Data were analysed and summarized using descriptive and inferential statistics. Statistical significance was placed at p < 0.05. TB patients who had no formal education (χ2 = 12.941, p < 0.05), who were smoking during treatment (χ2 = 13.194, p < 0.001), who consumed alcohol during TB treatment (χ2 = 6.371, p < 0.05) and those who were HIV positive (χ2 = 23.039, p < 0.001) significantly failed to comply with TB treatment. TB patients who waited for one hour or more at heath facilities (χ2 = 21.761, p < 0.001), who reported that TB treatment should be stopped before six month (χ2 = 9.804, p < 0.05) or when patient felt better (χ2 = 35.185, p < 0.001) and travelled for 10 km or more (χ2 = 13.610, p < 0.001) significantly failed to comply with TB treatment. This study concluded that non-compliance rate to tuberculosis treatment among TB patients in this study is high. Both health facility and patient-related factors were largely responsible.

  20. In Situ Thermal Treatment of Chlorinated Solvents: Fundamentals and Field Applications

    EPA Pesticide Factsheets

    This report contains information about the use of in situ thermal treatment technologies to treat chlorinated solvents in source zones containing free-phase contamination or high concentrations of contaminants.

  1. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  2. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  3. Association Between Facility-Level Utilization of Non-pharmacologic Chronic Pain Treatment and Subsequent Initiation of Long-Term Opioid Therapy.

    PubMed

    Carey, Evan P; Nolan, Charlotte; Kerns, Robert D; Ho, P Michael; Frank, Joseph W

    2018-05-01

    Expert guidelines recommend non-pharmacologic treatments and non-opioid medications for chronic pain and recommend against initiating long-term opioid therapy (LTOT). We examined whether veterans with incident chronic pain receiving care at facilities with greater utilization of non-pharmacologic treatments and non-opioid medications are less likely to initiate LTOT. Retrospective cohort study PARTICIPANTS: Veterans receiving primary care from a Veterans Health Administration facility with incident chronic pain between 1/1/2010 and 12/31/2015 based on either of 2 criteria: (1) persistent moderate-to-severe patient-reported pain and (2) diagnoses "likely to represent" chronic pain. The independent variable was facility-level utilization of pain-related treatment modalities (non-pharmacologic, non-opioid medications, LTOT) in the prior calendar year. The dependent variable was patient-level initiation of LTOT (≥ 90 days within 365 days) in the subsequent year, adjusting for patient characteristics. Among 1,094,569 veterans with incident chronic pain from 2010 to 2015, there was wide facility-level variation in utilization of 10 pain-related treatment modalities, including initiation of LTOT (median, 16%; range, 5-32%). Veterans receiving care at facilities with greater utilization of non-pharmacologic treatments were less likely to initiate LTOT in the year following incident chronic pain. Conversely, veterans receiving care at facilities with greater non-opioid and opioid medication utilization were more likely to initiate LTOT; this association was strongest for past year facility-level LTOT initiation (adjusted rate ratio, 2.10; 95% confidence interval, 2.06-2.15, top vs. bottom quartile of facility-level LTOT initiation in prior calendar year). Facility-level utilization patterns of non-pharmacologic, non-opioid, and opioid treatments for chronic pain are associated with subsequent patient-level initiation of LTOT among veterans with incident chronic pain

  4. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    NASA Astrophysics Data System (ADS)

    Yan, Dongming; Hou, Peipei; Liu, Chang; Chai, Wenxiang; Zheng, Xuerong; Zhang, Luodong; Zhi, Mingjia; Zhou, Chunmei; Liu, Yi

    2016-09-01

    Two new quaternary thioarsenates(III) NaAg2AsS3·H2O (1) and KAg2AsS3 (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na+ and K+ cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides.

  5. Thermal and flow analysis of the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% effort of Title 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, R.G.; Mueller, C.; Knight, T.D.

    1998-03-01

    The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions.

  6. NPDES Permit for City of Wagner Wastewater Treatment Facility in South Dakota

    EPA Pesticide Factsheets

    Under NPDES permit SD-0020184, the City of Wagner, South Dakota is authorized to discharge from its wastewater treatment facility in Charles Mix County, South Dakota, to an unnamed tributary of Choteau Creek.

  7. NPDES Permit for Town of Hot Springs Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT0020591, the Town of Hot Springs, Montana, is authorized to discharge from its wastewater treatment facility located in Sanders County, Montana, to a ditch discharging to Hot Springs Creek.

  8. Simulation of the neutron flux in the irradiation facility at RA-3 reactor.

    PubMed

    Bortolussi, S; Pinto, J M; Thorp, S I; Farias, R O; Soto, M S; Sztejnberg, M; Pozzi, E C C; Gonzalez, S J; Gadan, M A; Bellino, A N; Quintana, J; Altieri, S; Miller, M

    2011-12-01

    A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comisión Nacional de Energía Atómica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo; Frizera, Anselmo; Marques, Carlos; Pontes, Maria José

    2018-07-01

    This paper presents the dynamic mechanical analysis (DMA) in polymer optical fibers (POFs) made of Polymethyl Methacrylate (PMMA) that were submitted to different thermal and chemical treatments, namely annealing and etching processes. The prepared samples were submitted to stress-strain cycles to evaluate the Young's modulus of each fiber. Also, test with constant stress and temperature variation were performed to estimate the thermal expansion coefficient of the fibers submitted to each thermal and chemical treatment. The samples were also tested under different temperature, humidity and strain cycle frequency conditions to analyze the variation of their mechanical properties with these parameters. Results show that the thermal and chemical treatments lead to a reduction of Young's modulus and an increase of the thermal expansion coefficient, which can produce sensors based on intensity variation or fiber Bragg grating with higher dynamic range, stress and temperature sensitivity. Furthermore, the etching and annealing resulted in fiber that presents lower Young's modulus variation with temperature, humidity and strain cycling frequency in most cases. However, the annealing made under water and the combinations of etching and annealing resulted in POFs with higher modulus variation with humidity, which enable their application as intensity variation or FBG-based sensors in humidity/moisture assessment.

  10. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  11. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  12. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  13. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  14. The Role of Home Practice in the Thermal Biofeedback Treatment of Migraine Headache.

    ERIC Educational Resources Information Center

    Gauthier, Janel; And Others

    1994-01-01

    Examined role of home practice of hand warming in thermal biofeedback treatment of migraine headache. Seventeen female migraine sufferers were assigned to thermal biofeedback with or without regular home practice. Subjects on home practice group experienced decreases in headache activity and medication intake that were both statistically and…

  15. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    EPA Pesticide Factsheets

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  16. 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment.

    PubMed

    Biluca, Fabíola C; Della Betta, Fabiana; de Oliveira, Gabriela Pirassol; Pereira, Lais Morilla; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2014-09-15

    This study aimed to assess 5-hydroximethylfurfural and carbohydrates (fructose, glucose, and sucrose) in 13 stingless bee honey samples before and after thermal treatment using a capillary electrophoresis method. The methods were validated for the parameters of linearity, matrix effects, precision, and accuracy. A factorial design was implemented to determine optimal thermal treatment conditions and then verify the postprocedural 5-HMF formation, but once 5-HMF were thermal treatment, Apis mellifera honey presented higher 5-HMF content than stingless bee honey. Results suggest that a high temperature related to briefer thermal treatment could be an efficient way to extend shelf life without affecting 5-HMF content in stingless bee honey. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Dongming; Hou, Peipei; Liu, Chang

    2016-09-15

    Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na{sup +} and K{sup +} cations have different structure directing effectsmore » on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides. - Graphical abstract: Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. X-ray single crystal diffraction analyses demonstrate that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Display Omitted - Highlights: • NaAg{sub 2}AsS{sub 3}⋅H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) were prepared through surfactant-thermal method. • Crystal structures show Na{sup ±} and K{sup ±} have different structure directing effects. • The weak basicity of solvent is benefit to the growth of 2 compared with 1. • Experimental and theoretical studies confirm 1 and 2 are semiconductors.« less

  18. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  19. Health Facility Cost of Buruli Ulcer Wound Treatment in Ghana: A Case Study.

    PubMed

    Asare, Kofi Hene; Aikins, Moses

    2014-09-01

    To estimate the wound treatment cost borne by the Buruli Ulcer Treatment Centre of the Amasaman Government Hospital, Ghana. Three different types of data collection approaches were used, namely, 1) observation checklist, 2) in-depth interviews, and 3) expenditure data review. Wound dressing processes were observed. Retrospective health facility cost data of Buruli ulcer (BU) wound treatment for the year 2011 were used. Cost data gathered covered medical and nonmedical items. Cost analyses were carried out to determine the health facility's financial and economic costs. The total annual financial cost was US $121,189.16, of which 99% was recurrent cost. This constitutes about 13% of the expenditure by the Amasaman Government Hospital for the year 2011. The total annual economic cost was US $143,609.22, of which 93% was recurrent cost. The main cost driver for both financial and economic costs was personnel. The annual BU wound treatment costs per capita were US $1615.86 for financial cost and US $1914.79 for economic cost, respectively. The study did not cover household patient costs. The cost of BU wound treatment takes a considerable amount of the hospital's expenditure. This shows the importance of health facility cost as one of the decision-making tools for both resource allocation and mobilization. Hospital management must therefore constantly examine its staffing norms and the associated cost to improve the hospital's resource allocation. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  20. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  1. Race/ethnicity and geographic access to Medicaid substance use disorder treatment facilities in the United States.

    PubMed

    Cummings, Janet R; Wen, Hefei; Ko, Michelle; Druss, Benjamin G

    2014-02-01

    Although substance use disorders (SUDs) are prevalent and associated with adverse consequences, treatment rates remain low. Unlike physical and mental health problems, treatment for SUDs is predominantly provided in a separate specialty sector and more heavily financed by public sources. Medicaid expansion under the Patient Protection and Affordable Care Act has the potential to increase access to treatment for SUDs but only if an infrastructure exists to serve new enrollees. To examine the availability of outpatient SUD treatment facilities that accept Medicaid across US counties and whether counties with a higher percentage of racial/ethnic minorities are more likely to have gaps in this infrastructure. We used data from the 2009 National Survey of Substance Abuse Treatment Services public use file and the 2011-2012 Area Resource file to examine sociodemographic factors associated with county-level access to SUD treatment facilities that serve Medicaid enrollees. Counties in all 50 states were included. We estimated a probit model with state indicators to adjust for state-level heterogeneity in demographics, politics, and policies. Independent variables assessed county racial/ethnic composition (ie, percentage black and percentage Hispanic), percentage living in poverty, percentage living in a rural area, percentage insured with Medicaid, percentage uninsured, and total population. Dichotomous indicator for counties with at least 1 outpatient SUD treatment facility that accepts Medicaid. Approximately 60% of US counties have at least 1 outpatient SUD facility that accepts Medicaid, although this rate is lower in many Southern and Midwestern states than in other areas of the country. Counties with a higher percentage of black (marginal effect [ME],  -3.1; 95% CI,  -5.2% to -0.9%), rural (-9.2%; -11.1% to -7.4%), and/or uninsured (-9.5%; -13.0% to -5.9%) residents are less likely to have one of these facilities. The potential for increasing access to SUD

  2. Efficiency of U.S. Dialysis Centers: An Updated Examination of Facility Characteristics That Influence Production of Dialysis Treatments

    PubMed Central

    Shreay, Sanatan; Ma, Martin; McCluskey, Jill; Mittelhammer, Ron C; Gitlin, Matthew; Stephens, J Mark

    2014-01-01

    Objective To explore the relative efficiency of dialysis facilities in the United States and identify factors that are associated with efficiency in the production of dialysis treatments. Data Sources/Study Setting Medicare cost report data from 4,343 free-standing dialysis facilities in the United States that offered in-center hemodialysis in 2010. Study Design A cross-sectional, facility-level retrospective database analysis, utilizing data envelopment analysis (DEA) to estimate facility efficiency. Data Collection/Extraction Methods Treatment data and cost and labor inputs of dialysis treatments were obtained from 2010 Medicare Renal Cost Reports. Demographic data were obtained from the 2010 U.S. Census. Principal Findings Only 26.6 percent of facilities were technically efficient. Neither the intensity of market competition nor the profit status of the facility had a significant effect on efficiency. Facilities that were members of large chains were less likely to be efficient. Cost and labor savings due to changes in drug protocols had little effect on overall dialysis center efficiency. Conclusions The majority of free-standing dialysis facilities in the United States were functioning in a technically inefficient manner. As payment systems increasingly employ capitation and bundling provisions, these institutions will need to evaluate their efficiency to remain competitive. PMID:24237043

  3. Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module

    NASA Astrophysics Data System (ADS)

    Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge

    2017-04-01

    A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.

  4. Test and User Facilities | NREL

    Science.gov Websites

    | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility High-Flux Solar Furnace I Integrated Biorefinery Research Facility L Large Payload Solar Tracker M

  5. Reducing the price of treatment for multidrug-resistant tuberculosis through the Global Drug Facility.

    PubMed

    Lunte, Kaspars; Cordier-Lassalle, Thierry; Keravec, Joel

    2015-04-01

    Many countries have limited experience of securing the best prices for drugs and have little negotiating power. This is particularly true for the complex, lengthy and expensive regimens used to treat multidrug-resistant tuberculosis. The Stop TB Partnership's Global Drug Facility is dedicated to improving worldwide access to antituberculosis medicines and diagnostic techniques that meet international quality standards. The Global Drug Facility is able to secure price reductions through competitive tendering among prequalified drug manufacturers and by consolidating orders to achieve large purchase volumes. Consolidating the market in this way increases the incentives for suppliers of quality-assured medicines. In 2013 the Global Drug Facility reduced the price of the second-line drugs it supplies for multidrug-resistant tuberculosis: the overall cost of the longest and most expensive treatment regimen for a patient decreased by 26% - from 7890 United States dollars (US$) in 2011 to US$ 5822 in 2013. The price of treatment for multidrug-resistant tuberculosis supplied by the Global Drug Facility was reduced by consolidating orders to achieve large purchase volumes, by international, competitive bidding and by the existence of donor-funded medicine stockpiles. The rise in the number of suppliers of internationally quality-assured drugs was also important. The savings achieved from lower drug costs could be used to increase the number of patients on high-quality treatment.

  6. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  7. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  8. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    PubMed

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p < 0.001), with a significant interaction effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Verified Centers, Nonverified Centers or Other Facilities: A National Analysis of Burn Patient Treatment Location

    PubMed Central

    Zonies, David; Mack, Christopher; Kramer, Bradley; Rivara, Frederick; Klein, Matthew

    2009-01-01

    Background Although comprehensive burn care requires significant resources, patients may be treated at verified burn centers, non-verified burn centers, or other facilities due to a variety of factors. The purpose of this study was to evaluate the association between patient and injury characteristics and treatment location using a national database. Study Design We performed an analysis of all burn patients admitted to United States hospitals participating in the Healthcare Cost and Utilization Project over 2 years. Univariate and multivariate analyses were performed to identify patient and injury factors associated with the likelihood of treatment at designated burn care facilities. Definitve care facilities were categorized as American Burn Association verified centers, non-verified burn centers, or other facilities. Results Over the two years, 29,971 burn patients were treated in 1,376 hospitals located in 19 participating states. A total of 6,712 (22%) patients were treated at verified centers, with 26% and 52% treated at non-verified or other facilities, respectively. Patients treated at verified centers were younger than those at non-verified or other facilities (33.1 years vs. 33.7 years vs. 41.9 years, p<0.001) and had a higher rate of inhalation injury (3.4% vs. 3.2% vs. 2.2%, p<0.001). Independent factors associated with treatment at verified centers include burns to the head/neck (RR 2.4, CI 2.1-2.7), hand (RR 1.8, CI 1.6-1.9), electrical injury (RR 1.4, CI 1.4, CI 1.2-1.7), and fewer co-morbidities (RR 0.55, CI 0.5-0.6). Conclusions More than two-thirds of significantly burned patients are treated at non-verified burn centers in the U.S. Many patients meeting ABA criteria for transfer to a burn center are being treated at non-burn center facilities. PMID:20193892

  10. Evaluation of the effective dose during BNCT at TRR thermal column epithermal facility.

    PubMed

    Jarahi, Hossein; Kasesaz, Yaser; Saleh-Koutahi, Seyed Mohsen

    2016-04-01

    An epithermal neutron beam has been designed for Boron neutron Capture Therapy (BNCT) at the thermal column of Tehran Research Reactor (TRR) recently. In this paper the whole body effective dose, as well as the equivalent doses of several organs have been calculated in this facility using MCNP4C Monte Carlo code. The effective dose has been calculated by using the absorbed doses determined for each individual organ, taking into account the radiation and tissue weighting factors. The ICRP 110 whole body male phantom has been used as a patient model. It was found that the effective dose during BNCT of a brain tumor is equal to 0.90Sv. This effective dose may induce a 4% secondary cancer risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; wastemore » characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.« less

  12. NPDES Permit for Dakota Magic Casino Wastewater Treatment Facility in North Dakota

    EPA Pesticide Factsheets

    Under NPDES permit ND-0030813, the Dakota Nation Gaming Enterprise is authorized to discharge from the wastewater treatment facility in Richland County, North Dakota, to a roadside ditch flowing to an unnamed tributary to the Bois de Sioux.

  13. NPDES Permit for Town of Lodge Grass Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT0021890, the Town of Lodge Grass is authorized to discharge from from its wastewater treatment facility in Big Horn County to an unnamed slough to the Little Bighorn River.

  14. NPDES Permit for the St. Ignatius-Southside Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0029017, the Salish and Kootenai Housing Authority of the Confederated Salish and Kootenai Tribes is authorized to discharge from its wastewater treatment facility in Lake County, Montana to an unnamed tributary of Sabine Creek.

  15. Purification of p-type CdTe crystals by thermal treatment

    NASA Astrophysics Data System (ADS)

    Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Nykoniuk, Ye.; Shlyakhovyj, V.; Bolotnikov, A. E.; Yang, Ge; James, R. B.

    2014-09-01

    We studied the influence of prolonged thermal treatment on the concentration and the acceptor energy level positions in p-CdTe samples. We found that heating them at 720 K entails a decrease in the concentration of electrically active centers, i.e., a "self-cleaning" of the adverse effects of some contaminants. In samples wherein the conductivity was determined by the concentration of acceptors of the A1 type (EV + 0.03-0.05) eV, after heating it becomes controlled by a deeper acceptor of the A2 type (EV + 0.13-0.14) eV, and both the charge-carrier's mobility and the ratio μр80/μр300 increase. This effect reflects the fact that during thermal treatment, the A1 acceptors and the compensating donors are removed from their electrically active positions, most likely due to their diffusion and trapping within the inclusions in the CdTe bulk, where they have little or no influence on carrier scattering and trapping.

  16. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  17. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    PubMed

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2013-09-01

    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Outcomes of Thermal Pulsation Treatment for Dry Eye Syndrome in Patients With Sjogren Disease.

    PubMed

    Godin, Morgan R; Stinnett, Sandra S; Gupta, Preeya K

    2018-04-26

    To evaluate the clinical outcomes of thermal pulsation treatment in patients with meibomian gland dysfunction (MGD) and dry eye secondary to Sjogren disease. Twenty-four eyes from 13 patients with previously diagnosed Sjogren disease who presented to our institution with dry eye symptoms and had thermal pulsation treatment were prospectively followed up. Patients underwent comprehensive slit-lamp examination, including MGD grading, gland oil flow, corneal and conjunctival staining scores, and tear break-up time (TBUT). Tear osmolarity was tested before and after treatment. The average patient age was 62.4 years (range, 31-78 yrs); 12 were women and 1 a man. The average meibomian gland oil flow score showed an increase from pretreatment 0.71 to 1.75 at 1 year posttreatment (range 9-15 months) (P = 0.001). The average corneal staining score decreased from a pretreatment grade of 1.04 to a posttreatment grade of 0.36 (P < 0.001). The average conjunctival staining score decreased from a pretreatment grade of 1.5 to a posttreatment grade of 0.48 (P < 0.001). The average tear break-up time improved from 3.8 seconds before treatment to 7.5 seconds after thermal pulsation treatment (P < 0.001). There was no statistically significant change in the tear osmolarity or Ocular Surface Disease Index score. Our findings suggest that MGD is an important contributor to dry eye disease in patients with Sjogren disease and should not be overlooked when considering treatment options. Thermal pulsation is a therapeutic option for patients with Sjogren disease who have MGD and dry eye symptoms. After a single treatment, patients exhibited increased oil flow and tear break-up time with an associated decrease in corneal and conjunctival staining.

  19. Thermal Environments. Educational Facilities Review Series Number 17.

    ERIC Educational Resources Information Center

    Baas, Alan M.

    This review surveys documents and journal articles previously announced in RIE and CIJE that deal with climate control, integrated thermal and luminous systems, total energy systems, and current trends in school air conditioning. The literature cited indicates that selection of thermal systems must take into account longterm operating costs in…

  20. Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar.

    PubMed

    Kwon, Yang-Hee; Kang, Sung-Hoon; Hong, Sung-Gul; Moon, Juhyuk

    2017-02-24

    Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days). A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity), X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.

  1. Feasibility of BNCT radiobiological experiments at the HYTHOR facility

    NASA Astrophysics Data System (ADS)

    Esposito, J.; Ceballos, C.; Soncin, M.; Fabris, C.; Friso, E.; Moro, D.; Colautti, P.; Jori, G.; Rosi, G.; Nava, E.

    2008-06-01

    HYTHOR (HYbrid Thermal spectrum sHifter tapirO Reactor) is a new thermal-neutron irradiation facility, which was installed and became operative in mid 2005 at the TAPIRO (TAratura PIla Rapida potenza 0) fast reactor, in the Casaccia research centre (near Rome) of ENEA (Ente per le Nuove tecnologie Energia ed Ambiente). The facility has been designed for in vivo radiobiological studies. In HYTHOR irradiation cavity, 1-6 mice can be simultaneously irradiated to study skin melanoma treatments with the BNCT (boron neutron capture therapy). The therapeutic effects of HYTHOR radiation field on mouse melanoma has been studied as a preliminary investigation before studying the tumour local control due to boron neutron capture effect after boronated molecule injection. The method to properly irradiate small animals has been precisely defined. Results show that HYTHOR radiation field is by itself effective in reducing the tumour-growth rate. This finding has to be taken into account in studying the effectiveness of new 10B carriers. A method to properly measure the reduction of the tumour-growth rate is reported and discussed.

  2. Implementing Trauma-Informed Treatment for Youth in a Residential Facility: First-Year Outcomes

    ERIC Educational Resources Information Center

    Greenwald, Ricky; Siradas, Lynn; Schmitt, Thomas A.; Reslan, Summar; Fierle, Julia; Sande, Brad

    2012-01-01

    Training in the Fairy Tale model of trauma-informed treatment was provided to clinical and direct care staff working with 53 youth in a residential treatment facility. Compared to the year prior to training, in the year of the training the average improvement in presenting problems was increased by 34%, time to discharge was reduced by 39%, and…

  3. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have

  4. Effects of alkali treatment on the mechanical and thermal properties of Sansevieria trifasciata fiber

    NASA Astrophysics Data System (ADS)

    Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.

    2016-04-01

    In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.

  5. Characteristics of Polybrominated Diphenyl Ethers Released from Thermal Treatment and Open Burning of E-Waste.

    PubMed

    Li, Ting-Yu; Zhou, Jun-Feng; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Zeng, Eddy Y

    2018-04-17

    Primitive processing of e-waste potentially releases abundant organic contaminants to the environment, but the magnitudes and mechanisms remain to be adequately addressed. We conducted thermal treatment and open burning of typical e-wastes, that is, plastics and printed circuit boards. Emission factors of the sum of 39 polybrominated diphenyl ethers (∑ 39 PBDE) were 817-1.60 × 10 5 ng g -1 in thermal treatment and nondetected-9.14 × 10 4 ng g -1 , in open burning. Airborne particles (87%) were the main carriers of PBDEs, followed by residual ashes (13%) and gaseous constituents (0.3%), in thermal treatment, while they were 30%, 43% and 27% in open burning. The output-input mass ratios of ∑ 39 PBDE were 0.12-3.76 in thermal treatment and 0-0.16 in open burning. All PBDEs were largely affiliated with fine particles, with geometric mean diameters at 0.61-0.83 μm in thermal degradation and 0.57-1.16 μm in open burning from plastic casings, and 0.44-0.56 and nondetected- 0.55 μm, from printed circuit boards. Evaporation and reabsorption may be the main emission mechanisms for lightly brominated BDEs, but heavily brominated BDEs tend to affiliate with particles from heating or combustion. The different size distributions of particulate PBDEs in emission sources and adjacent air implicated a noteworthy redisposition process during atmospheric dispersal.

  6. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China.

    PubMed

    Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki

    2013-07-01

    Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Effects of thermal treatment on the properties of defatted soya bean flour and its adhesion to plywood

    NASA Astrophysics Data System (ADS)

    Zhang, Bing-Han; Fan, Bo; Li, Ming; Zhang, Yue-Hong; Gao, Zhen-Hua

    2018-05-01

    With an attempt to economically and efficiently improve the water resistance of defatted soya bean flour (DSF)-based wood adhesives, DSF was subjected to thermal treatment at various temperatures (65°C, 80°C, 95°C, 110°C and 125°C) for 30 min. The effects of thermal treatment temperature onto the chemical structure, crystalline degree, water-insoluble content and acetaldehyde value of the thermally treated DSF (T-DSF) were investigated. The thermal stabilities and bonding properties of soya bean adhesives prepared from T-DSF and cross-linker epichlorohydrin-modified polyamide (EMPA) were also investigated. Test results indicated that both the water-insoluble content and the acetaldehyde value of T-DSF increased after thermal treatment, reaching the highest values of 27.28% and 26.81 mg g-1, respectively. All plywood bonded with the T-DSF-based adhesive withstood a 28 h boiling-dry-boiling accelerated ageing treatment, while plywood bonded with the DSF-based adhesive delaminated after 4 h of water boiling, demonstrating the significantly improved water resistance of the T-DSF-based adhesives. Related analyses also confirmed that this improvement was due to: (i) the formation of insoluble cross-linked structures of T-DSF resulting from protein-protein self-cross-linking reactions and the protein-carbohydrate Maillard reaction and (ii) increased cross-linking efficiency between T-DSF and cross-linker EMPA owing to more T-DSF-reactive groups being released after thermal treatment.

  8. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  9. Ground test facility for SEI nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.

    1992-07-01

    Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.

  10. Development of the Technologies for Stabilization Treatment of the Water of the Recycling Cooling Systems at Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.

    2018-02-01

    A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.

  11. Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.

    2011-01-01

    The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.

  12. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.

    PubMed

    Lopresto, Vanni; Pinto, Rosanna; Farina, Laura; Cavagnaro, Marta

    2017-08-01

    Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. 77 FR 58470 - Irradiation Treatment; Location of Facilities in the Southern United States; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    .... APHIS-2009-0100] RIN 0579-AD35 Irradiation Treatment; Location of Facilities in the Southern United... things, allow for irradiation treatment of mangoes from India upon arrival in the mainland United States... 20, 2012, we amended the regulations in Sec. 319.56-46 to allow for irradiation treatment of mangoes...

  14. Thermal properties of simulated Hanford waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Chun, Jaehun; Crum, Jarrod V.

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flashmore » diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.« less

  15. Effects of thermal treatments on donkey milk nutritional characteristics.

    PubMed

    Polidori, Paolo; Vincenzetti, Silvia

    2013-12-01

    Human breast milk is the best nutritional support to ensure right development and influence immune status of the newborn infant. However, when it is not possible to breast feed it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infants develop allergy and/or atopic disease compared to breast-fed infants. Most infants with cow's milk protein allergy (CMPA) develop symptoms before 1 month of age, often within 1 week after introduction of cow's milk-based formula. Donkey milk may be considered a good substitute for cow's milk in feeding children with CMPA since its composition is very similar to human milk. An in-depth analysis of the donkey milk protein profile has been performed in this study. The interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in human. Since donkey milk supply is related to its seasonal availability during the year, in this study were evaluated the effects of different thermal treatments on the protein fractions of donkey milk. The results obtained in fresh, frozen, powdered and lyophilized donkey milk showed different values in total proteins, caseins, whey proteins and lysozyme content. This study demonstrated the possibility of using lyophilization in order to maintain the nutritional characteristics of donkey milk. The article presents some promising patents on the effects of thermal treatments on donkey milk nutritional characteristics.

  16. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  17. Health worker perspectives on the possible use of intramuscular artesunate for the treatment of severe malaria at lower-level health facilities in settings with poor access to referral facilities in Nigeria: a qualitative study.

    PubMed

    Adesoro, Olatunde; Shumba, Constance; Kpamor, John; Achan, Jane; Kivumbi, Harriet; Dada, John; Maxwell, Kolawole; Tibenderana, James; Marasciulo, Madeline; Hamade, Prudence; Oresanya, Olusola; Nankabirwa, Joanita; Baba, Ebenezer

    2016-10-12

    Innovative strategies are needed to reduce malaria mortality in high burden countries like Nigeria. Given that one of the important reasons for this high malaria mortality is delay in receiving effective treatment, improved access to such treatment is critical. Intramuscular artesunate could be used at lower-level facilities given its proven efficacy, ease of use and excellent safety profile. The objective of this study was therefore to explore health workers' perspectives on the possible use of intramuscular artesunate as definitive treatment for severe malaria at lower-level facilities, especially when access to referral facilities is challenging. The study was to provide insight as a formative step into the conduct of future experimental studies to ascertain the feasibility of the use of intramuscular artesunate for definitive treatment of severe malaria in lower level facilities where access to referral care is limited. This qualitative study was done across three southern States in Nigeria (Oyo, Cross River and Enugu). Key informant interviews were conducted over a period of three months between October and December 2014 among 90 purposively selected health workers with different roles in malaria case management from primary care to policy level. A thematic content analysis was used to analyse data. Overall, most of health workers and other key informant groups thought that the use of intramuscular artesunate for definitive treatment of severe malaria at lower-level facilities was possible. They however reported human resource and infrastructure constraints as factors affecting the feasibility of intramuscular artesunate use as definitive treatment for severe malaria in lower-level facilities.. Specifically identified barriers included limited numbers of skilled health workers available to manage potential complications of severe malaria and poorly equipped facilities for supportive treatment. Intramuscular artesunate was considered easy to administer and the

  18. NPDES Permit for Rosebud Casino and Hotel Wastewater Treatment Facility in South Dakota

    EPA Pesticide Factsheets

    Under NPDES permit SD-0034584, Rosebud Casino and Hotel, South Dakota, is authorized to discharge from its wastewater treatment facility in Todd County, South Dakota to an unnamed drainageway(s) tributary to Rock Creek.

  19. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    PubMed

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  20. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Areamore » Sewage Treatment plant.« less

  1. IRIS thermal balance test within ESTEC LSS

    NASA Technical Reports Server (NTRS)

    Messidoro, Piero; Ballesio, Marino; Vessaz, J. P.

    1988-01-01

    The Italian Research Interim Stage (IRIS) thermal balance test was successfully performed in the ESTEC Large Space Simulator (LSS) to qualify the thermal design and to validate the thermal mathematical model. Characteristics of the test were the complexity of the set-up required to simulate the Shuttle cargo bay and allowing IRIS mechanism actioning and operation for the first time in the new LSS facility. Details of the test are presented, and test results for IRIS and the LSS facility are described.

  2. Treatment of depression in low-level residential care facilities for the elderly.

    PubMed

    George, Kuruvilla; Davison, Tanya E; McCabe, Marita; Mellor, David; Moore, Kathleen

    2007-12-01

    The rate of recognition and treatment of depressed older people in nursing homes is low. Data from the low-level residential care population have not been reported. This study aimed to collect information about the treatment of depression among older persons living in low-level residential care (hostels). The participants comprised 300 elderly residents from ten low-level residential care facilities from various suburbs in metropolitan Melbourne. The participants were interviewed by a trained clinical psychologist to determine the presence or absence of major or minor depressive disorder using the Structured Clinical Interview for DSM-IV Axis I Disorder (SCID-I). Each participant was also administered the Standardized Mini-mental State Examination (SMMSE) to determine level of cognitive function. The clinical psychologist then reviewed all cases in consultation with a geropsychiatrist experienced in the diagnosis of depression among older people, prior to assigning a diagnosis of depression. An important finding in this study was the low treatment for currently depressed residents, with less than half of those in the sample who were depressed receiving treatment. However, 61 of the 96 residents out of the sample of 300 who were on antidepressants were not currently depressed. There is an under recognition and under treatment of currently depressed older people in low-level residential care facilities (hostels) just as has been reported in studies in nursing homes. However, there are high numbers receiving antidepressants who are not currently depressed.

  3. NPDES Draft Permit for MHA Interpretive Center Wastewater Treatment Facility in North Dakota

    EPA Pesticide Factsheets

    Under draft NPDES permit ND0031160, the Mandan, Hidatsa, and Arikara (MHA) Nation Public Works is authorized to discharge from its MHA Interpretive Center wastewater treatment facility to Missouri River as set forth in the permit.

  4. NPDES Draft Permit for Southern Ute Indian Tribe Wastewater Treatment Facility in Colorado

    EPA Pesticide Factsheets

    Under NPDES draft permit number CO-0022853, the Southern Ute Indian Tribe is authorized to discharge from its wastewater treatment facility in La Plata County, Colorado,to Rock Creek, a tributary of the Los Pinos River.

  5. NPDES Permit for City of Eagle Butte Wastewater Treatment Facility in South Dakota

    EPA Pesticide Factsheets

    Under NPDES permit SD-0020192, the City of Eagle Butte, South Dakota, is authorized to discharge from its wastewater treatment facility within the Cheyenne River Sioux Reservation in Dewey County, South Dakota, to Green Grass Creek.

  6. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  7. Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process

    Treesearch

    Qiangu Yan; Hossein Toghiani; Zhiyong Cai; Jilei Zhang

    2014-01-01

    Influences of thermal treatment conditions of temperature, reaction cycle and time, and purge gas type on nanocarbon formation over bio-chars from fast pyrolysis and effects of thermal reaction cycle and purge gas type on bio-char surface functional groups were investigated by temperature-programmed desorption (TPD) and temperature programmed reduction methods....

  8. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  9. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death.

    PubMed

    Nones, Janaína; Nones, Jader; Riella, Humberto Gracher; Poli, Anicleto; Trentin, Andrea Gonçalves; Kuhnen, Nivaldo Cabral

    2015-10-01

    Bentonites are clays that highly adsorb aflatoxin B1 (AFB1) and, therefore, protect human and animal cells from damage. We have recently demonstrated that bentonite protects the neural crest (NC) stem cells from the toxicity of AFB1. Its protective effects are due to the physico-chemical properties and chemical composition altered by heat treatment. The aim of this study is to prepare and characterize the natural and thermal treatments (125 to 1000 °C) of bentonite from Criciúma, Santa Catarina, Brazil and to investigate their effects in the AFB1 adsorption and in NC cell viability after challenging with AFB1. The displacement of water and mineralogical phases transformations were observed after the thermal treatments. Kaolinite disappeared at 500 °C and muscovite and montmorillonite at 1000 °C. Slight changes in morphology, chemical composition, and density of bentonite were observed. The adsorptive capacity of the bentonite particles progressively reduced with the increase in temperature. The observed alterations in the structure of bentonite suggest that the heat treatments influence its interlayer distance and also its adsorptive capacity. Therefore, bentonite, even after the thermal treatment (125 to 1000 °C), is able to increase the viability of NC stem cells previously treated with AFB1. Our results demonstrate the effectiveness of bentonite in preventing the toxic effects of AFB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    NASA Astrophysics Data System (ADS)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not

  11. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakos, James Thomas

    2004-04-01

    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply tomore » Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to the test item

  12. LPT. Shield test facility (TAN646). Floor plan for water treatment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-646). Floor plan for water treatment room on west facade, tank and filter locations in basement along service tunnel and in coupling station. Ralph M. Parsons 1229-17 ANP/GE-6-646-P-2. April 1957. INEEL Index code no. 037-0645/0646-51-693-107387 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. NPDES Permit for U.S. Air Force Academy Wastewater Treatment Facility in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-0020974, the U.S. Air Force Academy is authorized to discharge from its wastewater treatment facility in El Paso County, Colorado, to Non-Potable Reservoir No. 1 on Lehman Run and to Monument Creek.

  14. Effect of stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites

    NASA Astrophysics Data System (ADS)

    Papanicolaou, G. C.; Pappa, E. J.; Portan, D. V.; Kotrotsos, A.; Kollia, E.

    2018-02-01

    The aim of the present investigation was to study the effect of both the stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites. Four types of multilayered hybrid nanocomposites were manufactured and tested: Nitinol- CNTs (carbon nanotubes)- Acrylic resin; Nitinol- Acrylic resin- CNTs; Surface treated Nitinol- CNTs- Acrylic resin and Surface treated Nitinol- Acrylic resin- CNTs. Surface treatment of Nitinol plies was realized by means of the electrochemical anodization. Surface topography of the anodized nitinol sheets was investigated through Scanning Electron Microscopy (SEM). It was found that the overall thermal response of the manufactured multilayered nano-composites was greatly influenced by both the anodization and the stacking sequence. A theoretical model for the prediction of the overall thermal conductivity has been developed considering the nature of the different layers, their stacking sequence as well as the interfacial thermal resistance. Thermal conductivity and Differential Scanning Calorimetry (DSC) measurements were conducted, to verify the predicted by the model overall thermal conductivities. In all cases, a good agreement between theoretical predictions and experimental results was found.

  15. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)« less

  16. Evaluating the Treatment Costs for Uncomplicated Malaria at a Public Healthcare Facility in Nigeria and the Implications.

    PubMed

    Ezenduka, Charles C; Falleiros, Daniel Resende; Godman, Brian B

    2017-09-01

    Accurate information on the facility costs of treatment is essential to enhance decision making and funding for malaria control. The objective of this study was to estimate the costs of providing treatment for uncomplicated malaria through a public health facility in Nigeria. Hospital costs were estimated from a provider perspective, applying a standard costing procedure. Capital and recurrent expenditures were estimated using an ingredient approach combined with step-down methodology. Costs attributable to malaria treatment were calculated based on the proportion of malaria cases to total outpatient visits. The costs were calculated in local currency [Naira (N)] and converted to US dollars at the 2013 exchange rate. Total annual costs of N28.723 million (US$182,953.65) were spent by the facility on the treatment of uncomplicated malaria, at a rate of US$31.49 per case, representing approximately 25% of the hospital's total expenditure in the study year. Personnel accounted for over 82.5% of total expenditure, followed by antimalarial medicines at 6.6%. More than 45% of outpatients visits were for uncomplicated malaria. Changes in personnel costs, drug prices and malaria prevalence significantly impacted on the study results, indicating the need for improved efficiency in the use of hospital resources. Malaria treatment currently consumes a considerable amount of resources in the facility, driven mainly by personnel cost and a high proportion of malaria cases. There is scope for enhanced efficiency to prevent waste and reduce costs to the provider and ultimately the consumer.

  17. NPDES Draft Permit for Dakota Magic Casino Wastewater Treatment Facility in North Dakota

    EPA Pesticide Factsheets

    Under NPDES draft permit ND0030813, the Dakota Magic Hotel and Casino WWTF is authorized to discharge, in accordance with the requirements as contained in the provisions of this Permit, from its wastewater treatment facility to the Bois de Sioux.

  18. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less

  19. Assessing the perception and reality of arguments against thermal waste treatment plants in terms of property prices.

    PubMed

    Phillips, K J O; Longhurst, P J; Wagland, S T

    2014-01-01

    The thermal processing of waste materials, although considered to be an essential part of waste management, is often sharply contested in the UK. Arguments such as health, depletion of resources, cost, noise, odours, traffic movement and house prices are often cited as reasons against the development of such facilities. This study aims to review the arguments and identify any effect on property prices due to the public perception of the plant. A selection of existing energy from waste (EfW) facilities in the UK, operational for at least 7 years, was selected and property sales data, within 5 km of the sites, was acquired and analysed in detail. The locations of the properties were calculated in relation to the plant using GIS software (ArcGIS) and the distances split into 5 zones ranging from 0 to 5 km from the site. The local property sale prices, normalised against the local house price index, were compared in two time periods, before and after the facility became operational, across each of the 5 zones. In all cases analysed no significant negative effect was observed on property prices at any distance within 5 km from a modern operational incinerator. This indicated that the perceived negative effect of the thermal processing of waste on local property values is negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  1. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    PubMed

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (<100°C) thermal pre-treatments were investigated to improve the present efficiency of anaerobic digestion (AD) carried out on waste activated sludge (WAS) in the largest Italian wastewater treatment plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Influence of Sulfur Fertilization on the Antioxidant Activities of Onion Juices Prepared by Thermal Treatment

    PubMed Central

    Koh, Eunmi; Surh, Jeonghee

    2016-01-01

    Two onions (Sulfur-1 and Sulfur-4) cultivated with different sulfur applications were thermally processed to elucidate the effects of heat treatment on browning index and antioxidant activity. Sulfur-4 onion had higher sulfur content compared with the Sulfur-1 onion. After thermal processing, browning intensity was different between the two onions juices, with lower values observed for Sulfur-4 onion juice. This suggests that sulfur inhibits the Maillard browning reaction. The total reducing capacity of the juices increased at higher thermal processing temperatures; however, it was also lower in the Sulfur-4 onion juice. This suggests that the heat treatment of onions enhanced their antioxidant activity, but the effect was offset in the Sulfur-4 onion juice presumably due to higher sulfur content. This study indicates that sulfur, a core element for the functionality of onions, can decrease the antioxidant activity of thermally processed onions because of its potential as a Maillard reaction inhibitor. PMID:27390734

  3. Improving the Quality of Services in Residential Treatment Facilities: A Strength-Based Consultative Review Process

    ERIC Educational Resources Information Center

    Pavkov, Thomas W.; Lourie, Ira S.; Hug, Richard W.; Negash, Sesen

    2010-01-01

    This descriptive case study reports on the positive impact of a consultative review methodology used to conduct quality assurance reviews as part of the Residential Treatment Center Evaluation Project. The study details improvement in the quality of services provided to youth in unmonitored residential treatment facilities. Improvements were…

  4. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.

    PubMed

    Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  5. Challenges in implementing uncomplicated malaria treatment in children: a health facility survey in rural Malawi.

    PubMed

    Kabaghe, Alinune N; Phiri, Mphatso D; Phiri, Kamija S; van Vugt, Michèle

    2017-10-18

    Prompt and effective malaria treatment are key in reducing transmission, disease severity and mortality. With the current scale-up of artemisinin-based combination therapy (ACT) coverage, there is need to focus on challenges affecting implementation of the intervention. Routine indicators focus on utilization and coverage, neglecting implementation quality. A health system in rural Malawi was assessed for uncomplicated malaria treatment implementation in children. A cross-sectional health facility survey was conducted in six health centres around the Majete Wildlife Reserve in Chikwawa district using a health system effectiveness approach to assess uncomplicated malaria treatment implementation. Interviews with health facility personnel and exit interviews with guardians of 120 children under 5 years were conducted. Health workers appropriately prescribed an ACT and did not prescribe an ACT to 73% (95% CI 63-84%) of malaria rapid diagnostic test (RDT) positive and 98% (95% CI 96-100%) RDT negative children, respectively. However, 24% (95% CI 13-37%) of children receiving artemisinin-lumefantrine had an inappropriate dose by weight. Health facility findings included inadequate number of personnel (average: 2.1 health workers per 10,000 population), anti-malarial drug stock-outs or not supplied, and inconsistent health information records. Guardians of 59% (95% CI 51-69%) of children presented within 24 h of onset of child's symptoms. The survey presents an approach for assessing treatment effectiveness, highlighting bottlenecks which coverage indicators are incapable of detecting, and which may reduce quality and effectiveness of malaria treatment. Health service provider practices in prescribing and dosing anti-malarial drugs, due to drug stock-outs or high patient load, risk development of drug resistance, treatment failure and exposure to adverse effects.

  6. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  7. Surface Modification of Thermal Barrier Coatings by Single-Shot Defocused Laser Treatments

    NASA Astrophysics Data System (ADS)

    Akdoğan, Vakur; Dokur, Mehmet M.; Göller, Gültekin; Keleş, Özgül

    2013-09-01

    Thermal barrier coatings (TBC) consisting of atmospheric plasma-sprayed ZrO2-8 wt.% Y2O3 and a high velocity oxygen fuel-sprayed metallic bond coat were subjected to CO2 continuous wave laser treatments. The effects of laser power on TBCs were investigated as was the thermally grown oxide (TGO) layer development of all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. The effects of laser power on TBCs were investigated. TGO layer development was examined on all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. Melted and heat-affected zone regions were observed in all the laser-treated samples. Oxidation tests showed a stable alumina layer and mixed spinel oxides in the TGO layers of the as-sprayed and laser-treated TBCs.

  8. Experimental thermal mechanics of deployable boom structures

    NASA Technical Reports Server (NTRS)

    Predmore, R.

    1972-01-01

    An apparatus was developed for thermal distortion measurements on deployable boom structures. The calibration procedure and thermal static bending plus twist measurements are considered. The thermal mechanics test facility is described. A table is presented for several examples of spacecraft applications of thermal static distortion measurements on 3-m deployable booms.

  9. Structural change of the frustule of diatom by thermal treatment

    NASA Astrophysics Data System (ADS)

    Arasuna, Akane; Okuno, Masayuki

    2018-12-01

    The external skeleton, frustule, of a diatom is composed of hydrous amorphous silica and amino acids. In this study, the structural changes in the frustule of Chaetoceros calcitrans after thermal treatment up to 1200 °C were investigated using X-ray diffraction and attenuated total reflection infrared spectroscopy and Raman spectroscopy. Their structural changes after thermal treatment give important information to elucidate the unheated structure of the frustule and its crystallization process. In addition, this study is almost the first report to discuss the structure of diatom frustule in detail with Raman spectrum. The unheated structure of the frustule has the relatively ordered and dominant six-membered ring structure made of SiO4 tetrahedra. The sample heated at 800 °C has the more ordered six-membered ring structure observed in quartz or cristobalite. Water molecules and silanol (Si-OH) included in the frustule are dehydrated at this temperature. This dehydration may promote the formation of ordered and polymerized structure. The structure of the frustule after heating at 1200 °C is similar to that of low-cristobalite. However, additional heating is required for complete crystallization.

  10. Post-deposition control of ferroelastic stripe domains and internal electric field by thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feigl, L.; Iwanowska, M.; Sandu, C. S.

    The dependence of the formation of ferroelastic stripe domain patterns on the thermal history is investigated by detailed piezoresponse force microscopy and X-ray diffraction experiments after and during annealing of tensile strained tetragonal Pb(Ti,Zr)O{sub 3} epitaxial thin films on DyScO{sub 3} substrates. In particular, the ferroelastic pattern is reversibly interchanged between a cross-hatched and a stripe domain pattern if the films are cooled at different rates after annealing above the formation temperature of a-domains. Different types of 180° and non-180° patterns can be created, depending on the thermal treatment. The changes in the 180° domain structure and lattice parameters aremore » attributed to a change of oxygen vacancy concentration, which results in a modification of the internal electric field and unit cell size, causing also a shift of T{sub C}. Thermal treatment is done on rhombohedral La:BiFeO{sub 3} thin films as well. It is observed that also in these films, appropriate heat treatment modifies the domain pattern and films with a stripe domain pattern can be created, confirming the general validity of the developed model.« less

  11. Post-deposition control of ferroelastic stripe domains and internal electric field by thermal treatment

    NASA Astrophysics Data System (ADS)

    Feigl, L.; Janolin, P.-E.; Yamada, T.; Iwanowska, M.; Sandu, C. S.; Setter, N.

    2015-01-01

    The dependence of the formation of ferroelastic stripe domain patterns on the thermal history is investigated by detailed piezoresponse force microscopy and X-ray diffraction experiments after and during annealing of tensile strained tetragonal Pb(Ti,Zr)O3 epitaxial thin films on DyScO3 substrates. In particular, the ferroelastic pattern is reversibly interchanged between a cross-hatched and a stripe domain pattern if the films are cooled at different rates after annealing above the formation temperature of a-domains. Different types of 180° and non-180° patterns can be created, depending on the thermal treatment. The changes in the 180° domain structure and lattice parameters are attributed to a change of oxygen vacancy concentration, which results in a modification of the internal electric field and unit cell size, causing also a shift of TC. Thermal treatment is done on rhombohedral La:BiFeO3 thin films as well. It is observed that also in these films, appropriate heat treatment modifies the domain pattern and films with a stripe domain pattern can be created, confirming the general validity of the developed model.

  12. A Policy Analysis: Military Medical Treatment Facility Contingency Inpatient Expansion

    DTIC Science & Technology

    2005-06-06

    Immunology 3 71B Biochemistry 2 Nurse Corps 66H Medical Surgical Nurse 688 66E Operating Room Nurse 72 66C Psychiatry 30 66N Nurse Administration 18...To) 06-06-2005 Final Report I July 2005 to July 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Policy Analysis: Military Medical Treatment Facility...Contingency Inpatient Expansion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Kalamaras, Peter Jr., Major, Medical

  13. Political economy of decentralising HIV and AIDS treatment services to primary healthcare facilities in three Nigerian states.

    PubMed

    Mbachu, Chinyere; Onwujekwe, Obinna; Ezumah, Nkoli; Ajayi, Olayinka; Sanwo, Olusola; Uzochukwu, Benjamin

    2016-09-01

    Decentralisation is defined as the dispersion, distribution or transfer of resources, functions and decision-making power from a central authority to regional and local authorities. It is usually accompanied by assignment of accountability and responsibility for results. Fundamental to understanding decentralisation is learning what motivates central governments to give up power and resources to local governments, and the practical significance of this on their positions regarding decentralisation. This study examined key political and institutional influences on role-players' capacity to support decentralisation of HIV and AIDS treatment services to primary healthcare facilities, and implications for sustainability. In-depth interviews were conducted with 55 purposively selected key informants, drawn from three Nigerian states that were at different stages of decentralising HIV and AIDS treatment services to primary care facilities. Key informants represented different categories of role-players involved in HIV and AIDS control programmes. Thematic framework analysis of data was done. Support for decentralisation of HIV and AIDS treatment services to primary healthcare facilities was substantial among different categories of actors. Political factors such as the local and global agenda for health, political tenure and party affiliations, and institutional factors such as consolidation of decision-making power and improvements in career trajectories, influenced role-players support for decentralisation of HIV and AIDS treatment services. It is feasible and acceptable to decentralise HIV and AIDS treatment services to primary healthcare facilities, to help improve coverage. However, role-players' support largely depends on how well the reform aligns with political structures and current institutional practices.

  14. Assessing the perception and reality of arguments against thermal waste treatment plants in terms of property prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K.J.O.; Longhurst, P.J.; Wagland, S.T., E-mail: s.t.wagland@cranfield.ac.uk

    Highlights: • Previous research studies have shown that EfW facilities negatively impact the local house prices. • In this study property prices surrounding 3 operational EfW plants were analysed. • No significant negative effect on property prices due to an incinerator was found. - Abstract: The thermal processing of waste materials, although considered to be an essential part of waste management, is often sharply contested in the UK. Arguments such as health, depletion of resources, cost, noise, odours, traffic movement and house prices are often cited as reasons against the development of such facilities. This study aims to review themore » arguments and identify any effect on property prices due to the public perception of the plant. A selection of existing energy from waste (EfW) facilities in the UK, operational for at least 7 years, was selected and property sales data, within 5 km of the sites, was acquired and analysed in detail. The locations of the properties were calculated in relation to the plant using GIS software (ArcGIS) and the distances split into 5 zones ranging from 0 to 5 km from the site. The local property sale prices, normalised against the local house price index, were compared in two time periods, before and after the facility became operational, across each of the 5 zones. In all cases analysed no significant negative effect was observed on property prices at any distance within 5 km from a modern operational incinerator. This indicated that the perceived negative effect of the thermal processing of waste on local property values is negligible.« less

  15. Thermal treatment to improve the hydrophobicity of ground CaCO3 particles modified with sodium stearate

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Yu, Keyi; Zheng, Qinzhong; Xie, Jiuren; Wang, Ting-Jie

    2018-04-01

    The surface modification of calcium carbonate (CaCO3) particles, which is used as a filler, significantly affects the properties of the composed materials. The effects of thermal treatment on ground calcium carbonate (GCC) particles subjected to hydrophobic modification using sodium stearate (RCOONa) were studied. The contact angle of the modified GCC particles increased from 24.7° to 118.9° when the amount of RCOONa added was increased from 0% to 5% and then decreased to 97.5° when the RCOONa content was further increased to 10%. When a large amount of RCOONa was added, RCOO- reacts with Ca2+ and generates (RCOO)2Ca nuclei, which are adsorbed on the surface of the GCC particles, forming a discontinuous (RCOO)2Ca modified layer. After thermal treatment under sealed conditions, the contact angle of the GCC particles modified using 1.5% RCOONa/GCC increased from 112.8° to 139.6°. The thermal stability of the (RCOO)2Ca modified layer was increased, with the temperature increase of the mass-loss peak from 358.0 to 463.0 °C. It is confirmed that the spreading of melted (RCOO)2Ca nuclei on the surface of the GCC particles during the thermal treatment increased the continuity of the modified layer, converting the physical adsorption of the (RCOO)2Ca nuclei into chemisorption. The grafting density of RCOO- on the GCC particle surface after thermal treatment approximates to 5.00/nm2, which is close to the single-molecular-layer grafting density of RCOO-, indicating that excellent modification was achieved.

  16. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  17. Evaluation of outcomes of tuberculosis management in private for profit and private-not-for profit directly observed treatment short course facilities in Lagos State, Nigeria.

    PubMed

    Adejumo, Olusola Adedeji; Daniel, Olusoji James; Otesanya, Andrew Folarin; Salisu-Olatunj, Shukrat Olajumoke; Abdur-Razzaq, Husseine A

    2017-01-01

    The engagement of private practitioners in the public-private mix of tuberculosis (TB) management started in 2007 in Lagos State Nigeria. This study compared the treatment outcomes of patients managed at private for profit (PFP) and private not for profit (PNFP) directly observed treatment short course (DOTS) facilities. A retrospective review of treatment cards of TB patients managed between January 1, 2012, and June 30, 2012, in seven PFP and four PNFP DOTS facilities that served as treatment and microscopy center under the Lagos State TB and Leprosy Control Programme (LSTBLCP) at least 2 years before data collection was conducted. A total of 372 treatment cards of TB patients were reviewed, of which 132 (35.5%) and 240 (64.5%) were from PFP and PNFP DOTS facilities, respectively. Treatment success rate was higher among patients managed at PFP (89.4%) DOTS facilities than PNFP (81.3%) DOTS facilities ( P = 0.04). The proportion of patients lost to follow-up (12.5% vs. 8.3%), dead (3.3% vs. 1.5%) and treatment failure (2.5% vs. 0.8%) was higher among patients managed at PNFP DOTS facilities ( P > 0.05). The odds that patients treated at PFP DOTS facilities had treatment success were about four times higher than PNFP DOTS facilities when other variables have been controlled for ( P < 0.05). There is need by the LSTBLCP to engage more private practitioners to increase case detection and improve treatment outcomes of TB patients.

  18. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions andmore » hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.« less

  19. Village of Pender, Nebraska Wastewater Treatment Facility, Pender, Nebraska - Clean Water Act Public Notice

    EPA Pesticide Factsheets

    The EPA is providing notice of proposed Administrative Penalty Assessment against the Village of Pender, Nebraska Wastewater Treatment Facility (“Respondent”) for alleged violations of Sections 301 and/or 404 of the Clean Water Act

  20. Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Robert S.; Wood, Rick A.; Westover, Tyler L.

    2013-12-01

    Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utilitymore » because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (± 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3

  1. Do School Facilities Affect Academic Outcomes?

    ERIC Educational Resources Information Center

    Schneider, Mark

    This review explores which facility attributes affect academic outcomes the most and in what manner and degree. The research is examined in six categories: indoor air quality, ventilation, and thermal comfort; lighting; acoustics; building age and quality; school size; and class size. The review concludes that school facilities affect learning.…

  2. Facile synthesis of a mesoporous Co3O4 network for Li-storage via thermal decomposition of an amorphous metal complex.

    PubMed

    Wen, Wei; Wu, Jin-Ming; Cao, Min-Hua

    2014-11-07

    A facile strategy is developed for mass fabrication of porous Co3O4 networks via the thermal decomposition of an amorphous cobalt-based complex. At a low mass loading, the achieved porous Co3O4 network exhibits excellent performance for lithium storage, which has a high capacity of 587 mA h g(-1) after 500 cycles at a current density of 1000 mA g(-1).

  3. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  4. Tobacco Cessation Interventions and Smoke-Free Policies in Mental Health and Substance Abuse Treatment Facilities - United States, 2016.

    PubMed

    Marynak, Kristy; VanFrank, Brenna; Tetlow, Sonia; Mahoney, Margaret; Phillips, Elyse; Jamal Mbbs, Ahmed; Schecter, Anna; Tipperman, Doug; Babb, Stephen

    2018-05-11

    Persons with mental or substance use disorders or both are more than twice as likely to smoke cigarettes as persons without such disorders and are more likely to die from smoking-related illness than from their behavioral health conditions (1,2). However, many persons with behavioral health conditions want to and are able to quit smoking, although they might require more intensive treatment (2,3). Smoking cessation reduces smoking-related disease risk and could improve mental health and drug and alcohol recovery outcomes (1,3,4). To assess tobacco-related policies and practices in mental health and substance abuse treatment facilities (i.e., behavioral health treatment facilities) in the United States (including Puerto Rico), CDC and the Substance Abuse and Mental Health Services Administration (SAMHSA) analyzed data from the 2016 National Mental Health Services Survey (N-MHSS) and the 2016 National Survey of Substance Abuse Treatment Services (N-SSATS). In 2016, among mental health treatment facilities, 48.9% reported screening patients for tobacco use, 37.6% offered tobacco cessation counseling, 25.2% offered nicotine replacement therapy (NRT), 21.5% offered non-nicotine tobacco cessation medications, and 48.6% prohibited smoking in all indoor and outdoor locations (i.e., smoke-free campus). In 2016, among substance abuse treatment facilities, 64.0% reported screening patients for tobacco use, 47.4% offered tobacco cessation counseling, 26.2% offered NRT, 20.3% offered non-nicotine tobacco cessation medications, and 34.5% had smoke-free campuses. Full integration of tobacco cessation interventions into behavioral health treatment, coupled with implementation of tobacco-free campus policies in behavioral health treatment settings, could decrease tobacco use and tobacco-related disease and could improve behavioral health outcomes among persons with mental and substance use disorders (1-4).

  5. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    NASA Astrophysics Data System (ADS)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  6. Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound.

    PubMed

    Contreras, M; Benedito, J; Bon, J; Garcia-Perez, J V

    2018-03-01

    The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52±0.11cm in diameter and 1.90±0.14cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50°C) and air velocities (1, 2, 3, 4, 6m/s) with (22.3kHz, 50W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50°C) but negligible at high air velocities (6m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

    EPA Pesticide Factsheets

    This report presents the opportunities for combined heat and power (CHP) applications in the municipal wastewater treatment sector, and it documents the experiences of the wastewater treatment facility (WWTF) operators who have employed CHP.

  8. TREAT neutron-radiography facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, L.J.

    1981-01-01

    The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists.

  9. Patients' costs and cost-effectiveness of tuberculosis treatment in DOTS and non-DOTS facilities in Rio de Janeiro, Brazil.

    PubMed

    Steffen, Ricardo; Menzies, Dick; Oxlade, Olivia; Pinto, Marcia; de Castro, Analia Zuleika; Monteiro, Paula; Trajman, Anete

    2010-11-17

    Costs of tuberculosis diagnosis and treatment may represent a significant burden for the poor and for the health system in resource-poor countries. The aim of this study was to analyze patients' costs of tuberculosis care and to estimate the incremental cost-effectiveness ratio (ICER) of the directly observed treatment (DOT) strategy per completed treatment in Rio de Janeiro, Brazil. We interviewed 218 adult patients with bacteriologically confirmed pulmonary tuberculosis. Information on direct (out-of-pocket expenses) and indirect (hours lost) costs, loss in income and costs with extra help were gathered through a questionnaire. Healthcare system additional costs due to supervision of pill-intake were calculated considering staff salaries. Effectiveness was measured by treatment completion rate. The ICER of DOT compared to self-administered therapy (SAT) was calculated. DOT increased costs during the treatment phase, while SAT increased costs in the pre-diagnostic phase, for both the patient and the health system. Treatment completion rates were 71% in SAT facilities and 79% in DOT facilities. Costs per completed treatment were US$ 194 for patients and U$ 189 for the health system in SAT facilities, compared to US$ 336 and US$ 726 in DOT facilities. The ICER was US$ 6,616 per completed DOT treatment compared to SAT. Costs incurred by TB patients are high in Rio de Janeiro, especially for those under DOT. The DOT strategy doubles patients' costs and increases by fourfold the health system costs per completed treatment. The additional costs for DOT may be one of the contributing factors to the completion rates below the targeted 85% recommended by WHO.

  10. Minimization of thermal impact by application of electrode cooling in a co-linear PEF treatment chamber.

    PubMed

    Meneses, Nicolas; Jaeger, Henry; Knorr, Dietrich

    2011-10-01

    A co-linear pulsed electric field (PEF) treatment chamber was analyzed and optimized considering electrical process conditions, temperature, and retention of heat-sensitive compounds during a continuous PEF treatment of peach juice. The applicability of a jacket heat-exchanger device surrounding the ground electrode was studied in order to provide active cooling and to avoid temperature peaks within the treatment chamber thus reducing the total thermal load to which the product is exposed. Simulation of the PEF process was performed using a finite element method prior to experimental verification. Inactivation of polyphenoloxydase (PPO) and peroxidase (POD) as well as the degradation of ascorbic acid (AA) in peach juice was quantified and used as indirect indicators for the temperature distribution. Peaks of product temperature within the treatment chamber were reduced, that is, from 98 to 75 °C and retention of the indicators PPO, POD, and AA increased by more than 10% after application of the active electrode cooling device. Practical Application:  The co-linear PEF treatment chamber is widely used for continuous PEF treatment of liquid products and also suitable for industrial scale application; however, Joule heating in combination with nonuniform electric field distribution may lead to unwanted thermal effects. The proposed design showed potential to reduce the thermal load, to which the food is exposed, allowing the retention of heat-sensitive components. The design is applicable at laboratory or industrial scale to perform PEF trials avoiding temperature peaks, which is also the basis for obtaining inactivation kinetic models with minimized thermal impact on the kinetic variables. © 2011 Institute of Food Technologists®

  11. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report or...

  12. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report or...

  13. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report or...

  14. Multi-allergen Quantitation and the Impact of Thermal Treatment in Industry-Processed Baked Goods by ELISA and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Parker, Christine H; Khuda, Sefat E; Pereira, Marion; Ross, Mark M; Fu, Tong-Jen; Fan, Xuebin; Wu, Yan; Williams, Kristina M; DeVries, Jonathan; Pulvermacher, Brian; Bedford, Binaifer; Zhang, Xi; Jackson, Lauren S

    2015-12-16

    Undeclared food allergens account for 30-40% of food recalls in the United States. Compliance with ingredient labeling regulations and the implementation of effective manufacturing allergen control plans require the use of reliable methods for allergen detection and quantitation in complex food products. The objectives of this work were to (1) produce industry-processed model foods incurred with egg, milk, and peanut allergens, (2) compare analytical method performance for allergen quantitation in thermally processed bakery products, and (3) determine the effects of thermal treatment on allergen detection. Control and allergen-incurred cereal bars and muffins were formulated in a pilot-scale industry processing facility. Quantitation of egg, milk, and peanut in incurred baked goods was compared at various processing stages using commercial enzyme-linked immunosorbent assay (ELISA) kits and a novel multi-allergen liquid chromatography (LC)-tandem mass spectrometry (MS/MS) multiple-reaction monitoring (MRM) method. Thermal processing was determined to negatively affect the recovery and quantitation of egg, milk, and peanut to different extents depending on the allergen, matrix, and analytical test method. The Morinaga ELISA and LC-MS/MS quantitative methods reported the highest recovery across all monitored allergens, whereas the ELISA Systems, Neogen BioKits, Neogen Veratox, and R-Biopharm ELISA Kits underperformed in the determination of allergen content of industry-processed bakery products.

  15. Effect of thermal treatment and light irradiation on the stability of lycopene with high Z-isomers content.

    PubMed

    Murakami, Kazuya; Honda, Masaki; Takemura, Ryota; Fukaya, Tetsuya; Wahyudiono; Kanda, Hideki; Goto, Motonobu

    2018-06-01

    The stability of lycopene with high Z-isomers content during thermal treatment and light irradiation was investigated. Purified (all-E)-lycopene was thermally isomerized to the Z-isomers in dichloromethane (CH 2 Cl 2 ) at 50 °C for 24 h. The total content of the Z-isomers of lycopene reached 56.1%. Then, the mixture of lycopene isomers was stored in the dark at 4, 25, and 40 °C for 30 days, and under light irradiation using a fluorescent light at 4 °C for 336 h. The degradation rate of lycopene during thermal treatment rose with increasing temperature and the activation energy for decomposition of the mixture of lycopene isomers was calculated to be 71.0 kJ mol -1 . The degradation rate of lycopene isomers was almost the same under thermal treatment. On the other hand, during light irradiation, isomerization was promoted rather than decomposition, i.e. (9Z)- and (13Z)-lycopene converted to the (all-E)-isomer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Analysis of thermal damage in vocal cords for the prevention of collateral laser treatment effects

    NASA Astrophysics Data System (ADS)

    Fanjul Vélez, Félix; Luis Arce-Diego, José; del Barrio Fernández, Ángela; Borragán Torre, Alfonso

    2007-05-01

    The importance of vocal cords for the interaction with the world around is obviously known. Vocal cords disorders can be divided mainly into three categories: difficulty of movement of one or both vocal folds, lesion formation on them, and difficulty or lack of mucosal wave movement. In this last case, a laser heating treatment can be useful in order to improve tissue vibration. However, thermal damage should be considered to adjust laser parameters and so to prevent irreversible harmful effects to the patient. in this work, an analysis of thermal damage in vocal folds is proposed. Firstly thermo-optical laser-tissue interaction is studied, by means of a RTT (Radiation Transfer Theory) model solved with a Monte Carlo approach for the optical propagation of radiation, and a bio-heat equation, with a finite difference numerical method based solution, taking into account blood perfusion and boundary effects, for the thermal distribution. The spatial-temporal temperature distributions are obtained for two widely used lasers, Nd:YAG (1064 nm) and KTP (532 nm). From these data, an Arrhenius thermal damage analysis allows a prediction of possible laser treatment harmful effects on vocal cords that could cause scar formation or tissue burn. Different source powers and exposition times are considered, in such a way that an approximation of adequate wavelength, power and duration is achieved, in order to implement an efficient and safe laser treatment.

  17. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    PubMed Central

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  18. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  19. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  20. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-18

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  1. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistentmore » with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.« less

  2. Neutron medical treatment of tumours — a survey of facilities

    NASA Astrophysics Data System (ADS)

    Wagner, F. M.; Loeper-Kabasakal, B.; Breitkreutz, H.

    2012-03-01

    Neutron therapy has two branches: Fast Neutron Therapy (FNT) and Boron Neutron Capture Therapy (BNCT). The mean neutron energies used for FNT range from 2 MeV to 25 MeV whereas the maximum energy for BNCT is about 10 keV. Neutron generators for FNT have been cyclotrons, accelerators and reactors, whereas BNCT is so far bound to reactors. Both therapies use the effects of high-LET radiation (secondary recoil protons and alpha particles, respectively) and can attack otherwise radioresistant tumours, however, with the hazard of adverse effects for irradiated healthy tissue. FNT has been administered to about 30,000 patients world-wide. From formerly 40 facilities, only eight are operational or stand-by today. The reasons for this development have been, on the one hand, related to technical and economical conditions; on the other hand, strong side effects and insufficient proof of clinical results in the early years as well as increasing competition with new clinical methods have reduced patient numbers. In fact, strict observations of indications, appropriate therapy-planning including low-LET radiation, and consequent treatment of side effects have lead to remarkable results in the meantime. BNCT initially was developed for the treatment of extremely aggressive forms of brain tumour, taking advantage of the action of the blood-brain-barrier which allows for a boronated compound to be selectively enriched in tumour cells. Meanwhile, also malignant melanoma (MM) and Head-and-Neck (H&T) tumours are treated because of their relative radioresistance. At present, epithermal beams with sufficient flux are available only at two facilities. Existing research reactors were indispensable in the development of BNCT, but are to be replaced by hospital-based epithermal neutron sources. Clinical results indicate significantly increased survival times, but the number of patients ever treated is still below 1,000. 3D-dose calculation systems have been developed at several facilities

  3. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dandan, E-mail: liudandan_upc@126.com; Dai, Fangna, E-mail: fndai@upc.edu.cn; Collage of Science, China University of Petroleum

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR),more » scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.« less

  4. The Masdar Institute solar platform: A new research facility in the UAE for development of CSP components and thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.

    2016-05-01

    Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.

  5. Non-thermal Plasma for VOC Treatment in Flue Gases

    NASA Astrophysics Data System (ADS)

    Ikaunieks, Janis; Mezmale, Liga; Zandeckis, Aivars; Pubule, Jelena; Blumberga, Andra; Veidenbergs, Ivars

    2011-01-01

    The paper discusses non-thermal plasmas, their generation and characteristics, formation mechanisms of ozone and the treatment of volatile organic compounds (VOCs). In the experimental part, undecane (C11H24 as model VOCs) was treated with assistance of low temperature plasma at an atmospheric pressure which was generated in the so-called stack reactor. The gas composition was 13% of oxygen in nitrogen with impurities of carbon dioxide, carbon monoxide and undecane. The formation of by-products, as well as the removal efficiency, were investigated.

  6. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    PubMed

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  7. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HALGREN DL

    2008-07-30

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards tomore » peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.« less

  9. LOW TEMPERATURE THERMAL TREATMENT (LT3®) TECHNOLOGY - ROY F. WESTON, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Low Temperature Thermal Treatment (LT3®) system's ability to remove VOC and SVOC compounds from solid wastes. This evaluation is based on treatment performance and cost data from the Superfund Innovative Technology (SITE) demonstration and fi...

  10. Solar Thermal Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Bonometti, Joseph A.

    1995-01-01

    Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations

  11. Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a and meet more stringent idling regulations. NREL's HDV thermal management program, CoolCab, focuses on thermal management technologies undergo assessment at NREL's Vehicle Testing and Integration Facility test

  12. Thermal support for scale support

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1976-01-01

    The thermal design work completed for the Thermal Protection System (TPS) of the Space Shuttle System (TPS) of the space shuttle vehicle was documented. This work was divided into three phases, the first two of which reported in previous documents. About 22 separate tasks were completed in phase III, such as: hot gas facility (HGF) support, guarded tank support, shuttle external tank (ET) thermal design handbook support, etc.

  13. Cost-effectiveness of the treatment of uncomplicated severe acute malnutrition by community health workers compared to treatment provided at an outpatient facility in rural Mali.

    PubMed

    Rogers, Eleanor; Martínez, Karen; Morán, Jose Luis Alvarez; Alé, Franck G B; Charle, Pilar; Guerrero, Saul; Puett, Chloe

    2018-02-20

    The Malian Nutrition Division of the Ministry of Health and Action Against Hunger tested the feasibility of integrating treatment of severe acute malnutrition (SAM) into the existing Integrated Community Case Management package delivered by community health workers (CHWs). This study assessed costs and cost-effectiveness of CHW-delivered care compared to outpatient facility-based care. Activity-based costing methods were used, and a societal perspective employed to include all relevant costs incurred by institutions, beneficiaries and communities. The intervention and control arm enrolled different numbers of children so a modelled scenario sensitivity analysis was conducted to assess the cost-effectiveness of the two arms, assuming equal numbers of children enrolled. In the base case, with unequal numbers of children in each arm, for CHW-delivered care, the cost per child treated was 244 USD and cost per child recovered was 259 USD. Outpatient facility-based care was less cost-effective at 442 USD per child and 501 USD per child recovered. The conclusions of the analysis changed in the modelled scenario sensitivity analysis, with outpatient facility-based care being marginally more cost-effective (cost per child treated is 188 USD, cost per child recovered is 214 USD), compared to CHW-delivered care. This suggests that achieving good coverage is a key factor influencing cost-effectiveness of CHWs delivering treatment for SAM in this setting. Per week of treatment, households receiving CHW-delivered care spent half of the time receiving treatment and three times less money compared with those receiving treatment from the outpatient facility. This study supports existing evidence that the delivery of treatment by CHWs is a cost-effective intervention, provided that good coverage is achieved. A major benefit of this strategy was the lower cost incurred by the beneficiary household when treatment is available in the community. Further research is needed on the

  14. Enhancing Thermal Conductive Performance of Vertically Aligned Carbon Nanotube Array Composite by Pre-Annealing Treatment.

    PubMed

    Wang, Miao; Chen, Hong-Yuan; Xing, Ya-Juan; Wei, Han-Xing; Li, Qiang; Chen, Ming-Hai; Li, Qing-Wen; Xuan, Yi-Min

    2015-04-01

    Vertically aligned carbon nanotube (VACNT) array/polymer composite has already been recognized as a promising candidate for advanced thermal pad in thermal management of high-power electronic devices. However, the thermal conductive performance of this composite was limited by the quality of CNTs arrays. In this study, pre-annealing treatment was used to purify CNT arrays and improve thermal conductive performance of VACNT arrays/silicone composite. The thermal conductivity of the composite was enhanced by 34.52% and the thermal interface resistance was also reduced by 65.94% at a pre-annealing temperature of 490 °C for 5 min. The annealing process could remove some amorphous carbon and open the tips of CNTs. As a result, the interfacial compatibility in composite between carbon nanotube and polymer matrix was improved. The cyclic compression and tension performance of VACNT/S160 composite was investigated for further application.

  15. Strengthening Critical Infrastructure: Combined Heat and Power at Wastewater Treatment Facilities (Webinar) – November 15, 2011

    EPA Pesticide Factsheets

    This webinar provides information about CHP at wastewater treatment facilities (WWTFs), including advantages and challenges, financial incentives and funding programs, and technical and economic potential.

  16. Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber

    NASA Astrophysics Data System (ADS)

    Manjula, R.; Raju, N. V.; Chakradhar, R. P. S.; Kalkornsurapranee, Ekwipoo; Johns, Jobish

    2018-01-01

    Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz-Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.

  17. NPDES Permit for Dakota Magic Casino and Hotel Wastewater Treatment Facility in North Dakota

    EPA Pesticide Factsheets

    Under NPDES permit ND0030813, the the Dakota Magic Casino and Hotel is authorized is authorized to discharge from its wastewater treatment facility in Richland County, North Dakota, to a roadside ditch flowing to an unnamed tributary to the Bois de Sioux.

  18. Sampling. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    A brief overview of the basic concepts and philosophies for sampling water and waste water systems is presented in this module. The module is not intended to specify sampling procedures, frequencies, or locations for specific treatment facilities but rather to outline those general procedures which should be followed when sampling under most…

  19. Antirotaviral potential of lactoferrin from different origin: effect of thermal and high pressure treatments.

    PubMed

    Parrón, José Antonio; Ripollés, Daniel; Ramos, Sergio José; Pérez, María Dolores; Semen, Zeynep; Rubio, Pedro; Calvo, Miguel; Sánchez, Lourdes

    2018-06-01

    Rotaviral gastroenteritis causes a high rate of infant mortality and severe healthcare implications worldwide. Several studies have pointed out that human milk and dairy fractions, such as whey and buttermilk, possess antirotaviral activity. This activity has been mainly associated with glycoproteins, among them lactoferrin (LF). Thermal treatments are necessary to provide microbiological safety and extend the shelf life of milk products, though they may diminish their biological value. High hydrostatic pressure (HHP) treatment is a non-thermal method that causes lower degradation of food components than other treatments. Thus, the main objective of this study was to prove the antirotaviral activity of LFs from different origin and to evaluate the effect of several thermal and HHP treatments on that activity. LF exerted a high antirotaviral activity, regardless of its origin. Native LFs from bovine, ovine, swine and camel milk, and the human recombinant forms, at 1 mg/mL, showed neutralizing values in the range 87.5-98.6%, while human LF neutralized 58.2%. Iron saturation of bovine LF did not modify its antirotaviral activity. Results revealed interspecies differences in LFs heat susceptibility. Thus, pasteurization at 63 °C for 30 min led to a decrease of 60.1, 44.5, 87.1, 3.8 and 8% of neutralizing activity for human, bovine, swine, ovine and camel LFs, respectively. Pasteurization at 75 °C for 20 s was less harmful to the activity of LFs, with losses ranging from 0 to 13.8%. HHP treatment at 600 MPa for 15 min did not cause any significant decrease in the neutralizing activity of LFs.

  20. The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions.

    PubMed

    Mikołajczyk-Bator, Katarzyna; Pawlak, Sylwia

    2016-01-01

    Increased consumption of fruits and vegetables significantly reduces the risk of cardio-vascular disease. This beneficial effect on the human organism is ascribed to the antioxidant compounds these foods contain. Unfortunately, many products, particularly vegetables, need to be subjected to thermal processing before consumption. The aim of this study was to determine the effect of such thermal treatment on the antioxidant capacity and pigment contents in separated fractions of violet pigments (betacyanins) and yellow pigments (betaxanthins and betacyanins). Fractions of violet and yellow pigments were obtained by separation of betalain pigments from fresh roots of 3 red beet cultivars using column chromatography and solid phase extraction (SPE). The betalain pigment content was determined in all samples before and after thermal treatment (90°C/30 min) by spectrophotometry, according to Nilsson's method [1970] and antioxidant capacity was assessed based on ABTS. Betalain pigments in the separated fractions were identified using HPLC-MS. After thermal treatment of betacyanin fractions a slight, but statistically significant degradation of pigments was observed, while the antioxidant capacity of these fractions did not change markedly. Losses of betacyanin content amounted to 13-15% depending on the cultivar, while losses of antioxidant capacity were approx. 7%. HPLC/MS analyses showed that before heating, betanin was the dominant pigment in the betacyanin fraction, while after heating it was additionally 15-decarboxy-betanin. Isolated fractions of yellow pigments in red beets are three times less heat-resistant than betacyanin fractions. At losses of yellow pigment contents in the course of thermal treatment reaching 47%, antioxidant capacity did not change markedly (a decrease by approx. 5%). In the yellow pigment fractions neobetanin was the dominant peak in the HPLC chromatogram, while vulgaxanthin was found in a much smaller area, whereas after heating

  1. Real-time temperature feedback for nanoparticles based tumor thermal treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Tamir, Gil; Gannot, Israel

    2017-02-01

    Systemic hyperthermia therapy exploits the fact that cancer cells are more sensitive to elevated temperatures than healthy tissue. Systemic application of hyperthermia externally usually leads to low efficiency treatment. Recently, our group and others have proposed an antibody conjugated magnetic nanoparticles (MNPs) approach to overcome the limitation of systemic hyperthermia. MNPs can bind specifically to the tumor sites, thus delivering internal highly effective targeted hyperthermia. However, such internal mechanism requires more complicated controls and monitoring. This current work presents a deep tissue temperature monitoring method to control hyperthermia effectiveness and minimize collateral damage to surrounding tissues. A low-frequency narrowband modulation of the RF field used for MNP heating leads to the generation of diffused thermal waves which propagate to the tissue surface and captured by a thermal camera. A Fourier domain, analytical heat transfer model is used for temperature monitoring algorithm. The ill-posed thermal inverse problem is solved efficiently by iterating over the source power until both the amplitude and phase match the recorded thermal image sequence. The narrow bandwidth thermal stimulation enables acquiring deep signals with high SNR. We show that thermal transverse resolution improves as the stimulation frequency increases even slightly above DC, enabling better heat source transverse separation and margin identification in the case of distributed tumors. These results can be used as a part of an overall image and treat system for efficient detection of tumors, manipulation of MNPs and monitoring MNP based hyperthermia.

  2. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  3. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    PubMed

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  4. The use of thermal capsulorrhaphy in the treatment of multidirectional instability.

    PubMed

    Fitzgerald, Brian T; Watson, B Thomas; Lapoint, John M

    2002-01-01

    The purpose of this study is to report on our experience with thermal capsulorrhaphy in the treatment of multidirectional instability of the shoulder. Thirty-three consecutive patients (33 shoulders) with multidirectional instability were treated with arthroscopic thermal capsulorrhaphy. Twelve patients had a history of traumatic dislocation. Three patients had been previously treated with open inferior capsular shift procedures. At a mean follow-up of 36 months (range, 24-40 months), results were available for 30 patients. On the basis of the UCLA rating scale, out of a possible 35 points, the mean preoperative score was 16.7 points and postoperatively it was 30.1 points, with 3 excellent, 20 good, and 7 poor results. Twenty-three patients (76%) were returned to full activity. In our experience the majority of patients with multidirectional instability were able to return to their previous occupations in the armed forces following thermal capsulorrhaphy. More information further defining the biomechanical pathology of capsular laxity and the specific role of electrothermal shrinkage in treating shoulder instability is needed.

  5. Parameter Calculation Technique for the Waste Treatment Facilities Using Naturally-Aerated Blocks in the Bog Ecosystems

    NASA Astrophysics Data System (ADS)

    Akhmed-Ogly, K. V.; Savichev, O. G.; Tokarenko, O. G.; Pasechnik, E. Yu; Reshetko, M. V.; Nalivajko, N. G.; Vlasova, M. V.

    2014-08-01

    Technique for the domestic wastewater treatment in the small residential areas and oil and gas facilities of the natural and man-made systems including a settling tank for mechanical treatment and a biological pond with peat substrate and bog vegetation for biological treatment has been substantiated. Technique for parameters calculation of the similar natural and man-made systems has been developed. It was proven that effective treatment of wastewater can be performed in Siberia all year round.

  6. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    PubMed

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    PubMed

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Infection prevention and control in deployed military medical treatment facilities.

    PubMed

    Hospenthal, Duane R; Green, Andrew D; Crouch, Helen K; English, Judith F; Pool, Jane; Yun, Heather C; Murray, Clinton K

    2011-08-01

    Infections have complicated the care of combat casualties throughout history and were at one time considered part of the natural history of combat trauma. Personnel who survived to reach medical care were expected to develop and possibly succumb to infections during their care in military hospitals. Initial care of war wounds continues to focus on rapid surgical care with debridement and irrigation, aimed at preventing local infection and sepsis with bacteria from the environment (e.g., clostridial gangrene) or the casualty's own flora. Over the past 150 years, with the revelation that pathogens can be spread from patient to patient and from healthcare providers to patients (including via unwashed hands of healthcare workers, the hospital environment and fomites), a focus on infection prevention and control aimed at decreasing transmission of pathogens and prevention of these infections has developed. Infections associated with combat-related injuries in the recent operations in Iraq and Afghanistan have predominantly been secondary to multidrug-resistant pathogens, likely acquired within the military healthcare system. These healthcare-associated infections seem to originate throughout the system, from deployed medical treatment facilities through the chain of care outside of the combat zone. Emphasis on infection prevention and control, including hand hygiene, isolation, cohorting, and antibiotic control measures, in deployed medical treatment facilities is essential to reducing these healthcare-associated infections. This review was produced to support the Guidelines for the Prevention of Infections Associated With Combat-Related Injuries: 2011 Update contained in this supplement of Journal of Trauma.

  9. Satisfaction with general practitioner treatment of depression among residents of aged care facilities.

    PubMed

    Mellor, David; Davison, Tanya; McCabe, Marita; Kuruvilla, George; Moore, Kathleen; Ski, Chantal

    2006-06-01

    This article investigates consumer perspectives on the treatment for depression among older people in residential facilities. Aged care residents who were aware of being treated for depression in the past 6 months (24 women and 7 men, mean age = 83 years) participated in an interview that assessed their perspective on treatments. Although more than half of the participants in the sample reported overall satisfaction with the medical treatments received for depression, qualitative data provided indications of unsatisfactory service delivery, including perceptions of low treatment efficacy, short consultation times, the failure to assess affective symptomatology, and negative responses to residents' disclosure of symptoms. The findings are discussed in relation to previous research on consumer satisfaction with health services and issues that may be pertinent to the elderly depressed. Training for general practitioners providing treatment in aged care is indicated.

  10. Multi-country analysis of treatment costs for HIV/AIDS (MATCH): facility-level ART unit cost analysis in Ethiopia, Malawi, Rwanda, South Africa and Zambia.

    PubMed

    Tagar, Elya; Sundaram, Maaya; Condliffe, Kate; Matatiyo, Blackson; Chimbwandira, Frank; Chilima, Ben; Mwanamanga, Robert; Moyo, Crispin; Chitah, Bona Mukosha; Nyemazi, Jean Pierre; Assefa, Yibeltal; Pillay, Yogan; Mayer, Sam; Shear, Lauren; Dain, Mary; Hurley, Raphael; Kumar, Ritu; McCarthy, Thomas; Batra, Parul; Gwinnell, Dan; Diamond, Samantha; Over, Mead

    2014-01-01

    Today's uncertain HIV funding landscape threatens to slow progress towards treatment goals. Understanding the costs of antiretroviral therapy (ART) will be essential for governments to make informed policy decisions about the pace of scale-up under the 2013 WHO HIV Treatment Guidelines, which increase the number of people eligible for treatment from 17.6 million to 28.6 million. The study presented here is one of the largest of its kind and the first to describe the facility-level cost of ART in a random sample of facilities in Ethiopia, Malawi, Rwanda, South Africa and Zambia. In 2010-2011, comprehensive data on one year of facility-level ART costs and patient outcomes were collected from 161 facilities, selected using stratified random sampling. Overall, facility-level ART costs were significantly lower than expected in four of the five countries, with a simple average of $208 per patient-year (ppy) across Ethiopia, Malawi, Rwanda and Zambia. Costs were higher in South Africa, at $682 ppy. This included medications, laboratory services, direct and indirect personnel, patient support, equipment and administrative services. Facilities demonstrated the ability to retain patients alive and on treatment at these costs, although outcomes for established patients (2-8% annual loss to follow-up or death) were better than outcomes for new patients in their first year of ART (77-95% alive and on treatment). This study illustrated that the facility-level costs of ART are lower than previously understood in these five countries. While limitations must be considered, and costs will vary across countries, this suggests that expanded treatment coverage may be affordable. Further research is needed to understand investment costs of treatment scale-up, non-facility costs and opportunities for more efficient resource allocation.

  11. Multi-Country Analysis of Treatment Costs for HIV/AIDS (MATCH): Facility-Level ART Unit Cost Analysis in Ethiopia, Malawi, Rwanda, South Africa and Zambia

    PubMed Central

    Tagar, Elya; Sundaram, Maaya; Condliffe, Kate; Matatiyo, Blackson; Chimbwandira, Frank; Chilima, Ben; Mwanamanga, Robert; Moyo, Crispin; Chitah, Bona Mukosha; Nyemazi, Jean Pierre; Assefa, Yibeltal; Pillay, Yogan; Mayer, Sam; Shear, Lauren; Dain, Mary; Hurley, Raphael; Kumar, Ritu; McCarthy, Thomas; Batra, Parul; Gwinnell, Dan; Diamond, Samantha; Over, Mead

    2014-01-01

    Background Today's uncertain HIV funding landscape threatens to slow progress towards treatment goals. Understanding the costs of antiretroviral therapy (ART) will be essential for governments to make informed policy decisions about the pace of scale-up under the 2013 WHO HIV Treatment Guidelines, which increase the number of people eligible for treatment from 17.6 million to 28.6 million. The study presented here is one of the largest of its kind and the first to describe the facility-level cost of ART in a random sample of facilities in Ethiopia, Malawi, Rwanda, South Africa and Zambia. Methods & Findings In 2010–2011, comprehensive data on one year of facility-level ART costs and patient outcomes were collected from 161 facilities, selected using stratified random sampling. Overall, facility-level ART costs were significantly lower than expected in four of the five countries, with a simple average of $208 per patient-year (ppy) across Ethiopia, Malawi, Rwanda and Zambia. Costs were higher in South Africa, at $682 ppy. This included medications, laboratory services, direct and indirect personnel, patient support, equipment and administrative services. Facilities demonstrated the ability to retain patients alive and on treatment at these costs, although outcomes for established patients (2–8% annual loss to follow-up or death) were better than outcomes for new patients in their first year of ART (77–95% alive and on treatment). Conclusions This study illustrated that the facility-level costs of ART are lower than previously understood in these five countries. While limitations must be considered, and costs will vary across countries, this suggests that expanded treatment coverage may be affordable. Further research is needed to understand investment costs of treatment scale-up, non-facility costs and opportunities for more efficient resource allocation. PMID:25389777

  12. Antimicrobial effect and shelf-life extension by combined thermal and pulsed electric field treatment of milk.

    PubMed

    Walkling-Ribeiro, M; Noci, F; Cronin, D A; Lyng, J G; Morgan, D J

    2009-01-01

    The impact of a combined hurdle treatment of heat and pulsed electric fields (PEF) was studied on native microbiota used for the inoculation of low-fat ultra-high temperature (UHT) milk and whole raw milk. Microbiological shelf-life of the latter following hurdle treatment or thermal pasteurization was also investigated. UHT milk was preheated to 30 degrees C, 40 degrees C or 50 degrees C over a 60-s period, pulsed for 50 micros or 60 micros at a field strength of 40 kV cm(-1) or for 33 micros at 50 kV cm(-1). Heat and PEF reduced the microbial count by a maximum of 6.4 log in UHT milk (50 degrees C; 50 kV cm(-1), 33 micros) compared to 6.0 log (P > or = 0.05) obtained by thermal pasteurization (26 s, 72 degrees C). When raw milk was treated with a combination of hurdles (50 degrees C; 40 kV cm(-1), 60 micros) a 6.0 log inactivation of microbiota was achieved and microbiological milk shelf-life was extended to 21 days under refrigeration (4 degrees C) vs 14 days in thermally pasteurized milk. Native microbiota was decreased by 6.7 log following conventional pasteurization. The findings suggest that heat and PEF achieved similar inactivation of native microbiota in milk and longer stabilization of microbiological shelf-life than thermal pasteurization. A hurdle approach of heat and PEF could represent a valid milk processing alternative to conventional pasteurization. Hurdle treatment might also preserve native milk quality better due to less thermal exposure.

  13. Dental Treatment in a State-Funded Primary Dental Care Facility: Contextual and Individual Predictors of Treatment Need?

    PubMed

    Wanyonyi, Kristina L; Radford, David R; Gallagher, Jennifer E

    2017-01-01

    This study examined individual and contextual factors which predict the dental care received by patients in a state-funded primary dental care training facility in England. Routine clinical and demographic data were extracted from a live dental patient management system in a state-funded facility using novel methods. The data, spanning a four-year period [2008-2012] were cleaned, validated, linked by means of postcode to deprivation status, and analysed to identify factors which predict dental treatment need. The predictive relationship between patients' individual characteristics (demography, smoking, payment status) and contextual experience (deprivation based on area of residence), with common dental treatments received was examined using unadjusted analysis and adjusted logistic regression. Additionally, multilevel modelling was used to establish the isolated influence of area of residence on treatments. Data on 6,351 dental patients extracted comprised of 147,417 treatment procedures delivered across 10,371 courses of care. Individual level factors associated with the treatments were age, sex, payment exemption and smoking status and deprivation associated with area of residence was a contextual predictor of treatment. More than 50% of children (<18 years) and older adults (≥65 years) received preventive care in the form of 'instruction and advice', compared with 46% of working age adults (18-64 years); p = 0.001. The odds of receiving treatment increased with each increasing year of age amongst adults (p = 0.001): 'partial dentures' (7%); 'scale and polish' (3.7%); 'tooth extraction' (3%; p = 0.001), and 'instruction and advice' (3%; p = 0.001). Smokers had a higher likelihood of receiving all treatments; and were notably over four times more likely to receive 'instruction and advice' than non-smokers (OR 4.124; 95% CI: 3.088-5.508; p = 0.01). A further new finding from the multilevel models was a significant difference in treatment related to area of

  14. Dental Treatment in a State-Funded Primary Dental Care Facility: Contextual and Individual Predictors of Treatment Need?

    PubMed Central

    Radford, David R.; Gallagher, Jennifer E.

    2017-01-01

    Objective This study examined individual and contextual factors which predict the dental care received by patients in a state-funded primary dental care training facility in England. Methods Routine clinical and demographic data were extracted from a live dental patient management system in a state-funded facility using novel methods. The data, spanning a four-year period [2008–2012] were cleaned, validated, linked by means of postcode to deprivation status, and analysed to identify factors which predict dental treatment need. The predictive relationship between patients’ individual characteristics (demography, smoking, payment status) and contextual experience (deprivation based on area of residence), with common dental treatments received was examined using unadjusted analysis and adjusted logistic regression. Additionally, multilevel modelling was used to establish the isolated influence of area of residence on treatments. Results Data on 6,351 dental patients extracted comprised of 147,417 treatment procedures delivered across 10,371 courses of care. Individual level factors associated with the treatments were age, sex, payment exemption and smoking status and deprivation associated with area of residence was a contextual predictor of treatment. More than 50% of children (<18 years) and older adults (≥65 years) received preventive care in the form of ‘instruction and advice’, compared with 46% of working age adults (18–64 years); p = 0.001. The odds of receiving treatment increased with each increasing year of age amongst adults (p = 0.001): ‘partial dentures’ (7%); ‘scale and polish’ (3.7%); ‘tooth extraction’ (3%; p = 0.001), and ‘instruction and advice’ (3%; p = 0.001). Smokers had a higher likelihood of receiving all treatments; and were notably over four times more likely to receive ‘instruction and advice’ than non-smokers (OR 4.124; 95% CI: 3.088–5.508; p = 0.01). A further new finding from the multilevel models was a

  15. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com; Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze; Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp

    2013-09-15

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose themore » plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin

  16. Application of a Bimetallic Treatment System (BTS) for PCB Removal from Older Structures on DoD Facilities. Cost and Performance Report

    DTIC Science & Technology

    2011-11-01

    Bimetallic Treatment System (BTS) for PCB Removal from Older Structures on DoD Facilities By Thomas Krug and Suzanne O’Hara, Geosyntec...COST AND PERFORMANCE REPORT FOR: Application of a Bimetallic Treatment System (BTS) for PCB Removal from Older Structures on DOD Facilities...11 3.4 Reduction in PCB concentrations in treated paint to less

  17. Systematic comparison of mechanical and thermal sludge disintegration technologies.

    PubMed

    Wett, B; Phothilangka, P; Eladawy, A

    2010-06-01

    This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (COD(soluble)/COD(total)=43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (COD(soluble)/COD(total)=28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Influences on the start, selection and duration of treatment with antibiotics in long-term care facilities

    PubMed Central

    Daneman, Nick; Campitelli, Michael A.; Giannakeas, Vasily; Morris, Andrew M.; Bell, Chaim M.; Maxwell, Colleen J.; Jeffs, Lianne; Austin, Peter C.; Bronskill, Susan E.

    2017-01-01

    BACKGROUND: Understanding the extent to which current antibiotic prescribing behaviour is influenced by clinicians’ historical patterns of practice will help target interventions to optimize antibiotic use in long-term care. Our objective was to evaluate whether clinicians’ historical prescribing behaviours influence the start, prolongation and class selection for treatment with antibiotics in residents of long-term care facilities. METHODS: We conducted a retrospective cohort study of all physicians who prescribed to residents in long-term care facilities in Ontario between Jan. 1 and Dec. 31, 2014. We examined variability in antibiotic prescribing among physicians for 3 measures: start of treatment with antibiotics, use of prolonged durations exceeding 7 days and selection of fluoroquinolones. Funnel plots with control limits were used to determine the extent of variation and characterize physicians as extreme low, low, average, high and extreme high prescribers for each tendency. Multivariable logistic regression was used to assess whether a clinician’s prescribing tendency in the previous year predicted current prescribing patterns, after accounting for residents’ demographics, comorbidity, functional status and indwelling devices. RESULTS: Among 1695 long-term care physicians, who prescribed for 93 132 residents, there was wide variability in the start of antibiotic treatment (median 45% of patients, interquartile range [IQR] 32%–55%), use of prolonged treatment durations (median 30% of antibiotic prescriptions, IQR 19%–46%) and selection of fluoroquinolones (median 27% of antibiotic prescriptions, IQR 18%–37%). Prescribing tendencies for antibiotics by physicians in 2014 correlated strongly with tendencies in the previous year. After controlling for individual resident characteristics, prior prescribing tendency was a significant predictor of current practice. INTERPRETATION: Physicians prescribing antibiotics exhibited individual, measurable

  19. Influences on the start, selection and duration of treatment with antibiotics in long-term care facilities.

    PubMed

    Daneman, Nick; Campitelli, Michael A; Giannakeas, Vasily; Morris, Andrew M; Bell, Chaim M; Maxwell, Colleen J; Jeffs, Lianne; Austin, Peter C; Bronskill, Susan E

    2017-06-26

    Understanding the extent to which current antibiotic prescribing behaviour is influenced by clinicians' historical patterns of practice will help target interventions to optimize antibiotic use in long-term care. Our objective was to evaluate whether clinicians' historical prescribing behaviours influence the start, prolongation and class selection for treatment with antibiotics in residents of long-term care facilities. We conducted a retrospective cohort study of all physicians who prescribed to residents in long-term care facilities in Ontario between Jan. 1 and Dec. 31, 2014. We examined variability in antibiotic prescribing among physicians for 3 measures: start of treatment with antibiotics, use of prolonged durations exceeding 7 days and selection of fluoroquinolones. Funnel plots with control limits were used to determine the extent of variation and characterize physicians as extreme low, low, average, high and extreme high prescribers for each tendency. Multivariable logistic regression was used to assess whether a clinician's prescribing tendency in the previous year predicted current prescribing patterns, after accounting for residents' demographics, comorbidity, functional status and indwelling devices. Among 1695 long-term care physicians, who prescribed for 93 132 residents, there was wide variability in the start of antibiotic treatment (median 45% of patients, interquartile range [IQR] 32%-55%), use of prolonged treatment durations (median 30% of antibiotic prescriptions, IQR 19%-46%) and selection of fluoroquinolones (median 27% of antibiotic prescriptions, IQR 18%-37%). Prescribing tendencies for antibiotics by physicians in 2014 correlated strongly with tendencies in the previous year. After controlling for individual resident characteristics, prior prescribing tendency was a significant predictor of current practice. Physicians prescribing antibiotics exhibited individual, measurable and historical tendencies toward start of antibiotic treatment

  20. Measuring the Efficient Utilization of Medical Personnel at Navy Military Treatment Facilities

    DTIC Science & Technology

    1990-06-01

    measures of effectiveness (MOE) for utilizing manpower at a medical treatment facility by analyzing data from Navy hospitals. The MOE will be able to...at Navy facili- ties will be used to compare alternative MOEs., The data resources are categorized into expenditures, Naval health-care statistics ...of years., At the Office of the Chief of Naval Operations, OP-801 maintains financial data of medical budgets, 2. NAVAL HEALTH-CARE STATISTICS The

  1. Cost and cost-effectiveness of community based and health facility based directly observed treatment of tuberculosis in Dar es Salaam, Tanzania

    PubMed Central

    Wandwalo, Eliud; Robberstad, Bjarne; Morkve, Odd

    2005-01-01

    Background Identifying new approaches to tuberculosis treatment that are effective and put less demand to meagre health resources is important. One such approach is community based direct observed treatment (DOT). The purpose of the study was to determine the cost and cost effectiveness of health facility and community based directly observed treatment of tuberculosis in an urban setting in Tanzania. Methods Two alternative strategies were compared: health facility based directly observed treatment by health personnel and community based directly observed treatment by treatment supervisors. Costs were analysed from the perspective of health services, patients and community in the year 2002 in US $ using standard methods. Treatment outcomes were obtained from a randomised-controlled trial which was conducted alongside the cost study. Smear positive, smear negative and extra-pulmonary TB patients were included. Cost-effectiveness was calculated as the cost per patient successfully treated. Results The total cost of treating a patient with conventional health facility based DOT and community based DOT were $ 145 and $ 94 respectively. Community based DOT reduced cost by 35%. Cost fell by 27% for health services and 72% for patients. When smear positive and smear negative patients were considered separately, community DOT was associated with 45% and 19% reduction of the costs respectively. Patients used about $ 43 to follow their medication to health facility which is equivalent to their monthly income. Indirect costs were as important as direct costs, contributing to about 49% of the total patient's cost. The main reason for reduced cost was fewer number of visits to the TB clinic. Community based DOT was more cost-effective at $ 128 per patient successfully treated compared to $ 203 for a patient successfully treated with health facility based DOT. Conclusion Community based DOT presents an economically attractive option to complement health facility based DOT. This

  2. Uncertainties of stormwater characteristics and removal rates of stormwater treatment facilities: implications for stormwater handling.

    PubMed

    Langeveld, J G; Liefting, H J; Boogaard, F C

    2012-12-15

    Stormwater runoff is a major contributor to the pollution of receiving waters. This study focuses at characterising stormwater in order to be able to determine the impact of stormwater on receiving waters and to be able to select the most appropriate stormwater handling strategy. The stormwater characterisation is based on determining site mean concentrations (SMCs) and their uncertainties as well as the treatability of stormwater by monitoring specific pollutants concentration levels (TSS, COD, BOD, TKN, TP, Pb, Cu, Zn, E.coli) at three full scale stormwater treatment facilities in Arnhem, the Netherlands. This has resulted in 106 storm events being monitored at the lamella settler, 59 at the high rate sand filter and 132 at the soil filter during the 2 year monitoring period. The stormwater characteristics in Arnhem in terms of SMCs for main pollutants TSS and COD and settling velocities differ from international data. This implies that decisions for stormwater handling made on international literature data will very likely be wrong due to assuming too high concentrations of pollutants and misjudgement of the treatability of stormwater. The removal rates monitored at the full scale treatment facilities are within the expected range, with the soil filter and the sand filter having higher removal rates than the lamella settler. The full scale pilots revealed the importance of incorporating gross solids removal in the design of stormwater treatment facilities, as the gross solids determine operation and maintenance requirements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage.

    PubMed

    Barba, Francisco J; Esteve, Maria J; Frigola, Ana

    2010-09-22

    Variations in levels of antioxidant compounds (ascorbic acid, total phenolics, and total carotenoids), total antioxidant capacity, and color changes in a vegetable (tomato, green pepper, green celery, onion, carrot, lemon, and olive oil) beverage treated by high hydrostatic pressure (HHP) were evaluated in this work. The effects of HHP treatment, four different pressures (100, 200, 300, and 400 MPa) and four treatment times for each pressure (from 120 to 540 s) were compared with those of thermal treatment (90-98 °C for 15 and 21 s). High pressure treatment retained significantly more ascorbic acid in the vegetable beverage than thermal treatment. However, no significant changes in total phenolics were observed between HHP treated and thermally processed vegetable beverage and unprocessed beverage. Color changes (a*, b*, L, chroma, h°, and ΔE) were less for pressurized beverage than thermally treated samples compared with unprocessed beverage.

  4. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    NASA Astrophysics Data System (ADS)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  5. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    NASA Astrophysics Data System (ADS)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  6. Thermal Neutron Die-Way-Time Studies for P and DGNAA of Radioactive Waste Drums at the MEDINA Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mildenberger, Frank; Mauerhofer, Eric

    2015-07-01

    In Germany, radioactive waste with negligible heat production has to pass through a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Additionally to its radioactive components, the waste may contain non-radioactive chemically toxic substances that can adversely affect human health and pollute the environment, especially the ground water. After an adequate decay time, the waste radioactivity will become harmless but the non-radioactive substances will persist over time. In principle, these hazardous substances may be quantified from traceability and quality controls performed during the production of themore » waste packages. As a consequence, a research and development program was initiated in 2007 with the aim to develop a nondestructive analytical technique for radioactive waste packages based on prompt and delayed gamma neutron activation analysis (P and DGNAA) employing a DT-neutron generator in pulsed mode. In a preliminary study it was experimentally demonstrated that P and DGNAA is suitable to determine the chemical composition of large samples. In 2010 a facility called MEDINA (Multi Element Detection based on Instrumental Neutron Activation) was developed for the qualitative and quantitative determination of nonradioactive, toxic elements and substances in 200-l steel drums. The determination of hazardous substances and elements is generally achieved measuring the prompt gamma-rays induced by thermal neutrons. Additional information about the composition of the waste matrix could be derived measuring the delayed gamma-rays from short life activation products. However a sensitive detection of these delayed gamma-rays requires that thermal neutrons have almost vanished. Therefore, the thermal neutron die-away-time has to be known in order to achieve an optimal discrimination between prompt and delayed gamma-ray spectra acquisition. Measurements Thermal

  7. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    NASA Astrophysics Data System (ADS)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  8. Thermal conductivity measurements of epoxy systems at low temperature

    NASA Astrophysics Data System (ADS)

    Rondeaux, F.; Bredy, Ph.; Rey, J. M.

    2002-05-01

    We have developed a specific thermal conductivity measurement facility for solid materials at low temperature (LHe and LN2). At present, the Measurement of Thermal Conductivity of Insulators (MECTI) facility performs measurements on epoxy resin, as well as on bulk materials such as aluminum alloy and on insulators developed at Saclay. Thermal conductivity measurements on pre-impregnated fiber-glass epoxy composite are presented in the temperature range of 4.2 K to 14 K for different thicknesses in order to extract the thermal boundary resistance. We also present results obtained on four different bonding glues (Stycast 2850 FT, Poxycomet F, DP190, Eccobond 285) in the temperature range of 4.2 K to 10 K.

  9. Preservation of bioactive compounds of a green vegetable smoothie using short time-high temperature mild thermal treatment.

    PubMed

    Castillejo, Noelia; Martínez-Hernández, Ginés Benito; Monaco, Kamila; Gómez, Perla A; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-01-01

    Smoothies represent an excellent and convenient alternative to promote the daily consumption of fruit and vegetables in order to obtain their health-promoting benefits. Accordingly, a green fresh vegetables smoothie (77.2% cucumber, 12% broccoli and 6% spinach) rich in health-promoting compounds was developed. Soluble solids content, pH and titratable acidity of the smoothie were 4.3 ± 0.4°Bx, 4.49 ± 0.01 and 0.22 ± 0.02 mg citric acid 100 -1 g fw, respectively. Two thermal treatments to reduce microbial loads and preserve quality were assayed: T1 (3 min at 80 ℃) and T2 (45 s at 90 ℃). Fresh blended unheated samples were used as control (CTRL). The smoothie presented a viscoelastic behaviour. T1 and T2 treatments reduced initial microbial loads by 1.3-2.4 and 1.4-3.1 log units, respectively. Samples were stored in darkness at 5 and 15 ℃. Colour and physicochemical changes were reduced in thermal-treated samples throughout storage, which were better preserved at 5 ℃ rather than at 15 ℃. Vitamin C changes during storage were fitted with a Weibullian distribution. Total vitamin C losses of T1 and T2 samples during storage at 15 ℃ were greatly reduced when they were stored at 5 ℃. Initial total phenolic content (151.1 ± 4.04 mg kg -1 fw) was 44 and 36% increased after T1 and T2 treatments, respectively. The 3-p-coumaroyl quinic and chlorogenic acids accounted the 84.7 and 7.1% relative abundance, respectively. Total antioxidant capacity (234.2 ± 20.3 mg Trolox equivalent kg -1 fw) remained constant after the thermal treatments and was better maintained during storage in thermal-treated samples. Glucobrassicin accounted the 81% of the initial total glucosinolates content (117.8 ± 22.2 mg kg -1 fw) of the smoothie. No glucosinolates losses were observed after T2 treatment being better preserved in thermal-treated samples. Conclusively, a short time-high temperature mild thermal treatment (T2) showed

  10. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  11. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    PubMed

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of germination and thermal treatments on folates in rye.

    PubMed

    Kariluoto, Susanna; Liukkonen, Kirsi-Helena; Myllymäki, Olavi; Vahteristo, Liisa; Kaukovirta-Norja, Anu; Piironen, Vieno

    2006-12-13

    Effects of germination conditions and thermal processes on folate contents of rye were investigated. Total folate contents were determined microbiologically with Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism, and individual folates were determined by high-performance liquid chromatography after affinity chromatographic purification. Germination increased the folate content by 1.7-3.8-fold, depending on germination temperature, with a maximum content of 250 micro g/100 g dry matter. Hypocotylar roots with their notably high folate concentrations (600-1180 micro g/100 g dry matter) contributed 30-50% of the folate contents of germinated grains. Germination altered the proportions of folates, increasing the proportion of 5-methyltetrahydrofolate and decreasing the proportion of formylated folate compounds. Thermal treatments (extrusion, autoclaving and puffing, and IR and toasting) resulted in significant folate losses. However, folate levels in grains that were germinated and then were heat processed were higher than for native (nongerminated) grains. Opportunities to optimize rye processing to enhance folate levels in rye-based foods are discussed.

  13. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plantmore » and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.« less

  14. Patient Scenarios Illustrating Benefits of Automation in DoD Medical Treatment Facilities.

    DTIC Science & Technology

    1981-10-23

    d-ntif by block nmber) This report outlines the difference that automation may make in patient encounters within the military health care system. Two...automation may make in patient encounters with the military health care system, as part of a task to characterize the benefit set of automation in...FI-RI4 323 PATIENT SCENARIOS ILLUSTRATING BENEFITS OF AUTOM ATION 1/1 IDOD MEDICAL TREATMENT FACILITIES(U) LITTLE (ARTHUR D) INC CAMBRIDGE MR

  15. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less

  16. Small Multi-Purpose Research Facility (SMiRF)

    NASA Image and Video Library

    2015-10-15

    NASA Glenn engineer Monica Guzik in the Small Multi-Purpose Research Facility (SMiRF). The facility provides the ability to simulate the environmental conditions encountered in space for a variety of cryogenic applications such as thermal protection systems, fluid transfer operations and propellant level gauging. SMiRF is a low-cost, small-scale screening facility for concept and component testing of a wide variety of hardware and is capable of testing cryogenic hydrogen, oxygen, methane and nitrogen.

  17. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  18. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    PubMed Central

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  19. Thermal treatment of galactose-branched polyelectrolyte microcapsules to improve drug delivery with reserved targetability.

    PubMed

    Zhang, Fu; Wu, Qi; Liu, Li-Jun; Chen, Zhi-Chun; Lin, Xian-Fu

    2008-06-05

    A novel multilayered drug delivery system by LbL assembly of galactosylated polyelectrolyte, which is possible to have the potential in hepatic targeting by the presence of galactose residues at the microcapsule's surface, is designed. Thermal treatment was performed on the capsules and a dramatic thermal shrinkage up to 60% decrease of capsule diameter above 50 degrees C was observed. This thermal behavior was then used to manipulate drug loading capacity and release rate. Heating after drug loading could seal the capsule shell, enhancing the loading capacity and reducing the release rate significantly. Excellent affinity between galactose-binding lectin and heated galactose-containing microcapsules were observed, indicating a stable targeting potential even after high temperature elevating up to 90 degrees C.

  20. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    PubMed

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.

  1. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, andmore » summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation.« less

  2. Race/Ethnic Disparities in the Utilization of Treatment for Drug Dependent Inmates in U.S. State Correctional Facilities

    PubMed Central

    Nowotny, Kathryn M.

    2014-01-01

    This study examines race/ethnic disparities in treatment for drug dependent inmates in state correctional facilities. The data come from the 2004 Survey of Inmates in State Correctional Facilities. Fixed effects logistic regression is used to analyze treatment outcomes for 5,180 inmates housed within 286 prisons. The analysis accounts for differences in background characteristics (i.e., age, gender, marital status, foreign born status, veteran status), socioeconomic characteristics (i.e., education, employment prior to incarceration), mental health (i.e., diagnosis with a serious mental illness), and incarceration experiences (i.e., current conviction, previous incarceration episodes, time served, additional sentencing requirements, external social support, disciplinary violations). The findings identify a remarkable unmet need among drug dependent inmates in that less than one-half of drug dependent inmates had received any type of treatment in prison at the time of the interview with the most common treatment type being self-help groups. Compared to whites, drug dependent Latino inmates have significantly lower odds of utilizing treatment, yet there are no significant black-white disparities found. Implications for drug treatment within prisons are discussed. PMID:25270722

  3. Antimicrobial Resistance Determinants in Acinetobacter baumannii Isolates Taken from Military Treatment Facilities

    PubMed Central

    Leski, Tomasz A.; Stockelman, Michael G.; Craft, David W.; Zurawski, Daniel V.; Kirkup, Benjamin C.; Vora, Gary J.

    2014-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii infections are of particular concern within medical treatment facilities, yet the gene assemblages that give rise to this phenotype remain poorly characterized. In this study, we tested 97 clinical A. baumannii isolates collected from military treatment facilities (MTFs) from 2003 to 2009 by using a molecular epidemiological approach that enabled for the simultaneous screening of 236 antimicrobial resistance genes. Overall, 80% of the isolates were found to be MDR, each strain harbored between one and 17 resistant determinants, and a total of 52 unique resistance determinants or gene families were detected which are known to confer resistance to β-lactam (e.g., blaGES-11, blaTEM, blaOXA-58), aminoglycoside (e.g., aphA1, aacC1, armA), macrolide (msrA, msrB), tetracycline [e.g., tet(A), tet(B), tet(39)], phenicol (e.g., cmlA4, catA1, cat4), quaternary amine (qacE, qacEΔ1), streptothricin (sat2), sulfonamide (sul1, sul2), and diaminopyrimidine (dfrA1, dfrA7, dfrA19) antimicrobial compounds. Importantly, 91% of the isolates harbored blaOXA-51-like carbapenemase genes (including six new variants), 40% harbored the blaOXA-23 carbapenemase gene, and 89% contained a variety of aminoglycoside resistance determinants with up to six unique determinants identified per strain. Many of the resistance determinants were found in potentially mobile gene cassettes; 45% and 7% of the isolates contained class 1 and class 2 integrons, respectively. Combined, the results demonstrate a facile approach that supports a more complete understanding of the genetic underpinnings of antimicrobial resistance to better assess the load, transmission, and evolution of MDR in MTF-associated A. baumannii. PMID:24247131

  4. Solid-phase microextraction of organophosphate pesticides in source waters for drinking water treatment facilities.

    PubMed

    Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda

    2006-09-01

    The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.

  5. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  6. An environmental testing facility for Space Station Freedom power management and distribution hardware

    NASA Technical Reports Server (NTRS)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  7. Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches.

    PubMed

    Bernardino-Nicanor, Aurea; Acosta-García, Gerardo; Güemes-Vera, Norma; Montañez-Soto, José Luis; de Los Ángeles Vivar-Vera, María; González-Cruz, Leopoldo

    2017-03-01

    Starches isolated from four ayocote bean varieties were modified by thermal treatment to determinate the effect of the treatment on the structural changes of ayocote bean starch. Scanning electron microscopy indicates that the starch granules have oval and round shapes, with heterogeneous sizes and fractures when the extraction method is used. The presence of new bands at 2850 and 1560 cm -1 in the FT-IR spectra showed that the thermal treatment of ayocote beans induced an interaction between the protein or lipid and the amylose or amylopectin, while the sharpest band at 3400 cm -1 indicated a dehydration process in the starch granule in addition to the presence of the band at 1260 cm -1 , indicating the product of the retrogradation process. The thermal treatment reduced the crystallinity as well as short-range order. Raman spectroscopy revealed that acute changes occurred in the polysaccharide bonds after thermal treatment. This study showed that the thermal treatment affected the structural properties of ayocote bean starches, the interactions of the lipids and proteins with starch molecules and the retrogradation process of starch.

  8. The Addiction Treatment Unit: a dual diagnosis program at the California Medical Facility--a descriptive report.

    PubMed

    Katz, R I

    1999-01-01

    The Addiction Treatment Unit is a dual diagnosis program which exists in the California Department of Corrections. It is housed in the California Medical Facility in Vacaville, California. Program residents must meet the diagnostic criteria of having a major mental disorder substantiated by a DSM-IV Axis I diagnosis and also meet the criteria for a substance abuse/dependence disorder. All patients are housed in one wing of the facility, which is based on the format of a modified therapeutic community and focuses on the concept of recovery. A multidisciplinary treatment team comprised of a psychiatrist, a psychologist, a social worker and a psychiatric technician delivers clinical interventions, including individual and group therapy as well as medication management. The focus of the drug treatment aspect is an Alcoholics Anonymous/Narcotics Anonymous approach based on 12-Step philosophy. Research involving other therapeutic communities running in prisons is discussed as is the aspect of dual diagnosis programs. Logistical and environmental constraints which pose challenges to running the Addiction Treatment Unit are considered. A summary section reflects on aspects which have been successful, what has not worked or has been changed and upcoming program revisions.

  9. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites

    USDA-ARS?s Scientific Manuscript database

    The effects of different fiber treatments, namely washing with water, alkali treatment (mercerization) and bleaching, on mechanical and thermal properties of starch/EVA/coir biocomposites were evaluated by tensile tests and thermogravimetry (TG), respectively. Additionally, the fiber/matrix interfac...

  11. Patient satisfaction on tuberculosis treatment service and adherence to treatment in public health facilities of Sidama zone, South Ethiopia.

    PubMed

    Nezenega, Zekariyas Sahile; Gacho, Yohannes H Michael; Tafere, Tadese Ejigu

    2013-03-22

    Patient compliance is a key factor in treatment success. Satisfied patients are more likely to utilize health services, comply with medical treatment, and continue with the health care providers. Yet, the national tuberculosis control program failed to address some of these aspects in order to achieve the national targets. Hence, this study attempted to investigate patient satisfaction and adherence to tuberculosis treatment in Sidama zone of south Ethiopia. A facility based cross sectional study was conducted using quantitative method of data collection from March to April 2011. A sample of 531 respondents on anti TB treatment from 11 health centers and 1 hospital were included in the study. The sample size to each facility was allocated using probability proportional to size allocation, and study participants for the interview were selected by systematic random sampling. A Pre tested, interviewer administered questionnaire was used to collect the data. Collected data was edited, coded and entered to Epi data version 3.1 and exported to SPSS version 16. Confirmatory factor analysis was done to identify factors that explain most of the variance observed in most of the manifested variables. Bivariate and Multivariate analysis were computed to analyze the data. The study revealed 90% of the study participants were satisfied with TB treatment service. However, 26% of respondents had poor adherence to their TB treatment. Patient perceived on professional care, time spent with health care provider, accessibility, technical competency, convenience (cleanliness) and consultation and relational empathy were independent predictors of overall patient satisfaction (P < 0.05). In addition to this, perceived waiting time was significantly associated with patient satisfaction (Beta = 0.262). In multivariate analysis occupational status, area of residence, perceived time spent with health care provider, perceived accessibility, perceived waiting time, perceived professional care

  12. Appraisal of ground-water quality near wastewater-treatment facilities, Glacier National Park, Montana

    USGS Publications Warehouse

    Moreland, Joe A.; Wood, Wayne A.

    1982-01-01

    Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system.Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant.Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts.

  13. Preparation of stationary phases for reversed-phase high-performance liquid chromatography using thermal treatments at high temperature.

    PubMed

    Vigna, Camila R M; Bottoli, Carla B G; Collins, Kenneth E; Collins, Carol H

    2007-07-13

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by deposition from a solution of PMOS into the pores of HPLC silica. Portions of PMOS-loaded silica were subjected to a thermal treatment at 100 degrees C for 24h (condition 1) in a tube furnace under a nitrogen atmosphere. After that, the material was heated for 4h at higher temperatures (150-400 degrees C) (condition 2). Heating at higher temperatures produces polymer bilayers. Non-immobilized and thermally treated stationary phases were characterized by percent carbon, (29)Si cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and reversed-phase chromatographic performance. The results show that thermal treatment between 150 and 300 degrees C accelerates the immobilization process, possibly due to some bond breaking of the polysiloxane, with formation of strong linkages to the surface of the support, resulting in more complete coverage of the silica. The chromatographic results show an improvement of efficiency with the increase of the temperature of condition 2 up to 300 degrees C and an increase in the resolution of the components, mainly for the phase heated at 300 degrees C. Such results demonstrate that a two-step thermal treatment (100 degrees C then 150-300 degrees C) produces stationary phases with good properties for use in reversed-phase high-performance liquid chromatography.

  14. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    PubMed

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    NASA Astrophysics Data System (ADS)

    Panduro, E. Chavez; Cabrejos, J. Bravo

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  16. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  17. New Battery Testing Facility Could Boost Future of Electric Vehicles

    Science.gov Websites

    industry. The Battery Thermal Test Facility at the U.S. Department of Energy's (DOE) National Renewable , ambient heat sources that could effect thermal readings from the battery. The cycler can both charge and draw current from a battery, allowing for thermal testing of any voltage. It can also be used to test

  18. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  19. Thermal Vacuum Integrated System Test at B-2

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  20. Reducing adolescent clients' anger in a residential substance abuse treatment facility.

    PubMed

    Adelman, Robert; McGee, Patricia; Power, Robert; Hanson, Cathy

    2005-06-01

    Sundown Ranch, a residential behavioral health care treatment facility for adolescents, tracked the progress and results of treatment by selecting performance measures from a psychosocial screening inventory. The temper scale was one of the two highest scales at admission and the highest scale at discharge. A clinical performance improvement (PI) project was conducted to assess improvements in clients' ability to manage anger after the incorporation of Rational Emotive Behavior Therapy (REBT) into treatment. Eighteen months of baseline data (July 1, 1999 - February 1, 2001) were collected, and 20 months of data (May 1, 2001 - December 31, 2002) were collected after the introduction of the PI activity. In all, data were collected for 541 consecutive admissions. A comparison of five successive quarterly reviews indicated average scores of 1.4 standard deviations (SDs) above the mean on the temper scale before the PI activity and .45 SD above the mean after. The performance threshold of reduction of the average temper scale score to < or =1 SD was met for 17 of 20 months. The fact that the PI activity reduced the temper scale elevations by almost one full SD is highly suggestive of the efficacy of REBT with the treatment population. After the project was completed, REBT was promoted as an additional therapeutic modality within the treatment program.

  1. Study of chemical and thermal treatment of kaolinite and its influence on the removal of contaminants from mining effluents.

    PubMed

    de Sales, Priscila F; Magriotis, Zuy M; Rossi, Marco Aurélio de L S; Tartuci, Letícia G; Papini, Rísia M; Viana, Paulo R M

    2013-10-15

    The effects of chemical and thermal treatments on the structure of kaolinite were examined, as well as the influence of those changes upon the removal of etheramine, a cationic collector used in the processing of iron ore. The materials were characterized using XRD, XRF, specific surface area (SBET), FTIR, zeta potential and a test for determination of acid sites. The effects of the treatments on the structure of kaolinite were evaluated using chemometric tools developed from principal components analysis algorithms and hierarchical components analysis. The parameters evaluated in the kinetic study of adsorption were contact time, initial concentration of etheramine, quantity of adsorbent and pH. The adsorption of etheramine in the samples subjected to chemical treatments could be explained by a pseudo-second order model, whilst for the sample subjected to thermal treatment, better fit was with the pseudo-first order model. With regard to adsorption isotherms, it was shown that for the three adsorbents used, adsorption followed the Langmuir model. The maximum quantities adsorbed were 27 mg g(-1), 29 mg g(-1) and 59 mg g(-1), respectively, for the samples subjected to acid, thermal and peroxide treatments. The treatment with peroxide was found to be the most suitable for removal of etheramine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Thermal biofeedback in the treatment of intermittent claudication in diabetes: a case study.

    PubMed

    Saunders, J T; Cox, D J; Teates, C D; Pohl, S L

    1994-12-01

    The objective of the present case study was to examine the therapeutic effects of thermal biofeedback-assisted autogenic training on a patient with non-insulin-dependent diabetes mellitus (NIDDM), vascular disease, and symptoms of intermittent claudication. The patient received thermal biofeedback from the hand for five sessions, then from the foot for 16 sessions, while hand and foot skin temperature were monitored simultaneously. In addition, the patient was instructed in autogenic training and practiced daily at home. Follow-up measurements were taken at 12 and 48 months. Within-session foot temperature rose specifically in response to foot temperature biofeedback and starting foot temperature rose between sessions. Posttreatment blood pressure was reduced to a normal level. Attacks of intermittent claudication were reduced to zero after 12 sessions and walking distance increased by about a mile per day over the course of treatment. It would appear that thermal biofeedback and autogenic training are potentially promising therapies for persons with diabetes and peripheral vascular disease.

  3. Effect of high hydrostatic pressure processing and squeezing pressure on some quality properties of pomegranate juice against thermal treatment

    NASA Astrophysics Data System (ADS)

    Subasi, B. G.; Alpas, H.

    2017-01-01

    The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400 MPa; 5°C, 15°C and 25°C; 5 and 10 min) on some quality properties of pomegranate juice. Juice samples are obtained under industrial conditions at two different squeezing pressure levels (100 and 150 psi - 0.689 and 1.033 MPa, respectively). Results are compared against conventional thermal treatment (85°C/10 min) and raw sample. For all three processing temperature, HHP combinations at 400 MPa for 10 min were sufficient to decrease the microbial load around 4.0 log cycles for both squeeze levels. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations, while there was a significant decrease (p ≤ .05) in thermal-treated samples. Being the highest sugar alcohol in pomegranate juice, mannitol content must be considered for determining the authenticity, and mannitol content increased with squeezing pressure and thermal treatment.

  4. Suicidal behaviours in male and female users of illicit drugs recruited in drug treatment facilities.

    PubMed

    Arribas-Ibar, Elisabet; Suelves, Josep Maria; Sanchez-Niubò, Albert; Domingo-Salvany, Antònia; T Brugal, M

    We assessed prevalence of suicidal ideation and plans among illicit drug users and their association with contextual factors, by gender. Cross-sectional study. In a sample of 511 illicit drug users recruited during spring 2012 in drug treatment and prevention facilities in Catalonia (Spain), the prevalence of suicidal ideation/plans in the last 12 months was assessed. Poisson regression was used to examine associations between suicidal ideation/plans and various factors (socio-demographic, psychological, illegal drug market activities and marginal income generation activities, which included any reported sex work, stealing, peddling, begging or borrowing on credit from a dealer). The average age was 37.9 years (standard deviation: 8.62); 76.3% were men. Suicidal ideation/plans were reported by 30.8% of men and 38.8% of women, with no significant differences by age or gender. Recent aggression (male prevalence ratio [PR]=2.2; female PR=1.4), psychological treatment (male PR=1.2; female PR=1.3) and illegal/marginal income generation activities (male PR=1.5; female PR=1.1) were associated with suicidal ideation/plans. Men who trafficked were more likely to have suicidal ideation/plans (PR=1.3), while prison history was positive for women (PR=1.8) and negative for men (PR=0.7). Prevalence of suicidal ideation/plans was high among illicit drug users recruited from healthcare facilities. Besides psychological variables, participation in illegal market activities and crime ought to be considered in drug users' suicidal prevention. Suicide risk needs to be evaluated in drug treatment facilities and psychological status and context contemplated. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Thermal certification tests of Orbiter Thermal Protection System tiles coated with KSC coating slurries

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Sherborne, William D.

    1993-01-01

    Thermal tests of Orbiter thermal protection system (TPS) tiles, which were coated with borosilicate glass slurries fabricated at Kennedy Space Center (KSC), were performed in the Radiant Heat Test Facility and the Atmospheric Reentry Materials & Structures Evaluation Facility at Johnson Space Center to verify tile coating integrity after exposure to multiple entry simulation cycles in both radiant and convective heating environments. Eight high temperature reusable surface insulation (HRSI) tiles and six low temperature reusable surface insulation (LRSI) tiles were subjected to 25 cycles of radiant heat at peaked surface temperatures of 2300 F and 1200 F, respectively. For the LRSI tiles, an additional cycle at peaked surface temperature of 2100 F was performed. There was no coating crack on any of the HRSI specimens. However, there were eight small coating cracks (less than 2 inches long) on two of the six LRSI tiles on the 26th cycle. There was practically no change on the surface reflectivity, physical dimensions, or weight of any of the test specimens. There was no observable thermal-chemical degradation of the coating either. For the convective heat test, eight HRSI tiles were tested for five cycles at a surface temperature of 2300 F. There was no thermal-induced coating crack on any of the test specimens, almost no change on the surface reflectivity, and no observable thermal-chemical degradation with an exception of minor slumping of the coating under painted TPS identification numbers. The tests demonstrated that KSC's TPS slurries and coating processes meet the Orbiter's thermal specification requirements.

  6. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of

  7. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of themore » open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.« less

  8. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    DTIC Science & Technology

    2009-04-01

    intensity focused ultrasound ( HIFU ) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...Leenders, G., et al., Histopathological changes associated with high intensity focused ultrasound ( HIFU ) treatment for localised adenocarcinoma of...invasive strategy for cancer therapy [1, 2]. Through HIFU exposure, acoustic energy is focused into a deep-sited tumor volume and converted into heat

  9. A portable thermal imaging device as a feedback system for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoffer, Oshrit A.; Ben-David, Merav A.; Katz, Eyal; Sholomov, Meny; Kelson, Itzhak; Gannot, Israel

    2018-02-01

    Breast cancer is the most frequently diagnosed cancer among women in the Western world. Currently, no imaging technique assesses tumor heat generation and vasculature changes during radiotherapy in viable tumor and as adjuvant therapy. Thermography is a non-ionizing, non-invasive, portable and low-cost imaging modality. The purpose of this study was to investigate the use of thermography in cancer treatment monitoring for feedback purposes. Six stage-IV breast cancer patients with viable breast tumor and 8 patients (9 breasts) who underwent tumor resection were monitored by a thermal camera prior to radiotherapy sessions over several weeks of radiation treatment. The thermal changes over the treated breast were calculated and analyzed for comparison with healthy surrounded breast tissue or contralateral breast. A model of a breast with a tumor was created. The COMSOL FEM software was used to carry out the analysis. The effects of tumor metabolism and breast tissue perfusion on the temperature difference were analyzed. All patients with active tumors exhibited drops in maximal temperature of the tumor during radiation therapy. The patients who underwent radiotherapy as adjuvant treatment exhibited a rise in maximal temperature over the treated breast in correlation with skin erythema during radiation. This difference between the groups was statistically significant (P=0.001). The simulated human breast cancer models analysis showed that tumor aggressiveness reduction causes decrease in the tumor temperature. Inflammation causes vasodilatation and increases tissue perfusion, resulted in an increase in breast tissue temperature. A correlation was demonstrated between the clinical outcome and the simulation. We report a method for monitoring cancer response to radiation therapy, which measures the physiological response along with clinical response. These anticipatory efficacy evaluations of radiotherapy during treatment may further promote changes in treatment regimen

  10. Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry.

    PubMed

    Busto, Y; Cabrera, X; Tack, F M G; Verloo, M G

    2011-02-15

    Old dumps of mercury waste sludges from chlor-alkaline industry are an environmental threat if not properly secured. Thermal retortion can be used to remove mercury from such wastes. This treatment reduces the total mercury content, and also may reduce the leachability of the residual mercury. The effects of treatment temperature and treatment time on both residual mercury levels and mercury leachability according to the US EPA TCLP leaching procedure, were investigated. Treatment for 1h at 800°C allowed to quantitatively remove the mercury. Treatment at 400°C and above allowed to decrease the leachable Hg contents to below the US EPA regulations. The ultimate choice of treatment conditions will depend on requirements of further handling options and cost considerations. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  12. Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility

    NASA Technical Reports Server (NTRS)

    Sorge, Richard N.

    2013-01-01

    The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

  13. HIV treatment and care services for adolescents: a situational analysis of 218 facilities in 23 sub-Saharan African countries.

    PubMed

    Mark, Daniella; Armstrong, Alice; Andrade, Catarina; Penazzato, Martina; Hatane, Luann; Taing, Lina; Runciman, Toby; Ferguson, Jane

    2017-05-16

    In 2013, an estimated 2.1 million adolescents (age 10-19 years) were living with HIV globally. The extent to which health facilities provide appropriate treatment and care was unknown. To support understanding of service availability in 2014, Paediatric-Adolescent Treatment Africa (PATA), a non-governmental organisation (NGO) supporting a network of health facilities across sub-Saharan Africa, undertook a facility-level situational analysis of adolescent HIV treatment and care services in 23 countries. Two hundred and eighteen facilities, responsible for an estimated 80,072 HIV-infected adolescents in care, were surveyed. Sixty per cent of the sample were from PATA's network, with the remaining gathered via local NGO partners and snowball sampling. Data were analysed using descriptive statistics and coding to describe central tendencies and identify themes. Respondents represented three subregions: West and Central Africa ( n  = 59; 27%), East Africa ( n  = 77, 35%) and southern Africa ( n  = 82, 38%). Half (50%) of the facilities were in urban areas, 17% peri-urban and 33% rural settings. Insufficient data disaggregation and outcomes monitoring were critical issues. A quarter of facilities did not have a working definition of adolescence. Facilities reported non-adherence as their key challenge in adolescent service provision, but had insufficient protocols for determining and managing poor adherence and loss to follow-up. Adherence counselling focused on implications of non-adherence rather than its drivers. Facilities recommended peer support as an effective adherence and retention intervention, yet not all offered these services. Almost two-thirds reported attending to adolescents with adults and/or children, and half had no transitioning protocols. Of those with transitioning protocols, 21% moved pregnant adolescents into adult services earlier than their peers. There was limited sexual and reproductive health integration, with 63% of facilities

  14. Huntington's Disease Outpatient Clinic for Functional Diagnosis and Treatment: Coming to Consensus: How Long Term Care Facility Procedures Complement Specialist Diagnosis and Treatment.

    PubMed

    Veenhuizen, Ruth; Nijsten, Hanneke; van Roosmalen, Paul; Lammertsen, Karen; Stor, Tom; de Jager, Lia; de Man, Jesseke; van der Doelen, Rina; Landa, Karin; Grond, Vera; Heffels, Joyce; Groenewoud, Rinske; Rovers, Luce; Bakker, Christian; Leiwakabessy, Saskia; van der Wedden, Dirk; van Blitterswijk, Jacqueline; van den Bosch, Dieuwke

    2018-01-01

    Huntington's disease (HD) patients and families deserve expert treatment and care throughout their lives, but uniformity in functional diagnosis and treatment was lacking. In the aim of reaching this uniformity on day-to-day treatment and care offered by multidisciplinary outreach teams from Dutch long term care facilities for ambulatory HD patients, a consensus trajectory was started to harmonise our care programme with international standards and within the country. The consensus statements, given as supplementary material, should lead to expert treatment and care for HD families throughout the Netherlands and this manuscript should contribute and revitalise a global discussion on standards of treatment and care.

  15. GIS analysis of the siting criteria for the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskinson, R.L.

    1994-01-01

    This report summarizes a study conducted using the Arc/Info{reg_sign} geographic information system (GIS) to analyze the criteria used for site selection for the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of the analyses was to determine, based on predefined criteria, the areas on the INEL that best satisfied the criteria. The coverages used in this study were produced by importing the AutoCAD files that produced the maps for a pre site selection draft report into the GIS. The files were then converted to Arc/Info{reg_sign} GIS format. The initial analysis was mademore » by considering all of the criteria as having equal importance in determining the areas of the INEL that would best satisfy the requirements. Another analysis emphasized four of the criteria as ``must`` criteria which had to be satisfied. Additional analyses considered other criteria that were considered for, but not included in the predefined criteria. This GIS analysis of the siting criteria for the IWPF and MLLWTF provides a logical, repeatable, and defensible approach to the determination of candidate locations for the facilities. The results of the analyses support the location of the Candidate Locations.« less

  16. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  17. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    NASA Technical Reports Server (NTRS)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  18. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposedmore » Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.« less

  19. Mechanisms of boron fiber strengthening by thermal treatment

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1979-01-01

    The fracture strain for boron on tungsten fibers can be improved by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanisms responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 + or - 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.

  20. [Cancer treatment situation in Japan with regard to the type of medical facility using medical claim data of Health Insurance Societies].

    PubMed

    Tanaka, Hirokazu; Nakamura, Fumiaki; Higashi, Takahiro; Kobayashi, Yasuki

    2015-01-01

    Analyzing the cancer treatment situation in Japan is an important public health issue, especially because of increasing crude cancer morbidity in a rapidly aging society. This study aimed to examine where cancer patients received treatment, with special attention to designated regional cancer hospitals, and the treatment modality they received. Using health insurance claim data (1,064,875 subjects on December 2011) managed by the Japan Medical Data Center, we included patients that received treatments for stomach, colon, liver, lung, or breast cancer, the most common cancers in Japan, between 2005 and 2011. We divided the medical facilities where they were treated into five groups: prefectural designated regional cancer hospitals, local designated regional cancer hospitals, large/medium hospitals (≥100 beds), small hospitals (20-99 beds), and clinics (0-19 beds). We calculated the percentage of patients treated at each type of medical facility with different treatment modalities. The study included 2,901 patients. In total, 43.9% patients were treated at designated regional cancer hospitals (prefectural or local). This percentage was the highest for lung cancer (60.0%) and the lowest for colon cancer (31.3%). Surgeries for liver cancer (67.6%) and lung cancer (61.9%) were performed more at designated regional cancer hospitals (prefectural or local) than surgeries for stomach cancer (45.5%), colon cancer (40.1%), and breast cancer (49.8%). Some procedures were performed at small hospitals or clinics (surgery for stomach cancer [9.4%], surgery for breast cancer [9.3%], endoscopic procedures for stomach cancer [14.1%] and colon cancer [40.6%], and chemotherapy for breast cancer [11.4%]). Colon and breast cancer patients treated at prefectural designated regional cancer hospitals or clinics were younger than those treated at other types of facilities. The distribution of facilities at which cancer patients received treatment differed significantly according to cancer

  1. Space Simulation, 7th. [facilities and testing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Space simulation facilities and techniques are outlined that encompass thermal scale modeling, computerized simulations, reentry materials, spacecraft contamination, solar simulation, vacuum tests, and heat transfer studies.

  2. Seasonal thermal energy storage

    NASA Astrophysics Data System (ADS)

    Minor, J. E.

    1980-03-01

    The Seasonal Thermal Energy Storage (STES) Program demonstrates the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The STES Program utilizes ground water systems (aquifers) for thermal energy storage. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities.

  3. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    PubMed Central

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  4. Multi-source irradiation facility with improved space configuration for neutron activation analysis: Design optimization.

    PubMed

    Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H

    2018-05-01

    A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, S.

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration ofmore » site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.« less

  6. Industrial hygiene report, preliminary survey of wood preservative treatment facility at Koppers Company, Inc. , Forest Products Group, Florence, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.S.; Timbie, C.Y.

    1979-11-16

    A walk through survey was conducted at Koppers Company, Incorporated, Florence, South Carolina in July, 1984. The facility treated poles, posts, and railroad ties with creosote, pentachlorophenol, or chromated copper arsenate. Pentachlorophenol monitoring was performed and showed pentachlorophenol exposures of 0.04 to 0.12 mg/cm/sup 3/. Sampling was attempted for creosote, but the data were invalid due to faulty analytical techniques. The facility employed 141 people, of whom 125 were production workers and 16 were administrative staff. All employees were required to wear hard hats and safety shoes. Treatment operators and helpers were supplied with eye protection, gloves, boots, disposable coveralls,more » and slickers when needed. Respirators were provided when entering treatment cylinders. Preemployment medical examinations were conducted on all new employees. Periodical physicals were not offered. No physician or licensed nurse was located on site. Two employees trained in first aid were responsible for providing emergency treatment. About half of the employees used work uniforms while the remainder brought work clothing from home. Showers and change room facilities were provided.« less

  7. Thermal-hydraulic analysis of the coil test facility for CFETR.

    PubMed

    Ren, Yong; Liu, Xiaogang; Li, Junjun; Wang, Zhaoliang; Qiu, Lilong; Du, Shijun; Li, Guoqiang; Gao, Xiang

    2016-01-01

    Performance test of the China Fusion Engineering Test Reactor (CFETR) central solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the CFETR magnet performance in relevant operation conditions. The superconducting magnet of the coil test facility for CFETR is being designed with the aim of providing a background magnetic field to test the CFETR CS insert and TF insert coils. The superconducting magnet consists of the inner module with Nb 3 Sn coil and the outer module with NbTi coil. The superconducting magnet is designed to have a maximum magnetic field of 12.59 T and a stored energy of 436.6 MJ. An active quench protection circuit and the positive temperature coefficient dump resistor were adopted to transfer the stored magnetic energy. The temperature margin behavior of the test facility for CFETR satisfies the design criteria. The quench analysis of the test facility shows that the cable temperature and the helium pressure inside the jacket are within the design criteria.

  8. Final Environmental Assessment: For Okaloosa County Wastewater Treatment Facility Eglin Air Force Base, Florida

    DTIC Science & Technology

    2004-04-01

    growth , area development, and additional wastewater from Okaloosa Island that is being pumped to the wastewater treatment facility, it is approaching its...a wavelength of 254 nanometers (nm) kill viruses, bacteria , and protozoan, including Giardia and Cryptosporidium. Currently, the vast majority of...from the Proposed Action. Given the highly disturbed condition of the site and surrounding area, expansion at this site would not adversely

  9. Report: American Recovery and Reinvestment Act Site Visit of the Wastewater Treatment Facility Improvements Project, Perkins, Oklahoma

    EPA Pesticide Factsheets

    Report #11-R-0214, May 2, 2011. We conducted an unannounced visit of the construction site of the Perkins Public Works Authority’s wastewater treatment facility improvements project in Perkins, Oklahoma, on April 19–22, 2010.

  10. Rocket nozzle thermal shock tests in an arc heater facility

    NASA Technical Reports Server (NTRS)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  11. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  12. Assessment of air velocity sensors for use in animal produciton facilities

    USDA-ARS?s Scientific Manuscript database

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  13. Higher Education Facilities: The SmartGrid Earns a Doctorate in Economics

    ERIC Educational Resources Information Center

    Tysseling, John C.; Zibelman, Audrey; Freifeld, Allen

    2011-01-01

    Most higher education facilities have already accomplished some measure of a "microgrid" investment with building control systems (BCS), energy management systems (EMS), and advanced metering infrastructure (AMI) installations. Available energy production facilities may include boilers, chillers, cogeneration, thermal storage, electrical…

  14. Simulation of the synergistic low Earth orbit effects of vacuum thermal cycling, vacuum UV radiation, and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.

    1992-01-01

    In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.

  15. Oil Pharmacy at the Thermal Protection System Facility

    NASA Image and Video Library

    2017-08-08

    An overall view of the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.

  16. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...

  17. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...

  18. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...

  19. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...

  20. Image-guided thermal therapy of uterine fibroids

    PubMed Central

    Shen, Shu-Huei; Fennessy, Fiona; McDannold, Nathan; Jolesz, Ferenc; Tempany, Clare

    2009-01-01

    Thermal ablation is an established treatment for tumor. The merging of newly developed imaging techniques has allowed precise targeting and real-time thermal mapping. This article provides an overview of the image-guided thermal ablation techniques in the treatment of uterine fibroids. Background on uterine fibroids, including epidemiology, histology, symptoms, imaging findings and current treatment options, is first outlined. After describing the principle of magnetic resonance thermal imaging, we introduce the applications of image-guided thermal therapies, including laser ablation, radiofrequency ablation, cryotherapy and particularly the newest, magnetic resonance-guided focused ultrasound surgery, and how they apply to uterine fibroid treatment. PMID:19358440

  1. Formation of PCDD and PCDF in the thermal treatment of footwear leather wastes.

    PubMed

    Godinho, Marcelo; Marcilio, Nilson Romeu; Masotti, Leonardo; Martins, Celso Brisolara; Ritter, Diego Elias; Wenzel, Bruno München

    2009-08-15

    The leather waste generated by the footwear industry is considered dangerous due to the presence of trivalent chromium, derived from the salt utilized to tan hides. In Brazil, the majority of this waste is disposed on landfills and only about 3% are recycled. The thermal treatment is an alternative method for purification of such residues. By using this technique it is possible to generate energy and recover the chromium present in the ash for the production of basic chromium sulfate (tanning industry), high carbon ferrochromium or carbon-free ferrochromium (steel industry). In the last 10 years, the gasification and combustion of footwear leather waste have been intensively studied at the Federal University of Rio Grande do Sul. The research experiment for characterization of the emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) were carried out in a semi-pilot unit (350 kW(th)). From new investments the thermal capacity of the unit will increase to 600 kW(th). The unit will produce power from the heat generated in the combustion. The experimental results indicated that during the thermal treatment of footwear leather wastes, the formation mechanism of PCDD/F is the de novo synthesis. Most of PCDD/F were found in the particulate phase (>95%). A kinetic model was used for discussion of the achieved experimental results. The model is based in the carbon gasification, PCDD/F formation, desorption and degradation. From the conclusions obtained in this work will be possible minimize the PCDD/F formation in process of combustion of footwear leather wastes.

  2. Capabilities of the thermal acoustic fatigue apparatus

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Daniels, E. F.

    1992-01-01

    The Thermal Acoustic Fatigue Apparatus (TAFA) is a facility for applying intense noise and heat to small test panels. Modifications to TAFA have increased the heating capability to 44 BTU/(ft.-sec.), making it possible to heat test panels to 2000 F and concurrently apply 168 dB of noise. Results of acoustic and thermal surveys are shown. Two test items, a 0.09 in. steel panel and an insulated panel, were used in the thermal survey.

  3. Effect of different thermal treatments on the corrosion resistance of alloy 690 tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, J.R.; Heck, K.A.; Angeliu, T.M.

    1990-03-01

    A comparison of the carbide precipitation characteristics and corrosion resistance of commercially produced alloy 690 steam generator tubing from various sources, with different thermal treatments, was made. Four thermal treatments within the ranges of 700--720{degree}C (1292--1328{degree}F)/5--5.75 hrs and 871--927{degree}C (1600--1700{degree}F)/10 min were compared to one another and to two as-mill annealed tubes. All tubes were characterized with respect to chemical composition, mechanical properties, and microstructure. Overall carbide precipitation was determined by etching with phosphoric acid/nital, bromine-methanol and glyceregia/oxalic etchants. Scanning transmission electron microscope analysis provided detailed chromium depletion profiles across the grain boundary and carbide composition. Nitric acid intergranular attackmore » (IGA) tests were also conducted. C-ring stress corrosion cracking (SCC) tests, with stresses above the yield strength were then conducted in 350{degree}C (662{degree}F) deaerated 1, 10, and 50% NaOH and unstressed IGA tests were conducted in a NaOH-Na{sub 2}SO{sub 4}--Fe{sub 3}O{sub 4}--Fe{sub 2}O{sub 3} environment, also at 350{degree}C (662{degree}F). 2 tabs.« less

  4. Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Isheim, Dieter; Zhang, Xian J.; Ghosh, Gautam; Seidman, David N.

    2017-08-01

    Austenite reversion and its thermal stability attained during the transformation is key to enhanced toughness and blast resistance in transformation-induced-plasticity martensitic steels. We demonstrate that the thermal stability of Ni-stabilized austenite and kinetics of the transformation can be controlled by forming Ni-rich regions in proximity of pre-existing (retained) austenite. Atom probe tomography (APT) in conjunction with thermodynamic and kinetic modeling elucidates the role of Ni-rich regions in enhancing growth kinetics of thermally stable austenite, formed utilizing a multistep intercritical ( Quench- Lamellarization- Tempering (QLT)-type) heat treatment for a low-carbon 10 wt pct Ni steel. Direct evidence of austenite formation is provided by dilatometry, and the volume fraction is quantified by synchrotron X-ray diffraction. The results indicate the growth of nm-thick austenite layers during the second intercritical tempering treatment (T-step) at 863 K (590 °C), with austenite retained from first intercritical treatment (L-step) at 923 K (650 °C) acting as a nucleation template. For the first time, the thermal stability of austenite is quantified with respect to its compositional evolution during the multistep intercritical treatment of these steels. Austenite compositions measured by APT are used in combination with the thermodynamic and kinetic approach formulated by Ghosh and Olson to assess thermal stability and predict the martensite-start temperature. This approach is particularly useful as empirical relations cannot be extrapolated for the highly Ni-enriched austenite investigated in the present study.

  5. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    NASA Astrophysics Data System (ADS)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  6. Mechanisms of boron fiber strengthening by thermal treatment

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1979-01-01

    The fracture strain for boron on tungsten fibers was studied for improvement by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanism responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 plus or minus 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.

  7. Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review.

    PubMed

    Noyola, A; Paredes, M G; Güereca, L P; Molina, L T; Zavala, M

    2018-10-15

    Wastewater treatment (WWT) may be an important source of methane (CH 4 ), a greenhouse gas with significant global warming potential. Sources of CH 4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH 4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH 4 , due to dissolved CH 4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH 4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH 4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH 4 -neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  9. Methods of sampling airborne fungi in working environments of waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2016-01-01

    The objective of the present study was to evaluate and compare the efficiency of a filter based sampling method and a high volume sampling method for sampling airborne culturable fungi present in waste sorting facilities. Membrane filters method was compared with surface air system method. The selected sampling methods were modified and tested in 2 plastic waste sorting facilities. The total number of colony-forming units (CFU)/m3 of airborne fungi was dependent on the type of sampling device, on the time of sampling, which was carried out every hour from the beginning of the work shift, and on the type of cultivation medium (p < 0.001). Detected concentrations of airborne fungi ranged 2×102-1.7×106 CFU/m3 when using the membrane filters (MF) method, and 3×102-6.4×104 CFU/m3 when using the surface air system (SAS) method. Both methods showed comparable sensitivity to the fluctuations of the concentrations of airborne fungi during the work shifts. The SAS method is adequate for a fast indicative determination of concentration of airborne fungi. The MF method is suitable for thorough assessment of working environment contamination by airborne fungi. Therefore we recommend the MF method for the implementation of a uniform standard methodology of airborne fungi sampling in working environments of waste treatment facilities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    NASA Astrophysics Data System (ADS)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  11. Development of a Cryogenic Thermal Distortion Measurement Facility for Testing the James Webb Space Telescope Instrument Support Integration Module 2-D Test Assemblies

    NASA Technical Reports Server (NTRS)

    Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; hide

    2007-01-01

    The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard

  12. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  13. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  14. Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph

    1997-01-01

    Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).

  15. Evaluation of gas-particle partition of dioxins in flue gas I: evaluation of gasification behavior of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash by thermal treatment.

    PubMed

    Yokohama, Naoki; Otaka, Hiroaki; Minato, Ichiro; Nakata, Munetaka

    2008-05-01

    The gasification behavior of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in fly ash by thermal treatment has been investigated to estimate gas-particle partition in flue gas. The results obtained in thermal experiments under various conditions showed that gasification of PCDD/Fs depends on air flow rate and treatment weight of fly ash as well as treatment temperature. On the other hand, the results obtained in the thermal experiments using dioxin-free fly ash revealed that during thermal treatment, the de novo synthesis, gasification, and decomposition of PCDFs proceeded at different rates. This difference in the reaction rates indicates that thermal treatment time is also a factor in determining the gas-particle partition of PCDD/Fs in fly ash. Therefore, reasonable thermal treatment conditions were established and applied to three ash samples. For all samples, PCDD/Fs started to gasify at 350 degrees C treatment, whereas 53-98% of PCDD/F homologs gasified at 400 degrees C treatment, implying that gaseous PCDD/Fs are dominant in flue gas at temperatures in the range 350-400 degrees C regardless of particle concentration.

  16. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation.

    PubMed

    Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-15

    Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage

    NASA Astrophysics Data System (ADS)

    Hou, Quanwen; Zhao, Xiaopeng; Meng, Tong; Liu, Cunliang

    2016-09-01

    Thermal metamaterials and devices based on transformation thermodynamics often require materials with anisotropic and inhomogeneous thermal conductivities. In this study, still based on the concept of transformation thermodynamics, we designed a planar illusion thermal device, which can delocalize a heat source in the device such that the temperature profile outside the device appears to be produced by a virtual source at another position. This device can be constructed by only one kind of material with constant anisotropic thermal conductivity. The condition which should be satisfied by the device is provided, and the required anisotropic thermal conductivity is then deduced theoretically. This study may be useful for the designs of metamaterials or devices since materials with constant anisotropic parameters have great facility in fabrication. A prototype device has been fabricated based on a composite composed by two naturally occurring materials. The experimental results validate the effectiveness of the device.

  18. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    PubMed

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  19. Training the Staff of a Drug Addiction Treatment Facility: A Case Study of Hogar De Encuentro

    ERIC Educational Resources Information Center

    Sorensen, Andrew A.; Leske, M. Cristina

    1977-01-01

    This paper, presented at the American Public Health Association meeting; Chicago, November 1975, discusses a staff training program at a drug addiction treatment facility established for Spanish-speaking (and other) drug addicts. Staff improved counseling skills and knowledge of drug addiction, but changed little in attitudes toward drug use and…

  20. Oil Pharmacy at the Thermal Protection System Facility

    NASA Image and Video Library

    2017-08-08

    Tim King of Jacobs at NASA's Kennedy Space Center in Florida, explains operations in the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.